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ABSTRACT

This thesis deals with pattern recognizers (PRs) 
which are adaptive and amenable to hardware realization. 
Such PRs consist of networks of microcircuit modules 
(SLAMs: Stored-Logic Adaptive Microcircuits) which are 
used as feature extractors and which ensure a high 
throughput by their parallel operation.

Previous workers have adopted the. number of training 
patterns as a measure for training such PRs on different 
pattern classes. In this thesis, the number of memory 
bits set in the SLAMs is considered instead, and this is 
shown to provide a better balance between sections of the 
PRs called discriminators.

Simulations are carried out to observe how the size 
of the PR and the amount of training affect the perfor­
mance and a quantitative comparison with a template­
matching classifier is presented. The effect of 
clustering the SLAM inputs within the input matrix is also 
investigated and PRs with SLAMs which have their outputs 
weighted according to their memory contents are also 
simulated.

From the results, a technique to optimize the 
performance of the PRs is proposed and a possible develop­
ment of the SLAM module is suggested.
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CHAPTER 1

INTRODUCTION & BACKGROUND

1.1 Introduction

The object of this thesis is to investigate the 
possibilities of building a pattern recognition machine, 
using 'Stored-Logic Adaptive Microcircuit' (SLAM) modules 
(Aleksander & Albrow, 1968a) as feature extractors. A 
feature in this work is defined as a subset of the 
possible states of a binary n-tuple (sampled n points of 
a binary pattern) to which a SLAM is connected (Ullmann, 
1968). The SLAMs are trained on such features of known 
patterns and when presented with a subsequent unknown 
pattern the SLAMs indicate the .presence or absence of the 
previously seen features. The pattern recognition machine 
then classifies the unknown pattern on the basis of the 
SLAMs' responses, The experimentation in this thesis has 
been restricted to handwritten numerals but the method 
should be applicable to pattern recognition in general and 
to related disciplines where pattern recognition concepts 
are used.

Although much has been written on the problem of 
pattern recognition, no unifying concept or general theory 
is as yet evident. This is partly because the problem, 
being so broad, has not been clearly defined and mostly
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because it is not yet understood how human beings perform 
the task, a task'which is done with seeming ease in their 
daily lives. As digital computers and electronic machines 
grow in numbers and increase in speed, the necessity of 
building machines to take over from human operators 
becomes more apparent, especially in areas where the human 
operators may be lacking in speed, accuracy or low cost.

Reading of handwritten characters, recognition of a 
spoken word independent of the speaker who utters it, 
recognition of a speaker regardless of the spoken text, 
interpretation of electrocardiograms, recognition of 
cloud patterns for weather forecasting, etc.... are only 
a few of the problems that have so far remained unsolved. 
It can be argued that almost any field of scientific or 
human activity deals in terms of pattern recognition. The 
scientific field of pattern recognition in general 
concerns itself with the solution of these problems. All 
of these problems, however different as they may seem, 
have a common requirement for their solutions. The 
common requirement is to possess the ability of 
recognizing membership of classes and hence a criterion 
for differentiating between members of different classes.

In the absence of an all-embracing theory, time and 
again during the design of a pattern recognition machine, 
it is necessary for the designer to make educated guesses.
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This often makes the design of pattern recognizers less 
of an exact science. The chief sources of specifica­
tion of many pattern recognition models being intuition 
and introspection.

Many pattern recognition systems are completely 
determined in advance in the sense of a fixed complete 
design. There may have been adaptation by virtue of an 
evolution of algorithms based on the designer's 
experience with the system. They are however basically 
non-adaptive, as opposed to adaptive systems which adjust 
parameters or modify algorithms.

For the purpose of this thesis a class of patterns is 
defined as a set of binary vectors which in some useful 
way can be treated alike. A number of assumptions have 
been made in the body of the report. To make it clear 
when a restrictive assumption is introduced, the word 
'assume' will be used and underlined.

Having briefly outlined the motivation for pattern 
recognition machines, the organization of the thesis is 
now given.

In the remaining part of chapter 1, a pattern 
recognition system is conceptually described and the 
factors that influence the design of a pattern recognizer
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(PR) are given.

Various pattern recognition techniques are briefly- 
surveyed in chapter 2, and they are broadly classified as 
follows:- correlation, statistical, discriminant 
function and feature-extraction methods.

In chapter 3 a PR using SLAMs is described and a 
criterion for training such PR is defined.

Chapter 4 is entirely devoted to experimentation 
carried out in this work. PRs using SLAMs are simulated 
and the performance is compared with that of a 'Template- 
Matching' classifier. PRs using SLAMs with weighted out­
puts are also simulated.

In chapter 5 the salient points of the experimentation 
are revisited and possible developments are suggested.

Finally, in chapter 6 a quantitative comparison is 
made, followed by a summary of the whole work and some 
concluding remarks.
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1.2 Phases of Operation of an Adaptive Pattern Recognizer

The operation of an adaptive PR may be divided into 
two phases: the Learning or Training phase and the 
Recognition or Testing phase. The author is aware of the 
controversies that arise in conjunction with the words 
'learning' and 'training'. However, they are used here 
in a technical sense and are not meant to imply any 
parallelism with living organisms.

In the recognition phase, the machine makes decisions 
as to which of some previously specified classes of 
patterns the unknown patterns belong. One of the pattern 
classes could be a 'reject' class which by definition 
contains patterns not belonging to any of the specified 
classes. The recognition phase is the useful phase where 
the machine actually performs work by classifying patterns. 
Before the PR can perform reliably, it must have been 
trained to detect somehow the significant features of the 
pattern classes; hence a set of patterns which is 
assumed to be representative of the unknown patterns is 
used in the training phase.

1.3 The Layers of a Pattern Recognizer

A PR can generally be divided into 3 layers as shown 
in fig. 1.1. It consists of a Sensory Layer or Retina on
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which the pattern to be recognized is implanted, an 
Association Layer or Processor where the pattern is 
re-mapped or described in terms of its characteristic 
features, and a Response Layer or Classifier where the 
verdict is finally given as to which class of patterns 
the unknown pattern belongs.

The retina is the transducer which receives and 
digitizes the analogue pattern, it can be a photodiode 
matrix or a Vidicon camera or a CRT flying spot camera.
The digitization is equivalent to placing a matrix on 
the pattern and putting a binary bit '1' in the squares 
where the black area exceeds a certain threshold and a 
binary bit 'O' in the remaining squares. The operation 
therefore reduces the analogue pattern X into a set of d 
real variables x^,....,x^ called the Pattern Vector and 
the individual variables are the components. As the 
variables in this case can only be either 11 * or 'O', 
the pattern can be represented by a vertex called a 
Pattern Point in a d-dimensional hypercube, which is 
referred to as Pattern Space or Pattern Hypercube.

The processor stage is where the feature extraction 
process takes place. It may be highly elaborate, involving 
several layers of investigation in itself, or it may be 
simply an assessment of the activity of groups of retinal 
points, called n-tuples. The process is almost invariably
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accompanied with reduction in dimensionality of the 
pattern vector, yielding a set of numbers f f _  
that constitute the input to the classifier. The s 
numbers are the components of the Feature Vector, which 
now describes the pattern and can again be talked of 
geometrically as a Feature Point in an s-dimensional 
Feature Space or Feature Hypercube if the variables can 
have only binary values of '1' or 'O'.

The processor stage effectively transforms the 
pattern space into a feature space for the classifier to 
operate upon. The classifier, perhaps according to a 
preprogrammed rule, partitions the s-dimensional space 
into disjoint regions, each region associated with only 
one pattern class. The rule is equivalent to a decision 
function representing a decision surface, or a set of 
decision surfaces. The decision surface may be implicitly 
defined as in the case of 'Pandemonium' (Selfridge, 1959). 
With the latter machine the a posteviori probabilities of 
class membership are computed and the pattern is classi­
fied as belonging to the most probable class.

The decision surface may also be explicitly defined 
as a set of geometric hyperplanes in the feature space, 
dividing the space into compartments. The unlabelled 
pattern is then classified as belonging to the class 
corresponding to the compartment in which its feature point
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is located. In this report the rule is assumed to be non
randomized, meaning that the classifier always makes the
same decision if the same feature point F = (f.......f )I s
is being presented several times.

The greatest diversity in the pattern recognition 
machines designed to date lies in the design of the 
processor and the classifier. The main part of this 
report will be centered on the possible adaptive networks 
for a processor. Before the various processors and 
algorithms are reviewed, it is instructive to summarize 
the factors that influence the design of a pattern 
recognition machine.

1.4 Factors that Influence the Design of a Pattern 
Recognizer

The task of designing a PR is simplified by first 
making a few reasonable restrictive assumptions. In the 
following, the ith. pattern class is denoted by Cb, 
i = 1,2,...,R for an R-class recognition problem. With 
each class of patterns is associated a number of 
significant constants, the values of which may or may not 
be known.

(i) The a priori probability, P(i), that an unknown
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•pattern is a member of Ch , rather than a member of one of 
the (R-l) remaining pattern classes. It is assumed in 
this work that the occurrence of the patterns is 
according to some time-stationary first order probability, 
and that they are not intentionally arranged in any 
manner. This assumption is not always satisfied as in 
some cases the patterns shows a Markov-dependence 
(Raviv, 1967), or as in the case of letters in a text 
there are strong statistical relationships between 
adjacent letters (Thomas & Kassler, 1967) .

Cii) The cost, K (j |i), entails in misclassifying an 
unlabelled pattern which is really a member of Ch as 
being a member of C^. In the following it is assumed 
that K(j |i) does not change with the percentage of 
misclassified 'members Of Ck. ''

Ciii) The cost, K(i), arises when a pattern belonging 
to class Ch is rejected, that is when the recognition 
system witholds its recognition decision and the pattern 
is rejected for exceptional handling, such as a rescan 
or manual inspection. The option to reject is introduced 
to safeguard against excessive misclassification; it 
converts potential misrecognition into rejection. On 
the other hand, some would-be correct classifications are 
also converted into rejections. It is assumed here that
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the cost K(i) is independent of the number of patterns 
rejected.

(iv) Gradual changes with time in the class 
distributions can happen due to data changes or hardware 
degradation. If this takes place, then the parameter 
values in the pattern recognition machine must be updated 
to follow the changes (Amari, 1967). It may usually be 
assumed as in the following that the distributions of 
the patterns are stationary in time.

(v) The labelled patterns of each class are truly 
representative members of the class. With certain kinds 
of patterns e.g. medical records such as EGGs, labelling 
or classification of the patterns cannot be done with 
100% accuracy. Sometimes only a representative collection 
of unlabelled patterns is available (Chien & Fu, 1967) . 
However in this work, as much care as possible has been 
taken in the collection and the processing of the data so 
that member patterns remain representative, and it is 
assumed that the patterns which are taken to be 
representative of members of are indeed representative 
of members.

(vi) The nature of relationship between the members 
of the same class is another important factor. The 
members of each class can be a typical pattern, a proto­
type, corrupted by noise as in a typewritten font; or
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the members of each class are a collection of well- 
defined, noisefree patterns, which have certain features 
in common, as perfectly noisefree letters may be drawn 
in a great many ways (Akers & Rutter, 19 64) ; or even 
the class members may have certain features in common 
while at the same time they are somewhat corrupted by 
noise, which is usually the case in handwritten script. 
The latter case is assumed in this thesis.

(vii) The class Cb can be made up of several 
distinct subclasses, ,C^2,etc...; the distribution of 
the pattern vectors will then be multimodal in the 
pattern space, i.e. with local maxima or even disjointed 
subspaces. Such a multimodal multivariate distribution 
can create difficult problems in some classification 
procedures like partitioning of the pattern'space by 
hyperplanes as will be discussed in section 2.2.3.

