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" 'ABSTRACT

This thesis is cencerned with the decoding aspect of linear block
error-correcting codes, When, as in most practical situations, the
decoder cost is limited an optimum code may be inferior in
performance to a longer sub-optimum code’ of the same rate. This

consideration is a central theme of the thesis,

The best methods available for decoding short optimum codes and
long B.C.,H, codes are discussed, in some cases new decoding

algoritims for the codes are introduced.

Hashim's '""Nested" codes are then analysed., The method of nesting
codes which was given by Hashim is shown to be optimum - but it is
seen that the codes are less easily decoded than was previously

thought, .

"Conjoined" codes are introduced. It is shown how two codes with
identical numbers of information bits may be 'conjoined" to give

a code with length and minimum distance equal to the sum of the
respective parameters of the constituent codes but with the same
number of information bits. A very simple decoding algorithm is
given for the codes whereby each constituent codeword is decoded
and then a decision is made as to the correct decoding. A technique
is given for adding more codewords to conjoined codes without

unduly increasing the decoder complexity.

Lastly, "Array" codes are deécribed. They are formed by making
parity checks over carefully chosen patterns of information bits
arranged in a two-dimensional array, Various methods are given for
choosing suitable patterns. Some of the resulting codes are self-
orthogonal and cértain of these have parameters close to the optimum
for such codes., A method is given for adding more codewords to array
codes, derived from a process of augmentation known for product

codes,
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B.C.H,

d.

min

F.EOC.

‘ABBREVIATIONS

Primitive element of a Galois Field,
Automatic Repeat Request,
Bose-Chaudhuri-Hocquenghen, ’
Channel capacity, or a Code,

Code described by generator matrix G .

n!

(n-r)! =!

Hamming distance.

Minimum Hamming distance,

Forward error correction,

Feedback shift register,

Generator matrix,

Generator polynomial,

Galois Field with q elements,

Parity check matrix,

Parity check polynomial.

Input,

Number of information digits in a block code,
Block 1eng£h of a code,

Block code with parameters n, and k.
Block code with parameters n, k, and d.
Output.

Probability of a random error occuring..
Programmable read-only memory.

Random access memory.
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r(x) Polynomial representation of a received n-tuple,
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t number of random errors a code can correcf per block,
| xI Determinant X

[x'l Largest integer \( X.

x] Matrix X
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INTRODUCTION

Shannon (1948) provided a mathematical basis for the
theory of communication. He showed how a sequence of n
symbols, each chosen from a set of q symbo;s, may contain
a certain maximum amount of information. if only a subset
of the possible sequences of n symbols are allowed then less
information is containable by that subset. Each sequence
contains less than the maximum possible amount of information,
and is said to contain '"redundancy". If the subset of
sequences is carefully chosen, it is possible to recognise the
sequences éven when some of the symbols have been corrupted.

In the practical situation of transmitting information
over a noisy channel, it is therefore possible to map sequences
of information symbols onto longer sequences which contain
redundancy and then to recognise these sequences after they
have been corrupted by the channel, subsequently recovering the
original information sequences. The ratio of the length of
the information sequences to the length of the longer sequences
is termed the "rate'" of the code, or the "transmission rate".
The set of longer sequences is termed a '"code'", and each
member of the set is a "codeword". The number of symbols in
a codeword is its "length", and is also the "length" of the
code.

Shannon (1948) showed that for transmission rates less than
a figure C, (the '"channel capacity") it is possible to recognise
corrupted codewords (or to correctly 'decode" corrupted codewords)

with an arbitrarily high certainty, provided that the code is




sufficiently long and is well chosen. He did not give any
method for chosing the code.

Coding theory is concerned with methods of chosing codes
with desirable characteristics. In practical situations it is
not always necessary to find codes fulfilling Shannon's
"promise" of negligible error rates at channel capacity; what
is required are codes capable of giving desired maximum error
rates at specified transmission rates, with economical decoding
algorithms. It is unfortunate that the codes with economical,
and so simple, decoding methods tend to be of lower rate than
other codes giving the same output error rate.

The two main goals of coding theory are to find codes with
as high a rate as possible for a given length and error correcting
power; and to find simple decoding algorithms for codes or codes
with simple decoding algorithms.

This thesis is concerned with codes which are esily decoded.
Consideration is confined to the "block" codes, and in chapter
one a background is given of the basic properties of those codes,
together with the terms used in their description and evaluation.
At the end of chapter one the importance of any trade-off in
codelength and ease of decoding for a given transmission rate
and output error rate is discussed.

In chapter two the area of interest is further narrowed to
include only linear codes, and their properties are reviewed.

At this stage consideration is narrowed again to include only
binary codes, and important classes of such codes are reviewed,

together with known decoding techniques for short codes of this

kind. Chapter three draws upon these technigues, and adds others,

vi,



when the best available methods for deccding short codes with
moderate error correcting power are discussed. Decoding methods
for selected longer codes are then briefly discussed in chapter
three, then chapter four is devoted to a consideration of
decoding methods for one of the most imporéant known classes

of codes, the long BCH codes (Bose (1959) Chaudhein Hocquengen
(1960)). Particular attention is paid to.double error correcting
BCH codes.

Chapter five discusses the importance of a class of codes
which claim to be easily decodable for high rates, lengths, and
error corréc£ing powers - the nested codes discovered by Hashim
(1974).

There is certainly a need for codes which, although not the
best in terms of‘rate for a given length and error correcting
power, are asily decoded. This requirement, discussed in
chapter one, is met by the codes described in chapters six and
seven.

Chapter six describes conjoined codes, which are codes
formed by a combining operation on two or more other codes. A
simple method of decoding these codes is given, and their
relation to the Reed-Muller (1954) codes is demonstrated.

Chapter seven describes a class of codes with higher rates
and a more interesting structure - the array codes. The codes
are based on a two.dimensional arrangement of the information
symbols - redundancy being added on the basis of selected
patterns over the two dimensional array. Various types of
construction are given, with varying trade-offs between decoding

complexity and transmission rate for a given length.

vii.




At the endi of the thesis is a summary of the work
presented, and a discussion of possible topics for further

research based upon this work.
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CHAPTER 1

Basic Properties of Error correcting block codes

The Coding Theorem

Shannon (1948) has shown that for any transmission rate less
than a figure C, the "capacity" of the channel, it is possible to
transmit data with a probability of error at the receiver which
tends to zero. This rate, C, depends upon the noise on the channei;

The derivation of Shannon's discovery does not give any clue as
to how the channels capacity may be fully used in practice. One
solution might be to transmit data as extremely long blocks of
digits, and then to use a correlation process at the receiver.

This method has severe problems in realisation, however, in terms
of the storage required at the transmitter and receiver, and in
terms of the delay inevitable at the decoder.

The more promising approach is to add redundant digits to
information digits, in order that these redundant digits may help
the decoder at the receiver to recognise which information digits
were transmitted. This concept is the basis of coding theory. 1In
the case of block codes, information digits are divided into blocks
of k digits and then'redundancy digits are added to these k digits.
The redundant digits are a function of the information digits only.
In the case of non-block or convolutiongl codes the redundancy
digits still follow information digits, but this time are not
dependant on any one block of information digits.

Much work has been done (e.g. Viterbi (1967), Wozencraft'(1968)
and Forney (1969)), on convolutional codes, but they are not

considered in this thesis. At present convolutional codes are

=



extremely attractive for situations in which it is acceptable
to have rates (i.e. ratios of transmitter information digits

to total number of transmitted digits) of 1/N where N is an
integer. For higher rates than 1/2 block codes are of most
interest since the process of decoding convoiutional codes then

rapidly becomes more complex.

Definiticn

An error correcting block code consists of a set of N n-tuples,

called the codebook, where an n-tuple is a row Vector of n symbols
chosen from a set 0of q elements (the code alphabet)}and is

termed a codeword.

Metrics

In order to correct errors in a corrupted codeword it is
necessary that each codeword is sufficiently different from all
others in the codebook that the corrupted codeword is '"closer"
in some sense to the uncorrupted codeword than to any other ih
the codebook. It is this quality of "closeness'" that is termed
the "distance'" between codewords, and the manner in which the
distance is determined is called the "metric".

If codewords are corrupted in such a way that symbols are
changed at random by a random degree, then the "Hamming distance”

is a useful metric, The Hamming distance between two codewords

is defined as the number of symbols by which they differ.

L]




The Hamming metric is not the only type of metric.

Depending upon the nature of interference to codewords - for
example the forw takeu by the channel interference and the way

in which the channel carrier is modulated by the codewords -
various other metrics may give a more useful definition of
distarce between codewords. As an example, the Lee metric gives
the "Lee distance'" between two codewords where symbols are chosen
from a field of q elements. The Lee distance between the codewords
is defined as the sum of the distances between each respective
symbol of the codewords, where the distance petween each symbol
is the modulo -q sum of the values of the symbols (Lee 1958,
Berlekamp 1968).

The Hamming metric is suited best to orthogonal modulation
schemes, whilst the Lee metric is best suited to phase modulation
systems. Either metric is only an approximation to the perfect
metric for any practical situation, but such approximations are
generally adequate to provide practical solutions.

In the binary case;_that is, when the symbol alphabet consists
of two values, the Lee and Hamming metrics are identical. In this
thesis only the Hamming metric will be considered, and in the main

only binary codes dealt with.

Minimum distance and error correcting power

The two codewords which are closest tcgether set a limit to
the error correcting power of a given code. The distance between
those two codewords is called the "Minimum distance" of the code,

end is often written "dmin'".

oo




1.5.

If a code has minimum distance dmin then, errors will be

correctable provided they number at most dmin -1, since the
9

nearest codeword to such a corrupted codeword will be at least

a distance of dmin + 1 away, except for the uncorrupted
2

codeword which will be at most dmin -1 away.
2

Detecting Errors

This thesis is concerned with the correction of errors. It
is nevertheless possible to use codes to detect errors. A code
with minimum distance dmin can detect up to dmin -1 errors in a
codeword, since by definition a codeworc cannot be corrupted into
another codeword without at least dmin errors occurring. In fact
the power of a code to detect errors is generally much greater
than this. If a codeword is corrupted by any number of errors
into an n-tuple which is not a codeword then the error will
clearly be detected. Since there are qn n-tuples and only qk of
these are codwords, it is to be expected that the majority of
errors will be detected for codes with n ) k.

As an example, Peterson & Weldon (1972) state that a
particular binary block code with n = 1023 and k = 1002 (usually
abbreviated to (1023,1002)), will not only detect any error pattern
of weight 5 but also any error pattern confined to 21 cyclically
consecutive positions of the codeword, and all but 0.00005 percent

of all other error patterns.

[



1.6.

1.6.1.

This property of codes makes the "Automatic Repeat Request"

(ARQ) method of data transmission attractive whenever practicable.
In this method, data is transmitted in Llock-coded form, and
whenever errors are detected within a block a repeat is requested
of that block, and a repeat continues to be requested until an
error free block is received. Many variations on this theme are
possible, the most importance perhaps being that where a small
number of errors are corrected at the receiving end, larger number
of errors just being detected and a repeat requested. By this
method the data rate is increased at the expense of increased
error rate. The trade-off is decided upon by a knowledge of

the channel characteristics. If the code used has minimum distance

dmin, and up to t errors (t ¢(dmin -1)/2) are to be corrected,

whilst up to e errors (e )t) are to be detected then dmin = 2t + e +1.

(Peterson & Weldon 1972).

Bounds on n, k, and dmin

It is clearly of inferest to know the maximum value of dmin
possible for given values of n and k. In order to do this many
bounds on dmin have been found. Given here are the most important
of these bounds. Three give upper bounds on dmin, and one gives a

lower bound.

Hamming Bound

This bound was first found by Rao (1947) in connection with

jen




1.6.2,

experimental designs, it was applied to coding theory by
Hamming in 1950 and is sometimes known as the "Hamming-Rao
Volume Bound".

Consider a block code of length n and with symbols chosen
from an alphabet of q symbols. If the code has an information

nR 5
rate of R then there are q codewords, whilst the total number
: - n

of possible n-tupies is q .

The number of n-tuples which are not codewords is
therefore q — —*F

If the code is to be capable of correcting all error
patterns of weight t or less then each of these error patterns
applied to each codeword must be associated with a distinct

i-
g where V(t) is the number of

non-codeword. Then V(t) £ q
n-tuples which are at a distance of less than or equal to t from

any codeword in the code.

The Plotkin Bound

The Plotkin (1960) 5ound is based upon the observation that
the minimum distance of a code cannot exceed the average distance
between all pairs of distinct codewords. The result obtained by
Plotkin for the Hamming metric is

(n - k) > q(dmin -1) _Logq (dmin -1)

(q-1)

This bound is tight for high rate codes but weak at low rates.

|o



by Wagner

comhines the Plotkin and Hamming bound to give

a beound which is tight at medium rates. ¢ bound shows that

the Plotkin observation is a weak one, that in fact the average

distance between pairs of most distinct ccdewords is considerably

aversge distance between ail paire of codewords.

In the binary case, over the Hamming metric, the bound is

dg21 (2 - 1/a)y(m/(m~-1)

1,
“f@\ ol T k
\JJ) 7

jo

where 1 is an integer such that

and m is the smallest integer for which
p s

ny 2

3=

The Varshamov Gilbert Bound

This is a constructive lower bound on dmirn, found by Giibert

(1952) and Sacks (1958), is a refinemenl of a bound proposed

by Varshamov (1957). It gives dmin bounded by:-

i~




1.6.5.

Bounds for sovecific n, k, dmin

The akove ponnds are clearly useful in defining what it
is possible to acrieve with codes of given parameters. For
specific values of n, k, and dmin it may be possible to tighten
these bounds considerably by taking into comnsideration knowa
optimum codes. That is, when it is known what is the best
dmin achievable for some values of n and k, it is possible to
give bounds on codes with other n and k because of known methods
of or limitations on the combination of codes with one another
to make new codes. This aspect of bound on dmin has been used
by Helgert & Stinaff (1973), to give a table of bounds or
dmin for valiues of n up to 63 and t up to 11 for binary codes,
and a similar table has been compiled by McWilliams & Sloane
{(1977) for binary and ternary codes of linear or non—iinear

construction.

Perfect Codes

Perfect codes are those codes which meet the Hamming bound
with equality. Therefore they are codes which will correct all
errors of weight up to a maximum of t, and none of higher
weight. There are only a few known perfect codes. The only
perfect codes with medium rates are short, and the only long
perfect codes are of either very high or very low rates.
Examples of perfect codes are the Hamming codes (Hamming 1950);
the repetition codes; and the Golay (23,12) binary triple error

correcting code and (11,8) ternary double error correcting

jco




1.8.

code (Golay 19249).

Tietavainen (1977) has shown that there are no unknown
linear perfect codes, and that if the code alphabet is of q
sumbols and g= p: p: where pl, p2 are distinct primes and r,s
are positive integers then no perfect codes exist over this
alphabet for error correction power t 3 3.

For other non power of prime values of q it is still an

open question whether perfect codes exist.

Quasi-perfect codes

Quasi perfect codes are those which correct 2all errors
of weight t, a maximum of weight t + 1, and none of higher weight.
As an example, all double-error-correcting BCH codes are gquasi-
perfect. (Gorenstein et al 1560) . Other examples are given

by Peterson & Weldon (1972).

Optimum Codes

"Optimum" is a much confused term when applied to codes.

‘One definition follows that of perfect and quasi-perfect codes,

and terms optimum any code that corrects all errors of weight

t or less with t as large as possible and as many errors as
possible of weight t + 1. (See for example Bose and Kuebler
(1958)).

A more lax definition, but one perhaps more useful is that

an optimum code is that code with the shortest length for a given
number of codewords and minimum distance (see for example

Berlekamp 1968).

|




1.10.

