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Abstract

Autonomous vehicle navigation can be divided into two major areas of research: 

Collision avoidance and Track-Keeping. This study focuses on Collision avoidance 

which is one of the major issues that unmanned autonomous vehicles have to face. 

Collision avoidance may be further grouped into classical and soft computing based 

categories. Classical techniques are based on mathematical models and algorithms, 

while soft-computing techniques are based on Artificial Intelligence. In this study, 

we focus on the Classical techniques and more specifically in the Potential Field 

Methods.

The potential field algorithms rapidly gained popularity due to their 

simplicity and elegance. In other words, Potential Field Methods are generic, 

computationally efficient and generate naturally smooth trajectories. On the other 

hand, PFM algorithms experience local minima. Nevertheless, local minima for PFM 

are extensively studied in different environments; they have never studied in a Pure 

Dynamic Environment (PDE). PDE is a new dynamic environment in which all its 

elements are guaranteed to be dynamic at their initial state.

In this way we have managed to identify and define the causes of Potential 

Field Agent local minima and trajectory inefficiencies in a number of collision 

scenarios within PDE. To efficiently and accurately identify and define these causes 

of local minima and trajectory inefficiencies, we have introduced the novel concept 

of the Monovular Autonomous Agent Correlation. Based on this concept we have 

identified and mathematically defined the Trajectory Equilibrium State (TES) for the 

first time. This state is responsible for local minima and trajectory inefficiencies of 

Monovular Autonomous Agents in PDE.

Because of TES identification and definition we have designed a rule based mathe­

matical algorithm that efficiently navigates the Autonomous Agents out of local 
minima and trajectory inefficiencies in PDE in a number of generic collision scenar­

ios. The algorithm’s performance is tested in a number of simulated water based 

collision scenarios.
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Chapter 1

Introduction



1. Introduction

Autonomous vehicle navigation is based on Collision Avoidance (CA) and Track- 

Keeping. Track-keeping is related to the control methods that allow the vehicle to 

follow a certain predefined segment of trajectory. CA is the method that obstacles 

are avoided via the generation of a different hierarchical path between the vehicle 

current position and its target destination. In this study we focus on the Collision 

avoidance. We have two major parts of path planning: on-line path planning and off­

line path planning. Off-line path planning refers to global environment path planning 

and is not real-time while on-line path planning refers to the real-time path planning. 

In addition, CA could be further grouped into classical and soft computing based 

categories. Classical techniques are based on mathematical models and algorithms, 

while soft-computing techniques are based on Artificial Intelligence. In this study, 

we focus on the Classical techniques and more specifically on the Potential Field 

Methods, which is a real-time path planning method. In chapter 2, a review of the 

CA methods related to autonomous unmanned surface vehicle takes place along with 

its comparison with human’s cognitive abilities.

The potential field algorithms have extensively researched due to their simplicity and 

elegance. In other words, Potential Field Methods are generic, computational 

efficient and generate naturally smooth trajectories. On the other hand, PFM 

algorithms experience local minima. Local minima causes the autonomous potential 

field agent/vehicle to stop or to oscillate while it is trapped into a group of local 

coordinates. The local minima for PFM are extensively studied in different 

environments, but what cause them in in a Pure Dynamic Environment (PDE) 

haven’t been identified. We have defined as a PDE, a new dynamic environment in 
which all its elements are guaranteed to be dynamic at their initial state. We have 

decided to investigate the causes of local minima in PDE, since it is desirable to 

accurately understand the performance of the Classical Potential Field Algorithms 

without the ‘noise’ static environment. In addition, the vehicle/agent dynamic model 

is based on a point-mass model for the same reason.
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To investigate the performance of PFM in PDE, we have designed and implemented 

a Potential Field Method (PFM) based on Virtual Force Field (VFF) of a classical 

PFM [1-3]. Moreover, this modified PFM incorporates processing power oriented 

improvements by design changes of the Active Window (AW). An analytical 

presentation of the design and the implementation of this algorithm are presented in 

chapter 3; we have named this algorithm Active Window Single Point Potential Field 

(AWSPPF) Algorithm.

We have tested this algorithm in an extensive number of cross collision scenarios, 

and based on these results, the need of a new agent concept has arisen. This new 

agent concept reveals local minima behaviour in Pure Dynamic Environment. We 

have named the agent concept “Monovular” and the novel concept that identified 

local minima in PDE “Monovular Autonomous Agent Correlation” (MAAC). In this 

concept the agents in the same local environment are identical in both 

dynamic/kinematic models and algorithm implementation. The word Monovular is 

inspired by the biological term Monovular , which means from the same ovum (egg), 

and The MAAC is inspired by the Signal Processing Concept of Autocorrelation. 

Based on this concept, we have identified and mathematically defined the Trajectory 

Equilibrium State (TES) for the first time. This state is responsible for local minima 

and trajectory inefficiencies of Monovular Autonomous Agents in PDE. We explain 

the TES state, as well as the MAAC in chapter 4. The concept was published for first 

time by the author of this thesis in [4],

Based on the above, an efficient algorithm that identifies and avoids local minima in 

PDE of both Monovular and Biovular agents/vehicles in local environment is 

presented. This method is a combination of the AWSPPF and a rule based 

mathematical algorithm. The algorithm performance is tested in a number of generic 
water based collision scenarios, which are presented in chapter 5; some of these 

performance results are published by the author in [4-6].
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1.1 Motivation of the Thesis

Humans perform navigation to a satisfactory level, but their critical decisions are 

highly subjective. This can lead to error and potentially, to collision. The human 

navigation operation could lead in collision is called real-time path planning. There­

fore, to replace this human operation, a rigorous research is carried out for a number 

of years in real-time path planning section of autonomous navigation.

One of the most efficient real-time path planning algorithms, as we will analyse in 

chapter 2 is the Potential Field Methods (PFM).

The efficiency of this algorithms rely on its properties, which are:

• Low processing power

• The collision avoidance trajectory to be realistic in relation to own agent 

dynamic model with minimal agent modeling. In other words, PFM 

generates realistic smooth trajectory, so the Potential Agent can follow 

instantly the generated track segment in safe critical situations.

Therefore, we have selected to evaluate the PFM among other path planning and 

collision avoidance algorithms due to its elegance and simplicity, as well as to its 

natural smooth trajectories generation.

On the other hand, as it has repeatedly been underlined in many studies [7], the PFM 

are mainly suffering from two major drawbacks, local minima. When the autono­

mous potential agent is close to local minima in a confined environment experiences 

trajectory oscillations. The main causes for trajectory oscillations in a static envi­

ronment have been identified in [7], also a number of solutions for local minima 

have been discussed in [1, 7, 8], Nonetheless, none of these studies have examined 

and defined the existence and the reason of local minima in PDE. Therefore, we need 

to identify the reasons, which cause local minima in PDE; this way we can vastly 

improve the performance of the PFM as we will analytically prove in chapter 5.
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The basis for the identification of local minima in PDE was an extensive testing of 

two uniquely defined Potential Autonomous vehicles/agents in the same dynamic 

environment. Based on these results, the inclination of the algorithm for local 

minima was observed in the extent to make us able to identify a new Potential Field 

Algorithms new State that causes the Potential Autonomous agents to have poor 

performance.

Therefore, the main motivation of this study is: to evaluate and improve the 

performance of classical Potential Field Methods by identifying the cause of local 

minima in PDE, to mathematically define and predict the cause of local minima in 

this environment, as well as to design a mathematical method that improves Potential 

Field Performance in PDE.
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1.2 Research Aims and Challenges

The main aim of this research was to examine the use of the Potential Field Algo­

rithms in Pure Dynamic Environment, as well as to improve their performance 

without the algorithms losing their simplicity and elegance. Based on this aim a 

number of challenges were immersed. It is necessary to underline that simplicity and 

elegance of a collision avoidance algorithm in a dynamic local environment of fast 

agents/vehicle is very important, since the decision time is very limited. Neverthe­

less, the existence of local minima in this type of environment, due to fast speeds, 

could be more safety critical than in static environment.

Therefore, the first challenge of this research was to select the appropriate Potential 

Field Algorithm variation to accommodate the simplicity and elegance of the classic 

methodologies, which could possibly improve its computational capabilities. As we 

have referred to the above Potential Field Algorithms that are extremely computa­

tionally efficient they also have problems with local minima. In this stage the 

elimination of local minima was not yet the target. Therefore, we designed a Poten­

tial Field Algorithm that accommodates the features of a classical PFM [1, 3, 9], We 

have achieved this by designing the Active Window Single Point Potential Field 

(AWSPPF) Algorithm that we have mentioned in the above section. In this algorithm 

we have used the concept of Active Window, which is introduced in [2] but we have 

further improved the computational performance of the algorithm by using a circular 

(AW). The algorithm’s mathematical analysis and the mathematical justification of 

the circular AW is presented in chapter 3.

The AWSPPF algorithm exhibits local minima in static environment but is more 
computational efficient than the classical methodologies. The second challenge of 

the research was to clearly identify the cause of local minima in PDE. This challenge 

took place by testing the AWSPPF algorithm in a number of cross collision scenari­

os, which revealed the inclination of the algorithm to have bad performance when it 

is on specific initial conditions with another dynamic agent/vehicle/obstacle.
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At this stage the 3rd challenge of this research was to accurately define this 

similarity. We have achieved this by the introduction of the novel concept of 

Monovular and Biovular agents/vehicles, as well as the Monovular Autonomous 

Agent Correlation. Based on this new technique we managed for the first time to 

define the cause of local minima of Potential Field Agents in PDE, as well as to 

predict them long before the actual local minima occurrence.

Finally, the last challenge of this study was to utilise the local minima prediction to 

design an algorithm that will prevent the Potential Field Algorithm from local 

minima in PDE. This algorithm is described in chapter 5, and the author of this thesis 

has published the initial concept in [4] for Monovular agents/vehicles and in [5] for 

Biovular agents/vehicles.
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1.3 Thesis Structure

This thesis is divided in 6 chapters, which are:

Chapter 1 presents the introduction

Chapter 2 provides both a spherical understanding about autonomous water based 

vehicles for collision avoidance (CA), and a theoretical background of the reviewed 

work. It also includes mobile robots algorithms, since the genesis of a number of 

water based autonomous navigation methods took place in mobile robots domain 

first. In particular, we review the Potential Field Algorithms (PFA).

In this chapter 3 we design and implement a Potential Field Method (PFM) that 

accommodates the majority of the features of a classical PFM. Moreover, this 

algorithm incorporates processing power oriented improvements by redesigning the 

Active Window (AW). We use this algorithm to evaluate the PFM capabilities in the 

newly defined Pure Dynamic Environment (PDE), without the overhead of the 

dynamic/kinematic models of the autonomous agent.

In chapter 4 we introduce the novel concept of Monovular Autonomous Agent 

Correlation (MAAC). The significance of this concept is to identify performance 

inefficiencies of the Potential Fields algorithms in Pure Dynamic Environment PDE. 

These performance inefficiencies show that the potential field algorithm experience 

local minima not only in static environment but also in dynamic one.

In chapter 5 we have designed a rule based mathematical algorithm that efficiently 

navigates the Autonomous Agents out of local minima and trajectory inefficiencies 

in PDE in a number of generic collision scenarios. The algorithm’s performance is 

tested in a number of simulated water based collision scenarios in both Monovular 

and Biovular Agents/Vehicles.

Chapter 6 presents the conclusion and future work.
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Chapter 2



2. The generic problem of collision in navigation of water based 

vehicles and mobile robots and the autonomous navigation 

techniques

This chapter provides both a spherical understanding about autonomous water based 

vehicles for collision avoidance (CA), and a theoretical background of the reviewed 

work. It also includes mobile robot algorithms, since the genesis of a number of 

water based autonomous navigation methods took place in mobile robots domain 

first. In particular, we review the potential field algorithms (PFA).

Autonomous ship navigation can be divided into two major areas of research: 

Collision Avoidance (CA) and Track-Keeping (TK). This study focuses on the 

former Collision Avoidance that may be further grouped into classical and soft 

computing based categories. Classical techniques are based on mathematical models 

and algorithms that deal with determinism, while soft-computing techniques are 

based on Artificial Intelligence (AI) (algorithms deal with uncertainty). The areas of 

AI for autonomous ship collision avoidance that are examined in this chapter are: 

evolutionary algorithms, fuzzy logic, expert systems, neural networks (NN), as well 

as, a combination of all of them (hybrid system). For the areas of the classical 

techniques we mostly focus on potential field methods for both mobile robots and 

autonomous water based vehicles.

Nevertheless, in this chapter we also compare the human’s cognitive abilities 

for CA with different techniques for autonomous CA algorithms. Humans perform 

navigation to a satisfactory level, but their critical decisions are highly subjective. 

This can lead to error and potentially, to collision. To limit the human subjective 

factor, therefore, the International Marine Organisation (IMO) has defined the 

international rules for collision avoidance (COLREGs) [10-14], The effectiveness of 

COLREGs in human ship navigation is also investigated within this study.
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2.1 Contrasting human cognitive abilities and intelligent 
algorithms for ship collision avoidance

Collision avoidance is one of the major issues that mariners face. Therefore, it is not 

surprising that autonomous ship navigation success depends on the development of 

efficient real-time intelligent algorithms for collision avoidance. Most of these 

algorithms attempt to imitate human piloting cognitive abilities [15]. To understand 

better the cognitive abilities of the “captain” within the ship, and their similarities or 

differences to the intelligent navigation algorithms, we must take into consideration 

all the human operations that are performed for collision avoidance purposes. These 

operations can be understood better by observing the factors that influence ship 

collision avoidance. These factors illustrated in Figure 1 are now introduced and 

discussed.

Target
Destination

Captain and 
piloting crew

Intelligent
Navigation
Algorithms

Interface

Figure 2-1: Ship navigation factors influence collision avoidance.
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1. The ship type (e.g. sail boat, speed boat, commercial ship, passenger ship etc.) de­
fines the properties of the transport (e.g. manoeuvrability, speed, Pay-load, 

weather conditions tolerance etc.) within the water medium. Each type of 

ship employs different kinds of evasive manoeuvres for collision avoidance, 

since speed and agility can differ significantly from one ship type to another. 

For each ship type, the captain and crew have special training. Then again, 

the CA autonomous navigation algorithms “understand” ship type as “ship 

dynamic” or “ ship mathematical model” (e.g.[16-19]). These models provide 

a prediction of ship behaviour (based on inertial and fluid mechanics rules) 

but sometimes are very simplistic producing erroneous predictions or very 

complex to operate in real-time.

2. All forms of sea traffic, (e.g. a vessel, during its journey from the port to the 

target destination, can collide with another vessel or an obstacle). We can di­

vide the types of traffic into two main categories: 1) traffic within confined 

environment (e.g. ports or Canals) [20] and 2) traffic in open sea waterways. 

In both traffic categories, we have to take into consideration the additional 

traffic complexity caused by the under surface environment (seabed level, 

wrecks and other underwater obstacles), as well as, the random dynamic and 

static sea obstacles. Ship collision avoidance in a confined environment is 

based on the guidance via the communication between the local traffic con­

trol station (port or canal traffic control) and the piloting crew of the ship. On 

the other hand, open sea collision free navigation is based on the communica­

tion of the captain and the encountered ship or ships, as well as, the 

COLREGs guidelines. It is important to note that most of the intelligent algo­

rithms for ship navigation do not communicate among themselves or with the 

traffic control station. Therefore, these algorithms calculate the safe and op­

timal trajectory for collision avoidance [21-26] relying on first, the current 

state (speed, direction) of each encounter vessel or ship and second, the 

COLREGs[10, 11],

3. The weather conditions in the water and in the atmosphere influence every 

aspect of the ship navigation. The weather manipulates each type of ship dif­

ferently (e.g. sailing boat or engine powered vessels). Collision avoidance in 

different weather conditions requires different evasive manoeuvres from the 

piloting crew. For example, in severe weather conditions, the ship manoeu-
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vres have to combine safety (avoid capsizing or sinking) and collision avoid­

ance concurrently. In most autonomous navigation algorithms, the sea 

weather conditions are rarely considered [21].

4. Last but not least, on-board technologies assist the ship-crew to navigate 

safely and efficiently. Nowadays, maritime aid technologies include Global 

Positioning System (GPS), Radar, Automatic Radar Plotting Aid (ARPA) 

[27, 28] and Atmospheric and Water Weather Monitoring Instruments. A 

considerable number of the algorithms for ship autonomous collision avoid­

ance consider that the ships are equipped with GPS and ARP A [29, 30], But 

none of these algorithms take into consideration all the instrumentation, nav­

igational data and communication for collision avoidance that most of the 

modem ships have available.

Each of the above factors and any combination of them require human operation for 

ship collision free navigation. These operations are subjective to each individual 

captain and his or her training and cognitive abilities. The clarification or the human 

cognitive abilities for collision avoidance is the key point of the design, of any nature 

of the CA intelligent algorithms. Consequently, the investigation of human cognitive 

demands for collision avoidance [15] is useful. Part of this investigation shows that 

mariners’ preference of collision avoidance manoeuvres varies quite significantly 

[31]. In real-life tasks, piloting crews frequently make course changes up to 30 

degrees to minimise uncertainty but there is also a significant number of occasions 

when piloting crews are reluctant to make large course or speed changes [32], since 

there is a trade-off between Collision Avoidance (CA) and track-keeping (TK). It is 

worth noting that one of the reasons for the Titanic tragedy [33] was the unwilling­

ness of the piloting crew to change the ship’s speed.

Ship navigators have the ability to cope with CA by planning ahead a se­

quence of possible evasive manoeuvres, which are updated in real-time to sustain a 
safe path for the ship. The sequence of these manoeuvres assembles the evasive 

trajectory of the ship that can be considered as knowledge-based [34, 35] and has a 

degree of uncertainty. This degree of uncertainty can be minimised by COLREGs. 

However, COLREGs define the vessels actions for collision avoidance between two 

ships. Therefore, even if COLREGs are in place to dictate the decisions of evasive 

actions, the analysis and performance of these guidelines are highly subjective
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(especially in many-ship encounters) that incorporate uncertainty and unpredictabil­

ity. These can lead to marine accidents [36, 37],

Marine accidents can also be reduced by ship navigation aid technologies 

used by an experienced officer. Nowadays, the majority of commercial and transpor­

tation ships are equipped with Automated Radar Plotting Aid (ARP A). The ARP A 

replaces the Radar handmade plots for the graphical representation of navigational 

status of the tracking objects. Then again, it has been observed that mariners are 

more likely to overlook the COLREGs when performing “get away” manoeuvres 

with the support of ARPA [38], Subsequently, the use of ARPA can have negative 

results when are operated by inexperienced officers, since reported data shows that 

56% of major maritime collision includes violation of “the rules of the road” 

(COLREGs) [39, 40],

In addition to the above, radar navigation has its risk for collision, since the 

probability of the target ship reaching the future position varies [41]. To minimise 

the above problem, and further to improve the collision avoidance of a ship, an 

electronic-mapping intelligent support for ship navigator system is proposed by [42], 

A further study of how mariners have to cross alleys safely is detailed in [43],

Another technique to reduce the violation of collision avoidance rules by the 

piloting crew is by knowledge acquisition [44], Knowledge acquisition refers mainly 

to the information of the near future (lsec-lmin) trajectory of possible encounter to 

the own-ship surface vehicles. Furthermore, a quantitative risk assessment of the 

possible collision avoidance manoeuvre can be automatically produced by the 

obtained marine data [45]. A similar study of how to provide suitable navigation 

information for the mariners and a risk analysis of evasive manoeuvres is proposed 

[46, 47],

In conclusion, the lawful collision free guidance of a ship requires a highly trained 

and experienced officer in charge [48] who will minimise the human error in ship 
navigation by utilising appropriately ARPA, knowledge acquisition and safety 

domain processing intelligent support systems. On the other hand, intelligent algo­

rithms for CA may possibly suppress the navigational error to zero, since they 

approach the collision avoidance problem in a more objective way than humans. 