Here one deals only with handwritten numerals, not 
with patterns which have been synthesized by computer. 
This restriction also excludes pictorial representation 
of three spatial dimensions (stereopairs, contour maps, 
etc...) as well as time-varying pictorial information 
(e.g. on line character recognition in real time); thus 
concerning only with two-dimensional numerals.

These restrictions have been imposed for the
following reasons:
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(i) Convenience. The data is available and 
the familiarity with handwritten numbers 
is exploited.

(ii) Background. Research on alphanumeric
pattern recognition has been vigorously 
pursued, and use of the relatively large 
amount of literature on the subject can 
be made.

(iii) Usefulness. Any success can be immedi­
ately put into use, and the techniques 
can be applied to other pattern 
recognition problems.

1.5 Assessment of a Pattern Recognizer's Performance

It is necessary to estimate how well a PR will 
recognize patterns before it is put to use, or before it 
is built if the machine is being simulated as in this 
case. The usual procedure to obtain such an estimate is 
to train (or design) the recognizer using representative 
patterns: the design or training patterns. Its 
performance is evaluated on a separate set of representa 
tive patterns: the test patterns. The result is then
considered as an estimate of the PR capability.
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CHAPTER 2

PRELIMINARY PROCESSING AND VARIOUS PATTERN 
RECOGNITION TECHNIQUES

2.1 Preliminary Processing

It is assumed that the main operation in the retina 
(fig. 1.1) is to transform the analogue pattern into 
discrete form and quite often it is preceded as well as 
followed by some form of preprocessing. The first step 
being object isolation/ as other patterns and the 
background tends to obscure the pattern in question.
The segmentation of speech is as yet an unsolved problem. 
The recognition of chromosomes and blood cells is 
greatly hampered by shortcomings in this area. However, 
in simpler tasks such as reading typescript or handwrit­
ten text, a priori knowledge of the recognition problem 
can be used, e.g.

(i) Suitable filtering may be used to enhance 
the signal to noise ratio for waveforms.

(ii) Handwritten alphanumeric characters may 
be normalized with respect to size, 
orientation and texture.

(iii) The pattern can be centralised in the 
digitizing frame.

The quantizing process itself results in a loss of 
information concerning the original pattern; if the grid



20

is too coarse, certain details of the pattern will be 
lost, but this loss can be reduced by having more 
squares in the grid. However, there is a limit to the 
amount of useful grid resolution and the quantizing 
process can sometimes be useful in filtering out 
insignificant irregularities that might cause confusion. 
For example, if a character printed by a typewriter is 
magnified a few thousand times, it is generally somewhat 
difficult to identify it because of the apparently 
random distribution of tiny blobs of ink on the paper.

Loss of information is also incurred by having only 
2 intensity levels. These simplifications are partly 
traded against less complexity in subsequent stages of 
the PR. Other preliminary processing that can be 
carried out are: ...

(iv) Thinning of the character strokes.
(v) Filling in isolated holes in otherwise 

black areas.
(vi) Filling in small notches in straight 

edge segments.
(vii) Eliminating isolated '1' bits.

(viii) Eliminating small bumps along straight 
edge segments.

(ix) Replacing missing corner points.

(i) to (iv) are particularly useful in recognition 
of handwritten characters where the size and thickness 
of strokes differ considerably (Genchi et at. 3 1968).
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(v) to (ix) are smoothing processes to remove 
random noise in. the patterns and to smooth any 
irregularities that may be introduced by the 
quantization.

Almost all the preprocessing techniques use the 
'window' method: a small submatrix or window is centered 
in turn on each retinal point and the latter is trans­
formed onto a new matrix depending on the contents of 
the submatrix. A comparative assessment of various 
preprocessing schemes has been made in Deutsch (1969) , 
where all the transformations are prespecified and 
intuitively designed. Adaptively generated transforma­
tions have also been used (Saraga & Woollons, 1968) .

2.2 Various Techniques Used in Pattern Recognition

In the following, the various techniques used in 
pattern recognition are described. It is by no means a 
comprehensive review but only a description of the 
techniques that have influenced the present work in some 
way or other.

2.2.1 Correlation Methods

The techniques of correlation in two dimensions can
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• be used to compare a standard or representative pattern 
with an unlabelled pattern. Given R representatives, 
one for each class, the unlabelled pattern is corre­
lated with each of them and it is classified in the 
same class as the same representative for which the 
correlation is a maximum. This type of approach is 
often termed 'Template Matching1 .

Although the concept seems straightforward, these 
methods using either digital or optical means, present 
certain difficulties in their application (Highleyman, 
1961; Selfridge & Neisser, 1963) . Sensitivity to 
translation, magnification and orientation are 
characteristic of the approach. In order to achieve a 
match with a stored reference item, it is necessary to 
prenormalize the pattern a:nd eliminate these effects. 
This is often difficult since different examples of the 
same class may not really have similar shapes. In fact, 
even if they do, slight variations may result in poor 
correlation with the stored template. Highleyman (1961) 
has suggested two methods for reducing position 
sensitivity in the case of character recognition:

(i) To align the centre of gravity of the unknown 
pattern with that of the reference template.

(ii) To generate a two dimensional correlation 
matrix by shifting with respect to the
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template until a maximum correlation is 
achieved.

The first method is faster and does not allow for 
the possibility of convergence to an incorrect maximum.

If it is known that only one template will match 
the unlabelled pattern, and if the search is done 
sequentially, the search can be stopped when such a 
template has been found. On the average R/2 templates 
must be checked before the pattern is identified. The 
correlation can, however, be done in parallel by optical 
means.

If there is more than one prototype per class, the 
same correlation techniques are used with all the 
prototypes and the unlabelled pattern is classified as 
the prototype which gives the maximum correlation. This 
method is sometimes called 'Nearest Neighbour Classi­
fication 1 (Cover, 1967) .

The template matching is also referred to as 
Minimum Distance Classification as the prototypes can be
represented by pattern points in a pattern space and any 
unknown pattern is implicitly classified according to 
the nearest prototype in the pattern space. It is also 
well-known that minimizing a Euclidean distance is
equivalent to minimizing a Hamming distance.
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All the above correlation techniques can be 
implemented by linear decision functions (Highleyman, 
1962 ; Nilsson, 1965) . In general, although the 
techniques are conceptually attractive, they are optimal 
only under certain very restrictive symmetry conditions 
on the distributions of the patterns. Consequently they 
have not been very useful except in cases of typed and 
printed characters which are very stylized and mainly 
corrupted with random noise.

2.2.2 Statistical Methods

In situations where the patterns in the various 
classes (R) are governed by multivariate probability 
density functions and that the latter can be estimated 
over the whole d-dimensional pattern, then Bayes' 
Criterion can be used as a classification rule. It is * i
assumed that there is a sufficiently large number of 
representative patterns and that it is possible to obtain 
an accurate estimation of all the probability density 
functions which are:

(i) The a priori probabilities P(i),
i = 1,...,R. P(i) is the probability 
of occurrence of a pattern from class

Ci*

(ii) The conditional probabilities P(x|i),
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i = P(X|i) is the probability
of occurrence of pattern X, given that 
it belongs to C . .

If the cost or risk associated with each classifica 
tion is known,

K(i|j) for i, j = 1,...,R.

where K(i|j) is the cost of classifying a pattern to 
class i, when it really belongs to class j. If P(j|x) 
is the probability that, given X, its category is C^, 
then the conditional average cost for deciding that a 
particular pattern belongs to class i is given by

R
L (i ) = 1 K (i | j ) P ( j | X) (2.1)

3 = 1

The average cost is minimized if the classifier always 
assigned X to class i when

L (i ) L ( j ) for j = 1,...,R.

By Bayes' rule

P(jix) =yfii)EXi> (2 .2)

Substitution of Eg. (2.2) into Eg. (2.1) yields
R

L(i) = P(X) j=1£ K(i| j) P (X I j)P(j)

In the computation of L(i) for i = 1,...,R, the
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quantity 1/P(X) occurs as a common factor; therefore the 
value of i that minimizes L(i) for any given X also
minimizes

RL' (i) = I K(i | j)P(x| j)P(j) (2.3)
j=l

The above decision rule which minimizes the 
expected loss is called Bayes' Criterion or Bayes'
strategy. Other statistical methods are:

(i) The Maximum Likelihood method which is 
used in cases where the classification 
costs and the a priori, probabilities 
are unknown.

(ii) The Minimax method which is applicable 
when the a priori probabilities are 
unknown.

(iii) The Neyman-Pearson method which is 
applicable where the a priori prob­
abilities and the classification 
costs are not known and furthermore 
R = 2.

A detailed discussion of the above statistical 
methods is given in Andrews (1972) .

In practice, however, the statistical approach
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seldom v/orks out. There are usually too few representa­
tive patterns available to determine the multivariate 
distributions, or there is not enough time and funding 
to process the many patterns even if they are available.
If the patterns are of size 10x10 and of binary 
components, it becomes necessary to estimate R prob­
abilities at 2‘*'<“><“> points. A certain form for the 
probability function is usually assumed; a common 
assumption is that given a certain pattern class the 
measurements made by the receptor are normally distributed 
and that each measurement is independent of the others.

Another practical difficulty is that unless the 
separation surfaces are of fairly simple shape or the 
dimensionality of the pattern space is low, the number of 
constants needed to describe the surfaces becomes so 
large that information storage in the classifier presents 
problems.

2.2.3 Discriminant Function Methods

Separation of a pattern space can be achieved by 
separation surfaces like hyperplanes. The location of 
such surfaces in a d-dimensional space is determined by 
the values of (d+1) constants or coefficients; for 
example, the equation for a hyperplane in a d-dimensional 
space is given by
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g (x) = o

where g(X) = w1x1 + w 2 * 2  +

wd+1 are the (d+1) coefficients

x^ is the coordinate in the ith. dimension

and g(X) is called a Discriminant Function.

For a two-class classification, the discriminant 
function gives a positive value to any point on the 
positive side of the hyperplane and a negative value to 
any point on the negative side. Such a function can be 
implemented by a Threshold Logic Unit as shown in 
fig. 2.1, consisting of weights, a summing device and a 
threshold element.

The idea of a threshold logic unit with adjustable 
weights is the embodiment of two concepts; the first 
concept is the on-off threshold device which is a 
simplified model of a neuron proposed by McCulloch and 
Pitts (1943); the second is that long-term memory in 
animals depends on changes in the synaptic junctions 
between neurons (Hebb, 1949) .

For an R-class pattern classifier, a set of R 
discriminant functions, g1(X), g2(X) ,. . ,, gR (X), is 
required. These functions are chosen such that for all 
pattern points in class C^,
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gj_ (X) > (X) for j = 1, . , . . ,R and j ^ i .

Such a decision can be implemented by R discriminators, 
one for each discriminant function, followed by a 
maximum selector (Nilsson, 1965) .

The limitation of the hyperplanes generated by 
threshold logic unit, is that they can perform only 
linear separations. In cases where the classes are non­
linear ly separable, higher order surfaces in the pattern 
space are more useful.