By this definition, codes formed by puncturing subspaces
of different dimensions irom a maximal length feedback shift
register code are optimum (see for example Solomon and Stiffler
(1965) and work on anticodes by Farrell & Faraq (1970, 1974 and
1976)).

The strictest definition of optimum is that given, for
example, by Peterson and Weldon (1972) which is that an optimum
code is one which gives the lowest probability of error over

a random channel, for a given length and number of codewords.

Good Codes

For many practical applications of error correcting codes,
where the decoding scheme now corrects up to (dmin -1)/2 errors
and no more, it is most useful to know which codes have the
maximum number of codewords for a given length and minimum
distance of the code. For the lack of a better term, these
codes may be called "good codes". See for example page 123 of
Peterson and Weldon (19%2) and the table of McWilliams and

Sloane (1977).

The practical importance of optimality

It is easy to overestimate the importance of optimum codes,

as defined in the previous paragraphs. In very many cases of

practical data transmission there are three major considerations:

the rate of transmission of information, the probability of errors



in recovered data, and the cost of recovering the data. From
the above bounds on dmin it may be deduced that the longer a
code the greater the rate may be for a given errcr rate in the
recovered data. By sacrificing the gain available in rate it
is often possible to construct a code which is not optimal but
which nevertheless allows data to be recovered more cheaply
because a particularly simple decoding scheme applies, even
though for a given rate the code will be longer.

The major argument against this design philosophy is that
a longer code incurs a greater delay before received data can
be output from the decoder. If such a consideration is important
in an application, then obviously the use of optimal codes
must be considered; although even in this case it is possible
that the decoding scheme required is so éomputationally lengthy
that less decoding time is required by a longer, non-optimal
code. .

In conclusion, if the decoding cost of a data transmission
system is limited then én optimal code may not provide the best
solution - a non-optimal code of greater length but the same
rate may afford a lower error output rate for the same decoder
cost. If decoder cost is of no consequence, however, then
the longest optimal code (in the sense of best error rate
performance) should be used commiserant with acceptable delay

in recovery of the data.



CHAPTER 2

Review ol Linecar Block Codes

Introduction

This thesis is almost entirely concerned with linear
block codes. These codes have a mathematical structure which
simplifies the calculation of their properties, and allows
comparatively simple encoding and decoding processes to be
devised.

A definition of linear block codes is as follows:

A linear block code of length n has symbols chosen from
a field of q elements, and is a subspace, of order qk of the
linear vector space of all n -tuples; where k¥ is the numbter of
information symbols in the code.

Note that since the symbols of the codewords must be chosen
from a field, q must be a prime or a positive integral power
of a prime.

In this thesis, codewords and other sequences will be
described variously as vectors, n-tuples, and polynomials.

The vector description is self explanatoﬁy. An n-tuple is
simply a sequence of n éymbols. When a.sequencé is described
as a polynomial it will be termed a functicnr of a variable,
e.g. f(x), and each symbol in the sequence will be identified
as a coefficient of a power of that variable.

E.g. the sequence 32109 would be written and treated as

- 12 -



4 3 3 2
f (x) = 3x x2x + 2x + x + 9.

The number of non zero symbols in a seguence will bhe
termed its Hamming weight, being identical to the Hamming

distance of the sequence from the all zero sequence,

Generator Matrix

Since the codewords form a subspace, of the order qk, it
is possible to describe the entire code by any k linearly
independent codewords. Any codeword can ke formed by any
linear combination of these codewords. Equivalently, if k
independent codewords are arranged as row vectors in a k x n
matrix then the rowspace of the matrix is the codebook of
qk codewords. Such a matrix is termed the generator matrix
of the code.

If the matrix is put in its reduced echelon form and
a k symbol row vector is multiplied by the matrix, the result
is k symbols identical to the original row vector, followed
by (n-k) other symbols. The codebook formed by the matrix
is then said to be systematic, and the first k symbols are
information symbols. The remaining (n-k) symbols are often
termed parity check symbols, although strictly speaking they

are only checks on parity when gq=2.

- 183 =



The Parity Check Metrix.

A second important matrix used in the description and
analysis of codes is the parity check matrix, which is defined
as the matrix which has the codebook as its nullspace. That
is, codeword vectors multiplied by the transpose of the
parity check matrix give an all zero vector result, whereas
all other n-tuples give a non-zero result.

If the generator matrix, G, of a code is given by

G = [Ik. p]

then the parity check matrix, H, is given by
H = [PT 1In-x |
J
or HT= P
In-k

where P has dimension k x (n-k)
In has dimension n X n
and Ik has dimension k x k.
Therefore it can be seen that

GHT = [Ik 1 P] ' 134 = 0

I n-k

The Syndrome

If an n-tuple is multiplied by HT, the effect is as if
the first k symbols are encoded by the generator matrix,
and the "parity" symbols sco obtained are added symbol-by-
symbol to the remaining (n-k) symbols to given an (n-k)

symbol result, It can be seen that if those remaining

- 14 -



(n-k) symbols are the parity check symbols of the encoding
of the first k symbols then the result is all zero, and
otherwise it is non~zero. This confirms the assertion
that the result is zeros if the n-tuple is a codeword, and
non-zero othérwise. Such resﬁlts are termed the '"syndromes"
of the n-tuples.
The syndrome of an n-tuple is related to the difference
between the n-tuple and codewords. If a codeword is described
by a vector c, and the vector e represents "errors'" added
to this codeword to give a "received" n-tuple r, then

r = c+ e

then since the syndrome s, of the n-tuple, r, is given by

s = r HT = (c + e) HT
thus ; s = ¢ HT + € HT.
. T
but, since, cH =0
s = e HT

this relationship between a syndrome and an error vector is
the basis of almost all decoding methods. A received,
corrupted, codeword is decoded by finding s, and then
satisfying the equation with a vector e of lowest possible
Hamming weight in the case of random errors. There are as
many solutions of the equation as there are codewords, and
it is by finding the minimum weight solution for e that

the codeword closest to r is found.



The set of possible solutions fcr e is called the '"coset"
of s, and the minimum weight solution is termed the '"coset
leader" of s. Thus the coset leader of a syndrome of an
n~-tuple is the vector which when added to the n-tuple

gives as a result the nearest codeword,

Minimum Hamming distance of linear codes

The Hamming distance between codewords is defined as
the number of symbols by which they differ. This is
equivalent to the Hamming weight of the sum of the two
codewords.

The minimum Hamming distance of a code is defined as
the minimum Hamming distance between any two different
codewords. This, then, is equivalent to the minimum Hamming
weight of the sum of any two different codewords. It is a
property of linear block codes that the sum of two different
codewords is also a codeword. Therefore the minimum Hamming
distance of a linear block code is equal to the minimum non-zerg
Hamming weight of any codeword in the code.

It is easier to find the minimum weight of a codebook
than it is to find the minimum distance, since only N weight
calculations are then required, compared to NC2 = N (N-1)/2
weight calculations required to determine minimum distance

directly. Furthermore, methods of analysis of the weight




2.6.

2,6.1

2.

6.

2

distribution of linear codes have been found (e.g. MacWilliams
(1963a), Berlekamp 1968) and from thesc may be deduced the
distance properties of the codes. In the case of many
specific linear block codes the weight distribution may

be determined by mathematicaltanalysis, again giving
information about the distance properties of the codes.

~

Important classes of binary block error-correcting-codes

Repetition Codes

A binary repetition code has only two codewords, the
all zero n-tuple and the all one n-tuple. There is therefore
but one information bit, and the minimum distance of the code,
dmin, is equal to n. A repetition code with n odd is a

perfect, t= (n-1)/2, error correcting code of rate 1/n.

Hamming Codes

These codes, described first by Hamming (1950) are capable
of correcting singlie errors.

The columms of tﬁe parity check matrix comprise all
possible distinct non-zero n-tuples.

For any code, if one error occurs in a codeword then the
syndrome is equivalent to one colﬁmn of the parity check
matrix, corresponding to the position in which the error
occurred. Since the parity check matrix of a Hamming code
consists of distinct n-tuples as columns, it is possible
to identify the error position within a codeword from the

syndrome provided only one error occurs.

BT



2.6.3

If more than one error occurs ther the syndrome
obtained will be the bit-by-bit moduls-2 sum of the respective
columns of the parity-check matrix. Clearly the modulo-2 bit
by bit sum of n-tuples will give another n-tuple, either all
zero or elseian n-tuple corresponding to a column of the
parity check matrix (since all n-tuples are represented as
columns). More than one error can therefore only be
interpreted by any decoding scheme as either no error at all
or one error only.

The code is seen to be perfect, since it is capable of
correcting exactly one error per codeword; no errors of weight

greater than one being correctable.

The Golay Codes

The Hamming bound, in the linear binary case, reduces to

19
(n-%)
h A%
> <
A= 0

Golay (1949) noticed that for n = 23, k = 12, and t = 3 this
bound is met exactly, suggesting the existence of a perfect
(23, 12) triple error correcting code. Such a code was

indeed found by him., It is a code which, as might be expected,
has many connections with important aspects of combinatrics,

notably the Mathieu group.



Golay alsc found an (11,6) ternary code, which is a perfect
double error correcting code, following a similar observation on
the Hamming bound in the linear ternary case.

Generator matrices for these two ccdes are given in fig.

2.1 and fig. 2.2,

00000000010000D101101111
0000000000101 0111000110

000000GOO0O0O0O0O1010111G60011

Fig ;. 1. Generator Matrix of the (23,12) Golay Code.
1000001111 1]
010600160 1-1-1
001000-110 1-1
000100-1-1101

00006101-1-110

0000010 1-1-1 1}

Fig 2.2, Generator Matrix of the (11,6) Golay Code.




2.6.4. Reed Mullier Codes

(n, k, d) Reed Muller codes (Muller (1954), Reed
(1954)) exist for any m and r m for which

n = 2m = length

r
k = E Qﬁ) = no. of information bits
. 1
10
m-r-\
n-k-= (Wﬂ = redundancy
. J
J=o
d = 27 = minimum distance

The generator matrix of a Reed Muller (R.M.) code comprises
k linearly independent rows, each row is a 2m - tuple.

The i th row of the matrix consists of alternate
groups of Zm_i "ones'" and 2 L "Zeros'", the row starting
with the '"Ones". (The first row is therefore all ones;
and the last, mth, row is a row of alternate ones and
zZeros).

The R.M. codes formed a basis for the much wider
class of "Majority logic decodable" codes, and have been
found to be equivaient to cyclic codes with an added

overall parity check.

2.6.5. Finite Geometry Codes

It is possible to construct codes based upon the

properties of finite geometries. The codes may be
constructed using Euclidean geometries or projective
geometries. (Weldon 1967, Kasami et al, 1966). The

properties of the finite geometries allow the codes to
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be majority-logic-decoded as outlined in Section 2.7.4.

For short code-lengths the finite geometry codes are equivalent
to the BCH codes (section 2.6.8.) and far greater lengths are
related to the BCH codes (Kasami et al 1966). Reed Muller codes
are a subset of the projective geometry codes.

Short geometry codes are easily decoded, and are often the
best known codes, or close to the best known. As the length
increases, however, the rates of the codes become considerably
worse than other known codes and the decoding algorithms become

much more complex than those for other, better, codes, (for

example the BCH codes see Chapter 4).

The Majority logic approach to decoding finite geometry
codes was first introduced by Rudolph (1967) and a considerable
simplification for certain of the code; has been found by L. E.

Wright (1977).

2,6.6. Cyclic Codes

Cyclic codes are to date the most extensively studied
class of error correcting codes. This class does not promise
to contain good long codes, that is,codes that meet or even
approach the Varshamov-Gilbert bound. In fact the most
attractive feature of cyclic codes, their consiaerable mathematical
structure, suggests that long cyclic codes may be relatively
poor. Nevertheless, this structure enables codes to be
constructed for many parameters, and enables good codes to be

formulated which have practically achievable encoding and




" decoding procedures for quite large block lengths.

A cyclic code is a code in which if a codeword
vi=\ i

c(x) = P is a codeword then its
1:0 - ’

cyclic shift c(x) = c.. A
Y 122 GeDmadn®

a codeword. The codewords of any cyclic code of length n may

is also

all be described as the 2k distinct multiples, modulo xn + 1,
of some polynomial g(x) where g(x) is a divisor of xn - 1., See,
for example, Petersen and Weldon (1972). The polynomial g(x)
is known as the generator polynomial of the code, and has order
(n-k), where k is the number of information bits in the codewords.
The polynomial (xn - 1)/g(x) has order k and is the generator
polynomial of the dual of the code generated by g(x).

The generator matrix of a cyclic code may be written as in
fig. 2.3, since xi g(x) is clearly linearly independent of
xjg(x) for all i, j.{ n, i#.J. The reduced echelon form of this

matrix is given in fig. 2.4; see for example Lucky et al (1968)

for a detailed explanation.

T g (%)

K%
% g%)

NN

fig. 2.3 Generator matrix of code described by g(x).

— 292 =




g x)+x* ®ymod g(x)

X (g (x)+x* ®ymod g(x)

x2 (g () +x* Fymod g(x)

X(g(X)+x> Fymod g(x)

g(x)+x" 7%

‘Fig ‘2.4 '~ 'Reduced Echelon form of generator

"‘matrix of code described by g(x)




2.6.7. Quasi-cyclic codes

A code with n= mn , and k = mk is a quasi-~cyclic code

if every codeword shifted cyclically by M bits is also

a codeword. Very powerful quasi-cyclic codes have been
found for medium rates by Chen (1969) and the existence

of very long quasi-cyclic codes that meet‘the Gilbert

bound has been shown by Chen, Petérson and Weldon (1969).

It is not easy to comnstruct quasi-cyclic codes. Townsend
and Weldon (19867) presented self-orthogonal quasi-cyclic
codes, which are formed from difference sets; the codes

are of low power but the ease with which the self-orthogonal
codes may be decoded makes them of some interest nevertheless.
Other work on quasi-cyclic codes has been published by
Karlin (1969) and Hoffner and Reddy (1970).

2.6.8. B.C.H. Codes

B.C.H. codes are an important sub-class of the cyclic
codes (Bose & Ray-Chaudhuri (1960), Hocquengam 1959). They
are specified for a very large range of block lengths and
rates, for all error correcting powers. For block lengths
up to sixty-five there are only seventeen cyclic non-BCH
codes which have a larger minimum distance than a BCH
code of the same length and rate. Although for very long
codes it has been shown that BCH codes are relatively

poor (Lin & Weldon 1967), it is reasonable to




assume that for moderate lengths the BCH codes are generally
the best cyclic codes.

Due to their wide range of parameters, and their good
performance, the B.C.H. codes haye become a '"standard'" against
which other classes of error correcting codes are compared;
also the decoding algorithms for the codas (see Chapter 4)
are used as a gauge of the complexity of the decoding
algorithms of other codes.

A cyclic code generated by the pelynomial g(x) is a

B.C.H. code iff . g(x) is the lowest degree polynomial
+ —
for which qPo, ng 1, ....é{o + "o “ are an element of

GF (zm), that is,the Galois field of 2m elements.

The length of a BCH code is equal to the lowest common
multiple of the orders of the roots, and the minimum distance
of the code is guaranteed to be greater than the longest
number of consecutive integers, module n, in the set e= (el, ez,.
where q?l,‘xez, o e 8 of n-k are the roots of the generator
polynomial of the code.

The most important BCH codes are those for which m=1,
<« is a primitive element of GF (2m), and do= 2to +1. Then the
generator polynomial of the code is given by:

g(x) = LCM (ml(x), m3(x), .....mZto_l(x))
wherexni(x) is the minimal polynomial of c(i.

Thelni(x) have degree at most m, and therefore g(x) is

of degree at most mt. Such a BCH code therefore has at most

mto parity checks, and may correct up to to errors.

- 26 -
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The theory of BCH codes is treated in depti by Berlekamp (1968)
and Peterson and Weldon (1972).

