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Abstract

This paper considers the pricing of long-term options on assets such as housing, where either government
intervention or the economic nature of the asset limits large falls in prices. The observed asset price is
modelled by a geometric Brownian motion (“the notional price”) reflected at a lower barrier. The resulting
observed price has standard dynamics but with localised intervention at the barrier, which allows arbitrage
with interim losses; this is funded by the government’s unlimited powers of intervention, and its exploita-
tion is subject to credit constraints. Despite the lack of an equivalent martingale measure for the observed
price, options on this price can be expressed as compound options on the arbitrage-free notional price,
to which standard risk-neutral arguments can be applied. Because option deltas tend to zero when the
observed price approaches the barrier, hedging with the observed price gives the same results as hedging
with the notional price and so exactly replicates option payoffs. Hedging schemes are not unique, with the
cheapest scheme for any derivative being the one which best exploits the interventions at the barrier. The
price of a put is clear: direct replication has a lower initial cost than synthetic replication, and the replica-
tion portfolio always has positive value. The price of a call is ambiguous: synthetic replication has a lower
initial cost than direct replication, but the replication portfolio may give interim losses. So the preferred
replication strategy (and hence price) of a call depends on what margin payments need to be made on these
losses.

Keywords: Long-term option pricing; No-negative-equity guarantee; Put option; Arbitrage; Reflecting barrier

1. Introduction

Thomas (2021) considered the valuation of no-negative equity guarantees (NNEG), essentially a
form of long-term put option, in the presence of a lower reflecting barrier under the spot price.
The pricing method was to integrate the option’s intrinsic value over a drift-neutralised density for
the asset price at maturity. In Appendix B of that paper, I noted a puzzle: when the same method
is applied to price a call option, the resulting pairs of call and put prices for the same strike do
not satisfy the standard put-call parity. I suggested a number of pragmatic reasons why we should
nevertheless adopt the price of the put for NNEG valuation, and assign some residual ambiguity
to the price of the call. Similarly, in an antecedent paper, Hertrich (2015, pp. 239-240) writes that
in the presence of a lower reflecting barrier “. . .the put price is unique and equals the risk-neutral
price. . .the call market price can take on at least these two values, i.e. the risk-neutral call price and
the imputed call price via the standard put-call parity.”

The failure of standard put-call parity hints that the barrier model allows some sort of arbitrage.
Previous papers (Thomas, 2021; Hertrich & Zimmermann, 2017; Hertrich, 2015; Veestraeten,
2008, 2013) all noted that the assumed instantaneous nature of reflection rules out the obvious
arbitrage of buying when the spot price is exactly at the barrier, and then selling a moment later
after it rises. However, this argument renders impractical only immediate arbitrage (arbitrage with
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no interim losses); it does not exclude arbitrage with interim losses, which requires credit to cover
losses which may be incurred before an eventual gain.

Strategies of this type are indeed feasible in the barrier model. This raises economic and math-
ematical issues, which were not addressed in any of the previous papers just cited. Economically,
it implies that the realism of the assumed price process depends on the government’s unlimited
powers of intervention, and/or credit limits or other institutional features that limit scaling of the
arbitrage. Mathematically, the existence of any arbitrage strategy, irrespective of its practicality of
implementation, implies that no equivalent martingale measure for the asset exists; and therefore
that the usual risk-neutral pricing arguments cannot be applied, at least in their standard form.

Nevertheless, delta hedging using the formulas in previous papers does exactly replicate option
payoffs. The reasons are as follows. Although geometric Brownian motion (GBM) reflected at
a lower barrier (“the observed price”) is not arbitrage-free, the underlying geometric Brownian
motion (“the notional price”) is arbitrage-free. Furthermore, options on the observed price can be
expressed as compound options on the notional price, and then expectations taken under a risk-
neutral measure for the notional price. Although the notional price is not available for hedging,
it turns out that for the hedging schemes we need to operate, hedging with the observed price
achieves the same results as hedging with the notional price. This is because the deltas for options
always tend to zero as the observed price approaches the localised irregularity at the barrier; and
everywhere else, the observed price has the same standard GBM dynamics as the notional price.

The resulting replicating portfolios are martingales under the risk-neutral measure for the
notional price. But the observed price is a sub-martingale under this measure, because of the
interventions at the barrier (which push the observed price upwards, and are not cancelled by the
removal of the drift in the standard risk-neutralisation). Similarly, the cheapest replication of a
forward contract is a sub-martingale; this is because the cheapest replication of a forward contract
has a static positive delta and so is positively exposed to the interventions at the barrier. These dif-
ferent dynamics of replicating portfolios — options martingale, forward contracts sub-martingale
- inevitably mean that call, put and forward prices together will not satisfy the standard put-call
parity.

Put-call parity can be restored by invoking the construct of synthetic replication for one of
the options, in contrast with the more common direct replication. For a call, direct replication
involves a continuously varying portfolio which is long a fraction of the underlying asset and
short cash. Synthetic replication involves two elements: a long position in a forward contract and
a long position in a put, both with the same strike as the call we wish to replicate. The synthetic
call price is then determined as the lowest cost of replicating each of these two elements separately
(via a static position for the forward and a dynamic position for the put). An analogous synthetic
replication can be constructed for a put.

Under standard models for the asset price, direct replication and synthetic replication have
the same costs. But in the presence of the reflecting barrier, their costs can differ. I argue that
arbitrage will tend to enforce the lowest replication cost as the price for any derivative (I call this
“the principle of the lowest price,” in contrast to the usual “law of one price”). For a put, direct
replication always has a lower initial cost, and never produces interim losses. So direct replication
is unambiguously the best way of replicating a put. For a call, synthetic replication always has a
lower initial cost, but it produces interim losses. So the preferred replication strategy (and hence
price) of a call depends on what margin payments need to be made on these losses.

If the price of a call is ambiguous, then put-call parity is also in general ambiguous. But we
can define it if we assume that no margin payments are required on interim losses. In that case,
synthetic replication becomes unambiguously preferable for a call, so put-call parity then takes
the form Synthetic Call price — Put price = Forward Contract price.

Earlier work on option pricing in the presence of a lower reflecting barrier includes the fol-
lowing papers. For calls with a lower barrier, Veestraeten (2008) derived the direct replication
price, and Veestraeten (2013) considered a combination of upper and lower barriers to represent
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a foreign exchange currency band. For puts with a lower barrier, Hertrich & Veestraeten (2013)
stated the result, and Hertrich (2015) and Hertrich & Zimmermann (2017) gave a full derivation.
Thomas (2021) suggested an application to the valuation of no-negative-equity guarantees on
equity release mortgages. Each of these papers focused mainly either on call options (Veestraeten,
2008, 2013) or on put options (Hertrich, 2015; Hertrich & Zimmermann, 2017; Thomas, 2021),
but not both; this may explain why the complications highlighted in the present paper have not
previously been considered. In earlier actuarial literature, Gerber & Pafumi (2000) and Imai &
Boyle (2001) considered the related problem of pricing of a dynamic guarantee on an investment
fund, where the guarantee is modelled as a reflecting barrier under the fund price. Ko et al. (2010)
considered an investment fund with two reflecting barriers, representing a lower guarantee plus
withdrawals to prevent the fund from exceeding an upper limit. The formulas for these related
problems can be reconciled with those in this paper, see e.g. Appendix D of Thomas (2021).
Buckner et al. (2022) draw attention to the arbitrage opportunities created by a reflecting bar-
rier; I agree with this observation, but not with the inference that the option formulas have no
justification.

The conclusions of this paper can be compared with those in the literature on option prices in
the presence of a bubble in the price of the underlying asset (e.g. Cox & Hobson, 2005; Heston
et al. 2007; Jarrow et al., 2007; Protter, 2013). In both settings, the standard put-call parity fails
to hold. In a bubble, the current asset price exceeds its discounted expectation under the pricing
measure at a future date; but with a lower reflecting barrier, this inequality is reversed. Protter
(2013) distinguishes between “fundamental” and “market” prices for options in the presence of a
bubble, where the fundamental price is the discounted expectation under the risk-neutral mea-
sure. For a put, market and fundamental prices in a bubble are the same (as in the barrier model);
but for a call, market and fundamental prices differ by an amount equivalent to the difference
Synthetic Call - Call in this paper (Protter, 2013, Equation (80)). His difference has the opposite
sign to ours: in a bubble, the current market price of the asset (or a call on the asset) exceeds its dis-
counted expectation under the pricing measure, but with a lower reflecting barrier, the inequality
is reversed.