Nevertheless, the real-time demands of the collision avoidance navigation, the vastly 

poor (compared to humans) pattern recognitions performance and the one­

dimensional or non existed communication operations among these algorithms
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(between them or with humans) place them far below of the average piloting crew 

collision avoidance abilities. From all the above challenges the autonomous naviga­

tion algorithms have to face, in this study, we focus on improving their performance 

in real-time, dynamic and local environment. More specifically, we have chosen to 

investigate and improve the performance of Artificial Potential Field Algorithms due 

to their simplicity and elegance.

2.2 Water based methods for autonomous collision free navigation

The collision avoidance problem is manly solved for two different classes of 

methodologies, the global and the local. The global approach generates the optimal 

trajectory based on a selected optimization criteria e.g. path length, safety etc. In this 

case, the geometry of the surrounding environment (obstacles) between the starting 

point and the target destination (or waypoint) is fully defined (known environment). 

The algorithms restricted to this class of solution have a major disadvantage; they are 

computationally intensive. For this reason, they are only used for off-line path 

planning and can’t be used for real-time obstacle avoidance in an unpredictable static 

and/or dynamic environment. On the other hand, the algorithms based on the local 

approach utilise partial knowledge of the surrounding environment and the 

trajectories don’t guarantee global optimality and which sometimes they encounter 

local minima [7], The advantage of these algorithms is their ability for on-line path 

planning, since they are not computationally intensive.

The algorithmic encoding of the above methodologies can be grouped into the 

following three categories:

• Mathematical models and algorithms. The mathematical models refer to 

the precise mathematical description of ships’ dynamics and its neighbouring 

environment. The mathematical algorithms use a sequence of strict defini­

tions to solve the collision problem. In other words, these mathematical 

algorithms can be described as measuring algorithms to solve the collision 

avoidance problem in autonomous ship navigation.

• Soft computing - Evolutionary algorithms, Neural Networks and Fuzzy 

Logic. The part of Artificial intelligence that consists mainly of Neural Net­
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works (NN) [49-51], Fuzzy Logic [52, 53], evolutionary algorithms [54-56] 

and expert-systems [57]. Neural Networks are famous for their unique learn­

ing capabilities. Fuzzy logic can simplify complex computations due to its 

high mathematical abstraction. Evolutionary algorithms approach the CA 

problem by exploiting their optimisation capabilities. These properties can 

aid ship CA.

• Hybrid autonomous navigation systems. Hybrid autonomous navigation 

systems [58, 59] propose a possible optimal combination of all, or a subsec­

tion of the above methods for collision free ship navigation.

2.2.1 Water based collision avoidance mathematical models and algorithms

Currently, collision avoidance problems at sea have also been addressed by mathe­

matical models and algorithms. These models and algorithms simulate a variety of 

factors that influence water vehicle based collision avoidance, such as, ship’s dy­

namics, ship’s vector of motion (map location, speed and direction), ship’s 

manoeuvres and trajectories, etc.

Most of the ship’s dynamics mathematical models [17] consider the ship to 

have six degrees of freedom as shown in figure below.

6x6 
Mass 
Matrix

- l - i

Surge
Sway
Roll
Pitch
Heave
Yaw

Matrix of the ship six degrees of freedom

The above Equation expresses the six degrees of freedom of a ship based on New­

ton’s second law of motion. The mathematical algorithms that generate a sequence 

of real-time manoeuvres can be based on static, kinetic, dynamic and model of 

matrix nature of the problem [16], and various methods for solving them [22].

On the other hand, some other models that are focused on the safe path obtain 

the safe path trajectory with different methods but with almost the same assump­

tions. In particular, these assumptions are: first, the potential collision occurs in the
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open sea (no land or water depth). Second, the target ships do not change their 

velocity (speed and course). Finally, the encountered ships do not communicate 

amongst themselves.

[23] proposes an Utilisation Potential Collision Threat Area (PCTA). This algorithm 

is founded on a single change of course AND/OR the speed of the own-ship. The 

principle of the PCTA is that the vector of the own-ship is outside the dangerous area 

that is defined. The above model forms a general guideline for a ship to follow the 

safe path but not the optimal trajectory. An optimal trajectory method proposed by 

[22] dictates that a series of delicate evasive manoeuvres of the own-ship has to be 

performed. The problem of evasive manoeuvres is modelled as a non-linear pro­

gramming task. The non-linearity of the tasks depends on the kinetics of the own- 

ship. The overall approach of the model is that the safe course deviation is based on 

the nonlinear admittance restrictions. A more specific own-ship course optimisation 

model for a predefined marine environment can be achieved by point-mass models 

for ship motion [60], An alternative model for ship get away manoeuvres in confined 

waters is also the rigid-body dynamical model for ship motion [61, 62] based on 

stochastic optimum control [63]. On the other hand, a specialised model for collision 

free overtaking is proposed [64],

More general methods for collision avoidance include the modelling of the 

own-ship and its immediate environment [65]. For example, [18] proposes a tanker 

realistic model for collision avoidance manoeuvres between strange-ships and other 

offshore installations and obstacles.

The collision avoidance problem can be seen from a different angle, like the 

Line of Sight Counteraction Navigation (LOSCAN) algorithm [10] in which the 

problem of two ship encounters is solved by reversing the idea of a traditional 

missile proportional navigation, recognising that the target is to avoid the strange- 

ship. The main concept of the algorithm is to generate acceleration commands in 
order to increase the misalignment between the ships relative velocity and the line- 

of-sight.

Finally, in the classical mathematical methodologies for collision avoidance 

we can include the potential field algorithms that we will extensively review in 

section 2.4.
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2.2.2 Soft computing techniques for water based collision avoidance

2.2.2.1 Hybrid systems

Ships form a non-linear and ill-defined system. This means that ships and their 

immediate environments constitute an extremely complex system to be described in 

terms of precise mathematical models. Even if we have precise mathematical models 

for an autonomous system, the time for the decision making of the system will 

potentially not be reasonable for a real-time application under, for example, severe 

weather and navigation conditions. For the above reasons, a fuzzy approach [52] to 

navigational systems has been considered. However, sometimes fuzzy logic itself is 

insufficient, so neuro-fuzzy or fuzzy hybrid expert-systems come to complete the 

picture of the autonomous ship navigation challenge. A general explanation of fuzzy 

logic expert-systems and rule-based control is presented in [57].

Neural Networks [50, 66], have succeeded in many applications [51], includ­

ing 2 dimensional robot navigation [67], with their distinct ability to learn. In 

addition, NN with the aid of Fuzzy Logic can form neuro-fuzzy systems. This 

combination of neural networks and fuzzy systems is proposed by [68], This intelli­

gent guidance system is based on the introduction of neuro-fuzzy networks multi- 

step ahead predictor for ship obstacle avoidance. The approach is generic, includes 

the line of sight concept and its use can be extended to aircraft, and missile guidance 

problems where the dynamics change significantly and unpredictably. After all, a 

data-fusion algorithm generates the desired waypoints of the own-ship route.

Going further to more complex hybrid systems for ship autonomous naviga­

tion, it is necessary to introduce the Potential Field Algorithms (PFA) that originate 

from the mobile robots research [2]. The PFAs and the hybrid system that incorpo­

rate those algorithms are reviewed in detail in section 2.3 of this chapter.

Finally, a hybrid system for collision avoidance and track-keeping is pro­
posed by [59], These systems combine Fuzzy logic, expert systems and state space 

Hx [59]. The collision avoidance is carried out by the fuzzy expert system. The 

system utilises a knowledge-base of facts and rules with the aid of an inference 

engine. The inference engine is also responsible for the simulation of the expert 

system decisions for ship collision avoidance. Finally, a robust state space H m con­

troller guides the autopilot safely on the route that is predetermined by the fuzzy-
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expert system. The main purpose of the state space Hx control is to keep the closed- 

loop system stable by the use of an optimal control law. This control law can be 

defined by a transfer function involving exogenous inputs (weather, seaways traffic) 

with endogenous ship control actions maintaining the control actions minimal. At the 

end of the algorithm’s routines, the H x autopilot system materialises the avoidance 

action dictated by the fuzzy collision avoidance expert system under the worst 

exogenous systems inputs.

2.2.2.2 Evolutionary algorithms

An alternative technique for collision avoidance involves the utilisation of evolution­

ary techniques in the framework of evolutionary computation [69], which are a 

collection of stochastic optimisation algorithms loosely based on biological evolu­

tionary theory of Charles Darwin [70]. Evolutionary computation is in general, an 

optimisation tool. More specifically, it is a search strategy for an infeasible large 

search space. In addition to the above, evolutionary algorithms have proved their 

potential for solving complex real world [27, 54] problems. The underlying generic 

principle of these techniques is based upon the “survival of the fittest”. For instance, 

in collision avoidance, they maintain a population of assign paths, and through a 

process of variation and selection, find a near-optimum solution. Finally, they also 

constitute an interesting category of heuristic search [71], which is also to aid the 

autonomous ship navigation. We define heuristic search as the technique that does 

not follow a strict algorithmic solution to a problem. More specifically, heuristics are 

a group of effective rules guiding a system to perform search in a problem space.

The category of GAs has been widely employed successfully in mobile 

robots [55] where ship collision free navigation is analogous to the similar problem 

of safe navigation of a mobile robot. Therefore, the evolutionary method named 

evolutionary planner navigator (EP/N) system originally designed for mobile robot 

evasive steering and path generation in predefined environment presented in [56] is 

potentially useful for ship navigation and it has been further modified for ship 

encounter free navigation in [24], This study adds the concept of time to the system. 

The element of time allows evaluating the system’s behaviour and performance 

under real-time constraints (e.g. moving obstacles). Finally, it introduces own-ship 

variable speed, so a safe-path of a ship can be tracked in dynamic or static environ-
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ment. All of the above variables can be controlled and optimised by the aid of 

evolutionary theory by using genes to form chromosomes. Each gene contains 

information such as the ship coordinates. In the above study, each chromosome has a 

variable-length sequence of genes. These genes specify: the coordinates ) of

the turning points, the speed of the ship and interconnections between the genes 

within the same chromosome. A more simplistic model of collision avoidance based 

on a single gene approach is proposed by [72]. This gene contains only the geo­

graphical position of the ship (latitude, longitude). On the other hand, a more 

realistic genetic algorithm for ship collision avoidance is proposed by [27]. This 

genetic algorithm coding introduces a gene with additional information to that in the 

conventional coding. These genes include, additionally to the position and speed of 

own-ship described in the above, the weather conditions, which are defined as 

“noise” (wind, wave and sea current). The mathematical representation of every 

chromosome is shown in equation 2.

x" =(s" ,s2n smn) , 1 <m<k  (Eq. 2)

Where:

• x is the chromosome,

• s is the gene,

• Ai is the length of the chromosome (number of genes in one chromosome).

In this system, the chromosome length is also a variable quantity and it is strongly 

dependant on the navigation conditions, (weather or traffic density). In other words, 

when no ship or obstacle is in the own-ship vicinity, the chromosome for the ship’s 

safe trajectory contains only two genes, which is a straight line between the planned 

route waypoints. On the other hand, when additional obstacles that pose a potential 

threat of collision are added to the ship’s neighbourhood, the enhanced system is 

modelled by the introduction of two genes in the variable length chromosome. A 

representation of the chromosomes of the study [27] is shown in Figure 3.
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Figure 2-2: Chromosome structure of study [51 ]

The black genes of Figure 2-2 represent the current and the target ship location. They 

are parts of the planned route. The white genes are randomly selected within the 

boundaries between the two black ones.

2.3 Potential Field Methods

The Potential Field concept is one of the classic methodologies for local autonomous 

navigation and manipulators control[8, 73-75], The simple principle of the Potential 

Field Method (PFM) for the autonomous navigation of mobile vehicles is the combi­

nation of imaginary forces. These forces act upon the robot so that their resultant 

force performs simultaneously both steering and collision avoidance. The PFM has 

been initially suggested by [73] in 1983 and in 1985 [76], In this approach, the 

collision avoidance problem is distributed between different levels of control, 

allowing the autonomous vehicle to deal with real-time dynamic local environment.

Initially, the collision avoidance problem was centred on the development of 

collision free path planning algorithms [77-79], These algorithms involve high-level 

control and provide the low level control with a path free of collision. This way the 

low-level control is limited to execute elementary operations of Track-Keeping. The 

disadvantage of this method is that the autonomous vehicle interaction with the 

unknown and/or dynamic local environment is constrained by the time-cycle of the 

higher control, which is a magnitude slower than the low-level. Consequently, the 

autonomous vehicle real-time reaction is inadequate for collision avoidance in a 

complex evolving environment. In contrast, the Potential Field Methodology greatly
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extends the low-level control to perform more complex operation by combining the 

environment sensing feedback with the low level of control.

This methodology was not initially intended to replace the high-level operations 

or to solve planning problems. The focus was on the real-time “spontaneous” auton­

omous vehicle reaction (reactive control algorithm)[80] in an unknown and/or 

dynamic environment e.g. between two waypoints defined by a high-level planning 

algorithm.

The essence of the simple potential method for collision avoidance is a 

differential equation that combines the autonomous robot and its environment in a 

unified system. The general concept of the potential field algorithms is illustrated in

Figure 4. Potential field related forces are illustrated. Fr is the vector of the force

between the autonomous vehicle and the desired waypoint or target destination. FR 

is the vector of the force between the obstacle and the autonomous vehicle. The 

resultant force Fp from the above two forces is the direction of the ship for obstacle 

avoidance.

The potential field algorithms rapidly gained popularity in autonomous navigations 

for the purpose of collision avoidance. This popularity lies on the fact of potential 

field principle of simplicity and elegance. It is important to note that in mathematics 

a solution to a problem is elegant when it is computationally economical and general 

(not ad-hoc solution). A study on the historical perspective of mathematical 

elegance is presented in [81]. In this sense, a simple PFM for collision avoidance 

can be developed in a short period of time, it is computational efficient, generates 

naturally smooth trajectories and provides acceptable results. On the other hand, 

PFM algorithms experience two major drawbacks, local minima and trajectory 

oscillations that we will discuss in section 2.3.3 of this chapter.
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Figure 2-3: potential field algorithms general concept illustration for collision avoidance
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Initially, local methodologies employed the potential field methods (PFM) to be used 

as on-line path planning algorithms due to computational efficiency. In general 

technical terms, this type of algorithms for on-line path planning- fill the local 

Cartesian workspace with repulsive potential function that represents the obstacle to 

be avoided, and usually constant magnitude vectors pointing in the direction of the 

navigation goal [82], We have to underline that in most occasions the control vector 

is exclusively calculated for only the instantaneous location of the robot within this 

local workspace.

In later years the potential field algorithms also utilised the global 

methodologies for off-line path planning. Broadly speaking, in global PFM the 

autonomous vehicle entire configuration space (c-space) is filled with repulsive 

potential energy functions representing the obstacles and the navigational goal with 

minimum energy [83]. In this case we have to underline that all control vectors are 

calculated based on all possible positions and directions of the robot within the 

configuration space. Therefore, these algorithms are difficult to be used for real-time 

or dynamic obstacle avoidance due to heavy computational requirements.

An example of global methodology is the harmonic potential fields (HPF) 

[84]; the use of this principle eliminates local minima. Nevertheless, as we will see 

later in the next section, harmonic potential fields can also be used in a local sense 

avoiding dynamic obstacle [85]. In addition, an example of the F1PF has been used 

for ship collision avoidance in a known marine environment [86].

A similar approach to harmonic potential field algorithms is presented in 

[87]. In this instance the potential field is generated based on electrostatic potential 

that is developed through a resistor network. The resistor network represents the 

robots environment. This navigational space is mapped by Level mapping and binary 

mapping, and it is described by a scalar potential and a vector current field. The 

produced map is called Occupancy map. The algorithm produces an approximately 

optimal trajectory but the real-time capability of the algorithms depends on the cell 

resolution.

2.3.1 Local and global potential fields for static environment
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Note that the local methodologies can be categorised as the ones that deal 

with unknown static environment or dynamic environment. An illustration of a PFM 

solving the collision avoidance problem in an unknown static environment is 

presented in [88]. The method describes the environment sensed by the sensors as a 

polar histogram grid. In this case the algorithm employs a two stage data deduction. 

In the first stage the deduction is made by the histogram grid while in the second one 

by the polar histogram. A previous work of the same author combines potential field 

algorithms and certainty grids [2] for real-time collision avoidance. This 

combination is suitable for inaccurate sensor data (e.g. ultrasonic) and enables 

continuous robot motion. Nonetheless, the method suffers from local minima [7].

A different approach of dimensionality reduction for a local navigational 

environment is employed in [89]. The potential field was designed based on steady- 

state heat transfer with variable thermal conductivity. The obstacles are expressed as 

very low conductivity (K) while the free-space is as very high K. In this instance, the 

simulation results are generated in a static known environment. There is no proof 

that the method is viable in a dynamic environment, since time dimension is not 

taken in to consideration. On the other hand, the real advantage of this method is the 

description of the obstacles in a simple geometrical domain, despite the actual 

geometrical complexity of the obstacles.

A behaviour potential filed based approach for collision avoidance in local 

surroundings is explored by the [90], In this occasion, the basic idea is to build an 

imaginary field that represents the behaviour of the robot. The algorithm connects 

the local and global optima while the robot moves. The method has better results 

than a simple PFM for static obstacles.

Another Potential Field global methodology is presented in [91], which uti­

lises an improved Artificial Potential Field regression based search. In this case of 

research, the regression search is used to optimise the planned path generated by the 
improved Artificial Potential Field method.

To summarise, global methodologies algorithms are mainly used in well 

known static navigational environment [92] while the local ones are mostly used in 

unknown environment. A combination of both a local and a global method is 

presented in [93].
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Moving to the dynamic local environment, we can find a less number of 

potential field algorithms. An interesting method is a view-time Potential field for 

moving obstacle, which is developed in [94], The view-time is defined as the time 

period between two samples. In each sample, the position and the velocity is 

monitored and recorded. From this information the algorithm calculates the next 

probable position and velocity of the moving obstacle based on the probability 

density function of the obstacles’ trajectory. The mobile robot is assumed to be a 

point-mass model while the moving obstacle a circle. This method is proven in an 

environment that includes maximum two obstacles.

