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A B S T R A C T   

Concepts are central to reasoning and intelligent behaviour. Scientific evidence shows that conceptual devel
opment is fundamental for the emergence of high-cognitive phenomena. Here, we model such phenomena in a 
brain-inspired cognitive robotic model and examine how the robot can learn, categorise, and abstract concepts to 
voluntary control behaviour. The paper argues that such competence arises with sufficient conceptual content 
from physical and social experience. Hence, senses, motor abilities and language, all contribute to a robot’s 
intelligent behaviour. To this aim, we devised a method for attaining concepts, which computationally re
produces the steps of the inductive thinking strategy of the Concept Attainment Model (CAM). Initially, the robot 
is tutor-guided through socio-centric cues to attain concepts and is then tested consistently to use these concepts 
to solve complex tasks. We demonstrate how the robot uses language to create new categories by abstraction in 
response to human language-directed instructions. Linguistic stimuli also change the representations of the ro
bot’s experiences and generate more complex representations for further concepts. Most notably, this work 
shows that this competence emerges by the robot’s ability to understand the concepts similarly to human un
derstanding. Such understanding was also maintained when concepts were expressed in multilingual lexicali
sations showing that labels represent concepts that allowed the model to adapt to unfamiliar contingencies in 
which it did not have directly related experiences. The work concludes that language is an essential component 
of conceptual development, which scaffolds the cognitive continuum of a robot from low-to-high cognitive skills, 
including its skill to understand.   

1. Introduction 

The way humans acquire, represent and pass on knowledge is subject 
to cross-disciplinary debate. It is advocated that the body of knowledge 
we store in memory and use in high-cognitive activities is commonly 
linked to our ability to form concepts (Machery, 2009). Conceptual 
development grants human organisms plasticity to evolve and adapt to 
miscellaneous contingencies, using earlier-learned experiences to make 
sense of novel stimuli (Boyd et al., 2011). This conceptual development 
involves motor skills, perception, emotions, and language (Hargreaves & 
Pexman, 2012). Several attempts to model similar human mental and 
somatic skills in artificial artefacts, e.g., robots, have mostly focused on 

low-order cognitive phenomena, such as perception, manipulation, 
navigation and motor coordination. Despite their significance and their 
approximation to a hypothesised developmental paradigm of human 
cognitive functions, these attempts do not yet offer a clear sight of how 
their blueprints can explain or scale up to high-level cognitive compe
tence (Mirolli & Parisi, 2011). For example, a fundamental form of high- 
level human cognition is grouping concepts pragmatically into coherent 
categories, the learning and utilisation of which allows us to draw non- 
trivial inferences on situations where we lack direct experience (Bruner 
& Austin, 1986). The act of categorisation deeply reflects problem- 
solving in child development (Lupyan & Bergen, 2016), ranging from 
perceptual clustering (e.g., object colour-grouping in prelinguistic 
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infants) to nontrivial abstract thinking (Markman, 1989). Moreover, 
past and present-day research seem to converge towards the idea that 
conceptual abstract thinking is devoted to an essential part of human 
cognition: language (Borghi et al., 2011). An influential author to have 
attested in favour of language (overt or egocentric) is Vygotsky 
(Vygotsky, 1962; Vygotsky & Cole, 1978) who attributes a fundamental 
role to language and to the social foundation (e.g., tutoring by adults) for 
the conceptual development of infants. In his view, the emergence of 
some concepts, e.g., scientific concepts, requires formal-logical de
ductions and problem-solving methods that are entirely linguistic in 
nature. Recent hybrid models of sensorimotor and verbal behaviour 
seem to sustain the hypothesis that abstract concepts are grounded in 
sensorimotor, emotional, social, and linguistic experience (Andrews 
et al., 2014; Louwerse, 2011; Borghi et al., 1752). Thus, a desideratum 
for intelligent robots is to account for language when modelling their 
cognition. 

First, let us clarify the meaning of a concept. In this work, concepts are 
viewed from a purely psychological angle used to describe a particular 
group of things of either materialistic (both animate and inanimate) or 
abstract existence that share a meaningful similarity with one another 
(Murphy & Medin, 1985). Humans draw concepts from pure observation 
(e.g., cats, dogs, small, large) or our inner perceptions, emotions, or beliefs 
(e.g., likeable, beautiful) and then use conceptual content to decipher novel 
contingencies by mapping them as closely as possible to the concepts we 
hold (Bruner, 1985). A concept is such if it possesses at least one or some 
critical attributes to the definition of the concept, while it may also include 
other non-critical attributes that are not essential to that definition. Con
cepts might emerge either through encounters with the environment first 
and lexicalised later (Markman, 1989), or from language first and then 
anchored in the environment/experience (Vygotsky, 1962). This is finely 
illustrated in the work of Sloutsky and Deng (2019) with the following 
example: infants are capable of categorising dogs after repeated encoun
ters with dogs, even before learning the linguistic term dog. Instead, ab
stract concepts like germ do not originate directly in experience, but from 
language and are later grounded in some form of personal experience. 
Bottom-up concept learning (from experience) occurs without language, 
whereas top-down learning (from language) requires a fair amount of 
language. Our understanding of the human brain suggests that it uses the 
notion of sameness or equivalence to identify patterns that allow it to treat 
different entities as if they were similar in some way. When we establish an 
equivalence (category) and a label, we can use the label to equally mark 
entities. Ergo, the label ultimately becomes a concept. 

Certain human intellectual processes, such as planning, thinking, 
reasoning, problem-solving, and decision-making rely on concepts 
(Sloutsky & Deng, 2019). For this, we must achieve an understanding of 
simple and complex concepts. By understanding concepts, humans can 
follow and give instructions and organise their knowledge to solve 
problems adaptively. The understanding of a concept refers to the ability 
to assess its critical over its non-critical attributes (Donahoe & Palmer, 
1994). Thus, the first step to understanding is categorisation, which 
helps reduce the complexity of the environment and the necessity of 
constant learning. 

This paper concerns the modelling of high-level cognition in robots 
beyond the extensively-studied phenomena of perception, manipula
tion, navigation and motor coordination, through appropriate acquisi
tion and understanding of concepts by sufficient involvement of language 
in the robot’s cognition. Specifically, it seeks to explore the following 
research question (RQ): Can cognitive robots understand the concepts 
they use? When can we assume such an understanding? 

Here, concept understanding is regarded from the view of learning 
sciences research (Sawyer, 2005), which consent that understanding is 
demonstrated if the learner can: 

C1: Identify examples of the concept that are subject to a high variation of 
non-defining attributes. 

C2: Distinguish exemplars (an example of the concept) from close non- 
exemplars (something that is not an example) by assessing their signifi
cant attributes. 
C3: Maintain these abilities in novel contingencies that were not presented 
when learning the concept. 