The rest of this paper is organised as follows. Section 2 gives the set-up of the barrier model and
the derivation of option prices and deltas, and reports simulations showing satisfactory conver-
gence of pricing errors and replication errors. Section 3 considers put-call parity, and hence direct
and synthetic replication; it concludes that a put should always be priced by direct replication,
but the price of a call is ambiguous. Application of the points made in section 3 is illustrated in
section 4 for a put, and section 5 for a call. Section 6 considers the arbitrage possibilities in the
barrier model, and their susceptibility to credit limits and other institutional constraints. Section
7 gives further discussion, and section 8 states conclusions.

2. The Barrier Model
2.1. Concept

The barrier is a metaphor for policymaker actions, such as interventions to support prices after a
large fall in the housing market (Thomas, 2021, section 2), or central bank currency purchases
supporting a floor under an exchange rate (Hertrich, 2015; Hertrich & Zimmermann, 2017).
Alternatively, the barrier represents the different economic properties of underlying assets such as
freehold land (an absolute claim), compared with the underlying assets such as equity (a residual
claim) as in many other option valuations (Thomas, 2021, section 3).

We start with a standard geometric Brownian motion for the price process. We then impose a
reflecting barrier somewhere below the lower of the spot price and the strike price (i.e. b < min
(S, K)). The strike can be either lower or higher than the spot price, i.e. in or out of the money.
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Figure 1. One simulation for the prices N¢ and S;.

If the spot price hits the barrier, reflection occurs instantaneously and with infinitesimal size. We
can think of this as the State making a small purchase, just sufficient to prevent the price falling
below the barrier. The instantaneous nature of the reflection means that the price does not spend
any finite time at the barrier, so the obvious arbitrage of buying when the price is exactly at the
barrier is not practically feasible (but there will be more to say about arbitrage later).

2.2, Derivations
The derivations make use of two price processes: a process for the observed price S; in a world
with a reflecting barrier; and a process for the notional price N; of an asset with the same starting
value today and same instantaneous dynamics, but in a world without a barrier.

We assume that the notional price N is a geometric Brownian motion, specified as usual by

dN; = (i — q)Ndt + o N dW; (1)

where p is the real-world expected total return on the asset, g is the yield (assumed to be contin-
uous), o is the diffusion, and dW; is the increment of a standard Wiener process. The solution of
this is

NtzNoexp{(u—q—02/2)t+0Wt} (2)

where Ny is the notional price today.
Now consider a lower reflecting barrier at price level b. Because of the barrier, the observed
price process Sy will be

b
Stth.max|:1, 0?2;%(17,1)] . (3)

In words: the process S; is equal to Ny, if N; has never gone below the barrier; or an up-rated
version of Ny which “undoes” the maximum proportional deficit relative to the barrier, if it has.
Figure 1 shows how it works, for one unfavourable simulation over 25 years.
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Figure 2. One simulation for the log prices Y; and Z;.

Now transform to an arithmetic Brownian motion: divide Equation (3) by b (so that the barrier
becomes 1) and then take logs (so that the barrier becomes zero)l. This gives:

St N b
ln<z> =ln<7> + ln<max[1, Olélggt(m)}) (4)

or, writing Z; = In(S;/b), Y = In(N/b), and noting In(max(a,b)) = max(In g, In b), and N, = b

exp Y:
Zi=Y;+ max[O, max (—Y,,)j| (5)
0<n<t
or
Zi =Y+ Ly (6)

Figure 2, which is the same simulation as in Figure 1 but with the transformation just given,
shows how it works. Note that the blue line Z; is obtained by taking the red line Y; and then
adding L;, the running maximum shortfall of Y; below zero. L; is a non-decreasing continuous
process, which increases whenever Z; touches the barrier. This construction ensures that Z; never
spends any finite time at the barrier, and there are no jumps. L; can also be thought of as the total
quantum of the interventions at the barrier between time 0 and time #; this quantum is finite,
despite the individual interventions being infinitesimal .

Now note that Y; is an arithmetic Brownian motion, for which Ito’s lemma gives

dY;=dIn(N;/b) =dInN; = (u — g — 0 /2)dt + o dW; 7)

Then, note that Z; is a semi-martingale, because it can be decomposed into a martingale (the
W} term) and two finite variation processes, the drift and the reflection. So we can also apply Ito’s
lemma to Z; =f(t, W, L) . This gives

dZ;=dIn(S;/b) =dInS; = (u — g —0*/2)dt + o dW; + dL; (8)

IStrictly, we only need to take logs to give an arithmetic Brownian motion. The prior division by b just translates the
barrier for the logged variable to zero, and so gives a more intuitive appearance in Figure 2.

2The notation L, arises because of a technical property of the stochastic process: the running maximum shortfall of Y,
below zero is equivalent to 0.5 times the “local time” of Z; at zero, where local time is a measure of the total amount of time
between 0 and ¢ that Z spends “very close” to zero.
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which is the same as Equation (7), plus dL;, and second-order terms involving dLdW, dLdt, and
dLdL which are all zero (because of the infinitesimal size of the increments at reflection).
Comparing Equations (7) and (8), we see that reflected Brownian motion Z; has the same
stochastic process as the ordinary Brownian motion Y/, except for the extra dL; term. This term
is zero at all times, except when Z; touches the barrier (equivalently: Y; makes a new low below
zero), where it generates an infinitesimal increment.
The equivalent equations for the non-logged variables are

dN; = (1 — q) Nedt + o Ny AW 9)
and

By replacing the expected total return p in Equation (9) with the risk-free rate r, we get a
process for N for a new measure Qu, under which the geometric Brownian motion N; discounted
at r — q is a martingale:

dN; = (r — q) Nedt + o Ny AW (11)

where W;@N is a Wiener process under the new measure Qv

Earlier papers (Thomas, 2021; Hertrich & Zimmermann, 2017; Hertrich, 2015; Veestraeten
2008, 2013) implicitly proceeded on the basis that this change of measure also turned the dis-
counted observed price S; into a martingale. But this is not correct, because of the dL; term in
Equation (10). The discounted notional price (red line in Figure 1) is a martingale under Qy (i.e.
e=(r—4) TEQN [NT] = Sp), but the discounted observed price (blue line) tends to be pushed upwards
at the barrier, and so is a sub-martingale under Qn(i.e. e=(r=4) TEQN [ST] = Sp).

The earlier papers obtained pricing formulas for options on S; as discounted Qx-expectations
of terminal payoffs. The usual justification is that because the Black-Scholes partial differential
equation for the price of an option does not depend directly on investor preferences, its solution
must be consistent with the expected value of the option in a world of risk-neutral preferences. In
the Black-Scholes model, we represent risk-neutral preferences by setting the expected total return
on the asset to be the same as the risk-free rate , or stated differently, changing the measure to
make the stochastic process for the discounted asset price a martingale. But in the presence of
the barrier, we have already noted that discounted S; is not a martingale under Qy (see previous
paragraph). Furthermore, because of the interventions at the barrier, there is no change of drift
that can make it so, and hence, the usual procedure does not work. Nevertheless, it turns out that
Qn-expectations do give hedging schemes which exactly replicate option payofts, albeit for subtly
different reasons from the usual argument. These reasons will be explained in section 2.4 below;
but first, I state the Qn-expectations and the corresponding deltas as in Thomas (2021).

For a call, the Qx-expectation gives a price of

Cp=eTEq,[Sr— K]t =¢e'T / ” (St — K) f(St) dST (12)
K

where the B-subscript on Cp denotes that this is a call in the presence of a lower reflecting barrier.
Conveniently, an expression is available for the density of Z; as a function of Yy, and hence also

the re-transformed density for Sy = b exp Z;, the observed price4. This enables us to evaluate the

3The notation Qy (instead of the standard Q) emphasises that this is a risk-neutral measure for the notional price Ny,
not the observed price S;.

4For the random walk reflected at zero, see e.g. Equation (2.4) in Gerber & Pafumi (2000); or for the re-transformed
density, Equation (A.6) in Thomas (2021).
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integral as follows (for a full derivation, see Veestraeten, 2008):

Cp = Se~4T d(z,) — Ke~"Td <z1 - aﬁ)

r b 146
L Se <§) ®z2) (13)
9 1-0
—Ke_rT(£> CD(zz — Gaﬁ)

with K= strike price, S = current spot prices, T = term of the option, b = barrier price, r =
risk-free rate, ¢ = asset yield (“deferment rate,” in the NNEG context), o = volatility, ®(.) is the
standard Normal cumulative distribution function, and

= ) (1o D)) e ) (e 2) ]

(r—9)

o2

0=2 Withr;réq.6

We can make the following observations on Equation (13).