The next PFM for dynamic unknown environment relies on harmonic potential fields 

that we first met in global path planning methods. This real-time path planning 

algorithm uses harmonic potentials for avoiding single and multiple moving 

obstacles [85]. The harmonic potential introduced in the global path planning 

eliminates all possible local minimum in a known navigational space. In these 

methods the Laplace’s equation is solved numerically over the whole state space. 

This makes the process slow and not viable for real-time obstacle avoidance. In the 

proposed work [85], the use of analytical solutions to Laplace equations makes the 

real-time collision avoidance possible. Nevertheless, the harmonic potential field 

ensures a trajectory free of local minima only in static environment.

In addition, a potential field algorithm dealing with collision avoidance of multi 

dynamic obstacles depends on relative positions, velocities and acceleration is 

proposed in [95], In this case, the own robot follows the goal with similar moving 

trends and avoids the obstacles with contrary moving trends. This method produces a 

reasonable but not optimal own robot trajectory.

An improved Potential Field algorithm, which is based on a cost function, is present­

ed in [96]. The algorithm performs collision avoidance and Simultaneous 

Localisation and Mapping (SLAM). The cost function of this algorithm contains two

2.3.2 Local potential fields for dynamic environment
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distances one from the autonomous agent to the obstacle and one from the autono­

mous agent to the target destination.

Finally, a hybrid Potential Field Algorithm dealing with both static and dynamic 

environment is introduced in [97]. In the first study, a Fuzzy Potential Field algo­

rithm uses two Fuzzy Mamdani and TSK models to develop the total attractive and 

repulsive acting forces.

2.3.3 The potential field methods limitations and proposed solution

In a course of experimental work is indentified that the PFM suffer from local 

minima and trajectory oscillations [1, 7, 8]. A systematic criticism of PFM and the 

proof that these problems are inherited to all algorithms that rely on this principle 

takes place in [7]. The most common problems are: no passage between close 

distant obstacles, U shape traps, oscillations in narrow passages and oscillations in 

presence of obstacles.

In this section, we categorise the algorithms that minimise or eliminate the local 

minima in a local static and dynamic environment. On the other hand, the author of 

this thesis briefly presents his own work [4] on the identification of local-minima in 

Pure Dynamic Environment (PDE). Additionally, the mathematical algorithm that 

predicts and prevents these local minima is also mentioned. Finally, we also review 

the algorithms that mitigate the problem of trajectory oscillations.

2.3.3.1 Methods which solve or minimise potential field local minima in static 

environment

Initially, the research on local minima was concentrated on their identification, by 

searching if the potential field autonomous robot is within a local minima state. For 

this state to be recognized, a mathematical condition was usually used. In [2] a local 

minima trap condition monitors the angle between the course of the robot and the 

actual angle from its goal. When the angle is more than a specific value, the 

algorithm switches the robot’s guidance from PFM to the wall-following method,
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until the trap condition expires. The main disadvantage of this method is that the 

robot loses the collision avoidance capability of the PFM while it is within a trap 

state.

In later years, a potential function that unifies the wall-following algorithm with the 

PFM [98] is introduced. The method increases the complexity of the potential 

function from scalar potential field (SPF) to a vector based (VPF). In this way, it 

minimises the local minima compared to SPF, by circulating the closed equipotential 

contours. The VPF of [98] is tested in static known environment but potentially, it 

can be applied in unknown and dynamic environment due to low computational 

requirements. Nevertheless, the algorithm can experience trajectory oscillation, in 

particular, while the autonomous vehicle is crossing large obstacles in clattered 

navigational environment.

A different approach to the local minima problem comes in life by a path planning 

PFM [99]. This algorithm has a deterministic method for escaping the local minima 

by relating the free space with a global skeleton defined by a number of local 

methods. The skeleton curves are the loci of the maxima of the potential field 

function, which it is proportional related to distance between the autonomous vehicle 

and the obstacles. The local minima are avoided by following the local maxima of 

potential field function, as well as, by taking slice projections through critical points. 

This method is comparable to Voronoi Diagram path planning and on most 

occasions has better results.

There is a number of solutions for local minima that focus on a particular area of the 

problem. A potential function specially designed to solve the specific problem of 

local minima by the name: goal non reachable with obstacle nearby (GNRON) is 

presented in [100], For this reason, the algorithms’ potential function takes in the 

consideration the relative distance between the robot and the goal. This way verifies 

that the goal is always the global minima, as well as, taking the shortest distance to 

the goal, if we compare it with the routing distance generated by a conventional 

potential field method. Then the selection of the potential function parameters is 

critical, so the function is free of local minima. The method is partly verified by 

simulated results in a known static environment.
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Most of the above algorithms solve the PFM local minima by modifying the 

potential function. In an alternative way a class of a cost functions was created by 

[101] to guide a point mass robot within a number of spherical bounded obstacles in 

Euclidean n-space. A subclass of the above functions is defined, in a way that the 

actual mechanical system will inherit the behaviour of the gradient lines of the cost 

function. Later work of the same authors fully define the collision avoidance 

amongst obstacle in spherical domain [101, 102]. In this generalised sphere world 

each obstacle is represented by an arbitrary number of disjointed disks attached to a 

larger disk. One-parameter family of this type of sub-functions guarantees 

elimination of local minima only in a perfectly known stationary environment.

A potential field method for path planning that relies on Laplace’s Equations and it 

doesn’t exhibit local minima by nature is developed in [84], The origin of the 

harmonic function for autonomous navigation took place in early 90ies [103, 104] 

and satisfies the min-max principle. In this approach the properties of harmonic 

functions (solution of the Laplace Equations) are utilised. This technique for local 

minimum solution is also possible by using finite element method [105], which 

discretizes the configuration space to compute the potential function. This type of 

algorithms generates smooth trajectories for the guided autonomous vehicle and 

eliminates spontaneous creation of local minima. Nevertheless, their solution 

requires much higher processing power than a standard PFM [1,8] for this reason it 

could face real-time collision incapacity in a dynamic or unknown environment. The 

computational time relates to the grid sizes, since harmonic functions decay rapidly. 

This has an impact to the system’s performance in large navigational regions. A 

possible solution to this problem could be an efficient segmentation of the 

configuration space [86].

Finally, a behavioural based solution for local minima is presented in [90] named the 

behaviour information potential field (BIPF). This is a path planning algorithm, 

which relies on local environment representation by a 2-D Cartesian Histogram Grid 

and behavioural rules build from the imaginary navigation field. The method 

connects the global optima with the local optima by the BIPF. The method is able to
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solve a local minima trap in a case of closely placed or overlapping obstacles in 

static unknown environment.

2.3.3.2 Methods which predict, solve or minimize potential field local minima 

in dynamic environment

The identification and definition of the local minima is firstly discussed in [4], this is 

part of the author’s work that is explained extensively in chapter 4 and 5. In this 

study for first time we identify, define and predict local minima of the PFMs in Pure 

Dynamic Environment (PDE) of local multi agents/vehicles. The navigation collision 

scenario focuses on the case that the algorithm guides each agent/vehicle 

independently although the algorithm principle is identical for each one of the 

agent/vehicles. This approach is a combination of a novel rule-based mathematical 

algorithm and the AWSPPF Algorithm, which based on the Virtual Force Field 

(VFF) [2] navigational method. The need for the above combinational algorithm is 

due to PFM inability to guide efficiently multi-autonomous agents/vehicles in the 

same environment due to a Trajectory Equilibrium State (TES). TES is a new state 

that dramatically degrades the performance of the PFM and is firstly identified and 

defined within this study. The algorithm is extremely efficient in both computational 

and trajectory economy terms. In addition, in [106] we address the generic nature of 

the above novel Potential Field Algorithm, which allows it to be efficient, not only 

when applied to multi-autonomous agents, but also when applied to collision 

avoidance between a single autonomous agent and an obstacle displaying random 

velocity.

2.3.3.3 Methods which eliminate or minimize the trajectory oscillation of the 

potential field algorithms

Finally it is important to mention the inherent trajectory oscillation problem of PFM, 

especially in narrow passes and nearby obstacles the problem has been identified in 

[2, 7], For the smooth operation of PFM a low pass filter for steering is employed in 

[2], The filter response depends on the grid resolution and the sampling period. 

When an overly energetic steering control takes place a digital low pass filter limits 

the steering-rate command.
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In addition a modified Newton’s method is proposed [107] to solve this problem by 

adjusting the gradient. The gradient operation is forced by finding suitable direction 

to quadratic approximation than linear as the gradient descent method suggests. In 

this study the trajectory oscillation greatly improved in the considered scenarios. 

Nonetheless, the environment was known and static since the method requires high 

computational time.

Finally, a PFM in combination with improved Kalman filter is presented in [108] to 

remove trajectory oscillations due to sensors’ disturbances from environmental 

noise.

2.3.4 Potential field methods in marine navigation based on mathematical, 

hybrid and protocol based systems.

Potential field methods have been also used for marine autonomous navigation. The 

potential methodologies adopted in marine environment are mainly harmonic 

potential field, Virtual Force Field (VFF) [2] and a combination of them with AI to 

form hybrid systems.

A harmonic potential field method (HPFM) for autonomous ship navigation is 

presented in [86]. In this study the HPFM is responsible to autonomously navigate 

the own ship in constrained water areas and tracks. It is tested in two water situa­

tions: traffic separation scheme and narrow channel. With this method a single ship 

collision can automatically follow the sea navigational regulation, while avoiding a 

static obstacle.

A simpler on-line PFM named virtual force field (VFF) has been widely used for 

local navigation both as a stand alone algorithm, and as a foundation to a series of 

hybrid [109] or mathematical navigational algorithms [110]. In ship autonomous 

navigation, [53] introduces a fuzzy logic autonomous navigation algorithm based on 

Virtual Force Field (VFF), which satisfies COLREGs. For the purpose of autono-

31



mous ship navigation, a Modified Virtual Force Field (MVFF) is used. This method 

is suitable for both track-keeping and collision avoidance. Furthermore, the algo­

rithm has the ability to handle an immediate static and dynamic environment. From 

Figure 2-4, we can see the VFF concept of two forces at any given point in time. It is 

apparent that the VFF concept cannot provide a track-keeping capability. The 

Modified algorithm provides true track-keeping as well as collision avoidance in 

static and dynamic ship environment within COLREGs guideline. This is achieved 

by the addition of a perpendicular force Fp to the desired course as shown in Figure 

2-4.

Waypoint 1 Waypoint 2

Figure 2-4: Modified VFF with the addition of Fp force vector

Another category of hybrid systems for collision avoidance is proposed by [11], This 

technique is based on heuristic search reinforced by fuzzy relational products [111] 

and COLREGs. Generally, COLREGs define a guideline for collision avoidance 

between two ships. On the other hand, the applications utilising the heuristic search 

technique can cope with many-ship encounters, but at the same time they introduce 

an inclination to violate COLREGs. The inclination of COLREGs to be violated in a 

multi-ship environment can be minimised by the method of [11],

Finally, a new reactive navigation technique based on Artificial Potential Fields for 

autonomous sailboats is explored in [112], This technique addresses both sailboat 

complex kinematics and the unpredictable nature of the trust force.
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2.4 Conclusion

Collision avoidance is a complex multi-task problem. The degree of complexity 

depends on the state of exogenous (weather and waterways traffic density) and 

endogenous (ship type, onboard technologies, etc.) navigation influencing factors.

In comparison to “intelligent” machines, humans navigate ships satisfactory. 

The degree of human navigation ability depends on both the level of experience and 

the psychological status of each individual. On the other hand, human beings are 

highly subjective, and this can lead to accidents. The subjective nature of humans is 

sometimes reinforced by the ship intelligent support systems (GPS, Radars, ARPA, 

etc.) They provide the piloting crew with additional navigation information that can 

reduce the sense of collision danger and lead to COLREGs violation. The interna­

tional rules for collision avoidance at sea (COLREGs) have been laid down to 

minimise the subjective nature of humans. Even if COLREGs are fully defined, the 

human interpretation of them is still subjective since ship navigation manoeuvres are 

performed in real-time, and sometimes, under demanding exogenous inputs.

The subjective nature of humans can only be removed from ship navigation when 

humans are no longer responsible for ship navigation. A variety of experimental 

water based and mobile robots algorithms navigation systems have been briefly 

explained in this chapter.

1. Most of the mathematical collision avoidance methodologies are effective when 

the exogenous inputs are not extreme. In case of extreme exogenous input the 

ship dynamics introduce non linearity, and computation complexity. For the 

mathematical collision avoidance algorithms to perform in real-time a level of 

environment and dynamic model abstraction must take place. One of the most 

important classical methodologies for collision avoidance is potential field meth­

ods. This method naturally supports environment abstraction, as well as, it 

greatly extends the low-level control to perform more complex operation by 

combining the environment sensing feedback with the low level of control. This 

has as effect these algorithms to unify kinematic planning with the dynamic exe­
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cution problem. On the other hand, PFM algorithms experience two major draw­

backs, local minima and trajectory oscillations. In this chapter we have reviewed 

a number of methods that either minimize or completely solve these problems.

2. The effectiveness of evolutionary algorithms for ship autonomous navigation 

depends on the optimisation method that is followed. The optimisation method 

depends on the fitness function [54], The fitness function is fixed for the whole 

algorithm and sometimes is not sufficient for ship navigation under all different 

exogenous conditions. This can also lead to inefficient or random system perfor­

mance.

3. A Combination of technologies such as Neural Networks, Fuzzy Logic, expert- 

system and mathematical algorithm can form a ship autonomous navigation sys­

tem. These systems aim to use the advantages inherent within each component 

technology.

4. Hybrid systems look very promising. But, they require a high level of intelli­

gence to harmonically merge the different AI technologies together. On the other 

hand, Machine intelligence is not absolutely proven up against human intelli­

gences. Within the hybrid systems we find in a number of occasions the 

potential field algorithms due to their elegance and simplicity..
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Chapter 3
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3. Potential Field Algorithm Design for the Evaluation of the 

Potential Field Methods Performance in Pure Dynamic 

Environment (PDE)

In this chapter we design and implement a Potential Field Method (PFM) that 

purposefully accommodates the main features of a classical PFM [7]. Moreover, it 

incorporates processing power oriented improvements by design change of the 

Active Window (AW) that we analyse and justify in section 3.2. We use this 

algorithm to evaluate the PFM capabilities in the newly defined Pure Dynamic 

Environment (PDE), without the overhead of the dynamic/kinematic models of the 

autonomous agent. In this way the collision avoidance agent capabilities can be 

isolated and studied individually. The method of the collision avoidance capabilities 

examination is explained in the next chapter and is based on the novel concept of 

Monovular Agents Correlation.

In the above paragraph, we have referred to PDE that we define for first time as the 

environment that contains only dynamic agents and/or obstacles. A combination of 

dynamic and static agent/obstacles is not allowed at the beginning of the collision 

scenario. A static state of an agent or obstacles at this environment is only acceptable 

when derives from a previous dynamic state. In this manner, the possibility of a 

future static agent state caused by a previous dynamic state is also taken into 

consideration. As we will see in the next chapter this part of the definition permits us 

to identify local minima of an agent in PDE.

In this study we have focused on the performance of PFM in PDE, since for the 

purpose of safe collision avoidance in PDE two main requirements have to be 

satisfied:

• Low processing power requirements, since dynamic environment is more 

demanding than static.

• The collision avoidance trajectory to be realistic in relation to own agent 

dynamic model with minima agent modeling. In other words, the PFM
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generates realistic smooth trajectories, so the Potential Agent can follow 

instantly the generated track segment in safe critical situations.

Therefore, we have selected to evaluate the PFM among other path planning and 

collision avoidance algorithms due to its elegance and simplicity, as well as its 

natural smooth trajectories generation.

In more detail, as we have referred in the previous chapter, the most important 

of PFM advantages are the following:

• Elegant algorithm, which means generic nature and processing efficient

• Simultaneous steering and collision avoidance

• Collision avoidance capability is not limited of the time cycle of higher 

levels of control

• It generates natural smooth trajectories that spontaneously accommodate 

the autonomous agent’s dynamic capabilities with only minor 

modifications.

On the other hand, as it has repeatedly been underlined in many studies, the 

PFM are mainly suffering from two major drawbacks, local minima and 

trajectory oscillations. Nonetheless, none of these studies have examined and 

define the existence and the reason of local minima in PDE. We need to identify 

the reason causes local minima in PDE, since this way we can vastly improve 

the performance of the PFM as we will analytically prove in chapter 5.

For that reason, therefore, in this chapter we design a PFM that accommodates 

all major advantages and disadvantages of the classical PFM. In addition, it has 

an improved Active Window shape; it is generic and free of agent specific 

dynamics and sensory characteristics. In this way, the algorithm’s collision 

capability can be monitored and evaluated accurately. We have named this 

algorithm Active Window Single Point Potential Field (AWSPPF) Algorithm. 

The algorithm is based on a point-mass model, and all the attractive and 

repulsive forces are calculated based on a single point, which represents the 

agents/obstacles centre of gravity.
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The above algorithm is based on the classical Potential Field function that we 

analyse in section 3.2.2 and on the concept of Active Window. The decision for the 

design basis for this algorithm is based on the combination of the Potential 

Algorithm review of chapter 2 section 2.3 of the previous chapter in combination 

with the PFM comparison for collision avoidance in PDE of section 3.1 of this 

chapter. As we mention previously, the Active Window is improved and 

mathematical justification of the Active Window new shape is presented in section 

3.2.1.

In section 3.2.2 we analyse the AWSPPF Algorithm mathematically, and in 

section 3.2.3 we analyse how we can manipulate the Minimum Distance (MD) of the 

agent of any obstacle within the working space. Finally, in 3.2.4 we present the 

software design and the implementation of the algorithm, as well as its performance 

results in both static and dynamic environment.
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3.1 AWSPPF Potential Field algorithm Design for the Evaluation 

of the PFM performance in Pure Dynamic Environment (PDE)

In this section, we justify the PFM algorithms we have selected as a base for the 

design of the Active Window Single Point Potential Field (AWSPPF) algorithm. We 

use this algorithm in order to evaluate the PFMs performance in PDE. This selection 

is based on the review of the PFMs of section 2.3 chapter 2. In this section we have 

reviewed the following main categories of Potential Field Algorithms:

• Local

o Static environment 

o Dynamic environment

• Global

For the purpose of this study we focus on local PFMs, since all global are 

mostly used for off-line path planning and are computational demanding. 

Therefore, these algorithms are not suitable to be used for real-time and/or 

dynamic obstacle avoidance.

In the local algorithms we can find two main categories, PFM for static environment 

and PFM for dynamic environment. Nevertheless, in this study we focus on the PDE, 

a reference to PFMs for static environment is important, since a number of dynamic 

environment algorithms are based initially on a static environment ones.

An illustration of PFM solving the collision avoidance problem in an unknown 

static environment is presented in [88]. A previews work of the same author 

combines potential field algorithms and certainty grids [2] for real-time collision 

avoidance. This combination is suitable for inaccurate sensor data (e.g. ultrasonic) 

and enables continues robot motion. Nonetheless, the method suffers from local 
minima [7].
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A different approach of dimensionality reduction for a local navigational 

environment is employed in [89], The potential field was designed based on steady- 

state heat transfer with variable thermal conductivity. There is no proof that the 

method is viable in a dynamic environment, since time dimension is not taken in to 

consideration. On the other hand, the real advantage of this method is the description 

of the obstacles in a simple geometrical domain, despite the actual geometrical 

complexity of the obstacles.