When the above criteria1 are met and understanding is achieved, the 
organism (human or robot) should be able to demonstrate an ability to 
categorise, abstract and voluntary control behaviour for adaptive 
problem-solving. Thus, in this work, we designed an experimental pro
tocol of concept attainment model to teach concepts to a cognitive robot 
and a series of behavioural experiments based on one-occasion learning 
to assess the emergence of such high-cognitive skills in the robot. The 
concepts are attained via a tutor-learning model, assuming the context 
in which a child discovers a hidden rule/concept invented by an 
experimenter (Bruner & Austin, 1986; Vygotsky, 1962). In each of the 
experiments, the robot meets the three criteria of understanding by 
attempting to learn, categorise, abstract concepts and control the task. 
The goal and available resources of each task are slightly altered using 
socio-centric linguistic stimuli. In response to the new stimuli (linguistic 
and not), the robot must change its previous categorisation decisions to 
accomplish the goal, if possible, while self-managing the decision of if 
and how to do this (e.g., resources are not appropriate for the goal). 
Moreover, to test if the concepts are appropriately mapped to mean
ingful experiences and understanding of those experiences, the third 
experiment involves multilingual stimuli. Here, the robot is expected to 
reproduce a certain earlier-learned sensorimotor behaviour in response 
to a new language when this experience and the concepts that surround 
it are not directly trained in that language. Hence, any decision-making 
or problem-solving of the robot is guided by its reasoning on the con
cepts, following the idea of Sloutsky and Deng (2019) that the label 
becomes the concept itself and, as such, it can map to the same mental 
representations associated with that concept that have originated from 
motor experience. 

Our contribution can be summarised as follows: it is one of the few 
attempts in the literature on cognitive robotics, which addresses high- 
level human-specific cognitive skills in robots by combining the situ
ated and interactive view of cognition with a proper understanding of 
human language. Moreover, to the best of our knowledge, this is the first 
work to explore the understanding of concepts by a robot, where con
cepts are treated from a purely psychological perspective that is closer to 
how humans acquire and make sense of their knowledge. 

2. Related works 

The scientific literature on computational modelling of concept 
development and the interaction of language with robot cognition is 
currently narrow. The natural attainment of concepts from the angle of 
learning sciences research, e.g., the concept attainment model, has little 
or not been addressed by present-day computational efforts. Among 
works that address concept learning, some have made significant con
tributions to the learning and generalisation of handwritten characters 
at a human level from one or few learning instances (Lake et al., 2015; 
Lázaro-Gredilla et al., 2019). Both models demonstrated outstanding 
results that closely resemble or are indistinguishable from the concepts 
produced by humans. However, they have considered concepts as simple 
programs instead of notions and, as such, they only involved perceptual 
categories (vision/action-based), which require little involvement of 
language and much less abstraction. Instead, we investigate concept 
attainment in a robotic model from a psychological angle. In our work, 
this attainment arises by combining situated and interactive cognition 
with language, which may lead to humanlike high-cognitive phenomena 
like categorisation, abstraction and voluntary control. For example, we 

1 C1, C2 and C3 refer to criteria of understanding. 
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aimed to show that lexicalising concepts can lead to generalising earlier- 
learned experiences to new endeavours with little learning. Moreover, 
these models use probabilistic methods. On the contrary, humanlike 
concept learning for complex behaviour requires multiple brain systems 
responsible for learning, memory, attention and reward (Zeithamova 
et al., 2019). This motivates why, in this work, we use a brain-inspired 
cognitive architecture that computationally represents all of the above. 

Works that have studied high-level cognitive modelling in robotics 
include those on the role of language in category learning (Schyns, 1991; 
Cangelosi & Harnad, 2001) and categorisation (Lupyan, 2005; Mirolli & 
Parisi, 2005). Their findings suggest that learning requires proper 
exposure to linguistic stimuli from other organisms in the environment 
to categorise novel experiences. For example, Mirolli and Parisi (2005) 
showed that the internal representations of pre-linguistically learned 
objects in their “child brain” model underwent changes when the model 
learned to associate them with linguistic labels. The introduction of 
linguistic labels resulted in the objects falling more closely to one acti
vation pattern corresponding to their categorisation and less so to other 
activation patterns, thus strengthening the accuracy of categorisation. 
Their findings suggested that organisms with language exhibit superior 
behaviour, and their computational model was the first to explicitly 
substantiate the Vygotskyan postulate. In this work, our robot also 
employs language to categorise its experiences during task-solving, 
albeit solving a different categorisation challenge, which involves cat
egorising earlier-learned and new concepts or experiences in response to 
new stimuli from the environment and interactions leading to changed 
decisions while solving a task. 

Another computational model that draws on the Vygotskyan idea of 
inner speech to empower cognitive functionalities such as categorisation 
and abstraction is introduced by Granato et al. (2020). The model was 
able to reproduce human-collected data on the Wisconsin Card Sorting 
Test (WCST) task while using inner speech as feedback during the cat
egorisation of the cards, which suggested that self-directed language can 
support executive functions in many domain-specific tasks and that the 
categorisation process can generate more abstract patterns recursively. 
To illustrate, suppose the model was to initially sort the deck of cards by 
colour, it should abstract from their other attributes such as number or 
shape. Introducing inner-speech feedback may draw attention away 
from colour onto another attribute, say shape, therefore generating 
abstract concepts progressively like “colour”, “shape”, and “number”. 
This study seems to also support the notion that internalised linguistic 
stimulation (inner speech) can shape/alter the model’s problem-solving 
decisions, allowing it to adapt its behaviour more favourably when 
relevant stimuli are introduced. This voluntary control arises as a 
consequence of the skill to abstract, which prompts the model to modify 
its actions in response to the covert linguistic stimulus (“correct” or “not 
correct”). 

There have been multiple other attempts to introduce language to 
robot learning. A rich array of these works can be retrieved from Tellex 
et al. (2020). Nonetheless, much of this research has been highly focused 
on elementary lower-order cognitive phenomena (perception, manipu
lation, navigation, motor coordination) and there is no immediate 
indication of how this fits in the complex human cognitive continuum. 
Many of these advances rely on deep learning and reinforcement 
learning, for which the learning processes are generally poorly under
stood, and, in most cases, the underlying mechanisms of language 
acquisition are neglected. While DL/RL methods have propelled a broad 
range of domains, they come with unneglectable limitations, especially 
when extending them to robotics (Pierson & Gashler, 2017), for 
example, their hunger for large corpora and being designed around 
specific ad-hoc problems, for which goals and rewards might change 
only slightly. There remains much to explore on how active perception 
and adaptive low-level motor behaviour relate to high-level human- 
specific skills for abstract reasoning and complex decision-making. 

Compared to the aforementioned studies, our work differs in several 
respects. Similarly (Granato et al., 2020), it draws on cognition-enabled 

models, specifically, the multicompartment working memory (WM) 
principles, by exploiting one of the few architectures that instantiate the 
theories of Baddeley (Baddeley & Hitch, 1974) and Cowan (Cowan, 
1998). As such, it maps meaningfully onto human-like cognitive pro
cesses required for flexible concept learning and language development. 
Our study models computationally the procedural stages of concept 
attainment (CAM) through socio-centric tutor-based learning antici
pating the emergence of high-level cognitive phenomena in a robotic 
architecture, i.e., such phenomena occur during “natural” impromptu 
interactions between the robot and a human tutor. Moreover, no studies 
in the current literature address such phenomena in intricate multilin
gual environments to demonstrate the theoretical insights of “labels 
being concepts”. Finally, the most pertinent contribution of this work 
that we are aware of, is that it is the first to investigate the understanding 
of concepts by an artificial model (robot). Specifically, the works sur
veyed here, which have demonstrated high-cognitive skills like category 
learning, categorisation, abstraction and voluntary control to some 
extent, have not shown if such skills have emerged because their models 
could understand the concepts being used. Instead, here we show such 
understanding in the way we know humans understand as suggested by 
learning sciences research (Sawyer, 2005). 