2.2.4 4-Discriminator

An nth.. $-discriminatpr is capable of generating an. 
nth. order polynomial surface in a d-dimensional space.
It consists of a 4-processor followed by weighting values 
and a summer. The input to the 4-processor is the pattern 
vector X and the output is the vector Y whose components 
f j_ (X) are linearly independent, real, single-valued 
functions of X, The components f^(X) are given by,

l

(i) for a 1st. order 4-processor which would 
generate linear decision surfaces, 

f jL (X) = Xjl i = 1,. . . ,d

(ii) for a 2nd. order 4-processor which would 
generate quadric decision surfaces
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i,j = 1/ • • • /d, and a,b = 0  & 1

(iii) for an nth. order ^-processor

(2.4)

The discriminant function for an nth. order $- 
processor becomes

An nth. order ^-processor, in effect, converts the 
vector X into all the possible combinations (m) of its 
components up to nth. polynomial, as in fig. 2.2, which 
illustrates a quadric discriminator. A pattern classi­
fying machine employing a 4>-discriminator is called a $- 
machine.

2.2.4.1 Parametric Training Methods

In some pattern recognition problems, the pattern 
classes are characterized by sets of parameters. Para­
metric training methods are those that use the training 
patterns to establish estimates of the values of the 
parameters and then use the estimates for the 
specification of the discriminant functions.

mg(X) = 2
i=l
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A situation in which the pattern classes are 
characterized by sets of parameters occurs when the 
patterns in each of the R classes are random variables 
governed by R distinct probability functions as in 
section 2.2.2. The optimum classification by Bayes' 
Criterion is given by Eq, 2.3.

L' (i) = Z K(i | j) P (X | j)P(j) (2.3)
3=1

If the values of the parameters P(X|j) and P(j) for 
j = 1,...R, can be estimated from the training patterns, 
then such an optimum decision rule can be implemented 
using ^-discriminators (Nilsson, 1965, chapter 3).

2.2.4.2 Non-parametric' Training Methods

When no assumptions can be made about the distri­
butions of the patterns, non-parametric training methods 
are used. Depending on the expected modalities of the 
distributions, some functional form for the separation 
is assumed, such as a linear, quadric or nth. order 
surface.

The values of the weights, before training begins, 
may be preset to any convenient values or they may be 
set to values selected at random. During the training 
phase, the training patterns are presented to the 
discriminator one at a time and the actual response is
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compared with the desired response; if the classifier 
responds correctly to a pattern, no adjustments to the 
weights are made, otherwise the weights are adjusted.
The various adjusting procedures are called error- 
correcting training procedures. The following two 
procedures would converge to a suitable hyperplane after 
a finite number of iterations, provided the pattern 
classes are linearly separable (Rosenblatt, 1960; 
Nilsson, 1965) .

(i) Fixed Increment rule
The weights are altered by a fixed 

increment either by addition or subtraction 
and the adjustments may or may not result 
into a correct response.

(ii) Absolute Correction rule
The weights are adjusted just enough 

to achieve a correct response.

2.2.5 Feature Extraction Methods

In some pattern recognition problems, the patterns 
in the different classes are so intermixed that only a 
highly nonlinear method can separate them to the required 
degree of accuracy. In such cases the recognition 
process is sometimes divided into two stages, the first
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"consists of simplifying the problem sufficiently to 
render it tractable for the second.

The design of the first, or feature extraction 
stage, may be approached from tv/o points of view.
Either one attempts to transform the pattern space in 
such a manner that the members of each class exhibit 
less variability and the relative separation between 
the classes is increased, thus allowing the use of a 
simpler decision rule, or one reduces the dimensionality 
of the pattern space, permitting the application of more 
complicated decision schemes. Ideally one could 
accomplish both objectives with the same transformation, 
but unfortunately the transformation for the first 
objective generally increase the dimensionality.

The selection of an effective set of features is 
probably the most important step in the design of a 
PR using feature extraction methods. It is also the 
most difficult decision as there is no general theory 
to define what features are relevant for a particular 
problem. The amount of literature on this topic is 
overwhelming; Levine (196 9) , Minsky (19 6 3) ,
Nagy (1969), Uhr (1966), being typical examples.
Thus, only a simple overview of the subject is given
here
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The chief theoretical difficulty in feature 
extraction is that the features must be evaluated in 
terms of the decision stage rather than on their own. 
Convenient numerical criteria like percent misclassi- 
fication can only be used to evaluate the whole 
system.

It is generally agreed that the features should 
be easier to store than the complete pattern and 
independent of commonly encountered forms of distortion 
like skew, size deformation, or other noise effects.
Such invariant features can be generated by taking 
moments (Hu, 1962), or by integral geometry (Tenery, 
1963) for features which are invariant with respect to 
the rotation and the translation of the patterns.

A concept about features which is intuitively 
appealing is the concept of connectivity, whereby 
features are localized and are defined as simple 
geometrical shapes, such as straight lines, edges, arcs, 
etc.... A lot of effort and ingenuity has been applied 
over the years to devising such intuitive features 
for example,

(i) Bomba (1959) uses features such as a 
diagonal line

(ii) Unger (1959) uses features such as 
horizontal and vertical cavities.
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(iii) Genchi et at. (1968) use features such
as horizontal and vertical strokes.

Simple geometric features which are usually 
prespecified can be detected with templates matching 
(mask-type threshold) devices. Topological information 
such as the number of line segments encountered by a 
slice of specified orientation through the pattern and 
the existence of bays, enclosures, indentations and 
symmetric conditions can be obtained by means of logical 
tests on a digital computer (Doyle, 1960) .

In cases where the tests for the presence or absence 
of a feature are expensive, the tests may be performed 
one at a time and each new test is selected on the out­
come of the previous tests. The sequential tests are 
halted when the estimated error probability reaches a 
preset threshold, or when they are exhausted. Such 
sequential-detection techniques have been described in 
the literature (Fu & Chien, 1967; Fu et at. 1967).

Since the features favoured by different investi­
gators are seldom compared on the same data sets, 
objective evaluation of the merits of the different 
systems is difficult.

Another school of researchers base their features 
on n-tuples; an n-tuple is a set of n retinal points or
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components of the pattern vector. According to 
Bledsoe and Browning (1959) , the sub-pattern or the 
state of an n-tuple constitutes a feature, and an n- 
tuple shifted into a different position on the retina 
is regarded as a different n-tuple.

In Block's 'Perceptron' (1962) and Widrow's 
'Adaline' (1960) the n retinal elements in an n-tuple 
are connected to a threshold logic unit. The alternative 
sub-patterns on that n-tuple which cause the threshold 
unit to give output '1', are regarded as constituting a 
feature.

In these instances the pattern space has been 
randomly transformed into a feature space with a 
significant decrease in.dimensionality, and improvement 
has been obtained despite the fact that features are chosen 
randomly. An exhaustive search for the optimum n-tuples 
is unrealistic, for instance, restricting to sets of only 
5 measurements on 4-tuples on a 10x10 matrix, there are

which excludes the possibility of an exhaustive search 
algorithm. The optimal selection of the random features 
however remains an unsolved problem. Considering the 
characteristics of the SLAM module, which is described 
in chapter 3, the Bledsoe and Browning definition is



38

opted for. Whereas Bledsoe and Browning recommend 
exclusive, or non-overlapping, n-tuples, this is not 
necessarily so in the work described here.

2.3 Classification of Patterns from More than 2 Classes

Where the partitioning of the pattern space is 
implicit, the design for a PR for cases R (pattern 
classes) = 2 and R >2is the same in principle. The 
difference between the two cases is that a larger 
system may be needed as the number of pattern classes 
increases, e.g. in template matching, more templates to 
represent all the classes are required and for feature 
extraction methods, more feature extractors (discrimina­
tors) are used.

When the partitioning of the pattern space is 
explicit like the dichotomy by a hyperplane generated by 
a discriminant function, several techniques can be used 
to reduce the R-class classification into a two-class 
classification:

(i) The R classes are separated by R hyperplanes, 
with each hyperplane separating the members of one class 
from the members of the other (R-l) classes. This 
technique can be considered if it is knov/n that members
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of the same class form a tight cluster in the pattern 
space, and that the Euclidean distances between 
members of different classes are large compared to the 
largest 'cluster-radius'.

(ii) The R classes are separated pairwise 
(Highleyman, 1962 ). This technique requires R(R-l)/2 
hyperplanes. A pattern is considered a member of class 
Ch when its pattern point lies on the Ch-side of each 
of the (R-l) hyperplanes that separate members of from 
members of the remaining (R-l) classes.

(iii) The R-class classification can be reduced to 
a sequence of 2-class classification by first separating 
the R classes into 2 superclasses. The superclasses are 
then further sub-divided and the process repeated till 
individual classes are obtained (Unger, 1959). With this 
technique the number of hyperplanes (N̂ ) required is 
bounded by the following expression

R-l Nh Log2 R

With this method, some planning for the organization of 
the sequential decision tree is required.

2.4 Handwritten-Character Recognition

All the above techniques have been applied to
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handwritten character recognition, on their own or in 
various combinations. Most of the literature on this 
problem relates to laboratory research and preprototype 
development, and virtually none of the recognizers for 
handwritten characters has been used in commercial 
applications. A striking exception is found in Japan 
(Harmon, 1972).

Most of the Japanese mail is hand addressed and 
intensive effort has been put into reading handwritten 
zip codes. Fully automatic mail sorters have been in 
service in Japan for some time (Genchi et al. 1968) .
The recognition rate of a single digit (written in 
preprinted boxes but otherwise unconstrained) for a 
large sample of letters averages 95%, which is a 
significant accomplishment. The recognition is achieved 
by extracting a sequence of simple geometrical features 
in horizontal zones of the character after normalization 
of the height of the character and the width of the 
strokes. No new technical innovations are responsible, 
just concentrated engineering development and economic 
pressure.

A typical exploratory study of recognition of 
handwritten characters uses linear decision function to 
categorize handwritten numerals (Highleyman, 1962). The 
hyperplanes which represent the decision function are 
determined from samples of the numerals and the
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recognition rate of the system ori a different set of 
samples is 61.6%.

Recognition of machine printed characters has 
been more successful for obvious reasons, e.g. Coombes 
(1972) has obtained 97% recognition rate on a test set 
of 1000machine printed characters in multifont, 
representing 20 alphabetic-character classes. He 
proposes a systematic search of n-tuples and weighting 
values for threshold logic units which would linearly 
dichotomize the feature space.
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CHAPTER 3

STORED-LOGIC ADAPTABLE MICROCIRCUIT (SLAM)

3.1 Description of a SLAM Module

A SLAM module (Aleksander & Albrow, 1968b) is an 
adaptive logic gate which can be taught to give a 
desirable binary output to a set of binary inputs. Fig.
3.1 illustrates the operation of a 3-input SLAM. An n- 
input SLAM module has n input terminals, a decoder and 
storage flip-flops or memory elements, any one of which 
is associated to one of the possible sets of inputs by 
the decoder. The desired response to a particular set of 
inputs is written into the respective memory element by
a strobe at the-Teach Clock input,, while applying to the 
Teach input terminal the desired logical output.

In the absence of any teach input the device is a 
logical 'O' or 'l1 depending upon the content of the 
particular storage element that is addressed by the binary 
inputs. An n~input SLAM is therefore capable of
providing all the logical functions relating the inputs

2nto the output i.e. 2 , and can achieve all the possible
dichotomies of the input configurations.

Set and Reset input terminals to the memory elements 
are provided to set them to give a '1' or 'O' respectively,
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Fig. 3. 1 Logic Diagram of SLAM-8 Module.
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at the output to all input configurations.

As an n-input SLAM module contains 2n memory 
elements, one for each possible set of inputs, it is 
sometimes referred to as SLAM-2n . Hence, a 3-input 
SLAM is sometimes called SLAM-8 and a 4-input SLAM 
as SLAM-16.