In this algorithm again the basic concept of PFM is used in combination of the 

obstacle description as a steady-state heat transfer with variable thermal 

conductivity.

All the above algorithms share a similar and calculation efficient Artificial Potential 

Field algorithm based on the principle of the classical PFM with the main difference 

of the obstacle description, world model segmentations and processing. 

Nevertheless, these algorithms still suffer from local minima.

A behaviour potential filed based approach for collision avoidance in local 

surroundings is explored by the [90]. In this occasion, the basic idea is to build an 

imaginary field that represents the behaviour of the robot. The algorithm connects 

the local and global optima while the robot moves. The method has better results 

than a simple PFM for static obstacles.

This algorithm is computational intensive, since the global and local optima have to 

be calculated prior to the path planning.

Moving to the dynamic local environment, we can find a less number of potential 

field algorithms. An interesting method is a view-time Potential field for moving 

obstacle, which is developed in [93], The view-time is defined as the time period 

between two samples. In each sample, the position and the velocity is monitored and 

recorded. From this information the algorithm calculates the next probable position 

and velocity of the moving obstacle based on the probability density function of the
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obstacles’ trajectory. The mobile robot is assumed to be a point-mass model while 

the moving obstacle a circle. This method is proven in an environment that includes 

maximum two obstacles.

The algorithm is based on a PFM that both attractive and repulsive forces are 

variable based on the own agent distance from the target destination and the 

approaching obstacle. The repulsive force is applied to the predicted dynamic 

obstacle location based on its current velocity and direction. The prediction is based 

on the concept of random walks and probability density function (PDF).

This algorithm is tested with manually adjusted of Potential Field parameters as: 

field gains and view periods. The algorithm is not tested against its base potential 

field algorithm so its performance improvement is not stated. In addition, there is 

only one type of collision avoidance scenario, which is not categorised and fully 

defined.

The next PFM for dynamic unknown environment relies on harmonic potential fields 

that we first met in global path planning methods. This real-time path planning 

algorithm uses harmonic potentials for avoiding single and multiple moving 

obstacles [85]. The harmonic potential introduced in the global path planning 

eliminates all possible local minimum in a known navigational space. In these 

methods the Laplace’s equation is solved numerically over the whole state space. 

This makes the algorithm processing intensive and not viable for real-time obstacle 

avoidance. In the proposed work [85], the use of analytical solutions to Laplace 

equations makes the real-time collision avoidance possible.

Nevertheless, the analytical harmonic PFM has to perform obstacle approximation 

for the harmonic functions’ boundary conditions, it can only solve the dynamic 

collision avoidance problem based on a series of instantaneous static environments. 

Furthermore, harmonic PFM cannot predict local minima due to kinematic 

characteristic of the dynamic environment. The algorithm’s processing requirements 

are much higher than the classical Potential Field Methodologies and strongly 

depend on the surrounding obstacle shapes.
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From the analysis in section 2.3 chapter 2 of PFM in static and dynamic environ­

ment, we can conclude that we have the following categories related to processing 

power:

• The ones that are based on the classical Artificial Potential Field 

methodology, which are processing efficient and having problems with 

local minima

• The ones that are free of local minima and are computationally intensive 

Since no previous investigation of the local minima behaviour took place In

Pure Dynamic Environment (PDE) we have decided to methodically investigate the 

performance of the classical methodology of PFM.

It is important to note that in this study we don’t focus on the calculation efficiency 

of the obstacle/agent/s descriptions or position accuracy, since we are interested in 

the collision avoidance behaviour of the actual collision avoidance algorithm within 

the PDE. The inaccuracies of the sensory data could dilute the behaviour of the 

Potential Field algorithm behaviour. Therefore, we use agent/s known positions and 

shapes to exclusively study the collision capabilities of the Potential Field Algorithm 

based only on agent/s ’ spatial and velocity correlation.

Therefore, the main requirement we have taken into consideration for safe collision 

avoidance in PDE among different collision avoidance PFM is the required 

processing power and the smoothness of the generated trajectory with any use of 

filtering or kinematic modelling. On this basis we have selected to use the classical 

potential field algorithm interpretation of [9]s based on a point-mass model with the 

use of a circular Active Window (AW).

The design, the mathematical analysis and the implementation of the above 
algorithm is described in the next sections of this chapter.
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3.2 Pure Dynamic Environment (PDE) Potential Field Evaluation 

Method Design

For the purpose of the Potential Field Methods (PFMs) evaluation in PDE we have 

design a Potential algorithm that relies on the classical Potential Field Methodology 

interpretation of the Virtual Force Field (VFF) concept based on a point-mass agent 

model. In addition, the evaluation algorithm does not model obstacles based on the 

processing intensive certainty grid. Finally, the Active Window (AW) is not square 

but circular.

First of all we examine the VFF algorithm differences from the classic PFM, which 

are:

• The Potential Field Attractive Force is constant, and always greater or 

equal to the repulsive force (this minimises oscillations and simplifies 

the design of the original PFM definition).

• The Potential Field Agent (PFA) is located in the middle of a virtual 

square window. The effect of the repulsive force from any obstacle only 

takes place within this square window, which is named Active Window 

(AW). This eliminates the potential field calculations when the agent is 

in a safe distance from the obstacle/s.

• Obstacles are described based on the density of the Active Window grid 

[3], in contrast with the original PFM in which obstacles description was 

based on the composition of primitives [1].

As we have prior referred, based on VFF algorithm we have designed the PFM 

method for PFMs evaluation in PDE. This Potential Field Method has the following 

difference in relation to VFF:

• The active window is circular and not square as shown in Figure 3-1. As 

we will describe in the following section, it is not efficient to calculate if 

an obstacle is located within a square AW in comparison to a circular 

AW.
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• We have removed the AW grid that describes the obstacles. The AW 

grid of the VFF was a certainty grid that describes the obstacles 

probabilistically based on range sensors modelling. In our case, we 

assume that the obstacles have known accurate positions at all times. 

The target of the research is the collision capabilities of the PFM and not 

the range sensor modelling. Nevertheless, the grid approach of VFF 

method has a second use, which is to describe the shape of the obstacle 

within the AW. This description is not efficient either, since requires 

multiple additions of repulsive Potential Field vectors to depend on the 

number of grid points that the obstacle occupies.

• Finally, the repulsive and attractive forces of the PFM are only allowed 

to take place in one point of the obstacle. In this way the shape of the 

obstacle cannot couple into the trajectory of the Potential Agent, and the 

collision avoidance capability of the algorithm is intact from the shape 

of the obstacle.

As we have mentioned in the beginning of this section, and based on the algorithms 

properties, we have named this Potential Field Algorithm: Active Window Single 

Point Potential Field (AWSPPF) Algorithm.

3.2.1 The Active Window Shape of the AWSPPF Algorithm

We can justify the use of Circular Active Window (AW) over the Rectangular one 

by examining the calculations are needed for the processor to decide if a dynamic 

obstacle is within: first the Square AW, and second the Circular AW.

For the square AW we assume that the angle 6  between the own Potential Field 

Agent’s (PFA) heading and the line that connects the dynamic obstacle/agent instan­

taneous position with the own PFA is known. Second, the Z) , which is the

minimum distance from the centre of Potential Field Agent to the boundary of the 

Square AW is also known.

Third, we have to calculate the Square AW border distance from the own PFA for 

this specific angle 6 .  Finally, we have to compare if the obstacle current distance
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from the own PFA is equal or less than the border distance at this specific angle, as is 

shown in Figure 3-1.

We can calculate the above mathematically in the following steps:

1. To calculate the Square AW border distance from the own (PFA) for 

this specific angle 0  we have:

D DAWMD
AWVAD cos <9

2. Then we have to calculate if:

(3.1)

D > DAWVAD —  ob (3.2)

Where

6  is the angle between the own PFA heading and the line connects the dynamic 

obstacle/agent momentary position with the own Potential Field Agent as shown in 

Figure 3-1.

Active Window Minimum Distance is the minimum distance from the centreAWMD

of Potential Field Agent to the boundary of the Square AW as shown in Figure 3-1.

D awvad Active Window Variable Angle Distance is the distance between the centre

of the Potential Field Agent and the square active window boundary in angle (9 as 

shown in Figure 3-1.

D ,  is the distance of the Potential Field Agent and the dynamic obstacle/agent as 

shown in Figure 3-1.

Note: the active window rotates according to the heading for the PFA. Therefore, the 

D awmd relates always to the heading angle.
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Autonomous

Figure 3-1 : VFF Square Active Window

On the other hand, when the active window is circular we only have to calculate if 

D „  >  D t , since Dawcr is known and always the same for any angle between 

the Own Potential Field Agent heading and the dynamic obstacle/agent.
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Where

is the Active Window Circle Radius.AWCR

From the above mathematical comparison of the Potential field Active Windows we 

can conclude that the circular AW has the following advantages in PDE over the 

square one:

1. The processor needs less processing power or memory (e.g. use of lookup 

table) to determine if a dynamic obstacle/agent is within a circular AW. This

47



is because when the AW is circular the processor doesn’t have to calculate 

equation Error! Reference source not found.(3.3) for every iteration.

2. The agent has equal distance from all points of the AW, which means that the 

collision avoidance safety distance modelling of the Potential Field Agent is 

more efficient. For example in the square AW the distance that the repulsive 

force vector takes places for first time depends on the heading angle between 

the dynamic obstacle and the own agent. This distance difference doesn’t 

have a true meaning to the collision avoidance safety of the own agent.
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3.2.2 Active Window Single Point Potential Field (AWSPPF) Algorithm 

Mathematical Analysis

The conceptual representation of the AWSPPF Algorithm is illustrated in Figure 3-3 

below.

A  Target 
Destination

This Potential Field Algorithm is described by the following equations:

(3.4)F = F + FP T R if £> >  D .AWCR ob 'f.EÏV/N.

TEMPLF.MAN)
LIBRARY
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F  = FP T if D < DAWLR ob

And

K > F„ (3.5)

Where

Ft is the attractive force form the autonomous agent target destination

Fr is the repulsive force due to obstacle location in the configuration space and

Fp is the direction of the autonomous agent.

More specifically the attractive force magnitude satisfies the following equation:

F  -  FT CT

f  Xt -  xo A y  -  y  ^' 0 x + —— — y
V DT J

Ft = 0

if Dr * 0 

if D, = 0 (3.6)

Where

F(1 is the attractive force constant,

Dr is the autonomous agent distance from the target, 

Xt , y t are the target destination coordinates,

Xg, y  are the current autonomous agent coordinates

On the other hand, the repulsive force is described by the vector:

F W" { x - x  A y .  - y  ,CR ob o _|_ y  ob____ ✓  o ÿ
\

Dob V  ob Dob J

if D >  DA WCR ob
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if D AWCR <  D„t (3.7)

Where

Fa  is the repulsive force constant, 

w  is the width of the agent,

A .  is the autonomous agent distance from the obstacle,

Xoh, y nh are the obstacle coordinates,

D AW(,r is the Active Window Radius 

n is a positive integer.

In Equation 3-4, describes the intensity and the direction of the field that is produced 

by a point-mass obstacle.

We use the above equations based on the following conditions:

We have chosen to use a traditional and processing efficient speed control equation, 

which is derived from the equation

The magnitude of the above equation is equal to (3.10) equation and corresponds to 

the agent speed:

When D r =  0 then F T = 0  and FR — 0 (3.8)

F  = F  + FP T R

v  = (3.9)

V  = FM A X (3.11)
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Where

F„ is the maximum magnitude of F  , which is equal to:
“ \4A X  *

(3.12)

The above equation is true due to Virtual Force Field definition [9]. 

Therefore the equations (3.11) and (3.9) from (3.12) become:

(3.13)

An example of the AWSPPF algorithms performance is illustrated in Figure 3-4. 

Autonomous agent avoids a circular static obstacle of 50m radius, the active window 

is 300m radius and the Minimum distance that we are going to explain in the next 

chapter is 100m. The number of times that the equation

Error! Reference source not found, doesn’t have to be calculated, if the algorithm 

is calculated one time every second is around 78. This number varies based on the 

active window radius and the number of calculation per time unit. A more 

comprehensive performance analysis of this algorithm in static and dynamic 

environment takes place in 3.2.4.
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Potential Field Autonomous Vehicle Trajectory due to encounter Obstacle
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Figure 3-4: Potential Autonomous Vehicle simulation based on Circular Active Window

3.2.3 Active Window Single Point Potential Field AWSPPF) Algorithm 

Minimum Distance (MD) Definition

In all classical Potential Field Algorithms we have local minima when the 

Navigational Potential vector is equal to zero. According to the (3.14) when Fp is 

equal to zero the speed of the Potential Field Agent (PFA) is zero too, when the 

agent follows a point-mass model without inertia. Therefore, when Fp is equal to 

zero we also have the PFA Minimum Distance from the encounter obstacle. From 
the above we can determine the Minimum Distance of the PFA, since:

Fp =  Ft + Fr = 0 <=>
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(3.15)<=> F, =  — F  R =4> D  — W n
IF___cr_

F

We can prove the above based on the equations (3.6) and (3.7) when D r ^  0 and

^ A  WCR —  ^ o b  ’

Therefore we have:

-  F  W "
F  —  CR

f

d :
x ob -  xe f  | yob -  y„ ,

ob V  obD D ob J

F  = FT CT
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From the above and equation (3.15) we have:
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Figure 3-5: AWSPPF Algorithm Minimum Distance

In Figure 2-1 is illustrated the AWSPPF vectors when the PFA has Minimum 

Distance from an obstacle. From equation (3.15) we can understand that the ratio

has to be greater than 1 for the PFA to avoid collision in both cross and head-

on collision scenarios. It is important to be noted that the algorithm can handle 

different size obstacles by adjusting the algorithm’s Minimum Distance.
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3.2.4 Active Window Single Point Potential Field (AWSPPF) 
Algorithm Software Design and Implementation

The implementation of the VFF is based on the following flow chart shown in Figure 

3- 6 .  It is assumed that the width of the agent and the obstacle are known, as well as 

their initial coordinates.
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Start

Figure 3-6: AWSPPF Algorithm implementation flowchart

The algorithm is implemented in Matlab and its representation could be based on the 
following pseudo code:

1. Initialise Potential Field Agent (PFA) size

2. Initialise PFA coordinates values

3. Initialise obstacle size

4. Initialise obstacle coordinates
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5. Initialise Active Window Circle Radius D A„^nAWCR

6. Calculate PFA distance from its target destination D r

7. Calculate PFA distance from the obstacle D  .ob

8. Initialise Sampling Rate

9. While(DT>0)

a. Initialise while (Dt>0) loop counter to zero and increment the counter 

in the next iteration

b. If(D0b<DAWCR)

i. Calculates Virtual Attractive Force Vector

ii. Calculates Virtual repulsive Force Vector

iii. Calculates Resultant Artificial Potential Force Field vector.

iv. Calculate the PFA speed based on the Magnitude of the Re­

sultant Artificial Potential Force

v. Calculate New Coordinates based on the Time sample speci­

fied

c. Else

i. Initialise else counter to zero and increment the counter in the 

next iteration

ii. Calculates Virtual Attractive Force Vector

iii. Calculates Resultant Artificial Potential Force Field vector 

(based only on the Target destination vector).

iv. Calculate the PFA speed based on the Magnitude of the Re­

sultant Artificial Potential Force

v. New Calculate New Coordinates based on the Time sample 

specified

d. Calculate D0b

e. Calculate Dt

10. Break while(DT>0) loop

11. End //Target Destination has been reached

We can analyse the above pseudo code as follows:
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1. Initialise Potential Field Agent (PFA) size. We define the PFA to have a cir-

, D w
cular shape with radius equal to Tv =  — . Where W is the width of ther  1 agent ^

agent.

2. Initialise PFA coordinates values. We PFA coordinates are Xo, Yo.

3. Initialise obstacle size. We consider the obstacle to be circular with radius

obstacle *

4. Initialise obstacle coordinates. The obstacle coordinates are X0b and Y0b.

5. Initialise Active Window Circle Radius AWCR

6. Calculate PFA distance from its target destination D.r

A =V(Y-Y) 2 + (f- f) !
7. Calculate PFA distance from the obstacle D ,ob

D * = y l ( X . - X , Y + ( Y * - Y , Y

8. Initialise Sampling Rate

9. While(DT>0)

a. Initialise while (Dt>0) loop counter to zero and increment the counter 

in the next iteration. This counter is used to monitor the total time the 

agent needed to arrive to its target destination.

b. If(Dob<DAWCR)

i. Calculate Virtual Attractive Force Vector from (3.6)

(
F = F CT

X ' - t - Z  + y r z K p

V A A J
ii. Calculate Virtual repulsive Force Vector from (3.7)

Fa W* f

D
x , — xob o

ob V D
-x + y ob -  y a

ob D y
ob

iii. Calculate Resultant Artificial Potential Force Field vector.

F =FP T + Fn
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iv. Calculate the PFA speed based on the Magnitude of the Re­

sultant Artificial Potential Force from (3.13)

v  =
F „

F ,

V ,MAX

• M A Y

v. Calculate New Coordinates based on the Time sample speci­

fied T„

F p

+  -
P

F n

F p

+  -
P

F ,

K ,aJ s c o s #

V u .y T  s i n #
MAX S

c. Else

i. Initialise else counter to zero and increment the counter in the 

next iteration

ii. Calculate Virtual Attractive Force Vector

F  = FT M CT

^  x  —  x  „ y  -  y  ^  
‘ ° x  +  — — — y

V D, D r

iii. Calculate Resultant Artificial Potential Force Field vector 

(based only on the Target destination vector).

F  = FP T

iv. Calculate the PFA speed based on the Magnitude of the Re­

sultant Artificial Potential Force

v  =
F ,

F „
V.MAX

v. Calculate New Coordinates based on the sample time period

T

X =  x0 +
F

V . . . . T  c o s 6MAX S
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y  =  y„ +
F,

+  -
P

F, v^ r s si n f f
P U A Y

d. Calculate D0b

A  =  \ l ( x T - x 0) 2 + ( y T - y 0) 2

e. Calculate Dt

a , = V f e _ x . ) 2 + ( > ’„»- y . y

10. Break while(Dr>0) loop

11. End //Target Destination has been reached

It is important to be noted that we use the counters to monitor the PFA time and 

trajectory length to reach its target destinations.

A ,„  =  t +  A r ,2
i

Where k  is equal to the number of iterations that the While(Dr>0) loop needs to 

terminates

k  e  □

Where S lgtgl is the total trajectory length that the agent has covered to reach its target 

destination.