3. Methods 

This work launches on an existing cognitive architecture. This sec
tion describes in brief the original model’s organisation and computa
tional details that are needed to fathom its plausibility for high-level 
cognition. The specific contribution of this work to the enhancement of 
this framework is also described, as is the final robotic system. Addi
tionally, the section illustrates our novel experimental protocol of the 
Concept Attainment Model, which underpins the concept-like behav
ioural experiments to follow. 

3.1. PART I. The cognitive framework 

The cognitive model ANNABELL (Golosio et al., 2015) used here as 
our framework is consistent with the well-defined theoretical multi
compartment Working Memory (WM) principles (Baddeley & Hitch, 
1974; Cowan, 1998). The procedural implication and analogy with the 
WM support a type of cognitive learning in robots, which is closer to the 
mechanisms of information elaboration and reasoning in the human 
brain, compared to other methods (e.g., deep or reinforcement 
learning). The model adopts neuro-inspired functions that support high- 
level cognitive competence and allows using human language to build 
action-inference relationships. 

ANNABELL (Artificial Neural Network with Adaptive Behaviour 
Exploited for Language Learning) is a large-scale and computationally 
efficient neural network designed to learn human language through a 
child-like developmental approach. It operates under the connectionist 
belief that linguistic skills are the behavioural manifestation of the in
ternal representations in the brain that emerge in our interaction with 
the environment. Rather than relying on pre-existing knowledge from 
large corpora, ANNABELL learns language and behaviour through the 
procedural neural mechanisms involved in task-solving. 

The neural components of the model include (Fig. 1A): 1) a long- 
term memory (LTM), to store and retrieve information as semantic or 
sensory memory, 2) a short-term memory (STM) that includes a 
phonological loop, a goal stack that contributes indirectly to decision- 
making by holding goal chunks when actions cannot be executed 
immediately, and a comparison structure that identifies information 
similarity in the STM and LTM, 3) a central executive (CE) that is a 
controller, which oversees manipulation between the former two sub- 
components and manages all statistical decision-dependent processes 
inside the model, and 4) a reward structure (RW). 
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3.1.1. Computational details of the original model 
The ANNABEL architecture design is based on the concept of the 

sparse-signal map (SSM), consisting of several SSM subnetworks of 
interconnected artificial neurons (Golosio et al., 2015). 

The neuron design prioritises computational efficiency over biolog
ical fidelity. Two types of connections are utilised: fixed-weight con
nections that transfer the pattern of neuron activity among SSMs 
through a gatekeeping mechanism, and variable-length (learnable) 
connections for learning and memory. The majority of the connections 
are learnable. The k-winner-take-all rule is combined with a discrete 
version of the Hebbian rule (DHL) to model inhibitory competition 
among neurons, which activates the k neurons with the highest activa
tion state while turning off the remaining neurons. The Hebbian prin
ciple describes a theoretical learning mechanism based on synaptic 
plasticity, where neurons that fire together strengthen their synaptic 
junctions (Hebb, 2005). In ANNABELL, link weights saturate to a 
maximum value when the output states of the pre and postsynaptic 
neurons at the opposite ends of a connection are simultaneously above 
the threshold. While ANNABELL’s DHL rule is relatively simple 
compared to models that focus on biological realism, it applies the same 
learning principle that underpins synaptic plasticity in biological neural 
networks. The model also applies a neural gating mechanism compatible 
with the synaptic gating theory in the cortex and other areas of the brain 
(Gisiger & Boukadoum, 2011) and is linked to the capacity of our 
working memory to filter out or retrieve information (McNab & Kling
berg, 2008). 

The flow of information across different SSMs is controlled by two 
types of neurons, the action neurons, and the gatekeeper neurons. Action 
neurons perform mental operations on sentences (mental actions), pro
ducing an attentional selection of words and are connected to gate
keeper neurons. The latter neurons simulate the gating mechanism to 
allow or inhibit signal flow through sub-networks. Fixed neural con
nections ensure specific actions always activate the same state of the 
network (Fig. 1B). The gating mechanism is controlled by the state- 
action association (SAA) neural network that associates mental actions 
with the model’s internal states. The SAA network receives a reward 
signal to permanently memorise valid associations, allowing the model 
to execute the same mental operations for similar inputs in the future. 

3.1.2. Novel contributions to the cognitive model 
This work contributes to the original model in several respects. First, 

the original model is purely verbal and does not include mechanisms for 
multimodal elaboration. To encompass it within a larger grounded ro
botic system, we designed a method that could accommodate stimuli, 
linguistic and not, without any organisational changes to the model, but 
only to its procedural and memory retrieval mechanisms. In the theo
retical WM model, the structure responsible for binding information of 
several domains (auditory, visual, spatial) in chronological order is the 
episodic buffer (or focus of attention in Cowan’s model). Here, we 
contribute to the model with a novel episodic buffer, which approxi
mates it to Cowan’s view in upholding that the WM involves abstract 
(phonological, semantic, spatial) and sensorial (visual, auditory, tactile) 
encoding all in one activated structure. We encode all inputs in the 
(robotic) model as lexicalised symbols, with the sole motivation that 
these are human-interpretable, which eases training and interaction 
with the model (Supplementary Materials). Moreover, this artifice in
troduces a further benefit for modelling conceptual content in the 
model. Encoding multiple types of stimuli as lexicalised symbols allows 
easier integration of manifold inputs involved in the representation of a 
concept. For example, the body of knowledge that represents the 
concept of a dog can be accessed by visually observing a dog, hearing a 
dog bark, by the label dog, touching a dog, and so on. Thus, the con
ceptual content of the model can be compartmentalised into various 
domains, with each domain representing and stimulating different 
perceptions (across multiple senses) or manipulations, hence radically 
transforming the procedural mechanisms and memory representation 
within the architecture. These domains also account for a diverse set of 
inputs that can influence the behaviour of the robot within its actual 
workspace. 

The above contribution stretches further in this paper’s original work 
on multilingualism in the conceptual content of the model. Here, each 
encoded non-linguistic sensorial stimulus is associated with two lin
guistic labels corresponding to a concept (e.g.,_dog dog,_dog cane - 
where cane is Italian for dog). The two linguistic labels trigger the same 
internal representation of the concept (e.g., motor representation of an 
action), causing a parallel rivalry between the labels. In the original 
model, words are represented as orthogonal vectors, thus making it 
unable to identify word meaning similarities. The joint representation of 

Fig. 1. (A) Schematic diagram of the ANNABELL learning framework. Each rectangle represents a subnetwork, composed of interconnected artificial neurons. Only 
the main high-level subnetworks are shown. The arrows that join the rectangles represent directional connections among neurons of different subnetworks and 
buffers. (B) The synaptic gating mechanism in the ANNABELL learning framework gates the information flow between action neurons and neuron sets of other SSMs. 
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“dog” now brings together synonymous terms such as “dog” and “cane”, 
without explicitly breaking the orthogonality of word vectors. This al
lows different labels to trigger the same mental action sequences, which 
relate to accumulated perceptual and motor experiences. The robotic 
model can activate these mental states to reproduce experiential 
knowledge without having to train new mental action sequences for that 
behaviour with semantics from a different language. This has a signifi
cant implication on the multilingual behavioural experiment with the 
robotic model, leading to high-cognitive skills and understanding, and 
emphasising how labels are themselves concepts. The technical details 
of this artifice are explained in Event 3. 

