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ABSTRACT

The electrical conductivity of a metallic system
containing a very low concentration of paramagnetic
impurities (commonly known as a Kondo system) is investigated
by applying the linear response formalism. Starting from
the s-d exchange Hamiltonian, the Nagaoka equatiomns are
re-formulated in the presence of a uniform electromagnetic
field and a finite concentration of impurities. These
self-consistent, closed set of equations are solved
diagrammatically and it is shown that for s-wave scattering
only, or more generally if only a single phase shift of the
exchange interaction is non zero, the vertex corrections
drop out. The calculations of conductivities at high and
low temperatures, compared to the Kondo temperature, TK’
where the perturbation theory breaks down, within the
response formalism then give the same results as those of
Nagaoka. Our investigation also substantiates the approxima-
tion that the Kondo system relaxes with a characteristic
time, T , provided the concentration of impurities is so low
that the interaction between the impurities can be neglected.

The same formalism has been used toc calculate
analytically the frequency-dependent conductivity at low
temperatures. Because of the approximations involved in the
calculations, our result is valid for frequencies very much
less than 10'%Hz. The real and imaginary parts of the
complex conductivity are written down in terms of a
dimensionaless parameter in the 'pure' and 'dirty' limits

5

(concentration of impurities, ¢ ~ 10 ° or more). In contrast

with the numerical calculations of Murata and Wilkins, the



(ii)

real part of the conductivity does not show a peak with
respect to the frequency. In the 'pure' limit, the con-
ductivities can be expressed as a universal function of
impurity-concentration, and in the 'dirty' limit they are
independent of it. These results arc in agreement with the
calculations of Murata and Wilkins. The predicted peak has
not yet been observed experimentally.

The basic equations are derived again, taking an
extended exchange interaction, with finite concentration of
impurities but this time in the absence of the electric
field. By following the same procedure, these equations

LA
1Lne

[y

have been solved for s and p wave scattering together.
vertex function for high temperatures has been evaluated from
an integral equation formed through the Ward's identity. The
electrical conductivity at high temperatures is calculated
and a third order term in the exchange interaction is found
in the coefficient of the leading logarithmic term as a
correction. This term occurs due to the interference of s
and p wave scattering and it has been shown that for a
particular ratio of the strengths of s and p wave scattering,
the leading logarithmic term can vanish giving an entirely
new high temperature behaviour. The next highest order tecrm
has been calculated, and it is shown that this term does not
vanish for the particular ratio when the leading term
vanishes. Some experimental results are discussed in the
light of the present theory. The approximate expression for
the conductivity at low temperatures has been found. At
absolute zerc temperature, the effect of inclusion of p wave

scattering is a significant reduction in the conductivity.



(iii)

For weak p-wave scattering, the conductivity at low tempera-

tures is found to depend on p-wave scattering only.



CHAPTER 1 INTRODUCTORY REMARKS ON THE KONDO PROBLEM

1.1 Early Experimental Work

The study of dilute alloys of transition metal and
rare-earth ions in non-magnetic hosts has a long history.
In 1930, Meissner and Voigtcl) observed that the electrical
resistivity of certain metalé, particularly of 'pure'
gold, decreased first and then gradually increased, by a
few per cent, as temperature is decreased to below 10°K.
This was studied more closely by De Haas, De Boer and
Van den Berg(z) and they found a minimum in the resistance-

il o
%) .

"
% K] . . 5 . . .
Llnde( ) carried out a series of investigations on the

temperature curve of 'pure' gold (impurity <10

specific increcase in the resistivity when small amounts of
normal and transition metals were added tc the noble metals,
(Cu, Ag and Au). He observed that Linde's rule(d) is valid
for the addition of normal metals but not for transition
metals. Later, Gerritsen and Linde's(S) experiments on
electrical resistivity of Ag-Mn alloys showed a minimum for

0

a concentration of about 0+l at % Mn in Ag. Since then,

the same phenomenon has been observed in many other alloysﬂé-zu
For many years the subject remained obscure despite

experimental studies, and in the absence of proper

theoretical explanation the anomalous behaviour remained

a mystery. It is only in recent years that an understanding

of the nature of the problem has been attained. Gradually,

a number of phenomena became quite well established.

Anomalies in the thermodynamic and transport properties cf

the alloys were correlated with the existence of a local




moment on the impurity ions(zz), as indicated by high

(23,24). The

temperature susceptibility measurements
principal effects observed werc the following:
(1) A resistance minimum occurred at low temperature.
This was remarkably different behaviour from that found
in 'normal' alloys where the low temperature resistivity
became a temperature independent function dominated by
defect and ordinary impurity scattering. Such
ancmalous effects were observed, for example, in
numerous gold-, silver- and copper-based transition

(6—21).

metal alloys In Cu-Fe the temperature of the

was found to vary with the impurity
Cl/b[lS).

mininun, Tnin
4 4

I tion .
concentrat C as Tmln
(2) The high temperature magnetic susceptibility x ,
3 r C
approximately cbeyed a Curie-Weiss law, x(T) = TT+57

where 6 was generally of the same order as

(22)

T and C is a constant. For small impurity

min
concentration, x{T) was proportiocnal to concentration

and no antiferromagnetic order was obscrved. But

deviations from the Curie and Curie-Weiss law were
- (25,26

observed at low temperatures " ~? ).

(3) The magnetoresistance was found negative at

¥ ,47)
ten ¢ 8 w T . (7, .
temperatures belo ik

(4) The specific heat exhibited a peak at 6°X in

(28,29)

Cu-Fe alloys The associated entropy under

the specific heat curve was consistent with the loss

of spin degree of freedom as the temperature dropped
(29,30)

toward zcro. A similar peak was suggested in Cu-Cr

specific heat data with entropy R &n 2.5 per mole of




impurity (R is the gas constant per mole).

(5) Very large and negative thermoelectric power was
found in the same temperature region where the specific
heat and resistivity were anomalous(31’32).
Similarly, anomalies were observed in the linewidth

(33-35) and M@ssbauer spectra(36’37).

of NMR
No theory proposed before 1964 satisfactorily
explained the available experimental results. Attempts to
explain experimental data followed in two different
directions. The first concerned the conditions for the
existence and stability of localized moments in the system.
The second studied the effects of localized moments on the

properties of the host metal. Both of these have been

studied extensively on the basis of different models.

12 The Kondo Preoblem

The study of the existence of localized moments in
metals started with the work of Friedel(ss). By introducing
the concept of a 'virtual bound state' he explained why local
moments are more stable in monovalent metals than in poly-

valent metals. Anderson and Wolff(39’40)

proposed simple
models to establish criteria for the existence of localized
moments. Long before that, Zener(41) proposed a model of
ferromagnetic transition metals where an exchange interaction
between the localized d electrons and itinerant s electrons

is assumed tc be the cause of ferromagnetism of the 3d metals.
This model has also been applied to magnetic alloys where an
impurity spin of fixed magnitude is thought to interact with
the spins of the conduction electrons (the s-d exchange

1
model). Schrieffer and Wolff(“z) showed that this type of

interaction can be obtained from the Anderson model if the




width of the spin split of d levels is small compared to
the distance of these levels from the Fermi surface.

For a long time, it was believed that the ordinary
perturbation theory could account for the anomalous
properties of dilute alloys. Yosida(43) calculated the
resistivity due to spin disorder scattering to the first
Born Approximation and found that the temperature dependence
of the relaxation time T was too small to account for the
rise in the resistivity at low temperatures. Kondo
realized that as the resistance-minimum was a widely
observed phenomenon, it should be possible to explain it
using a very simple model. He carried the calculation one
step further, to the second Born Approximation(44). In the
second Born Approximation, intermediate states come into
the picture. The smplitudes of two probable processes of
spin flip scattering (say K+ » K'+¥) do not cancel, because
the probability of these two processes occurring are not
the same. When integrated over the intermediate energy,
it leads to a term containing &n T. The expression for
resistivity, R(T) due to the exchange scattering was found to
be

R(T) = ¢ Rm[l + J N(O) #n T/D] (1.1)

where ¢ is the concentration of impurities, N(O) is the
density of band states per atom near the Fermi surface, D
is the cut off parameter of the order of band width and Rm
is the resisitivity calculated in the first Born
Approximation (we choose units such that h = K8 =1).

The logarithmic term increases as the temperature decreases
if the strength of exchange interaction, J is negative.

This term added to normal phonon scattering gave remarkable




agreement with experimental data showing resistance-minimum.
Kondo concluded that J should be negative for alloys showing
resistance-minimum. Furthermore, when lattice scattering
(Rp (T) « T°) is added to Eq.(1.1), the total resistivity

1/5
al‘
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may be shown to have a minimum at Tmin
The logarithmic term can be viewed as arising out of
the 'internal structure' of the localized spin from which ths
conduction electrons scatter. There are two degenerate
internal states, spin up and spin down. Since the result
of any particular scattering is dependent upon the spin
orientation, it is also dependent upon the previous
scattering. Mathematically, it is a consequence of the
non-commutabiiity of the spin operators, S ,S_ - S_S, # O.
The Fermi factors which occur in the intermediate states of
a perturbation calculation no longer cancel as happens for
normal potential scattering. In the third order, they add,
and the summation over intermediate momenta generate the
logarithmic dependence of the scattering lifetime near the
Fermi surface.
Kondo's calculation(44), while explaining some features
of the resistivity data, brought in new difficulties.
Eq. (1.1) implies that the resistivity diverges as T - O.
This cannot be the case, since all scattering is limited by
unitarity. It must be noted that Eq. (1.1) represents only
the first two terms of the expansion. The second term
dominates over the first as T » 0, however small J N(0O) may
be. It was found that in higher order similar logarithmic

terms were present and these could be summed as a geometric

series, giving

R(T) = ¢ R [1 - J N(O) n T/p1° 1 (1.2)
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which has a pole for negative (antiferromagnetic) sign of

J at the 'Kondo temperature, TK'given by

T. = D o 1AJIN(O)

K (1.3)

This signifies the breakdown of perturbation theory. Such
behaviour usually signals an instability of the normal Fermi
sea, as was earlier recognized in the theory of super-
conductivity(45). In that case a phase transition takes
place which brings in a new 'superfluid' state. Because of
the limited number of spin degrees of freedom, the Kondo
system behaves in many ways like a zero dimensional system,
and hence a usual phase transition does not take place.
Experimentally also the thermodynamic properties pass

smoothly from their high to low temperature values.

1.3 Theoretical Development

A large number of attempts have been made to explain
the low temperature behaviour of the Kondo system. They may
be classified into three groups(46); (1) analytic continua-
tions of the dominant terms in high temperature perturbation
theory to low temperatures,T < TK(47-52)’ (2) variational
techniques at T = 0(55-57) to determine ground state
properties and the low lying excitation spectrum and (3)
the concept of 'localized spin fluctuation&58'6o) which
starts from non-magnetic states and allows gradual transition
to the magnetic states. We shall restrict our treatment to
(1).

The most widely used theories of the first type are
those of Abrikosov(47), suh1 (*8) ang Nagaoka(49) as extendcd

by Hamann(so), Blocmfield(512 Zittartz and Mﬁllerwﬁartmaﬂn(bﬁf.

(47)

Abrikosov replaced the local spin by a pseudo-fermion




and summed up the special 'parquet' diagrams to calculate
the perturbation series. Suh1(48) formulated the problem
in terms of dispersion theory while Nagaoka(49) wrote
Green's function equations-of-motion which were then
truncated and solved. Later theories were shown to be

(53)

equivalent , although their identity was not apparent

(49’54)which

from the outset. It is the approach of Nagaoka
we intend to foilow later.

Using the retarded double time Green's function,
Nagaoka(49) derived a closed set of equations for two single
electron Green's functions. This was reduced to a nonlinear
singular integral equation for the non-spin flip part of the

(50) |

T-matrix by Hamann From his solution the temperature

dependence of the resistivity was calcula;igea¥d found to be
in qualitative agreement with experiment)\ As TK; o,
R(T) approached the unitarity 1limit. The specific heat was
initially found to be zero, but this discrepancy with
experiment was resolved through an essentially exact solution
for T-matrix later carried out by Bloomfield and Hamann(51).
A pronounced maximum in the specific heat, CV(T) was found
at T ~ %TK . Littartz and Mﬁller—Hartmann(sz) then showed
from the exact solution that Cy(T) « Zn-4T/TK as T » 0.

The susceptibility has been a slightly more difficult
problem since it cannot be directly calculated from the

(61), based upon

T-matrix. A theory due to Zittartz
essentially the same physical assumptions as the truncation
by Nagaoka, has shown that x(T) becomes negative at low

temperatures. Though such a result is inconsistent, it dces

indicate the tendency of conduction electrons to compensate




the local spin for T < TF

(» Later, Bloomfield, Hecht and
Sievert(éz) have extended the Nagaoka theory to finite
magnetic fields and found a similar negative susceptibility
at low temperatures in the presence of small magnetic fields.

The earliest of the variational theories was
developed by Yosida(ss). Other later attempts(56’57) pre-
dicted a ferromagnetic instability for J > O in disagree-
ment with perturbation expansions . For antiferromagnetic
coupling, J<0, all variational theorics assume a singlet
ground state. Matlis&63) proof, and other results from
finite temperature theories(64), support this assumptiocn.
Yosida(ss) started with a trial wave function in which one
electron above the Fermi sea was paired in a singlet way
with the local moment. Then the coupling parameter was
varied to minimize the ground state energy. In higher orders
successive numbers of particle-hole pairs were added to the
single electron. As increasing numbers of pairs accumulated,
it was shown that the net binding energy grew, and approached
Ty in the limit. Thus, the formation of the singlet bound
state led to small decrease in energy.

The third line of investigation started with the work

160 rhe

L (65)

of Lederer and Mills(ss), Rivier(sg) and Suh
idez of this approach was to begin with Anderson mcde
and to use many-body perturbation theory starting with the
assumption that the ground state is a non-magnetic one.
This is called the 'localized spin fluctuation' theory.
Now, in cases in which the impurity is indeed not very
magnetic, for example Mn in A1(66), this theory is very
successful. One obtains a non-singular slowly decreasing

susceptibility, and a resistivity which may increase or

e ———



- ) -
decrease as T?, Again, since the localized state is indeed
non-magnetic, such a theory works with renormalised
parameters over any limited temperature range. Hamann and
Schrieffégﬁzhowed how this renormalisation works in such a
way as to give Kondo temperature, and also worked out the
relationship between high and low temperature regimes.

Thus the qualitative features of the Kondo anomalies
appear to be reasonably explained. Below TK all theories
predict a very strong coupling of the conduction electron
spin and the impurity moment. At T = O, the coupling is so
strong that the spin nonflip scattering at the Fermi surface
reaches the unitarity limit, and a singlet ground state is
formed. This state has a binding energy of order Ty and its
formation is accompanied by a specific heat anomaly. The
entropy under the specific heat curve is of order 2n 2(62’67),
corresponding to the loss of the local spin degree of freedom.
Negative magnetoresistance is understood as the tendency of
a magnetic field to break up the singlet pairing, and hence

to reduce the scattering cross section.

1.4 Comparison of Theory and Experiment

At high temperatures, T > Ty, all physical properties
can be calculated by applying perturbation theory and the
results are in good agreement with experimental data.
However, several discrepancies still exist between theory
and experiment. One which is clearly apparent is that the
width of the transition from high to low temperature
behaviour is predicted to be too broad. For example, the
width of the specific heat anomaly is theoretically about
two decades temperature(62), while experiment indicates only

‘3 - - - - 1
one decade(6°). The resistance anomaly is similarly predictec

to be considerably broader than the 1} decades found




experimentally(69).

A number of more serious quantitative disagreements
with experiment occur at low temperatures, T << T,. By
taking care to eliminate the effects of interactions
between impurities, it has been found that simple power
law in T governs the low temperature behaviour of the

(70-72) ¥ .
Kondo system . At low temperatures, it was observed

that the resistivity varied as

(71)
R(T) = R(0)(1 - a T?) for PdCr

and for QHF0(7Z)(with Fe concentration, ¢ = *6 x 10—4) and
also

R(T) = R(O)[L - a(T 2n T/b)?] for Auv, Cucr(7?)

4 3

and also for QEFe(73) (with ¢ = +13 x 107" to +4 x 10 7).
But the theory predicts an infinite slope of the
resistivity at T = O as a function of T(zero slope for R
as a function of 2n T/TK) and for very low temperature a
negative curvature of R(T) for s 2 1. However, other
predictions of the theory at high temperatures seem to be
in good agreement with the experimental data.

A quite different behaviour has been observed in

(74-76) etc. where the

alloys such as RhFe, IrFe, PdCo
impurity contribution to resistivity increases with
increasing temperature and decreases strongly with decrcasing
temperature. This has been discussed in terms of positive
J(44). But the susceptibility measurements show a very
substantial decrease in the magnetic moment at low
temperatures(77). They also show a specific heat anomalv

at low temperatures(78) and there are MOssbauer anomalies
(79)

similar to that in CuFe Thus, except for resistivity,

these results indicate that they are negative J systems.
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Attempts have been made on the basis of 'localized spin

+ (80) model and two-band model(sl)

fluctuation to explain the
resistivity of these alloys. But, these systems are not
well understcod yet.

Our object has been to study the nature of the
exchange scattering and to try to explain the experimental
data with the existing theory. In the second chapter we
develop Nagaoka egquations with finite concentration of
magnetic impurities in the presence of a uniform electro-
magnetic field, A(t). We solve these ecquations (Chapter 3)
for é(t) = 0 and A(t) = 0. There we show explicitly that
for constant J, the 'vertex corrections'(gz) drop out when
we average over the impurity positions. We then recover
Nagaoka's result for the conductivities at high and low
temperatures. As a by-product of applying the linear
response formalism to the Kondo system, we have succeeded
in calculating analytically the frequency dependent conductivity
at low temperatures (Chapter 4). In Chapter 5, we reformulate
the equations with finite concentration of magnetic
impurities - this time with extended exchange interaction,
and present a formal solution. In Chapter 6, we solve the
equations for s and p wave scattering only. We calculate
the resistivities at high and low temperatures and present
some discussion on the results. In the final chapter we
discuss some aspects of the Kondo system and attempt to

indicate the nature of future work within our formulation.
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CHAPTER 2 FORMULATION OF THE EQUATIONS

2.1 Introduction

The explanation of the resistance minimum given by
Kondo in his celcbrated paper(AA) turned out to be extremely
stimulating. Kondo pointed out that the resistance minimum
arose as a many-body effect from the spin dependent scatteriag
of conduction electrons from the localized moments. This can
be viewed as follows: the scattering of an electron by the
impurity depends on the fact that a previous such event had
taken place, and hence an indirect electron-electron inter-
action is generated. This is schematically shown in the

*~=

diagram (Fig. 1). A similar case was found previously in toe

L oy

Figure 1. Schematic diagram of the indirect electron-electrc.
interaction in the Kondo effect.

two-particle t-matrix for scattering through the indirect

(via phonons) electron-electron interaction which leads to

superconductivity. After Xondo's paper, a large number of

nonperturbative attempts have been made to describe the

state of the system for temperatures T < Ty . We shall

restrict ourselves to the equation-of-motion method due to

(49,54)

Nagaoka and consider the case when potential scatter-

ing is absent. Some parts of the derivation overlap with




_—

that of Nagaoka, we shall, nevertheless, include them for

the sake of completeness.