3.2 Mathematical Representation of a SLAM Function

The inputs to an n-input SLAM can be written as
a vector X = (x-̂ ,.....xn) , whose components can have
only the logical values of '1' or 'O'. The state of 
the memory elements can be represented by a vector
A = (a^,.... ,a2n)/ each of the components describing
an individual memory element and is related to one of 
the possible values of the vector X. a2n accounts for 
the case when all the components of X are 'O'.

All the possible values of the vector X are 
mutually exclusive i.e. only one set of inputs can 
occur at a time.

[X] = 1 when the particular value occurs.
[X] = 0 otherwise.
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The function of an n-input SLAM module can then 
be expressed in the form of a disjunctive logic 
expression.

2ng (X) = l a. . [X] (3.1)
i=l

Where a^ is equal to 11' when the particular memory 
element is set and equal to 'O' when it is reset.

3.3 Similarity between a SLAM Module and a 4-Discrimin- 
ator

With an n-input SLAM, the maximum number of different
input configurations is 2n, the total number of distinct
classifications of these 2n sets of input into two

2nclasses (dichotomies) is 2 and they can all be achieved 
by the SLAM module by appropriate settings of the memory 
elements (bits). Similarly with an nth. order 4- 
discriminator with n inputs, any dichotomization can be 
achieved by adjusting the values of the weights. Like 
the n-input SLAM, which requires 2n memory bits, an nth. 
order 4-discriminator with n inputs needs 2n weights 
(section 2.2.4).

The implementation of a 2nd order 4-discriminator
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which could classify binary patterns in 2 classes as 
a 2-input SLAM module will be shown and this can be 
extended to higher orders.

The discriminant function for a 2-input SLAM module, 
as from Eq. (3.1) can be written as

gs (x) =a1 (x1x2) +a2 (x-Lic2) +a3 ( x ^ )  +a4 (S^x^) (3.2)

For this particular form, the substitution x.=l-x.l i
can be made. Consequently, the Eq. (3.2) becomes

gs (X) =a1 (1-x^ x2+a2x1 (l.-x2) +a3 (x1x2) +a4 (l-x1) (l-x2)

= (a2~a4)x^+(a1~a4)x2+(a^a-^-a^a^x1x2+a4 (3.3)

The discriminant function of a 2-input 2nd order 
4>-discriminator from section 2.2.4, is

g(X)=w1x1 + w2x2 + w3xix2 + W4 (3*4)

Comparing equations (3.3) and (3.4), the weighting 
values for the 4>-discriminator to operate like the SLAM 
module can be made up from the state of the memory 
elements of the SLAM, In this case,
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w! = (a2~a4)

W2 = (a1-a4)

w3 = (a4+a3
w4 = a4

Thus, if the state of the memory elements of a 
SLAM module is known, a ^-discriminator can be 
implemented which would operate exactly as the SLAM 
module. But the converse is not possible because of 
the inherent generalization capability of a 4-discrimin- 
ator. A SLAM module on its own is not capable of 
generalization, its response to a set of inputs which 
has not been encountered before depends on the state of 
the related storage element prior to the training phase. 
The mode of usage of a SLAM module is different to that 
of a 4>-discriminator. In a ^-machine, a 4-discriminator 
would cover the whole retina, while in a PR using SLAMs 
(section 3.4) a bank of SLAMs are used to cover the 
retina, generalization is then inherently possible. 
Besides it is not realistic to have a single SLAM for 
the whole retina. To cover a 10x10 matrix by one SLAM 
module, the latter would require 2'*’00 memory elements 
which is not feasible even by the present state of art 
in microminiaturization.
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3.4 Basic SLAM-Pattern-Recognizer (SLAM-PR)

If there are R pattern classes, then the PR would 
consist of R SLAM-discriminators (connected to the same 
retinal points) followed by a maximum selector as 
illustrated in fig. 3.2. A SLAM-discriminator will be 
referred to as a discriminator in the following. The 
discriminators consist of the same number of SLAMs and 
are connected to the retina in the same way. The 
outputs of the SLAMs in each discriminator are fed into 
a summing device which adds all the positive responses. 
A positive response is a logical 11' output by a SLAM 
indicating the presence of a feature on which that 
particular SLAM has been trained.

During the recognition phase the maximum selector 
classifies the unlabelled pattern in the same class as 
the discriminator which gives the maximum response; in 
case of a tie between two or more discriminators, the 
maximum selector classifies the pattern into a reject 
class.

3.4.1 Training Phase

Initially all the SLAMs in the PR are reset, i.e.
they would produce a negative response 'O' to all sets
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Fig. 3-2. Block Diagram of a Basic SLAM-PR.
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of inputs. Each discriminator is then trained on its 
respective training patterns. The patterns from the 
training sets are presented one at a time to all the 
discriminators but only the SLAMs in the discriminator, 
which is related to the class of the pattern being 
presented, are taught. The inputs to the SLAMs in the 
discriminator are decoded and the memory bits- which are 
addressed are set to '11 by the teaching strobe. If a bit 
is already set, it stays set. Setting memory bits to '1* 
is sometimes referred to in the following as 'filling1 
the memory.

Each pattern from the training set is presented once 
only, and if the same pattern is presented during the 
testing phase, the SLAMs in the discriminator which has 
been trained on it, will all give a positive response.

3.4.2 Criterion for Training

Theoretically, for a discriminator consisting of n-input 
SLAM modules, it is possible to fill the memory completely 
with only 2n patterns. The patterns can be devised in such 
a way that the SLAMs see a different set of inputs in each 
pattern. If the discriminator memory is filled completely, 
it will give the maximum output to all patterns and its 
discriminating power is nil. This is not desirable.
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The response of a discriminator to a pattern of 
randomly distributed 0's and l's is in fact a function 
of the percentage of the memory filled. If M is the 
overall percentage of the memory filled and assuming 
that the bits set are equally distributed among the SLAMs 
in the discriminator, a random pattern has an equal 
probability of presenting any of the possible states of 
the input n-tuples to a SLAM. The probability of a SLAM 
giving a positive response is therefore M% and the 
overall response of the discriminator would be approximately 
M% of the maximum response. A discriminator whose memory 
has more elements set is more likely to give a larger 
response to the same random pattern than a discriminator 
with fewer memory elements set.

Consequently the criterion for training a SLAM-PR in 
this thesis is based on all the discriminators being 
equally filled, whilst in most of the trainable PRs in 
literature, a measure of training is based on the number 
of patterns in the training set (Widrow & Hoff, 1960;
Ullman & Kidd, 1969).

The patterns from different classes, because of their 
different degrees of variability, do not fill the memory 
at the same rate per pattern. The rate of filling the 
memory per pattern also depends on the average number of 
bits '1' per pattern for the class as will be discussed in
the next section.
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3.4.3 Variation in Rate of Filling the Discriminator
Memory with Pattern Density

The density of a pattern is defined as the ratio of 
the pattern components which are '11 to the number of 
pattern components. The densities of typical patterns 
from different classes are expected to be different, e.g. 
between numerical characters '1' and '8', the density of 
the latter is likely to be greater because of the longer 
tracing. The dependence of the rate of filling the 
discriminator memory on the pattern density is best 
illustrated by examples, where the numbers of patterns, of 
different pattern densities, required to fill the memory 
are estimated.

In the following, the estimations are carried out 
for single SLAM modules, and are applicable to discrimina­
tors containing any number of SLAMs; if no two inputs of 
the same SLAM are connected to the same retinal point and 
the pattern components which are '1', are independently 
and randomly distributed in the pattern vector. The 
density of such a random pattern is then equivalent to 
the probability of bit '1' occurring at any retinal point 
and is written as P^d).

The probability, P^O)-, of bit 'O' occurring is then

V ° )  = 1-Pb (i)
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Considering a SLAM-4, the number of different sets 
of inputs is 4. If Pn (i), i=0,l,2,3, is the probability 
of a particular state (i) of a 2-tuple occurring,

pn (°) = Pb (0) Pb (0)

Pn (1) = Pb<°) Pb (0>

Pn (2) = Pb (1) Pb <0)

Pn (3) = V 1' V ]>

If Qb (j)/ j=l,2,3,4, is the probability of j memory 
bits being set in the SLAM after it has been trained on 
j patterns of the same density,then

Qb (1)
3= Z

j=o
p (j) = n J 1

Qb (2) = I Pn (j) Pn (k)
°  j=o n n

k=0

Qb (3) = 'lQ Pn (j) Pn (k) Pn (i)
k=0
1=0

Qb (4) = Z Pn (j) Pn (k) P nU) Pn (m)
k=0
1=0
m=0

The estimated most likely number of patterns, V j)'
required to set j bits in a SLAM-4 is therefore,
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Q p U )
V ï >

j=l,2,3,4

The estimations for a SLAM-4 are carried out for 
different pattern densities (Appendix 1); arbitrary 
values of pattern density and also the average densities 
of the pattern classes from actual data patterns are 
chosen. The average density for numerals *1' is 0.217, 
for numerals '8' is 0.464 and the average for all hand­
written numeric characters is 0.360 (see section 4.4). 
Similarly the estimations for SLAM-8 and SLAM-16 modules 
are done and the results are given in tables 3.1, 3.2, 
3.3.

The relationship between the rate the memory is 
filled and the pattern density is symmetrical about the 
point when the pattern density is 0.5 because of the 
reciprocity of bits '1' and 'O'; that is, the probabili­
ties of bit '1' and bit 'O' occurring can be interchanged 
in the above calculations. The estimations show that the 
highest rate of filling a SLAM or discriminator memory is 
when the pattern density is 0.5, i.e. when '1' and 'O' 
are equally probable to occur at any retinal point; for 
lower (<0.5) or higher (>0.5) pattern density more 
patterns are required to fill the memory. Also for a 
given pattern density more patterns are required for 
larger SLAM modules.

For real data, however, the degree of variability



NUM3ER OF PATTERN DENSITY

BITS SET. 0.1 Oo 2 0c3 0.4 0o5 0.217 O.464 O.36O

1 1,0 EO loO EO 1.0 E O . 1,0 EO 1.0 EO 1,0 EO 1,0 SO 1,0 EO

2 6.1 EO 3o7 20 3»0 EO 2.7 EO 2.7 EO 3.5 EO 2.7 EO 2.8 EO

3 6o2 El 2,0 El 1,1 El 8.7 EO 8.0 EO 1.7 El 8.1 EO 9.4 EO

4 2» 5 E3 2.5 22 8.6 El 5.0 El 4.3 El 2.0 E2 4.4 El 5«9 El

Table 3»1-Estimated No. of Random Patterns to Fill a SLAM - 4 for various Pattern Densities. 
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NUMBER OE PATTERN DENSITY

BITS SET. 0.1 0.2 0.3 0.4 0.5 0.217 0 .464 O.36O

1 1.0 EO 1.0 EO 1.0 EO 1.0 EO 1.0 EO 1.0 EO 1.0 EO 1.0 EO

2 4.5 EO 2.9 EO 2.5 EO 2.3 EO 2.3 EO 2.8 EO 2.3 EO

Ow_4*0C\J

3

l—1W-4-•C\J 8.9 EO 5.8 EO 4.8 EO 4.6 EO 8.1 EO 4,6 EO 5.1 EO

4 1.9 E2 3o4 El 1,6 El 1.1 El 9.8 EO 2.8 El 9.9 EO 1.2 El

5 2.8 E3 1.8 E2 5o2 El 2.9 E-l 2.4 El 1.4 E2 2.5 El 3.5 El

6 7.0 E4 1.4 E3 2.4 E2 1.0 E2 7.8 El 9.7 32 8.1 El 1,3 E2

7 3„6 E6 2.0 E4 1.7 E3 5.3 E2 3.6 E2 1.2 E4 3.8 E2 7.6 E2

8 7.0 E8 7.0 E5 2.7 E4 5.4 E3 3.3 E3 3.4 E5 3.5 E3 8 .9 E3

Table 3« 2 Estimated No» of Random Patterns to Fill a SLAM - 8 for various Pattern Densities