(i) The first line is the Black-Scholes formula’ for a call, and then there is the 1/ term (say
Call Adjustment). The Call Adjustment evaluates as positive, but reduces to 0 for b=0, as
expected.

(ii) The definition of Sy in Equation (3) excludes the possibility of S; having touched the bar-
rier in the past, i.e. before the time designated as zero. To be consistent with this set-up,
we should always define time 0 as the current time when we do an option valuation, and
define the initial notional price as the current price (i.e. Ng = Sp). The density underlying
Equation (13) assumes this, i.e. it does not incorporate the possibility of an uprating effect
on S; from past barrier touches, which would require extra terms.

(iii) Some care is needed with the volatility parameter o. From Equation (1), we can see that
o is the annualised standard deviation of the logarithmic price change of the notional
price Ny (i.e. the GBM volatility in the absence of the reflecting barrier). We can estimate
o by observing the standard deviation of short-term changes in the observed log price,
In(S¢/Si—1), over a period in which the barrier has not been touched, and then applying

the usualy/£-scaling to give an annualised value. But we cannot apply~/t-scaling to o to
give the standard deviation of In(S /So)over a long period T, because this will be reduced

by the presence of the barrier. The usual v/¢-scaling is predicated on geometric Brownian
. . . .8
motion, but that is not what we have in the observed price .

Similarly, for a put, the Qn-expectation gives a price of
K
P=e Mgy IK = 511" = ¢ [ (K =51 f(s1) dsi (14)
b

SStrictly, So for consistency with S; and St, but I drop the subscript where there is no realistic ambiguity.

®For r = g, an alternative formula can be derived (Veestraeten, 2013, p. 960). But the formula above suffices for practical
purposes, because it remains well-behaved when r is arbitrarily close to g, and has only an infinitesimal gap in the solution at
r=gq.

7Strictly, the Black & Scholes (1973) formula modified for an asset with a continuous yield. But this detail is tedious
(every argument in the paper still works if there is no yield), so I shall use “Black-Scholes” throughout.

8The variance over interval T of a driftless arithmetic Brownian motion with o =1 is just T. With reflection at the
starting level, the variance is reduced to (1 —2/7) T~ 0.36T (Wiersema, 2008, p. 212 gives a proof). Our set-up has the
barrier some distance below (rather than equal to) the starting level; this gives a smaller reduction in variance for the log-price.
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which evaluates as
Py = Ke_rT<I><—zl + o\/’._F) —Se 1T ®(—2z))
—be"Td><—Z3 + aﬁ) 4 Se1T d(—2z3)

be”Td><—Z3 +aﬁ) 1s)

b 146
% —Se‘fT<§) [@(z4) — ©(22)]

b\ 10
_Ke T Z _
Ke (K) d><zz 90ﬁ>
with

o) (o)) ) 2]

For a full derivation, see Hertrich & Zimmermann (2017), supported by Appendices A to C of
Hertrich & Zimmermann (2014).

The delta for a call is found by differentiating Equation (13) with respect to the price of the
underlying asset:

aC b 1+6
Scp = _BSB =7 {‘D(m) - (§> ‘D(Zz)} . (16)
Similarly, the delta for a put is:
9P b 1+6
dpy = B_SB =e " {q)(zl) — ®(z3) + (§> [P(z4) — q’(Zz)]} : (17)

Derivations of Equations (16) and (17) are given in Appendix A (Supplementary Material).

2.3. Simulation

We now specify some example parameters which will be used where appropriate throughout the
rest of the paper: let spot price S=1, barrier b=0.5, strike K =1 (i.e. at-the-money), risk-free
rate r=0.015, asset yield 4 =0.01, volatility o = 13%, and term T =25 years. These parameters
are intended to be representative of the NNEG context as in Thomas (2021).

Simulation is useful for two distinct purposes: to verify that the formulas are correct Q-
expectations, and to show that delta hedging based on these formulas exactly replicates option
payoffs.

For the first purpose, we simulate the asset price using Equations (2) and (3), but with the drift
w replaced by r, a fixed large number of time steps, and then vary the number of simulations. We
measure pricing error as mean discounted option payoff less the analytical option formula. This is
illustrated for a put in Figure 3, a log-log plot of confidence intervals for the pricing error against
the number of simulations N;. The slope of —0.5 shows that the Monte Carlo means converge on
the analytical formulas in line with 1 /{/N.

For the second purpose, we again simulate the asset price using Equations (2) and (3), but with
areal-world drift © = 0.03 (say), a fixed number of simulations, and then vary the number of time
steps. We find that replication schemes based on initial wealth as per the call and put formulas in
Equations (13) and (15), and deltas as in Equations (16) and (17), exactly replicate option payoffs,
for any simulated real-world drift of the asset price. This is illustrated for a put in a Figure 4,

https://doi.org/10.1017/51748499522000227 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000227
https://doi.org/10.1017/S1748499522000227

Annals of Actuarial Science 9

-5.5

-6.0

Log (95% conf. interval for error)
-70 -85

T \ T T T
10 11 12 13 14

Log (Number of simulations)

Figure 3. Convergence of put pricing errors to zero with increasing number of simulations.
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Figure 4. Convergence of put replication errors to zero with increasing number of time steps.

a log-log plot of standard deviations of replication errors against the number of time steps N
The slope of —0.5 shows that the replication errors converge in line with 1 //NT.

2.4. Why delta hedging exactly replicates option payoffs

Section 2.2 noted that because of the irregularity at the barrier, the observed price S; is not a
martingale under Qy, and so part of the standard justification for risk-neutral pricing does not
apply to options on S;. To understand why option replication by hedging schemes based on Q-
expectations still works, first recall that the observed price S; is a function of the notional price N.
Specifically, the definition of S; in Equation (3) can be written as

b .
St =N; - max(l, max (—)) =N;. exp{ max[O, In b — In min N,,:| } (18)

0<n<t\ Ny 0<n<t
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where the max|[.] term on the right is a lookback put (with fixed strike In b) on the log-minimum
of N. So a put on St can be expressed as a compound option on N, with payoff of

max(K — St1,0) = max(K — Nr. exp{ max|:0, Inb — In min Nni| } ,0) (19)

0<n<T

or in words, a put on Sy is a put on: N times the exponential of a logarithmic lookback put on

the minimum of N'. As for any derivative of N, the discounted Q-expectation of this payoff is
a risk-neutral price with reference to N;, and if N were available for hedging, we could replicate
its payoff by hedging against N; using a delta 3P; /0N;, where P; is the put price at time ¢. Then,
note the following points:

(i) By inspection of Equation (18):

(a) When N; is not at a new minimum below b, then S; is just a piecewise scaling of
N;. Specifically, Equation (18) says S; = N;p;, where p; is the exponentiated payoff at
time ¢ of the logarithmic lookback put. The scaling factor, p; = 3S; / oN; for all Sy #
b, is constant throughout each interval when N is not at a new minimum below b,
corresponding to flat segments of the dashed line in Figure 2.

(b) When Ny hits a new minimum below b, substituting In N; for lnomin N,, in Equation
<n<t

(18) gives S; =Nt(b/Nt) =b. In other words: whenever N; hits a new minimum
below b (equivalently: S; touches the barrier), the dependence of S; on N vanishes. So
the derivative 0S; / ON; must also vanish.

(ii) By the chain rule, 9P; / a8, = 0P, / ON; x ON; / S, (where P is the call price evaluated
at time t). So the option deltas with respect to S; and N; are related in the same way
as in (i), but with the inverse scaling 1 / Pt and both must vanish when S; touches the
barrier.

(iii) Hence for the compound option in Equation (19), hedging with N; using a delta 0 P; / oON;
(which we cannot do) gives the same results as hedging with S; using a delta 9P, / 0S;
(which we can do).

(iv) By inspection of Equation (17), dPp / 0S¢ — 0 as S — b, as expected from the “vanishing
derivative” argument above. The same is true of 9Cp / 0S; in Equation (16).

A further intuition for the vanishing derivatives is as follows. When N; (a geometric Brownian
motion) is near its current lookback minimum, py, it will almost surely go further below this before
time T, thus establishing a new minimum. So infinitesimal changes in p; (and hence S¢) at the
current time will have no effect on the terminal value pr (and hence also, the terminal value St).
For a rigorous proof see the paper on lookback options by Goldman et al. (1979).