3.1.3. The proposed robotic architecture 
The enhanced cognitive model is coupled with the virtual PR2 robot 

(PR2 Robot, 2023) in a Webots simulator (Webots, 2023), which re
ceives spoken utterances from a human tutor through a speech interface 
and generates robot motor behaviour in response to visual and auditory 
stimuli (Fig. 2). The PR2 robot received and produces multimodal data 
that are perfect sensory-independent samples. This is central to assessing 
the competence of the cognitive model alone and parting it from the end- 
to-end system’s performance. Processing of the multimodal data (visual, 
motor, and linguistic) is performed inside the cognitive model. The vi
sual data are extracted from PR2 in the Webots workspace and cover 
directly observable instances, such as objects, colours, shapes, etc. The 
motor data are primitive operations executed by the robot using 
elementary movements of the joints or body. We refer to sensory data - 
sensory stimuli - the visual and motor information of action primitives 
(non-linguistic domain). Encoded verbal utterances – auditory stimuli - 
comprise the linguistic data (linguistic domain). 

3.2. PART II. The experimental protocol 

The Concept Attainment Model (CAM) is an inductive thinking 
strategy stemming from the research efforts of Jerome Bruner (Bruner & 
Austin, 1986). It describes the process of constructing a meaningful 
definition of a concept by identifying those attributes that are salient to 
the concept (critical attributes) and disregarding those that are not (non- 
critical attributes). The task is learner-centred: the teacher who “knows 
the answer” guides the learner to attain a new concept that is initially 
beyond them (Wood et al., 1976). The CAM model follows these steps: 1) 
the teacher determines a new concept (concrete or abstract); 2) the 
teacher creates a list of exemplars of the concept (YES category) and 
another of non-exemplars (NO category); 3) the learners assess the at
tributes that all instances in the list of exemplars share among each 
other, which are not found in any of the instances of non-exemplars; 4) 
the learners determine the salient/critical attribute(s) that define the 
concept (note: the learners might make initial hypotheses on the 
concept, while the teacher may continue adding items in the lists of 
exemplars and non-exemplars to refine those hypotheses) 5) the teacher 
dictates the concept. 

We illustrate the concept attainment model with the task in Fig. 3. 
This task is used to train our robot to produce the CAM as a “constituent” 
skill, pre-generalisation to the novel concepts used in our behavioural 
experiments. 

The list of exemplars (YES category) includes three objects: a small 
blue cube, a small blue sphere, and a small blue cone (Fig. 3). All three 
attributes (size, colour, scalar quantity) are purposefully selected the 
same. When assessing which of these attributes is critical to the concept 
in question, the learner (our model) must determine if any of the objects 
in the list of non-exemplars (NO category) possesses that attribute (e.g., 
the square is blue and small, but no objects have volume). After having 
identified the critical attribute, the human interlocutor dictates the 
concept: a three-dimensional object. The model generates and perma
nently memorises the inference “three-dimensional - volume”. 

The CAM task can be used to attain new concepts following human- 
guided learning. The human tutor can construct categories of exemplars 
and non-exemplars with new objects and allow the model to autono
mously make the necessary inferences on the (new) target concept. 

4. Concept-like behavioural experiments 

The central aim of our behavioural experiments is to verify the three 
criteria of concept understanding, by drawing on an artifice of concept 
attainment, i.e., using the discriminable features of an instance to 
anticipate its significant identity (Bruner & Austin, 1986) and language- 
facilitated tutorial interaction (Wood et al., 1976). Conceptual under
standing is best achieved if concepts are situated in task-oriented events 
within a context. The context imposes specific constraints, which allows 
demonstrating the skills to categorise, abstract and voluntary control 
behaviour (Bruner & Austin, 1986). 

We explored three events, each modelling a different task. The ro
botic model learns to manipulate the tools to reach the task goal using a 
snowballing artifice. The tutor guides the robot to build “higher-order” 
skills by orchestrating an appropriate combination of its “lower-order” 
skills to meet novel and more complex task requirements (in line with 
human theories (Bruner, 1973 Bruner, 1973). The model starts with a 
small but sufficient “lexicon” of basic skills (e.g., action primitives) that 
it combines preferentially in a certain order to achieve a particular end, 
by matching means with the expected outcomes. This is thoroughly 
explained in the Supplementary Materials submitted with this work. 

The task in event 1 is used to emerge the intended concepts using the 
experimental protocol of the concept attainment model and a task- 
driven categorisation. The tasks in events 2 and 3, respectively, “scaf
fold” the task in event 1 to achieve higher level concept categorisation 
and abstraction in response to language (event 2) or multiple languages 
(event 3). 

Event 1. Bottom-up concept attainment and categorisation 
We modelled the task of pouring liquid into a cup from a utensil. This 

event imposes two constraints: 1) the utensil is a container, and 2) the 
colour of the requested liquid matches the anticipated identity of the 

Fig. 2. Interfacing ANNABELL with the virtual PR2 robot in Webots. The connection between the model and the robot is two-directional. The data extracted in the 
simulator are used as input to the model, which is responsible for decision-making during our concept-learning experiments. The output produced by the cognitive 
model from the stimuli received by the virtual PR2 robot is fed back to the simulator, to drive the robot’s motor behaviour and complete the task(s). 
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liquid. The robot is trained on one occasion to add water to the cup from 
a bottle. The aim of the event is to identify that, other utensils can 
generate the same response as the bottle, given their critical attribute to 
hold liquid, i.e., are containers (constraint 1). This constraint can only be 
met if the model has successfully attained the concept of [container] and 
can distinguish between exemplars and non-exemplars. Categorisation 
allows the model to use exemplars coequally, without learning the task 
anew on each (i.e., generalisation). This ability is humanlike: we can use 
available tools interchangeably, which possess similar functionalities or 
attributes that allow solving a problem, even with little learning or 

practice (Bruner & Austin, 1986). To attain the concept of [container], 
we modelled the following steps of the experimental verification. 

Step 1: Concept not attained 
To evaluate the model’s behaviour before attaining the concept, we 

elicited it with the instruction “take the container”. We trained the model 
once with the bottle, which was implicitly defined as a container in long- 
term memory (“the bottle is a container”). When processing the instruc
tion, the model recalls this memory to execute the task. However, the 
model has no implicit knowledge, either dictated or self-learned, of any 
other object that can be considered a container. Hence, it cannot 

Fig. 3. Modelling the constituent skill of concept attainment model (CAM) task using geometrical shapes.  

Fig. 4. Generalisation of the concept attainment task (CAM) to attain the concept of [container] used in our experiments. Inferences 1, 2 and 3 that are made by the 
model itself are co-dependant and fundamental for the classification of exemplars and non-exemplars of the class of containers. This task is tutored-guided at runtime 
(i.e., in the test). 
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distinguish between examples or non-examples of the container class, 
leading to task failure (see Results). 

Step 2: Attaining the concept (CAM) 
We ran the CAM task at runtime to attain the concept of [container]. 

Two categories were created:  

1. The exemplars (YES) category: big plastic bottle, big plastic jug, big 
plastic cup  

2. The non-exemplars (NO) category: big plastic bin, medium ceramic 
vase, small straw basket 

where the selected attributes are size (small, medium, big), material 
(plastic, ceramic, straw) and utility (holds liquid, holds objects). 