NUMBER OF PATTERN DENSITY

BITS SET. 0.1 0o 2 0.3 0.4 0.5 0.217 0.464 0 .360

1 1.0 E00 laO E00 1.0 EOO 1.0 EOO 1.0 EOO 1.0 EOO 1.0 EOO 1.0 EOO

2 3.6 E00 2 .5 E00 2.3 EOO 2.2 EOO 2.1 EOO 2.5 EOO 2.1 EOO 2.2 EOO

3 1.4 EOl 5.9 E00 4.3 EOO 3.8 EOO 3.7 EOO 5.5 EOO 3.7 EOO 3.9 EOO

4 6.7 E01 1.5 E01 8 .2 EOO 6 .4  EOO 6.0 EOO 1.3 EOl 6,1 EOO 6,9 EOO

5 4.1 E02 4.3 E01 1.7 EOl 1.1 EOl 1.0 EOl 3.4 EOl 1.0 EOl 1,3 EOl

6 3°3 E03 1.4 E02 3.7 EOl 2.1 EOl 1.7 EOl 1.0 E02 1.8 EOl 2.5 EOl

7 3.5 EQ4 5.6 E02 9.2 EOl 4.1 EOl 3.3 EOl 3.7 E02 3.4 EOl 5.2 EOl

8 5o0 E05 2 .6 E03 2 .6 E02 9.0 EOl 6.6 EOl 1.6 E03 6 ,9 EOl 1.2 E02

9 9o6 E06 1.5 E04 8 .5  E02 2.2 E02 1.5 E02 7.9 E03 1,6 E02 3.3 E02
1 0 2o5 EOS 1.1 E05 3.2 E03 6 .2  S02 3 . 8  E02 5.0 EO4 4.0 E02 1.0 E03

1 1 9.5 E09 1.0 EOb 1.5 E04 2.0 E03 1.1 E03 3.9 E05 1.2 E03 3.7 EO3

1 2 5.4 Ell 1.2 E07 8 .6 E04 8.0 E03 ■3.9 E03 4 .0  e o6 4.2 E03 1.7 E04

13 4.9 El3 2.1 EOS 6.5 E05 3.9 E04 1.7 E04 5 . 7  E07 1.9 E04 9.3 E04

14 7.3 E15 5.2 E09 6 .7 EOb 2.6 E05 9.6 SO4 1.2 E09 1.1 E05 7.1 E05

15 2.2 El8 2 .2  Ell 1.1 EOS 2 0 6 E 06 8.3 E05 4.1 E10 9.6 SO3 8 .2 SOb

16 2 .2  E2 1 2 .2  E13 3.7 E09 5.2 E07 1.4 E07 3-3 El2 1.7 E07 1 . 9  E08

'Table 3.3.Estimated No, of Random Patterns to Fill a SLAM-16 for various Pattern Densities
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between the patterns from the same class and the 
constraint imposed upon the distribution of bits 11' by 
the characteristics of the patterns have to be considered. 
That is, the joint probabilities of occurrence of 
features come into play and generally increase the number 
of patterns required to fill the memory. On the other 
hand, a high degree of variability would reduce the 
number of patterns needed to fill the memory (section 
4.4).

3.4.4 Testing Phase

To estimate the performance of the SLAM-PR after 
training, the system is tested on test patterns. These 
are patterns of known classification and although they 
are drawn from the same populations as the training patterns, 
some differences must be expected.

Each pattern from the test data is presented to all 
the discriminators and every SLAM will respond positively 
if the state of the n-tuple it 'sees' has been encountered 
during the training phase. The outputs of the SLAMs for 
each discriminator are added and the maximum selector 
classifies the pattern accordingly. There are 3 possible 
classifications: a correct classification which is 
referred to as recognition, a rejection, or a misclassi- 
fication which is referred to in the following as a
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substitution error.

As the patterns in the test data for each class are 
assumed to be only representatives of patterns of the 
class and are not the complete repertoire of the possible 
patterns for the class, the performance based on the 
test data is only a statistical estimate.
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CHAPTER 4

SIMULATIONS OF SLAM-PATTERN-RECOGNIZERS

4.1 Configuration of the Computer System

All the experiments in this thesis have been 
simulated on a general purpose computer, fig. 4.1. It 
is a Honeywell DDP-516 with a core memory of 8K words, 
backed by a magnetic tape transport. The central 
processor handles 16-bit words in parallel. The 
memory read/write cycle time is 0.96 microsecond and 
the majority of the 72 instruction set are completed 
in one or two cycles.

For the simulations, the assembly language for 
the machine, DAP, has been used throughout for economy 
of storage and processing time. The data for the 
simulation is stored on magnetic tape and the results 
are output on the teletype.

4.2 Experimental Data and Preprocessing

All the experiments in this report use the same 
data, which consists of 400 examples of each of the 10 
numerals. They are taken at random from handwritten 
addresses on envelopes in the mail and digitized by
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Fig. 4..1. Configuration of the General Purpose

Computer Used for the Simulations.
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means of a flying spot scanner into 22x30 binary 
patterns*. The scanner does not have automatic 
centering or size-normalizing facilities, the 
characters are roughly 'top-left-adjusted' by a human 
operator and there is no normalization of height to 
width ratio or of orientation. In some cases the 
digitization is imperfect, in that part of the 
character is missing in the 22x30 array. Imperfect 
segmentation is due to the handwritten characters 
being too large for the 'digitizing' frame or due to 
incorrect positioning of the frame.

Owing to the large number of patterns used in the 
following simulations and the restricted core memory, 
the 22x30 patterns have been reduced to more manageable 
12x15 patterns. This is achieved by adding an extra 
blank column on each side of the original pattern 
giving an 24x30 array and reducing the size by dividing 
the whole pattern into a set of rectangular 2x2 sub­
matrices. At each submatrix, a binary output is 
generated by an 4-input 'or' gate, giving a .12x15

The data was made available through the courtesy of 
P.0. Research Station at Dollis Hill3 London.
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pattern.

One result of the reduction process is that some 
narrow loops in numerals such as '6' or '8' or '9' 
may be filled up, and the stroke becomes thicker. The 
resulting patterns however are quite acceptable as 
shown by the typical examples in figs. 4.2a and 4.2b.

The only preprocessing all the patterns are 
subjected to, is the elimination of single-isolated 
bits: a bit '1' surrounded by bits ‘O' or a bit 'O' 
surrounded by bits 11'. It is a non-reversible process 
and it is assumed that completely isolated bits are due 
to noise and no information is lost by their removals.
A pattern, which is now expressed by a 12x15 array, is 
scanned by a 3x3 submatrix every bit horizontally and 
vertically. For retinal points which lie on the 
edges, a dummy row or column of bits 'O' is added all 
round the pattern. ■

a b c

d X e

f g h

FIGURE 4.3
Retinal Points Involved in Eiimination of

Isolated Bits
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Fig. 4.3 shows a retinal point x, and the eight 
points around it. Each point is treated as a binary 
variable and x is changed to f^, if and only if

a = b = c = d = e = f = g = h = f 1

That is, the value of x is changed or left equal to 
f^ irrespective of its value if all the bits around 
it are equal. The values of a,b,...,h are the values 
from the un-preprocessed pattern. The change of 
state of one retinal point does not affect the 
determination of f^ for the neighbouring points and 
the preprocessing for all the components of a pattern 
can be carried out, in hardware, in parallel.

The resulting preprocessed patterns are used as 
data patterns for all the simulations in this work.

4.3 Size of SLAM Module

Both SLAM-8 and SLAM-16 modules have already been 
manufactured as M.O.S.T. devices (Albrow et al.3 1967; 
Aleksander & Glover, 1970), and they can be used as 
building blocks for larger modules. It should be 
noted that random-access-memory (RAM) microcircuits can
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also be used as SLAM modules, for instance a 256 bit 
RAM could represent 16 SLAM-16 or 32 SLAM-8 modules.

Ullmann (1969) has found that for a given number 
of training patterns, the performance of a SLAM-PR 
improves to an optimum and then declines with increas­
ing size of SLAMs (will be discussed in chapter 6) .
For the following simulations of SLAM-PR (fig. 3.2), 
SLAM-16 modules have been chosen for the following 
reasons:

(i) A 16-bit word of the DDP-516 computer 
could conveniently represent the 16 
memory elements of each SLAM. This 
enables the maximum utilization of 
the core storage memory and demands 
less programming effort, hence 
economizes on the core memory for 
the simulation programs.

(ii) The probability of complete (i.e.
fruitless) filling of a SLAM module 
decreases with the size of the 
module. This provides an argument 
for choosing the largest possible 
size of SLAM module, provided that 
there is enough data, the simulation 
time is not excessive and the computer 
facilities permit it.
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(iii) However, an argument for not making 
the SLAM too large is obtained by 
extrapolating values from tables 
3.1, 3.2 and 3.3. It is estimated 
that the 400 patterns available for 
each class would on the average half­
fill the memory of a SLAM-32 dis­
criminator. With the given data it 
would not be possible to study PRs, 
consisting of SLAM-32 modules, for 
levels of memory filled beyond half­
way, especially if a certain number 
of patterns are reserved as testing 
patterns.

For all the simulations of SLAM networks here, 
SLAM-16 modules are used, and the size of a SLAM-PR is 
defined as the number of SLAM-16 modules per 
discriminator.

4.4 Size of Training Set

The size of the training set has been chosen 
empirically. The percentage of the memory filled for 
a discriminator, containing 180 SLAMs, with the number 
of patterns is determined for each class separately.
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The results are shown in fig. 4.4. As the SLAMs are 
randomly connected, the number of SLAMs in the 
discriminator should not have any bearing on the 
results but a large number of SLAMs are used to smooth 
the statistical variations.

As expected (section 3.4.3) the memory becomes 
increasingly difficult to fill with increasing pattern 
numbers, and there is some correlation between the 
rate at which the memory is filled and the pattern 
density. The average pattern density for the patterns 
in each class is given in table 4.1. Numerals '1', 
with the lowest average pattern density, have the 
lowest rate of filling the memory. While numerals '8', 
with the highest average pattern density, have the 
highest rate. In between the two extremes, there are 
some discrepancies, for instance, numerals 'O', though 
with a higher average pattern density, do not fill as 
much memory as numerals '4'. This can be attributed 
to the fact that numerals 'O' have a relatively lower 
degree of variability.

The maximum size of the training set for each 
class is limited to 100 patterns, as for each class 
the percentage of memory filled tends to level off 
(fig. 4.4). In all the following experiments, the 
same patterns are used in training, leaving 300 
patterns for each class for estimating the performance
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Fig. U*A. Memory Filled versus No. of Training Patterns.
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Pattern Class Average

(Numeral) Pattern Density

1 0.217

7 0.291

4 0.356

5 0.367

6 0.368

3 0.376

9 0.377

2 0.379

0 0.398

8 0.464

Table 4.1. Average Pattern Densities Arranged

in Ascending Order of Magnitude.
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of the systems in the testing phase.

4.5 Basic SLAM Pattern Recognizer

PRs with a single layer of SLAMs as shown in 
fig. 3.2 are simulated to find how the number of SLAMs 
per discriminator would affect the performance of the 
system. Concomitantly, the effect of different levels 
of memory filled on the performance is observed.
Ullmann (1969) reports similar experiments, but he 
uses the size of the training sets as a measure for 
training, while here the criterion for training is 
the percentage of memory filled.