In the following paragraphs, we have tested the collision capabilities of the above 

generic potential field algorithm AWSPPF. This test takes place based on the 

characteristics of an Autonomous Unmanned Surface Vehicles USV (or 
Autonomous Unmanned Water based Vehicle). For this scenario we consider the 

agent to be circular and have radius of 9m, maximum speed of 5.14m/sec (or 

lOnm/h). For simplicity, we assume a Cartesian coordination system with x axis 

pointing to North and an anticlockwise angle increment. The AWSPPF Algorithm 

characteristics are set to be Dmin = 100m and the Active Window (AW) equal to 

1000m.
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The algorithm performance is tested first in static environment and then in dynamic 

environment. For the static environment we have considered the following 5 

collision scenarios, in order to illustrate the performance of the algorithm near and 

on aliment among the initial autonomous vehicle position, the target destination and 

the obstacle. In these scenarios the obstacle has a radius of 50m.

The initial coordinates of the autonomous surface potential field vehicle are (0, 460) 

and its target destination coordinates are (1000, 460), the obstacle coordinates are 

(500, 500). We keep the obstacle coordinates the same for all collision scenarios. 

The second set of coordinates is: initial position (0, 480), target destination (1000, 

480). The third set of coordinates is: initial position (0, 490), target destination 

(1000, 490). The forth set of coordinates is: initial position (0, 499), target 

destination (1000, 499). Finally, the fifth set of coordinates is: initial position (0, 

500), target destination (1000, 500). In this case we have full aliment of initial 

position, obstacle and target destination. We have selected these coordinates to 

illustrate gradual performance degradation of the algorithm in relation to the aliment 

of the autonomous vehicle initial position, target destination and obstacle.

For the first set of coordinates:

Autonomous Surface Vehicle Initial Position: (0, 460)

Autonomous Surface Vehicle Target Destination: (1000, 460)

Obstacle coordinates (500, 500)

The performance of the algorithm related to the trajectory generation it is illustrated 

in Figure 3-7. The relation of the distance between the autonomous vehicle and the 

obstacle versus time in Figure 3-8, and the autonomous vehicle speed versus time in 

Figure 3-9.
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1000 r
Potential Field Autonomous Vehicle Trajectory due to encounter Obstacle

900 -

Figure 3-7: Collision avoidance scenario of autonomous agent and obstacle with obstacle out of 
aliment between initial position and target destination by 40m.

* 300Fo

Plot o f the Distance between the Autonomous Vehicle and Obstacle vs Time

Time in sec

Figure 3-8: Autonomous agent |Distance from obstacle vs Time when the autonomous agent and
the obstacle are out of aliment by 40m.
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Plot o f  Vessel 1 Speed vs Time

j_________ i__________i
150 200 250

Figure 3-9: Autonomous agent Speed Variation vs Time when the autonomous agent and the 

obstacle are out of aliment by 40m.

The performance highlights of the AWSPPF Algorithm when the autonomous 

surface vehicle is out of aliment with the obstacle by 40m are the following:

D min = 111.5m at 107sec

V min = 2.123m / sec (or 5.3 Nautical Miles (NM)) at 93sec

Max speed duration: from 126sec to 229sec

tD = 229 sec

lT = 1,043.4m

Where:

Dmin is the minimum distance between the autonomous surface vehicle trajectory 

and the obstacle.

V min is the minimum speed that the autonomous agent took in some point 

following its trajectory from initial position to target destination. 

tD is the time duration of the autonomous surface vehicle between its initial position 

and its target destination.
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For the Second set of coordinates:

Autonomous Surface Vehicle Initial Position: (0, 480)

Autonomous Surface Vehicle Target Destination: (1000, 480)

Obstacle coordinates (500, 500)

The performance of the algorithm related to the trajectory generation it is illustrated 

in Figure 3-10. The relation of the distance between the autonomous vehicle and the 

obstacle versus time in Figure 3-11, and the autonomous vehicle speed versus time in 

Figure 3-12.

Potential Field Autonomous Vehicle Trajectory due to encounter Obstacle
1000 r

900 -

800 -

700 -

600 -

100 -

0 --------------- 1---------------------1-------------- 1---------------------1------------------1---------------1_____________ I__________I_____________ I___________ I
0 100 200 300 400 500 600 700 800 900 1000

meters

Figure 3-10: Collision avoidance scenario of autonomous agent and obstacle with obstacle out of 
aliment between initial position and target destination by 20m.
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Plot of the Distance between the Autonomous Vehicle and Obstacle vs Time

Figure 3-11: Autonomous agent Distance from obstacle vs Time when the autonomous agent 
and the obstacle are out of aliment by 20m.

R ot o f Vessel 1 Speed vs Time

Time in sec

Figure 3-12: Autonomous agent Speed Variation vs Time when the autonomous agent and the
obstacle are out of aliment by 20m.
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The performance highlights of the AWSPPF Algorithm when the autonomous 

surface vehicle is out of aliment with the obstacle by 20m are the following:

Z)min = 107.7m at 107sec 

F min = 1.849m/sec (3.6 NM) at 99sec 

Max speed duration: from 141 sec to 245sec 

tD = 245 sec 

lT = 1,064.1m

For the third set of coordinates:

Autonomous Surface Vehicle Initial Position: (0, 495)

Autonomous Surface Vehicle Target Destination: (1000, 495)

Obstacle coordinates (500, 500)

The performance of the algorithm related to the trajectory generation it is illustrated 

i in Figure 3-13. The relation of the distance between the autonomous vehicle and the 

obstacle versus time in Figure 3-14, and the autonomous vehicle speed versus time in 

Figure 3-15.

P o te n tia l F ie ld  A u to n o m o u s  V e h ic le  T ra je c to ry  d u e  to  e n c o u n te r O b s ta c le
1000 r

900 - f

Figure 3-13: Collision avoidance scenario of autonomous agent and obstacle with obstacle out of 
aliment between initial position and target destination by 10m
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Plot of the Distance between the Autonomous Vehicle and Obstacle vs Time

Figure 3-14: : Autonomous agent Distance from obstacle vs Time when the autonomous agent 
and the obstacle are out of aliment by 10m.

Plot o f Vessel 1 Speed vs Time
5-5 1-

_l_______________ I______________ I
200 250 300

Figure 3-15: Autonomous agent Speed Variation vs Time when the autonomous agent and the
obstacle are out of aliment by 10m.
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The performance highlights of the AWSPPF Algorithm when the autonomous 

surface vehicle is out of aliment with the obstacle by 10m are the following:

Dmin = 101.6aw at for a time period between 125secto 131 sec 

V min = 0.734w / sec (1.43 NM) at 11 lsec 

Max speed duration: from 174sec to 278sec 

tD = 278 sec

lT = 1,089m

For the fourth set of coordinates:

Autonomous Surface Vehicle Initial Position: (0, 499)

Autonomous Surface Vehicle Target Destination: (1000, 499)

Obstacle coordinates (500, 500)

The performance of the algorithm related to the trajectory generation is illustrated in 

Figure 3-16. The relation of the distance between the autonomous vehicle and the 

obstacle versus time in Figure 3-17, and the autonomous vehicle speed versus time in 
Figure 3-18.

Potential Field Autonomous Vehicle Trajectory due to encounter Obstacle
1000 r

900 -

800 -

700 -

600 -

Figure 3-16: Collision avoidance scenario of autonomous agent and obstacle with obstacle out of 
aliment between initial position and target destination by lm.
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Rot of the Distance between the Autonomous Vehicle and Obstacle vs Time

Time in sec

Figure 3-17: Autonomous agent Distance from obstacle vs Time when the autonomous agent 
and the obstacle are out of aliment by lm.

Plo t o f  Vessel 1 Speed vs Tim e
6 r

0------------------- 1--------------------- 1_____________ I____________ I____________ I_______________I___________ I
0 50 100 150 200 250 300 350

Tim e in sec

Figure 3-18: Autonomous agent Speed Variation vs Time when the autonomous agent and the
obstacle are out of aliment by lm.
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The performance highlights of the AWSPPF Algorithm when the autonomous 

surface vehicle is out of aliment with the obstacle by lm are the following: 

Dmin = 100.3w at for a time period between 125sec to 131 sec 

V min = 0.237m / sec (0.46NM) at 11 lsec 

Max speed duration: from 174sec to 278sec 

tD = 316 sec

lT -1,098m

For the fifth set of coordinates:

Autonomous Surface Vehicle Initial Position: (0, 500)

Autonomous Surface Vehicle Target Destination: (1000, 500)

Obstacle coordinates (500, 500)

The performance of the algorithm related to the trajectory generation it is illustrated 

in Figure 3-19.

P o te n tia l F ie ld  A u to n o m o u s  V e h ic le  T ra je c to ry  d u e  to  e n c o u n te r  O b s ta c le
1000 r-

900 -

400 -

300 -

200 -

o - -------------------1------------------- 1------------------- 1------------------- 1--------------------1------------------- 1____________ I____________ l____________ I____________ I
100 200 300 400 600 600 700 800 900 1000

m e te rs

Figure 3-19: Collision avoidance scenario of autonomous agent and obstacle with obstacle out of 
aliment between initial position and target destination of 0m (Potential Field algorithm local 
minima and navigational deadlock).

As we can see from the above figure the agent is within a local minima deadlock.
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From the above we can notice that the trajectories of the first 4 collision scenarios 

are relatively similar but if we observe them closely, they have significant variation 

in the autonomous vehicle speed, trajectory length agent minimum distance from the 

obstacle. The performance of the algorithm becomes worse in relationship to the 

aliment between the autonomous vehicle initial position, the static obstacle and the 

autonomous agent target destination. The autonomous potential vehicle exhibits local 

minima when its target destination current position and target destination are in 

perfect aliment. Therefore, based on the simulation results, the AWSPPF algorithm 

is processing efficient, has smooth trajectories and exhibits local minima in static 

environment.

For the dynamic environment we have considered 4 collision scenarios based on the 

same initial coordinates for autonomous vehicle and dynamic obstacle, and we only 

alter the speed of the dynamic obstacle. The dynamic obstacle has constant speed 

and direction. Based on this scenario we demonstrate that the algorithm is 

susceptible to the combination of geometrical symmetries and speed correlation 

between the autonomous vehicle and the dynamic obstacle.

The initial coordinates for the autonomous vehicle and the dynamic obstacle are: 

Autonomous surface vehicle initial coordinates: (0, 500)

Autonomous surface vehicle target destination coordinates: (1000, 500)

Autonomous surface vehicle initial and max speed: 5.14m/sec 

Obstacle initial coordinates: (800, 100)

We examine for difference constant speeds for the dynamic obstacle which are:

Obstacle constant speedl: 4.5m/sec
Obstacle constant speed2: 5m/sec

Obstacle constant speed3: 5.14 m/sec

Obstacle constant speed3: 6.5m/sec

We have chosen the above initial coordinates to achieve geometrical symmetry 

between the autonomous agent, the dynamic obstacle and their current trajectories 

projection crossing point.
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In Figure 3-20 is illustrated the trajectory of the autonomous vehicle when the 

dynamic obstacle has speed around 14% lower that the agent algorithmic max speed.

Figure 3-20: Autonomous agent trajectory when in geometrical symmetrical collision scenario 

with dynamic obstacle of constant speed and direction. Speed difference between autonomous 

vehicle and dynamic obstacle!4.2%.

In Figure 3-21 is illustrated the trajectory of the autonomous vehicle when the 

dynamic obstacle has 2.8% lower speed than the maximum speed of the autonomous 

vehicle.
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Figure 3-21: Autonomous agent trajectory when in geometrical symmetrical collision scenario 

with dynamic obstacle of constant speed and direction. Speed difference between autonomous 

vehicle and dynamic obstacle 2.8%.

Figure 3-22: Autonomous agent trajectory when in geometrical symmetrical collision scenario
with dynamic obstacle of constant speed and direction. Speed difference between autonomous
vehicle and dynamic obstacle 0%.
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As we can observe from Figure 3-21 and Figure 3-22, when the speed of the 

dynamic obstacle approaches the maximum algorithmic speed of the potential field 

algorithm, the performance of the algorithm degrades in terms of average speed, 

trajectory length and trajectory smoothness. This degradation takes place due to both 

spatial symmetry and the speed magnitude correlation of the agents. We analytically 

explain the above in Chapter 4.

Potential Field Autonomous Vehicle Trajectory due to encounter Dynamic Obstacle

meters

Figure 3-23: Autonomous agent trajectory when in geometrical symmetrical collision scenario 

with dynamic obstacle of constant speed and direction. Speed difference between autonomous 

vehicle and dynamic obstacle 12.45%

On this other hand, when the dynamic obstacle speed is greater than algorithmic by a 

reasonable amount the performance is satisfactory, as is illustrated in Figure 3-23. 

An analytic performance of the AWSPPF algorithm in relationship with a dynamic 

obstacle is presented in Chapter 5, along with a new efficient algorithm that avoids 

these inefficiencies.
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From all the above results we come to the conclusion that first, the AWSPPF 

algorithm accommodate the advantages and disadvantages of the classical Potential 

Field Methods, as well as include an efficient Active Window (AW).

Second, the AWSPPF algorithm performance degrades in a dynamic environment. 

This degradation takes place when the initial coordinates of the autonomous vehicle, 

the dynamic obstacle and crossing point of their initial headings form a geometrical 

symmetry. With this observation as a guide, we have identified and defined the local 

minima in a dynamic environment, and more specifically, in Pure Dynamic 

Environment (PDE). The identification and definition of local minima of the 

AWSPPF algorithm in PDE takes place in the next chapter.
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Chapter 4



4. The Concept of Monovular Autonomous Agent Correlation 

(MAAC) and how to Identify Navigational Deadlocks

In this chapter we introduce the novel concept of Monovular Autonomous Agent 

Correlation (MAAC). The significance of this concept is to identify performance 

inefficiencies of the Potential Fields algorithms in Pure Dynamic Environment 

(PDE). These performance inefficiencies show that the Potential Field Algorithms 

experience local minima not only in static environment but also in dynamic.

We have defined The PDE in the previous chapter, as the environment contains only 

dynamic agents and/or obstacles. The word Monovular is inspired by the biological 

term Monovular, which means from the same ovum (egg). Therefore, we define as 

Monovular Agents the agents that are identical not only in terms of kinematic or 

dynamic models but also in hardware and software terms. We have introduced the 

word Monovular to materialise the novel concept of MAAC, which is interdiscipli­

nary inspired from the concept of autocorrelation in signal processing. 

Autocorrelation is a mathematical tool for finding repeating patterns e.g. identified 

periodic signals under the noise floor or missing fundamental frequencies etc. 

Different fields of engineering and AI (e.g. signal processing, pattern recognition, 

cryptanalysis etc.) define the autocorrelation in a different way.

In collision avoidance, we have aimed to use the concept of MAAC to identify 

repeating inefficient trajectories of the Autonomous Agents in pure dynamic 

environment (the pure dynamic environment for MAAC consists of only two 

Monovular agents initially). The principle of easier identification is that MAAC 

amplifies their worst navigational behaviour when they are in the same dynamic 
environment. Therefore, this behaviour is easier to be captured and defined. The use 

of the MAAC concept for finding repeating trajectory or behavioural patterns among 

dynamic agents is proved in the generic Potential field algorithm, which we have 

described in the previous section. At this point, we would like to note that the 

concept could possibly be applicable for other autonomous navigation algorithms but 

its effectiveness is not tested. Therefore, it is beyond the purpose of this Thesis to 

prove it.
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In this study therefore, we have focused on the identification of Potential Field 

algorithm repeating inefficient trajectories in pure dynamic environment. Based on 

these trajectories identification, we have also been enabled to identify and define the 

causes that encourage such behaviour navigation patterns of the Monovular Agents.

The method we have followed to utilise the MAAC concept in order to identify and 

define repeated inefficient trajectories in Potential Field Algorithms is summarised in 

the next steps:

1. Define the Autonomous Monovular Agents, and the size of local Pure 

Dynamic Environment.

2. Place two Monovular Agents within the same local environment, and try 

to identify repeating inefficient trajectories.

3. Identify the generic causes of the inefficient repeating trajectories of the 

autonomous Monovular agents.

4. Define the causes of the inefficient repeating trajectories of the Potential 

Field Monovular Agents while navigating in the Pure Dynamic 

Environment.

Initially, we have to define a local pure dynamic environment that is correlated to the 

autonomous agents kinematic characteristics e.g. manoeuvrability and speed. In 

other words, in this step we refer to the local environment size, which will be 

appropriate for the specific agents’ dynamics.

The second step is to place the Monovular Agents in the above local environment so 

we can examine their collision avoidance performance in different initial conditions. 

In this step we have to experiment with different combinations of both initial 
coordinates and velocity vectors of the agents to identify any possible repeated 

patterns of inefficient trajectories. With the term velocity vector we describe the 

directions and the speed of the agent. The angle of this vector corresponds to the 

direction, and the magnitude corresponds to the speed of the autonomous agent. This 

velocity vector is generated by the Potential Field Algorithm that navigates the 

autonomous agents in real-time.
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In the third step, we have to examine the agents’ behaviour while experience 

inefficient trajectories. In this way we will be able to identify the causes that result 

the autonomous agent to behave in this way in pure dynamic environment.

Finally, when we have identified these causes it is important to define them. So, we 

will be able to mathematically distinguish when the autonomous agents are in the 

beginning and when they are in the end of these inefficient trajectories.

As we will analytically illustrate in the next subsections of this chapter based on the 

above steps, we have identified that this type of potential field algorithms experience 

long inefficient trajectories that can lead into deadlocks. These inefficient trajectories 

are caused by local minima. This means that local minima are inherited by potential 

field algorithms not only in static environment but also in pure dynamic 

environment.

Furthermore, we have mathematical defined and grouped the causes of the potential 

Monovular autonomous agent behaviour under a new state we have named 

Trajectory Equilibrium State (TES). The author has published this concept for first 

time in [4], This State is responsible for local minima of Monovular Autonomous 

Agents in the same dynamic environment.

4.1 Trajectory Equilibrium State (TES) Identification and 

Definition in Cross Collision Avoidance, based on Monovular 

Potential Agents in Pure Dynamic Environment (PDE)

In this section we apply the generic steps of MAAC concept for the identification 
and definition of repeated inefficient trajectories. Based on these steps we have 

identified that for this scenario the inefficient trajectories are caused by the 

geometrical symmetries among the agents’ current coordinates and their target 

destinations. These geometrical symmetries result the agent’s Potential Field 

Navigational vectors to have strong behavioral correlation, which trap them in TES. 

Therefore, the Potential Field agents are in this state when they mutually experience
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local minima in Pure Dynamic Environment. In the most extreme cases of TES both 

agents are led to navigational deadlock.

Local minima have only been identified in static environment for Potential field 

algorithms. Therefore, in this study, we have identified local minima in the newly 

defined Pure Dynamic Environment (PDE). In addition, by analyzing the Potential 

Field local minima causes in PDE, we have realised that the causes are quite 

different than the causes which take place in static environment. In static 

environment the causes of local minima are based on the shape of the static obstacles 

when are in close proximity with the potential field agent. On the other hand, in PDE 

the local minima are caused by the relative position and the velocity vectors among 

the Monovular agents’ current position and their target destination. This type of 

correlation is, as we referred to the above paragraph, a symmetry that causes 

Potential Field vectors of the agents to be strongly correlated. With the aid of the 

generic steps of MAAC concept we are able to mathematically define the Potential 

Field agents’ generic symmetries that cause local minima in PDE.