2,2 The Hamiltonian

We take the s-d exchange Hamiltonian which starts from
the assumption that 2 localized magnetic moment exists at
p 5

3 A
(28) and Wolff(”o) have worked

the impurity site. Friedel
out how such a moment could exist in a metallic environment
and Anderso'l(3 ) showed why some transition metal impurities
in noble metal would show magnetic behaviour and others
would not. In the s-d exchange Hamiltonian the impurity
spin of fixed magnitude is coupled with the spins of the
conduction electrons through an exchange interaction., For
Ny impurities distributed randomly throughout the system
such that the impurity concentration, c = Ni/N (where N 1is
the number of atoms in the crystal) is very low to enable us
to neglect the interaction between the impurities, we take

the model Hamiltonian for the Kondo system given by,

L - 04 ;L
H=H'+ ) Ho (2.1)
(02
where
H o= ) €1C € (2.2}
0 h ko ko
and
¢ = E oi(k'-k)*Ra [t )s
ex N Kk k4Ck 4™ k+ k'v
+ n r\u + ~ (X T
*CialrreSo F G Cpry Syl (2.3}

Equation (2.2) is the conduction electron kinetic ecnergy
o . +
Eq.(2.3) represents the s-d interaction. Here C

are the creation and annihilation operators of the conduction

electron with wave vector k and spin ¢ , g being its energy




= 1d =

measured from the Fermi surface. We take J which represents
the strength of the exchange coupling between the conduction

electrons and the local spin S%, to be comstant. The

Py

positive and negative signs of J indicate ferromagnetic anc
antiferromagnetic coupling respectively. Later on we shall
consider the effect of the extended exchange interaction.
The localized orbital is assumed to be occupied by just one
electron - this assumption is inherent in the Hamiltonian.

ol

0k a :
S_ are the components of the spin operator S~.

A
Also Sy s S,
For simplicity, we shall restrict our treatment to the case
of S% = 1 only.

Let us now introduce, the single particle time

dependent Green's function(gs) defined by
Gyyr (E,€') = =i< TCpy ((£)CL, () > (2.4)

Here <....> denotes the averaging over the grand canonical
ensemble, i.e. the expectation value of an operator, yx is
given by
-8H
<y > = Tr[e-BHx] (2.5)
Trle ]
where Tr denotes the trace and 8 = 1/T. [For convenience,
we shall use units such that, Planck's constant divided by
2m and Boltzmann constant are equal to unity, i.c.
h =k, =131, Cy(t), C;(t) are Heisenberg operators in

B

which times evolve as
C.(t) = e 'cke (2.56)

and T orders the imaginary parts of t,t'. The boundary

condition is




Gkk,(t,t') = - Gkk,(t,t') . (2.7)
t=o t= -18
(the minus sign appears because we are dealing with Fermions)
which states that the Green's function is analytic for the
complex values of the time arguments in the period O to
-ig. The Fourier expansion of it is given by

[ ¢ (t t')e-wntdt (2.8)
Jo kk? s LaeO)

1
G (w t') B i
k' (O —

where, v, = (2n + 1)n/8, n = 0, *1, *2,..., the odd

Matsubara frequency(Sz) for Fermions.

2.3 The Equations of Motion

We now develop the equation of motion for the Green's

function in the presence of a uniform electromagnetic
94(t)

field, g(t) = - . Using

at
dcy (1)
i = [Cy,HI_ (2.9)
dt

the equation of motion of the Green's function Gkk.(t,t')

can be written as

g T5 573
z

dt

Ly (k') R

Pr g (547 (2.10)
2N 2,c

Here the Green's function depends explicitly on t and t'
and not just on (t-t') as is usually the casc in the absence

of the field. We¢ also defined

Ioer (E,67) = =i< TECL, (D)S3(E) + Gy, (ISE(R)IC3, () >
(2.11)




It can be easily verified that the Green's function F%k' also
satisfies the same boundary condition (2.7) and hence has the
same Fourier expansion. Since, the first order terms in the
field A(t) is enough to calculate transport properties of

the system, we shall neglect higher order terms in the field,

i.e. we can take

n

-int - .
: - a (& 5 \
eK(t) €1 ao(tm.k)e (2.12}

92]

where a_ = e/m*, ¢ i

" the charge and m* is the effective mass

of the electron and the response to the field is taken to
be of the ferm A(t) = Aw ¢t yhere w is the frequency of
the field. Then using the Fourier transforms of Gkk' and

Tik' Eq. (2.10) can be written as

£ 0
B~
=

s}
o]
s
=
—
1S
-
o+
~s
¢
1
o
b
Wﬂ
(o)
-
(vv*
1
ot
| —

(w.=iw)t

- ao(éw._lg') 2 Gkk' (wn,t')()
wl’l

ot w_ t
Ly AR B g ane® (2.13)

2N 2,0 »

Fer convenience we set, w = iwp s wp = 2mp/B, p = 0, *1, *2...,

and evaluate the response at points wp and later we nake
analytic continuation in the upper half plane, according to

iwg + @ + i0+ (0+ is a positive infinitestimal) to extend

the results for all frequencies. Multiplying both sides of
o 1

(2.13) by ® % and integrating over t from O to -iB, we gec




(Lo =€ 1) Cppr (0, ") + ao(éw.kl)Gkk'(wn-wp,t')

1
J _.. v 5 .Q i -U.)“l‘.t
L - 91(& k') 2002 (w_ t') = 28,.,0 (2.14)
k& n?’ n Kl"
2N 2,a i B

The Fourier transform of the Dirac delta function is defined

by

1 -18 ~wpt
6(wn,t') = 4+ f (t-t")e dt
-1
0
-wnt'

=1 me= O if0O> t' > ~iB

iB
= 0 otherwise .

To obtain a closed set of equations, we must now write

the equation of motion of Fik" But this generates higher
order Green's functions and the equations of motion of those
generate still higher order CGreen's functions. In this way
we obtain a chain of equations which cannot be solved. Hence
one has to cut the chain by making some approximation. e
shall come to this pcint later. Let us now write the
equation of motion of F%k' : first of all we take

, o
H = + H
) HO cX

where we have not summed over the impurity position Ra.

The derivation of the equation follows as before. We have
< SZ > = 0, becausc there is no external magnetic field and
so the impurity spins have no preferred direction. e

obtain
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ary, (")
i kk H = S(t—t':‘< [Ck'+sc}' + Ck' Sa C
dt ”

ol
N I asd(t)
= t Ck (t') >=i< TCV,+ t)i " A

T3

"l< 11

acy, () as? (t)

-i< Ti s*(t)CE, (t") >-i< TG, , (B)i— G
o kA “kry P

(4+15)

We evaluate the commutators, [Ck,H] etc., in (2.15)

and use the following relations valid for §% = %

[0} - OO Cl
sgsZ =+ 587, §,S; = t} 83
and &
S,82 =13 +587 - (5)°

Then Eq. (2.15) becomes

dr“k.(t t") .
5 = Ek'(t)rkk”(t’t')
t
hi (1-k').Ra
- § po Jatha s bl Py MEAE)
11 ,Q,
-2 Zei(&-k')-ﬁd F%R(t,t')
2N g B
. J i(2'-2).Ra + ,
i § R e ()], (e, (08P 0)C, (21 >
2N 2,2" “k'4 L4 L'y kt
. J i(2'=2).Ra + ol ¢ g ih 5
o] e @1-8)-Bo ¢, (6)C], (£)C,. , (£)SECEICE, () >
N&,%
il § A@RB e i6)Ch (6)C,,, (S (EC, (1) >
2N 2,2
L, 5 MEEDT qo 06T 00, G IR L (') >
2N L, ® e

< ot
-i£ ): el(& &) .B_OL< TG, |+(t)cg+(t)r‘g’ni\\t)da(t)ck,«(&q >

(2.16)




2.4 Decoupling Approximation

It can be seen in the last part of Eq.(2.16) that the
Green's functions contain five operators. As mentioned
before, the equations of these Green's functions generate
5till higher order Green's functions. Thus one is faced
with a truly manybody problem to sclve., At this point, one
must make some approximation. We follow Nagaoka's decoupling
scheme(49), where the average of some combination of
operators is replaced by a product of averages of operators.
In doing so, we combine the operators in such a manner that
each average conserves spin. Lot of criticisms have been
made of this approximation, but so far no substantial
improvement could be achieved. One approach is to adopt what
is called 'cumulant averages'(84). But, whether this method
provides any better approximation to this problem remains to
be seen. Nagaoka(ss), however, showed that his decoupling
scheme is exact to infinite order of J as far as the most
divergent logarithmic terms in each order of J are concerned.

We decouple the quantities that appear in Eq.(2.16)

as follows:

+ oy A% _ + QA+
< CpipCppCpiySIlCy > = < CpuyCpy > < € STICyy >
+ o +
* < CppCarySs > € CpnylCyy >
+ ot
< CrpCayCanpSylCyy >

= + go * + a ~t
= < CpipCp Sy »< CpyylCyy > #< € Cpyy SY ><Cpaplpy >



w I -

o+
CyryCaaCorpSilc

A

2 < C C >< C

o + &
[RNSAR )1 yS21Cky > =< CuCn 8T >< CouylCyy >

k4 247k

A

c1,+c C “!01 >

24014

= < Ck'+cg+ ><CR'¢S?|C; >-b<C2|c >< Cp, ST Cf+ >

R T L Lo

= < Cyr Gy >< CprySylCp >+ < CyryC Cy, Sy >< CorylCyy
(217

where we denoted < TA(t)B(t') > by < A|B >, We alsc use

the following symmetry relations:

+
< Crplirg > = < iy 2
<cte . s%s = <! s* >
“k4ATk'yU- kv~ k'+ +
_ a - o* o
= 2< CpyCuaySy > = =2< Cpy Gy 7 >
(2.18)
2.5 Basic Equations in Electromagnetic Field
The Eq.(2.16) can then be written as
drak'(t A') o J i(&-k').Ra a
Ek!(t)rkk|(t’t') % e z (t t')
dt o 2N g
. RS-
= % i_ el(_)z_‘. _1.(. J.Eackﬁ,(t’t‘)
2N g

i 3\
- 3 yot(& kN Repa (oyr¥ e,e)
N o

+ 2 e LX) R (£)6,, (€, t")
L
(2.19)
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where
n(t) = Eel(k L)-Rag ¢ (edc, (1) > (2.20)
ker) R
n(t) = 3Jet BB -Roc ¥ (tyc,, (0)s%(t) > (2.21)

2

Now using the Fourier expansions of Gkk,(t,t') and Fik,(t,t')

as before and the following Fourier transforms of the

products,
= -
my, (£)Gy, (t,t") = 7 o (w,-w )G (w.,t') (2.22)
S TA = i kg y? '
L. _ t! U)y
n’
nk,(t;F (t,t!) z ) niy(wn-wy)F%Q(wy,t') (2.23)
L. g t! wy

n’
the Eq.(2.19) reduces to

(iw ek.,Fk,,(w JEV) # a, (Aw.k 31 1(,(uun-wp,t')

o3 L gt &R Len)
N g
R
-~ L 7AK BB r% (u,t")
)

J 2-k').R ,
. Z{ ci(&-k') Ra Z e I wy) iz(wy,t )}
2 Yy
- L g{ KRS 5 g8 (036 (ay e} = 0
ZN 2 wy

(2.24)
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Next, we consider the remaining part of the

- 3 - ' -
Hamiltonian, i.e. X HZX. As S®* commutes with that part,
atza

it only comes in through the time derivative of C},,O and we

get the following terms

. i{2=k").Ra!' !
-i ] Jel (k") Bale pe (0)s®' (e)s%(tycy, (1) >
o #0 9

-1 ] fetED Rl re ()8 (2353 (e)Cy, (21 >

+i ; Zei(_ 2 - & TC2¢(t)Sﬁ£S?(t)C;+(tt) S (2.25)
o #0

Since we consider the case of very low concentration of
impurities, we can neglect the interacticn between the spius
at different impurity sites. However, following Nagaoka(54}
we take their effect into account by replacing (iwn~ek,)
appearing in (2.24) by (iQ(wﬂ) - sk,) where Q(wn) is a
function of Wy and is equal to W, in the lowest order
approximation. Thus, the equation of motion for Tik. can
be written from Eq.(2.24) by replacing (iwn—ek,) by

[if(wy) = €301, i.e. we write




- 2% =

; \ - a 1y A 1y " -1
[}Q(mn) Ek;]rkk'(wn’t o+ ao(iw.k )I‘kk,(wn wp,t )

‘“v)sz(wy’t')} =8 a5

In the next chapter we solve the equations. There,
o o - 5 : 4 C s
we replace n, and my oy their impurity averaged quantities
3 S ety . g :
and then relate them to Gkt s F%k" which are also impurity

averaged. These relations together with Eqs.(2.14) and (2.26)

form a self-consistent closed set of equations.




CHAPTER 3 SOLUTIONS : CONDUCTIVITIES AT HIGH AND LOW
TEMPERATURES

3.1 Introduction

Qur aim has been to calculate the conductivity and
hence the resistivity of the system from the response formalisn
so that we do not need to adopt the relaxation time approximao-

tion., The expectation value of the current operator is given
by

< juliuy) > = < py(iv)j, > (3.1)

where vy = 2np/8 , p = 0,#1,%+2,... are the Matsubara
frequencies and Py is the first order correction to the
density matrix. Eq.(3.1) gives rise to the familiar current-
current correlation function(sé)(Kubo formula) which can be
related to the single particle Green's function of the
system. However, there, we need to include the 'vertex
corrections' that arise due to interference between the
Green's function§87), which occur while we average the
product of two Green's functions in order to evaluate the
current-current correlation function. This correction, to

a certain approximation, is usually given by a complicated
integral equation. Our purpose here to formulate the
Green's function equations in the present manner is that if
we calculate the single particle Green's function in the
presence of a uniform field, this will give us the average
current directly and the relevant corrections would be
automatically taken into account. Although it is known(88)

that the vertex corrections do not contribute to the

conductivity of the system for s-wave scattering only, we
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shall nevertheless show this explicitly so that the reader
can follow easily the formulations of later chapters. We
shall now solve the equations derived in the last chapter.
As the response function, first order in the field, is
sufficient to evaluate the transport properties, we shall
consider equations relating to the first order terms only.
We proceed in two steps. First we solve the equations
formally when é(t) = 0 and then substitute the zeroth order
terms from these solutions in the equations of the first

order terms. Finally, we solve these equations.

3.2 Formal Solution in the Absence of the Field, A(t) =0

When A(t) = O, we can write

ni(m -w,) = n(}‘O § (3.2]
n -y k wn’wy

mﬁ(m -©.) = mOLO 8 (3:3)
n oy k mn,wy

which implies that we now have a point interaction only at
a a
= Wy e We also replace ml,0 and nko by their impurity

W
n
averaged values - which is a consistent approximation in the
limit of small concentration of impurities. In terms of
diagrams, this approximation is similar to ignoring the

diagrams with crossing interaction lines in the calculation

o) : &
of Gékz’ that is, we write

Q
o
il
~
o
~
~
(2]
.
. 1
L —

=
1l
xﬂ
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Also, in the absence of the field, the Green's functions are
functions of (t-t') only. Hence, we can drop the t'

dependence. Then the Eqs.(2.14) and (2.26) reduce to

(iwn - ek')Géig (m )+ ;g Qzu 1(Q LR Rarkz( n) = % 6kk'
(3.6)
a
[iQ(mn) - 8k':] I'klcz'(“’n)
J (o) m1(2 -k').Ra
e ")
- L (w0 1) P EED B Wy c0 1)
! '3

We use zero suffix to indicate that the quantities are in

the absence of the field. From Eq.(3.7) we find

y 3 JP(lw )
i(2-k').Rap o & i (2-k') .Ro(0)
Ee kﬁ(wn) 1+JG(1w ) Ee k% (w n)

(3.8)

where (o) _ %
Gliw ) = 1Z< (3.9)

B N K [i0u) - €]

and m(o) L

. 1 4
r(ie ) = .’ (3.10)

Substituting Eq.(3.8) in Eq.(3.6) and dividing both sides

by (iwn - sk,) we obtain

V' (iwn) Z 1(2 k ) .Ro (0)@))
- ek‘) (iwn - ek') 2,0

(3.11)



with

1 -2 .
T

- 2N ) (3.12)
1+ JG(iw)

' (3 =
V' (iwg,)
Equation (3.11) is similar to the equation of ordinary
potential scattering. This equation can be solved by the use
of the technique of the multiple-scattering theory. When,
J =0, V'(iwn) = 0 and we have a non-interacting systemn.

The free electron propagator is given by

g (v ) = % — (3.13)
, (1(»n - ek)
Then Eq.(3.11) can be written as
. (o oy i(&=k").Ran.(o
Gip () = gridpgr * V'(lwn)gk'QZae Lk R (0) )
9
where
VLT, ] = -igV' (iw,) (3.14)

Equation (3.14) is solved by the diagrammatic method.
The solution is obtained as an infinite series as shown in
Figure 2 where the double line indicates the single
particle Green's function and the single line denotes the
unperturbed Green's function, gk(iwn). The cross dznotes

the interaction V"(iwn) with impurities.
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k' ok Ok k' 2k
e e b e (a)
01t
Kk Kk k'L X
S
. Skkt k' o~k Y ~ Lo K
= s = _'%h» > L,ﬁ}—'“ ‘+" > ‘\/ K A_wa“ -
4o - - &
1(1
k' ok k' k k', kK K
> f .i_“‘;>__A SRR N, V.5 S S VAR VAN ‘\ VAR
(c)

(k',k are the momenta of the ingoing and outcoming electron
lines)
Figure 2 : Calculation of Géoz(wn). (b) shows expansicn of

Gﬁi?(wn); (c) shows an approximate evaluation of it.

For convenience, we join the crosses corresponding to
the same impurity by dotted lines. Then typical fourth order

terms in the expansion of Fig. 2(c) are:

r
K
A
X
o
g
K
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In the low density limit (kFQ >> 1 where & is the electron
mean free path) it can be shown that diagrams of the form
Fig.3(c), with intersecting impurity lines are negligible.