2.6.9. Residue Codes

Residue codes are a class of cyclic codes which have been
shown by Karliﬂ (1969) and Chen et al (1969) to be related to
quasi-cyclic codes.

If the order of q mod n divides (n-1)/e, then the eth
residue codes of length n over GF (q) are defined (Berlekamp
1968) as the cyclic codes whose generator polynomials are

T_T (x -cf) (augmented cbde)
reRy

and gz(x) (x-l)gl(x) (expurgated code)

where Ro is the set of eth residues mod n ande{is a primitive
nth root of unity in an extension field of GF(q).

(Note that if n is prime and if e divides (n-1) then the
integer r, 1 r¢n, is an eth residue mod n if and only if
the equatfon xe = r mod n has solutions). |

Of the residue codes, it is the quadratic residue codes (i.e.
where e=2) which have been found to be the most important.
For.these codes it has been shown (E.g. by Berlekamp 1968)
that the minimum distance, d, is lower bounded by dz) n.
Furthermore, if n = -1 mod 4 then the bound is improved to
d2 - d+ 1% n (Mattson and Solomon 1961) for the augmented
codes. In fact quadratic residue codes generally have large
minimum distances for their length and rate, up to at least

moderate block length. For example, the (23,12) binary

Golay perfect triple.error-correcting code is a quadratic residue




2.6.10,

code. A table of quadratic residue codes is given by Berlekamp
(1968) in which minimum distances are given for block lengths
up to 97 and upper bounds on minimum distance given for block
lengths up to 48817.

Quadratic residue codes are invariant under the transformation
X‘—»Xr where r is a quadratic residue. This enables many
quadratic residue codes to be decoded by a method known as
permutation decoding (MacWilliams 1963). This method of
decoding is nevertheless difficult to design for particular
codes, and is somewhat complex in its realisaticn. In general,

then, quadratic residue codes are hard to decode.

Product Codes

Product codes are formed by encoding information bits
which are arranged as a two dimensional vector, or matrix.
Each row of the matrix is encoded according to a code C; and

each column encoded by a code C The codewords may thus be

9
visualised as in fig. 2.5.

Such a product code has a minimum distance equal to the
product of the minimum distances of C1 and Cz, a length equal
to the product of the lengths of C1 and Cz, a rate equal to
the product of the rates of C1 and C2, and a generator matrix
equal to the tensor product of the generator matrices of
C1 and Cz. Furthermore, in the case of a binary symetric
channel, if C1 has a probability of decoding error fl(p) and C2
a probability of decoding error fz(p) then the product code

is capable of being decoded with a probability of error at
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INFORMATION BITS

CHECKS

ON

ROWS

k ky
CHECKS
ON
COLUNNS
< n1 >
Fig. 2.5. A Product Codeword.




most(f2 (fl(p)) simply by decoding column by column and then
row by row.

Elias (1954) has used the above relationships to show that by
iterating the process of generation of product codes, using as
each constituent code a Hamming dmin = 4 code, tec achieve a
product code of dimension as large as required, it is possible
to construct codes whose probabilities or error approach zero
as the length of the codes approach infinity whilst the rate
remains finite. Although the rate falls far short of what is
kﬁown to be possible the construction is one of the few known
with this property.

In certain cases the product of two cyclic codes may be
cyclic. Burton and Weldon (1965) have shown it to be sufficient
that
1 Py + ByP,= 1 mod ny n,
for g(x) = gecd (a(xp2 nz) b (xplnl), X e e 1)

n + n
to be the generator polynomial of a cyclic code which is the
product of two cyclic codes of lengths n1 and nz.

Product codes have a relatively low rate for a given length
and minimum distance, which limits their usefulness in many
applications. Sugiyama et al (1976) have described an
augmentation process for product codes which raises the rate
of product codes considerably, at the cost of increased ccomplexity
in decoding the codes. The codes so formed are the best known for
certain parameters; furthermore a form of this augmentation

is used in the development of codes described later in this

thesis (see chapters 6 and 7). For this reason the augmentation
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process will be described in detail.
An augmented product code is shown in fig. 2.6. A
codeword from a code with symbols chosen from a field of
(n,-%,)
2 elements is superimposed on the row parity
check bits, each symbol superimpbsed in binary form on a
separated row codeword parity check section. The augmenting

code has length equal to>na= n the length of the column

2’
code, and the minimum distance, d, equal to that of the
product code. The augmented code has gkz+ (n;&)ka
information bits where ka is the number of information
symbo%s in the augmenting code, since one information symbol
from the augmenting code will represent (n-k) binary information
bits. It will now be proved that the augmented code has
minimum distance d= 2t +1 when the product code has minimum
distance d=2t + 1. This will be accomplished by showing that
if t errors or less occur in the codewords of the augmented
code they may be correctly decoded.

An augmented code ‘is decoded as follows. Firstly
the parity check bits of the product code C are "reconstructed"
by re-encoding the received kk, information bits of code C.
The reconstructed parity check bits are then added modulo-2
to the respective received parity check bits to give an
estimate of the augmenting codeword symbols. It can be seen
that if at most t errors occurred in the received bits then
at most t of the reconstructed symbols will be in error;
therefore the reconstructed augmenting codeword may be
correctly decoded. The decoded augmenting codeword is then
added modulo-2 to the received codeword tc give the unaugmented

w Bl =



Fig.

A "~
(n,,ka)codeword
superimposed on
check bits

k2 n‘ :na

K Ky >
v
" d
¢ ny =3

2.6. An augmented product codeword.



product, codeword corrupted in the same positiciis as the
received codeword. This codeword may then be decoded in the
normal way, to give a completely decoded word. Since up to
t errors may be cleared from a received augmented codeword,
the augmented code must have minimum distance at least 2t + 1.
But if the all zero product codeword is augmented by the
minimum weight codeword of the augmenting code, then the
resulting augmented codeword will also have that weight,
2t + 1, and therefore the minimum distance of tﬁe augmented
code is exactly 2t +1.

Further, the augmentation process may be extended to
include the column check symbols of the product code, by
superimposing a codeword from a code of length k with symbols

(nl - ki) elements expressed in binary

chosen from a field of 2
form, and minimum distance 2t +1, on the column check symbols
in the same manner as described .above for row checks.

Note that the column checks on row checks are not augmented
since they are already‘augmented by the previous method.
Proof that the augmentation method is valid follows that of
the proof for row check augmentation. Decoding is performed
first on the column check augmentation, to obtain unaugmented
colunn checks, and then cdecoding may be performed on the row

check augmentation and finally upon the unaugmented product code.

2.6:11. Concatenated Codes

These codes, devised by Forney (1966) may be visualised

as two dimensional codes, in a similar manner to product codes.




4

INFORMATION BITS

OUTER CODE

CHECK BITS

INNER CODE

CHECK BITS

1

Fig. 2.m. A concatenated code word.



A concatenated code is represented in this way by fig.

2.7. Information symbols from GF(q) are arranged in K rows

of k symbols. Each row is considered as a symbol in GF (qk)

and the K such Symbols are encoded into an N symbol codeword

in a code over GF (qk) called the outer code. Each of the

additional symbols from this codeword are arranged as rows of

symbols in GF(q) underneath the information symbols as shown

in fig. 2.7. and each row of the array is then encoded into

n symbol codewords from a code over GF(q) called the inner

code. The cuntire resulting codewords have length nN, with

kK information bits. Forney has shown that with correct

choice of inner and outer codes the probability of decoding

error of concatenated codes approaches zero exponentially

with block length for all rates below the channel capacity.
Sugiyama et al (1976) have shown how many more information

symbols may be added to concatenated codes to give codes which

are occasionally the best known. The method of augmentation

is very similar indeed to their method of augmentation of

product codes described above.



2.6.12. Justesen Codes

The Justesen codes (Justesen 1972) are a generalisation
of concatenated codes, where the outer code is a Reed-
Solomon code (Reed-Solomon (1960)) over GF (2m) with
length N=2m and the Ninner codes are distinct codes which
may be shown to be the codes in Wozencrafts ensemble of
randomly shifted codes (described by Massey (1963)). The
. codes are assymptotically good, with

lim inf d ), a-r'ry Bt a-nY o

n—>w n

where r is the maximum of 1/2 and the solution of

R = [2+ log, (1-}1’1(1-1-)] =
and 0 { R{1 whilst the rate of the code, Rc,is greater
than R
(H(x) is thé binary entropy function).
Another use of a multi-level code in a pseudo-concatenated

coding scheme is described in Appendix B.




2.6.13.

2.6.14.

Srivastava Codes

Srivastava ccdes are linear codes which are
algebraically decodable but are not cyclic. The parity

check matrix of a Srivastava code is given by

B _
1 1 1
b1 b2 g bn
l—alb1 1-a1b2 l-albn
1 1l 1
b1 b2 %7 bn
1—a2b1 1-a2b2 l—azbn
1 1 1
b1 b2 A bn
1—ad_1b1 1—ad__1b2 1-—ad_1bn

1? az...ad_1 are distinct

b

Where 1 is any integer, a

elements from GF (qm) and b bn are the

-1, e a_ld—i}

The length of the code is n = qm—d and the minimum

1’ "2’

elements in GF (qm) = o - {al-l, a2

distance of the code is at least d (Berlekamp 1968)

Goppa Codes

The Goppa codes are a class of linear codes which
have an algebréic formulation and decoding algorithm, but
which are not generally cyclic (Goppa 197C0). A Goppa code
is defined as the set of all vectors C that satisfy the

condition.



2,6.15.

C
;—j;j = QO mod (5(2)
Ye L.

where g(z) is any polynomial with coefficienfs in GF (qm),
q a prime power, and L is the subset of elements of GF (qm)
that are not roots of g(z).

Long Goppa codes have minimum distances which asymptotically
meet the Gilbert bound (Berlekamp 1973) Primitive BCH codes are
a special case of the Goppa codes (Goppa 1971) as are Srivastava
codes. |

That Goppa codes may be decoded using the Berlekamp
algorithm for BCH codes is shown by Chien and Choy (1975)
and Retter (1975). The complexity of decoding Goppa codes is
considered by Sanvate (1977) who shows that they may be "erasures
and errors" decoded in O (n log2 n) arithmetic operations, when
using a decoding algorithm discovered by Sugiyama et al (1976)
(See also corrections toAthis paper, 1976). Mandelbaum has
shown that Goppa codes may be decoded by a method involving the

theory of continued fractions (1977).

Alternant Codes

This class of codes contains all BCH codes, all Goppa codes,
and Srivastava codes as well as generalisations of BCH codes
made by Chien and Choy (1975). It has been shown that by a linear

transformation of the syndromes, these codes may be decoded by




2.7.1.

the application of the Berlekamp algorithm for the decoding of

BCH codes (Helgert 1977).

Decoding Technique

There follows a resumé of the most useful decoding methods
found for linear binary codes used over the binary symmetric

channel.

Exhaustive Search

This is the most obvious method of decoding, in which a
received vector is compared with every possible code vector and
the '"closest" in terms of Hamming distance is considered to be
that most likely to have been transmitted. This method of
decoding is suitable only for very short and/or low rate codes;
the decoder will need to store the entire codebook of 2nR h—tuples
where n is the code length and R the information rate, and even
for moderate values of nR this becomes very unmanageable in terms
of storage hardware and of decoding time. Nevertheless, the
method allows the most likely transmitted codeword to be chosen
in every case (such a decoding method is termed "maximum
likelihood''decoding) and so is often preferable to a decoding
method which corrects only those errors guaranteeed cqrrectable

by the minimum distance of a code.




T

Syndrome Decoding

As previously described, it is possible to form an
n(1-R) bit syandrome, s, from a received vector, which is
related to the error vector, e, imposed on it by the

equation

where HTAis the transpose of the parity check matrix,.
The decoding aim is then to find a vector e oi minimum
possible weight which satisfies the equation. A conceptionally
simple means of achieving this aim is to compile a table of
minimum weight error vectors for each syndrome, that is a
table of ceset leaders, am to use the table when decoding.
To construct the table of ZHQ'g}ror vectors (which are n-tuples),
it is generally necessary to follow an exhaustive procedure
described in detail by Peterson and Weldon (1972) and Lucky
Salz and Weldon (1968) for example. The decoding method
then consists of three stages:-
i) form a syndrome by multiplying the received vector
by HT.
ii) 1look up the coset leader corresponding to the syndrome.
iii) add>the coset leader to the received vector to give the
most likely transmitted codeword.
This decoding technique is only suitable for codes which are of
high rate, small n-k or both. Again, the method is a

maximum likelihood decoding method. It is less complex than

exhaustive search decoding iff R £ 1/2.



.Symbol by Symbol decoding

This decoding a%Frithm, discovered by L.D. Rudolph (1976)
is the only general decoding method known which makes specific
use of the linearity of linear codes - that is, it uses the
property that 1inear codes have éodewords from a subspace of
a vector space.

The algorithm may use reliability information on each
received bit, and in this form it is an optimum method of
decoding. That is, no decoding method is better than symbol-
by-symbol decoding.

The complexity of the decoder is related to the number of
codewords in the dual code of the code to be decoded, and
therefore the method is of most use for codes of extremely
high rate, i.e. with a small number of parity check bits.
Unfortunately the application of the algorithm is therefore
limited to codes with low minimum distance and/or short length.

Majority-Logic decoding

Reed (1954) first suggested majority-logic decoding,
in connection with the Reed-Muller codes. The technique:
was refined by others including Massey (1963) and Rudolph
(1967).

Majority-logic decoding is based upon the concept of
"orthogonality" defined as follows:

Given a collection E, of paritj check equations or
sums of parity check equations; if a set, P, of positions
in the codewords is checked by each member of E, but no other
position is checked by more than one member of E, then the

set E is said to be orthogonal on P,
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If it is possible to find on each separate information
position in a codeword a set of J orthogonal pari;y - check
equations or sums thereof, then it is possible to correct

t= J/2 errors in the codewords. This is seen to be so since
the parity-check bits of a codeword ?epresent the calculation
of the parity check equations of the code& and so 2 independent
estimates of each information bit may be made from the received
parity check bits. If at most t errors occurred then at most
half of the estimates can be incorrect. A decoding algorithm
for such a code is therefore to make the J estimates of each
information bit and invert a received bit only if it differs
from more than one half of its estimates.

When the above properties apply to a code, the code is
said to be one.step majority-logic decodable up to distance
d=J+1. For many codes, some of them the best known, this
distance is equal to the actual minimum distance of the code.
Such codes are termed '"completely orthoganlisable in one step".
The estimates of the information bits may be constructed
directly from the received block (type I decoding) or from the
syndrome of the received block (type II decoding). The type II
decoding is preferable for codes with a rate somewhat greater
than one half in these cases, such as with cyclic codes, where
the syndrome is particularly early calculated.

If a set of J orthogonal check sums can be made on a
set, P, of more than one information bit, then it is possible

to determine the value of the sum of the bits in thoge positions




in the same way as described for just one bit in the one-

step majority-logic case. It may be possible to deduce the
values of several such sums of bits and theﬁ these may be

used together with the original set of possible parity-check
sums to give a iarger nvmber of known check sums. At this
stage it may be possible to determine each bit in the codeword
from J orthogonal sums - in which case the code is said to be
two-step majority-logic decodable up to minimum distance

d=J + 1, - or it may be that by repeating the process the
bits may finally be determined in which case the code is L-step
decodable where L is the number of stages of majority logic
required. Again, some codes are decodable up to their actual
minimum distance. It has been shown by Peterson (1972) that
for an (n,k) code whose dual code has minimum distance a, a
maximum number of tL errors can be corrected in each codeword

by L-step majority-logic decoding where

Majority-logic decoding is particularly attractive when it may
be applied to cyclic codes, since in this case only one
information position needs to be determined, the remainder then
found by shifting the codeword cyclically.