SLAM-PRs with 10,20,....,160 SLAMs per dis­
criminator are simulated. In the absence of any 
algorithm to select n-tuples optimally, the SLAMs are 
randomly connected to the retina. The major operations 
in the simulations are shown in fig. 4.5. The 
connections of the SLAMs are generated by a programmed- 
in pseudo-random number generator (appendix 2). The 
only constraint imposed on the distribution of the 
connections is that no two inputs to the same SLAM 
are connected to the same retinal point. The 10 
discriminators, one for each pattern class, are 
equally connected.
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Read in no, (s) of 

SLAMs/discriminator

Generate (s x iv) random 

nos. for SLAMs' connections

____________ 7 ___________
Set up 10 discriminators, each

with s randomly connected SLAMs

Fig. A-5. Major Operations in SLAM-PR Simulation.
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During the training phase, it is not always 
possible to fill the discriminators equally as the 
training is done on integral pattern numbers and the 
number of memory bits set by each pattern is not 
necessarily equal. The discriminators are, there­
fore, filled as equally as possible.

The training is stopped when the level of memory 
filled reaches or just overshoots prespecified values 
and the performance of the PR is estimated. The 
resulting classifications of the testing patterns are 
printed out as a classification matrix, an example of 
which is shown in fig. 4.6. The classification matrix 
indicates how the 300 testing patterns from each class 
are classified, whether correctly, incorrectly 
(substitution error), or rejected.

Five runs are made for each PR size, each with a 
different set of random connections for the SLAMs to 
the retina. The mean results, and the mean levels of 
memory filled are taken. The standard deviations for 
the recognition rate and the level of memory filled 
are tabulated in fig. 4.7a and plotted in fig. 4.7b. 
The latter shows a slight correlation between them.

The standard deviation for the recognition rate 
is already normalized as each system is tested on 
the same number of patterns. On the other hand, the



CLASSIFICATION v̂s* <JS*
DISCRIMINATOR 1 2 3 4 5 6 7 8 9 0

&

%

%

"a
NO. OF TRAINING- PATTERNS 30 6 8 8 6 8 9 6 6 7

%  OF MEMORY FILLED 25.0 26.9 25.4 • 2 7 .0 2 6 .0 2 6 .8 2 6 .2 26.3 25.9 26.5

ACTUAL PATTERN CLASS

■ 1 299 0 0 0 0 0 1 0 0 0 0 1

2 34 1 8 1 1 1 4 1 2 48 3 3 6 7 112

3 7 20 215 ; 0 6 1 31 0 2 12 6 79

4 13 5 4 2 13 0 27 2 0 29 2 5 82

5 31 0 65 9 133 22 5 1 1 3 11 10 157
6 33 0 . 5 ' 5 4 241 0 0 1 5 6 53

7 20 0 0 0 0 0 272 0 7
J 3 2 26

8 14 12 39 6 32 14 6 1 2 4 36 7 10 166

9 9 1 2 8 5 0 15 2 249 4 5 46
0_ 3 0 1 1 0___ 7 7 0 8 271 2 27

Average Memory Filled: 26.2/&
Overall Recognition Rate: 73.3%

" Rejection " : 25 «0^
" Substitution " : 1.8%

Fig. 4.6. A Typical Classification Matrix, Showing How the 300 Testing Patterns from Each Class are Classified. 
The Number of Patterns Used for Training and the %  of Memory Filled for Each Discriminator Are Also Printed Out,
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No. of SLAMs 
per

Discriminator

Normalized Sta 
fo

Recognition
Rate

ndard Deviation 
r

Level of 
Memory Filled

10 1.31 3.26

20 1.26 1.98

40 0.95 2.78

60 0.80 2.04

80 0.57 1.31

100 0.56 0.85

120 0.76 1.44

14 0 0.63 1.14

160 0.35 ' 0.68

Fig. 4.7a. Standard Deviation of Recognition Rate & Memory Filled.

Fig. Uo7b. Standard Deviation of Recognition Rate versus

Standard Deviation of Memory Filled.
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standard deviation for the level of memory filled 
has to be normalized because of the different number 
of memory elements in different PR sizes. For example, 
a SLAM-PR using 10 SLAMs per discriminator has a 
total number of (10x10x16) memory elements, whereas, 
one using 20 SLAMs per discriminator has (20x10x16) 
memory elements. In figs. 4.7a and 4.7b, the standard 
deviations are all normalized to the number of memory 
bits in a SLAM-PR containing 10 SLAMs per discriminator.

The means results for the various SLAM-PR sizes 
(10, 20,..., 160 SLAMs/discriminator) are plotted.

Figs. 4.8a and 4.9a show the recognition rate for 
the different systems and at different levels of 
memory filled, but plotted differently to illustrate 
better the characteristics of a SLAM-PR. The effect 
of levels of memory filled on the performance is more 
obvious in the former, while the latter shows how an 
increase in the number of SLAMs affect the recognition 
rate. Similarly, the effects on the rate of 
misclassification can be seen from figs. 4.8b and 4.9b, 
and the effects on the rejection rate can be seen from 
figs. 4.8c and 4.9c.

Fig. 4.8a is a series of recognition rate curves

versus percentage of memory filled, for the different
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PERCENTAGE OF MEMORY FILLED
so 70

Fig. L.8a. Recognition Rate versus Memory Filled.
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P E R C ENTAGE OF MEMORY FILLED

Fig. 4-,8b. Substitution Rate versus Memory Filled.
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Fig. 4.8c. Rejection Rate versus Memory Filled.
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Fig. 4-.9a. Recognition Rate versus No. of SLAMs.
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ND* DF SLAMS

Fig. ¿+.9b. Substitution Rate versus No. of SLAMs.
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PERCENTAGE DF SUBSTITUTION

Fig. U .10. Rejection Rate versus Substitution Rate.
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sizes of SLAM-PR. It shows that for all the systems, 
the recognition rate reaches an optimum and then 
decreases as more memory is filled.

Fig. 4.8b is a series of substitution rate 
plots against percentage of memory filled, for the 
various systems. It shows that substitution rate 
decreases with memory filled.

Fig. 4.8c illustrates the variation of 
rejection rate with levels of memory filled. It 
shows that rejection rate increases with memory 
filled for all the systems.

Fig. 4.9a is a series of recognition rate curves 
against number of SLAMs for various levels of memory 
filled. It shows that for a certain level of memory 
filled, the recognition rate increases but tends to 
level off with increasing number of SLAMs.

Fig. 4.9b shows that for a given level of memory 
filled, the substitution rate remains more or less 
constant with the number of SLAMs.

Fig. 4.9c illustrates that as the number of SLAMs 
increases the number of rejections decreases irrespec­
tive of the level of memory filled. It also shows that
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the improvement in recognition rate with the number 
of SLAMs is due to the rapid decrease in the rate of 
rejection.

Fig. 4.10 shows how the rate of substitution can 
be reduced at the expense of a rapid increase in 
rejection rate. (The arrows indicate the direction 
as the memory is filled). If the ratio of the cost,
K (j |i), of misclassifying a pattern to the cost,
K (i) , of rejecting a pattern is known, an optimum 
cost-line can be drawn, e.g. on the figure is drawn 
the cost-line for

K ( j 1 i) _ ~
K(i)

and from the intersections, one can stop the training 
phase, for a given si,ze of PR to obtain the. minimum loss.

The characteristics of a SLAM-PR can be summed 
up as follows:

(i) The rate of recognition increases 
rapidly, then tends to level off 
with increasing number of SLAMs 
(fig. 4.9a). This variation is 
reflected in the decrease in the 
rejection rate (fig. 4.9c).

(ii) There is a rapid decrease in the 
rate, of substitution, accompanied
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with an increase in rejection rate 
as the memory is filled (figs.
4.8b and 4.8c) .

(iii) For any size of SLAM-PR the
recognition rate increases to an 
optimum and then deteriorates with 
more training (fig. 4.8a).

(iv) For a given level of memory
filled, the rate of substitution 
error is independent of the number 
of SLAMs(fig. 4.9b) .

The above points except the last one will be 
discussed in section 5.1. The last point will be 
discussed in section 5.5.

4.6 Comparison with a Template-Matching Classifier

In the commercial field, devices using template 
matching techniques are already being used to recog­
nize printed or typewritten characters. As a basis 
for comparison, the performance of a template-matching 
classifier using the same handwritten characters is 
estimated. The system, as shown in fig. 4.11, is
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PATTERN
X

Fig. A.11. Block Diagram of a Template-Matching Classifier.
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simulated using various numbers of templates per 
discriminator. Assuming that the patterns in the 
training sets are all prototypes of their respective 
class, the templates are drawn from the training 
sets. The operations of the computer program for 
the simulation are shown in fig. 4.12.

The decision rule classifies an unlabelled 
pattern in the same class as the template which 
gives the maximum correlation. if tv/o or more
templates from different classes give an equal 
maximum correlation, the unknown pattern is 
rejected. A typical classification matrix for the 
template-matching classifier is shown in fig. 4.13.

The results for various numbers of templates 
per discriminator are shown in fig. 4.14. It shows 
the variation of recognition, substitution and 
rejection rates with number of templates.

The criterion for comparison between a SLAM-PR 
and a template-matching classifier is defined here 
as the rate of recognition with respect to the size 
of memory storage needed. Using SLAM-16 modules, 
which need 16 memory elements each, the number of 
memory storage bits required for a system of s SLAMs 
per discriminator is (sx!0xl6), for all ten dis­
criminators .
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Fig. 4.12 Major Operations in Template-Matching Classifier Simulation.



ACTUAL

PATTERN CLASS l 2 3 . 4

c.

5

LA3SIFI

6

CATION

7 8 9 0 REJ. SUBS.

1 299 0 0 0 0 0 1 0 0 0 0 1'

2 3 217 5 0 4 0 40 9 6 6 10 73

3 0 6 240 0 19 4 10 5 2 5 9 51

4 10 3 4 223 0 15 1 0 17 8 17 60

5 0 2 2 6 1 222 16 2 5 7 6 13 65

6 21 0 1 : 6 4 253 0 0 0 8 7 40

7 12 0 0 0 0 0 282 0 3 0 3 15

8 0 5 39 : i 13 32 1 16 5 19 7 18 117

9 1 1 1 4 2 0 8 0 277 1 5 18

0 0 o 0 0 2 4 1 0 11 278 4 18

Overall Recognition Rate: 81„9 %  

" Rejection " : 1 5 “3%

" Substitution " : 2.9%

Fig» 4ol3o A Typical Glassification Matrix for the Template - Matching Classifier ̂ 20 Template s/Discrimlnator^.
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For the template-matching classifier, each 
template is expressed by a 12x15 matrix and needs 
180 memory storage bits. The number of memory 
storage bits for a classifier using t templates per 
pattern class is (txl0xl80) .

For a template-matching classifier, consisting 
of a given number of templates per pattern class, 
the performance is unique. However, for a given 
size of SLAM-PR, the classification is a function of 
the level of memory filled (fig. 4.8a). It is 
assumed that the latter can be trained to the opti­
mum for the testing patterns. Fig. 4.15 shows the 
variation of the recognition rate for both systems 
with the size of memory storage.

One defines a simple loss function as one in 
which one unit is gained for a correct classification, 
one unit is lost for a misclassification and nothing 
is lost or gained for a rejection. Fig. 4.16 
illustrates the performance for both systems when 
the simple loss function is assumed.