To put in simulation practice the MAAC generic steps, we have focused on the 

characteristics of an average Unmanned Surface Vehicle (USV). For example, the 

configuration space decision for the simulation of the USV was based on the USV 

maximum speed, size and navigation algorithm. More specifically the steps are the 

following:

Step 1: Define the Autonomous Monovular Agents, and the size of local Pure 

Dynamic Environment.

We define the size of the configuration space based on the Monovular agents’ 

kinematic capabilities. Initially, we follow a simplified model as is described below.

We consider two ideal Potential Field Autonomous Agents that have the size of an 

average USV. The Potential Field Algorithm is used is the AWSPPF algorithm, 

which described in the previous chapter. The agents are represented by a circle with 

equal radius of 9m and can reach a maximum speed of 5.14m/sec (10NM). Their 

local navigational environment covers a surface of 1000x1000m. We use ideal point
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mass autonomous potential field agent models to identify the Potential Field 

algorithm trajectory that is generated in PDE without the noise produced of agents’ 

kinematic capabilities or static obstacles.

In other words, we use PDE to isolate the effect, of any static obstacle, could cause 

upon the autonomous agent trajectory. Therefore, the navigation trajectory followed 

by the autonomous agent it will be only related to navigation capabilities of the 

algorithm in Pure Dynamic Environment (PDE). Furthermore, we have also isolated 

the agents’ trajectories from the effect could cause its kinematic capabilities, in case 

it doesn’t allow the agent to follow the potential field velocity vector accurately. For 

this reason at this stage, we have used point-mass autonomous agents.

Step 2: Place two Monovular Agents within the same local environment, and try to 

identify repeating inefficient trajectories.

From the previous step we have defined the Monovular Agent’s kinematics models 

and their local PDE. We place the autonomous Agents in this predefined PDE, so 

each agent “reacts” to the position and the velocity vector of the other. Then by 

changing the agents’ initial conditions we try to identify repeating inefficient trajec­

tories. The initial conditions refer to when the repulsive force of the Potential Filed 

Agents take place for first time.

A group of these relative initial conditions cause the autonomous agent to experience 

long and inefficient trajectories like the ones in Figure 4-1. In this example, the 

distance between the two Monovular Vehicles while trying to reach their target 

destination is illustrated in Figure 4-2. Vehiclel on the left hand side (initial posi­

tion) is slightly faster that the vehicle2 on the right hand side (initial position). In 
Figure 4-3 is illustrated the speed diagram of Vehiclel versus Time, and in Figure 

4-4 the speed diagram of Vehicle2 versus Time. By observing these two diagrams 

we can distinguish that the lower speed, of the slightly faster vehicle, takes a much 

higher speed value than the lower speed value of the slightly slower speed vehicle.
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Plot of the Trajectories of Close Range Encounter Autonomous Vehicles

Figure 4-1: Identification of long and inefficient trajectories in Pure Dynamic Environment 

(PDE) of Potential Field Monovular Vehicles/Agents.

Plot o f  the Distance between Agent 1 and Agent 2 vs Tim e

Tim e in sec

Figure 4-2: Autonomous Vehiclel ¡Distance from Autonomous Vehicle2 vs Time when the
Monovular Agents are guided by the AWSPPF algorithm.
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Plot of Agent 1 Speed vs Time

Figure 4-3: Autonomous Vehiclel Speed Variation due to Autonomous Vehicle2 vs Time when 

the Autonomous Vehicle is guided by the AWSPPF algorithm.

P lo t o f  A g e n t 2 Speed vs  T im e

<1></>

a. 
O T  ,

150

Tim e in sec

Figure 4-4: Autonomous Vehicle2 Speed Variation due to Autonomous Vehiclel vs Time when
the Autonomous Vehicle is guided by the AWSPPF algorithm.
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In some cases these trajectories end in a navigational deadlock as is illustrated in 

Figure 4-5, and both the autonomous agents do not reach their target destination.

Plo t o f  the T ra jectories o f  C lose  Range Encounter A u tonom ous Vehicles

Figure 4-5: Identification of autonomous agents/vehicles deadlocks in PDE of Potential Mon­
ovular agents guided by the AWSPPF algorithm.

In Figure 4-5 we can see that the trajectories are symmetrical and are separated by an 

asymptotic line. In this case, the distance between the two Monovular Vehicles while 

are in a navigational deadlock is illustrated in Figure 4-6. Vehiclel and Vehicle2 

have the same diagrams of Speed versus Time that are illustrated in Figure 4-7 and 

Figure 4-8.

It has been possible for us to constantly reproduce the ill performance of the 

Potential Field Monovular agents of Figure 4-5 based on similar initial relative 

conditions.
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Plot of the Distance between Agent 1 and Agent 2 vs Time

<u
<

«b

50 100 150 200 250 300 350 <00 <50 500

Tim e in sec

Figure 4-6: Autonomous Vehiclel ¡Distance from Autonomous Vehicle2 vs Time when the 

Monovular Vehicles are in navigational deadlock.

Plot o f  Agent 1 Speed vs Tim e

Tim e in sec

Figure 4-7: Autonomous Vehiclel Speed Variation due to Autonomous Vehicle2 vs Time when
the Autonomous Vehicles are in navigational deadlock.
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Plot of Agent 2 Speed vs Time

. E  2 5  
"O

CL(0

250

Tim e in sec

Figure 4-8: Autonomous Vehicle2 Speed Variation due to Autonomous Vehiclel vs Time when 

the Autonomous Vehicles are in navigational deadlock.

Step 3: Identify the generic causes of the inefficient repeating trajectories of the 

autonomous Monovular agents.

If we observe the behaviour of both the navigational vectors of the two Monovular 

agents’ trajectories that are illustrated in Figure 4-1 and Figure 4-5 in time domain, 

we can identify the following:

• The agents’ directional vectors are strongly correlated to the rate of change of 

both direction and magnitude.

• The agents’ speed are strongly correlated

• The coordinates of the autonomous agents are symmetrical or close symmet­

rical.
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Step 4: Define the causes of the inefficient repeating trajectories of the Potential 

Field Monovular Agents while navigating in the PDE.

Based on the previous steps we have identified that the Monovular Agents that are 

located in a PDE and satisfy relative conditions correlation and certain coordinates’ 

symmetries experience inefficient Trajectories and deadlocks. In this step we define 

the exact symmetries that cause these deadlock or inefficient trajectories. In addition, 

we have defined a new state the Potential Monovular Agents are in while experience 

inefficient trajectories. We have named this new state Trajectory Equilibrium State 

(TES). The most extreme case of this state is when the Potential Monovular Agents 

deadlock and never reach their target destinations we have named this state Absolute 

TES. On the other hand, when the autonomous agents reach their target destination 

but their trajectories are inefficient they are in a similar state that we have called 

Close TES. As we will analytically describe in the next paragraphs both Absolute 

and Close TES derive from the same symmetry we have called Potential Monovular 

Agent Symmetry (PMAS), but in close TES the symmetry is not 100% accurate.

In the following paragraphs we mathematically define the PMAS in relation to 

Monovular Agents’ coordinates and Target Destination coordinates. The Potential 

algorithm we have used for this definition is the Active Window Single Point 

Potential Field (AWSPPF) algorithm we have designed in chapter 3.

Initially, by simulation experiments, we have established that the PMAS, which is 

illustrated in Figure 4-9 can cause an Absolute TES trajectory of Figure 4-5. PMAS 

is formed based on the coordinates of the agents’ initial positions and their target 

destinations.
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Target Target
Destination o f Destination of

Potential Potential
Autonom ous Autonom ous

Agent A1 Agent A2

Figure 4-9: PMAS Generic symmetries between the initial positions A and B of the autonomous 
agents and their target destination, which results in absolute TES.
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Figure 4-10: Absolute TES final state due to PMAS.
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From Figure 4-9 we can derive the generic equations and conditions that govern 

PMAS. These equations and conditions are the following:

ATx=BT2 (4.1)

AC =  BC &  AC < ATX (4.2)

C7j =  CT2 &  CTX <ATX (4.3)

TJ2 parallel to AB (4.4)

Based on the above equations we can conclude that the symmetries are satisfied 

based on concentric circles (with centre C) relation between the Potential Autono­

mous Agents’ coordinates and their Target Destinations coordinates as shown in 

Figure 4-11.

Figure 4-11: PMAS symmetry concentric relation between the Potential Monovular Agents and 

their target destinations coordinates.
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Figure 4-12: Potential Agents Vectors analysis when in PMAS.

In Figure 4-12 are illustrated the Monovular Potential Agents navigational vectors 

and their angles due to PMAS symmetry. From the (4.1), (4.2), (4.3) and (4.4) is

obvious that angles 6n  and 0T2 are equal, and also 6 n and 0 n  are supplementary.
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Therefore, the following equations are satisfied:

0T\ —0T2 (4-5)

0 TX + 0 T2 — 180 (4.6)

Where

9tx and 6t2 are the angles of ABC triangle of PMAS as indicated in Figure 4-12.

6 rx and 0 T2 direction angles towards the Monovular Potential Agents Target Desti­

nations T1 and T2

To understand the effect of PMAS on the Monovular Potential Agents we consider 

two Monovular agents, which are located in the same PDE and are guided by identi­

cal Potential Field repulsive and attractive forces (Monovular Agents). These forces 

are described by the following equations:

Repulsive force equations of the two Monovular agents (due to each other in PDE):

---- ► F...W" (Fk - CR
R1 D" l

And

F „W " (F., = CR
R 2 D" {

x2 -  x, A y  -  y  AJ-----Lx + —— — v
D D

\
(4.7)

J

x, -  x2 yx -  y 2 A 
D D )

(4-8)

Attractive force equations of the two Monovular agents due to their target destina­

tions

F - FT 1 CT

(  \ x, -  x. A y  2 — y  F
2 x  + —— —y

V D t D T J

(4.9)

And

F =FT 2 CT

f  \x — x „ y  — y  F—----2-x  + —— — y
V D r D T J

(4-10)
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( 4 . 11)F  = F  +FPI T 1 «1

And

The Potential Field Navigation equation for agents 1 and 2.

F  = F  + FP 2 T 2 R2 ( 4 . 12)

Where

Z) is the distance between the two agents’ centre of gravities

( w . )  and ( W 2) are the coordinates of the centre of gravities of the agents

Fcr Potential Field algorithm repulsive force constant

Fct Potential Field algorithm Attractive force constant

W  is the agent width

We can see from the above equations that because the two agents are Monovular 

their repulsive force constants FCR, their attractive force constants Fcr and their

W are equal.

Fpj, Fpi the potential field resultant force of the Monovular Agent 1,2 

FTi, F,rl the target destination attractive force of the Monovular Agents 1,2 

FR], Fr2 the repulsive forces of the Monovular Agents 1,2

0 D is the angle between the True North, which is our level of reference and the line 

defined by the points of A and B. The line segment AB is equal to the distance of the 

two Monovular agents’ centre of gravities. We consider 0 n — 0 for simplicity and 

clarity of the equation (4.20) to (4.23) that we will come across later in this chapter. 

0pX, 0 p2 are the angles of the direction of the two resultant potential force vectors of 

the Monovular Agents 1,2.

0 JX, &r2 the angles of the directions of the attractive Potential Vector towards the 

Target Destinations of the Monovular agents 1,2.

0 RX,0 R2 the angles of the directions of the Repulsive Potential Vector of the Mon­

ovular agents 1, 2.

93



D is the distance between the two Monovular agents’ centre points (A, B).

D t\ ,D t2 is the autonomous agent distances from their targets destinations based on 

the agents’ current location.

T i( x n , y tl) andT2( x t2, y J  are the target destination coordinates of the Monovu­

lar agents 1, 2.

A ( W , )  andB(X2,J^2) are the Monovular agents’ current coordinates (instanta­

neous coordinates).

From Figure 4-12 we also have:

0n = 1 8 0 -  6'n , Or2 = 1 8 0 -  0'T2 

O px = 1 8 0 -  0'n ,  O p2 = 1 8 0 -  0'p2

And from the above definition of distances D , D  and D  we have:

D =  AB , Dn = ATX and Dri — BT2

From equations (4.8) we have:

— * F W" ( x -P  _  1 CRVr •*">
R\ Dn

, x. * y 2 -  y. A 
2 ' x  +  - — — y

\

D D
(4.13)

And

F = -LR 2

F W " f

D n

x  — x  „ y  -  y  „ 
1 2 x  +  —— — y

\

V D D J
(4.14)

From the above two equations we have

F = -FR 1 R2 (4.15)

Therefore

0RI = ~°R2 (4.16)
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From the PMAS symmetry we have equation(4.6), which is equivalent to:

0n + 0T2 =180 <=> 6n = 1 8 0 - 0T2 (4.17)

From the cosine and sine definition we can write the equations (4.7), (4.8), (4.9) and 

(4.10) in the following form:

Fn = F ricos0rix +  Fn sin0nj> (4.18)

And

Ft2 cos<97 2x + Ft2 sin ̂ 2 y (4.19)

The above equations describe the Attractive force of the Monovular Potential Field 

Agents in terms of cosine and sine, and the equation below describes the Repulsive 

force of the Agents in terms of cosine and sine.

F ” = 7 f V ( c o s 6 '«, i + s i n 6 l «..>’) <4-20>
<>A

And

F" = j h ( c o s ^ * + sin 0 «T) <4-21>

From equations (4.16), (4.17), (4.18), (4.19), (4.20) and (4.21) we can rewrite the 

equation (4.11) and (4.12) for both agents:

Fn = (Fn cos#rl + Fst c o s 0 J x  + (Fn sin0„+F„ sin6»m)j>
(4.22)

And

F„ = (Fn c o s 0 t1 + Fr1 cos0n )x + (Frl s m 0 T1 + FH! sin0„2)j>
(4.23)

The two Potential Field autonomous agents are Monovular, and they have identical 

Potential Field attractive force magnitude, therefore:
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(4.24)f '. — Fr‘T\ T 2

If we rewrite equation (4.22) from equations (4.15), (4.16), (4.17), and (4.24) we 
have:

F„ =(Fnc o sd B O -^ )-^  cos(-<?„ )x+ (T  sin(180-0 n)-F„  sin(-0J)j>
Therefore

Fn = (~F„ cos (0T1) -  FS2 cos(0m )x + (Fn sin(6>,) + Fin sin((9K ))j)

Therefore the Potential Field Force navigational magnitude is equal to:

IT , II = + T 2 cosT 2)]' + ( T I sinT  + T 2 sinT 2)!

\l(Fn COS an +cos0S2FBiy  +(Fr!sm ai l +F„sin9R2y  = | |F J

(4.25)

Therefore, we have proved that F,P 2 F.p i (4.26)

In addition, we can prove that 

0 PX =  1 8 0 -6 > ,2 (4.27)

From the cosine definition we have:

cos0 = ___________ (F„ cosfln + F„, cosfl,,,)___________
" M :  cos0„ + cos0„F„)! + (Fn sin 0n + F„ sin0„ )2

(4.28)

Based on equations (4.15), (4.16), (4.17), (4.24) and (4.26) the above equation 
becomes:

COS
_ (-Fr2cos0Ti2 F K2cos0B1)

FP 2

(F t2 c o s 0 T2 + F R2
= -cos<9,

F.
P 2

P 2
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Therefore

cos 6̂ , = -  cos 0P2 <=> 0n = 1 8 0 -  0P2 (4.29)

Finally, based on the PMAS, we can also prove that velocity magnitudes of the two 

agents have the same magnitude. Base on the equation (3.13) of chapter 3, (4.24) and 

(4.26) we have:

F,p \

Fn
V,M A X (4.30)

From the equations (4.26), (4.29) and (4.30) we proved that the two Monovular 

potential field agents’ resultant instantaneous forces have the same magnitude and 

supplementary angles when in PMAS. PMAS also causes the same instantaneous 

speed magnitude.

After we have analysed the results of PMAS when the t =  0(t is the time from the 

moment the Monovular Potential Agents are with its other active window), it is time

to examine if the PMAS symmetry is still valid after time equal d t . If, for this 

period we assume that the speed of both agents is constant, and their directions 

unchanged, then we have:

(4.31)

(4.32)

(4.33)

after time dt we have:

(x coordinates for Agents 1 and 2)

x,w, = x, + ds cosOn

dsx — Vxdt 

ds2 -  V2dt
From (4.30) we have that

dsx -  ds2 =  ds

To calculate the agents’ new coordinates
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x2tJI = x7 + dscosdr2
And

(y coordinates for Agents 1 and 2)

y » *  =  y , + d s sin A
= y 2 + d s s u i e n

From the equation 0 px — 180 — Op2 that we have proved earlier, we have:

=  *, — d s  c o s  0 P2 (4.34)

X2 .* = X2 + dSCOS0 F2 (4.35)

And

y , . * = y ,  + d s s i n 0„ (4.36)

= y 2 + d s s in f fP2 (4.37)

From the above equations we conclude that the PMAS is maintained after dt period 

of time, since the Agents move equally but in opposite directions on x axis, and 

equally and in the same direction on y axis.

We approximate dt numerically for the simulation purposes. Therefore, we calculate 

the speed of the Monovular Agents numerically. In this numeric calculation we 

assume that the speed and direction of the Agents remain constant in every iteration.

Therefore:

s i = i X k = Z l f t k = 5 2 <«*>
(=0 1=0

Additionally, for every iteration of the summation we have 0px = 1 8 0  — 0 p2. 

While i of the above equation is getting higher, the value of 0  increases and the 

value of u p2decreases. When 6 px =  180° and 0 p2 — O the Monovular Potential
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Agents are in navigation deadlock. The distance between the Agents when they are 

in navigation deadlock is given by:

Fpj =  Fn +  Frx — 0 <=4> F r  —  — F t  when 

D = D . =Wmm

Because D =  Dn ijnat points A, B of Figure 4-13, we have navigational deadlock of

the two agents.
T a rg e t

D e s tin a tio n  o f 

P o te n tia l 

A u to n o m o u s  

A g e n t A 2
A g e n t A1

(Xab1 iYabl)

A g e n t A 2

(Xab2 ,Yab2)

^  W W “  ‘ "  ^ ----------w-------

T2 F  F1 ri r i
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4

T a rg e t
D e s tin a tio n  o f 

P o te n tia l 

A u to n o m o u s  
A g e n t A1 

------------------•

T,

M in im u m  D is ta n c e  Dmin

Figure 4-13: Absolute TES deadlock coordinates of the Monovular agents

The two vehicles will stop in a straight line with points (xiah9y iah) and

( ^ 2 a b  9 y  lab ) . Where (xiab,y iab) and (x2ab,y 2ab) are the deadlock coordinates of 

the two Monovular agents in Absolute TES.

This proves that Potential field algorithm of the AWSPPF nature experience local 

minima in pure navigation environment. Therefore, the vehicles will stay in this 

point indefinitely.

To summarise, we have proved that PMAS cause the Potential Navigation Vectors of 

the Monovular Potential Agents to have equal magnates and supplementary angles of 

their navigational Potential Vectors at all times. In addition, we can predict the exact 

deadlock when we know the coordinates of the Monovular Potential Agents Target 

Destinations. If we don’t know the Agents’ Target Destinations the possible dead­

locks are illustrated in Figure 4-14.
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Monovular 
Agents target 
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that can cause 
navigational 
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current
coordinates at 
points (A, B)

Figure 4-14: the set of Monovular agents target destination coordinates that can cause naviga­
tional deadlocks.