Majority-logic decoding becomes more complex exponentially
with L, the number of steps required. Thus it becomes extremely
complex for many codes of even moderate length, and even when
the codes are cyclic. One step majority logic is very simple,
however. Long one -step majority logic codes of moderate or

high rate are longer than other known codes with the same rate;
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nevertheless the simplicity of their decoding may outweigh
this consideration (see e.g. Townsend and Weldon (19€7) and
chapter 7 of this thesis). A considerable simplification of
majority-logic decoding has been found.for certain majority-
logic decodable codes by L. E. Wright (1977).

Decoding cyclic éodes

The considerable mathematical structure oif cyclic codes
is not only useful in the construction of good error correcting
codes; it is also useful in the formulation of decoding algorithms
for them. As a result, the cyclic codes are as a class the most
widely used error correcting block codes.

Two subsets of long cyclic codes have feasible decoding

.algorithms - those which are majority logic decodable and those

which are BCH codes. The decoding of BCH codes is discussed in
chapter 4 and majority logic decoding has been discussed in
section 2.5.4. Short cyclic codes may be decoded by methods
which will be briefly reviewed here.

A major simplification of any decoding process for cyclic
codes is that the syndromé of a received sequence may be
calculated in a very simple manner. The syndrome S of a
received sequence r is given by

s =r HT
where HT is the transpose of the parity check matrix of the code.
In the case of cyclic codes the ith row of HT is equivalent to

n-1-}

the remainder from dividing x by g(x); therefore the

T .
calculation of rH may be performed by expressing r as a

il

polynomial and dividing it by g(x). The remainder is rH



( Bterson and Weldon 1972). The division may be accomplished
in practice by the use of a feedback shift register wired to
divide by g(x) as a result of shifting the received sequence
into the register. Full descriptions and explanations of such
division circuits may be found in Peterson and Weldon (1972),
Lucky et al (19&8) and Berlekamp (1968).
Another major simplification in the case of many cyclic
code decoders arises from the fact that the syndrome s1 of a
sequence rl, where r1 is a single cyclic shift of a sequence r,
is obtained simply by shifting the syndrome, s, of r once in the
syndrome forming register. This allows any circuit which is
capable of correcting just one bit of a received sequence by an
operation on the syndrome to correct all of the bits simply
by shifting the syndromes in their registers.
Particular forms of decoder for short cyclic codes may
now be discussed.
(a) Meggitt Decoder
In this form of decoder, a combinatorial logic
circuit is used to ;recognise" those syndromes corresponding
to an error in the first bit in a received block. Thus if
the output of the logic circuit is a '"one", the first bit
in a buffer register containing the received block is
inverted. The syndrome and the buffer register may then be
shifted once to enable, by virtue of the properties described
above, the second and subsequent bits to be decoded. The
major complexity of the decoder lies in the complexity of
the combinatorial logic circuitry. (See Peterson and
Weldon (1972) page 235 but note that the complexity of the decoder,
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(b)

for a (23,12) triple error correcting code is overestimated,
since the number of possible triple error patterns with a
"one" in the last position is half of that given).

It has been suggested (Rocha 1976) that the combinatorial
circuit may be reélaced by a progrémmable read only memory
( ROM) which with accelerating advances in microcircuitry is
becoming feasible for ever longer codes. The technique of
using PROMS may be extended to correct more than one bit of
a received sequence at a time, depending upon the storage
capability of the PROM. 1In the limiting case the decoder then
becomes a syndrcme search decoder in which the minimum weight

error pattern corresponding to each syndrome is stored.

Error trapping

This form of decoding,&aﬁaR&ﬁ@{ﬂ@relies upon the ability to
detect when all errors occur in the parity check bits of a
received corrupted codeword.

For any linear block code, if a codeword is corrupted only
in its parity check bits then the syndrome of the corrupted
codeword is identical to the error pattern. This may be seen
from the construction of the parity check matrix, H , as will
now be shown.

If the generator matrix, G, of a code is given by

G [ I P]
where I has dimensions k x k and P has dimensions k x (n-k) then

T . .
H ", the transpose of the parity check matrix, is given by



The syndrome, S, of a codeword corrupted by an error pattern,
e, is given by

s =e HT = e\P .

1

therefore, if the first k bits of e are zero,

s =e" (I) = e
where e" are the last (n-k) bits of e. Trivially, if at most
t errors occur then the weighf of S is at most t.

Now coqsider the case where at least one bit of el, the
first k bits of e, is non zero - say i bits where i) o. Then
the syndrome, s, is the bit by bit modulo. - 2 addition of éP and
e"l.

If the minimum distance of the code is d, then x G, where
x is any non-zero k-tuple, must have weight at least d. Let
xG = ¢, and c1 , ¢" be the first k, and the final (n-k) bits,
respectively, of c¢c. Then clearly c1= x (the code is systematic),
and if x has weight w so does c1 have weight w. Therefore c"
must have weight at least d-w.

; 1 1
But, c¢'" = xP therefore if we let c" = e , it is seen that e P
has weight at least d-i.

Hence s is the bit-by-bit modulo-2 sum of e1 (which has

weight at least d-i) and e" (which has weight at most t-i provided

that at most t errors have occurred). This sum has weight at least

(G=1)=(t=1) = d-t.




(c)

Since d = 2t + 1 the syandrome has weight at least t + 1.

It has therefore been shown above that if and only if all
the errors in the systemmatic linear block code occur in the
parity check positions, the syndrome will have weight at most
t provided that at most t errors occurred, and that the syndrome
will then be identical to the error pattern.

This fact is the basis of error trap decoding. The syndrome
of a received block is tested to see if its weight is less than
t+1. 1If So the syndrome is added bit by bit to the parity
check positions of the block, and correction is assumed to be
complete. If not, the received block is shifted once, cyciically,
and the syndrome shifted once in its reéister to give the syndrome
of the shifted block. The test is again made on the weight of
the syndrome, and if possible correction made. This process may
be executed n times, and if the errors in the original block were
confined to (n-k) consecutive positions, they will eventually be
corrected. In order that the errors be guaranteed correctable,
it is necessary and sufficient that the rate, R, of the code be .
bounded by

R 1/t
The decoding method is therefore seen to be usefql only for
iow rate codes.

Error trapping with windows

This method of decoding is a modification of the error trapping

method, which allows codes of rate higher than 1/t to be corrected.



It is possible that although all t errors may not be
confined in (n-k) positions, they may be confined to the final
(n-k) positions and one of relatively few other positions termed
windows.

The decoding procedure may then be:

(1) test for the syndrome weight {t+1,

(2) if the test is positive decode as for the error trapping case.

(3) otherwise invert each "window" bit in turn repeating step (1)
each time.

(4) if still the errors are not '"trapped", shift the syndrome
once, and shift the received block one, then repeat steps

(1), (2), and (3). ’

The procedure may be carried out n times, by which time if less
than t + 1 errors occurred on the received block correction will
have been made.

The additional complexity of "error-trapping with windows"
over "error trapping" depends of course on the number of windows
to be tested.

From a design point of view, "windows'" decoders are complicated
in that the choice of window positions is difficult (see Kasami
(1966)).

(d) Permutation Decoding

As explained earlier, ; cyclic shift of a codeword in a cyclic
code remains a member of the code. Thus a cyclic shift may be
termed a ''code-preserving permutation'" and the code may be
described as being inwmriant under the cyclic permutation.

Some cyclic codes are invariantunder other permutations,

and if a set of permutations can be found which will in at least

o, BB




one case transform any t errors in a codeword to (n-k)
consecutive positicne, that permutated word may then be
error trapped as described earlier, and then re-permuted to
‘glve the original uncorrupted codeword. If a set of i permutations
(including the cyclic permutation) is sufficient to allow this to
be done, the code is called i-step permutation decodable
(MacWilliams 1964).

'For i-step permutation where i is even moderately high,
the decoding process becomes very time consuming because in the
worst case ni error trapping attempts must be made. Also, it
is not known in general how to find suitable permutaticns.

The decoding method is therefore restricted to short codes.




31,

3.2,

CHAPTER 3

Decoding of Short Error Correcting Codes

Introduction

In this chapter the best method of decoding linear block error
correcting codes of length less than 32 will be discussed, for error
correction ability, t, less than seven. The codes considered will
be those with the largest number of information bits, for a given
length, that are known to the author. A table of fhese codes is
given below in Table 3.1. Selected longer codes will also be con-
sidered.

The codes will be considered in order of error correcting power.

Single Error Correcting Codes

The most efficient linear block single error correcting codes are
the Hamming codes, and their shortened versions.

The immediatély obvious method of decoding the Hamming codes,
which are cyclic éodes, is by error trapping. Given at most one error
per block it is possible to shift the error into the parity check
section of the codeword when the shifted syndrome will have a weight
of one and will be identical to the error pattern in the parity check
bits. Adding this syndrome to the parity check bits of the shifted
word and then shifting the word back to its original arrangement gives
a corrected version of the received word.

It is of interest that, for a single error correcting cyclic code,
the error may be trapped by shifting the received word, and the syn-
drome, by r bits at a time where r is the number of parity check bits
in the codeword. In this way it might be possible to decode a received

codeword with less delay than in the classical manner - but the clock
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Table 3.1. -

Codes with largest k for given n and t

%\%— 1 4 2 31 L 5 6

30 1

L 1

54 2| 1

6 3 1

Th oL 1

8 f L 2 1

of 51 2| 1 1

10 6 3 1 1

11 71 L 2] 1 1

12 8 L 2 1 1

13 9| 5 3 1 1 1

w10 61 L| 2] 1

15 | 11 71 5] 2| 1 1

16 || 11 81 5| 2| 1 1

12| 9 6 3| 2| 1

18 || 13 7 7 3 2 1
19 | 14 | 10 L | 2 1
20 15 | 1 91 5 3 2
21 16 (12110 | 5| 3| 2
22 17 113 | 1 6| L | 2
23 118 |14 (12 | 6 | 5| 2
2l 19 | 1L | 12 7 5 3
25 fl2e0 (15 |12 | 8| 6 | 3
26 21 |16 |13 | 9| 7| L
27 2 (17 W | 9] 7] 5
28 23 |18 |1 |10 ] 8] 5
29 2, |19 |15 | M 9 6
30 ff25 |20 [ 16 [12 |10 | 6
31 26 |21 |16 |12 | 11 6
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circuitry is made more complex, and the reduction in the delay would
ﬁormally be of little value.

Another method of decoding Hamming codes is by majority logic
decoding (e.g. Peterson & Weldon 1972). A Hamming code of length
gt -'1 is decodable in m - 1 steps by this method. This means that
for anything but the shorted codes the decoding logic becomes
rather complex. The decodiég circuitry required for the (7,L) Hamming
code is shown in Fig. 3.2., this is a two sfep majority logic

decodable (m.l.d.) code.
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Fig. 3.2. - A 2-Step Majority Logic Decoder for the (7,h) Long Cyclic
Hamming Code
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A third, and most satisfactory, method of decoding, is that of
ﬁeggittdecoding (Peterson & Weldon 1972). Here a logic circuit rec-
ognises those syndrome patterns associated with an error in the
final bit of a cyclic codéword. By progressive shifting of a
received word the errors are cleared as they enter the final bit pos-
ition. In the case of single error correcting codes there is only
one syndrome to recognise, and that is a 'one' preceded by m - 1 'zeros'.

As the length of Hamming code increaseé, the decoding complexity
increases only slowly - apart from the syndrome calculating circuit
and a shift register to store the received word, all that is required
is an 'm' input 'nand' gate and one inverter. The decoder for the
(7,4) Hamming code is shown in Fig. 3.3, and can be seen to be simpler
than that of Fig. 3.2. whilst also simpler than, but similar in its
mede of operation to, the error trapping circuit.

3
7

»n

»N

L 4
L 4
-«
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X
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<&

U

\
INPUT
Fig. 3.3 - A Meggitt Decoder for the (7,l;) Hamming Code
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Shortened Hamming codes ma& be decoded by any of the preceding methods
simply.by inserting dummy 'zero' information bits in the missing 'shortened!
positions. A more elegant method of achieving the same object is to
modify the syndrome calculating feedback shift register such that the
incoming bits are pre-multiplied by Xi where 1 is the number of bits by
which the cyclic code has been shortened. Then, where r(X) is the
polynomial representation of the received bits, the syndrome of X £
r(X) is calculated instead of the usual X & r(X), which then, when
used with any of the decoders described for Hamming codes, causes the first
received symbol to be the first corrected - no insertion of zeros now
being required. The technique for modification of the shift register is
given in detail by Peterson (1972 page 242). A decoder for the (10,6)

shortened Hamming Code, using the above method applied to a Meggit decoder

for the 15,11 Hamming code is shown in Fig. 3.L.

N
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/jr ~ ‘
e @ 4 TN e s > -
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N ¥
> > \U > OUTPUT
A
INPUT
Fig. 3.L. - A Meggitt Decoder for the (10,6) Shortened Hamming Code
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In conclusion it may be said that the most efficient type of
decoder for single error correcting linear codes is the Meggitt type,

modified when necessary for the shortened codes.
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3.3. Double Error Correcting Codes

Unlike single error correcting codes, the :0ost efficient linear
double error correcting codes are of varying types. The codes will

be considered in order of their number of information bits.

(a) The (5,1) Repetition Code

This is most simply decoded by a majority logic decoder -
if more than two of the received bits are 'one'! then five 'ones!'

are output, otherwise five 'zeros'.

(b) The (8,2) Code

This code is not cyclic. Two possible methods of decoding
this code present themselves. The first is that of a search,
since there are only four codewords, of length eight bits. This
would require either suitable logic circuitry or a 256 word pro-
grammable read only memory (PROM) - with each address corres-
ponding to a possible received'word and the eight bit content

being the corrected word. Suitable PROM's are now readily and

cheaply available.

The second method is that of one step majority logic decoding.
The circuitry required for this may be determined by first considering
a possible generator matrix G, for the 8,2 code which is :
10110101
G =
01011011
then, if a codeword C, from this code is written C = k1 k2 Py Py Py ph
pS Pg where the ki are information bits and the p; are parity check

bits, the p; may be expressed in terms of the ki as follows :

P = K Pp = K %k, By = K

]
~

B =K Py 2 P = Btk




This defines the majority logic decoding circuiting, which is
given in Fig. 3.5. The received word is shifted into register A, and
the corrected information bits shifted out of register B. Register
B is a two bit parallel-in serial-out register.

Clearly the latter method is the most cheaply implemented,
requiring as it does only four modulo-2 adders and two majority
logic gates. As the price of PROM's becomes lower, however, the

the former method may become the cheaper.
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Fig. 3.5 - Majority Logic Decoder for the 8,2 Double Error

Correcting Code
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(¢) The (10,3) Code

(d)

)

This code may decode by a shortened form of the decoder

for the 11,4 code.

‘The (11,L) Code

This code is not cyclic, but it may be constructed to be
one step majority logic decodable.
The generator matrix G is then given by :
100000017111
G= 010011117100

00100111001
If a codeword is written as (k1, Kps k3, kh’ P1s Pps « « « « Pgo P-)

then the following equations, orthogonal on the ki, may be

formed :
k1=p3+ph k2=p1+kh
k.I =Pt ps k2 = Py + k3
By =k +3g : k) =Py +pg
k1 =k * 2t 1y kp =Py * Py * Ky
ky =Py + 1 k, =py * Kk
k3 =Pyt ky k) =Py * Py
k3 =pg *pp - k), = Pg * Ky
K37R, TR TR K TR TRt

hence a decoder of the same form as that in Fig. 3.5 may be

constructed.

The (13,5) and (1l,6) Codes

These are. best decoded as shortened versions of the (15,7)
code. Peterson (1972) gives methods for modifying the decoder

as required.
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The (15,7) Code

This code may be constructed as a B.C.H. cyclic code, and as

~such may be decoded by various schemes put forward for B.C.H.

codes in general. There are, however, much simpler ways of

decoding this particular B.C.H. code.