Thus, on summation of the series in Fig.Z2(c) we obtain

%% I ()

V"'(iwn) =
1+ JG(iw,) + %JZF(iwn)F{iwn)
(3.15)
with
Flin) = = ] 1 (3.16)
Ny riauy) - e
Finally, we average the equation of Fig.2(b) over the
impurity positions and obtain
) i Sk
Gkk' (LUI’_) = E‘ R . (3.17)
P oliw, = gy *+ VLlwn)]
with Ni ,
I = J°T(1w,)
.| L (3.18)

Viinw_ ) =
n 1+ JG(iwy) + 3J2T (v IF(iey)

Now we recall the definitions of ni and mi from
Egs.(2.20) and (2.21). The impurity averaged quantities
nﬁo)and méo)are related to Géoj(wn) and Fab(wn) in the

following way

nl® = -1 § 6@ e ° (3.19)
wn

(0) , 0.0 1wn8+ 7 A

mﬁ = -21(} e (wye (3.20)
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iw_O+
. n : e T .
The factor e = , where O+ is positive infinitesimal,

ensures the convergence of the w_  integral. To calculate

o 0 . - =00 «
né )and mi )we must obtain b§ )(wn) and Fk (mn) given by

6% () = ) ot LK) Rug oy (3.21)
T2%,) = § et (kk1)-Ro pdo ¢y ) (3.22)

k!

Eéo)(wn) can be calculated quite easily from the diagrammati.
form of the Eq.(3.14). We multiply both sides by

3 -l
V"(iwn)el(g k )'Buand average over the impurity positions.

This is illustrated in Fig.4. We have

k k? kk' k k! k 2 k!
Nl e e— / \/ E ~ ~ \
= = M X R

o o o' o o' a'
A e e e
Sxke K K kK 2 _ Kk
= { — 1+ s ‘ % -a e
- F—f o T J‘:f{}? L FP
o o a'za a at=za aza'za
K s Skl
Sk

Figure 4 : Diagram illustrating the calculation of Eko)(wn).
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, i(k-k').R .
V' (lw) ] e Jpl R G&?i = vV '(1wn)G£§)
which gives

l+JG(iwn) 1

7 -

S 1436 ) IR TG ) T T ot V)
(3.23)
Fio can be calculated from Eq.(3.7) by substituting
Eq.(3.23). From Eq.(3.7) we obtain
(0)_s a(i ~(n(0)_; i
on(w ) = J (m 3)[1+JJ(M%Q] (nk 5)JF(u%Q ZE(O)(w )
DTN [10(u,)-€, JT1+JG (0, )] g @ B
Using Eq.(3.23) we find
(©)_s c 0 Y7 (n0) - .
.Fio i = ;l.(mk 3)[1+JG(1wn)] (n.k %)JF(lwn) i ; 1
C N [i0(v,)-€, I1+JG(w )] B Ciw e #V(iw )]
(3.24)

3.3 Formal Solution in the Presence of the Field

We now go back to the Egns.(2.14) and (2.26) and con-
sider the case when the external electrcmagnetic field
A(t) is not zero. Ve expand Gkk" Fik" n, and my in terms
of zero and one - where zero terms are values in the absence
of the field and one terms are the terms of first order in
the field. As mentioned before, we shall keep the first

order terms in the field only. We write




Gr (0g) = 603 (o) + 6 () (3.25)
) = T2 (w) + T (o)) (3.25)
nk(wnj = néoj(wn) + nél)(wn) (3.27)
m(e) = % (w) + ntt) () (3.28)

We consider thc response at a single frequency, i.e.
the field is of the form, A(t) = A e_lwt and we had set
-ip = wp. Since n( )(w ) and mg )(wn) are first order in

the field, we can write

e al s
n ) = n § 3.29
k (wn K Wy ( il
al ol ST
'ﬂk (U)Il) - m'k GU) ,UJ (Z..‘)O,
p’ n
Substitution of Eqgs.(3.25) to (3.30) in Egs.(2.14) and
(2.26) and collection of the first order terms yield
1
(a6, ICU (1, t") + 2 (oK' )Gig)(wn-wp,t')
s Lo LKD) R, ey =0 (3.31)

ZN 2,0
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(30w )=y, I3, (0 ,t") + a_(Ay k'Y, (- et')

# 1) B R e e

2

ZN

J [ (o) %] J ei(&-k').Ra (1)( £
L

(1) 7 e i(2-k').Ra ao(

b = !
qk Wy wp,t )

L

"
o

L mé%) ¥ o~ bk Jake (0)(w t") (3.32)

P
2N 2

Now, we eliminate Fii, from Eq.(3.31) by substituting

its value from Eq.(3.32). We have, from Eq. (3.32)

§ otUK)Bapal, oy oy 20 A(ek')Repgog, o e
2,0 L,0 (iwn—ez)
_ JG(1w )Z Cl(l -k'}.Ra al( 0, t")
o) N
% ‘JI‘(W) )2 1(2 k ) RG (1)(0) ) (3.37,)
&) N

Here, the two terms containing m(l)and n£ )vanishcd - since
these quantities are first order in the field, they must
occur in the form (Aw.k) and hence angular integrations

of the k-sum would give zero. By substituting for Fii,
from Eq.(3.7) in the first term cof the r.h.s. of Eq.(3.33),

one can also show that this term vanishes. Hence, we have,



from Eq.(3.33)

Z ei(&-g').ga al

%,0

- A -
3IT (iw ) s
% : 2-k").R
F}'Q,(wn’t') = _______I}___.. z el(__ X ) —aG"z({i) (wn,t')
) : 1+JG(1wn) 440 :
(3.34)

Substitution of Eq.(3.34) in Eq.(3.31) yields

G(l)(w

kk!'

Lt') = iBga (Aw.kN6) (o - wyht")

R |
- iagk'V’(inQZel(& k) BogMDw e (335
o

with 81 and V'(iwn) as defined before in Eqs.(3.13) and

(3:12).

We solve Eq.(3.35) using similar diagrammatic technique

as before. We illustrate this in Figure 5.

k! k' k k' % K
=t S e
()
k' k' k PO ¢k
L N -V WSS YA - S
k' 2o k
o - > 3> ¢ :\ I T
®)
k' 2 2 k
- e (©)

5 : Calculation of Gﬁi? denoted by wavy double lines.




In averaging over the impurity positions in Figs.5(b),
5(c), we neglected averaging across the vertex, It can be
seen quite easily that this averaging does not contribute
to Gﬁi? for our point interaction formulation. The phase
factor associated with the interaction potential is
independent of the dummy variable, % and hence when summed
over, the higher order terms in the typical 'ladder sum'
would vanish due to angular integrations. This, in fact,is
due to the fact that momentum has to be conserved at ecach
impurity site when averaged over the impurity positions. We
can see this clearly from a typical term arising in the

expansion of Géi?, (Fig. 6).

a
A
AN
LA
\
VA \ .
AR | 4 3
A ! \
/
P i \
7/ o , \ N \
\
' 4 / ' / \ \
K : / \ S
/ /’ Sy \
A Y A % \
G S A S X
P q 2 m

Figure 6 : Averaging over the impurity site across the vertex.

Contribution from Fig. 6 can be written as

[-V'(iw)1°(iB)° | a,(Aw.2) gpgqgngei(R'E')-Bu’fi(a-a)-_lia-*i(&-g).ga

Psq,%
n
. oi(m-2).Ra+i(k-m).Ra
. s i(k-k').Ro _
=[-V'(1wn)]5(18)5 ) ac(ﬁw.&)gpgqgggme (k-k")Ra _ 4

P,4q,%
m
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Because the angular integral in the £ sum gives zero.

As we know Géi? gives average current directly through

a relation

<> =0, 1 K& @) (3.35)
k,w

we can insert another E vertex in each term in the series

for Géi? and calculate the average current. This is shown

in diagram 7.

,//>’“ . \}.{ /%~-\
. J,,‘ = n / / ‘
\ > ' \\\ \_\ / \\‘ r !

\C_,// \\.é.\«-” A ) ‘\*: - \\\\\ ) /

Figure 7 : Diagrams to calculate the average current < J > .

The current is given by (Fig.7)

2

] ! k kG (o)(w )C(°)(u -6.) (3.36)
K

v -kk
*n




where v is the volume of the crystal and all other quantities

are already defined.

3.4 Conductivity at High Temperatures, T > Ty .

By high temperatures, we mean, temperature greater than
the Kondo temperature, Ty s where the perturbation series
diverges. In Nagaoka formulation this is the critical temp-
erature, TC. We can replace nﬁo)and mﬁo)by their zeroth-

order gquantities with respect to J. Thus, we have

m}EO) = 0 " n]go) = fk = f(ek) (1.57)

Then, in the lowest order approximation

. - _ imp ‘ -
F(lwn) _E_ sign w, (3.38)
P(iw. ) = imp sign (3.39)
n’ AN g Wy )
G
and
0 D 1 €
Gliw ) = & J - tanh[—-;]de (3.40)
TN g (e-dwg) 2T

where p is the density of states of conduction electrons of
purc metal near the Fermi surface and we intrcduced the
cut-off parameter D in the e integral as the integral
diverges as € + » , We approximate (3.40) at T = O which

is, more or less, a standard technique and obtain

w
Clin_) = . in~2| for D >> w_ (3.402)
= N D

Then, using Eqs.(3.38), (3.39) and (3.40a) in Eq.(3.18) we get




i 2 o
1T€NCNQJ sign w
V(iwy,) = —= = if(u)sign w
pJ _g}l
D i

in

n (:
1-=—== n
N

where, we neglected the J? term in the denominator because
it is small compared to 1. Also, we put c = Ni/N, the
concentration of impurities. From Eqs.(3.41), (3.17) and

(3.36), we obtain

D
& 2
J = L [_5_] A pkE ] J de —
b om ww WF Ce-iwg -V (iw)) Ile=io) =i, =V (i +ie )]

(3.42)

where kF is the momentum of the conduction electron at the
Fermi surface and, p is the density of states for both spins
(= SN/ZEF). For convenience, we changed the variable

wn-wp to wy and relabelled W, . The e-integral now con-
verges as € + «© and we can extend the limits to « to =~-«,

Then the integral is easily performed around the contour

as shown in Fig.8. Then we get

i 2TV g |* 12 .
J. = = e A pkZ 3.43
B 38 [m*v} uP Fé(wP) ( )
where
) 1
Elwy) = )
~w_ <w, <0 y
L ) * . w_+w * -
1 -b n 1 - b 4n s
D D

(3.44)




with
N,
y o > 4 qpy2 , p=8d (3.45)
16 N2 N

Ime

Figure 8 : The contour of the e-integral.
Next, we have to perform the w, sum in the restricted region.
This can be done by transforming the w, sum to a contour

integral using the relation

] £e) = £ f —ggLI £(-iz) (3.46)

The integrand has poles along Im z-axis at z = iw and the
contour c' encloses them. The appropriate contour c' for

the w  sum is shown in Figure 9.
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Figure 9 : Contour in the complex plane for summing over the
Fourier energies.

We can now deform the contour as shown in Fig.9 and

integrate along the dashed lines.” We obtain

g((».‘_,)) = i J dez L
o 2mi 0 oet T+l Y Y
p 42V, 1z
1 - bin———= 1 - bin —
D D
_ B J dz 1
Bz
2mi e” "+1 Y
w + - +
P 1-b n=2%2 1-p n "
D D
(3.47)

At this stage, we can make analytic continuation to real

frequencies, iwp +> w + 10+, which gives

There are two points to be cleared up: (i) one has to show that the
contributions from the end-bits of the contour vanish, (ii) tnat
there are no poles in the deformed region. These are done in the
Appendix A.



E(-in) = —£- Jf(x)dx —
2mi “lw + X + Y
1 -bgn 2028 1 - papd
D D
) 1
~iw + Y + X } (3.48)
1 = Ban=EE 1 = b pe=t
D D

where f(x) is the Fermi function. Eq.(3.48) can be written

as
E(-iw) = & If(x)dx{¢(x) e (3.49)
27i J
where
) 1
¢(x) =
~iw + I s e (3.50)
1 = bIne= 1 ~ b pea—
D D

We change the variable x-w to x' in the second term of

Eq.(3.49) and relabel x, to cbtain

E(-iw) = g J¢(x)[f(x) - f(x+w)Jdx

2mi

~ . iws Jcb(x)/ [_af(x)]dx
2m _ X
wW=90

Expanding in powers of J, which is consistent at high

~~
(€3}
.
(93]
Pt

L

temperatures, one cobtains




Substituting Eq. (3.52) in Eq. (3.51) and performing the

x-integral one obtains

£(-iw) = -iﬁﬁ-l-[l_- bzn. T ‘] (3.57%)
2m 2y 1.13D

Thus, using Eqs.(3.53), (3.45), the current is found tec be

2
3, = iwA B gkl 16N g o ed Rnl LS i
3 m*2y 3mpcJ?

(3.54)

The d.c. conductivity o , for J < O is given by

n* 3mpcJ? N 1.13D

2 .
5 = % e 16N [:1 . pLJlQn| T ' ] (3.55)

This is essentially the Kondo result as obtained by
Nagaoka. Our result differs from Nagaoka by an overall
factor ! and 0.68 in the %n term. Nagaoka's formula (5.3)
agrees with ours, which is derived from the current-current
correlation function, for the free electron gas. But his
definition, Til = -Im Gii(-iw} has to be replaced by
(Zrk)"1 = -ImGLi(-iw) to account for the factor ! in our

result. Furthermore, Nagacka used his expression (3.9)

for evaluating his (5.5) rather than using his (3.10). This




will account for the factor appearing inside the n.

—3

hus, we see although we adopted a different method to
calculate the conductivity of a Kondo system, we arrived at
the same result. This substantiates the belief that the
metallic systems containing a very dilute concentration of
paramagnetic impurities can be treated, to a reasonable
approximation, as though it relaxes with a characteristic

time T .

3.5 Conductivity at Low Temperatures, T < T;.

At low temperatures, a straightforward perturbation
expansion is not possible. The méo)is then expected to be
large near g = O. We shall follow Nagaoka procedure to
find a solution at low temperatures, valid near the Fermi

surface. We shall solve for the case J < O.

Let us assume,

m- 1 = a@®- /e (

(#X]
L]
Ui
(@)
e

where, o > o, is a parameter to be determined self con-
sistently. Then G(iwn) becomes
iw nk_%

Glin,) = =2 T(in) - = ]
Q N x €y

(3+57)

Then, substituting (3.57) in (3.18) one finds

V(iwp) = 1£(wn)51gn Wy

where

! 1 "
£luwgy) = —Y  and y' = ic|J]o,A=a|T|pn/4H

(3.58)




provided,

gL Ly T2 (3.59)

N k Ek

A depends on a and, has to be determined self-consistently
from the Eq.(3.59). Then the expression for average current

is given by, as before,

2
Ty = - 2o kg f >
* - - . - -t = s o s A
38 m**v o, e -iw, V(1wn)][e twy-ieg V(1wn+1qp,]

Performing the e-integral, one obtains

2T 82 2
Jd, 6 = =— A kzp E(w_)
u 38 m*2y ¥ B P

where

2 1
\j Y
mg KU <O (. sl Y
p n

E(wp) (3.60)

The w, sum follows exactly the same way as before and after

making analytic continuation, we obtain

E(-iw) = —B- jf(x)[m) ~ ¢(x-w)] (3.61)
2mi
with
= 1 3.62)
(b(X) = —iw R ,Yv N Y' ( -02)

A+ ix A - ix - iw




o A5 =

E(-iw)

i
=
gl [
W
Sy
<
[
-2
g
i
Q)lQJ
= I+h
| —
[T
>

which gives

. 2 2
g(_lw) = -_l_u.)_B_ __A___ 1 + .n__. [.T.] (3.63)
3

2m 2yt A

Then using Egs.(3.58) and (3.60) the conductivity is

obtained as

.2 2 2
g =« B8 TOI g 4L [I] (3.64)
m* 2¢N 3 A

A factor of 2 can be taken into account in the same way as
before. Eq.{3.64) gives the low temperature conductivity of
Kondo alloys and this goes to a comnstant as T » O.

Now, one has to determine the temperature dependence
of the function A from Eq.(3.59). This has been done by
Nagacka and we shall not persue this point any further, but
quote Nagaoka's result. For two limiting concentrations of

impurities A's are obtained to be, at T = C

A=A = L for ¢ << L AO
2mp N
TP 2 P
= =2 A for ¢ >> = A
cN © N ©
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where
A, = D expl- N/|J]e3 ;
For higher temperatures, the approximate solutions give,

for T ~ O,

A(T) = A(O)L1 = ATZ]
where
2 c =
A=1r—~—12-[1——9— ‘“1 forc<<9AO
6 AO 4 TTQAO N
2 TpA ]
=1 1 - = for ¢ >> £ Ao
6 Ag 2¢cN N

and for T ¢ T_

with



CHAPTER 4 THE A.C. CONDUCTIVITY AT LOW TEMPERATURES

4.1 Introductiocn

In the last chapter, we applied linear response
formalism to the Kondo probliem. For contact interaction,
we found that 'the vertex corrections' dropped out and the
conductivity could be calculated from the current-current
correlation function in a straightforward manner. In that
case, the transport relaxation time reduces to ordinary
relaxation time for the scattering of conduction electrons
by the impurities. As a result of applying the response
formalism, we have succeeded in calculating analytically
the frequency dependent conductivity (valid for
12

w << - 0
Wrax ~ 10

Hz) at low temperatures.

Although there exist a few theoretical calculations of
frequency-dependent conductivity of the Kondo system, there
are hardly any experimental data available to compare.
Kakitani(gg) has carried out a perturbational calculation
of the complex conductivity, o(w) = ol(w) + icz(w), based
on the s-d exchange model valid at temperatures higher than
the Kondo temperature, Tk. Calculations by Moriya and

(
Inoue‘go)

of the frequency dependent conductivity of a dilute
magnetic alloy have indicated that measurements of the
surface resistance of a Kondo alloy in the microwave or far
infrared region might distinguish between the s-d and 2sf
(localised spin fluctuation) models. Their results indicate
significant deviation from the Drude model and predict a

peak at finite frequencies in the real part of the conduct-

ivity. Murata and Wilkins(gl) calculated the surface
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resistance of Kondo alloys by solving the t-matrix of the
s-d model numerically. They also have suggested that a peak
might be observed in the frequency dependent conductivity.
But, the experimental data(gz) so far available have not
supported this prediction.

Cur analytic expressions do not show any peak in the
real part of the conductivity. But, since our calculations
are valid at low frequencies and low temperatures, we
are not in a position to draw any definite conclusion. We

shall discuss this point in the last section of this chapter.

4.2 Frequency-Dependent Conductivity at Absolute Zero

Temperature.

Let us recall the expression for average current at

low temperatures:

27 ez 2
- o i 4.1
3o S Akpe &(w)) (4.1)
where
- \ 1
E(wp) L | (4.2)
-wp<mn<o - 4 -YV . .Yl
P A = Wy A+w +w
with
y' = ic|Ji|a and A = a|J|pm/4N (4.3)

The w, Sum now has to be performed carefully, since we are
not interested in the d.c. conductivity any more but want
to extend it to all frequencies. We notice that the summand

. -1 : . =1
in Eq.(4.2) goes as wy" as oy > . So if we subtract w

P
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from the summand at the outset, the summand will be
absolutely convergent as w  + « and the contributions from
the end parts of the contour (Fig.%) will pose no problem.