Another way to look at this is via the stochastic process representations of N; and §; in
Equations (9) and (10). Notice that when S; is above the barrier, it is just a scaled version of Ny,
with the same GBM dynamics. When S; touches the barrier, its dynamics deviate from those of
N, because of the dL; reflection term; but at this point, the option delta goes smoothly to zero, so
our replicating portfolio has no exposure to the dL; term. Stated differently, under the measure
Qn, the discounted option replicating portfolios based on delta hedging using S; are martingales;
but S; itself is a sub-martingale, because of the dL; term.

°In the related context of pricing a guarantee on an investment fund, the connection to a lookback option on the
minimum was previously noted by Imai & Boyle (2001).
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Figure 5. Calls are inefficient, puts efficient.

The above arguments explain why hedging using deltas derived from Qn-expectations success-
fully replicates option payoffs, despite the fact that S; is not a martingale under Qy. But the dif-
ference in dynamics between replicating portfolios (martingales) and asset price (sub-martingale)
under Qy hints at complications with put-call parity, which we examine next.

3. Put-Call Parity
3.1. Intuition: calls are inefficient, puts efficient

We start with a graphical intuition that foreshadows much of what follows. Briefly, a call is an
“inefficient” contract in the sense that its payoff may fail to give credit for the full effect of any
interventions when the asset touches the barrier along the asset path to that payoff. A put does not
have this feature, and so is “efficient.”

To see this, look at Figure 5. Each panel shows one sample path for the notional price N;
(red), and the corresponding observed price S; (blue). Notice that in the left panel, the payoff
of a call, max(St — K, 0), is less than the accumulated effect (Sy — N7) of the interventions (or
equivalently, the reflection) along the asset path. In contrast, in the right panel, the payoff of a
put, max(K — St,0), is reduced by the full accumulated effect (St - Nt) of the interventions,
compared with the much larger payoft if there were no barrier (i.e. if the red line represented the
observed price).

It is possible to draw paths where a call payoff includes the full effect of any interventions, and
a put payoff includes none: the red line in each panel just needs to terminate above the strike. But
for such paths, the put payoff is zero anyway (both before and after the interventions), so such
paths are inconsequential for the valuation of a put. In general, whenever an option has a positive
terminal payoff:

(i) a call payoft does not always include the full positive effect (left panel in Figure 5); but
(if) a put payoff always does always include the full negative effect (right panel in Figure 5)

of any interventions along the path to that payoff.

Observations (i) and (ii) suggest that the barrier has, in some sense, a more fundamental effect
on a put than on a call.

Also note that:

(a) for a call, the barrier redistributes the density of payoffs compared to that which prevails
with no barrier, but without changing its support [0, co];
but
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(b) for aput, the barrier both redistributes the density of payoffs, and narrows its support from
[0, K] to [0, K - b].

Observations (a) and (b) again suggest that the barrier has a more fundamental effect on a put
than on a call.

Now recall that by parity, call and put payoffs are mutually redundant: if we have one plus
the forward contract, we can always synthesise the payoff of the other. So rather than directly
replicating a call, it might be cheaper to synthesise its payoff as a forward plus a put.

3.2. Definition of put-call parity
Instead of the usual general reasoning about payoffs, it is useful for our present purposes to derive
put-call parity by explicitly differencing call and put prices:

Call price — Put price = Forward Contract price (20)

In the Black-Scholes model appropriate for the notional price Ny (a geometric Brownian
motion), if the Black-Scholes call and put prices are C and P (assuming the same strike K as the
forward contract), we have

C—pP= [Ne_qTCD(zl) - Ke—”cb(zl - aﬁ)] - [Ke—’TeD (—z1 + o—ﬁ) —Ne T o(—z )]
(21)

and then noting that the sums of the Normal functions (e.g. ®(z;)+®(—z;)) each reduce to 1,
this gives

C—P=Ne 1T —Ke T (22)

where the right-hand side corresponds to the no-arbitrage price of a forward contract, as expected.
In the Black-Scholes model, Equation (22) holds at all times over the term. Stated differently, all
of the following are true:

(i) the terminal payoffs of (a) a long call, short put portfolio, and (b) a forward contract, are
equal
(ii) the prices of (a) and (b) today are equal
(iii) the replicating portfolios for (a) and (b) are equal at all interim times, and hence have the
same dynamics.

I shall refer to points (i) to (iii) as the “triple equivalence” of put-call parity.
For the barrier model, following the same approach of differencing call and put prices
(Equations (13) and (15)), we obtain

1
Cg—Pp=Se 1Td(z3) —Ke T+ be ' (1 — 5) ¢(—Z3 + crﬁ)

1 b 1+6
+3 {Se_qT(E) c1>(z4)} (23)

which is larger than the standard parity Se~77 — Ke~ "7, and reduces to that only for b= 0.
The right-hand side of Equation (23) can be replicated as the difference of the two replication

strategies implied by the left-hand side”’. As with the constituent options, hedging against the
observed price S; using a 1/ p; scaled delta is equivalent to hedging against the notional price

N/ using an unscaled delta. The replicating portfolio starts off higher than Se™4T — Ke™'T, then

10With slight abuse of notation, I shall use Cg and Pj to refer to both replicating strategies and the initial costs of those
strategies, as the context requires (and similarly for other replicating strategies, later in the paper).
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evolves as a martingale under Qu (the difference of two martingales is itself a martingale) and
reaches the payoff of a forward contract ST — X at maturity. If we denote this “martingale forward
contract” as Fg, we then have:

Cg—Pp=Fp (24)

which satisfies the triple equivalence of put-call parity.

But in the presence of the barrier, there is a simpler and cheaper way of replicating the payoff
of a forward contract. Recall the static no-arbitrage argument that underlies the standard forward
contract price Se97 — Ke™"T: the payoff of a forward can be replicated by borrowing to buy e =47
units of the asset and continuously reinvesting the income, and this price is enforced because any
other price creates a static arbitrage. Then note that in the presence of the barrier, the argument
still works in the same way. The static hedge position in the asset means that whenever reflection
at the barrier affects the spot price, it will affect the replicating portfolio in the same way. So a
static position in the asset, funded by borrowing, still replicates the payoff of a forward contract
in the presence of the barrier (and this is easily verified by simulation).

The forward contract defined in this way, say SFg=Se 9T — Ke~'T, has the same terminal
payoff as the martingale forward contract Fg in Equations (23) and (24), but a different initial
price, and different interim dynamics. Because of the interventions at the barrier, the replicating
portfolio for SFp is a sub-martingale (and hence the $-prefix). Note that the cheapness of this
replication scheme arises because it fully exploits the interventions at the barrier. In contrast,
for the martingale forward contract Fp, the replication scheme implied by the right-hand side of
Equation (23) has the same property as the call and put replication strategies on the left-hand side:
both deltas go to zero as the spot price approaches the barrier, and so the replication scheme gains
no benefit from the interventions.

Now recall that the terminal payoff of a call can also be expressed synthetically as a forward
contract plus a put, and similarly, the terminal payoff of a put can be expressed synthetically as a
call less a forward. This suggests two further possible concepts of put-call parity in the presence of
the barrier:
replicating the put synthetically:

Cp —SPg =" Fp (25)
or replicating the call synthetically:
°Cp — Pp="Fp (26)

each of which satisfies the triple equivalence of put-call parity. Other combinations such as Cp —
Pp = SFp would not satisfy the triple equivalence: the terminal payoffs of the two sides are equal,
but the replicating portfolios at earlier times are not. The -prefix in $Cp and SPp can be thought of
as denoting both that the payoffs are replicated synthetically, and that the sub-martingale forward
is used in their replication.

The three putative statements of put-call parity in Equations (24), (25) and (26) all reference
the same terminal payoff, i.e. they are all the same as regards leg (i) of the triple equivalence of put-
call parity. But they are not all the same as regards leg (ii) (current prices) and leg (iii) (interim
dynamics). Equations (25) and (26) replicate the same terminal payoff as Equation (24), but using
a cheaper replication strategy, which exploits the interventions at the barrier.

3.3. Principle of the lowest price

The fact that replication schemes are not unique does not necessarily mean that all replication
schemes are equally sensible. Anyone offering to buy a derivative for more than its lowest cost
of replication creates a potential arbitrage: sell to the person offering a higher price, replicate the
contingent payoff you need to make by setting aside its lowest replication cost, and pocket the
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Figure 6. Clockwise from top left: paths of spot price, and replicating portfolios for forward, put and call.

difference. And in contexts such as NNEG valuation, it seems reasonable that an insurer should
be permitted to value a put at the cost of the cheapest strategy that replicates the payoff, rather
than some alternative higher-cost strategy.