The generalisation of the CAM (test) is shown in Fig. 4. The self- 
inferences 1–3 made by the model are fundamental to the continua
tion of CAM and for our next behavioural experiments. Should inference 
1 fail, inference 2 is not obtained. Similarly, inference 2 constrains 
inference 3. The latter marks the attainment of the concept, which al
lows the model to classify items into exemplars or non-exemplars of the 
class. In making inference 1, the model self-determines the critical 
attribute that leads to the concept in question, whereas inference 2 as
sociates the concept with its defining critical attribute. 

Step 3: Discriminating exemplars against non-exemplars 
Should the CAM succeed, the model will self-generate and perma

nently store in long-term memory the following phrases: “the jug is a 
container”, “the cup is a container” (inference 3). Then, the model is tested 
again on the task of taking the container, without training the task from 
scratch. 

The classification skill of the model is assessed as its ability to use the 
self-generated inferences impromptu to perform the task correctly using 
examples that belong to the class and cease its execution with those 
instances that do not belong to the class (see Results). 

Step 4: Significance of the [concept – attribute] association 
Fig. 4 illustrates that inference 3 is reliant on inference 2. When the 

model self-determines that the concept of [container] is closely linked to 
its ability to hold liquid (inference 2), it can autonomously classify a 
utensil as a container granted that it possesses that critical attribute 
(inference 3). 

Given this logical construction, if one were to remove the funda
mental inference 2, thus reducing the significance of the critical attri
bute associated with the concept, the attainment process will fail 
(inference 3 not obtained), which hinders the classification of exemplars 
and non-exemplars. 

As constraint 2, we selected colour to discriminate liquids and ex
emplars with clear-cut boundaries (i.e., of one and a distinct colour) to 
reduce the cognitive load of classification. Differently from the concept 
of [container], the colour concept is assumed to pre-exist in long-term 
memory, e.g., the water is transparent, which can be hypothesised as 
semantic memory. 

Given the slight limitations of the virtual simulator, the colour of the 
liquid matches that of the container. We do not consider other param
eters e.g., whether the utensil is full or empty. The robot’s vision module 
extracts the colour label of the utensil, and the cognitive model decides if 
it consistent with the verbal information known about the liquid stored 
in semantic LTM. 

Event 2. Language in the attainment of abstract concepts 
This event aims to explore how linguistically-based social learning 

can shape the robot’s categorisation, abstraction, and voluntary control 
decisions to perform a new more complex task. Specifically, it assesses 
how language leads to the creation of new categories encompassing 
lower-level categories learned previously, i.e., in event 1. 

The nature of the task assumes a tutorial process (Wood et al., 1976): 
let us consider that a child has learned to pour different liquids by colour 
using a range of containers (event 1). The adult seeks to teach the child 
to perform a new task that is initially beyond the child’s skill, e.g., 
preparing tea. The constraint of the task is to use water. Thus, the child 

must form the new category of water container that now includes only 
certain (but not all) instances learned in event 1 as examples (those with 
water). Ultimately, two new sub-categories originate from the original 
category of [container]: a) water containers as exemplars and b) non- 
water containers as non-exemplars. When solving the new task, the 
child must therefore change the initial categorisation decisions, by 
abstracting from the differences and similarities of the larger category of 
containers to fit the current constraint, and decide whether to execute 
the task. The adult can guide the child’s learning verbally in either way:  

1. Explicitly telling the child that water is needed for tea.  
2. Follow the concept attainment model (CAM) to teach the child to 

associate the concept of tea with the critical attribute of water. 

In either case, whether by learning the procedures that emerge the 
skill or by relying on more direct social cues such as language, there is 
some form of tutoring required to acquire that skill (Wood et al., 1976; 
Vygotsky & Cole, 1978). In event 2, we thus explore both methods so as 
to determine if language alone (method 1) can elicit the same response 
to the robot’s decision-making as the self-assessment of the concept 
through CAM (method 2). Direct intervention by the tutor, e.g., 
demonstrating the task, is not considered in this experiment. 

A. Language-directed (method 1) 
The model was trained on one occasion to make tea using a water bottle 

and given the factual affirmation “to make tea you need water” as a per
manent semantic memory. When tasked to make tea, the model is trained 
to recall this information from memory and to verify if the colour of the 
referent (water) that it observes in the workspace is transparent. Hence, the 
verbal stimulus retrieved from memory is sufficient to allow the robot to 
abstract from the colour differences of the instances and, thus classify in
stances pragmatically into categories of examples and non-examples of the 
concept of [water container]. The new categorisation decision of the 
model must allow it to voluntarily control the task, by choosing to execute 
or cease the task based on the inferences it makes on the available con
cepts. This ability is humanlike: we produce a considerable number of 
categories in response to language over those produced in the absence of 
language and much of this categorisation is achieved through abstraction 
promoted by language (Mirolli & Parisi, 2006; Mirolli & Parisi, 2011). This 
also anticipates how verbal dictation during runtime interaction can 
continuously and progressively change the robot’s decisions in solving 
different tasks, impromptu and with little learning. The model’s general
isation skill is demonstrated by repeating the task consistently with all 
combinations of instances to assess their classification. 

B. Self-assessment (method 2) 
The model was trained to identify the significance of [water] attri

bute in attaining the abstract concept of making [tea] by generalising 
the CAM task. The instances were divided into a YES and a NO category 
as in Fig. 5. Only two attributes were considered: type (container) and 
utility (holds [liquid]). As in Fig. 4, the model is probed to self-generate 
the inferences that lead to the intended concept, with the aim of asso
ciating the concept with its critical attribute, i.e., inference 2, which is 
held in memory. This is the equivalent of the verbal cue “to make tea you 
need water”, but instead of being built in semantic memory, it is created 
by the model itself from experience. The model’s ability to classify is 
tested during task-solving in event 2, where the robotic model must 
decide preferentially to execute or cease the task case by case. 

Note that, the model does not attain the abstract concept of [tea] 
during the task of making tea. Instead, it must attain the concept and its 
strong association with the critical attribute [water] before the task, and 
the high-cognitive skills involved in decision making are validated while 
executing the task. 

In event 2, the model builds upon the earlier-learned experience of 
manipulating containers to fill a cup (event 1) as a natural learning 
continuum. Earlier-learned experiences are memorised in memory and 
recalled as an acquired skill to solve a larger problem, without retraining 
the motor experience. This continuum ensures that the outcomes of 
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earlier tasks are directly applied to future and more complex events, thus 
“scaffolding” the robot’s motor and cognitive skills. 

Event 3. Multiple languages in the manipulation of internal 
conceptual representations 

This event aims to delve deeper into whether the high-cognitive skills 
of the robot root in its conceptual foundation. In particular, by far, the 
motor-perceptual experiences of the robot and language semantics were 
trained together. Here, we aimed to investigate what would happen if 
those experiences were to be triggered using labels of a different lan
guage. Specifically, by disentangling semantics from the experience 
trained jointly, we expected to determine if labels themselves can carry 
enough conceptual content for problem-solving, i.e., if labels can act as 
concepts themselves. The ability for multilingual cognition is humanlike 
and devoted to our conceptual development (Boyd et al., 2011): we are 
able to understand concepts expressed in distinct verbal expressions 
(Cook, 1992); for example, I like milk and mi piace il latte (Italian) are 
distinct utterances, whose respective predicates are different formula
tions of the same concept. The central idea of this event is not concept 
attainment per se as in events 1 and 2; rather after the model has 
appropriately developed the concepts in event 1, to identify those con
cepts each time it encounters them in a new event and then relate them 
to its earlier-learned experiences to adapt its decisions. For this, the 
robot should first intuit that labels of distinct languages refer to the same 
concept, hence to the same representations mapped to that concept, 
which are required for problem-solving. This would reinforce the 
conclusion that the robot is understanding, based primarily on criterion 
C3. 