Since the code is cyclic and of rate less than 1/t where t
is the error correcting power, it may be error trap decoded in the
normal way. Furthermore, because the tode has length 2k + 1
where k is the number of information bits, the trapping of the
errors may be speeded up on average by shifting the received
bits and syndrome by two bits at a time during the trapping
operation. This improvement is at the cost of complexity of the
clocking circuitry and, since the maximum number of shifts
réquired to guarantee the trapping of a double error remains the
same as in the conventional decoder, the method would normally
offer no advantage.

This code may also be one step majority logic decoded, as
shown by Maséey (1963). The parity check matrix of the code is~
given in Fig. 3.6, from which it can be seen that the four
arrangements of the columns which are orthogonal on k1 are
p1 + k2 + kh’ p2 +‘p3 + p5’ kS + p6 + p7, k3 + k6 + p8
where the ki’ p; are as indicated in the figure.

This code is short and of rate less than one half. A Type
II majority logic decoder is therefore the simplest to construct
since no syndrome forming feedback register is then required.
Such a decoder is shown Fig. 3.7. Note that feedback from the
decoder output. to the received bit register is used to allow

correction of some error patterns of weignt greater than two.

- 60 -




n

~

1/
s I P, P. P R P, P P P K K K K K K Ky b N
6 2 4 1
IREGT ra \J 8 7 5 4 3 1 7 6 5 3 '\J
¥ Y W 2
oD De E}__t\__x\_ea.q_z\._i
< Y L \J L/
.
i § 1
DD D N 3
| K“J‘ \J‘ N
o A 4 v
= 6 N\ M Y, \ <D .
| \/
¥
5 A4 1?
MAJORITY GATE P 4 OUTPUT

Fig. 3.7 A Type I Decoder for the 15,7 Double Error Correcting Code.




ky k, k3 k) kg ke ko p1 Py P3 P} Pg Pg Py Pg
1000 0O0OT11TO0DOO0OT1TO0 1 1]
0100001170011 10

6c¢c 1 oooo0oo01T1T 0O0 1T 11

o O

Fig. 3.6 - The generator matrix of the zyclic, one step majority

logic decodable (15,7) double error correcting code

(h) The (17,9) Code

This code may be formed as a non-primitive B.C.H. cyclic code.

As the code is of rate only slightly greater than one half
it may be decoded gquite simply by "error trapping with windows";
in fact only one "window" is required since only one error
pattern, with its cyclic shifts, is not trappable.

An alternative decoding scheme would be to use the
Meggit decoder. A PROM could be used to replace the logic
circuiting. This PROM would need 28 = 256 locations each cor-
responding to one of the possible syndromes of the received
words. Each location would need to contain only one bit, this
being the error value of the last bit of a received word with
the respective syndrome. Since such a PROM is not expensive
this may well be the cheapest method of implementation of the

code.

i B0 =




(3)

(k)

(1)

(m)

The (19,10) and (20,11) Codes

These codes may be decoded using suitably modified decoders

for the (21,12) code.

The (21,19 Code

This code may be constructed as a non-primitive B.C.H.
code. As such it is cyclic, and the "error trapping with
windows" deccding method may be applied - only one "window"
is required. Alternatively a Meggitt decoder using a PROM
may be used, or complete "syndrome decoding" employed using a
2%(= 512) nine-bit location PROM. These latter two decoding
methods are probab%y comparable in complexity; and both involve
less decoding delay than the first method. Unfortunately nine-
bit per location PROMs are not standard items at present.
Nevertheless, the low cost of PROMs make the "syndrome decoding"
approach attractive in this case.

The (22,13) Code

This code may be decoded as a shortened version of the

(22,1L4) code.

The (23,1l) Code

This code is not cyclic nor known to be m.l.d. and there-
fore its decoding presents considerable difficulty. The code
has 29 = 512 syndromes, and therefore the simplest decoding
method so far known should appear to be a matrix multiplication

circuit to calculate the syndrome of a received word, followed
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(p)

by a PROM of 512 locations each of 1L bits,which would correct
errors in the 14 information bits.

It is in cases such as this, where the best known code has
little known structure and is not very high or very low rate
that decoding circuits are most complex. It can be seen that
for codess somewhat longer than this one, a PROM suitable for

syndrome decoding of the code would be inordinately large.

The (31,21) Code

Again, this may be constructed as a B.C.H. cyclic code.

The standard decoding algorithms for B.C.H. codes are applicable,
but are not the simplest methods of decoding this code.

The‘code is not error trap decodable, as its rate is
greater than one half. By decoding with errcr trapping plus
windows, as in the 17,9 code, it is necessary to have windows in
two positions of the codeword.

An altefnative decoding method is that of permutation
decoding. This code is two-step permutation-decodable. To
decode the code in this manner an attempt is first made to "trap"

errors in the normal way, by cyclic permutations of the codeword,

~and weighing of the resulting syndromes. If this process is

unsuccessful then a second set of permutations is made, whereby

if the received word is described as a polynomial aoin ~i1 +
n-2 g %
a,x Feee e ta 4X + a s it is permuted according
to the rule a.x’ - a, sz.

i

This permutation guarantees that the errors will now be
correctable by applying "error trapping" to the newly created
word, and then permutating back to the original codeword. This

method would zppear more simple than the "windows" method, it
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will also cause less decoding delay.

3.i. Triple Error Correcting Codes

Again these will be taken in order of the number of information
bits they contain.

(a) The (7,1) Code

This code may be one step majority logic decoded in the

obvious manner.

(b) The (11,2) Code

It is possible to form an (11,2) triple error correcting
code which may be one step majority logic decoded in a cyclic
manner, even though the code itself is not cyclic. The generator
matrix, G, of the code is given by :

101710101011
G =

01101010111
If the information bits ki and parity check bits p; are labelled
as in previous examples, the following orthogonal equations for
k., and k2 are obtained :
ki =Py P)» Pgs Pg * P35 Py * Pg> Py * Dy
Ky = P35 Pgs Pys Pg * Pyy Py *+ Ps Py * Dy
note that the estimates of k2 are related in a simple way to .
those of k; - if the p; are changed to p, , 4 (mod 9) then the
k2 estimates are obtained from those for k1.

The circuiting for such an arrangement is shown in Fig. 3.8.
It operates as follows :

With S1 closed, the received bits are shifted into register A,

and the majority logic decodes information bit k1, then switch S1

is opened and the register A is shifted once to give P; =Py 4 q
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(mod 9) which then allows the same circuiting to calculate
information bit kz. The information bit k1 is at the same time
shifted along register B, so that when k2 has been calculateé
the register B contains both information bits, which may then be
shifted out. Note that the first two bits of register A, con-
taining the information bits received, are also shifted so that

the correct ki is automatically input to the majority gate for

each bit decoded.
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Fig. 3.8 - 1 Step Majority Logic Decoder for the (11,2)

Triple Error Correcting Code
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(c)

(d)

(e)

The (12,°) and (1);,L) Codes

These are best decoded as shortened versions of the (15,5)

triple error correcting code.

The (15,5) Code

This code may be constructed as a B.C.H. cyclic code.

Although the code could be decoded by the various
algorithms availeble for the general class of B.C.H. codes, it
may be decoded for more easily by other methods.

Firstly, since it is a cyclic code of rate exactly'1/t where
t is the error correcting power of the code, it may be error trép
decoded.

Secondly, it may be two-step majority-logic decoded, as
shown by Massey (1963). The circuit for this decoder is shown
in Fig. 3.10, and the generator matrix in Fig. 3.9. Note that
a total of L7 'exclusive or' gates, and four majority gateé are
required, with a 15 bit shift register. This illustrates the
considerable complexity of L step majority logic decoding even

for shortcodes with limited error correcting power.

» .
1700001T171T011T0010
010000111011001

G = 0010011701701 1T110

tp 001001101011 11

Fig. 3.9 = The Generator Matrix of the (15,5) Triple-

Error-Correcting B.C.H. Code

The (17,6), (18,7), (19,8), (20,9), (21,10), and (22,171) Codes

These codes may best be decoded as shortened versions of the

(23,12) Golay code.
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(£)

{g)

The (23,12) Code

This code is the Golay perfect triple—er?or—correcting
code, and may be constructed as a cyclic ncu--primitive B.C.H.
code, equivalent to a quadratic-residue cods.

The two most suitable decoding methods for this code are
permutation decoding, and "error trapping with windows".

Permutation decoding of the code requires four steps
(see for example Peterson and Weldon (1972) and Yip el al
(197L)). This method is therefore rather complex and certainly
time consuming.

The "error trapping with windows" method is less complex -
requiring only two "windows" and therefore involving less

decoding time. (Kasami 196l).

The (31,16) Code

This code may be constructed as a quadratic residue code,
in which form it may be decoded by permutation decoding (see
MacWilliams 1963). In this form the code is also a primitive
B.C.H. code and may therefore be decoded by the means described
in Chapter , for triple-error-correcting B.C.H. codes. Also,
as a cyclic code, the (31,16) code may be corrected by the
"error trapping with windows" method (Kasami 196L).

Furthermore, the code may be constructed as a shortened
Reed Muller Code; in which form it is two-step majority-logic
decodable, and may also be decoded in the manner described in
Chapter & for augmented conjoined codes of which shortened
Reed Muller codes are examples.

Permutation decoding is a somewhat slow and complex method

of decoding, not least in terms of the control circuitry

.




required. The "error trapping with windows" method is
similarly complex and slow in this case owing to the number
of "windows" 1equired. The majority logic decoding algorithm
therefore appears to be the simplest available.

As ﬁentioned, the code may be orthogonalised in two steps.
The decoding circuitry may be realised using one buffer register
of 31 bits, seven majority gates, and 36 modulo-2 adders.

(See Berlekamp 1568). However, it has been shown by Rudolph
and Hartmann (1973) how certain cyclic codes, including the
(31,16) code, may be majority-logic decoded in a somewhat
different manner involving what they term "sequential code
reductioﬁg in this way the decoding time is doubled, but the
hardware required is reduced to two buffers, two majority gates
and twelve modulo-2 adders together with the control circuitry
common to both approaches. A further slight simplification of
the circuitry required by the sequential code reduction method
is claimed by Schmandt (1976).

Decoding the (31,16) code as an augmented conjoined code
required decoding circuits for the (15,11) dmin = 3; (16,11)
dmin = l; and (15,5) dmin = 7 codes, all of which may be of the
very simple error trapping type, together with some simple
control circuitry. The decoder is treated in detail in Chapter
6 and can be seen to be comparable with the complexity of,

but somewhat slower than, the majority-logic decoders.
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3.5. Four-Error-Correcting Codes

(a) The (9,1) Code

This code may best be decoded by one step majority logic.

(b) lThe (14,2) Code

This code may be one step majority logic decoded in the
same manner as the (11,2) triple-error-correcting code. The
generator maﬁrix is now given by :
101101010101 11
¢ - 011701010101 1T11
and the orthogonal parity check equations are :
k1 =Py TP TPg = Pg =P *Pg TP * Py = Pqy * Ps = Ppp * Py
and
Ky "P3 TPy TP TPg TPy *Pig T Pyg TPy TPy tPg TPyt Py
the decoding circuiting is arranged in a similar manner to that

for the (11,2) code.

(¢) The (17,3) Code

This code may not be constructed as a cyclic code and is
therefore not decodable by error trapping.

There are only eight possible codewords, and therefore the
code might be decoded by comparing a received sequence with each
in turn.

More simply, the code may be decoded with one-step majority-
-logic. Also, the parity checks may be arranged such that the
decoding may be performed in a cyclic manner, similar to that
of the decoding of the (11,2) triple-error-correcting, and
(1h,2) foureerror-correcting codes.

The generator matrix of the code is then given by :

=



Q01100101 1T17T001T011
G = |010717017T01101T017101710
10C0*'"1T001T01T11T00101
if a codewnrd, C, is written
C = Kys kps K35 Pps Py« + « « Pygys Py
then the orthogonal parity checks are :
Ky = P)ys Pyqs Py * Pgs Pg + Pyyy Py * Dy
P1g * P132 Py ¥ Pys Pg * Pyq)
Ky = P35 Pqgs Py * Pys Pg * Py)s Py + Pos
Py * Pqps P}, * Pgo Pqq t P13
kq - Pps Pgs Pq * Pgs Pg * Py3s P) + Poy
Ppq * Pgy P3 T Pgs Pig T Py
the cyclic nature of these orthogonal equations suggests the
decoder shown in Fig. 3.1l.

The decoder operates as follows. The received sequence is
shifted into the Register A, and switches SA are then opened,
.switches SB closed. The logic circuiting is then calculating
the majority estimate of k1, which is entered into Register B.
The sections of the Register A marked 'shift' are then shifted
once, so that now the majority estimate of k2 is calculated and

entered into Register B. A further shift gives k., and then the

3’
decoded information bits may be shifted out of Register B.

(a) The (19,L) Code

This code may be decoded as a shortened version of the

(20,5) code.
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Fig. 3.1l - One Step Majority Logic Decoder for the (17,3) Four-Error-Correcting Code
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(e) The (20,5) Code
' This code is obtained by omitting a parity check bit from

the (21,5) non-primitive B.C.H. code with minimum distance ten.
A decoding procedure for»ﬁhis code may be devised as follows :

A (21,5) code is capable of correcting four errors and
detecting five. When a (20,5) codeword derived from this
code is received corrupted by at most four errors, an
erroneous correction will not result from guessing the "missing"
parity check bit value since this will introduce only one more
error at most. If the guess is correct, or if not but never-
theless at most four erroré then exist in the extended word,
it will be possible tc correct all the errors in the word. If
the guess is incorrect and thereby introduces a fifth error,
the presence of five errors is detected by the decoder. The
basis of a decoding algorithm is therefore clear - a guess at
the missing parity check bit is made, and correction attempted;
if correction is successful no further action is required, if
five errors are detected then the "guessed" bit is inverted andg
correction again attempted. Correction will then be possible
provided at most four errors occurred in the original received
word. |

The problem of decoding the (20,5) code has now been
reduced to that of decoding the (21,5) code with minimum
distance ten. This decoding is very simple since the code is
cyclic and of rate less than one quarter. The code may there-
fore be error trap decoded - a failure to be able to error trap
implying that five errors have occurred.

The final decoding algorithm therefore consists of five

major sections :-
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(a)

(b)

(c)

(£)

(g)

(h)

Construct a (21,5) vector from the (20,5) received vector by

P

appending the "missing" parity check bit.

Attempt to error trap the (21,5) vector - if successful

~ deliver the corrected word to sink, otherwise procede to (c).

Invert the appended parity check bit, and repeat the error
trapping procedure. If successful deliver the corrected word

to sink, otherwise five or more errors have been detected.

The (22,6) Code

The existence of this code was shown by Calabi and
Myrvaagnes (196li). No properties of the code are known which
would enable the code to be decoded in any way other than those
common to all binary linear block codes. Therefore, since the

code is of low rate, the simplest decoding algorithm is to

-compare each received block with every codeword in the codebook

(the "exhaustive search" method), delivering the closest word
to the sink. Such a decoder would need to store or generate
26 (= 6L) twenty-two bit words and to compare each of these with

each received block,

The (2l;,7) and (25,8) Codes

These codes may be decoded most simply as shortened versions

of the (26,9) code.

The (26,9) Code

This code has been found by Hashim (197L) by a computer
search procedure. No decoding procedure based upon the structure
of the code is known and therefore the decoding methods

available are limited to those common to all binary linear
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(1)

(3)

block codes., As the code is of low rate the least complex
decoder is the exhaustive search decoder. The decoder must
store or genercte 512 twenty-six bit words and compare each

with each received block.

The (28,10) and (29,11) Code

These codes may be decoded most efficiently as shortened
versions of the (30,12) code. Although the (29,11) code may
be obtained by removing any two parity check bits from the
(31,11) B.C.H. code with minimum distance 11, but the writer
knows of no way in which a decoder of the (31,11) code may be

modified to decdde the (29,11) code.