Then, transforming the w_ sum to the contour integral form

n

we arrive at the following expression:

£(-iw) = £ 8- J ggf !
Zr 2mi J e T+l i ¥ y' " y'
A - ix A+ ix - iw
_ 1
. .YV Yl ,
-iw + + (4.4)

A + ix A~ ix - iw

where we already made the analytic continuation to the real
frequencies. We write the expression (4.4) in the

following form

E(=iw) = £ _ B I ;f' g(x) (4.5)
27 2mi e" " +1
where
C, &
g(x) = = - - (4.6)
ax? - bx + ¢ ax? + bx + cC
2 2
with

a =0 b=uw’cy= w?A?-iw®A+iwy' (2A-iw)and c; = v'(24-iw)

(4.7)

We notice that the function g(x) is odd and so we can

transform the expression (4.5) to




= B =

o [ee)

J g(x)£(x)dx + - J g(x)dx

2mi
0 m 0

g(-iw) = -B_ - _g.
2 Ti

(4.8)

where f(x) is the Fermi function. At absolute zero tempera-
ture the Fermi function vanishes and we only need to
evaluate the last integral of Eq.(4.8). For small frequency
range, b? < 4ac2 and we can perform the integral quite

easily giving

<«

4c
J g(x)dx = l__ tan’! Db (4.9)
/——————————
where
dc ' )
1 - 4y' (26 - iw)
B i
Jhac. - b£ w3/2[4(wAz-iw2A+y'w+Ziy'A)_w3]2
2
(4.10)
and
- - ; o™/ . (4.11)
Jiac. - pz  [4wd*-ie?asy'er2iy'a) - w®)?
2

We simplify the square of the last expression and obtain

2
. . (4.12)
dac, - b? 4 , 48, Bis _ 41 _ 4
&2 &2 ®3 W
where
§ = y'/A? and @ = w/A

1
The next step is to assume w << y'2,
I Y

This assumption

restricts the validity of our calculations to frequcncies
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very much smaller than ~1012Hz. Since, y' = =~

at T = O and with the density of conduction electron states

near the Fermi surface for both spins, SN, s YR cTieg

ZEF

where c Ni/N is the concentration of impurities. Hence

1
. cz/eFTP is 1012Hz, if we take eg ~ 5 ev and

wmax
T, ~ 10°K.

1
Now, if we take w? << y', 6 = X >> 32, Using this
A

condition, one can show that the expression (4.12) is very
much less than 1 and hence the expansion for tan-lx for
small x is valid. Then &2 << § i.e. &§/%2% >> 1 and we can
neglect 1 in the denominator of (4.12) compared to §/%%.

We obtain

1 " 1 B2/4
i+i§+ﬂ[2_5_1] 4 .48, 8is 1+ & + 2i8/B
w2 »2 o L n2 B2 p2 &3

(4.13)

We can consider two cases, § 21 and § < 1, For both the
possible cases the expression (4.13) is very much less than

1. Thus Eq.(4.9) can be expressed as

(o]

J g(x)dx =

0

dy' (20 - iw)
AwA? + 4y'w - w® + 8iy'A - 4iw?A

The rearranging and the rationalising of the r.h.s. gives

8AY'w(4A%+p?) 12y [w2 (4A%-4y'"+02)-16y"'A%]
02 (402 +4y ' -02)2+16A2(2y'~w2)? w2 (4A+4y'-w?)+16A% (2y'-0?)?

(4.14)
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Using (4.14), Eq.(4.8) becomes, at absolute zero temperature,

]

U 2 2
E(-iw) = B - B TCIA ol )

wZ (482 + 4y' = w?)? + 1607 (2y' - w?)?

1
2m

! 4y[w? (4A%-4y'+w2)-16y'A2
m w2(4A2+4Y"w2)2+16A2(ZY'-NZ)Z

(4.15)

Substituting Eq.(4.15) in Eq. (4.1), and dividing by iwAu,

one obtains the expression for complex conductivity given by

2 s 2, 2
o) = 2L & g | ot 1 B8y! (40%+0%) .
3 m*?vy 21w 21 w2 (4A% + 4y' - w2)%+ 16A%(2y'-w®)?

i 4yLw(4A%-4y"'+w?)-16y"'A%/w ]

21 w2 (402 + 4y' - w2)? + 16A2(2y' - w?)?

(4.16)

The d.c. conductivity at T = O was found to be

2
e k2 -2 =06 . We can now express the real and
m*2y L 2y .

1
3

imaginary parts of the frequency dependent conductivity in

the dimensionaless form in the following manner

1 + ) &%
0p(w,0) = = e, (4.17)
RV E_%,‘ﬂi:lz+%&21+_l__%.w__]7
§ § 8
and
“11£T)_2.-+"'2 ..l_.‘::)_u.
3 ( O) w{[6+26 J=[1 %w ]+16 3 } (/ 18)
o+lw = ~2 ~ 2 ~2 =12 te
1M 2[-%9._2+.w_. 1+.1_-%9)_:]
$ 2 $ §




where

GR(w,O) = GR(w,G)/oo and SI(w,O) = ol(w,O)/oo

?

New, § = l? o C(EF/TP) measures the impurity concentra-
A AN

tion. Also we assumed w? << y' which implies ©?% << § i.e.

%2 . . ..

—- << 1. Using this 1imit Eqgs.(4.17) and (4.18) reduce to

8

1 ™~2
5y (0,0) = LEx B (4.19)
: 1+ § B%r1 + §]2

31 (w,0) (4.20)

Before considering the pure and dirty limits i.e.
§ << 1 and & >> 1 we shall take into account the effect of

temperature being increased from zero degree.

4.3 The A.C, Conductivity in the Pure and Dirty Limits

As temperaturec rises from the zero degree we cannot
ignore the first integral of Eq.(4.8). We see that in the

o
integral J f(x)g{x)dx the important values of x arc of the
0

order T, and an expansion in powers of x is valid. So, wc
X

write
c c
) 3 ~1 1
g(x) = " - P
ax® - bx + <, ax® + bx + ¢,
i -h2 2 -b? )
. Zoc1 . ZacZ b a? . ac,=-b 2,
= x 41 = XS= —X4 b Aidc. LI
CZ CZ C2 C2
2 ?) 2 2

t
jaF
[
~
+
ot
[3S]
e
w
+
o
W
=~
[%;1
o+
L]
.
L]
L]
L ]
o
ot
0
*
~
>
L]
[aN]
=4
-



with
Zbc1 2bc
d, = d, = - (2ac, - b?) etc. (4.22)
1 2 2 y 2
=7 3

We have assumed, [(2ac,~ b?)/C3% < 1, In the limiting

case this give5rr/£§ = 1, 1.8 T ™ y'%. Now, since
e

2
A << y'%, and for maximum frequency w =~ 1012Hz, we get
T ~ 50 K°if we take w ~ A. Hence, our expansion is valid
as long as the temperature is below 50°K. Since our
expression for the average current is valid for temperatures

below Tk’ we are within our region of interest.

Now we write the integral in the following way

©

) (-l)r+l J g(x)e-rsxdx = J (‘1)r+1[-f dlxe-Brxdx
r=1 . r=1 Lo
+ J d2x3e_8rxdx * s (4.23)
0
and since
J o~ Ty w ot J x3e"BTXg 6
0 (Br)? 0 {Br)*
also
v 1 2 v +1 1 7
z (_1)1‘-9-1 - ZT_ , Z (_1)1‘ _L’. X‘b
r=1 ! 12 re] T 720
Eq. (4.23) gives
d d
cosmans IT—-Z- + -—-—2— -———-—7 'ﬁ'“ 2 e e o . (_’;.24_’5.)
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Since the parameter (T/A) is very much less than unity, we
can ignore all higher order contributions. Using definitions

of a4 b1 Cy and c, we get dl’ given by

abtly buy'A - 2iw?y!

c% [wA2 - iw2A + 2iy'A + y'w]l?

Rationalising, the above expression becomes

ZbC)  guy'ALw?(AZ+y')2-8%(2y'-0?) ?1-duiAy! (A2+y") (2y'-0d)

c [w2 (A2+y')2=A2(2y"-w2) 212 +4A202 (A2+y") % (2y -w?)*

L3207y [w? (A%+y 1) 2-A% (27" =0?) 21-Bu®A%y ! (A%4y ") (2y'=u?)
[w? (824y") 2-02 (2y"-?) 212 +40 20 (4247 ") 2 (27" -0%)

(4.25)

This equation is substituted in Eq.(4.24), where we keep only
the first term, and express it in dimensionless form as
before. Then the real and imaginary parts of the complex
conductivity can be written,using the same condition as

before, as:

4(1+%)—&2(1+%)2

~2 2

8R(U),T) = (1730 )]_ + - N 1 Iy T2

1+152 (1+=) 2 3 4r1+f(1+ly)248 14dy4 "

§ 2 ¢ 16 8
(4.26)
~2
BA-1-182) »  BL1+2)+8 (141y27
i 5 m T TS T. 5

OI(w,r) 2 T 5 + — - = (Z)

201+30°(1+=)“] 3 2[1+9—(1+l)2+9—(1+£)“]

& 2 8 16 8
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One can easily verify that for d.c. conductivity

2 2
GR(O,T) = [1 + %;{E] ] and GI(O,T) = 0 which is, of course,
what it should be.

We now consider the two limiting cases:
1s In the pure limit, i.e. 6§ << 1, for very low concentra-
tion of impurities, % >> 1 and we also have &% << 1 the
Eqs.(4.26) and (4.27) reduce to

2 2 B
Bp(w,T) = —L — 4 ."I._[I] _l-x (x = 3/26)  (4.28)
) 1+ x2 30 1+ x?)?
2 2 1
§;(w,T) = —— + - [1] —2 (4.29)
1+ x? 3 A (1 + x*)?
1

2, in the dirty limit, § >> 1, - << 1, We have to
remember that ocur solutions are not valid for a very dirty
limit, since the single particle Green's function we derived
is valid only for low concentration of impurities. In this

case, the Eqs. reduce to

. ; m2(T)? 1 ~ 4.

CR(UJ’T) = 1 % “3" ‘Z i er (x = 6/2) (4.30)
2 2

5 (w,T) = - x + - [-T-] — = (4.31)
3 W1 4+ x?

Eqs. (4.39) and (4.31) are independent of impurity concentra-

tion.

A

4,4 Discussion

As mentioned earlier, in the absence of experimental

data in the region of interest, we cannot compare our theory



with experimental results. In the dirty limit, our
expression for complex conductivity becomes independent of
impurity concentration, This has to be viewed with
scepticism, since our solutions for the self-consistent
equations are not valid for high concentration of impurities.
In the pure limit, our expression for complex conductivity
is given by a universal function of ®%/§. Murata and
Wilkins(gl) calculated numerically the surface resistance of
Kondo alloys for several impurity concentrations. Our
results seem to agree well with their predictions as far as
variation with concentration of impurities is concerned.

(90) as well as

Theoretical calculations of Moriya and Inoue
Murata and Wilkins(gl) indicate that a peak might be observed
in measurements of the surface impedance of a Kondo alloy at
low temperatures in the microwave or far infrared spectral

(92) et al.

regions. The experimental results of Brdndli
do not show any peak. Although they argue that the presence
of potential scattering will reduce the peaking behaviour, one
can by no means be certain that the differential calculation
of the A.C. response would show no peak experimentally. Our
results do not show any peak although we have not taken
potential scattering into account. But, unfortunately, we
cannot claim our results to be valid in the far infrared
frequency region because of the approximation involved. Ve

believe that the so-called peak in the surface impedance

measurements of Kondo alloys is yet to be established.
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CHAPTER 5 EXTENDED INTERACTION FORMULATION

5.1 Introduction

In chapters 2 and 3 we have re-derived Nagaoka's

equations in the presence of a uniform electromagnetic field,
E(t), and solved them by iteration procedure. We found

that the vertex part does not contribute to the electrical

conductivity of the system.
generalize Nagaoka's treatment to the case
exchange interaction and see the effect of
response to it., This time, because of the

complexity, we formulate the equations, in

5.2 Formulation of the Eguations
The Hamiltonian is written as
H = i
H0 * Z ‘ex
o
with
gt _ 1 y i(k -h;.Rul: +
e = === Fi,9.4 € - (Cy. . Coip a™
aXx N Kk kk k+7k'4
\
| s o + ol
| * CpalirySa ¥ Cp Oy ySe

3 8 ’;‘ &
HO is the

EqQef2e2).

All quantities are defined in Sec.2.2.

In this section, we want to

of an extended
applying lincar
mathematical

the absence of

the electromagnetic field, and the vertex corrections are

taken into account through the Ward's Identity.

£5.1)

(5.2}

conduction electron energy as defined by

ml
ine

| only difference now is that in Eq.(5.1), J, the strength of



w BO

the exchange integral, now depends on the conduction electron

momenta k and k', whereas in Eq.(2.1) it is a constaat. We
’ q

.

shall assume later that Jkk' depends only on |k - k'

Now, we define the single particle Green's functions
Grxro P%k,, and their boundary conditions, as before,
(Sec. 2.2), and use the same decoupling procedure to arrive
at the following set of Equations.

. 1 i (2-k').R i
(fup=ey ) Gyger () + — ) Terget &R0 o) - S

[iR(w ) = €] rik,(wn)

i(g'-k").Roa
k

% Jzz'ni'ze glop)

3., me, et (&K B ) =0 5.9

1
o L 20 Mk g

4 o o
Where n and m are
k'k k'k

o _ i(k'-k).Ra +
e Sl X P e

o - i(k'-k).Ra + o
T’;k.k = 38 - b - < Ck’lkck' 4"S__ >

In the 1limit of low concentration of impurities (c << 1) we

can replace n%,, and m%,, by their impurity averaged values,
P k'k k'k
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Nyorg and M1y a5 We did before. Let us put

Viek = Wpifrp T B (5.5)
’D = .

&

Mok = Wpxiery = 3k SR

P
Then the Eqgs. (5.3) and (5.4) reduce to

.  rE T .
(lwn_ek')Gkk'(“’n) * ‘2%:1‘ 2 ka'el(& k ).B'OLFOL (w ) = ‘g‘ékkr (5.7)
%, 0

and

[iu) = ey 1T (up)

1 -k'J.R
¥ = ] Vk'zcl(& k') Ty (o)

N g
- _!._. l(g_k')o o -

v E Apoge™ == 7= Gkg(wn) =0 (5.8)

Ny and My 4y are related to Gkk,(wn) and Fik,(wn) by the

following relations

s 0 iw, O+
-1 &R Ry g e (5.9)
w

n

. R iw O+
RIS SR SN R (5.10)
2 4

n

So Eqs. (5.7) to (5.10) together with Eqs. (5.5) and
(5.6) now form a closed set of equations. We shall solve

them for s and p wave scattering only.
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5.3 Formal Solution with s and p Wave Scattering Only.

In the lowest order approximation we replace
[iQ(wn) - ek,], appearing in Eq.(5.8), by (iwn - ek,), and

write Eqs. (5.7) and (5.8) in the following form

. i . i(4-K').R
Grxr (0p) = 8 (R ) Sygent iﬁ gk‘(l‘“n)z Jk‘zel(- xR ;z(wn)
L 500
(5.11)
o _ g . i(L-kK').Ra
Te () = = 2= g (og)dhgy 7722 776, (0g)
2
+ -1;5 gk,(iwn)gvk,zel(—&-k Bl o) (5.12)

where the free electron propagator gy (iw, ) is as defined
by Eq.(3.13). We represent Eqs.(5.11) and (5.12)

diagrammatically (Figure 10).

One must notice here that at cross vertex (x) the
impurities are summed over, whereas at circle (0) and
triangle (A) vertices they are not. Fik’ depends explicitly
on the position of a single impurity at Ra . Now, we
double iterate the equations diagrammatically and examine
the different order terms in the series for Gkk.(wn). This
series up to sixth order term, would be as shown in

Figure 11.



k' ok k' ko K L K
“ — __,_._~_:L},———»~— - A,+_-,, .__74_’>,,,_~..../><"\\/»’\>>/‘\J' N
e | (a)
a
k'« k SR T LR 6 b ok
//-‘\\/,/y//‘\_’f\¢ e o 7\* ‘\L \.____/ . + ~—}——-‘—*Z/__\k P j S A N
- '
(b)
where
A\k
6 T Gkk' gk(lwn)
kk'
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o ; = Gkk' (wn)
k! o. k
S /\7\_//\/“ = sz. (wn)
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Figure 10 : Diagrammatic representation of Equations

(5.11) and (5.12).
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Figure 11 : Expansion of ka,(w ) up to sixth order.

A careful examination of the terms of various orders will
th

1

reveal the pattern of the n order term. We find that the

nth order term, (i) starts with a cross and ends with an
open circle; (ii) open circles and crosses occur iu pairs,
(iii) any number of triangles occur between the cross and
open circle of (i). This pattern can be scen mathematically

if we write the following matrix equations for G and T for

(a) and (b) in Figure 10.



[op}
il

g + gXT

¥
n

gOG + gAT
Solving for G, one obtains

lg0171g

G =[1- gX(1 ~ gA)~
Expanding, we can write
G =1[1 - (gXg0 + gXgAgO + gXgAgAgO + ...)]1 g

Suppressing g's, this series can be written as

1 + X0 + XAC + [XOXO + XAAO]

o
W

+

[XOX0 + XAOXO + XAAAO]

+

[XOXOX0 + XOXAAO + XAAOXO

+

XAOXAO + XAAAAQI+ oow. (5.13)

The general pattern of the terms occurring in the series for
G can now be clearly perceived. Having been able to find
the pattern, our next problem is to sum the series for G.
The whole series for G can be diagrammatically written as
shown in Figure 12.

as

~
Let us denote the series in Fig. 12 (&) by G,
it depends on the impurity position at Ra. Using the
definitions (given in Fig. 10) we can write

pa gy i i(2-k'").RaAi .
Ga(ﬂ’k') = 810k ? {%f]gk'gvk'ze (k") _aGa(k’Q) (5.14)
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Figure 12 The Series For Gkk"
Let us try a solution of the form
G (k.k') = G(k.k')el (k7k") Ra (5.15)
Then Eq.(5.14) reduces to
G(k,k") = 2185t gk,{if] EVR,QG(k,R) (5.16)
Hence Eq.(5.15) is indeed a solution of Eq.(5.14). Using
Eq.(5.15), Fig. 12 (e¢) can be written as
i - o i{k-k?' oo
‘Sk'ii'e'] I JgrghynBar,net () 20, (5553

J
2% 2,010
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and the serics for Gkk,(wn), Fig. 12 (c) is given by

- ig)?® A i(kk".Ro
GKk' ((.On) = akk'gk*gk,[;ﬁ-] z Jk'Q,AQ,'kG('Q'"Q')Gk'Q,(wn)e (_—V) =
L,8%

(5.18)

Then Egs.(5.16) and (5.18) form two coupled equations for

a(k,k') and Gkk.(wn). We have to solve themn.