We modelled the task of a robot waiter serving a beverage of preference 
to a person. The task “scaffolds” that in event 1, with the constraint that, 
here, the liquid exemplar is only the one that matches the preferred 
beverage of the referent actor. The remaining liquids are non-exemplars. 
Hence, as in event 2, two new sub-categories will be created from the 
larger category of containers: a) those that refer to a preferred beverage 
for each person, and b) those that do not. Hence, the robot is challenged 
with a new categorisation decision: to abstract from the liquids based on 
if their identity matches a person’s preferences. To solve this task, the 
robot must identify the goal and constraints, and then take the necessary 
steps to perform or cease the task. The robot is verbally informed what 
each “actor’s” preference is, which coheres in a realistic social context 
when, for example, ordering a drink in a bar. To introduce multilingual 
stimuli, these verbal affirmations are dictated in Italian. The following 
assumptions are made: a) the robot has acquired the conceptual expe
rience of pouring liquids from different containers in an English-guided 
workspace (event 1), and b) the robot has a basic lexicon of Italian words 
and their mapping to non-lexical representations, but no such mapping 
to any experience with the concepts in the Italian-guided workspace. 

The task can be viewed as a multidomain multi-knowledge source task 
(Fig. 6). 

The semantic sources are independent of one another, i.e., no 
translation between English and Italian semantics is given. Hence, the 
robot should find a way to determine when these semantics are equiv
alent (i.e., refer to the same concept) and why. For this, we utilised the 
non-linguistic representation of the relevant concepts as a bridge (pivot) 
between their distinct linguistic representations (labels) (Fig. 7). 

When a label is attached to the concept, it becomes part of the 
conceptual representation itself (Vygotsky, 1962; Sloutsky & Deng, 
2019). Children may learn category lexicalisations (linguistic repre
sentation) at the same time as the perceptual category (non-linguistic 
representation). This occurs when the child is verbally dictated the label 
of a referent explicitly while showing or pointing at the referent. Bilin
gual infants learn two lexicalisations simultaneously for the same 
perceptual category, even before they formally learn the languages 
(Cook, 1992; Crinion et al., 2006). Hence, our proposed solution not 
only fits the child development theories, it also offers a new method for 
modelling multilingual cognition, without translation. It allows the 
robot to utilise different language sources by mapping their respective 
labels to the same perceptual categories and related experiences they 
refer to, i.e., making labels part of the concept. 

We trained the model to solve the task when introducing a new 
stimulus in Italian. Additionally, we trained the model to solve the same 
task, but when asked to do so in Italian. Each training was performed 
only once per language. Training to solve the task in Italian with no 
previous learning in Italian not only enables to transfer and adapt the 
robot’s earlier-learned experiences to new contexts, but also promotes 
faster learning of the semantics of the new language, directly while 
solving a task (learning-by-doing). From a computational angle, this also 
challenges the model’s capabilities on a high hardware resource 
demanding task allowing assessing its robustness. 

5. Results 

The results report the ability of our robotic architecture to meet the 
criteria of concept understanding (C1–C3) in task-driven events 1–3. The 
model’s generalisation competence is tested by consistency (Bruner & 
Austin, 1986), i.e., habitually finding the concept that solves the task, 
using 3-fold cross-validation (CV) in each event and displaying high- 
level cognitive skills. In each round of the CV, one of the containers 
was randomly selected to train the task on one occasion and the 
remaining two were used to test. The datasets are illustrated in 
Tables 1–3 (events 1–3, respectively) in the Supplementary Materials. 
They represent only the round of the cross-validation that assumes the 
bottle as the learning sample. 

Fig. 5. The CAM task to obtain the abstract concept of [tea] and its association with the critical attribute of [water].  
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Event 1. Bottom-up concept attainment and categorisation 
In event 1, the robot was consistently tested using exemplar (A, D) 

and non-exemplar (B, E) objects not introduced when learning the task 
(Fig. 8). We probed the model on a total of 74 test samples, among which 
14 cases met the event constraints (groups A and D) and 60 cases that did 
not (group E). Instead, non-exemplars of group B were tested using the 
concept attainment model (CAM) (Fig. 4). 

Criterion 1: Identify examples of the concept that are subject to a vari
ation of non-defining attributes. 

In the CAM task, the model demonstrated the ability to identify the 
critical attribute associated with the concept (ability to hold liquid) 

against the non-defining attributes of the concept of container (size, 
colour). Thus, it could successfully build the self-inferences 1–2 with 
100 % accuracy (Fig. 4). Identifying the critical attribute was funda
mental to classifying exemplars from non-exemplars of the concept of 
[container] (see criterion 2). 

Criterion 2: Distinguish exemplars (an example of the concept) from 
close non-exemplars (something that is not an example) by assessing their 
significant attributes. 

Through self-inferences 1 and 2 (CAM), the model could successfully 
build inference 3 (Fig. 4) to classify exemplars of containers (100 % 
accuracy) and performed 100 % in the task “take the container”. 

Fig. 6. Multidomain multiple-sources task-solving. The robotic model with a certain non-linguistic experience (domain 2) accumulated in an English-guided 
environment (knowledge course 2) receives language-directed instructions (domain 1) in the Italian language (knowledge source 2). No direct link between the 
sources indicates no cross-lingual translation. The necessary cross-domain relations are appropriately orchestrated by the internal representations of concepts. 

Fig. 7. The (simplified) representation of a 
concept includes linguistic and non-linguistic 
parts. The non-linguistic representation for con
crete concepts is somewhat fixed, while the lin
guistic representation can vary between multiple 
languages. Hence, the former can be used as 
common ground to map (pivot) the multi- 
linguistic terms associated with the concept. 
The linguistic labels can directly trigger the non- 
verbal representation of the concept or the 
experience that surrounds it and, indirectly, the 
label of the other language. Thus, language can 
support the manipulation of internal 
representations.   

Fig. 8. Event 1: Bottom-up concept attainment and categorisation. The objects in group A belong to the class of containers, whereas objects in group B do not. The 
model was tasked with classifying containers (A) and non-containers (B) following the steps of CAM. To solve the task in event 1, the model must also separate liquids 
based on their discriminable colour. An example of this concept refers to the queried liquid matching its observed colour identity in the scene (group D); otherwise, it 
refers to non-examples (group E). 
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The robotic model distinguished the examples of containers from 
non-examples with close attributes (size, colour, ability to hold objects), 
even for novel instances that were not presented in the YES/NO cate
gories. For example, when the model was given a new object (mug) and 
was verbally told that “the mug holds liquid”, the following output was 
produced: 

TEA: the mug holds liquid 

SYS: the mug is a container 

The model’s classification of containers is shown in Movie 0 of the 
Supplementary Materials. 

Criterion 3: Maintain these abilities in contingencies not presented when 
learning the concept. 