The (30,12) Code

This code is another which was found by Hashim (197L) as
a result of a computer search. Again no structure is known
which would enable a decoder to be designed which is less com-
plex than the exhaustive search decoder. For this code an
exhaustive search decoder needs to store or to generate
212(= L096) thirty bit words for comparison with every received

word.

3.6 Five-Error Correcting Codes

(a)

The (11,1) Code

This code consists of the all-ones and the all-zeros
11-tuples. The decoding algorithm may be to output all zeros
if more than five received bits are zero, otherwise output all

ones.
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(b) The (17,2) Code

Following the method used for the triple-and-quadruple-
error correcting codes, this code may be constructed so as to
be majority logic decodable. The ccde then has a generator
matrix, G, given by :

ky Ky Py Py Py P Pg Pg Py Pg Pg Pqg P1q Pyp Py Py Pyg

Tt 0o11o01o0o101T01T 0 1T 1T 1 1

o1 *+o01o011T011T017T0 1T 1T 1T 1T 1
If the information bits and the parity bits are labelled as
shown, it may be seen that
Ky =Py = P), TPg T Pg T Pig TPy TPy TPy TPy T Pyt Py
=Py * Pr = Pig L Pg
k2 “P3 " Pg =Py = Pg = Pyq T Py *Pig T P1p * Py T P13 * P),
= Py + Pg = B * Pg

" the decoding circuiting may be arranged in the same manner as

for the (11,2) triple-error-correcting code.

(¢) The (20,3) Code

This code may be constructed by omitting any one parity
check from the (21,3) nom-primitive B.C.H. code with minimum
distance twelve. If-may therefore be decoded in a similar
manner to that proposed for the (20,5) four error correcting
code. That is, the "missing" parity check bit may be guessed
at the receiver and decoding of the resulting corrupted (21,3)
codeword attempted; if decoding is unsuccessful then the guessad
bit is inverted so guaranteeing correction provided that no
more than five errors occurred in the received word. The
(21,3) code is error trap decodable, and so the entire decoding

algorithm consists of two error trap attempts; if the first

A
1%
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(a)

(e)

(£)

(g)

fails then the missing bit is inverted wid then the second

attempt is sure to succeed.

The (22,L) Code

This code may be decoded as a shortened (23,5) code.

The (23,5) Code

This code may be constructed by omitting any parity check
bit from the (2L4,5) code of minimum distance 12 found by |
MacDonald (1958). The code may alsc be formed as an augmented
conjoined code (see Chapter 6). The code is formed by
conjoining the (11,L) double-error correcting code with the
(12,L4) code of minimum distance six and then augmenting an
additional codeword from the (11,1) code. The complexity of
the decoder is only a little greater than the complexity of
decoders for the three constituent codes.

The code may also be decoded by the exhaustive - search
method, The thirty two possible codewords would need to be

stored or generated, and compared with the received block.

The (25,6) Code

This code may be decoded as a shortened (26,7) code.

The (26,7) Code

This code was found by Hashim (197;) as a result of a
computer search. Little is known of its structure, and there-
fore the only decoding algorithms that may be considered are
those common to all linear binary block codes. The code is of

low rate, and therefore the exhaustive search decoder is the

A
[¢]
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obvious choice.

(h) The (27,7), (28,8) (29,9), and (30,10) Codes
These codes may be decodel as shortened versions of

the (31,11) code.

(i) The (31,11) Code

This code may be constructed as a.primitive B.C.H. code.
In this form the code is cyclic, and is decodable by the

"error-trapping with windows" method, (see Kasami 196L).

3.7 Six-Error-Correcting Codes

(a) The (13,1) Code

This is the repetition code, with two codewords : the all-
zero and the all-one 13-tuples. Decoding is made on a majority
principle - if more than six bits of a received block are 'one'
then the all—bne codeword’is delivered to sink, otherwise the

all-zero codeword.

(b) The (20,2) Codeword

This code, in common with the (11,2), (14,2), and (17,2)
codes already described, may be constructed as a one-step
majority-logic decodable code, with a pseudo-cyclic decoding
algorithm. The generator matrix is given by :

101170101701 01710101T1111

0110101010101 01711111
and the orthogonal parity check equations are :

K1 Py TP, TPg T Pg T Pig T Pip TPy *Pi3=P3* Py,

=Py " Pig TPy FP1g T Py ¥ Pig T Pyq ¥ Prg
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(e)

ky =Py = Pg = Pp.2Dy =Py TPi3 7P * Py TPty

= Pg T Pig T Pg *Pigp T Pig T P1g T Pyp + Py

The decoding circuitry arrangement follows that for the

(11,2) code.

The (21;,3) Code

This code may be constructed as a code which is one-step
majority-logic decodable in much the same manner as the (17,3)
four-error correcting code. Thus, altaough the code is not
cyclic it may be decoded in a cyclic manner.

The generator matrix, G, is given by :
100100101T1T1T00101T1001011 {7

G=|01010101101010171700101101

0011717001T01177001T01T17001011

]

if a codeword, C, is written

C = k1, k2: k3: Pqs P2_3 * o » o Pons Poq
then the orthogonal parity checks are :
k1 = P)_L: P—H: P17: Py + PS, P8 + P12: P3 + Pé: P10 + P139 P2 i P7:

Py ¥ Pqys Pig * Pogs Prg * Prgs Poq * Pyg

Ky = P35 Pygs Pygs Py * Pps Pg # Py)s Py + Py Py * Pyps P) * P

P11 ¥ P35 Pyg * Pqgs Py * Pygs Pyq * Py

K3 = Pps P> Pigs Py f Pgs Pg + Pygs P+ Pos Pyq * Pyys Py * Doy
Pio " P1ps P1g T P1gs Pyg T Pypr Py * Py

The similarity to the (17,3) code is readily seen, and a decoder
will only need circuitry to calculate the additional four
orthogonal checks given above for each information bit. This
additional circuitry may be arranged to be of a cyclic nature

in the same way as for the (17,3) code.

’
(€]
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3.8

(a)

(e)

(£)

The (26,l)) Code ..

This code may be decoded as a shortened (27,5) code.

The (27,5) Code

This code may be constructed by dropping any parity check
bit from the (28,5) code with minimum distance fourteen dis-
covered by MacDonald (1958).

It may also be constructed by conjoining the (1L,L) triple-
error-correcting code with the (13,L) code obtained by omitting
a check bit, and then augmenting with a codeword from the
(13,1) repetition code, (see Chapter 6).

The code may be decoded by the method shown in Chapter 6

for conjoined codes, or the exhausive search method may be used.

The (29,6) Code

This code may be constructed as an augmented conjoined code
(Chapter 6).1 The constituent codes are the (15,5) triple-error-
correcting code, a (14,5) code with minimum distance six
constructed by omitting any one parity check bit from the
(15,5) code, and the (13,1) repetition code. As shown in
Chapter 6, the code may be decoded with a complexity only slightly

greater than that of decoding each of the constituent codes. -

Longer Codes

For lengths much greater than thirty it becomes considerably

more difficult to decode optimum codes. It is then more realistic

to use near-optimum codes with simpler decoding algorithms. For

example the (63,L41) sub-optimum triple-error-correcting projective

geometry code is generally preferable to the optimum (63,47) code

A
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because it is rmuch more easily decoded. Even so, the projective
éeometry code requires 3L3 sets of modulo 2 adders, and 57 seven
input majority gates to be decoded by a standard majority-logic
decision method; or 27 majority gates, two counters and three binary
flagé to be decoded by a simpler method, involving 'orbits" (L.E.
Wright 1977). The (255,218) projective geometry triple-error-
correcting code is even more complex to decode - the simplified
"orbit" method requires 120 thirty-one input majority gates, three
binary flags and a thirty-five entry decoding table, whereas the
standard majority logic decision method needs nearly three thousand
seven-input majority gates and so is impracticable for most purposes.
The long B.C.H. codes are sub-optimum in most cases, but they do
have practical decoding algorithms for the correction of small
numbers of errors. Chapter li discusses the decoding algorithms
available for these codes, and it is seen that for codes correcting
more than three errors the decoders required are very complex.

In order that long codes with large error correcting power may
be easily decoded it is evidently necessary that the codes be of
considerable worse rate than the best known. For example the one-step
majority logic decodable codes such as the self-orthogonal quasi-
cyclic codes discovered by Townsend and Weldon (1967), are very poor
in rate compared to even the projective geometry codes - they are,
however, much more easily decoded. For the same cost a much longer
self-orthogonal-quasi-cyclic, than projective-geometry code of the
same rate may be decoded. The increased length code sometimes has
better performance than the shorter code (particularly Af many
more errors may be corrected than guaranteed by the minimum distance)
and therefore is preferable in certain applications to the shorter

and more newly optimum code.
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3.9

The Use of Microprocessors in Decoding Error Correcting Codes

Since the decoders for many error correcting codes require
what is in effect a special purpose computer, thc microprocessor
might seem an ideal component for their realisation.

The versatility of microprocessors is offset, however, by the
considerable time required for the execution of each step of com-
putation. It seems reasonable to assume that a programmable system
will always be slower than a "hand wired" s&stem.

There are three major ways in which the versatility of
microprocessors may be usefully employed. Firstly they may be used
in applications where speed is unimportant - for example in paging
systems and private-line squelch systems in radio communication systems.
Secondly they may be used in parallel to achieve high speed, provided
that cost is of secondary importance. Thirdly they may be used to
control the operation of sub-sections of the decoder which are fast

"hard wired" computation elements. .
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L.2.

CHAPTER

Decoding B.C.H. Codes

Introduction

In this Chapisr the best method of decoding B.C.H. codes is
considered, for various error correction powers of the codes.
Decoders for double error correcting B.C.H. codes are first com-
pared, and then their generalisations to more powerful B.C.H. codes
are discussed. The decoders described are those considered most
suitable for long B.C.H. codes - shorter B.C.H. codes may often be
decoded by other more general methods such as error trapping,

majority logic decision, and permutation decoding.

Decoders for Double Error Correcting B.C.H. Codes

(a) Berlekamp's Method

The most common form of decoder for a double-error-
correcting (d.e.c.) B.C.H. code is that described by E.R.
Berlekamp (1968). This is reviewed briefly here.

The basis of this method lies in the fact that an n-tuple

c(x) is a codeword polynomial of an (n,k) d.e.c. B.C.H. code iff

3

x and x° are roots of the generator polynomial, g(x), of the

code, where x is a primitive n th root of unity in GF (2m),

whigps = 2~ Y,

If a codeword is denoted by c(x) and a corrupting error
pattern by e(x) then a corrupted codeword, r(x), may be
written

r(x) = c(x) + e(x)

3

Since c(x) is by definition a multiple of g(x), x and x° must

be roots of c(x). Therefore, by substitution of x and x3 in

the above equation, the following two equations are obtained :
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r(x) = c(«) + e(«) = e(«) and
r(«) = e(&) + e’) = ei’)

It is usual to *erm r(q?) the i th syndrome, S;» of the
corrupted codeword.,

If the error positions are labelled as powers of x,

that is if an error in the fifth bit of a codeword is termed

N

X = x°, then the syndromes S1 and S, give two simultaneous

.
equations in the two error positions X1 and X2, viz =
S, =X, +X, i =il
-y 3 3 -
and S3 =X,” + X, > » = E1L)

these two equations may be solved for X1 and X2 as follows :
from (i); X, =81 X, ... 241)

substituting (111) in (i1); Sy = X23 + (8, - x2)3

2 2 .

1 X2 +- S1 X2 & . e (1V)

similarly, S, = S 34 S 2 X +8. X 2 (v)
Is O3 7 9 1 M e

- a 3
hence, S3 = S1 + 5

therefore, if X represents either X1 or X2 we have

55 = 8, 2 .. (v1)

Decoding may then be accomplished by substituting all possible

34 sfzx + 8,X

values for X into equation (vi); those values which are roots
of the equation are the error positions the values of which
must be inverted in order to complete the decoding.

Note that equation (vi) differs from the equation derived

by Berlekamp in that it has not been "divided through" by S1.
2 3

As a result the variables to be calculated are S1, S1 5 S1 s

2

and S, compared to S1, S1 s 83/81, and S3 required by Berlekamp.

3
The importance of this difference is that if 83/81 is found by

2(n - k) storage locations are

k.

means of a look-up table, 2
required whereas a look-up table to determine S1 would

require only'z(n - k) locations. Thus equation (vi) affords a
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considerable saving in storage requirements, or may allow a
look up table to be used where a Uime consuming sequential
circuit might otherwise have been necessary. Equation (vi)
has also been suggested as an improvement by Harari (197L).

It may be shown, for example by Berlekamp (1968), that S;
may be calculated by dividing the received sequence r(x) by Mi’
the minimal polynomial of(xi to give ri(d) and then transferring
by a matrix multiplication to ri(oéﬁ which is equal to Si'

These operations may be realised using feed-back shift register
for the division, and arrays of exclusive or gates for the matrix
miltiplication (see Peterson and Weldon 1972) and Berlekamp
1968).

In order to solve equation (vi) in practice, the Chien
search (Chien 196l) is normally used. In order that the first
-received bit is the first decoded, it is convenient to arrange
for the equation (vi) to be manipulated to give as roots the
"inverse locations numbers"; that is, for X =cxi to be a root if
the (n - i)th bit is in error; because the first receive bit
is the highest order co-efficient of the received polynomial.
The equation transformation is very straightforward, with
the result (after the simplifying multiplication through by S1)
of (83 + S13)X2 + S12X + 8, = 0. The Chien search then operates
as follows .

One feedback shift register is wired to multiply its
contents by & with each clock pulse, another is wired to multiply
its contents bywx? with each clock pulse. Initially the first
register is loaded with S,% and the second with 5, + 5,%. The
contents of these registers are added together, and added to

2

S.: the result is the enumeration of (S3 + S13)<>(2 + 8,7+ Sq.

13
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If the resuit is zero then X = & is a root of equation (vii) and

therefore the first received bit is in error. The two feedback

shift registers are then shifted once, to give the enumeration

of equation (vii) for X =« and if the result is zero the

second received bit is in error. This clocking procedure

continues to check all possible roots of the equation. Note

that at each stage it is necessary also to check that S.l =0

since if S = 0 there are no further errors, and no further

inversions must tezke place.

A block diagram of a complete decoder of the type described

above is given in Fig. L.2(a).

¥
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A

JOUT;UT

L 4

FORM S,

A 4
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(b) A Simpler Method

Described here is a somewhat less complek decoder for
double error correcting B.C.H. codes. To uncderstand its
operation consider first the relationship beiween 813 and S3
in equation (vi) of the preceding section.

If one error has occurred in the received sequence thexX = 0O

3

is one root of equation (vi), therefore S1 = 83, also S1 #0

and Sq # 0.
If two errors have occurred in the received sequence then

since S, = X ( in fact 5, = X; + X, from equation (i)) it can

be seen from equation (vi) that 813 # S3.

Mlso S, # 0, S, # O.

1 3
If three errors have occurred in the received sequence then
the sequence is at distance of least two from any codeword.
Therefore, again, 813 # S3 and S1, 83 # 0.
If no errors have occurred in the received squence then both

3

Now consider the effect of inverting one bit of a recelved

S1 and S eqﬁal ZETro.

sequence :
If originally one error had occurred then there now will be

either no errors, in which case 813 = 33 = 0, or two errors in
: 3
which case S1 # S3.
If originally two errors had occurred then there will be

now either one error, in which case 813 = S3’ or three errors in

3 # S L]

3

The basic decoding algorithm may now be seen. First,

which case S1

Syndromes S1 and S3 are calculated., If S1 = 83 = 0 then the

received sequence is assumed to be error free and is output to

the sink unchanged. Otherwise, the first received bit is inverted,
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and Syndromes S, and S, recalculated. S, is cubed, and if s13 =

1 3

S. the inverted bit is assumed to have been in error and so left

3 —
3

inverted; if S1 # 83 the bit is assumed to have been correct
and is therefore re-inverted. This process is continued by
inverting the remaining bits in turn and following the above
procedure until all of the errors in the received sequence have
been cleared.