This argument suggests the principle that the market price of any derivative should be the cost
of the cheapest replication scheme, that is, the scheme which best exploits the interventions at the
barrier. We might call this the principle of the lowest price, in place of the conventional law of one
price. This leaves aside the question of any margin or collateral required by each strategy, to which
we shall return below.

3.4. Replication paths

It is now useful to examine some typical simulation paths for the various replicating strategies
underlying Equations (24)-(26). Figure 6 shows (clockwise from top left): a single path for S; the
corresponding paths for martingale and sub-martingale forward replications (green); the direct
and synthetic put replications (blue); and the direct and synthetic call replications (red). I make the
following observations (these points are general, despite only a single pair of paths being shown
for each comparison).

(1) In each of the three coloured panels, the difference between the two initial costs, and the
subsequent replicating paths, is the same Fz — SFp. In other words, the fundamental point
is that there are two ways of replicating the forward contract: Fg which gains no benefit
from the interventions, and $Fp which fully exploits the interventions. In each coloured
panel, the initial difference is the (discounted) effect of the interventions on the asset
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price over the whole term. If we rely on the cheaper replicating strategy in each panel,

o . . Lo ._n
we implicitly anticipate the effect of the free government interventions in our prices. The
initial value of the difference is Equation (23) less SFp, that is:

1
Fp—SFg=0be T <1 — 5) @(—Z3 + aﬁ) — Se™ 1T d(—z3)

1 b 1+6
+5{Se_qT<§> <I>(Z4)} 27)

which is independent of the strike K, as expected.

(2) For a forward contract (green, upper right panel), the sub-martingale forward SFpis atall
interim times lower than the martingale forward Fp. The difference arises from the differ-
ent replication strategies: Fp misses the interventions, SFp captures them. But it might also
be rationalised as a reflection of different mark-to-market risks: Fp has a delta of 8¢, — dp,,
and SFp has a higher delta of e=4T=" at interim time ¢t (visually, SFp has larger draw-
downs). Note that SFg never exceeds Fg; the extra mark-to-market risk is entirely downside
risk. On the other hand, $F (a static position) has the advantage that it is much simpler to
hedge than Fp (a dynamic position).

(3) For a put (blue, lower right panel), the direct replication Pg is lower at all interim times
than the synthetic replication $Pp. This is intuitive: Pg has no exposure to the interventions
at the barrier (because the delta goes to zero); but 5Pz has a short position of —e(T=1)
(plus reinvestment of income) at the barrier and so suffers losses from the interventions.
If someone offers to buy the put at the higher price $Pg, an arbitrageur can write the put
at that price, replicate the contingent payoff he needs to make by setting aside an amount
Pg, and pocket the difference. Since direct replication is always cheaper, this suggests that
a put should be replicated directly.

(4) Conversely, for a call (red, lower left panel), the synthetic replication $Cy is lower at all
interim times than the direct replication Cg. This is again intuitive: SCp has a long position
of e=9(T=1 when the spot price touches the barrier at interim time ¢, and so fully benefits
from all the interventions, but Cp misses out on all the interventions. Since synthetic repli-
cation is always cheaper, this suggests that a call should be replicated synthetically (but see
the caveat at (6) below).

(5) Now put the three previous points together, and apply the “principle of the lowest price”
articulated in section 3.2 to each contract. This suggests that we can discard Equations (24)
and (25), leaving Equation (26) as the preferred form of put-call parity in the presence of
the barrier. That is, a call should always be replicated synthetically, and a put directly; and
a forward contract should be replicated by a sub-martingale strategy (i.e. using the same
formula as in the absence of the barrier).

(6) However, for a call (but not for a put) there is an important caveat: the red lower left
panel in Figure 6 shows that the minimum-cost strategy Cp has negative value at interim
times during the term. In contrast, the direct replication strategy Cp remains positive at all

interim times . So a putative arbitrageur, who sells the call to a person offering the higher
price Cp and replicates the contingent payoff he needs to make for Cg, may need to make

'We can alternatively extract the value of the interventions over the term, via a suitable delta-trading strategy. This
possibility is discussed in section 6.2.

2Note in passing that the issues discussed here never arise in the standard Black-Scholes model, where at all interim
times (i) replication portfolios for both calls and puts have positive value and (ii) synthetic replication portfolios have identical
value to direct replication portfolios.
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margin payments to cover these interim losses. The negative interim value of the strategy
does have a lower limit enforced by the barrier, but its magnitude can substantially exceed

the initial saving Cp — $Cp plus interest to the interim time . In the presence of credit or
margin constraints, this is a possible reason why there may be few or no sellers of the call
at the price SCp, or indeed at any price below Cg.

(7) It does not seem possible to give a general resolution of this point: the price of a call is
ambiguous, depending on margin requirements in relation to interim losses of the strategy
SCp. Suppose the margin requirements are expressed as a fraction m (0 < m <1) of the
negative interim value of the strategy. We can then resolve the ambiguity for one extreme
case: if there are no margin requirements (m = 0), it is always cheaper to replicate the call
synthetically. On this assumption of “no margin requirements,” put-call parity takes the
form given in Equation (26):

SCp — Pg="SFp (28)

Synthetic call price - Direct put price = Sub-martingale forward price.

But more realistically, for any other value of m, the best way to replicate a call depends
on the availability of credit, and the configuration of S, K and b (and hence the maxi-
mum possible interim loss on the cheaper strategy SC). It might be thought that m =1
(i.e. replication portfolios plus margin required to have non-negative value at all interim
times) dictates that a call should be replicated directly. But this is not so, because for some
configurations of S, K and b (particularly S — b or K — b), it may be cheaper to follow
the strategy SCp and also “pre-fund” the maximum possible margin payment. To see this,
first consider a strike equal to the barrier (K = b). For this parameterisation, there are no
possible interim losses on either strategy Cg or C, so the strategy SCp is unambiguously

cheaperM. Now consider a strike slightly above the barrier. By continuity with the previous
case, the maximum possible interim loss of SCp is very small; and so following this strat-
egy (which captures the full effect of the interventions) and “pre-funding” the maximum
margin payment will be cheaper than following strategy Cp (which completely misses out
on the interventions). On the other hand, if either the strike or spot price is well above the
barrier (i.e. K >> b or S >> b), the maximum possible interim loss on the strategy $Cj is
larger, and so for high enough S or K, the strategy Cp will be cheaper than SCp plus pre-
funding of the maximum possible interim loss. Overall, for m = 1, the best strategy seems

ambiguous: it depends on the configuration of S, K and b

(8) The ambiguity regarding the call as discussed at (6) and (7) does not affect the put. The
direct replication strategy Pp has the lowest initial cost, with any synthetic strategy having
higher cost; and Pp never has negative interim value; so Pp always the best replication
strategy for a put. This affirms the relevance of P for NNEG valuation, notwithstanding
the ambiguity about the price of a call.

The next two sections illustrate the principles outlined above, first for the more straightforward
case of puts and then for calls.

13particularly if the barrier at inception is far below the spot price, so that (i) the initial saving Cp — SCp is small and (ii)
the possible interim losses are large.

l4Stated differently: if K = b, a call has the same payoff as a forward, and can be most cheaply replicated as such.

There is a loose analogy with the scenario of a bubble in the current price of the asset. Here, Cox & Hobson (2005) and
Heston et al. (2007) emphasise that the call price is ambiguous, because it depends on margin requirements for the replication
strategy with lowest initial cost.
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Figure 7. Put option: direct replication is cheaper than synthetic replication.

4. Illustration for a put Option

We now return to the example parameters stated in section 2.3. Figure 7 illustrates the compar-
ative costs of direct replication Pg and synthetic replication SPy for a put option, for a range of
barrier levels as a fraction of the initial spot price. We can make the following observations on
Figure 7.

For a put, direct replication is always cheaper than synthetic replication. To understand this,
note that the cheaper replication strategy is the one that is better positioned at the barrier. Then,
observe that the deltas of the two replication strategies when the spot price touches the barrier at
an interim time ¢ are:

synthetic replication: §(Cp — SFp) =8¢, — e 97T = — ¢=4(T=D
direct replication: p, = 0.

So the synthetic strategy is always badly positioned at the barrier (short the asset, which is
subject to positive interventions). This makes it more expensive.