The model verified criterion 3 in consistently reproducing the task 
“add liquid to the cup” with examples of containers not introduced when 
learning the task. For instance, the model had never learned to use a jug 
when the task was trained owever, after being able to classify the jug as a 
container (criterion 2), the model was able to use the jug autonomously 
to reproduce the task. This ability was maintained for the other candi
date members of the class of [container] as if they were the same thing 
(Bruner & Austin, 1986). Moreover, the model could discriminate the 
liquids consistently by their colour attribute. Notice that the model was 
trained on one occasion to verify the colour of the water. The total 
performance of the robotic model in event 1 (add liquid to the cup) is 
illustrated in Fig. 11A. The results of 94.14 % showed that the model 
was able to categorise instances successfully, generate similar behaviour 
with all other liquids and preferentially control task-solving: proceed 
with the task when all constraints were met and cease the task otherwise 
(i.e., voluntary control). These results are also supported by Movie 1 of 
the Supplementary Materials. 

In conclusion, with a generalisation capability of “1 vs 74”, the ro
botic model displayed the ability to learn categories, categorise in
stances, and voluntarily control the task, showing a degree of 
understanding of the task by meeting the suggested criteria (C1–C3). 

Event 2. Language in the attainment of abstract concepts 
In each round of the cross-validation, we used a total of 34 test 

samples to measure the model’s competence in preparing tea with any 
other water container (group A, Fig. 9) and cease the task for non- 
exemplars of the class (group B, Fig. 9). 

The same protocol illustrated in Fig. 9 was used when the concept 
was self-assessed by the model (CAM) – 17 cases or the constraint was 
dictated by the human (language-directed) – 17 cases. First, we report 
the results obtained using the self-assesment method (CAM) and, next, 
we compare the results with the language-directed method. 

A. Self-assessment (method 2) 
In the CAM task, the model was probed to find the critical attribute in 

the YES category that objects in the NO category did not have (Fig. 5), 
leading to inference 1: 

TEA: is utility the critical attribute 

SYS: *does not find the attribute of holding water 

in the NO category* 

utility is the critical attribute 

Inference 1 supports the competence of the model in meeting crite
rion 1 of concept understanding (critical vs. non-critical attributes). 
Next, the model was led to self-build inference 2, as follows: 

TEA: YES category objects make tea 

SYS: tea – water 
The model generated inferences 1 and 2 with 100 % accuracy. These 

were fundamental for the task of event 2. The task-solving performance 
when the model self-assessed the concept of tea in association to its 
critical attribute of water was 98.04 % in the cross-validation as illus
trated in Fig. 11B. 

B. Language-directed (method 1) 
The model was verbally instructed by the human on the significance 

of the water attribute to the concept of [tea]. The performance in 
response to the verbal stimulus is illustrated in Fig. 11B. It can be seen 
that there is no significant difference in task-solving compared to the 
self-attainment of the concept (96.08 % for language-directed). Using 
only verbal cues, the robotic model could preferentially control the task 
by suitably categorising exemplars of water containers from non- 
exemplars of the class (Fig. 11B). This supports criterion 2. The ability 
of the model to generalise on unlearned instances supports criterion 3, i. 
e., the robot reproduced the task with instances of water containers not 
introduced during learning. Event 2 is demonstrated in Movie 2 of the 
Supplementary Materials. 

In conclusion, with a generalisation capability of “2 vs 34”, the ro
botic model demonstrated that it could generate higher-order categories 
from a previous categorisation, in response to a linguistic cue, which 
caused some instances to fall closer together in a category than other 
instances previously grouped with them. This required abstraction: the 
model had to intuit that within the larger category of containers, in
stances of water containers share a greater equivalence among one 
another than non-water containers, in a task of making tea. As such, the 
robot was able to voluntarily control the task, self-deciding when to 
execute it and when not (the latter not trained specifically – the model is 
trained only once to successfully solve the task). When displaying such 
competencies, the robot was consistently meeting the suggested criteria 
of understanding the task. 

Event 3. Multiple languages in the manipulation of internal 
conceptual representations 

In the test, the robot was tasked with serving a drink to four people 

Fig. 9. Event 2: Language for the attainment of abstract concepts. The model is trained to make tea using a bottle of water. Learning to use the involved tools (cup, 
teabag) is achieved via our novel snowballing artifice (Supplementary Materials). Group A includes instances that can be used to prepare tea, whereas group B 
involves instances that cannot. 
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(including Mary) using exemplars of the preferred drink (group A) and 
non-exemplars of the class (group B) (Fig. 10). 

We investigated a total of 47 cases for each language, with 11 cases 
meeting the constraints and 36 cases that did not. The instruction was 
repeated in each language. The results are reported in Fig. 11C and 
illustrate the performance comparison between languages. The model 
could solve the task satisfactorily with a total average of 93.97 % in both 
languages (94.33 % in English, 93.62 % in Italian), requiring that it 
categorised instances into examples and non-examples of the class of 
preferred drink in response to the language-directed cues. This compe
tence verifies criterion 2. The model changed its initial categorisation 
decisions in response to language, and this ability was maintained for all 
members of the class not introduced during learning (criterion 3). Most 
importantly, the criteria of concept understanding were maintained in 
response to multiple languages, demonstrating a capability to map 
language to inner conceptual representations to favourably manipulate 
those representations during task-solving (see also Movie 3 submitted 
with the Supplementary Materials). 

In conclusion, with a generalisation capability of “2 vs 94” in the 
multilingual task, the robot displayed the skill to identify concepts when 
they were expressed in different lexicalisations, and map its internal 
representations of experience respectively. Not only were labels used to 
shape categorisation, abstraction, and voluntary control of the robot, but 
also to produce adaptable conceptual behaviour in contingencies where 
this behaviour was not directly trained, thus reinforcing criterion C3. 

The results obtained in the cross-validation in each event are sum
marised in Fig. 11. Instead, Fig. 12 reports the theoretical performance 
of the robotic model. While the results in Fig. 11 illustrate the measured 
performance of the model during the cross-validation, these results 
assumed that event 1 is achieved at 100 % performance (only accounting 
the successfully solved cases, which produced experiences that were 
recalled in later events). Events 2 and 3 are, however, reliant on the 
outcomes of event 1. Given that the model error is random and averaged 
across the three rounds of the cross-validation, the theoretical perfor
mance accounts for the effect of the (average) accuracy of event 1 in 
event 2 and event 3, respectively. 

6. Discussion 

At present, many attempts have been done to model low-level skills 
in robotics, with the literature being much narrower in the direction of 

complex cognition. Human learning theories and contemporary views in 
cognitive robotics research suggest that language could explain and help 
model this humanlike cognitive continuum. Driven by this motivation, 
this work aims to delve deeper into using language for the emergence of 
high-level cognitive phenomena in robots. Given that our capacity for 
intelligent thinking is heavily linked to our ability to form concepts, this 
work sustains that the skills of a robot to learn, categorise, abstract and 
control should start from teaching it the right concepts. This paper 
presents a method for achieving concept attainment within a robotic 
cognitive architecture that adheres to the principles of the human 
working memory. The WM-analogous mechanisms of the model support 
its ability to attain concepts, which is believed to be the first step in the 
human cognition process (concepts first emerge in the working memory 
before being transferred to long-term memory (Cowan, 2014). 