Considerable simplification of the above algorithm is pos-
sible because B.C.H. codes are cyclic. As a result the syndrome
of a cyclic shift of a received sequence may be obtained by shif-
ting once the syndrome of the unshifted sequence in the syndrome
calculating feedback register. Furthermore, as with all linear
block codes, if a received sequence r, (X) given by r1(X) =
c(x) + e1(X) is further corrupted by another error pattern eZ(X)

"to give r3(X) = c(X) + e1(X) + ez(X), then the syndrome of rB(X)
is the sum of the syndromes of r1(X) and ez(X). Therefore the
syndrome of a received sequence with its first received bit
inverted is equal to the sum of the syndrome of the received
sequence with the syndrome of a sequence of n - 1 zeros preceded
by a 'one', where n is the length of the B.C.H. code.

Combining the aBove two facts it can berseen that if the
syndrome of a received sequence is calculated then the syndrome
of that sequence with its first bit inverted may be obtained by
adding the syndrome of 'one followed by all zeros' to the cal-
culated syndrome, and the syndromes of the sequence with other
bits invested are found simply by shifting the 'uninverted'
syndrome in its register and sﬁill adding the syndrome of the

'one followed by all zeros?.
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Example
' Consider the (15,7) double error correcting B.C.H. code.
The syndrome S1 of a one followed by fourteen zeros is

1001 and so a circuit wnich calculates the syndrome
of a received sequence inverted in its first, second, and so
on to its fifteenth bit position, and gives a 'one' output

if the result is zero is given in Fig.4..2.(b)

H

40
v

e

N

lNiUT \1

OouTPUT

Fig. L.2.(b).
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A block diagram is given in Fig.4.2.()of a decoder, for a
double error correcting B.C.H. code, using this algorithm.,
Note that in ihis decoder a 'NAND' gate is used to test S1
for 'all zero! - if S1 is zero then, provided not more than

two errors have occurred in the received sequence, so will 83

be zero. If no errors have occurred in the received sequence

then the test 813 = 83 will be positive after an inversion has
been made in the syndromes. Therefore by adding the output
of the 'NAND' gate modulo 2 to the output of the 313 = 83 test

circuit it is ensured that the received sequence is delivered
to the sink unaltered, when no errors have occurred during
transmission over the chamnel. The circuitry operates as
follews : Firstly n received bits are clocked simultaneously
into the buffer register and the two syndrome forming feedback
.shift registers. Thus syndromes S1 and 83 are formed. The
remaining circuitry then determines whether or not the first
received bit is correct, and the corrected bit is delivered to
sink on the next clock pulse. This clock pulse also shifts
once the syndrome shift registers, enabling the correctness
of the second received bit to be determined. This process is
continued until all of the n received bits have been delivered
to sink, and then a new received block is shifted into the
decoder. The process is then repeated as above. Note that,
as with all Meggitt type decoders, the decoder must be clocked
at twice line rate in order to prevent any buffer overflow.
The advantage of this circuit over that of the decoder of
section (a) is clearly that of obviating the need to calculate
52, and that the Chien Search Stage is effectively performed by

the syndrome forming registers, thus reducing hardware costs.
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L3,

The decoding scheme presented above may be seen to be
equivalent to a special case of the step—by-sfep decoding
algorithm for B.C.H. codes given by Massey (71°65), and this
generalisation of the decoder will be described in the next
section, as it is a very suitable method of decoding B.C.H.

codes of minimum distance seven.

Decoders for the Correction of Multiple Errors

B.C.H. codes capable of correcting more than two errors are
considerably ﬁore cbmplex to decode than are the d.e.c. versions.
For moderate error correcting power, the simplest decoding technique
is that of Massey (1965), but for larger t methods put forward by
Peterson (1960) and Berlekamp (1965, 1968) are preferable. These
algorithms are described here to illustrate the variations in their
complexity for differing error correcting powers.

-

(a) Massey's Step-by-Step Algorithm

This decoding algorithm for B.C.H. codes is based upon two
theorems.

The first is that the determinant of the matrix

Lt ='s1 1 0 o . . 0
SB 82 S 1 L ] L ] O
Sy s, s e 0
Lszt-i Sot -2 Sop -3 Sop - . LS

is gzero if the weight of the error pattern, e, affecting a
codeword is t - 1 or less, and non-zero if e is of weight t

or t + 1; provided the B.C.H. code is t error-correcting.
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The second theorem is that if a cynarcme bit is inverted,
the syndrome bécomes that of the original sequence modified by
inverting one of the parity check bits.

The decoding algorithm based on these two theorems begins
'with the following steps :
are formed

(1) The syndromes S15 S5 « + e o S

22 2t - 1
(2) The determinant of Lt is calculated
(3) If det (Lt) = O then successive bits of the syndromes
are inverted until det (Lt) # O.
Step (3) ensures that, at the following step, the received
sequence ccntains exactly t errors (provided that the original
received sequence does not contain more than t errors). By
the first theorem, if det (Lt).= 0 then (t - 1) or less errors
have occurred; and so, by the second theorem, the inverting of
successive bits of the syndromes ensures that when det (Lt)
first becomes non-zero, there»are exactly t errors in the
modified sequence.
The decbding algorithm continues with the following steps :
(L) The syndromes of the sequence Vs where V_is a
sequence of (n - 1) zeros preceded by a single 'one',
are added to the syndromes modified by step (3).
The results are used as syndromes in step (5).
(5) Det (Lt) is again calculated.
(6) If det (Lt) is now zero, the first received bit is
inverted and delivered to the sink, otherwise the

first received bit is delivered to the sink unchanged.

Step (L) gives the syndromes of the modified sequence
modified a second time by inverting the first received bit
(which is the first information bit). Therefore, if the first

bit was in error, the result of step five will be zero since
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the synd:omes will be of a sequence with only t - 1 errors.
If, however, the first bit was not in error, the syndromes
will be of a cequence containing t + 1 errors, and therefore
by the first theorem the value of det (Lt) will be non-zero.
This explains the step (6) which is the error correcting step.
The algorithm is concluded by :

(7) The syndrome forming registers are shifted once, and
steps 1| and 5 repeated, step (6) is then carried out,
but on the second received bit.

(8) The brocess continues for the third, fourth, . . . .
n th received bits.

Steps (6), (7), and (8) are possible because of the cyclic
nature of B.C.H. codes, thus the syndromes achieved by step (7)
are those of the modified sequence shifted by one bit, hence the
effect of the second execution of step (i) is to calculate the
syndrome of the modified sequence with the second bit inverted.
Continuing the'process corrects all n received bits in order.

Calculation of the Si 0< i <2t is straight forward,

the most complex operation in the algorithm is that of
calculating det (Lt). This calculation is carried out at least
n times, and at most n + 2t times. It is the complexity of
this stage which limits the highest value of t for which the
algorithm is useful. The terms of det (Lt) are given in the

table below, for t £ 5, from which can be seen the complexity

of the calculations required for increasing t.
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The calculation of det (L2) is quite simple - the only

complex operation required ié the cubing of S1. This case
(¢ = 2) is equivalent to the double-error-correcting decoder
given in Section L.2.(b), except that in that section circuitry
has been included to make the steps (2) and (3) of the Massey
algorithm unnecessary. This circutry is much simpler than the
additional invérting and clocking circutry otherwise required to
carry out those additional steps, and the decoder of Section
L.2.(b) becomes a Meggitt type decoder with very modest clock
circutry requirements.

The calculation-of det(LB), required for the decoding of

triple error correcting B.C.H. codes, is somewhat more complex.
3
1 53

be calculated. S & may be found from 83 using a matrix of

3

exclusive or gates as described, for example, by Berlekamp (1968).

3
1

a combinatorial circuit. 816 may then be found, again using a
matrix of exclusive or gates, from 813 since 816 = fS13)2. The

To evaluate det (L3) the terms 816 + S + S, SS + 532 must

S,” must be calculated either by means of a 1look up table or by

o D8 =



terms 813 53 and S1 SS must be calculated by a combinational
logic multiplier circuit, or by a look-up table. Clearly, by
using a seque:tial programme, only one squaring, one cubing, and
one multiplying circuit need be used for the calculation in this
case, indeed, by calculating S13 as S12 S1, the cubing circuitry
could also be omitted. It is important to note, however, that
the calculation of det (L3) must be made as many as (n + 6)
times per decoded block. Therefore the time taken for the
calculation is very important, and it is for this reason that
sequential circuitry for the multimplication of syndromes is not
considered.

To apply the algorithm to B.C.H. codes capable of correcting
four errors would clearly require some considerable amount of
circuitry, since seven multiplications, and three raising-to-
power operations are required in this case. Certainly, for
codes cofrecting five or more errors, the decoding circuitry will
be excessively complex unless a sequential programme is used
for the determinant evaluation - which would only be possible ifv
the time available for decoding is considerable.

The choice between combinational circuitry and look-up
tables for the calculation of powers or products of syndromes
requires some consideration. A look-up table capable of giving
the product of syndromes requires considerably more storage

than one giving an odd power of a syndrome. For example, a

code of length 256 would require 28 256 storage locations

for the calculation of 813, but 216

65,536 storage locations
for the calculation of the product of two syndromes. There-
fore, with present technology, the product of two syndromes

is best found using a combinatorial logic circuit. In
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(b)

Appendix ‘A' a method of constructing suitable logic circuits
first given by Bennett & Stein (1963) is described, and
bounds on the number of gates required for their fabrication
are derived., Also given are the actual numbers of gates
required for muitipliers of syndromes of certain selected

lengths.

Error Location Polynomial Decoding

The method described earlier for the correction of double
error correcting B.C.H. codes by the solution of an algebraic
equation may also be applied to multi-error correcting B.C.H.
codes (Berlekamp 1968). That is, a polynomiai (the "error
location polynomial") with algebraic combinations of partial
syndromes as co-efficients may be formed which has as roots the
locations of errors expressed as elements of GF(2™) where
the code has length 2™ ~ . Such a method of decoding divides
naturally info three parts; information of the partial syndromes,
formation of the co-efficients of the error location equation,
and solution of the polynomial.

A partial syndrome Si is formed as in the double-error
correcting case by dividing the received polynomial by Mi’
the minimal polynomial of u?and multiplying the remainder,
ri(ﬂ), by a binary matrix to give ri(u?) = Si' For a t error
correcting B.C.H. code, Si may be found for 0 1 L2t - 1.

The error location polynomial is more conveniently
arranged tc have the inverses of the error locations as roots,
so that in a practical realisation of the decoder the first
received bit may be the first location to be tested as a root

of the polynomial, and so the decoding delay is minimised.
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The inverse error location numbers may bc defined as Bj’

PONSE—

0< j<t. Then it is known (Berlekamp 1968) that the B,

and the Si are related by

14
and the error location polynomial is defined as :
t
(pX) =TT (1 +B.X) =R _+R, X +R X2+ ... .RtXY
j=i J o 1 2

from which it is possible to define the Ri in terms of the Si'
The most efficient means of achieviné this relationship is
the "Berlekamp lterative algorithm" (Berlekamp 1968). The
algorithm may be visualised (Lin 1970) as the filling in of

~ a table (see Tablek.l. ) for which the first two rows are

always as shown. To complete the table, for the (M + 1)th

row :
(a) If dM = O then P(M * 1>(x) = P(M)(X)
(b) If aM = 0 find a row preceding the Mth, say the Vth,

where 2V - jM (in the last column) is as large as possible

with dV non-zero.

Then PM * D (x) = Mx) - awav ~ 1 x 200 - Dy

In both cases j(M + 1) is equal to the degree of P(M * 1)(X)
_ : M+ 1) M+ 1

and d(M + 1) = Son + 3% P, Soq + 2 * Py Sou + 1
M+ 1 . -

+0000+P. S - M+1
J o+ 1) M+ 3 A )

then P(X) is given by P(t) LE) 5
The roots of P(X) may be found in a 'brute force' way by sub-

stitution of each of the n possible inverse error location

m

numbers (i.e. non-zero members of GF(2") where n = 2" ~ 1) into
the error location polynomial and testing for a zero result.
This search, known as the Chien search and described earlier ﬁr~

double error correcting codes, is easily realised as hardware
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in the form of feedback shift registers fChien 1963).

The requiremégz_}or inversion in Berlckamp's iterative
algorithm is eliminated by a modificaticn of the algorithm,
given by Burton (1971). The simplification of the decoder is
minor, however.

The Berlekamp algorithm is seen to be very complex in
every way. Of most importance is the complexity of any
hardware realisation of such an algorithm. This complexity
dictates that its use is only advantageous over that of the
Massey algorithm for values of t of ! or above.

Peterson (1960) put forward a decoding method based upon
error location equations in a similar way to Berlekamp. The
solution of the equations was achieved by the inversion of a
matrix of syndromes. The method, described in detail by
Peterson and Weldon (1972) and compared to the Berlekamp method
by Berlekamp (1968) is more complex than the Berlekamp method
for large t, but for t less thén about five may be preferable.

It is nevertheless more complex than the step-by-step method for

t less than four.

Applications of B.C.H. Decoding Algorithms

B.C.H. decoding algorithms have importance outside the realm of
decoding B.C.H. codes. It has been shown by Chien and Choy (1975)
that Goppa codes and Srivastava codes may be decoded by a B.C.H.

decoder; C.T. Retter (1975) has also published methods of
decoding Goppa codes with B.C.H. decoders. More recently Helgert
(1977) has shown that, by a linear transformation of the syndromes,
Alternant codes may be decoded by the Berlekamp B.C.H. decoding

algorithm. The Alternant codes contain B.C.H., Goppa, and Srivastava
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codes as sub classes.

A major advance in the decoding of B.C.H. codes would result
from an ability to calculate quickly the logarithms of elements of
Galois fields. At present the most efficient method of realising
B.C.H. decoders of any type would appear to be microprocessor

control of PROM type Galois field arithmetic units.
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5.1

5.2,

CHAPTER

Hashim's Nested Codes

Introduction

- Presented here is a description of the Hashim nested codes, which
differs from that given by Hashim (1974).

This description gives a clearer insight into the properties of
nested codes, and the decoding alogorithm applicable to nested codes
is readily deduced from the description.

The conditions under which a nested code will decode a codeword
corrupted by more than {d - 1)/2 errors, where d is the minimum
distance of the code, are noted, and the consequences of repeated
nesting of the codes are considered, especially the increase in length,
rate, and deccder complexity which results.

Further, a decoder algorithm put forward by Hashim for low rate
nested codes, and for nested codes formed from low rate nested ccdes,

is investigated.

Structure of the Nested Codes

The parity check matrix, H, of a nested code is given by Hashim

as Fig. 5.1.

Parity check matrix of first,

(n1,k1) linear block code.
H = In-k n, = n- k

Parity check digits generated
by the second, (n2,k2) linear
block code

€ - k = n——

v

€ n

Fig 5.1 = Parity Check Matrix of a Nested Code
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The first k columns of the parity check matrix of this (n,k) nested
code are therefore codewords of the second, (nz,k2) code which is
either a Hamming code with minimum distance li, or another nested code.
The (n1,k1) code has an odd minimum distance d, and then the
(n2,k2) code must have minimum distance (d - 1). The resulting (n,k)

nested code then has minimum distance d, with n = n, *n, and k = ng.

Proof of the Minimum Distance of a Nested Code

with a generator matrix G, given by :

Consider first a code C N

A
6, =[r: H1TJ

where H1T is the transpose of the parity check matrix of another

code C1.

It will be proved that if the code C1 has minimum distance d

then code CA will correct up to (d - 1)/2 errors provided that they

occur only in the information digits of the code.
Proof

Let a codeword, C,, from the code C,, be corrupted by an error

A’ A’
pattern . Let €y T § Ve where e 1is the error pattern in the
information digits and B that in the redundancy digits of the

. corrupted codeword.