We now recall the approximation made in Eq.(5.12) where
we replaced the renormalised propagator by a freec electron
propagator. This means that the interactions between the
impurity spins at different sites have been neglected. And
this is a good approximation in the 1imit of low concentra-
tion of impurities. But this simplification, later on,
gives rise to divergent integrals in the vertex equations.
We shall use the renormalised propagator to take into
account the spin-spin interactions and replace it by the
free electron propagator when it does not bring in any
unnecessary mathematical complexity. Next, we must remember
that if we sum the series for Gkk,(wn) by iteration,
repeated scattering at a single site would give rise to
'nested diagrams'. Taking these into account, Eq.(5.16) is

replaced by
G(k,k") = Gpdpqr* [’l‘P'?]Gk'sz'xG(k’“ (5.19)
%

Now, these coupled Egs. (5.18) and (5.19) are either
impossible or extremely difficult to solve for the general

case. We shall solve ther for s and p wave scattering only.
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The scattering of conduction electrons by a single
impurity at Ra depends only on |k-k'| i.e. on the modulus of
the difference of wave vectors of incoming and scattered
waves. In the 1limit of low concentration of impurities,
we can expand the exchange interaction, Jkk' into Legendre

polynomials, Pz(cosekk.). We write

Jigr = Z (22+1)J§(cosekk,) "

For s and p wave scattering only this can be written as
= g {
Jkk' Jo + JICOSGkk' (J.Z\))

where SR and J; are constants denoting the strengths of s
and p wave scattering. Now, from the definitions of Vk‘k
and Ak'k given in Eqs. (5.5) and (5.6) and also from the
solutions in Chapter 3 for s wave only, we can make the

following ansatz:
Virk = Vo) (k") * Viqy(k')cosey .y (5:21)
Mpvg = Aoy (k') # Aepy (K')coseyay (5.22)

Let us also assume a solution for G(k,k') of Eq.(5.19) given

by

G(k,k') = 6

-+

~
(9]
L]
o
(o

f—

y (k') o+ 8 )(k,k')cose

xk'%% * C(o (1 k'

where a(o)(k,k') and a(l)(k,k') depend on the modulii of k
and k' only. Then substituting Eqs. (5.23) and (5.20) in

Eq. (5.19) and equating the coefficients of cosekk, and unity
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on both sides, one obtains

- 1y = 1B ' 'y To ,
G oy (K, k") ;;Gk,{v(o)(k )G *+ Voy (K )Eu(o)(k,z)} (5.24)

1

15 . ¢y n gy
5v(l)(k )%G(l)(k,l)} (5.25)

N

6(1)(k,k') 261 1V (15 (KNG, +

Where some of the terms vanished due to angular integrations

and use has been made of the following result,

_ 1
Zcosekz COSBgyr = gcosekk,
2

Solving for 8(0)(k,k') and 8(1)(k,k') in Eqs. (5.24) and

(5.25), one gets

oy (o) = [18)v e )chkv[l 16£V(0)]-1 (5.26)
and 1
a(l)(k,k') - [18} 1y (K6 k,{}-%lﬁiv(l;] (5,27
where
gV(O) = % % V(o) (K)G (5.28)
gV(l) - % E Vipy (06 (5.29)

Therefore, C(L k') has a sclution of the form

-1
A ’ . _ 18
G(lﬂ,k ) o (SkktGk + [ ) (O) (k )GkG" 'E— ABEVI’OJ

-1
+ [18] (1)(k')G le E_%iegv(l)} Cosekkv (5.30)
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We can now find the impurity averaged value of Gy,
for s and p wave scattering only by a similar technique
to that applied in Chapter 3. This is illustrated in

Figure 13.

k' __ k k* k k! Co k
B [ ara + % r~::{ {" + = T;T{WMLTL_J:> T
) P p' (@)
Figure 13 : Calculation of Gkk,(wn); (a) is the expansion

of ka,(wn) and (b), (c¢) and (d) show an approximate
calculation of it. Boxes connected with the dotted lines

are associated with the same impurity.

The series in Fig, 13 (d) can be written as



2

= 18 0 s . i(k-k").Ro
gk'[gﬁl g Lo Trralan ST e im = T gy
’
o A )
+[§%] gyl L’Z [Ty g hgrpG" 52016, ] [an"Azm1<G(2"',%")J}
2] & P T
P Y,

Q/" " 9/'"

3 . ' ¢
el(g k ).Eug

(5.31)

This series cannot be summed for the general case of

all partial waves.

for s and p wave scattering only.

(5.21) and (5.30), one obtains

Lo Jpeghg e G(21,0)
L,8"

where

"(0)

(1)

Similarly, one finds

) Jk'gAzth(i',ﬂ)

3 J

,Q,"’Q,”'

A

pg'l anl k

a(z e ,/Q,H) =

Then, using Egs.

1. p
NJongo) R 3J1Nn(1)
3 1.
1-1BE 1-=1B¢
V(o) 37V
§ E Aoy (KICy

y oA 13 (K)Gy
” (1)

1

i e )

1-Lige
3

NJon(o)
1-iBEV
(6]

+

Y13

NI5M (0)

cosH

1-iBg
V(O)

We have succeeded in summing the series

(5.20),

cosekk. (5.32]
(5.33)
(5.34)

okt [534(1)1

cos@kp [5.34(151)]
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and hence the term appearing in the curly bracket in the

second term of Eq.(5.31) can be easily evaluated. One finds

Z{Q,XQ' [ka Q,AQ,'pG(Q" ’2) ]Gp Z JP.Q/"AQ,"' kG(SZ'"' ’52,”)] }

One can see now that using Eqs.(5.32), (5.35) and
other similar quantities, the series in Fig. 13 (d) can be

written as

4 1
Nl S £7:) B IS M s il €3 i(k-k").Ra
> 811 T COSOy 1 |81 €

) 2N 1-iBgy 1-=18E,;

(0) 3 1)
g ok * J _Nn 2 X n N7l i(k-k'
+[‘l—p‘}g1 sz o (o) + 1 31°(1) cosBy vt g el("'("}'('
: (o) 3 (1)
+

We can sum this double geometric series to obtain

k! o K ifk-%k").Ra 1(k~k").Ra
> = ~gh () - - )R 8k Bkt 4(1)%05 kk'® T T = Bk

re A ] A
where (0) and (1) are

p 9 Q/H,QJHY
J Nn 2 15 2
_ 0" (0) 1i 1V _] i T
= : + - 1~ Coﬁ)ekkq ZGP {“3‘))
(1_185\] 3 1-_1851‘/ _| p
(0) 3 (1)
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o) ° (5.37)
0 . 2 J Nn
i8)° 5o 0 (9)
G-+ [ZHJ 26 3 .]

[iﬁjz %Jan(1)
2N 1-Ligky
A = > 1(1) . (5.38)
Yol e, Rt |
staw) 4 P - ZiBEy

We now find the impurity averaged G,., (w from
- & kk n

Fig. 13(b) given by

gy 811
T () = ks Kk (5.39)
REET 1 v N (4, e gy ]
17 (o) (1Y "k
Eg.(5.39) can be written as
G (LJ ) i 1 (g el
kk ‘'n P siiiat
B [iw, - € + Z(wn)]
where, Z(mn), the self-energy part, after some
simplification, can be expressed as
.0 L 1
_c n-Jdg, i b .
Z(Mn) - o + 1 1 1 (‘).[L..’.)
4 1+£0+5J0n F 1+=E

+2m J 0 F
371736 1"

with ¢ = Ni/N, the concentration of impurities and



V., . (k
L (o) ) (5.44)
° Ng Ciw, = g + Z(wn}]
V.. (k)
) L (5.45)
N X [iwn - g ¢+ Z(wn)]
and
F=217 L . (5.46)
N

o Clop = e+ 1(0y)]

Thus, Egs.(5.40) to (5.46) give formal solutions to
our closed set of equations for the impurity averaged
single-particle Green's function, where we have taken s and
p wave scattering only., In the next chapter, we shall
calculate the electrical conductivity of the Kondo system

using this solution.
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CHAPTER 6 SOLUTIONS : CONDUCTIVITIES AT HIGH AND LOW
TEMPERATURES

6.1 Solution at High Temperatures

At high temperatures, T > T, we can apply

perturbational treatment and so we put

Then, from definitions of V(O)(k), V(l)(k)’ A(O)(k) and
A(l)(k) we have

Moy () = =1y Vo (K) = I (£-1)

A(]_)(k) -%Jl V(l)(k) = Jl(fk-%) (6.2)

Let us put,

-+

iwn Z(wn) = iQn {(6.3)

and assume that Q is real and has the same sign as w,. Both
of these assumptions are consistent and we shall see that
these assumptions do not lead to any contradiction. Then,
we calculate the quantities F, no, nl, €o and &4 as before

(Chapter 3); we obtain

. T . .
F=-il2 sign w (6.4)
n
N
o _ 4 M . 7 i
n” =i § = J sign w, (6.5)




- TR

1 _ . e .
n i3 . Jlslgn W, (6.6)

where p is the density of conduction electron states near

the Fermi surface. We also have

D (>
pJ . ¢~ tanh(sw)de
£y ¥ —2 T (6.7)
2N 5 e - 10,
At T = 0, this is
pJ
E, = - — an|-=| for D >> Q. (6.8)
N D
Again, we introduced the cut-off parameter D which is
taken to be of the order of band-width. Similarly, at
T=0
pJ Q
£, = - — 4n|-2| : (6.9)
N D

Since, at high temperatures, we are expanding the
quantities in powers of J and Jq» We can ignore
pJO pJ

2 2
[———} and [——l] compared to unity. Then Z(wn) can be
N N

written as

iyosign w iylsign w

n n
6.10
sy - v T (030
1-b tn|—| 1-b,en|—|
D D
where
3 CTP <2 _ 1 cmpq2 4 7
Y =———————J 'Y —'———-—-J (6.1)._’
O 16 N © 1 96 N 1
pd pJ
bO = .._.._.9. b_? = .:!'. ..._.l. (6,12)
N - 3 N
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It can be seen now by substituting Eq. (6.10) in Eq.(6.3)

that the assumptions we made about Q, are consistent. We

get
} Yo Y1 .
Q = w, + o + o sign w, (6.13)
1-b _2n|—]| 1-b £n|——|
)
D
In the first order approximation, this is
L 71 ; s
Qn = W, * 9 = + sign w, (6.,14)
1-b_gfn|—| 1-b. SLnI—I
o
D
= . + f (w )51gn W e (6.,15)

n n

where the function fo(wn) is defined from the Eq.(6.14).

Next,we shall evaluate the average current and
electrical conductivity of the system from the Kubo formula
of linecar response. We shall ignore the vertex corrections
for the moment and later on take them into account. The

current is given by

(&
i

RVA [

]1 ) kuvaPk(w )Gk,(w + wp)

v
m* K,

]
]
|

P

1, & g2 ZI de (6.16)
' [iwn-e+2(wn)][iwn+iwp-e+2(wn+wp)]

A1l the quantities are the same as defined in chapter

3., Performing the ¢ integral in the upper half plane, we




obtain

2m

- 1 e? 2
R el e okZ )
m%
38 m*%v <0 Wy * £ (wy) + fz(wn+wp)
(6.17)
where
ik Y
1
£.(w.) = O + (6.18)
1717 gepan -2 1-byen . -n
D D
and
£ YO Yl >
Z(wn+wp) - w_¥o * W+ (6.19)
1-b Rfi sttt 1-b12n-———2
D D

We transform the w,-sum to a contour integral form as
before, (See Chapter 3), and make analytic continuation to

real frequencies iwp + w + 10+ to get

Z 1
cw_<u_<o Yp + £ (W) ¢+ £, + wp)
p “n
: f X () - 90x - 0)] (6.20)
2mi e~ " +1
with
1
o (x)
= Y
e + Yo . 0 . Y1 . Y1
1-b_gn X 1-p gnoiXti® o gip o gplX 1o gpTiXCIC
o p o D 1™ Lot
(6.21)

Using the same procedure the average current 1is

found to be




Yobo'wlbl
§ e r—— - —= n
v 2(vo*vq) (¥ g1y

T

1.13D

(6.22)
and the conductivity is given by (in the d.c. limit)
Prralys
2 S(J2+=J7)
g = 28 8? ; g L = - 201921 gnl - (6.23)
* — —-
m 3npc(J0+3J1) Jo+3J1 1.13D

In the last expression we have replaced Yoo Yis bo and b1
by their values from Eqs. (6.11) and (6.12). We notice
that for J; = 0, i.e. for s-wave scattering only Eq.(6.23)
immediately reduces to Eq.(3.55). The effect of taking
p-wave scattering into account is just to rencrmalize the
previous result for s-wave scattering only. But, we must
also remember that we have not yet taken the vertex

corrections into accaunt. We shall do that in the following

section.

6.2 Vertex Corrections at High Temperatures

The vertex corrections are taken into account by the
prescription laid down through the generalized Ward's
identity which itself arises from the conservation laws,
like the conservation of charge, particle, momentum etc.
The series for the single particle Green's function is
given by Fig.13(a) where the fundamental units are empty
boxes. To take vertex corrections into account, one has to
evaluate the vertex function which usually occurs in the

form of an integral equation. According to the Ward's




_
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identity, this integral equation has to be constructed by
inserting current vertices at all points on the free

electron propagator between the empty boxes, (in the diagram),
in each term of the series. Only one current vertex has to

be inserted at a time., At this point, we must recall that

the empty boxes themselves consist of crosses, triangles

and open circles, and notice that current vertices can also
be inserted between them, but we shall consider this later.

Thus, for the following typical term

k! j/ - S ' k
O e N I N
71 7 l*W__J .
we write
k L R k K' — & — &' k
> > - > o ] o] - }%» rrrrrrrr
— I S i T

k' R o 2! o k k' L ! k
AT A e A T

then the diagrams arec bent about the vertices to form the

vertex equation. Since, at high temperatures we expand

in powers of J, we shall calculate the lowest order correc-
tion first. The vertex function, Au is then given by the
diagram 14 .

From Fig.14, the vertex equation is written as

&u(k) = §p+ ) Au(k')ak'k'(wn)ak'k'(wn * wp)
k',o0
. L A 3 {1\' k E
o[ié] ) JknAQrka(Q"z’wn)eLtn ==
ZN v
2,8

A - k_, ? .R
| Zv Jk'PAD'kG(pup’wn+wp)el(— k') -Ra (6.24)
PP *




Figure 14 : The form of the integral equation for the
vertex function, Au.

As it is clear from the above Equation that the vertex
function Au does not depend on the position of a single
impurity, the sum over the impurities can be performed
immediately giving Ns» the total number of impurities in
the system. We use Eqs. [5.34(i)] and [5.34(ii)] to
reduce Eq. (6.24) in the following form

L

Ak =k o+ [%%) N; (-igN) 2} [5u(k')ck'(wn)ck'(wn * wp)
k'

°[J0Uo(wn) + JlUl(wn)cosekk.]

°[JOU0(wn + wp) % Jlul(wn + wp)cosekk,] (6.23)

—

where we wrote Gl,k = Gk and
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0 11
n (w,) =n" (w,)
U (w.) = 2 and U, (w.) = = (6.26)
o' n 1 + Eo(wn) 1\¥n 1 4+ %El

The Eq. (6.25) is very difficult to solve for the general
case. Since Au must be proportional to ku, we put

&u(k) = kué(k) and multiply both sides by ku and sum over y.
The important k' values in the sum are lk'l - kF and also
we require A(k) for |k| ~ kg. Writing A(kg) =) , we

obtain

" (8)* \ 1
A=1+2 = Ni3 S (U, (wy )Up (o) + Uy (U, (o rp) ]
kl

o Gk' (wn)Gk' (wn * wp) (6.27)

The product terms Uo(wn)Uo(mn+wp) and Ul(wn)Ul(wn+wp)

vanished because of the angular integrations. Denoting

Qug*oy) = | : e
e - v, - Z(mn)]te - dog- ey Z(mn wp)

(6.23)

Eq. (6.27) becomes

1

N;p
1-4;ﬁ2 JoJl{Q(wn+wp)[Uo(wn)Ul(wn+wp)+U1(wn)Uo(wn+wp)]}

(6.29)

Thus, in the simplest case the vertex function is given by
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Eq. (6.29). Now, the conductivity is given by the curvert-
current correlation function, represented by diagram 15,

where the propagators are full Green's functions.

Figure 15 : The diagram representing the current-current
correlation function.

The current is given by

2
_ ol e )
oy = BJ{ } A, ) Aukak(wn)Gk(wn+

) (6.30)
*
m*v k,u

w
P
n

All quantities appear in Eq. (6.30) are already defined in
Chapter 3. Using Eq. (6.29) and performing the € integrals
in Egs. (6.28) and (6.30), we obtain

. 2m e? 1
I -gg — Aukép 7 [ wp+f1(wn) + fzﬁﬂiﬂgp) - ao[UOQAn)bjﬂén+wP)
m=v -wp( (un<0

~1
# Ulﬂun)UOan+wp)] (6.31)

where fl(wn) and fz(wn+wp) are defined in Egs. (6.18) and
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(6.19) and we put o_ = S, JoJd1e The w, sum is performed

0
48N
in the same way as before and we make analytic coantinuation,

iwp + w + i0+ to get

2n  e? B dx )
s 28 AiE o £ | $(x) - ¢(x-u) (6.32)
H 38 m*2y M F 2mi JeBXe {
where
b Y ¥
(x) = |-iwt —2— + NN
1-b_ga=2 1-b_gn =X 1-b, eniX
*p o D 17
-1
b - e
; ix -ix-iw =~ix-iw ix
1-b ln——][l-b zn—————i [14)2n ]be MP—J
[ °"p 1 D o) D Iy ‘
(6.33)

where bo, by, Tq and Y, are defined in Eqs. (6.11) and
Cﬂzpa JZJZ

. Expanding for
- 1
76883 ©

(6.12) and we put y' =

pJy pdy g e
— << 1 and —= << 1, we get conductivity in the d.c.