The dashed straight red line representing the Black-Scholes price (i.e. ignoring the barrier)
is shown in Figure 7 mainly to illustrate that our preferred valuation, the blue line Pp, sensibly
converges to the Black-Scholes price for b= 0. But perhaps surprisingly, replication based on the
Black-Scholes delta will also exactly replicate option payoffs in the presence of a barrier b > 0, albeit
at unnecessarily high cost. For a discussion of this point, please see Appendix B (Supplementary
Material).

Another way of seeing that a put should be priced by direct replication is to note that a putisa
bounded claim with a maximum payoff of K - b, and then consider the following extreme cases:

(i) Barrier equal to strike
For K = b, the put payoff becomes zero. In Figure 7, the strike is 1, and the direct repli-
cation price Pp (blue line) goes to zero for b =1, which is intuitively sensible. In contrast,
the synthetic replication price Spg (dashed black line) and Black-Scholes price (dashed red
line) remain well above zero for b= 1.

(ii) High volatility
For high volatility (e.g. & >0.290 in Figure 7), the synthetic replication price P can exceed
the maximum possible put payoff K — b. But this gives an immediate arbitrage, with no
credit requirements: write the put for a cash credit of SPg, which is larger than the max-
imum possible payoff you need to make. In contrast, the direct replication price Pp is
well-behaved for high volatility: it increases modestly towards a limit, but remains less
than the Black-Scholes price.
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Figure 8. Call option: synthetic replication is cheaper than direct replication.

5. Illustration for a Call Option

5.1. With no margin requirements: synthetic replication is preferred

Figure 8 illustrates the comparative costs of direct replication Cp and synthetic replication SCp for
a call option with the same parameters as in section 4, for a range of barrier levels.

We can make the following observations on Figure 8.

For a call, if we assume m =0 (i.e. no margin payments are required on interim losses of repli-
cation), synthetic replication always has a lower initial cost than direct replication. To understand
this, note that the deltas of the replication strategies when the spot price touches the barrier at an
interim time ¢ are:

synthetic replication: § (SFB + PB) = 9(T-0) 4 8py = e 9(T-1
direct replication: c; = 0

So the synthetic replication strategy is always better positioned at the barrier (long the asset,
which is subject to positive interventions).
It may seem counter-intuitive to say that in a world with a higher barrier, a call can be replicated

at lower cost (as a fraction of the initial spot price)m. To understand this, look at Figure 9. This
shows four possible paths for the notional price Ny and the corresponding observed price S; (in
the upper left panel, there are no barrier touches, so the two paths never diverge). In each panel,
the effect of the intervention on the terminal price is St — N, and the effect on the call payoff is:

(i) upper left panel: no increase (because no barrier touches, so no interventions)
(ii) upper right panel: increase of ST — N3
(iii) lower left panel: increase of less than St — Nr;
(iv) lower right panel: no increase (because terminal observed price below strike).

We can then see that the reduction in call replication cost, compared to a world with no barrier,
arises from paths of type (iii). For these paths, the synthetic replication strategy SCp fully captures
the effect of the interventions, but the call payoff is increased by less than the effect of the interven-
tions. As foreshadowed graphically in section 3.1, a call is an “inefficient” contract in the presence
of the barrier.

We can usefully consider the same extreme cases for the call as we did for the put:

16Note that Figure 9 does not say a call is cheaper in a numeraire of £ in a world with a higher barrier. Value on the
y-axis is expressed as a fraction of the initial spot price, which is likely to be higher in a world with a higher barrier.

https://doi.org/10.1017/51748499522000227 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000227

Annals of Actuarial Science 19

W rl L
SEN, JJ«!\)\/V ‘W\ A | 7
----- Strike J k .:I“ 3 Y ;‘ e

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Barler pec-cscsasesasaadi -- Barrier

No Yes
Call payoff not increased Call payoff increased
(no interventions, so S =N ) by effect of interventions
0 T 0 T
(Yes) No

Call payoff increased, but by less
than effect of interventions

Call payoff not increased
(S_below strike)

-%1- Stiike - Stike

Se
,,,,,,,,,,,,,,,,,, - Barrier Barrier

(S,-N)

.:,-
.

o
-

Figure 9. Call payoff, max(St — K, 0), may be less than accumulated effect of the interventions.

(i) Barrier equal to strike
For K = b, the call is economically equivalent to a forward contract. The synthetic replica-
tion price SCp then sensibly prices the call as a forward contract, (i.e. P =0, so SCp =5F3);
but the direct replication price Cp gives an unnecessarily higher price.

(if) High volatility
For high volatility (e.g. o >0.409 in Figure 8), the direct replication price Cp exceeds the
spot price. This gives an immediate arbitrage, with no credit requirement: write the call
and buy the stock for a cash credit Cg — S, and then at maturity either deliver the stock
and receive the strike (if the call is exercised), or keep the original cash credit (if the call is
not exercised). On the other hand, the synthetic replication price SCp sensibly remains less
than the spot price for all volatilities.

5.2, With margin requirements: call price is ambiguous

The synthetic replication strategy SCp is subject to the caveat discussed in section 3, i.e. the interim
losses can exceed the initial saving Cp — SCg plus interest to the interim date. This is more likely
when the barrier is low, towards the left of Figure 8: the initial saving (i.e. the gap between the black
and blue curves) is small, and the largest possible interim loss is large. To illustrate, let V;(SC}) be
the value of the synthetic replicating portfolio for a call at interim time ¢, and define the “Interim
Loss Ratio” (ILR) of the strategy as

V. St
ILR= min t(—CB) (29)
0<t<T (CB—SCB)e”

where ILR < —1 indicates that the negative value of the strategy exceeds the rolled-up initial saving
at some point during the term. Then on the assumptions at the start of section 2.3 (in particular,
S = K = 1), for b=0.7, the 25% conditional tail expectation of the ILR is —0.76 (and none of
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10,000 simulations gives ILR < —1). So for b > 0.7, strategy SCp might be preferred: the maximum
possible interim loss is smaller than the rolled-up difference in initial costs. But for b=10.6, 0.5,
0.4, the corresponding 25% tail expectations of the ILR are —1.53, —2.98, —5.20. For these cases,
the strategy Cp might be preferred: it has a slightly higher initial cost, but avoids a substantial
chance of interim losses of several times the extra cost.

To summarise this section: ignoring margin requirements, the initial cost of synthetic repli-
cation SCp is always cheaper than that of direct replication Cp. But the strategy *Cp may have
negative value at interim dates, and these losses can be much larger than the difference in initial
costs plus interest to the interim date. If margin payments need to be made to cover interim losses,
the price of a call seems ambiguous.

6. Arbitrage and Limits to Arbitrage

The dual replicating strategies for puts, calls and forwards as discussed above point to the possibil-
ity for arbitrage strategies in the barrier model. This section examines these possibilities directly,
and their practicality in the context of credit constraints.

6.1. Buying when the spot price touches the barrier (not feasible)

Theoretically, if we could buy at the instant when S; touches the barrier, and sell immediately
after reflection, this would be an immediate arbitrage, with no risk of interim losses. However,
we have already noted in section 2.1 that this is not practically feasible: the spot price spends no
finite time at the barrier, so no-one can implement the strategy. From a mathematical viewpoint,
the existence of this strategy has consequences: it rules out the existence of an equivalent martin-
gale measure for the asset price. But from an economic viewpoint, a purely theoretical arbitrage
opportunity seems of no consequence: if no-one can implement the arbitrage, it cannot affect the
7

assumed price process .

Although buying exactly when S; touches the barrier is not feasible, it may be possible to
obtain some sort of approximation. Intuitively, we can do this by increasing a long position as
St approaches the barrier, and then reducing the position as S; moves away from the barrier. This
type of strategy will be exposed to interim losses, because S; can fall further after we initiate the
position, but the presence of the barrier will place a limit on the losses. All the strategies discussed
below amount to some form of this approximation.