It can be seen that provided a SLAM-PR can be 
optimally trained, its performance is generally better 
than that of a template-matching classifier on the 
same handwritten data, for a given amount of memory
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Fig. U-15- Recognition Rate of Template-Matching Classifier 

& of Optimally Trained SLAM-PR against Storage.
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storage. It must, however, be recalled that the 
size of SLAM modules for the comparison has been 
chosen arbitrarily. Similar experiments with PR 
using various sizes of SLAM modules have been 
reported by Ullmann (1969) rwhere a constant train­
ing set size was assumed. This leads to a broader 
discussion which is tackled in the conclusion.

4.7 Pattern Recognizer Using Output-Weighted SLAMs

It is clear that for a certain level of memory 
filled,the SLAMs could be classified in terms of 
their usefulness in arriving at the final classi­
fication. This usefulness is related to the 
deviations from the average memory filled. This 
section reports on various arbitrary "usefulness" 
assignments in terms of a weighting of the SLAM 
outputs as functions of memory filled.

To this end, a PR similar to the basic SLAM-PR 
(section 4.5), with a slight modification in the 
SLAM structure is considered, whereby the output 
of each SLAM is weighted as a function of the number 
of bits set in the particular SLAM. A PR, using such 
modified SLAMs, is referred to as an output-weighted
SLAM-PR, and is shown in fig. 4.17. Various
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Fig. A*17. Block Diagram of an Output-Weighted SLAM-PR.
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weighting schemes, illustrated in fig. 4.18, are 
implemented and are as follows:

(1) 'Uniform' weighting (same as in basic SLAM-PR)

w(i) = 1  for i = 1, . . . , 16

w(i) is the weighting value for the output 
when the SLAM has i memory bits set.

(2) 'Ramp' weighting

w(i) = i for i = 1,...,16

(3) 'Antiramp' weighting

w (i) = 17-i for i = .1, ... ,16

(4) 'Entropy' weighting

j = if for i = 1,...,16

w (i) = '{j log2 (i) + (1—j) iog2 (— j) } x 100

(5) 'Peak' weighting

j = i-1 for i = 1,...,8
j = 16-i for i = 9,...,16
w (i) = 2j
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(6) 'Trough' weighting

j = 18 — j | for i = 1,. . .,15

w(i) = 2  ̂
w (16) = 0

A PR, which implements the 'uniform' weighting 
scheme, is equivalent to the basic SLAM-PR and serves 
as a basis for comparison for the other output- 
weighted SLAM-PRs. The weighting schemes are 
arbitrarily composed, e.g. the weighting value w(16) 
for the 'trough' weighting scheme is set to zero to 
preserve the symmetry of the distribution of the 
weighting values with number of bits set (fig. 4.18) . 
A PR implementing say the 'peak' scheme will be 
referred to as a Peak-PR, and similarly for the other 
output-weighted SLAM-PRs.

In the experimentation, the patterns from the 
training sets are also tested. The classification of 
the training patterns is independent of the weighting 
schemes since a discriminator which has been trained 
on a pattern will always give maximum response when 
tested on that particular pattern. The resulting 
outcome for a training pattern can only be either a 
correct classification or a rejection. A rejection 
occurs when a discriminator, other than the one 
which has been trained on the pattern, also gives
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maximum response. If the training patterns are 
representative of all the possible patterns, then 
the recognition rate for the training patterns is 
the upper bound to the performance of the various 
systems.

Simulations of the different output-weighted 
SLAM-PRs and for different sizes (10, 20,..., 160 
output-weighted SLAMs/discriminator) are carried 
out. The results are plotted:

Figs. 4.19a,b,c,d,e show the variation in the 
rate of recognition for various sizes of PR at 
different levels of memory filled.

Figs. 4,20a,b,c,d,e show the variation in the 
rate of misclassification for various sizes of PR 
at different levels of memory filled.

Figs. 4.21a,b,c,d,e show the variation in the 
rate of rejection for various sizes of PR at 
different levels of memory filled.

From the results, the characteristics of an 
output-weighted SLAM-PR are basically similar to 
those of a basic SLAM-PR (section 4.5), there are, 
however, two additional points which are:
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(i) The Uniform-PR consistently generates more 
rejections than the remaining PRs.

(ii) Variations in the performance for the 
different output-weighted SLAM-PRs are 
entirely due to the difference in the 
weighting schemes, as the same set of 
random connections are used. The 
noticeable variations are:

(1) The recognition rate curves 
for the Peak-PR and Trough-PR 
consistently cross each other 
at about half memory filled.

(2) The recognition rate for the 
Antiramp-PR is generally better 
than the remaining systems.

The above two points will be discussed in sections
5.1 and 5.5 respectively.

4.8 Clustered SLAM Pattern Recognizer

It has been suggested by several workers that a 
completely random choice of features prevents the 
SLAMs from becoming sensitive to local events such as 
edges, filled in or empty spaces, etc..... To this
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end, a system using 1 localized1 or 1 clustered' SLAMs 
is simulated.

A clustered SLAM is one whose inputs are 
connected within a 3x3 submatrix; one input being 
connected to the centre of the submatrix and the 
remaining inputs are connected randomly to the 
remaining retinal points in the submatrix. Hence, a 
SLAM-16 would have 3 inputs distributed randomly in 
the remaining 8 retinal points. Another constraint 
which is imposed, is that no two inputs to the same 
SLAM are connected to the same retinal point. For a 
15x12 retina matrix, 180 clustered SLAMs are used for 
each discriminator, one for each retinal point. For 
a clustered SLAM which is connected to a corner of 
the retina, there is only one possible 4-tuple.

The performance of a PR using clustered SLAMs is 
compared to that of a basic SLAM-PR of the same size 
(180 randomly connected SLAMs per discriminator). The 
results are shown in fig. 4.22. A consequence of 
clustering the n-tuples is that the optimum occurs 
at a lower level of memory filled and the memory is 
more difficult to fill completely.

For clustered SLAMs connected to areas of low 
retinal activity, e.g. in the corners of the retina, 
the probability of encountering more than one state
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of the n-tuple is low; while the n-tuples in the 
high activity regions are likely to have more 
different states than a random non-clustered n-tuple. 
This is shown in fig. 4.23 which illustrates a 
typical distribution of the SLAMs with the number of 
bits set after training, for both a PR with clustered 
SLAMs and a PR with non-clustered SLAMs. The 
distributions for the individual discriminators are 
tabulated in figs. 4.23a and 4.23b. On average, the 
SLAMs in both systems are filled almost equally (see 
table 4.2 below). For randomly connected SLAMs, the 
distribution is almost gaussian. For the clustered 
SLAMs, there are two maxima, one at one bit per SLAM 
which represents the SLAMs connected to low-activity 
n-tuples. and the other maximum is that of a skew 
gaussian distribution. Also, in the clustered SLAM- 
PR, there are more SLAMs with more memory bits set and 
they represent the localized n-tuples in the high- 
activity regions.

This would explain why the memory of a PR using 
clustered SLAMs is relatively more difficult to fill. 
Only the SLAMs in the high-activity regions are filled, 
and for SLAMs which are partly filled to see new 
state of the n-tuple, the number of patterns required 
goes up exponentially as seen in subsection 3.4.3.
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Mean No. of 
Bits set 
per SLAM

Standard
Deviation

Random SLAMs 8.38(52.3%) 0.62

Clustered SLAMs 8.44(52.7%) 0.72

TABLE 4.2
Mean and Standard Deviation of the No. of Bits

Set in SLAMs

The optimum figure of recognition for the clustered 
SLAM-PR is only marginally greater than that of the 
basic SLAM-PR (fig. 4.22) and this improvement may be 
due to statistical variations. It is concluded that 
little is to be gained by the use of this technique.
One positive result of this experiment is that the areas 
of important activities can be identified by the state 
of the SLAMs, and in future work one could reconnect all 
the SLAMs to those areas only. More is said about this
in section 5.4.
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Fig. 4-22. Performance of Clustered & Basic SLAM-PRs.
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CHAPTER 5

DEVELOPMENTS SUGGESTED BY THE EXPERIMENTATION

5.1 Salient Characteristics of Basic and Output- 
Weighted SLAM-PRs

Some of the points which have been noticed in the 
simulation of SLAM-PRs (sections 4.5 and 4.7) are dis­
cussed here.

It has been found that the recognition rate 
increases with the size of the PR but tends to level off 
as the PR becomes large (fig. 4.9a) . This diminishing 
return trend has been reported by Ullmann & Kidd (1969) . 
That is, it is relatively easy to obtain a basic, 
medium recognition rate, but thereafter, any improvement 
becomes increasingly difficult. This characteristic is 
common to almost all pattern recognition systems and, 
in the present case led to an investigation such as 
output weighting in order to try to overcome the 
limitation. However, only a few of several such actions 
have been considered in this thesis. An obvious 
development is a revision of the way in which one chooses 
n-tuples, which is discussed in section 5.4.

As the memory of a basic or output-weighted SLAM-PR
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is filled, the rate of substitution decreases rapidly. 
It will be argued that this may be explained partly 
in terms of the variation in the recognition rate and 
partly in terms of the increase in the rejection rate* 
The latter effect can easily be attributed to the 
fact that as more memory elements are set in each 
discriminator, the probability of more than one dis­
criminator giving maximum response to a pattern 
increases, hence resulting in more rejections.

The Uniform-PR has been noticed to generate more 
rejections than the other output-weighted SLAM-PRs.
In the Uniform-PR, if the same number of SLAMs in two 
or more discriminators respond positively and if that 
number is greater than in the remaining discriminators, 
then a rejection ensues. For the other output-weighted 
SLAM-PRs, a rejection does not necessarily follow if 
the same number of SLAMs in two discriminators respond 
positively. Nor is a rejection excluded when one 
discriminator has more SLAMs with positive outputs, but 
this is an unlikely event. It is the sum of the 
weighted positive responses which dictates the classi­
fication. Owing to the distribution of set memory bits 
among the SLAMs in a discriminator, (consequently the 
distribution of weighting values) the probability of 
two discriminators having equal sums is reduced.
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It has also been found that the rate of 
recognition depends considerably on the level of 
memory filled; the recognition rate improves with 
training to an optimum and then deteriorates with 
more training. In particular, all output-weighted 
SLAM-PRs (except the Trough-PR) give an optimum 
performance at about the same level of memory filled. 
The optimum performance occurs between 30% and 60% of 
memory filled, depending on the size of the PR. As a 
consequence of this observation the experimental 
investigation described in the next section is 
carried out.

5.2 Hamming Distance Between Discriminator Memory

In this section, the variation of the recognition 
rate of a SLAM-PR with the average Hamming distance 
(HD) between the contents of the discriminator memories 
is considered. The memory of each n-input SLAM is

Vectors

taken as a vector. If S. • is the it*1 SLAM in the j ^ ̂rJ
discriminator,
and consists of 2 components

i «  ■ [ ai .. . , â ,, • • • , ^2n]
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= 1 or O depending on whether the
, th , . .k memory bit is set or
not respectively.

Concatenating all the SLAM memory vector (SMVs) 
in a discriminator in a string results in what is 
referred to as a discriminator memory vector (DMV). 
The DMV for the j ^  discriminator consisting of s 
SLAMs is

D.. = [S1 j ' 2j , S .] ' s j J

The average HD between the DMVs in a PR is the 
sum of the HDs between a 11 pairs of DMVs divided by 
the number of .possible .combinations..