N N
limit, given by

1 e, 1 YoPo"1P172Y'bby | 1 |
3 m*?y 2Qvg*tv1=Y") (Yo*rr1-v") 1.13D|
B gaslys 0 5353y
_ne? 8N 1 1. _N¥o'5 TR 01 in i
1,13

m* 3mcp 2,12 T2 212 2,172 _Egi_ WA
Up im0 | ot o I




It is clear from Eq.(6.34) that the inclusion of vertex

corrections by inserting current vertices between the
empty boxes, contributes a correction which is sixth order
in J, to the log term. In the high temperaturc ecxpansion
this is negligible,

To obtain the lower order correction, we need to
write down the empty boxes in the series for the Green's
function in their constituent crosses, triangles and open
circles, and then apply the generalized Ward's identity as

before. The Green's function is then given by

k! k kk! k' 2 k k* 2 2t k
e sy R & ; A N
: - >} La e W

k! [ L n k
L N A A /2 W _
T ya Sy way A\ { T
kl QI 'Q'l 2!! k k' R, ,Q,' Qn pllv 2""

GG RO O ¢

Figure 16 : The series for the Green's function Gkk' .

Inserting current vertices systematically and keeping only
the first order corrections, the vertex equation can be

represented as in Figure 17.



Figure 17 : The vertex equation for &u .

The open circle, cross and thick lines are all defined

before in Chapter 5. The vertex equation 1is

3,00 < &

2 ~ A
R RO LU NIRRT ke

p,p'
k',o

Proceeding in the same way, writing A(kF) = A, one obtains

A= " 1
C A A .
[: & -B;N— ! v G(k!' ,p,wn)c(p',k',wnmp)J}q,Ap.k] (6.36)
D,P

1.
1\'

where, we put p = cosby .4, which occurs when we multiply both

sides of Eq.(6.35) by ku, sum over u and divide both sidus
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by k?. We shall now embark on calculating A . This is a
rather tedious job, but if we keep only terms third order
in J, the algebra is simplified to a great extent. Now,

i 1 1 a ' ) & [
using the values of G(k,k ,mn), Jkk' and Akk' found for s
and p wave scattering only, the term appearing in the

denominator of the Eq. (6.36) can be written as

z uG(k"p’wn)G(p"k"wn+wp)JkpAp'k

_ .3 |
=3 ) cosGkk,(J0+chosekp)(JO+J1cosep,k) 8115011 (©0))

kt ’pi

p k'

' (18] (o) ®)G Gk . 1B£V (wn)] [ ] (1) (P)Gk.(w )G (wn)
-1
o E%igv(l) (con)j} cosek,p

18 A -1
18,1t G (wn+mp)+[1?‘].] i )G o)V oy (D138 ()

N

18 ] 1 - "1
[N}G (w wp)Gk (w 0 )V(l)(k )[l—glﬁév(l)(wn+wp)] cosep,k'
(6.37)

At high temperatures, we put My = 0 and so By becomes

= % Jk'k' Now, we notice that the angular integrations will
4 =

give zero for a large number of terms in Eq.(6.37). We

perform the angular integrations and use Eq.(6.2) to obtain

the following, keeping only terms up to third order in J,
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'P,zp’ WGk, un) 6P kT yugtuy ) php vy
k'

J Jd

. . 071 {2 g

,Gk'(wn)Gk'(wn+wp)

4

ip T
+ [;;]Jok'ﬁﬂ Gk'(wn)Gk'(wn+wp)Gp'(wn+wp)(fk' - %)

* [Eg]Jo ) Gk,(wn)Gk.(mn+w
k' ’pl

5)Gpr () (€= 1)

[iﬁ} Jl Z ka(wn)Gk,(wn+wp)Gp.(wn)(fp,- 1)
k',p'

+
N

[_-] I 1 Gk‘(wn)Gk'(wn+wp)Gpv(wn+wp)(fk, - 1)
k',p!

(6.38)

The k' and p' sums appearing inthe above expression are

independent of each other and can be performed separately

without much difficulty. However, the sums with the factor

(fk.-%) or (fp.-%)(fk is the Fermi distribution function)

are evaluated at T = O, We obtain the following results

: 2mp 1
(i) z le(wq)th(w tw ) = -
I k n p 2 '
k' B wp + fl(un)+ fz(wn+wp)
- _ 2mp 1 _
= ( wp<mn<o)

B2 Qlup*u)

(6.39)
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p 1is the density of states of conduction electrons near
the Fermi surface and the functions fl(wn) and fz(wn+wp)
are already defined and Q(mn+wp) is defined from its

previous line.

.. . ' ~ TP - _ T _
(i1) T~)Z.L:p.(wn+wp) = 1;51gn(wn+wp) = :; for wp<wn<o (6.40)

; w +f, (w ) ; Aw,)
(1i1) J Gy (o) (£,0-3) % - 2gn| B L D0 o . 204p) 0
k' B D B D
(6.41;
(iv) 1;' Gkv(wn)le(wn"'wp)(fkv - 1)
. _ ip 1 | Cntf1lon)
2 =
B wp+f1(wn)+£2(wn+wp) wn+wp+f2(wn+wp)
. A(UJ )
SN £ RN SUNY PO . S (6.42)
8% Qlup*wy) B(w,*ey)

The functions A(wn) and B(wn+mp) are defined quite obviously
from the above expressions. Now using these results{ﬁqs.

(6.39) to (6.42) the expression (6.38) is simplified to

the form
J J,mp Alw,)
s 1 1 - £y ¢ 3 9p) | —T
B Q(wn+wp) 4N B(wn+wp)
Alw.)

n
D

# HfJ = J;)n (6.42

(0 Lo




- J0

Substitution of Eq. (6.43) in Eq. (6.30) yields

1

A=
[1_ N ’“‘lA(w)}
Qugtuy)  QUupuy)  Blyyru)! Q)

(6.44)

where
y = JoJl'npNi ) JOJlnpc
4N? 4N
N & == (J * l Jl)O!, .
4N % 3

0.3 Conductivity at High Temperatures

Now, the current is given, as usual, by

2
} ) k A, Gy (0 ) Gy (wy*

= RVA [
m*v k,wn

Ty n*p)

Using the vertex function as obtained in Eq.(6.44), this

becomes

. 2 2 1

e m*2 A kge LYC) Ae )]
-0, <wn<o Q(wn+w )-a+n2nl——————-——‘-2n2ni |
p Bﬁ%pr) D

(6.45)

The W, = Sum is again performed by transforming it to a contour

integral. After making analytic continuation as before, the

w, sum becomes

B j dx ro(x) - olx - 0)1 (6.46)

2mi eBx+1
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with
¢(x) = :
“A(=1ix)
Q(-ix-iw)-aﬂm.r‘r A(-ix) -Zm?,rw[:—‘——(—lz—-’-]}
L— "X-"LJ) D )
In the d.c. 1imit Eq. (6.46) is
- lwB J¢(X) [.Efiﬁl]dx (6.47)
2m w=0 X
Now, since
Y Y
B(-ix-iw) = -ix-iw + 0 + E
-iX~-iw -ix=-iw
l-bozn——-——— 1-b12n——————
D D
Y Y
A(-ix) = -ix - D = :
ix
i1-b_iAn—= 1-b, 4n—
°"p 1™y
and
Q(-ix~-iw) = B(-ix=-iw) - A(-ix)
Y ¥ Y it
= -iw + 3 + ! + 2 + !

1-b =i gy gTIXAR gy gpdX pp gpdX
D D D D
On expansion, for bolnT/D L blknT/D << 1 and keeping

terms only up to third order in J, one gets

1
w=o  2(yy * 71)=0+[2(vob, + y1by-n)enlE|]

HEd

¢ (x)




Expanding once more

2(y b, *Y4bqy=n)
- w2 o L1 zn|5| (6.48)
w=0  [2(y *yq)-al 2(yy*yq)-o D

mn

$(x)

Thus, the expression for current becomes

2(y_b_*y{b;=n)
"
i, ? L Lm0 Bl ol t L (B.49)
EZCYO+Y1)-a] Z{YO+Y1)-a 1.13D
and the conductivity, ¢ is given by
Dr13 2 |
. . ne’ 8N 1 WY +§J1"J J1‘9J1J ) ! ‘
* 2122 2, 22-
m* 3mpc (J 3Jl 3J Iy ) (J Jl | % H)}
(6.50)

where we put back the values of b, bl” Yor Y10 D and a .
Now, we shall examine the implication of this

expression for conductivity. We notice that if we put

Jl = (Q i.e, if we consider s-wave scattering only Eq.({6.50)
immediately reduces to the Nagaoka expression, as it shoul”
be. We find that inclusion of vertex corrections gives
rise to correction which is third order in J, and appears
in the coefficient of the log term in the expressioa for
conductivity. The denominator of the coefficient can be

)2 o+

le] F38)

reduced to (JO - % J Ji , which is always positive
Ly

.
4
for any values of J and J,. In the numerator, if we set

Ji = rJO, we get .
pJ
—L (r? - r2 - 3r + 9),
SN
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And hence, when r? - r?2 - 3r + 9 = O the log term in the
expression for conductivity vanishes, though we still have
an interacting system. It is crucial tc understand that
the interference between s and p wave scattering can in
fact 'wipe out' the logarithmic behaviour in the limiting
case, The cubic equation for the ratio of Jq and Jo has
one real root at~ ~2.2, That is, at that particular ratio
of Jy and Jos the leading logarithmic term vanishes

though (as we shall show) the next order term does not.
Hence, for particular dilute magnetic alloys with strong

p wave scattering we obtain a different high temperature
behaviour., It will be of interest to see how well these
theoretical calculations agree with the experimental data.lWe
shall discuss this point further in the last section of

this chapter.

6.3(a) Calculating the next highest order term

Although it involves rather tedious algebra, we
present here the calculation of the next highest order
term and show that for the particular ratio of Jj and Jy,
when the leading logarithmic term vanishes, the next
highest order term does not. The calculation is straight-
forward. From Eq. (6.37), we collect terms fourth order
in J only and summations over momenta variables are carried
out as before. The fourth order contribution to

Eq. (6.43) is found to be
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J.J 3 Alw) B(w_+w_)
o1 _J%L? {J;+%J$) 1 n n n n p
4 N*RB il Q(wn+wp) B(mn+w?) D
3 2 |A(w,)
+ 210 (52 4 1 g2y L g L
N2g? S Q(wn+wp) D
3 A{w_) A{w,)
jﬁ%L; JOJl 1 Ln 2 n : (6.51)
3N“RB Q(wn+wp) B(mn+wp) D

This is added to what we obtained before up to third order
in J in Eq.(6.43). Following the same procedure, the

expression for current becomes

B e m eZ 12
Ju =" 5 ey Akge ) Ewy) (6.52)
"(.l)p((x)n(O
with
B dx
E(u) = [ 40 = $lx ~ &) (6.53)
! Nt oaai ) oPXa
-wp<wn<0

and this time
¢(x) = Q(-ix-iw)-av+algn[ﬂl_]-zalm[-/\(-ix)}+azmES(-ix—iu)}
B(=ix=-iw) D D

-1
: an-Zazznz [-‘—-—-—A('ix)] +a3£n[: o) :lm["“('i’“) ﬂ
B (-ix~iw) D B (-ix~iw) X _|J

(6.54)




where
0, =102 35 .+ L)
1 16N2 01 o} 3 il
3
a _ mp’c 2 ., 1 12
2 16N°? JoJl(Jo * 9 Jl)
3
= P TMC t2+2
ag = L2 32 (6.55)
and a! = TPC 5 g4
AN o1

All other quantities have been defined before. One has to b
extremely cautious in including all fourth order terms. Ve
recall the approximation made in fl(wn) and fz(wn+wp), where

we neglected higher order terms in J, because they are small

compared to unity. We now keep these terms, and so the
definitions of A(-ix) and B(-ix) are slightly modified.
They are given by
Y Y
A(-ix) = -ix + 2 . 2 (6.56)
1-b niX + g 1-b,2niX + a
" o | D 1
Y ¥
B(-ix) = -ix + 0 + . (6.57)
1-b an=2X + a_ 1-b,en X + g
o D 1 D 1
where
2,2 e a2
dO = ._:’.).. _"__.9__ Jg and d] = _;I'_. mo Ji
16 N2 " 48 N?

Now, expanding, simplifying, and keeping only up to fourth
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order terms in J, we get

2(y b, + y,by = a4)
¢(X) ™ 1 1 = 0O 0 11 1 2n
ey ALY ¥Pp et [2(yy * vq) - a']

X

2
2 - 1 T 2 2. 2 2_
(o = 3 ag) 5 (rgbgtmyP)2lvgdondy) | 20gbe i) - 5*
D

[Z(Yo + Yl) oll c A [Z(YO""'Yl)'a']

(6.58)

At this point, we may note that there is a constant fourth
order term, (log independent), arising from the vertex
equation we first formed by inserting current vertices
between the empty boxes. Let us put that constant term
together with that appearing in Eq. (6.58) to be equal to
AJ,. We now insert Eq. (6.58) in Eq. (6.53) and label AJ
to all constants arising there together with A ,. We

ignore this term because it is of no interest to us, since
it can be easily verified that 1 - A; > O, and therefore can
be absorbed without difficulty. Finally, the conductivity

is obtained as

szl e a2 1 L 2lrgbo*yabymay) b7
3 m*2%y E [2(yo+yl)-u'] [2(YO+Y1)-G'] 1,130
2(v b2+v bi-a,) 2
. —990 11 20,51 (6.59)
[2(yy*Yq)-0'] D

2
We now examine the %n-term. The denominator of the

coefficient is again always positive and the numerator can
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be written as

3
mp°C » o 1 1% _ g3 - i 3
£ E‘)JO $ 29y -0y - 2 JOJl:,

Setting Jy = L this becomes

TO2C gh(r% - 3 - 9r + 27)

gN?  ©
and hence the particular value of the ratio r(=-2.2) for
which the leading logarithmic term vanishes, the Qﬁ-term
does not. But, since this is one order higher in J, its
effect will be smaller. Hence, the gradual diminishing of
logarithmic behaviour in certain alloys may be explained
by taking the existence of strong p-wave scattering into

account.

6.4 Conductivity at Low Temperatures

Our main interest has been to find out the effect of
p-wave scattering on the electrical conductivity of the
system and hence while solving the equations at low
temperatures, we shall follow the easier method of

Nagaoka. We assume

(o)
- Q
k
(1)
. .

N

1

where u(o) and a( are parameters to be determined
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self-consistently. Then, by substituting Eq. (6.60) in

Eq. (5.42) we have

iQ (k)
n _o 1 (0)
n = E + - z PR e SR (6.62)
uio) (] N X Ek

where we wrote, iw, + Z(wn) = ig_ and similarly

iQ Vv (k)
o N €y

Substitution of Eqs. (6.62) and (6.63) in Eg. (5.41) yields

1
J J
Loy =S {52 # e (6.64)
4 _77%L + iJ F l 1Qn + _LJ F
al® 4 @ 3 a\Ij 30 1
provided
v (k)

1-27]-8— -0 (6.65)

'k €x
Vo 5 (k)

1- L3 1) =0 (6.66)

3N ¢ €1

The last two equations determine a(o) and a(l). For

Jo < 0 and J; < 0, we simplify ! (w,) to obtain

iy sign Q iy;sign @
0 n_ ., 1 n (6.67)

Cje,l + Bo)? cle,l + b1y?

1}

3Gy

i

if(Qn)sign 0 (6.68)
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where we used Eq. (6.4) and replaced Jos J1 by their

modulii and denoted

- 0 L) pa 2 2
Yo ™ € JO a( )/4 Yy =€ J1 a( )/u (6.69)
(o) an  ° (1) 128 1

6.4(a) Self-consistent relations of A(o) and A(l)

Before proceeding any further, we shall discuss ths
temperature dependence of A(o] and A(l)' These quantities
will bec determined from Eqs. (6.65) and (6.66) and they in
turn will fix u(o) and a(l). We recall the relations of

Mgt and My g with Gk’k and Fz,k.

. iw, O+ iw O+
- i(k-k').Ro Wabt Lo n
Ny 1(} g-== e Gk,k(wn)e = -i) Gy 1y
n U (6.71)
i i _O+ iw, O+
_ . i1(k-k") .Ra 1 n _ ) o n
Myger = =21 ) e (k-k').R %k,(wn)e = -2i ) Ti1i@
My ®n
(6.72)

We shall now evaluate Ek,k. This is slightly more complicated
than the case we encountered before., The calculation is
illustrated in Figure 138,

The difficulty arises because the momentum index k'
is not summed over and we needed to construct a special

impurity averaged box [754 . This special box is evaluated
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—.‘W k l<' ka k k' e kr""‘ '——“Ik'
[ == G+ b HFH
e ‘#__wékp k ! k p? k?
= 77 s ~ 57 ~/// vl | i T L':'// ‘ A
Cso—t+ U - - -2
¢ (@
Z p\’k'
= s _fJ==— (b)
] 3
p \\ / | \
§ t 1 ! / | \
.}_(\7\.'_{//5 ‘L l) _l;i ' ‘Y kp 1( —— : l.__L p . —‘/— st .”X“
7 T = = o o - - > 3 | P—L e
S L_._J 9—‘{ ______ J [ e — ..ll -
k p'
N S
A0 ~
\ o (c
K ,///-?P <" _p ks p K B
S =3da b +e{ T H P ol e
: e H P v
p' k p' o)
Figure 18 : Evaluation of Ek.k. (@)
in Fig. 18(c) and is found to be
- ) o
E 5 J/ = Upgeo Sk pOuir + Ut Sxer pCxc? (K6P) (B33}
(k)
where
X 2
- 18 ~ ot y
Uk = [_2;] ) Jierghg 1y 6(27,4) (6.74)
o, et
for s and p wave scattering only Ukk' is given by
_ ip ¢ :
Ul(k' bond Z‘K" (Ao % [‘\1 COSﬁkk|) L6°7S}
with
Jono -:1; Jlnl
Ay = - Ay = —g— (6.75)
1+ EO L# ‘3"51




- 100 -

and
H(k’p) = Upk+ JZ' Up'k U'pGp'+ z Up'kUp“p'Up'pGp'G?" oo e
N P'sp
_ig [ A, . Ajcosdy ] -
4N 1 1
1 + = A_F 1 + = A F
i ° i3 -
Thus, from Fig. 18(b)
Upger Gprgc (o) = ZUkk,ak.p,[akk, + G (k,p" )16, 1
P
i.e.
Gyrp (wp) =080 * GkH(k,k')]Ek,k, (6.78)
New, in the lowest order approximation, we have
Yo Ty
f(Qn) = + = f(wn) (6.79)
Clo | + A(o)] Clo, | + A(l)]

and using the self-consistency relations (6.65) and (6.66),
we get

MO a (1)
AT and Ay = - (6.80)

0 iw 1 iw
n

n

Then, on simplification Gk'k becomes

Corp (@) = G ()6, 0+ i%-Gk(mn)Gk,(wn)[fco)(wn)+f(1)(wn)cosekk,]sign o

(6.81)
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where

Y Yl

n

(6.82)

£00) () 0 and £ () =

Iwnl = A(O) |wn| + A(l)

Now, since Vi . = ngk'nkp - 3 V(o)(k) + V; (k) cosByg.