6.2. Net-delta strategy (arbitrage with interim losses)

In Figure 6, the pairs of replicating paths for forward, put and call all have the same initial differ-
ence, Fg — SFp (which is independent of the strike K), and the differences shrink at the same rate
in each panel as the replicating paths converge on the contract payoff. This is because the duality
of replicating paths in each panel has the same underlying cause: the forward contract payoff can
be replicated either in a cheaper way which exploits the interventions (SFp), or in a dearer way
which does not (Fp). It follows that if we run the cheaper strategy long and the dearer strategy
short, we should be able extract the initial difference in prices Fg — SFg (also equal to Cp — SCg
and SPp — Pp) plus interest over the term. Because the two strikes are equal and opposite, they
do not need to be replicated; we can just do the delta trading on each side, funded wholly by bor-
rowing. That is, starting from zero wealth, we borrow to fund a continuously varying “net-delta”

7We could formalise the impracticality by requiring a minimum time interval & between trades. This reflects the prac-
tical reality of discrete hedging, and rules out most of the putative purchases exactly at the barrier. It also technically rules out
continuous replication strategies; but for small h, discrete hedging makes a negligible difference to the accuracy of replication.
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position A, specified by differentiating minus Equation (27) with respect to the asset price:

9 b 146
A= —(Fg—Fg)=e 1" {1 — ®(z3) + (—) @(24)} (30)
aS S
which is always a long position, and gives the same terminal payoff whether or not the barrier
is touched. The terminal payoff is a constant representing the Qn-expectation of the effect of
the interventions on the terminal asset price (i.e. the effect anticipated in our proposed option
prices). The strategy reaches its maximum long position when the asset is at the barrier: it buys at
an increasing rate as the asset approaches the barrier and sells at a decreasing rate as it rebounds,

and so approximates a purchase exactly at the barrier.
The viability of this strategy is investigated in Appendix C (Supplementary Material). In
summary:

(i) The strategy is difficult to scale if initiated when the spot price is well above the barrier,
because the potential interim losses are very large relative to the terminal gain, especially
when the strategy is run over shorter terms.

(ii) Itbecomes more scalable if initiated when the spot price is already close to the barrier. This
is intuitive: the closer to the barrier a long position is initiated, the less it can lose.

(iii) To the extent that the strategy is implemented near the barrier, this may disrupt the
assumed price process near the barrier. But this has little effect on the replication of a put,
because §p, — 0as S — b, so that the put replicating portfolio Pp has almost no exposure
to the asset price near the barrier.

(iv) Point (iii) also addresses the more general criticism that even market participants who do
not pursue explicit arbitrage strategies may tend to buy as the spot price approaches the
barrier, thus modifying the price process in this region. Yes, this may be so; but because
the put replication portfolio has almost no exposure to the asset in this region, it makes
little difference to the replication of a put.

6.3. Call paradoxes

The synthetic replication strategy for a call captures the full benefit of the interventions at the
barrier along all possible paths for the asset, irrespective of the option strike. For a high strike, the
Qn-expectation of the call payoff tends to zero. It follows that the payoff can be funded starting
from wealth of minus the discounted Qn-expectation of the interventions. Stated differently, for
a high strike, the synthetic replication strategy SCp tends to the net-delta arbitrage strategy in
Equation (30), so we can start with wealth of minus the certain gain this will make.

However, the putative “negative price” just suggested assumes that the call writer replicates by
the synthetic replication strategy SCg. This involves interim losses, which for a high strike can
be a large multiple of the negative initial cost (particularly if the initial spot price is well above
the barrier, as noted at 6.2(i) above). In contrast, the direct replication strategy Cg avoids any
possibility of interim losses, and as we increase the strike, its initial cost tends to zero from above.
As previously noted, the choice between the two strategies (and hence the price of a call) seems
ambiguous. It may be reasonable to assume that in practice (a) any offered prices for calls will be
strictly positive, but (b) there may be few buyers of calls with high strikes, because the payoff can
potentially be replicated more cheaply (albeit with interim losses). In other words, calls with high
strikes are likely to be illiquid.

The negative initial cost of replication (ignoring interim losses) for high strikes can also be
understood graphically by looking at Figure 9. We have already noted that for paths of the lower
left type, the call payoff is less than the quantum of the accumulated interventions, ST — Nt. Now
think about what happens as the strike rises. The density of the types of paths shown in the top
two panels falls: because the strike is high, very few of the underlying GBM paths for the notional

https://doi.org/10.1017/51748499522000227 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000227
https://doi.org/10.1017/S1748499522000227

22 R. Guy Thomas

price N; terminate above the strike. All the call payoff then arises from paths of the advantageous

lower left type, where the payoff is more than fully funded by the free interventions .
The “high” strike postulated above is, more precisely, high relative to the forward price of

Se(r=9T It follows that a negative call replication cost can also arise for g > 1, or S sufficiently
close to b. These effects can be understood as follows.

For g > r, a debt-funded long position initiated sufficiently close to the barrier is an arbitrage:
the barrier ensures that maximum possible capital loss at maturity is less than the accumulation
of the carry q - r. Interim losses can occur, because the spot price can move closer to the barrier
before much carry has accumulated, but the barrier limits the size of these losses.

For S — b, in terms of Figure 9, if S; is already close to the barrier, there will be a high density
of future asset paths that receive a significant contribution from interventions at the barrier. Most
asset price paths that produce positive call payoffs will then be of the advantageous lower left type.

There is a possible economic interpretation of the negative call price. For a sufficiently strong
combination of g >rand S — b, along position in the asset funded wholly by debt can be entered
at zero cost and gives a certain gain (provided that the margin requirement can be financed). A
call option may then be a less attractive proposition than the zero-cost long position (especially
for higher strikes, which make a positive call payoff less likely).

Any potential exploitation of the paradoxes highlighted in this section implies disruption of
the assumed asset price process near the barrier. But as we have already noted in section 6.2(iv),
the put replicating portfolio has almost no exposure to the asset in this region, so the exploitation
should make little difference to the replication of a put.

6.4. Bounds on option prices
The modified form of put-call parity suggested in Equation (28):

SCp — Pp=SFp (31)

Synthetic call price - Direct put price = Sub-martingale forward price

invalidates the standard lower bound: Put > max(Ke’rT —Se4T, O). This bound is often
described as “model-free,” but it depends on the standard put-call parity, and is not implied by
the modified parity above. To see the invalidity of the standard lower bound, consider a put with
a strike equal to the barrier, K = b. This put can never have any payoff, and so is sensibly valued at
zero, as given by our formula Pg; but if S is close to the barrier with K = b and r < g, the standard
lower bound will be well above zero.

For a call, the standard lower bound is Call > max(Se_qT —Ke T, 0). The first limit remains

valid in the presence of the barrier: SCp > Se™9T — Ke™'7, i.e. a call has optionality, so it is worth at
least as much as a forward with the same strike. The second limit of zero is reasonable for offered
prices of calls, albeit these will probably be illiquid, as discussed in section 6.3 above.

The inapplicability of the standard lower bound for a put also implies a modification to the
standard upper bound for the valuation of an equity release mortgage, as in the “Principle II” pro-
mulgated by the Prudential Regulation Authority (2020) in the United Kingdom. This is covered
in Appendix D (Supplementary Material).

80nce again (cf. footnote 15), there is a loose analogy with the scenario of a bubble in the underlying asset. In a bubble,
the paradox is that as we increase the strike, the initial cost of replicating a call tends to a positive limit (cf. zero for Black-
Scholes), and the standard put-call parity fails (Heston et al., 2007, p. 381; Cox & Hobson, 2005, p. 478). In a bubble, the
current spot price exceeds the discounted expectation (under the pricing measure) of the asset’s price at future date, i.e.
So > e(”Q)TE@ [St]; with a lower reflecting barrier, this inequality is reversed, so the sign of the limit for the call price is also
reversed.
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7. Discussion
7.1. Mathematical versus economic perspectives on arbitrage

When considering the consequences of the various arbitrage possibilities in highlighted in
section 6, it is useful to distinguish between mathematical and economic perspectives.

From a mathematical perspective, the feasibility of any form of arbitrage, even if incapable
of practical implementation, negates the “No Free Lunch With Vanishing Risk” condition in the
fundamental theorem of asset pricing (Delbaen & Schachermayer, 1994). It follows by the theo-
rem that no equivalent martingale measure for the observed asset price S; exists; this negates the
usual justification for using the computational technique of risk-neutral pricing. But in the bar-
rier model, there is a different justification: we can apply risk-neutral arguments at the level of the
notional price Ny (not the observed price S;), but then nevertheless hedge using Sy, as explained
in section 2.4.

From an economic perspective, the feasibility of arbitrage suggests that the assumed price pro-
cess for Sy might not be realistic, insofar as the actions of arbitrageurs may tend to eliminate the
features which arbitrage exploits. But the importance of this economic concern depends on the
extent to which the arbitrage can be scaled, and whether this eliminates the regularity which it
exploits. On this, the following points can be made.

(1) The arbitrage represents a disequilibrium in the barrier model. But it is a disequilibrium
funded by the government, and therefore, by assumption, a sustainable one. This sustain-
ability derives from the government’s unlimited powers of intervention, as detailed in the
next point.