From the above figure we can also conclude that the PMAS symmetry applies to all 

the agents that have circular coordinates of equation (4.39) and satisfy the PMAS 

equations.

( x - x  y + ( y - y j  = R 2 (4.39)

From the above we have mathematically proved that the PMAS is generic symmetry 

that when its related equations (4.1), (4.2), (4.3) and (4.4) are satisfied the Monovu­

lar Potential Agents are within Absolute TES. In Absolute TES the Agents have 

mirror inefficient trajectories as shown in 4-15.

We can practically test that the PMAS is generic based on three simulation results 

that have derived from four variations of Agents’ Target Destinations Coordinates 

that maintain the validity of the equations (4.1), (4.2), (4.3) and (4.4).
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Plot of the Trajectories of Close Range Encounter Autonomous Vehicles

4-15: TES Monovular Potential Agents Mirrored Trajectories due to PMAS

Plot of the Trajectories of Close Range Encounter Autonomous Vehicles

4-16: TES three sets of inefficient deadlock trajectories due to generic PMAS with difference 

Monovular Potential Agents Target Destinations. These trajectories were generated based on 

the same algorithmic Dmin and different radius circles that cross the symmetries straight lines.
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Plot of the Trajectories of Close Range Encounter Autonomous Vehicles

4-17: TES three sets of inefficient deadlock trajectories due to generic PMAS with difference 

Monovular Potential Agents Target Destinations. These trajectories were generated based on 

the different algorithmic Dmin for deadlock clarity, and different radius circles that cross the 

symmetries straight lines.

P lo t o f  th e  T ra je c to r ie s  o f  C lo s e  R a n g e  E n c o u n te r A u to n o m o u s  V e h ic le s

x c o o rd in a te s  (m )

4-18: Inefficient deadlock trajectories due to generic PMAS altering the symmetries angles.
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In 4-16 we can observe three Monovular Potential Agents deadlocks caused by the 

PMAS with two different Agents Target Destinations, causing the Agents to dead­

lock in two different coordinates’ sets. As we can observe from this figure the two 

different Agents’ Target sets of Target Destinations coordinates lying on the PMAS 

lines without altering the symmetry’s angles. In 4-17 we have the same Agents’ 

Target Destinations type that doesn’t change the PMAS angles from the previous 

figure but with different algorithm Dmin definition for clarity. Finally, in 4-18 we 

have changed the PMAS symmetry’s angles, and we still have a deadlock between 

the two Monovular Potential Agents. Therefore, based on the above simulation 

results, we have also tested experimentally the generic validity of PMAS.

From all the above observations and mathematical definitions, we can accurately 

define Absolute and Close TES. Absolute TES is the state of two Monovular Agents, 

in which during their motion for avoiding collision, they maintain PMAS symmetry 

until navigational deadlock. On the other hand, Close TES is the state of two Mon­

ovular Agents, in which during their motion for avoiding collision maintain close 

PMAS symmetry.

An example of inefficient trajectories due to Close TES is illustrated in Figure 4-1, 

the close PMAS symmetry between the two Monovular Potential Agents causes 

inefficient trajectories. In other words, we have Close TES when the PMAS is not 

“perfect”, this means that the coordinates and/or the speed are slightly different than 

the ones cause Absolute TES.
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4.2 The Biovular Agents Concept and how to identify inefficient 

trajectories

Based on the concept of the Monovular Autonomous Agent that we have explained 

in section 4.1 we can introduce the concept of the Biovular Agents. The word 

Biovular is inspired by the biological term Biovular, which means from different ova 

(eggs). Therefore, in this case, we define Biovular the agents that are different in one 

or more aspects of their dynamic, hardware and software characteristics. The word 

Biovular is introduced to materialise the Biovular Autonomous Agent Correlation 

(BAAC) concept, which is interdisciplinary inspired in the same fashion as the 

MAAC concept from the concept of cross-correlation. To link the BAAC with 

MAAC concept is important to underline that autocorrelation is cross-correlation of 

a function with itself. Furthermore, Cross-correlation is similar to convolution of two 

functions. One of the frequent applications of cross-correlation is the identification 

of long in duration signal based on a shorter known feature of this signal.

In collision avoidance, we have aimed to use the concept of Biovular Autonomous 

Agents Correlation (BAAC) to identify the performance inefficiencies of two non 

identical (Biovular) potential field agents within the same pure dynamic 

environment. To achieve this we need first to define a way to distinguish between 

the two autonomous agents and identify the level of the autonomous agents’ 

differentiation. For this reason we have introduced the term of Autonomous Agents 

Degree of Consanguinity (AAC). Autonomous Agents Consanguinity specifies the 

level of relationship between of the two Agents’ dynamics, hardware and software.

We have proven that Biovular Potential Field algorithms within the same Pure 

Dynamic Environment (PDE) that have trajectories with high-cross correlation 

experience inefficient trajectories.
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In addition, the higher the correlation of other quantities (e.g. rate of turn, direction 

etc.) of the two autonomous Agents the higher the chance of long inefficient 

trajectories and navigational deadlocks.

Based on the results of the MAAC we have identified that similar or identical 

reflected trajectories can be caused in PDE based on relative initial conditions (e.g. 

speed, direction and target destination of the autonomous agents). Biovular Potential 

Agents are not exception but are more tolerant of the cause of Absolute Trajectory 

Equilibrium State (TES).

The method we have followed to put in practice the BAAC concept in order to 

identify repeated inefficient trajectories in Biovular Potential Field algorithms, which 

causes inefficient trajectories are borrowed by the MAAC. The performance of the 

Potential Field Method when a Potential Field Agent is within the same PDE with a 

dynamic obstacle, which have a degree AAC with this Agent, can be observed in the 

following simulation example. More specifically, the collision scenario to examine 

the AWSPPF algorithm performance is the following:

The autonomous potential Field algorithm characteristics for the Vehicle lare: 

Algorithmic maximum speed: Vmax = 5.14 m/sec 

Algorithmic minimum distance: Dmin = 100m 

Local environment: 1000x1000m

The second vehicle is a dynamic obstacle with constant speed of 5.14 m/sec and 

constant direction.

The initial coordinate of the Vehicle and the Dynamic Obstacle are the following: 

Autonomous Vehicle: (0, 0)
Dynamic Obstacle: (0, 800)

Target Destination Autonomous Vehicle: (800, 800)

Target Destination Dynamic Obstacle: (0, 800)

The trajectory results of the Biovular Vehicle are illustrated in Figure 4-19. The 

Potential Autonomous Vehicle Distance from the Biovular Vehicle is indicated in 

Figure 4-20. Finally, the Potential Autonomous Vehicle Speed Variation due to 

Biovular Agent is shown in Figure 4-21.

105



Plot o f the Trajectories o f Close Range Encounter Autonomous Vehicles

Figure 4-19: Trajectory of AWSPPF Autonomous Vehicle when in cross collision scenario with 

a Biovular Vehicle in symmetrical coordinates and of the same initial speed.

Plot of the Distance between Agent 1 and Agent 2 vs Time

Figure 4-20: Autonomous Vehicle ¡Distance from Biovular Agent vs Time when the Autono­
mous Vehicle is guided by the AWSPPF.
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Plot of Agent 1 Speed vs Time

T im e  in s e c

Figure 4-21: Autonomous Vehicle Speed Variation due to the Biovular Agent vs Time when the 

Autonomous Vehicle is guided by the AWSPPF algorithm.

From the Figure 4-19 we can observe that the Potential Autonomous Vehicle the 

trajectory is inefficient, since performs a not necessary loop to avoid the Biovular 

Vehicle. In Figure 4-20, we can observe that when we have Biovular 

Agents/Vehicles the minimum distance we have defined for the Artificial Potential 

Field Agents is not valid. Since the theoretical minimum distance of the Artificial 

Potential Agent is 100m and the actual from the simulation 80m.The reason of this 

reduction of the minimum distance relies on the fact that the Biovular Agent doesn’t 

vary its speed. If the speed of the Biovular agent is higher enough of the Artificial 

Potential Field Agent then the two agents could collide. Finally, in Figure 4-21 we 

can observe an oscillation of the Potential Autonomous Vehicle speed.

From the above results, we have concluded that the PMAS that causes Absolute TES 

in Monovular Potential Agents, it also causes Close TES in Biovular Agents. We 

have to note that one of the biovular agents has to be Potential Field Agent for the 

above to be true. This is very important, since a Biovular Vehicles/Agents are more 

likely to take place in a real cross collision scenario.
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Finally, it is important to say again that the Monovular Autonomous Agents Correla­

tion (MAAC) concept enables us to create a method to identify TES in both 

Monovular and Biovular Agents/Vehicles.
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Chapter 5



5. Trajectory Equilibrium State (TES) Avoidance with the Aid of
Monovular Autonomous Agent Correlation MAAC

In the previous chapter we introduced the method that predicts the existence of local 

minima in Pure Dynamic Environment (PDE). This prediction was possible with the 

identification and definition of the causes that can lead in local minima. These causes 

are the initial coordinates geometrical symmetries and speed and direction 

correlation of the encounter autonomous vehicles/agents. We have identified and 

defined these causes based on the novel concept of MAAC. In addition, we have 

observed a new state that the Monovular encounter vehicles/agents are in when their 

initial conditions are as described above, and we have named this state Trajectory 

Equilibrium State (TES).

In this chapter based on all above new concepts, as well as using the AWSPPF 

Algorithm of chapter 3, we introduce a novel algorithm that predicts and avoids this 

TES and dramatically improved the AWSPPF performance when in TES.

The new algorithm guides each robot independently, although the algorithmic 

principle is identical for each robot. This approach is a combination of a novel rule- 

based mathematical algorithm and the AWSPPF navigational method. This method 

represents the classical processing efficient Potential Field Algorithms with efficient 

circular Active Window (AW). The need for the above combinational algorithm is 

due to AWSPPF inability to guide efficiently multi-autonomous vehicles/agents in 

the same environment due to a Trajectory Equilibrium State (TES). The test results 

of the novel algorithm yield much improved results than the AWSPPF without a 

major cost on processing power, and no cost at all on the trajectory smoothness of 

the autonomous Vehicles/Agents.
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5.1 Trajectory Equilibrium State (TES) Detection and Avoidance
in Cross Collision Scenario of Monovular Agents

As we have fully described in the previous section, Trajectory Equilibrium State 

(TES) occurs when two Monovular agents form the PMAS symmetry. The symmetry 

is illustrated in Figure 5-1.

T a rg e t D e s t in a tio n  o f  T a rg e t D e s tin a tio n  o f

A g e n t 2 (T 1 ) A g e n t 1 (T 2 )

Figure 5-1: PMAS symmetry that causes Absolute TES.

We have managed to isolate the causes that force the Autonomous Potential Field 

Vehicle/Agent in TES based on the new concept of Monovular Autonomous Agent 

Correlation (MAAC). We have defined and analysed this concept in chapter 4. We 

have identified two types of TES, the Absolute and the Close.

In Absolute TES, based on the PMAS symmetry, we have the distances of each 

Monovular Potential Vehicle/Agent from the crossing point C to be Z ) (] and D( 2,

and their instantaneous velocities to be Vx and V2 to follow the equations:
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Figure 5-2: Absolute TES Monovular Agent Trajectories (deadlock)

The two Vehicles that are guided by the AWSPPF algorithm divert their trajectories 

to avoid collision as is indicated in Figure 5-2. This trajectory diversion leads to 

autonomous navigational deadlock and both Monovular Potential Vehicles/Agents

stop in points D and E (Dmin) without reaching their target destinations Tx and T2.

The Monovular Potential Agents will only stop without reaching their target destina­

tion in Absolute TES, where all PMAS equations are accurately satisfied. If the 

PMAS equations are not accurately satisfied but close to be satisfied, the Monovular 
Potential Agents are in a Close TES.

PMAS equations:

ATX=BT2 (5.2)

AC = BC &  AC < ATX (5.3)
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(5 .4)

TxT2 parallel to AB (5.5)

In other words we have Close TES when:

CTX =  CT2 &  CTX < ATX

MIN ^  ^  Efficiency (5.6)

In equation (5.6), 

tial Agents

F j r _ f

D - {

D .m , is the minimum distance between the two Monovular Poten-

effect of the equations

MIN

so the non-linear

\x2 -  x. A y 2 -  y x . 
' x  +  — — y

D D J
and F r2 is not apparent. is

based on the percentage of direction diversion of each agent from its original direc­

tion (without the presence of the other agent) towards their target destinations. For 

this simulation we have found experimentally that 5% direction diversion of its agent 

original direction vector gives satisfactory results. An example of Close TES is 

illustrated in Figure 5-3.
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Rot of the Trajectories of Close Range Encounter Autonomous Vehicles

Figure 5-3: Close TES Monovular Potential Agents’ inefficient trajectories

When the Monovular Potential Vehicles/Agents are in either Absolute or Close TES 

we have designed a novel rule based mathematical algorithm that avoids TES. Close 

and Absolute TES are defined in Chapter 4. We explain this algorithm below.

TES Detection and Avoidance: This algorithm maintains close to straight line 

efficient trajectories for the Agents in cases of possible collision by adjusting sepa­

rately their speeds. The TES Detection and Avoidance algorithm requires the

following input data to function: their coordinates (x^ , y x) and ( x 2, y 2),  the

Agents’ instantaneous velocities V and V2 (instantaneous velocity is equal to S 

where S is distance) at these coordinates.

The TES Detection and Avoidance algorithm operation is based on the following 

steps which execute independently within each Autonomous Agent.

• The instantaneous velocity vectors ( V  and V )  include the instantaneous

direction for each Agent. Based on these directions, the algorithm calculates 

if there is a crossing point between the two Agents’ trajectories. If so, the al-
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gorithm calculates the crossing point coordinates (x r y c ) ,  and the distances

D ( j and D  from the crossing point C Figure 5-2.

• The next step is to verify if equation 5-7 is satisfied.

D < D Efficiency (5-7)

If the above equation is satisfied, the algorithm continues to the next step, 

otherwise it returns to the beginning.

• The algorithm now determines if the Agents are in Absolute or Close TES.

• If in Absolute TES, the random speed generator is activated individually for 

both robots until the equilibrium of speeds and distances from the crossing 
point C is broken.

• If in Close TES, the algorithm reduces the speed of the Agent with the bigger 

distance from the crossing point C, so the condition, D greater than 

z x ,  , is maintained.Efficiency 7

• When an Agent passes the crossing point C while the above step is satisfied, 

the Agent that has altered its speed regains its original speed.

We have tested the effectiveness of the above algorithm for both Absolute and Close 

TES avoidance for Monovular Potential Agents that are guided by AWSPPF 

algorithm. The simulation scenarios that we have tested these algorithms are the 

same with the scenarios of the previous chapter, therefore:

The autonomous Agents have the characteristics of an average Unmanned Surface 

Vehicle (USV). The Vehicles are represented by a circle with radius of 9m and can 

reach a maximum speed of 5.14m/sec or (lONM/hour). Their local navigational 

environment covers a surface of 1000x1000m. We use ideal point mass model for 

the Vehicles to identify the Potential Field algorithm trajectory that is generated in 

Pure Dynamic Environment (PDE) without the noise produced by the Vehicles’ 

kinematic capabilities or static obstacles.

The initial Monovular Autonomous Vehicles coordinates are:
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Vehicle 1: (0, 0)

Vehicle2: (0, 800)

Target Destination Vehiclel: (800, 800)

Target Destination vehicle2: (0, 800)

Vehiclel algorithmic max speed: 5.14m/sec or 10NM 

Vehicle2 algorithmic max speed: 5.14m/sec or 10NM

The performance results of the AWSPPF algorithm without the use of the TES 

Prediction and Avoidance rule based mathematical algorithm, are illustrated in 

Figure 5-4.

Plot of the Trajectories of Close Range Encounter Autonomous Vehicles
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Figure 5-4: Absolute TES of the AWSPPF Algorithm without the TES Detection and Avoidance 
algorithm.
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Figure 5-5: Absolute TES of the AWSPPF Algorithm with the TES Detection and Avoidance 

algorithm.

The algorithm is within local minima, and the Vehicles never reach their target 

destination. On the other hand, when the Autonomous Vehicles are aided by the new 

TES Detection and Avoidance algorithm, we have the trajectory results that are 

illustrated in Figure 5-5. In this case both Autonomous Vehicles reach their target 

destination. The performance of AWSPPF aided by the TES Detection and Avoid­

ance mathematic algorithm, in terms of trajectory length and trip duration for the 

Absolute TES, are illustrated in Table 5-1.

Plot o f the Trajectories o f Close Range Encounter Autonomous Vehicles

Table 5-1: Absolute TES results between the AWSPPF algorithm vs the AWSPPF in combina­
tion with the TES Detection and Avoidance algorithms.

Algorithms Trajectory 

Length of 

Vehiclel

Trajectory 

Length of 

Vehicle2

Trip Duration 

Vehiclel

Trip Duration 

Vehicle2

AWSPPF Deadlock 

(local minima)

Deadlock 

(local minima)

Deadlock 

(local minima)

Deadlock 

(local minima)
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TES Avoid- 1.1351x1000m 1.1467x1000m 266 231
ance algorithm

We can achieve Close TES behaviour of the AWSPPF algorithm when it guides 

Monovular Vehicles that have the same coordinate symmetry with the above colli­

sion scenario, but their initial speed varies slightly.

First, we examine the case that their initial speed varies only by around 1% (The 

vehicles speeds are 5.1m/sec for vehiclel and 5.14 for vehicle2). The trajectory of 

the two Autonomous Vehicles guided by the AWSPPF algorithm is illustrated in 

Figure 5-6.

1000 r
Plot o f  the Trajectories o f  C lose Range Encounter Autonom ous Vehicles

80 0  -

700 -

200 -

100 -

400 £00 600

x coordinates (m)

Figure 5-6: Close TES when both the Autonomous Vehicles are guided by the AWSPPF 

algorithm.

For the same cross collision scenario, when the two autonomous vehicles are guided 

by the TES avoidance AWSPPF algorithm, the autonomous Vehicles follow the 

trajectories are illustrated in Figure 5-7. The performance comparison of the two
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algorithms in relation to the autonomous vehicles trajectory length and trip duration 

is illustrated in Table 5-2.

Plot of the Trajectories of Close Range Encounter Autonomous Vehicles
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Figure 5-7: Close TES is avoided when both Autonomous Vehicles are guided by the AWSPPF 

aided by the TES Detection and Avoidance algorithm.
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Plot of the Distance between Agent 1 and Agent 2 vs Time
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Figure 5-8: Autonomous Vehiclel Distance from Autonomous Vehicle2 vs Time when the 

Monovular Vehicles are guided by the AWSPPF algorithm in Close TES.

Table 5-2: Trajectory Length and Trip Duration comparison between TES Detection and 

avoidance aided AWSPPF and not aided AWSPPF.