The main aim of the work was to determine if the model was dis
playing high-cognitive skills during task solving because it could un
derstand the concepts used in each task. Understanding was based on 
three well-defined criteria in learning sciences research. Our theory- 
driven analysis revealed that these criteria were met above a mini
mum of 93.97 % in experiments drawn upon theories of humanlike 
behaviour. An important highlight of our results is that this competence 
was achieved by training the model on one occasion only, in each event, 
and generalising consistently to ample instances of the test set. The robot 
could create more categories in response to language cues than those 
learned initially. This result is similar to that obtained with the “child 
brain” model of Mirolli and Parisi (2005), which explicitly supports the 
Vygotskyan postulate. In our work, the model is not only concerned with 
the categorisation of words, but of their relation to experiences for task- 
solving. An important aspect of our method, is that the earlier- 
experiences related to the attained concepts could be directly 
retrieved to solve more complex problems in a hierarchical continuum 
without retraining those experiences in each event, which may have a 
real impact in the training of robots. 

We noticed that in some cases the error of the model during the 3- 
fold cross-validation would depend on the learning sample, i.e., some 
samples resulted more difficult than others. For example, in event 2, 
using cup to train the task produced slightly better accuracy than the 
other two containers. This was because the model had learned two ways 
to manipulate the cup for this task: to place the (tea) cup on the table and 
to use the (container) cup to add water, which may have affected the 
ability of the central executive (CE) of the cognitive model to resolve the 

Fig. 10. Event 3: Multiple languages in the manipulation of internal conceptual representations. The model is tasked with serving a preferred drink to a person, 
dictated in simple Italian phrases. Group A includes examples of the concept of preferred drink, in which the event-imposed constraints are met, whereas group B 
includes cases in which the observed drink does not match the anticipated identity of the actor’s preferred beverage. The task is repeated two times: (a) model 
queried in English and (b) model queried in Italian. 
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competition. When trained specifically on the cup¸this competition was 
resolved by learning the task; however, when generalising (i.e., other 
containers as the learning sample), there was a slight confusion between 
the two cup instances that were produced in ouput. However, our ob
servations concluded that in all the events (including event 2), the error 
performed during the cross-validation was random. In turn, we observed 
that when a failed instruction was repeated a second time, the model 
could resolve it successfully. Nevertheless, we did not include repeated 
instructions in the success rate of the model and only considered the first 
attempt to solve the task in each round. 

We designed our robot experiments as a tutoring problem given two 
rationales. First, our cognitive model assumes the stages of child 
development (4+ years old); hence, the type of learning performed here 
approximates that of Bruner’s scaffolding theory (Bruner, 1985) that 
considers infants somewhat dependent on the knowledge and compe
tencies of their tutors. Second, we attribute a key role to socio-centric 
language in the development of higher more complex skills in robots. 
The results obtained in event 2 releaved that language-directed cues to 
guide robot learning in novel problems are no different from the self- 
assessment of the task (Fig. 11B). We believe this may significantly 
impact robot learning directly from humans in a rather natural way to 
develop task competencies that are initially beyond the robot’s skill and 
outstrip its unassisted efforts. For example, we performed a simple 

illustrative case in a similar task, e.g., making hot chocolate, by verbally 
telling to the robotic model at runtime that “to make hot chocolate you 
need milk”. Runtime, here, means that the initial trained state of the 
model was not changed, and the task is not trained de novo. This showed 
that the robot unaware of the end goal of the task could achieve a new 
outcome, where the elements of the task were “controlled” preferen
tially by the human through language alone (see Movie 1). 

Finally, the verification of concept understanding across multiple 
languages revealed two important outcomes for robot learning, which 
highlight the significance of a well-developed conceptual content:  

1. the robot could comprehend a verbal cue formulated in a different 
language because linguistic labels become part of the conceptual 
representation. Hence, a robot with suitably developed conceptual 
content can produce fine outcomes by analysing the (unlearned) 
events in terms of their surrounding concepts, having language 
drawing attention to those concepts. For example, the robot solved 
the task using only cues from the Italian language (Fig. 11C, English).  

2. Conceptual representations enable concept-related experiences to be 
readily accessed in new contingencies. For example, when the robot 
had earlier-learned motor experience around the concept, its lin
guistic label triggered the inner representation of that concept and 
the mental states of the motor experience. Thus, the label of a 

Fig. 11. The performance of the model measured through 3-fold cross-validation in event 1 (A), event 2 (B), and event 3 (C), respectively.  

Fig. 12. The theoretical performance (i.e., accuracy) of the robotic model, which considers the effect of the outcomes of event 1 in the proceeding events 2 and 3 as 
calculated on the right. 
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different language allowed the activated motor experience to be 
directly recalled without learning it explicitly in that language. This 
is demonstrated given the comparable performances in English and 
Italian, for which (the latter) the robot lacked direct experience with 
the attained concepts (Fig. 11C, Italian). 

7. Conclusions 

This work aimed to address the emergence of high-level human- 
specific cognitive skills in robotics, such as the ability to learn, catego
rise, abstract and voluntary control. Achieving this requires building a 
cognitive robotic model with sufficient conceptual content through its 
physical and social interaction with the environment. This concerns not 
only the senses and motor abilities of the robot but also its use and 
understanding of human language, which is essential for social and 
cognitive development. To initially attain enough concepts, we 
modelled computationally the well-designed strategy of the Concept 
Attainment Model and designed three one-occasion learning experi
ments where those concepts would be used in related situated experi
ences. We examined how the initial decisions of the robot changed when 
it was exposed to social (i.e., linguistic) stimuli from a human tutor to 
solve different and more complex tasks. We demonstrated how the robot 
was using language to generate new categories by abstracting the con
cepts’ attributes and self-mapping its inner representations of motor 
experiences to human’s instructions, as such eventually leading in the 
creation of high-level concepts, e.g., of tea making or preferred 
beverage. Notably, the robot was able to recognise concepts by their 
labels and retrieve related experiences, and it identified equivalent 
lexicalisations expressed in multiple languages. In essence, the robot 
could map a word in a new language with the concept it represented and 
produce a behaviour with the concept which was not trained directly in 
that language. Hence, the robot could adapt to intricate contingencies 
with minimal training through its established conceptual content. The 
main result of this work is that we demonstrate that the robot un
derstands the concepts it uses, based on three well-defined criteria from 
the learning sciences research, which is similar to how humans 
demonstrate understanding. In summary, this study demonstrated that 
the conceptual content of a robot is crucial for it to emerge high- 
cognitive skills, including the skill to understand, and language is a 
fundamental component of this conceptual development. 

Future work: Understanding concepts and language in rich contexts 
is a long-term goal. In the near sight, however, our results seem to 
validate the promising potential of robotic models in emerging high- 
level cognitive processes such as categorisation, abstraction, and 
voluntary control. For example, the foregoing example of making hot 
chocolate given a simple verbal cue must be explored exhaustively to 
verify if robots can indeed abstract in workspaces directly from human 
language to change their decisions or produce novel goals. Supported by 
the ability to learn these skills at runtime, i.e., without re-training, such 
models can significantly develop and adapt in real environments. 
Consider our results of classification of novel instances of containers: 
when the model was shown a mug and told that “the mug holds liquid”, it 
could readily classify the mug and use it directly in the task as the other 
members of the class, without learning anew. 

Moreover, conceptual understanding in multilingual context re
quires significant attention in future works, for instance if inner con
ceptual representations offer a finer and more natural way to achieve 
cross-lingual retrieval than simple translation. A profound investiga
tion could reveal if this might lead to a reduced necessity to re-train 
robots in each language. In turn, it might overwhelm the problem of 
some languages being more disadvantaged in learning resources. The 
skill to transfer earlier-learned experiences as well as to exploit every 
piece of information available, including eclectic linguistic scenes that 
are sources rich in semantics and interactions, can be a powerful tool to 
advance robotics. 
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