&

equating the coefficients, we obtain

V, \(k) = -iJ_J 0" (0. ) 148600 (w_ysign v _JG_ |-1J
(0) Owe o1 (wp EE (wn sign w, P LRUR
n D
(6. S:' .:

and

il

V(l)(k)

q
1

iw O+
: n 1 | .
_1lee Gk(wn)[%+_ Jif( )(wn)51gn wnZG%]-%J
3 Nc =
wn P

(6.84)

Substituting these Eqs. in Eqs. (6.65) and (6.66), and
solving the integral equations, one can obtain the
temperature dependence of A(o) and A(l)' We notice that
the resulting integral equations are independent of each
other and exactly similar in structure. Since the same
equation for A(o)’ for s-scattering only has been solved by
Nagaoka (results are quoted in Chapter 3), we shall not go
into any further detail.

Now, at low temperatures, T < Tk’ current is given

by, as usual

'=.-;2_1T.e2 2 6,85
T G e By (6.85)
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where, in the lowest approximation, we take Q, = w, and get

Euy) = 1 : (6.86)

wp-Ff{%Q + fﬁ%;wp)

=W _<w <
pwno

Transforming this into contour integral and making analytic

continuation, we obtain

E(-iw) = B f & o) - o0x-w) (6.87)
2mi 4 eP¥e1
with
1
¢ (x) = -
-iw + Yo + "1 + "o + " =

(ix+A(O)) (iX+A(1)) (-ix-iw+A(o)) (-ix"iw+A(1))

(6.88)
In the d.c. limit,
£(-iv) ® - 189 J¢(x) [- éi] dx
2m - X
2 2
_ iBuw J Oct+ag)) (P+ay) %Eﬁqu
2T Z[YOA(O)(x2+A%1))+y1A1(x2+A20))] ax
(6.89)

At absolute zero temperature, the derivative of Fermi

function can be replaced by a delta function and we get

igw Y0t (6.90)
2m ZEYOA(l) + YlA(o)]

E(~iw) = =
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and the conductivity, o 1is
_1 o er o NOMED
c = ‘? *2"‘ ka
m*“v ZEYOA(I) + YIA(O)]

Putting back the values of Yoo Y1» A(o) and A(l) one finds

2
G = no. S (6.91)
m* 8cN
Hence, we see, at T = 0, inclusion of p-wave scattering

reduces the conductivity to } of its previous value. As

temperature increases, we can write,

. dy 4
Efodn] = = L2t 0 J (8L, 12 3L T o e
2m 2cN O W° @+
2. g -2 2
y*HBA )12 YA (] 6.92)
Let, BA(O) *>> 1, BA(I) >> 1, then expanding one obtains
E(miw) = - 1uB 7D J dy e’
am N /g _ y? N 3[1 ) _.....Z.i___._:] 1+ e)?
2 2
(82 (0 [82(1)]
;-ME_P.J dy d

16m cN ¢ 4 _ %E 1 N 3 :]yz (1 +e”)?2
2 2
Bhgyl?  [BO(g)]

(6.93)

Expanding, once more
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2 2
E(-dn) = - 228 EP de 1+}y2 T | 43| T A
2m 8cN 5(0) A1y (1 + &¥)?2

This gives the conductivity, o, given by

2 -
o = o {1 + n2 Lol & 5 [t (6.94)
12 | {6, A1

where O, = O at T = 0 and we found

Yy 2
2 e T
_...._._...._.....__d A -
IY (1 + V)2 4 3

We consider the case A(l) << A(o)’ i.e. the case of

weak p wave scattering. With BA(o) *»» 1, BA(l) > 1, @ ,

2
v & Uol} s 12 [-l-] :! (6.95)
1.3- A(l)

which is independent of A(o)’ i.e. conductivity depends on

becomes

the p-wave scattering only. In other words, p-wave
scattering becomes important. By simple extension of the
argument, one may say that other partial wave scattering are
also important is this limit.
For, A << A and when BA >> 1 but BA << 1
» A1) << o) P8 0) By << %o

we go back to Eq. (6.92) and approximate

T _ iwB Tp dy ey
E(-iw) = - 182 70 I
4™ cN . S + - (1 +eM)?
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2
o y
x . 1wb mp Jr’y 1 # l— 4 .. < (6.96)
4m N L 88 o

And this gives

2

c=oo[1+ﬂi[T]] (6.97)
3 |a
(o)

In terms cf resistivity Eqs. (6.95) and (6.97) can be written

as (for A(l) << A(o))

21~1
R(T) = RO[} + ;; [XLE—} (BA(O)>> 1, BA(1)>> 1) (6.98
(1)
and
3 2==1
R(T) = R E + E%_ [Zi.)_] :} (BA(1)<< 1, BA (5y>> 1) (6.99)

where we denoted 1/00 = RO. Also with no assumption about

the relative size of A(o) and A(l)’

) 2 2-|=1
R(T) = R_ {1 + 1= LI PO (6.100)
’ L) ‘)

The important thing to notice is that inclusion of

p-wave scattering reduces the conductivity at T = O to one
quarter of its value which we obtained in Chapter 3 for
s-wave scattering only (see Eq. (6.91) . For weak p-wave
scattering, A(l) << A(o) only p-wave scattering is important
for BA(O) >> 1, BA(l) >> 1 and only s-wave scattering is

significant when Bé(o) >> but 5A(1\ i< 1,



6.5 Discussion

The most important conclusion we have arrived at in
this chapter concerns the high temperature behaviour of the
Kondo system. Inclusion of vertex corrections, for the
extended exchange interaction formulation, gave rise to
correction, third order in exchange interaction and appeared
in the coefficient of the leading in term. We showed that
for a particular ratio of the strengths of the s and p wave
scattering, this coefficient can vanish, giving a different
type of high temperature behaviour. From our results in
Section 6.3, if we write the expression for resistivity,

R(T)

n

R(T) cR_[1 + o} + BA2] (6.101)

where, A = pJ/Ngn T/D, o, B are constants such that

ad, BAZ << 1, R, is the resistivity in the first Born
approximation, and c¢ is the concentration of impurities.

At high temperatures, we have a) > BA? and if we call the
reverse situation, i.e. al < BA? 'low' temperature region,

we can define a critical temperature, T, given by

T T, la/R
e X (6+102)
D D

where, Ty is the Kondo temperature. Then for o/B << 1,
T, << T.. To ignore the leading &n term, ai, in the
resistivity expression (6.101), we need o/B << 1. Thus, we

have a temperature region, given by

<< T << T (6.103)
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where our formulation is applicable. The Eq. (6.101) is

5

valid for T >> T, and if we take D ~ 107K, iy ™ 10™°K and

1

a/8 ~ 1077, T_ becomes of the order of 10%K. Also, if

T, ~ 10°K, D ~ 10°K and /B ~ }, T, is again 10%K. Hence,

we can, in principle have a large temperature region for
which our theory is applicable. For normal Kondo effect,

we have T >> iy and T >» T_.. For T >> Lo the leading

c
¢n-term dominates, no matter how small o is and also even

if o is of the order of 8 . But, in the latter case,

Tk - TC.
Experimentally, the resistivity of EEFe(74), l;Fe(75),
ggFe(76) and gQCo(76) alloys does not show a minimum. For

RhFe the resistivity was found to increase gradually with
temperature and at about 20°K, it bends in the shape of a
knee and then rises sharply with temperature (for 0.1 at %
of Fe concentration). For higher concentration this knee
disappears giving a very sharp rise with temperature. For
IrFe, strong temperature dependence of resistivity was found
for 0.01 at % concentration of Fe. Similar behaviour was
also found for PdCo alloys. These alloys have been called
'Coles alloys' and attempts have been made to explain their
behaviour. Loram et al. found that their data on PdCo alloy
for excess resistivity, Ap agree well with an expression

Ap = A + BgnT, where B was positive. But, to account for
their magnetoresistance data, a large positive, but
improbable value of the exchange coupling between conduction
electrons and local spins is required. Rivier and Zlatic(So)
attempted to explain these results from the 'localized spin
fluctuation' point of view. It has been arguégs%hat since

these alloys contain transition elements for both host and
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impurity, they are not Kondo systems with well defined

(77)

localized states. But, susceptibility data s Specific

heat(79) anomaly at low temperatures, also Mossbauer
anomalies(79) similar to that in CuFe alloy, all indicate
that these alloys behave like a Kondo system with negative
exchange interaticn, except for resistivity.

We have shown that for alloys having strong p-wave
scattering, the logarithmic behaviour in the resistivity
due to exchange scattering will be smeared and in the
extreme case will vanish totally. This resistivity will
tend to a constant and when combined with residual
resistivity and resistivity due to lattice scattering
(= TS) the total resistivity will show no resistance
minimum and a sharp rise with the temperature is inevitable.
But detailed comparison with experimental data has proved
problematic. Firstly, the magnitude of J itself is con-
troversial(gs). Since the Kondo temperature T, depends
exponentially on the exchange constant J, a small change in
J can vary T, by an enormous amount. Secondly, fixing the
ratio of Js and J4 will be totally arbitrary. Finally, it
has been suggested(94) that these alloys are not systemns
with strong p-wave scattering. Therefore, we prefer to
wait until a better understanding of the problem has been

achieved.
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CHAPTER CONCLUSION

In this thesis, we have applied the linear response
formalism to calculate the electrical conductivity of dilute
magnetic alloys and used the s-d exchange Hamiltonian
throughout. Since this Hamiltonian can be derived from the
Anderson Hamiltonian, (physically, not very much different
from the Wolff model), under special circumstances and since

Q7>
both of the models were shown to produce a Kondo singularitytj)

for the electrical resistivity and Curie-Weiss law(gs) for
the magnetic susceptibility, it is expected that the results
derived in one model would not be very much different for the
other. It must be emphasized here that one is not at all
certain whether or not the s-d exchange model is adequate for
treating the dilute magnetic alloys. Considerable efforts
have been made to study the Anderson and Wolff models where
the magnitude of the impurity spin is not assumed to be fixed
but is allowed to vary. It has been known for a long time that
a model with a fixed half integral or integral impurity spin
cannot describe these alloys rigorously, since the spin
values derived from the high temperature susceptibility arse
generally not equal to half or any multiple of it. This leads
one back to the alternative approach to the problem, viz.
the problem of the existence and stability of an impurity
spin in a metallic environment, as separate from the way this
spin interacts with the conduction electrons. Perhaps, it
will be profitable to study both of these problems together.
Instead of the usual single impurity formulation, we

have formulated the equations of motion with N; impurities
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distributed randomly throughout the system. It was necessary
for us to do so in order to apply linear response theory.
But, in effect, we have neglected the impurity-impurity
correlations by taking the average over the impurity sites
before solving the equations of motion. It is a standard
practice for the low concentration of impurities. The
interaction between impurities brings in many new effects.
These have been investigated by several authors(gg), but the
problem is not well understood yet.

In our calculations, the ordinary potential scattering

(100) that the

has not been included. It was shown by Kondo
ordinary scattering has no essential effect on the
thermodynamic properties of the system. But, for the transport
properties it was thought to have severe effects. The giant
thermoelectric power was explained as a result of the combined
effect of the ordinary and exchange scattering. Fischer(IOI)
investigated the effect of the ordinary scattering on the
exchange scattering and found a factor cosﬁng cos2n, (n, are
phase shifts) incorporated in the leading logarithmic term.
Since, this factor becomes negative when n, > n/4, the InT
term can change sign. But this result does not agree with

that of Abrikosov(47)

who found no change in the temperature-
dependent resistivity due to normal scattering.

There are two ways to take the potential scattering
into account. First, one can add on additional term containing
the ordinary potential to the Kondo Hamiltonian(101-104) .ng4
then adopt Nagaoka's decoupling scheme to solve the equations.
Let us call the resultant t-matrix for non spinflip scatterine,
typye Alternatively, one can make use of a canonical trans-
formation(loz) to eliminate the potential term. In that case¢
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the exchange coupling constant, J is replaced by a
renormalized coupling constant, J. Then one can apply the
same decoupling scheme to obtain the corresponding t-matrix,
t3. It was shown by Schotte(los)

. 2i8
are related by tooy = tye

that these two t-matrices
Vo« ty, where ty and §y are the
t-matrix and the phase shift due to the ordinary potential
scattering only. Thus it is clear that one need not include
the ordinary potential explicitly in the formulation of the
Kondo problem.

Recently, scaling techniques(106) have been applied to
develop a theory for the Kondo system which is valid at all
temperature regions. There, Anderson, Yuval and Hamann
showed that the Kondo problem is equivalent to a certain
type of one dimensional statistical problem and solved that
problem by deriving scaling laws connecting solutions for
different sets of parameters with each other. Despite this
progress, there are no quantitative thecretical predictions
for quantities like resistivity, low temperature susceptibility
or specific heat., Furthermore, the theory includes s-wave
scattering only.

In calculating the conductivity of the system we used
the Kubo formula(86) of linear response. When the electrons
in a metal are subjected to the sort of scattering that can
be described by an isotropic relaxation time, then the Kubo
formula becomes the quasi classical expression as derived
from the Boltzmann transport equation. But for more

complicated scattering mechanism, like that in a Kondo

system, it is not at all clear from the start that one can use
a simple relaxation time. Our calculations (Chapters 2 and 3)

confirm the contention that the scattering in a Kondo system,
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as far as it is described by the s-d model can be represented
by a simple relaxation time.

Our analytic expressions for the complex conductivity
(Chapter 4) at low temperatures may serve as a useful start-
ing point for future investigations. Moriya and Inoue(go)
have sugeested that the experimental measurements of the
surface impedance of Kondo alloys at low temperatures in the
microwave or far infrared frequency regions might different-
iate the 1sf and the s-d models. Both the theories show a
significant deviation from the Drude model, and for special
cases, somewhat different behaviour is predicted for the two
models, Both theories predict peaks in the frequency-
dependent conductivity, but the ones in the 1sf model are
sharper. Our theory, valid for frequencies very much less

than 1012

Hz, does not predict any peak. Unfortunately, there
are no experimental results available at the moment which
would permit any definite conclusion about these predictions.
Our most important contribution to the theories of Kondo

systems is the finding of the effect of inclusion of p wave
scattering of the exchange interaction (Chapters 5 and 6).

The correction to the leading logarithmic term is found as a
result of including the vertex corrections which arise frow
the non-conservation of local charges. As had been found

for the BCS theory(45)

of superconductivity, the quasi-
particle excitations, if treated independently, do not
conserve charge. Mathematically, the situation arises when
the two-particle Green's function is replaced by a product
of two single-particle Green's functions. In the Kondo

problem, one also decouples the higher order Green's function

to the lower order ones. Hence the problem of non conserva-
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tion of charge is present unless one works within a conserv-
ing approximation. Onc way to ensure the conservation laws,
when calculating the response of the system to an electric
field, is to make use of a 'generalized Ward's identity'(107)
which is the Green's function analogue of the continuity
equation, Using this identity, we found the correction tern
in the high temperature conductivity of the Kondo system.
The effect of this term can in fact be very severe.

We have had difficulty in finding experimental data
for alloys in which p wave scattering would be strong. We
expect p-wave scattering to be important for large impurities
with a finite range of interaction; s-wave scattering
assumes a contact type of interaction described by a
delta-function. The high temperature resistivity of alloys
of second or third row transition-metal hosts with a small
amount of first row transition-metal impurities may show
agreement with our theory. These alleys showed two distinct
types of properties. One category exhibits well-defined
impurity moments and they undergo magnetic ordering at low
temperatures. They also show a negative magnetoresistance.

(108) (109)

PdFe and MoFe alloys are typical examples of this

type. The second category does not show magnetic ordering
and it has an effective moment per impurity which decreases
at low temperatures. The resistivity has a positive

temperature dependence; the magnetoresistance

(74)

is found to be positive. RhFe " lee(75) etc., show such

behaviour. But experimental investigations on some other

(76) (76)

alloys like PtFe , PdFe etc., showed some behaviour

common to both categories.
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Attempts, along several different lines, have been
made to explain the two types of behaviour exhibited by the
alloys named earlier but none of them can, as yet, claim
complete success. Kondo(44) tried to describe these systems
with a positive exchange interaction. But it was pointed

out (48)

that the decrease in moment at low temperatures as
well as a large peak in the thermoelectric power in these
alloys would not be possible from a positive J. A number of
authors attempted to explain these systems taking ordinary
potential scattering into account., But the residual

resistivitycllo)

of these alloys did not support this conten-
tion. Knapp(SI) has suggested a two-band model for the
purpose, but there again, one can reject this on the grounds
that it would not produce a large thermoelectric power(lll).
Yet another approach is through the localized spin fluctua-
tion (1sf) model(so). The situation, at present is by no
means clear, as no single theory could explain any substant-
ial number of properties over a reasonable temperature range.
From our calculations, we have fcund that the inclusion
of p-wave scattering can change the logarithmic temperature
dependence of the resistivity at high temperatures and in the
extreme case the 2nT term can vanish totally. This term then
added to the residual resistivity and the resistivity due to
the lattice scattering (aT®) gives no resistance-minimum but
a sharp rise in the resistivity as temperature increases.
This may serve as a basis for explaining the behaviour of
RhFe and related alloys. As more and more experimental data
are becoming available, we hope our calculations will throw

some light on the complicated scattering mechanisms in these

alloys.



Qur calculations, even if they are found to have no
relevance to typical Kondo alloys, (those with definite
magnetic moments), can, we believe, be a basis for the
investigation of the transport properties of alloys, with
large magnetic impurities, where p-wave scattering in the
exchange interaction is expected to be important, The
expression for high temperature resistivity developed in the
present thesis can, in fact, predict the temperature
dependence of the resistivity for the relevant alloys. In
future, it would be of interest to solve the equations for
all partial waves and see how the results are modified. A
straightforward calculation, along similar lines, for the
Anderson model, might clear up the physical situation.

The vertex corrections need to be included in the
expression for low temperature resistivity. This may be
attempted in future. One might use the conserving approxima-

(112)

tions developed by Kadanoff and Baym to carry out the

calculations. Future work can be directed along these lines.
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Appendix A

Tn

In Chapter 3, we evaluated the restricted W = sum
by using the contour integral method. Using the standard

result

] flu) = =£ J 92 f(-iz) (A.1)

P24

where the contour c¢' surrounds the poles of 2 function which

has simple poles at values iwn, we obtained [See Eqs. (3.44)

and (3.47)7,

. 1
c(wp) = )
- <w_<
W <w <0 Y % "
LT -
1-b4n ——= 1-bAn —
D D
- J dz 1
211 JeBZ41 wp & Yw = Y
1-bgn -2 1-bgn X%
D D
_ B J dz 1
eni b PPy, x
P " -iz e -l
1-bAn —— 1-bin
D D

This is true only if (i) the end parts of the contour
(Fig.S9) do ncot contribute and (ii) the integrand has no
poles within the contour.

The contribution from the right hand side end part

(from w-iwp to « ) vanishes, because the Fermi factor gives
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zero for large positive value of z. Since the function

-l
&

g(wn) tends to W, as w_, * o, the contribution from the

I3
left hand side does not vanish. By considering the sum more

carefully, we shall show that this does not contritute any
correction of interest.