Algorithms Trajectory 

Length of 

Vehicle 1

Trajectory 

Length of 

Vehicle 2

Trip Duration 

Vehicle 1

Trip Duration 

Vehicle 2

AWSPPF 1,1885 1,2236 279 263

With TES 

Detection and 

Avoidance

1,1419 1,1575 262 232
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Plot of the Distance between Agent 1 and Agent 2 vs Time

Figure 5-9: Autonomous Vehiclel Distance from Autonomous Vehicle2 vs Time when the 

Monovular Vehicles are guided by the AWSPPF aided by the TES detection and avoidance 
algorithm.

As we can observe from the Table 5-2, the performance of the AWSPPF algorithm 

has considerably improved in terms of trajectory length, trip duration, and trajecto­

ries smoothness of both Vehicles when the TES Detection and Avoidance algorithm 

is used. In addition, as we can see from the comparison of Figure 5-8 and Figure 5-9 

the algorithm safety is improved, since the actual minimum distance between the 

Vehicles is larger and the duration of similar distances with the actual minimum 

distance is shorter. These results are summarised in Table 5-3.

Table 5-3: Actual Minimum Distance and Minimum Distance Occurrence comparison between 

TES Detection and avoidance aided AWSPPF and not aided AWSPPF.

Actual Minimum 

Distance (m)

Minimum 

Distance 

occurrence (sec)

Algorithm Mini­

mum Distance (m)

AWSPPF 112.5 143 100

TES Avoidance 127.1 122 100
algorithm
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Figure 5-10: Autonomous Vehiclel Speed Variation due to Autonomous Vehicle2 vs Time when 

the Autonomous Vehicle is guided by the AWSPPF algorithm.

The autonomous Vehiclel speed variation graph when is guided by the AWSPFF 

algorithm is illustrated in Figure 5-10, and when is guided by the same algorithm but 

in combination with the TES Detection and Avoidance Algorithm is illustrated in 

Figure 5-11. From these two figures we can observe that the lower speed of Vehiclel 

is lower when guided by the TES Detections and Avoidance AWSPPF algorithm 

than by the AWSPPF algorithm alone. On the other hand, the average speed of 

Vehiclel is higher, as indicated in Table 5-2, since its trip has shorter duration. For 

the second Autonomous Vehicle the old and new algorithm speed comparison is 

illustrated in Figure 5-12 and Figure 5-13. For the second vehicle the average speed 
is really improved in the whole duration of the trip.
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Plot of Agent 1 Speed vs Time

Figure 5-11: Autonomous Vehiclel Speed Variation due to the Autonomous Vehicle2 vs Time 

when the Autonomous Vehicle is guided by the AWSPPF aided by the TES Detection and 

Avoidance algorithm.

The two Vehicles minimum speed comparison between TES Detection and Avoid­

ance AWPSSF algorithm and AWPSSF algorithms are illustrated in Table 5-4.
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Figure 5-12: Autonomous Vehicle2 Speed Variation due to the Autonomous Vehiclel vs Time 

when the Autonomous Vehicle is guided by the AWSPPF

Plot of Agent 2 Speed vs Time

Figure 5-13: Autonomous Vehicle2 Speed Variation due to the Autonomous Vehiclel vs Time 

when the Autonomous Vehicle is guided by the AWSPPF aided by the TES Detection and 

Avoidance algorithm.
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Table 5-4: Vehiclel and Vehicle2 Minimum Speed comparison between TES Detection and 

avoidance aided AWSPPF and not aided AWSPPF.

Algorithms Minimum 

Speed of 

Vehiclel 

(m/sec)

Minimum 

speed occur­

rence Vehiclel 

(sec)

Minimum 

speed of 

Vehicle2

Minimum 

speed occur­

rence Vehicle2 

(sec)

AWSPPF 1.19 151 3.52 121

TES Avoid- 0.05 132 4.407 89 to 131

ance algorithm
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5.2 Trajectory Equilibrium State (TES) Detection and Avoidance 

in Biovular Agents

The same mathematical TES Detection and Avoidance algorithm we used in the 

previous section for Monovular Vehicle/Agent, we can use in Biovular 

Vehicle/Agent. We have introduced the Biovular Agent in Chapter 4. In case of 

Biovular Vehicles/Agents, the performance of the AWSPPF algorithm is 

significantly improved in safety, trajectory smoothness and length. This 

demonstrates the generic nature of the TES Detection and Avoidance rule based 

mathematical algorithm.

The scenario to examine the AWSPPF TES Detection and Avoidance collision 

avoidance algorithm performance for Biovular Vehicles is the following:

The autonomous potential Field algorithm characteristics for the Vehicle lare: 

Algorithmic maximum speed: Vmax = 5.14 m/sec 

Algorithmic minimum distance: Dmin = 100m 

Local environment: 1000x1000m

The second vehicle is a dynamic obstacle with constant speed of 5.14 m/sec and 

constant direction.

The initial coordinate of the Vehicle and the Dynamic Obstacle are the following: 

Autonomous Vehicle: (0, 0)

Dynamic Obstacle: (0, 800)

Target Destination Autonomous Vehicle: (800, 800)

Target Destination Dynamic Obstacle: (0, 800)

In Figure 5-14 is illustrated the trajectory that is generated when the Autonomous 

Potential Field Vehiclel is guided by the AWSPPF algorithm, and in Figure 5-15 is 

illustrated the trajectory of the Potential field Vehiclel when is guided by the same 

algorithm aided by the TES Detection and Avoidance Algorithm. As we can observe 

from these figures, the trajectory of the new algorithm is much more efficient in
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terms of length and smoothness. The trajectory length, and the trip duration different 

between the two algorithms are indicated in Table 5-5.

Plot of the Trajectories of Close Range Encounter Autonomous Vehicles
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Figure 5-14: Trajectory of AWSPPF autonomous vehicle without TES avoidance algorithm

Table 5-5: TES Detection And Avoidance algorithm Trajectory Length and Trip Duration 

improvement over the AWSPPF algorithm.

Algorithms Trajectory Length of 

Autonomous Vehicle (m)

Trip Duration Autono­

mous Vehicle (sec)

AWSPPF 1,256.9 273

TES Avoidance algorithm 1,166.1 262

In addition, the TES Detection and Avoidance algorithm critically improves the 

safety of the algorithm, since not only increases the actual minimum distance from 

the Dynamic Obstacle (or Biovular Agent/Vehicle), but also ensures that the 

theoretical Minimum Distance of the algorithm is not going to be exceeded . For 

example, the algorithm we have under test in this collision scenario has an 

algorithmic (theoretical) Minimum Distance from any obstacle of 100m. As we can
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see from Table 5-6, the Actual Minimum Distance for the specific collision scenario 

when only AWSPPF is used is around 85 meters.

Plot of the Trajectories of Close Range Encounter Autonomous Vehicles
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Figure 5-15: Trajectory of AWSPPF algorithm with TES Detection and Avoidance Algorithm

This occurs because the Dynamic Obstacle is much faster of the Autonomous 

Vehicle when Obstacle and Vehicle are in close proximity. On the other hand, when 

the TES Detection and Avoidance algorithm aids the AWSPPF algorithm, the actual 

Minimum Distance of the specific collision scenario is much larger than the 

algorithmic Minimum Distance at 119.7m.

Finally, in Figure 5-18 is illustrated the Autonomous Vehicle Speed Variation vs 

Time when the vehicle is guided by the AWSPPF, and in Figure 5-19 is illustrated 

the Autonomous Vehicle Speed Variation vs Time when the vehicle is guided by the 

AWSPPF aided by the TES Detection and Avoidance algorithm. The Minimum 

Speed value and its occurrence in time is illustrate in Table 5-7.
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800
Plot o f the Distance between Agent 1 and Agent 2 vs Time

Figure 5-16: Autonomous Vehicle |Distance from Active Obstacle vs Time when the Autono­
mous vehicle is guided by the AWSPPF algorithm.

P lo t o f  th e  D is ta n c e  b e tw e e n  A g e n t 1 a nd  A g e n t 2  vs  T im e

Figure 5-17: Autonomous Vehicle ¡Distance from Active Obstacle vs Time when the Autono­

mous Vehicle is guided by the AWSPPF aided by the TES Detection and Avoidance algorithm.

129



Table 5-6: Comparison of actual Minimum Distance and Theoretical (Algorithmic) Minimum 

Distance

Actual Minimum Distance 

(m)
Algorithmic Minimum 

Distance (m)

AWSPPF 85.25 100

TES Avoidance algorithm 119.7 100

Nevertheless, the AWPFFS aided by the TES Detection and Avoidance algorithm 

indicates much smaller Minimum Speed than the AWSPPF algorithm, the average 

speed of the former is higher. In addition, the Minimum Speed of the TES Detections 

and Avoidance aided algorithm Minimum Speed occurs much faster than the 

AWSPPF algorithm. This way the TES Detections and Avoidance algorithm ensures 

that the Theoretical Minimum Distance of the algorithm will not be exceeded.

Plot of Agent 1 Speed vs Time

Figure 5-18: Autonomous Vehicle Speed Variation due to the Dynamic Obstacle vs Time when 

the Autonomous Vehicle is guided by the AWSPPF algorithm.
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Plot of Agent 1 Speed vs Time

Figure 5-19: Autonomous Vehicle Speed Variation due to the Dynamic Obstacle vs Time when 

the Autonomous Vehicle is guided by the AWSPPF algorithm aided by the TES Detection and 

Avoidance Algorithm.

Table 5-7: Autonomous Vehicle Minimum Speed and its occurrence in time while travelling 

from its initial potion to its Target Destination.

Algorithms Minimum Speed of the 

Autonomous Vehicle 1 

(m/sec)

Minimum speed occur­

rence (sec)

AWSPPF 1.437 130

TES Avoidance algorithm 0.3106 118

131



5.3 Conclusion

In this chapter, firstly, we have mathematically designed the novel TES Detection 

and avoidance algorithm. The mathematical design of this algorithm was possible 

due to novel concept of Monovular Autonomous Agent Correlation (MAAC), which 

we introduced and explained in the previous chapter. Secondly, we have demonstrat­

ed the performance benefits that the Potential Field algorithms indicate when they 

are aided by the TES Detection and Avoidance algorithm. It is important to be noted 

that the TES Detection and Avoidance algorithm is extremely processing efficient. 

Therefore, it maintains the elegant character of the Potential Field Methods with only 

a very small processing overhead.

The Potential Field Algorithm we have used is a single point Virtual Force Field 

(VFF) algorithm with efficient circular Active Window. We have named this algo­

rithm, Active Window Single Point Potential Field (AWSPPF) algorithm.

We have presented the collision avoidance performance improvements of the 

AWSPPF algorithm when aided by the TES Detection and Avoidance algorithm by a 

number of collision scenarios. In these collision scenarios we have used both Mon­

ovular and Biovular Vehicles in Pure Dynamic Environment (PDE). The simulation 

results of the above collision scenarios are demonstrated in sections 5.1 and 5.2. 

These performance improvements that were demonstrated in the above sections are 

related to safety, trajectory length, trajectory smoothness, trip duration and average 

speed for both Monovular and Biovular Vehicles.
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Chapter 6

Conclusion and Future Work
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6. Conclusion and Future Work

In this study we have managed to improve the performance of the classical Potential 

Field algorithm in Dynamic environment. We have achieved this by following a 

number of steps.

First, we have designed a simplified Virtual Force Field (VFF) Algorithm. We have 

simplified the algorithm in the obstacle description and not in collision avoidance 

capabilities. We have simplified the obstacle and sensor descriptions in a simulation 

environment in order to examine only its collision avoidance capabilities in a more 

challenging dynamic local environment. We have also justified the efficiency of a 

circular Active Window (AW). Therefore, we have named this algorithm Active 

Window Single Point Potential Field (AWSPPF) algorithm, since it is based on 

point-mass model without detailed obstacle descriptions. The AWSPPF algorithm 

accommodates the advantages and disadvantages of the classical Potential Field 

Methods. In this way, based on this algorithm, we have initially explored the capabil­

ities of processing efficient Potential Field Algorithms in Dynamic Environment.

The AWSPPF algorithm performance degrades in a dynamic environment. This 

degradation takes place when the initial coordinates of the autonomous vehicle, the 

dynamic obstacle and the crossing point of their initial/current headings form 

a geometrical symmetry. With this observation as a guide, we have identified the 

local minima in a dynamic environment, and more specifically, in Pure Dynamic 

Environment (PDE).

The identification of local minima of the AWSPPF algorithm in PDE took place with 

the novel concept of Monovular Autonomous Agent Correlation (MAAC), which is 

inspired from the Autocorrelation concept that is used in Signal Processing. Based 

on this concept we have developed a method that identifies inefficient agents’ 

trajectories when in PDE. We have identified the inefficient trajectories, which in 

some occasions deadlock by following the 4 steps that utilise the MAAC concept:

1. Define the Autonomous Monovular Agents and the size of local Pure 

Dynamic Environment.
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2. Place two Monovular Agents within the same local environment and try 

to identify repeating inefficient trajectories.

3. Identify the generic causes of the inefficient repeating trajectories of the 

autonomous Monovular Agents.

4. Define the causes of the inefficient repeating trajectories of the Potential 

Field Monovular Agents while navigating in the Pure Dynamic 

Environment.

After defining the AWSPPF Agents within their related local environment, we have 

identified repeated trajectory inefficiencies and deadlocks. We have identified these 

Potential Agents/Vehicles trajectory inefficiencies after running a number of simu­

lated cross collision scenarios. With the aid of these scenarios, we have understood 

the generic causes that make the AWSPPF Monovular Agents to have inefficient 

trajectories, and which are:

• The agents’ directional vectors are strongly correlated to the rate of change of 

both direction and magnitude.

• The agents’ speed is strongly correlated

• The coordinates of the autonomous agents are symmetrical or close symmet­

rical.

The above generic causes of inefficient trajectories take place when the Potential 

Agent is in a state that we have identified and called Trajectory Equilibrium State 

(TES).

In the fourth step, we have defined and proved that when a Monovular Potential 

Field Agent is within TES, their coordinates, and their Target Destinations form a 

symmetry. We have named this symmetry Potential Monovular Agents Symmetry 

(PMAS). PMAS forces Potential Field navigation vectors of the Monovular Potential 

Agents to have supplementary directions or close supplementary in absolute terms. 

Furthermore, based on how close the Monovular Potential Agents are in PMAS we 

can predict the nature of TES (Absolute or Close). In the case of Absolute TES, we 

can also predict the coordinates of local minima (if Monovular Agents’ Target
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Destinations are known from both Agents). Finally, we have tested the PM AS in 

Biovular Agents; in this case we have also observed close TES but not Absolute 

TES. This means that PMAS is a generic symmetry that negatively affects Potential 

Field Algorithm of VFF type. The concept of TES is first published in [4] for 

Monovular Potential Agents, and in [5] for Biovular Potential Agents.

We have managed to improve the performance of the AWSPPF algorithm when it 

guides Potential Monovular and/or Biovular Agents/Vehicles that satisfy PMAS 

symmetry. That was materialised by aiding AWSPF algorithm with the novel TES 

Detection and Avoidance algorithm. The concept and the effectiveness of the above 

algorithm is published by the author of this thesis in [4] for Monovular Agents, and 

in [5] for Biovular Agents.

We have demonstrated the collision avoidance performance improvements of the 

AWSPPF algorithm when aided by the TES Detection and Avoidance algorithm by a 

number of cross collision scenarios. In these collision scenarios we have used both 

Monovular and Biovular Vehicles in Pure Dynamic Environment (PDE). The 

AWSPPF performance improvements in both Monovular and Biovular vehicles 

indicated the generic nature of the TES Detection and Avoidance algorithm. The 

simulation results of the cross collision scenarios are demonstrated in sections 5.1 

and 5.2. The performance improvements that were demonstrated in the above 

sections are related to safety, trajectory length, trajectory smoothness, trip duration 

and average speed for both Monovular and Biovular Vehicles.

It is important to be noted that the TES Detection and Avoidance algorithm is 

computationally very efficient. Therefore, it maintains the elegant character of the 

VFF type Potential Field Methods with only a very small processing overhead.

6.1 Thesis Contribution

The main contribution of this study is the performance improvement of classical 

VFF type Potential Field Algorithms in Pure Dynamic Environment. We have
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selected to improve the performance of these algorithms after a comprehensive 

review of a number of real-time collision avoidance algorithms; part of the review 

study is published by the author in [6]. The performance improvement of VFF type 

Potential Field Algorithms that took place is based on a number of novel concepts 

and algorithms.

Initially, we have justified the use of a Circular Active Window in Potential Field 

Algorithms. Secondly, we have designed the Active Window Single Point Potential 

Field (AWSPPF) algorithm. This algorithm uses a simplified point-mass model and 

the elegant collision avoidance capabilities of Virtual Force Field (VFF) type algo­

rithms.

VFF type Potential Field Algorithms suffer from local minima, but are extensively 

used in real-time path planning for their elegance and simplicity. The existence of 

local minima has only been identified in static environment. In this study for first 

time, we have identified the existence of local minima in dynamic environment— 

more specifically, Pure Dynamic Environment (PDE) that we have newly defined.

To identify local minima existence in Potential Field Agents/Vehicles in PDE, we 

have introduced and defined the concept of Monovular Agent and Monovular 

Autonomous Agent Correlation (MAAC). Based on MAAC we have managed to 

identify local minima in PDE. In addition, we have mathematically defined the 

causes of local minima in PDE, which are related to a newly defined symmetry and 

we have named this symmetry PMAS. Furthermore, we have proved that PMAS is 

maintained throughout the collision avoidance stages between the two Monovular 

Potential Agents. As long the PMAS is maintained during the time domain of the 

Agent trajectory generation, the Agents are within TES. Absolute TES causes the 
Monovular Potential Agents to be in a future navigational deadlock, and Close TES 

causes the Agents to have inefficient trajectories. The author has published the initial 

concept of TES in [4],

Finally, based on the generic definitions of PMAS and TES, we have designed a new 

efficient rule based mathematical algorithm that predicts and avoids TES in PDE. 

Extensive simulation results of the performance improvements of the AWSPPF
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algorithm aided by the TES Detection and Avoidance algorithm have been presented 

in chapter 5.

6.2 Future Work

One of the next steps of this study relates to the optimisation of the TES Detection 

and Avoidance algorithm.

The first optimisation of the TES Detections and Avoidance algorithm is to define 

the relationship between the Potential Field Autonomous Agents/Vehicles collision 

angle and the initialisation of theTES Detection and Avoidance Algorithm.

When the collision angle of the autonomous agent is equal to 180 degrees, The TES 

Detection and Avoidance algorithm is not able to avoid deadlocks. In other words, 

the TES Detection and Avoidance algorithm cannot avoid local minima in head on 

collision scenario. Therefore, it is important, in the future, to improve the TES 

Detection and Avoidance algorithm, so, it will be able to avoid local minima in head 

on collision scenario.

The TES Detection and Avoidance algorithm is tested in water based autonomous 

vehicle. Therefore, the algorithm has to be adapted to follow the “rules of the road” 

(COLREGs) guidelines.

Finally, we would like to note that the concept of MAAC could possibly be benefi­

cial for other on-line collision avoidance navigation algorithms. Therefore, an 

investigation of the performance of these algorithms based on the MAAC method 

could identify possible inefficient trajectories in PDE and also define what has 

caused them.
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