Then the syndrome, SA; of this corrupted codeword is given by :

: T
Sy = (CA + eA) Hy

where H, is the parity check matrix of the code CA'

A
_ T T _ T
hence SA = CA HA + eA HA = eA HA
now € = e er
: _ T
and since GA -[I IH1 ]

then H, =[H1l 1]
T

hence N HA is given by

2E m T
W WS S IS il

&
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Now, the row vector e has length equal to the column length of H1T,

and e. = O since all errors are in the information digit section of

the codeword.

iy

: T <53 :
Therefore s, = € HA = e H1 s provided all errors are in the

A

information digits of Cpe

If the weight, w(ek) of e,_ is bounded by w(ek)<((d - 1)/2 then the

k

°

solution of the equation Sy T ey H1T is precisely the decoding of a

codeword from C1 which is corrupted by at most (d - 1)/2 errors. That
is to say, if Sp is treated as a syndrome of a corrupted codeword
from C1 and an error pattern is found from this by the- decoding

rules of 01, then the error pattern so found is precisely s provi-
ded that the weight of e is at most the error correcting power of

C,s i.e. provided w(ek)\<(d - 1)/2.

This completes the proof that ¢, will correct up to t = (d -1)/2

A
errors provided that they all occur in the information digits of the

codewords. The manner in which this is achieved is seen from the

proof to be to use s

) 25 @ syndrome of the code C1, and the error

pattern corresponding to this syndrome, found by the decoding
algorithm of C1, is the error pattern eps corrupting the information
digits.

In order to convert the code CA into one which will correct
(d - 1)/2 errors wherever they occur in the codeword, the parity check
digits may be encoded with another linear systematic block code, 02,

which has even minimum distance (d - 1). As a result of this

encoding, the parity
- 104 -




check digits of the convérted codewords are themselves codewords from
code C2. Hence if at most t - 1 = jgéi_g errors occur in the parity
check digits they are correctable - allowing the decoding algorithm
previously described to clear the remaining errors in the information
digits - whereas if t errors occur in the parity check digits then
they are detected and the information digits may be assumed to be
uncorrupted, since it is accepted that t errors at most have occurred
overall.

In order to ensure that the parity check digits of codewords from
CL are encoded according to the rules of code C2, it is sufficient that
the rows of E1T, in the generator matrix GA’ are encoded by the
(nz,kz) code C,.

The generator matrix, G, of the resulting (n,k) code C is then

given by :

G= |I ' H * 1 digits obtained by encoding rows of

H T with code C

1 2

The last n, digits of each row are then codewords from code Cz. The
codewords from C are of course simply all the possible combinations of
sums of rows of G - therefore the last n, bits of all the codewords of
C are always the sum of some codewords from 02 and since 02 is linear
they are always a codeword from C2.
Finally, by manipulating G, the parity check matrix, H, of the

code C is seen to be given by :
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5.h.

5.5t

Digits obtained by encoding columns

of H1 with the code 02

where H1 is the parity check matrix of code C1 which has a minimum

distance one greater than that of the even'minimum distance code

C2.
This, of course, describes precisely a Hashim nested code.

The distance properties of the code have therefore been proved as

required.

The Decoding Algorithm

Directly from the proof has come the decoding algorithm, which
is to first decode the parity check bits of a received codeword,
according to the decoding algorithm of 02 (if t errors are detected
here then the information digits are considered error-free) and then
to correct errors in the information digits by treating the first
(n1 - k1) digits of the syndrome of the received word as the syndrome
of a corrupted codeword from C1. The error pattern corresponding to
this syndrome, found by a decoder for the code C1, is the error

pattern in the information digits of the codeword from the code C.

The Optimality of the Construction of Code GA

The efficiency of the code C can be seen to be dependent upon that
of the code QA. It will be shown that the construction of GA ag- s
_ T
GA = [I ‘H1 ]
is the optimum construction for a code capable of correcting error
patterns occurring only in the information poéitions of a codeword,

provided that H

1 is the parity check matrix of an optimum random error.
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correcting code.

The syndrome SA’ when treated as a syndrome of a corrupted code-
word from code C1, has already been shown to correspond to the error
pattern in the information digits of a corrupted codeword, as long as
this error pattern has Hamming weight at most (d - 1)/2 where d is
the minimum distance of the code C1.

It may further be seen that any error pattern corresponding to
a coset leader of the code C1 may be correéted provided the syndrome
SA is used by a maximum likelihood decode for code C1. That is to
say, those error patterns which are correctable by code C1 are also
correctable by code CA if they occur only in the information digits of
the codewords. Thus if the code C1 is optimum, that is.corrects the
optimum set of error patterns for use on a Gaussian Channel, then code
Cy

patterns occurring in the information digits, when used on a random

is also optimum in that it can correct the optimum set of error

channel.

Hence it has been shown that the code GA is constructed in the
most efficient manner possible for use in a random error correcting
nested code, and so nested codes cannot be made more efficient by the
choice of a different construction of GA'

Correction of Error Patterns of Weight > (d - 1)/2

The ability of nested codes to correct error patterns of weight
in excess of that guaranteed by their minimum distances may be seen
immediately from the decoding algorithm. A received codeword is cor-
rectly decoded provided that the following conditions are met :
(a) A1l errors are cleared from the parity check digits by code C2.
(b) A1l errors are then cleared from the information digits by code CA'

Alternatively, a received word is also corrected if the information
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5.6,

digits are error-free and the code 02 detects any remaining errors.

Therefore a codeword is correctly decoded provided these are at
most d = (d - 1)/2 errors in the information bits and at most t - 1
errors in the parity check bits; and it is also correctly decoded
when the information digits are error-free and more than t - 1 errors
occur in the parity check digits, but are nevertheless detected by the

decoder for code C2.

From the previous section it can be seen that the former require-

ment reduces to the need for the errors in the information digits to
be correctable by code C1, and. those in the parity check digits to be
correctably by code C2.

FEasily Decodable Nested Codes

In order for nested codes to be useful, it is necessary that the;
be easily decodable. Since the complexity of decoding a nested code is
approximately equal to the sum of the complexities of the decoders for
the constituent codes, it is therefore necessary that the codes C1 and

C, be easily decodable. For this to be so, C1 and C, should be either

2 2
nested codes themselves, or easily decodable in some other way, for
example majority-logic decodable or error trappable.

As an example, consiaer a nested code constructed from a (23,12)
linear binary block code with minimum distance seven, (i.e. the Golay
perfect three-error-correcting code) and a (21,11) linear binary block
code with minimum distance six (e.g. a first-order projective geometry
code). This code will be a (Ll;,23) nested code with minimum distance
seven, and may be easily decoded since the (23,12) code may be decoded
by the "error trapoing with windows" method (Lucky, Salz, and Weldon

1968), and the (21,11) code is one-step majority-logic decodable

(Peterson 1972).
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5.7

Bashim (1974) implies that for a nested code of rate at most
Sne half it is necessary only that 02 be easily decodable, and that the
information bits of the code may be found by solving the parity check
equations of the nested code. Hashim thus introduces a class of
"decodable nested codes" found by nesting such codes with other nested
codes 02 and then repeating this nesting procedure as often as desired.
It will be shown later that this decoding algorithm is fallacious. PFirst,

more general properties of nested codes are examined.

The Rate of Nested Codes

Hashim correctly states that the decoding complexity of nested codes
increases linearly with their length. This criterion, however, may
give misleadingly optimistic view of the power of nested codes. Con-
sider for example the (44,23) nested code which was described above.
This code has length nearly twice that of the (23,12) constituent code,

whilst the decoding complexity is also somewhat less than twice the

complexity of decoding the (23,12) code (to be more precise, approximately

the sum of the complexities of the decoders of the (23,12) code and the
(21,11) code). The rate of the new code, however, is 0.523 compared to
the (23,12) code which has rate 0.522 and the same minimum distance as
the new code. Evidently,-the (44,23) code, although having increased
in decoding complexity linearly with the increase in length from a
(23,12) code, has increased negligibly in rate.

In view of this doubt as to the usefulness of nested codes, a
calculation is now made of the efficiency, R, of a nested code in terms
of the efficiencies R1, R2, of the constituent codes C1 and 02 respect-
ively.

It is known, from the construction of the codes, that the following

three relations hold between the parameters of the nested code and its
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constituent codes :

ns= n1 + n2 oo oo oo (i)

k = n1 oo o ee (ii) )
; k2 = n1 - k1 oo oe ) (iii)
From equations (i) and (ii)

n=k+n2 oo oo oo (iV)

and from (ii) and (iii)

k2=]::-k1
& @ k2112 =k-kk1 sincek--:n1
o, N

* =% (1-R1) oo (v)

2
sinceR1=ﬁandR2=§ i
w: v

hence, from (iv) and (v)

n=k+k (1-R,)
R

2
* n=1+1-R,
..k R
2
* R= s since R = k
* e 1 -R, +R, n

This gives the required relationship between R, R1 and Ro,

In order that a nested code be useful, it is necessary that it
have a greater rate than that of the constituent code C1 which has the
same minimum distance as itself,

This gives the condition :

2 5
i.e. R,)R, ('1 - R,) + R R,

. Ry (1 -R)DR, (1 - Ry)
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.hence, gince 1 - R1)O,
Ry DRy

For nested codes with high rates C2 will be much shorter than C

1°
and this consideration will overide that of minimum distance, making
01 higher in rate than 02. In this situation it is obviously pointless
to construct a nested code, since the code C1 will then have a higher
rate than, and the same minimum distance as, the nested code and yet be
shorter. Hence C1 would give a lower probability of error than the
nested code, on a random error channel, unless the nested code is able
to construct a considerable number of errors of weight greater than its
guaranteed error correction capability. Also, C1 would be much easier
to decode than the nested code constructed from it.

At low rate, however, when code CZ will be the same length as, or
longer than, code C1 the situation is different. Since code 02 has
e minimum distance one less than that of C1 its rate will be higher
than that of C1 apd so the negted code will also have a rate higher than
that of C1.

Nested codes which are constructed with a C1 which is the best

known linear binary block code with minimum distance d and C, another

2
nested code with minimum distance d - 2 extended by the addition of an
overall parity check bit to give it minimum distance d - 1, are listed
by Hashim for minimum distances five to eleven.

The longest of these for which nesting gives an improvement in rate

over that of the code C1 are listed below in Table 5.1.

Longest useful nested code

Minimum Distance e C1 is bost koown R TABLE 5.1
5 ) 37,23 0.62
T 38,15 0.39
11 91,31 0.34
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A similar tavle has béen compiled (Table 5.2.) for nested codes
cénstructed from a ccde C1 which is the best known linear binary block
code with minimum distance d and a code C2 which is the best known
binary group code with minimum distance d - 1.

It can be seen that in either case the longest nested codes that

may be constructed are at best of rate slightly greater than one half.

TABLE 5.2.
Longest useful nested code
Minimum Distance with Cy & C2 the best known R
5 37523 0.62
7 60, 3L 0.57
9 89,17 0.53
11 95,L5 0.L7

As stated above Hashim claims that with nested codes of rate one
half or less it is not necessary to decode C1 - the information digits
may be calculated by clearing the errors from the parity check digits
by using code 02 and then solving the parity check equations of code
C1.

word from C1, in which case nested codes of rate one half or less would

This process may be less complex than decoding a corrupted code-

certainly be useful in that they would have a rate higher than that of

C1 and may be easily decoded.

Also useful are nested codes in which C1 is a nested code of rate
one half or less, or in which C1 is a nested code that in turn is con-
structed from a nested code, and where in either case code 02 is also a
similarly constructed nested ccde.

These easily decodable repeatedly nested codes may be constructed
with high rates énd for any desired odd minimum distance. They are,

however, very long compared to other classes of error correcting codes,

particularly for minimum distances greater than five and at high rates.
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This is shown graphically in Fig. 5.2. where the decodable nested codes
with minimum distances 5, 7, and 9 are compared with self-orthogonal
quasi-syclic codes, and with B.C.H. codes, of the same minimum distances.
The parameters ot the nested codes are taken from a list given by

Hashim (197L) which has been corrected for some small arithmetic errors.

This corrected list is given in Table 5.3.

Decoding Nested Codes with rate less than or;equal to half

Hashim's claim that nested codes with rate at most one half may
be decoded by clearing the errors from the (n - k) parity check digits
and then finding the error pattern in the information digits by solving
k parity check equations is now investigated.

Hashim (197),) states that since the (n - k) rows of the parity
check matrix H of a nested code are linearly independent, then the
(n - k) syndrome equations are also linearly independent and therefore
the decoding scheme above may be used. In fact, however, it is necessary
that the rows forméd from k of‘the first (n - k) columns of the H matrix
be linearly independent; and this property is not held by the parity '
check matrix of a nested code, as will now be shown.

Consider firstly the parity check matrix, H, of a half rate nested
code, which may -be written as :

H =[u1 1]
Then the equations obtained for the calculation of the error pattern in
the information digits are given by the solution ot the equation :
eHT =Me = &

where e is a column vector representing the error pattern, and s a row
vector which is the syndrome given by multiplying the received, corrupted,
codeword by HT.

Then e is given by the solution of the equation :

e = sM 1
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and is uniquely solubleiff'M is a non-singular matrix,
For M to be non-singular, the rows of M must be linearly independent.

In the case of nested codes, the matrix M is given by

H
¥ = 1

Columns obtained by encoding

columns of H1 according to code C2

and therefore the lower (n2 - k2) rows of M are linear combinations of

the upper rows.

Hence the matrix M must be singular, and e cannot be uniquely

determined - hence the decoding procedure is not valid for codes of

rate one half.

( Furthermore, in nested codes of rate less than one half, the
matrix M must still contain (n2 - k2) rows which are linearly dependent
on the remainder, since the k columns must still be chosen from linearly

dependent rows of the H matrix.

Therefore, whatever the rate of a nested code, the decoding

algorithm put fo;ward by Hashim is not applicable. This may be illus-
trated by a simple example.

A (13,5) nested code with minimum distance five may be constructed
with code C, a 5,1 repetition code and code C, an (8,4) Hamming code with
ninimum distance 4.

Thus code C1 has the’parity check matrix H1 given by :

B = [t1000]
10100

10010

10001

and by encoding the columns of H, according to the rules of code 02

1
and adjoining the result to an identity matrix of order eight, the
parity check matrix H1 of the nested code is constructed.

Now the generator matrix, G2, of the (8,4) code 02 is given by :
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Gp= [100001 1 1
0100101 1

00101101

L_O 0011110]
and so H is given by :

B, = P1 10001000000 6
1010001000000
1001000100000
1000100010000
1011100001000
1101100000100
1110100000010

1111000000001

Thus G, the genera:er matrix of the nested cade, is given by :
G = -1 00001111111 {
0100010000111
0010001001011

0001000101101

[9 000100011110
In Table 5.4. is given a 1list of all the codewords in this code,

i.e. the row space of G, from which it can be seen that any parity

check vector will always correspond to two different information

vectors -~ hence an error pattern in the information vector canrot be

calculated solely from a knowledge of the uncorrupted parity check bits.
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Information Parity Checks Information Parity Checks

00 d 00 00000000 10000 341 £1.1 9.3
00001 00011110 10001 11100001
00010 00101101 10010 11010010
0001 1l 00110011 10011 11001100
00100 01001011 10100 10110100
00101 01010101 10101 10101010
00110 01100110 10110 10011001
00111 01111000 10111 10000111
01000 10000111 11000 01111000
01001 10011001 11001 01100110
01010 10101010 11010 01010101
01011 10110100 11011 01001011
01100 11001100 11100 00110011
01101 11010010 11101 00101101
01110 11100001 11110 00011110
01111 1113 1881 S T I A 00000O0O00O

TABLE 5.4. - Codewords fro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>