(2) Whilst the existence of an explicit barrier would imply arbitrage opportunities as identi-
fied in section 6, the barrier is in reality not an explicit feature. Instead, it is a metaphor
for the full range of possible policy responses to a large fall in house prices: changes in
general monetary and fiscal policies, relaxation of prudential limits on mortgage lend-
ing, interest-free and/or non-recourse State loans to house purchasers, regulatory changes
which incentivise or compel institutional investors to buy houses, printing money to buy
houses, etc. The metaphorical nature of the barrier precludes arbitrage in practice.

(3) The arbitrage opportunities all involve interim losses (except for the impractical one of
buying when the spot price is exactly at the barrier). Appendix C (Supplementary Material)
shows that the credit requirements are generally substantial relative to the gains, and so the
ability to scale the arbitrages will be limited by credit constraints. The credit requirements
can be reduced by initiating the strategy only when the spot price is already very close to
the barrier (essentially mimicking a purchase exactly at the barrier). But disruption to the
price process in this region makes almost no difference to the replication of a put, because
the put delta near the barrier is very close to zero.

(4) A number of authors have put forward models where credit constraints, margin require-
ments and other institutional features lead to the persistence of some arbitrage opportuni-
ties in equilibrium, e.g. Shleifer & Vishny (1997), Loewenstein & Willard (2000), Basak &
Croitoru (2000), Liu & Longstaff (2004). Others have documented empirical evidence of
persistent arbitrages in various markets, e.g. Gemmill & Thomas (1997), Lamont & Thaler
(2003), Mitchell et al. (2007), Mitchell & Pulvino (2012).

(5) Experience with currency barriers suggests that when the spot price approaches a lower
barrier, there is often increased selling (not buying, as the logic of arbitrage would suggest),
presumably predicated on speculation that the authorities may not continue to support
the barrier. For example, Hertrich & Zimmerman (2017) find that currency option prices
shortly before the Swiss National Bank abandoned its lower barrier for the Euro/Swiss
Franc rate in January 2015 were consistent with the put formula assuming a “true” barrier
significantly below the official policy barrier. To the extent that such speculative selling
occurs, it may offset any buying predicated on the logic of arbitrage.
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7.2. Alternatives to the barrier model

The complications identified in this paper make the barrier model seem more conditional on prac-
tical limits to arbitrage than was apparent in previous papers (Veestraeten, 2008, 2013; Hertrich,
2015; Hertrich & Zimmermann, 2017; Thomas, 2021). However, I suggest that its usefulness in
applications such as NNEG valuation should be judged by comparison with available alternatives,
not an abstract standard of perfection that no extant model attains. If one believes that the barrier
assumption, or something like it, is a closer approximation of reality for house prices over the long
term than an unrestricted geometric Brownian motion (for reasons, see Thomas, 2021, sections 2
and 3), there do not seem to be any wholly satisfactory approaches. Three possible alternatives are
as follows.

(i) Standard Black-Scholes, as prescribed by the Prudential Regulatory Authority (2020) for
NNEG valuation for certain regulatory purposes. This simply ignores the reality that inter-
ventions are likely after large falls in prices, and produces what one well-known writer
of long-dated puts has called “wildly inappropriate values when applied to long-dated
options” (Buffett, 2011). In the context of NNEG, Black-Scholes seems to me a short-
term model stretched well beyond its sensible range of application, like trying to use an
egg-timer as a calendar.

(ii) The “real-world” method typically used by UK insurers for NNEG valuation (Hosty ef al.,
2008). This makes an ad hoc adjustment to the Black-Scholes formula, replacing the for-

ward house price Se(’~0Twith a projected house price Se¢ 7, where g > r - q. This gives
much lower put values than Black-Scholes. If calls are also valued by this method, then to
be consistent with parity, the forward price must be Se€ T (this can be seen by reworking
Equation (21) with r - g replaced by g, and is also discussed in Taleb, 2015). The real-
world method therefore implicitly assumes the persistence of a large static arbitrage (i.e.

parity-implied forward price Se$ T less no-arbitrage forward price Se(r=0)T)_ This might be
considered a more disconcerting assumption than the persistence of some limited dynamic
arbitrage in the barrier model.

To illustrate, in the representative example detailed in section 2.3 (in particular S= K =1,
b=0.5), the value at inception of the arbitrage in the barrier model is 0.0416; this can be
extracted only by a dynamic strategy that may incur substantial interim losses. But in the
real-world model with a typical house price growth ¢ =2.5% and all other parameters the
same, the value at inception of the arbitrage is 0.5052 (i.e. 12x larger); this can be extracted
by a static strategy with no interim losses.

(iii) The benchmark approach originated by Eckhard Platen (e.g. Platen, 2002; Buhlmann &
Platen, 2003; Platen & Heath, 2010; Fergusson & Platen, 2022). This involves a change of
numeraire to the “benchmark portfolio” which maximises expected log-utility of termi-
nal wealth (in other literature, the “growth optimal portfolio”). The price of an option is
then defined as its real-world conditional expectation in the benchmark numeraire; for
long terms, the price is significantly less than Black-Scholes. Effectively, the benchmark
approach anticipates the asset’s risk premium in general, rather than the prospect of inter-
vention after a large fall in prices. There is no equivalent martingale measure, so some
arbitrage is possible, but only with interim losses. There are some apparent paradoxes,
but different ones from the barrier model: the price of a put approaches zero when the
benchmark portfolio is low, and a modified form of put-call parity applies.

Notably, all of the barrier, real-world and benchmark models allow some form of arbitrage.
This perhaps reflects an implicit view that the persistence of some arbitrage opportunities may be
a reasonable feature of a long-term asset model, if the ability to scale them in practice is curtailed
by credit limits, transaction costs, and other institutional constraints.
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8. Conclusions
Putting sections 2-7 together, we can state the following conclusions.

(1) The observed price process S; (a reflected geometric Brownian motion) in the barrier
model is not arbitrage-free. Arbitrage with interim losses is possible (or with no losses
if one could buy exactly at the barrier, but this can never be implemented in practice).

(2) The arbitrage possibilities represent a disequilibrium in the barrier model. But it is a dis-
equilibrium funded by the government, and therefore (by assumption) a sustainable one,
based on the government’s unlimited powers of intervention.

(3) The possibility of arbitrage, whether or not it is implemented, implies (by the Fundamental
Theorem of Asset Pricing) that there is no change of measure that will make the observed
price S; a martingale. So the usual justification for risk-neutral option valuation does not
apply to options on S;.

(4) Nevertheless, options on S; can be expressed as compound options on the underlying
arbitrage-free notional price N; (a geometric Brownian motion), to which change of
measure and other standard risk-neutral arguments can be applied. Although Ny is not
available for hedging, the required hedging schemes for the compound option have deltas
which go to zero whenever N; attains a new minimum below the barrier (equivalently:
whenever §; touches the barrier). Then because, everywhere above the barrier, S; is just a
piecewise-scaled version of N¢, hedging with S; and a piecewise-scaled delta gives the same
results as hedging with N;.

(5) The price of a put is clear: direct replication has a lower initial cost than synthetic replica-
tion, and the replication portfolio always has positive value, so no extra funding is required
for interim losses. This affirms the relevance of the cheaper direct replication price Pp
(rather than the dearer synthetic replication price $Pg) for NNEG valuation.

(6) The price of a call is ambiguous: synthetic replication has a lower initial cost than direct
replication, but the replication portfolio may give interim losses. So the preferred replica-
tion strategy, and hence price, of a call depends on what margin payments need to be made
on these losses.

(7) It follows from points (4) to (6) that put-call parity is also in general ambiguous. However,
if no margin payments are required on interim losses, we can think of parity as SCp — Pg =
SFp, that is Synthetic call price - Direct put price = Sub-martingale forward price.

(8) Potential arbitrage strategies in the barrier model are all predicated on borrowing to
increase a long position as S; approaches the barrier and then reducing the position as
S: moves away from the barrier. The practicality of scaling this strategy depends on credit
limits and margin requirements. To the extent that arbitrage is implemented (and funded
by the government), the assumed price process of reflected geometric Brownian motion
may be disrupted, particularly near the barrier.

(9) The delta of the direct replication Pp for a put tends to zero as the asset price approaches
the barrier. This makes the strategy more robust to the possible disruption of the assumed
price process near the barrier (as mentioned in the previous point).

Computer code. Code in the R programming language demonstrating Monte Carlo evaluation of the options and the
associated replication schemes is available at https://github.com/guythomas?7.
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