If we subtract wp~1 from the start, the integrand
will be absolutely convergent and the end parts would not

contribute. Therefore, we have

E(wy) = ] ! e I )
= -wp<wn<o " Y . Y ) w

Transforming this to the contour integral form and making the

analytic continuation, we obtain

. B dx 1
g(-iw) = .E_ * = I BX R Y Y
27 2mi e T+l [=iw + = % —
1-bin XX  1-pgp IXTIW
e D
. 1 (A.3)
-iw + i -+ 4
1-bgn 2X°  j.pgn 22X
D D
=8 ,_8 Jf(x)g(x)dx (A.4)
27 2mi

where f(x) is the Fermi function and the function g(x) is
defined from (A.3). We notice that the function g(x) is odd

and so we can write (A.4) in the following form
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eio) = Lo L e - Dzt (A.5)
m 2ri
0
The next step is to evaluate the integrals., We write
© L
I g(x)dx = 1lim J g(x)dx
Lo
0 o
L
= 1lim j[¢(x) - ¢(x-w)ldx (A.6)
>
0
where
o (x) = - (A7)
-iw + Y + Y
1-bgn XX 1-pgn 2XTIY
b D
From (A.6), we get
L L 0
[saax = [ oax - [ saax
O L-w -
w o)
- [o-vyax - [ seoax (h.8)
0] -Ww
Now, for large L we can expand the &n terms appearing in
¢(x) to get
==X @ g & - X
D D L
and pp LoENS  pp & - XE :
D D L
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Then the first integral in (A.8) gives 1 as L + «,

The other integral in (A.5) can be written as

(o] (>}

If(x)g(x)dx & J[¢(x,w) - ¢(x~w,w)If(x)dx (A.9)
0 0

where the function ¢(x,w) is given by (A.7). From (A.9),

one obtains

o« (o)

¢

Jf(x)g(x)dx = J¢(x,w)[f(x)-f(x+w)]dx - J¢(x,w]f(x+w)dx
0 0 -w
© N 0
EE) I¢(x,w) 3f dx - J¢(x)f(x)dx (A.10)
0 9x -w

In the d.c. limit, the first integral is evaluated to be

and the second integral cancels the second integral in
(A.8) in the d.c. limit when inserted in (A.5). The factor

i coming from the first integral of (A.8) cancels the first

] (A.11)

which is exactly the same as Eq. (3.53). Hence, neglection

term in (A.5). Therefore, we get

1
1.13D

£(-iw) = 18 |1 - ban
Amy

of the contribution from the end part of the contour is
justified., It may be mentioned here that the first part of

the integral in (A.10) has another part higher order in b.
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A careful evaluation of that term will make it clear that
the contribution coming from there is essentially of 0(J%)
and higher and hence of no interest to us. A similar
treatment can be applied to all other evaluations of
w,-sums in this thesis.

The second point we want to resolve is whether the
integrand of Eq. (3.44) has any pole within the contour. That
the integrand has no pole within the contour can be shown

quite easily if we recall the approximation made in

Eq. (3.40). If we had not made that assumption we could

write
Elwy) = ] s (A.12)
-w_<w_<0 Y
P n w.. + — + TR
1-b&n e 1-bn p2 "
wn+D (wn+mp) +D
Expanding this expression for b << 1, we get
2 2
Ewy) = ] A N N S o
TP , 2 2,12 2,12
mp<wn<o (wp+2y) (up+2y) (wn+D ) (wnﬂ%g +D
(A.13)

One can easily verify that the expansion does not violate

the analyticity requirements(lls) of the summand. If now

we write the w,-sum into a contour integral form in the same

way as we have done in Chapter 3, it becomes trivial to show
y

that the integrand has no pole within the contour. The

integrand has a pole within the contour only if the argument



of &n either vanishes or tends to infinity there. But it is

so only for values z =0, z =D, z = iwp and z = D-iw_ and
none of these values lies within the contour. Therefore

the integrand has not got any pole within the contour.



(1)
(2)

(3)

(4)

(5)
(6)
(7)
(8)
(9)
(10)
(11)

(12)
(13)

(14)
(15)
(16)
(17)
(18)
(19)

(20)-

(21)

- 122 -

REFERENCES

MEISSNER, W., and G. Voigt, Ann. Physik 7, 761,892(1930)
DE HAAS, W.J., J.de Boer and G.J. van den Berg,
Physica 1, 1115 (1934).
For a good review of experimental facts up to
1964, the reader may refer to G.J.van den Berg
in 'Progress in Low Temperature Physics'
(C.J. Gorter, ed.) Vol. IV, p.194.
North-Holland Publ,, Amsterdam, 1964.

LINDE, J.O., Ann. Physik 10, 52,69 (1931).
T, 353 (1932).

LINDE, J.O., Ann.Physik 10, 52, (1931)
I5, 219 (1932).

GERRITSEN, A.N., and J.0, Linde, Physica 17, 531 (1951).
GERRITSEN, A.N., and J.0. Linde, Physica 18, 877 (1952).
GERRITSEN, Physica 19, 61 (1953).

L0S, G.J., and A.N. Gerritsen, Physica 23, 633 (1957).
GERRITSEN, A.N., Physica 23, 1087 (1957).

GERRITSEN, A.N., Physica 25, 489 (1959).

MacDONALD,D.X.C., and I.M. Templeton, Phil. Mag. 42,
432 (1951).

MacDONALD,D.K.C., Phys. Rev. 88, 148 (1952).
MacDONALD,D.XK.C., and W.B. Pearson, Proc. Roy. Soc. A
219, 373 (1953).,
Acta Metal 3, 392,403 (1955).
PEARSON, W.B. Phil, Mag. 45, 1087 (1954).
PEARSON, W.B. Phil. Mag 46, 911,920 (1955).
PEARSON, W.B. Phil., Mag 4, 622 (1959).
PEARSON, W.B. Phys. Rev. 97, 666 (1955).
PEARSON, W, B. Can. J. Phys. 34, 1294 (1956).
SCHMITT, R.W. Phys. Rev. 96, 1446 (1954).

GIAUQUE, W.F., and J.W. Stout, J.Am.Chem,Soc. 60,
388 (1938)

NAKHIMOVITCH, N.M. J. Phys. USSR 5, 141 (1941).



(22)

(23)

(24)

(25)

(26)

(27)
(28)

(29)

(30)

(31)
(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)
(40)
(41)

SARACHIK, M.P., E. Covenzwit and L.D. Longinot,
Phys. Rev. 135A, 1041 (1964).

MATHIAS, B.T., M. Peter, H.J. Williams, A.M. Clogston,
E. Corenzwit and R.C. Sherwood, Phys. Rev,
Lett. 5, 54Z (1960).

CLOGSTON, AM., B.T. Mathias, M, Peter, H.J. Williams,
E. Corenzwit and R.C. Sherwood, Phys. Rev.
125, 541 (1962).

DAYBELL, M.D., W.P. Pratt, and W.A. Steyert, Phys. Rev.
Lett. 21, 353 (1968).

GOLIBERSUCH, D., and A.J. Heeger, Phys. Rev. 182,
584 (1969). —

MENDOZA, E., and J. G. Thomas, Phil. Mag. 42, 291 (1951).

FRANCK, J.P., F.D. Manchester, and D.L. Martin, Proc.
Roy. Soc.(London) A263, 494 (1961).

DU CHATENIER, F.J. and J.de Novel, Physica 32, 1097 (156u)
Physica 28,181 (1962).

DU CHATENIER, F.J. and A.R. Miedema, Physica 32, 403
(1966).

KJEKHUS, A. and W.B. Pearson, Ca.J.Phys. 40, 98 (1962).

MacDONALD, D.K.C., W.B, Pearson and I.M. Templeton,
Proc.Roy.Soc. (London) A266, 161 (1962).

JENSEN, M:.A., A.J. Heeger, L.B, Welsh and G. Gladstone,
Phys. Rev. Lett. 18, 997 (19¢7).

HEEGER, A.J., L.B. Welsh, M,A., Jensen and G. Gladstone,
Phys. Rev. 172, 302 (1968).

GOLIBERSUCH, D, and A.J. Heeger, Phys. Rev. 182, 584
(1969).

FRANKEL, R.B., N.A, Blum, B.B. Schwartz and D.J. Kinm,
Phys. Rev. Lett., 18, 1050 (1967).

KITCHENS, T.A., W.A. Steyerts and R.D. Taylor, Phys.
Rev, 138, A 467 (1965).

FRIEDEL, J. Can. J. Phys. 34, 1190 (1956).
Nuovo Cimento Suppl. 7, 287 (1958).

ANDERSON, P.W., Phys. Rev. 124, 41 (1961).
WOLFF, P.A., Phys. Rev. 124, 1030 (1961).

ZENER, C. Phys. Rev. 81, 440 (1951).



(42)

(43
(44)

(45)

(46)

(47)

(48)

(49)
(50)
(51)

(52)

- 124 -

SCHRIEFFER, J.R. and P.A. Wolff, Phys. Rev., 149, 491
(1966).

YOSIDA, K. Phys. Rev. 107, 396 (1957).
KONDO, J. Progr. Theor. Phys. (Kyoto) 32, 37 (1964).

BARDEEN, J., L.N, Cooper and J.R., Schrieffer, Phys.
Rev, 108, 1175 (1957).

ANDERSON, P.W., Comments Solid State Physics 3, 153
(1971). (Gordon and Breach, New York, 1968).
For a review of the Kondo problem the reader
may refer to J. Kondo in, 'Solid State Physics'
(F. Seitz, D. Turnbull and H. Ehrenresch, eds.)
Vol. 23, 1969, p.183, Academic Press, New
York).

ABRIKOSOV, A.A. Physics 2, 5 (1965).
7, 61 (1965).
See also S. Donilach, Phys. Rev. 144, 382(1966).

SUHL, H, Physics 2, 39 (1965), Phys.Rev. 138, A 515
(1965), Phys. Rev. 141, 483 (19606).

SCHL, H. and D. Wong, Physcis 3, 17 (1567).
NAGAOKA, Y. Phys. Rev. A 138, 1112 (1865).
HAMANN, D.R. Phys. Rev. 158, 570 (1967).

BLCOMFIELD, P,E. and D. R, Hamann, Phys.Rev. 164, 856
(1967) .

ZITTARTZ, J. and E, Muller-Hartmann, Z. Physik 212,
380 (1968).

SILVERSTEIN, S.D. and C.B. Duke, Phys. Rev. 161, 456
(1967).
Je Zittartz, Z, Physik 217, 43 (1968).

NAGAOKA, J. Phys. Chem. Solids, 27, 1139 (1966).

YOSIDA, K., Phys. Rev. 147, 223 (1966); Prog. Theor.
Phys. 36, 875 [1966); H. Ishii and
K. Yosida, Prog. Theor.Phys. 38,61 (1967).

HEEGER, A.J. and M. A.Jensen, Phys.Rev.Lett. 18, 488
(1%67).

APPLEBAUM, J.A. and J. Kondo, Phys. Rev. Lett. 19,
906 (1967).
J. Kondo, Prog.Theor.Phys. 36, 429 (15966).

LEDERER, P. and D.L. Mills, Solid State Commun. 5,
131 (1967).



(59)

(60)

(61)
(62)

~~
()
[\

(S

~
N
$>
-

(65)
(66)
(67)

(68)

(69)

(70)
(71)
(72)

(73)

(74)
(75)
(76)

(77)
(78)

RIVIER, N, and M.J. Zuckermann, Phys.Rev.Lett. 21,
904 (1968). “‘
M.J.Zuckermann, N. Rivier and M. Sunjic, Phys,
Lett., 28 A, 492 (1969).

SUHL, H., Phys. Rev. Lett. 19, 442 (1967); Phys. Rev,
171, 567 (1968).

ZITTARTZ, J. Z. Physik 217, 155 (1968).

BLOOMFIELD, P.“. R. Hecht and P. Sievert, Phys. Rev.
g B, 3714 (1970).

I‘/{AT'TIS’ DoCo, Phys. RGV. LCft. ;1.-9_9 13’78 (1967)-

YOSHIMORI,A., Phys. Rev. 168, 493 (1968).
A. Yoshimori, K. Yosida, Prog.Theor.Phys. 39,
1413 (1968).

ANDERSON, P, W. Phys.Rev. 124, 41 (1961).
PATEN, B.E. and M.J. Zuckermann, J. Phys. F 1, 125(1971).

®

ZITTARTZ, J. and H., Muller-Hartmann, Z. Physik 212,
380 (1968).

FRANCK, J.P., F.D. Manchester and D.,L. Martin, Proc.
Roy.noc (London) A 263, 494 (1961).
F.J. du Chatenier and J. de Nobel, Physica 32,
1097 (1966).

DAYBELL, M.D. and W.A. Steyert, Rev.Mod.Phys. 20,
380 (1968).

BOERSTOEL, B.M. and W.M. Star, Phys.Lett 29 A, 97(1969).
STAR, W.M. and B.M, Boerstoel, Phys.Lett 29 A, 26(1969).

STAR, W.M. and G.J. Nieuwenhuys, Phys. Lett. 30 A, 22
(1969).

LORAM, J.W., T.E. Whall and P.J. Ford, Phys. Rev. 2 B,
857 (1970).

COLES, B.R. Phys. Lett, 8, 243 (1964).

SARACHIK, M.P. Phys. Rev. 170, 679 (1968).

LORAM, J.W., G, Williams and G. Swallow, Phys. Rev.
B 3, 3060 (1971).
J.W. Loram, R.J. White and A.D.C. Grassie,
Phys. Rev. B 5, 3659 (1972).

KN.[\\.PP’ G.So J. ll'\\pp].o Ph}’s. _3—8_, 1267 (1967).
B

COLES, B.R., J.H.Waszink and J,W. Loram in Proceedings
of the Inte rnatlon 1 Conference on %2gnetlsm 2
1964 (Institute of Physics,London,1964)p.165.



(8C)

(813
(82)

(83}

(84)

(85)
(86)
(87)

(82)

~ o~
w w
£ w
SV A

~
o]
(F4]

(96)
(97)

~ 126 -

Ls W.A, Steyert and R.D. Taylor, Phys.
Rev, 138, A 467 (1965).

R.D, Tayior and W.A. Steyert, J.Appl. Phys.

i

and V. Zlatic, J.Phys. F : Metal Phys. 2,
99 (1972).

e

KNAPP, G.S. Phys. Lett. A 25, 114 (1967).

ABRIKOSOV, A.A., L.P. Gor'kov and I.E. Dzyaloshinski,
fethods of Quantum Field Theory in Statisticel
1.v51cd, Prentice-Hall, Inc. N.J. (1963),
Sec. 39.2, p.327.

KADANOFF, L.P. and G. Baym, Quantum Statistical
Mechanics, (Benjamin, N.Y., 19262).

TOMITA, K. and M. Tanaka, Prog. Theor.Phys. 29, 528
(1263) .

NAGAOKA, Y. Prog.Theor.Phys. 37, 13 (1967).

KUBO, R. J.Phys.Soc. Jap., 12, 570 (1957).

RICKAYZEN, G., in The Many-Bocdy Problem,C.Fronsdal ed.
(Benjamin N.Y. 1962)p.97. See also,
G Rlchayzed Theory of 9uperﬂonduct1V1‘"
(Inter. Science Publ. N.Y., 1965) p. 437.

FISCHER, K. Z. Phys. 225, 444 (1969).

KAKITANI, T. Prog.Theor.Phys. 32, 1216 (1967).

MORIYA, T. and M, Inoue, J. Phys. Soc. (Japan) 27, 371
(1969).

MURATA, K.X. and J.W. Wilkins, Eleventh International
Confercnce on Low Temperature Physics,
Vol. 2 (St. Andrews), 1968, p. 1242,
Ke Ko Murafa, Ph.D. Thesis, Cornell University,
1971,

BRANDLI, G., S.R. Derbenwick, K.K. Murata, A.J. Sievers
and J.W, Wilkins, Phys. Rev. Lett. 29, 1512
(1972).

SCHRIEFFER, J.R., J. Appl. Phys. 38, 1143 (1967).

COLES, B.R., Private Communication.

RIVIER, N. and J. Zitkova, Adv. in Phys. 20,143 (1971),

HAMANN, D.R. Phys. Rev. 186, 549 (1969).

HAMANN, D.R. Phys.Rev. Lett 17, 145 (1966).
Phys.Rev. *56 (1967).




- 127 -

Reference 57 continued/...

(98)

(99)

(100)
(101)
(102)
(103)
(104)
(105)
(106)

(107)

(108)
(109)
(110)
(111)
(112)

A. Theumann, Phys.Rev.Lett. 16, 937 (1966).
L. Dworin, Phys.Rev.Lett.16, 1042 (1566).
Phys. Rev. 134, 818,841 (1967).
SCALAPINO, D.J., Phys. Rev. Lett. 16, 937 (1966).
Y. Nagaoka Prog.Theor.Phys, 37,13 (1967).
E.Miller-Hartmann, Z.Phys. 223, 277 (1969).
BRESEMANN, R.H. and M. Bailyn, Phys.Rev. 15 A, 471(19066).
S.D.Silverstein,Phys.Rev.Lett.16,466 (1966).
H.J.Harrison, M.W.Klein, Phys.Rev.154,540(1967).
Y.C.Tsay and M.W.Klein,Phys.Rev. 7 B,352(1972).
KONDO, J. Phys. Rev. 169, 437 (1968).
FISCHER, K. Phys. Rev. 158, 613 (1967).
KONDO, J. Phys.Rev. 169, 437 (1568).
NAGAOKA,Y. Prog.Theor.Phys. 39, 533 (1968).
FISCHER, K. J.Phys.Chem.Solids 29, 1227 (1968).
SCHOTTE, K.D. Z.Physik 212, 467 (1968).
ANDERSON, P.W. and G. Yuval, Phys. Rev. Lett. 23, 8¢
(1970).
Phys. Rev. B 1, 1522 (1970).
P.W.Anderson, G. Yuval and D.R. Hamann,

Phys.Rev. B 1, 4464 (1970).

SCHRIEFFER, J.R. Theory of Superconductivity, p.228
(W.A. Benjamin, Inc. Publishers, N.Y.) 1964.

CRANGLE, J. and W.R. Scott, J.Appl.Phys. 36, 921(1965).
COLES, B.R. Phil. Mag. 8, 335 (1963).

NAGASAWA, H. Phys. Lett. 32 A, 271 (1970).

DE VROOMAN, A.R. and M.L. Potters, Physica 27,1083(1261;-

BAYM, G. and L.P. Kadanoff, Phys.Rev. 124,287 (1961).

G.Baym, Phys.Rev. 127, 1391 (1962).

BAYM, G.

and N.D. Mermin, J.Math.Phys. 2,232 (1%961).