A basic SLAM-PR (consisting of 45 SLAMs/dis- 
criminator) is simulated and the average HD between 
the DMVs at various levels of memory filled is 
determined and plotted in fig. 5.1. The recognition 
rate of the PR is also shown in fig. 5.1. The strong 
correlation between the two plots (fig. 5.1) and 
intuition suggest that the performance of a SLAM-PR can 
be improved by maximizing the average HD between the
DMVs .
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.5.3 Maximization of the Average HD Between DMVs

The criterion assumed during the training phase 
of a SLAM-PR is to keep the memories of the dis­
criminators equally filled. That is, all the DMVs 
will contain an equal number of '1' components. It 
will be shown in what follows that by having the 
discriminators half-filled, the probability of having 
the greatest possible average HD between the DMVs is 
maximized.

Assuming that all the components in the DMVs have 
equal probability of being '1', the probability being 
equal to say q, then the probability of any component 
being 'O' is (1-q) . q would also be the likely ratio 
of '1' components to the number of components in the 
DMV.

thConsidering the i component of any two DMVs, 
the probability (P̂ ) of the two components being non­
equivalent is given by

Pi = 2 {q(1-q) }

since the probability of the first being,

11' is q and the second being 'O' is (1-q)
'O' is (1-q) and the second being 111 is q
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The probability is a maximum when q=0.5, i.e. 
when any component is equally likely to be a '1' or 
a 'O'. Such a probability is equivalent to having the 
discriminator memories half-filled. This is also the 
condition for having the largest number of differing 
corresponding pairs of DMV components and hence the 
largest average HD between any two DMVs. S.ince no 
DMV is particularly favoured by the above argument, 
it follows that this is also the condition for maximum 
average HD between all the DMVs.

It should however, be pointed out that the 
assumption that all the components have equal proba­
bility of being '1' is not entirely true in actual 
practical cases. For instance, the states of an n-tuple 
lying in a ’ corner of the retina do’ not have an- equal 
probability of occurrence. Hence, this is only an 
approximate argument and leaves room for a more 
thorough theoretical treatment. Part of the inaccuracy 
of the above assumption leads to the conclusion that it 
is desirable to half-fill the discriminator memories 
and that the unbalance (due to corners, etc...) is due 
to the wrong choice of n-tuples.
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5.4 Possible Technique for Choosing n-tuples

The maximization of average HD between the DMVs 
can be effected by maximizing the HD between corres­
ponding SLAM memory vectors (SMVs). Using the same 
argument for the DMVs (section 5.3), the probability 
of obtaining the greatest average HD among SMVs is 
maximized when the SLAM memories are half-filled 
(optimal).

This, incidentally, could explain the odd result 
in the Trough-PR, whose performance is noticeably 
inferior than those of the remaining output-weighted 
SLAM-PRs (figs. 4.1 9 a e) . The 'Trough' weighting 
scheme .assigns zero .weighting, to. the- half-filled SLAMs.

One possible method of achieving the desired state 
of the SLAM memories is to have an abundant number of 
SLAMs per discriminator. Then after the training phase, 
the SLAMs which are optimally over-filled or under­
filled can be removed.

Another method which is basically similar is to 
have a reconnecting procedure. The SLAMs are randomly 
connected and those which are not half-filled after 
the training phase are reconnected randomly. The 

procedure is repeated until an acceptable state of the
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PR is reached. The repeating procedure effectively 
shifts the n-tuples connected to the SLAMs from low 
activity to higher activity regions, and vice versa.

Implicitly, the reconnecting process is a hill­
climbing search for optimal n-tuples. The hill­
climbing is done within the constraint of the initial 
random connection, thus if there is an absolute 
optimum connection the method does not guarantee 
finding it. Nevetheless, it may be of sufficient 
interest to find the local maxima within the above 
constraint.

5.5 Frequency of Occurrence of the States of n-tuples

In section 4.7, it is found that the variations in 
the performance for the different output-weighted SLAM- 
PRs are due to the different weighting schemes. One 
of the noticeable features is that the recognition 
rate curves for the 'Peak' and 'Trough1 PRs 
consistently cross each other when the memory is about 
half-filled (figs. 4.19a,b,c,d,e). That is, for low 
levels of memory filled, a PR implementing the 'Trough' 
weighting scheme performs better than a Peak-PR.

This is due to the fact that the 'Trough' scheme,
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at low levels of memory filled, has implicitly a 
higher weighting value for more frequently occurring 
states of its n-tuple. During the training phase, all 
the SLAMs in a discriminator see the same number of n- 
tuples (one n-tuple/pattern). Consequently, a SLAM 
which sees frequently occurring sets of inputs, is 
likely to have less memory bits set than the average 
for the discriminator, and if the overall level of 
memory filled is less than half, in the 'Trough' scheme 
the SLAMs with less bits set will be more heavily 
weighted.

The same implicit weighting effect would explain 
why the Peak-PR performs better when the memory is 
more than half^filled,• and-also why-an Antiramp-PR 
generally performs better at any level of memory filled.

In section 4.5, it is noticed that for a given 
level of memory filled, the rate of substitution in a 
basic SLAM-PR is independent of the number of SLAMs 
(fig. 4.9b). This could have been due to the presence 
of 'rogue' patterns in the training sets and testing 
sets. A rogue pattern for a particular class has 
rogue states of n-tuples which occur very infrequently 
for the class. The SLAMs which have been trained on 
the rogue sets of inputs are more likely to cause
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substitution error. Conversely, a rogue pattern in 
the testing set is more likely to be misclassified.

This underlines the weakness of most of the n- 
tuple methods for feature extraction, especially in 
problems that deal with unconstrained handwritten 
characters. The PR has to deal continually with new 
patterns as it is likely to be trained on patterns 
which occur very infrequently. It follows that one 
possible improvement, as already been shown by the 
discussion on the weighting schemes, is to attach 
more importance to features which occur more 
frequently.

5 * 6 Freguency-of-Occurrenee-Dependent-Optimal SLAM

In this section a development to the SLAM is 
proposed, whereby the response depends on the frequency 
of occurrence of the individual state of the n-tuple. 
Moreover, the memory of the modified SLAM is such that 
it can only be filled to halfway or less, in the 
sense that it will respond positively to only half 
or less of the possible sets of inputs.

The outline of such a Frequency-of-Occurrence-
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Dependent-Optimal SLAM (FOSLAM) is shown in fig. 
5,2. The FOSLAM has a shift register related to 
each possible state of the n-tuple, as opposed to 
just one flip-flop in the SLAM. When presented 
with a set of inputs during the training phase, 
a bit '1' is forced into the associated shift 
register; so that for more frequently occurring 
sets of inputs, there will be more bits '1' in the 
pertaining registers.

To increase the efficiency of the registers, 
whenever the leftmost or bottom stage of all the 
registers contain '1', all the registers are 
shifted left by forcing a 'O' in the rightmost or 
top stages, ensuring that there is always at least 
one register with the bottom stage containing 'O'. 
The shifting left is achieved by means of a mono­
stable element as shown.

Also, none of the registers is allowed to 
overflow, whenever a register is full, all the 
registers are shifted left, so that there is no bit 
'1* in any of the top stages.

During the training phase, assuming that the 
training patterns occur with some time-stationary 
first order probability and that they are not
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'maliciously' arranged in any manner, the dis­
tribution of the bits 111 in the registers will, 
after some time, reach a dynamic equilibrium, when 
only the difference of occurrence is stored.

Each stage of the registers is fed into an 
inverted majority gate (only the logic for the first 
two stages of the registers is drawn in fig. 5.3).
The output of an inverted majority gate will be '1' 
if half or less than half of the registers contain 
'1' in that particular stage. Therefore, during the 
recognition phase, only the inverted majority gates 
for the upper stages will output 11', and if the 
shift register addressed contains a 11' in the upper 
stages, then the response of the FOSLAM will be '1' 
or positive.

For hardware implementation, however, only one 
majority gate is required, an internal oscillator 
can generate clocking pulses which would cause all 
the registers to do a complete circular shift. If 
a positive output occurs during the circular shift, 
it sets a bistable element which stays set till the 
next pattern is presented. It is necessary to 
inhibit the monostable during the circular shift.

It is estimated that it is possible to have a
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FOSLAM-8 with registers of 64 bits on a chip, or 
FOSLAM-16 with registers of 32 bits. The registers 
would occupy about half the chip, leaving the other 
half to accommodate the necessary logic.

Using FOSLAMs, only the more frequently 
occurring sets of inputs will give positive response, 
thus any rogue patterns in the training set will have 
less effect. Also larger training sets can be used, 
the capacity of the FOSLAMs being limited only by the 
length of the shift registers.

The FOSLAM can be modified so that it can be 
1de-trained1 on a set of inputs. Instead of forcing
* 1' in the register addressed, a ‘O' is forced down 
from the top, this is analogous to teaching a SLAM 
to respond negatively to a set of inputs. Owing to 
the integrating effect of the FOSLAM, the result of 
de-training is not as drastic as in a SLAM. A 
possible use of this technique is, for instance, when 
numerals '7' are very often classified in class ' 1 * 
and vice versa. The discriminator for class 111 can 
be de-trained on numerals '7' and vice versa. The 
importance of the common features for the two classes 
is thus reduced and the features which represent the 
difference between the two classes is automatically
accentuated.
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CHAPTER 6 

CONCLUSION

6,1 Quantitative Comparison

It is interesting to compare the results obtained 
here to those of Deutsch's recognition system (1968), 
as the same data has been used. Deutsch's system is 
adaptive, in the sense that the features (codes) are 
determined from a set of training patterns, but after 
the raw data has been transformed through a vast 
amount of preprocessing. The performance of his 
system and those of the various SLAM-PRs, simulated in 
this work, are shown in fig. 6.1 where the best 
performance figures for the systems•are used. .....

It can be said that the recognition rate of a 
basic SLAM-PR, containing 160 SLAMs per discriminator, 
is comparable to that of the PR proposed by Deutsch.
It must, however, be noted that whereas the pre­
processing of the patterns here has been minimal and 
is feasible in parallel; Deutsch has performed 
elaborate sequential smoothing and thinning processes 
to reduce the thickness of the strokes. Furthermore, 
his recognition system is highly structured; the 
preprocessed pattern undergoes four coding stages,each 
being a sequential process, and the classification is



Deutsch's Basic
SLAM-FR

Ramp- 
PR '

Antiramp-
PR

Entropy-
PR

Peak-
PR

Trough- 
. PR

Clustered
SLAM-PR

Recognition 
Rate {%) 87.5 88.0 89.7 89.6 90.2 87.2 79.2 89.6

Substitution 
Rate (%) 11.0 9.1 10.3 10.4 9.8 12.8 20.8 7.8

Rejection 
Rate {%) 1.5 2.9 0.0 0.0 0.0 0.0 0.0 2.6

No. of SLAMs/ 
Discriminator 16 0 160 160 160 160 160 180

Fig. 6.1. Performance of Various Recognition Systems.
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effected by means of a tree-like algorithm which 
analyses the final code.

Owing to the sequential nature of the various 
operations, Deutsch's system would be costly to 
implement in hardware and the processing time may be 
prohibitive. In the present simulation of a basic 
SLAM-PR (fig. 3.2), containing 160 SLAMs per 
discriminator, the time taken to process one pattern 
is about k second. A SLAM-PR, however, is more 
amenable to hardware realization and the feature 
extracting operations by the SLAMs would be done in 
parallel. The propagation delay through a SLAM-16 
module which has already been manufactured (Glover & 
Aleksander, 1970) is lySec. One must add to this the 
time taken by the summing device and the maximum 
response detector which can be done with fast hardware.

6.2 Summary and Conclusion

This thesis has dealt with several pattern 
recognition systems using SLAMs. The hardware 
realization of such PRs is quite economic and their 
processing time would be fast because of the parallel 
operations of the SLAMs. They can be empirically
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'designed without making any assumptions about the 
probabilities of occurrence of the pattern classes 
and are not affected by changes in the probabilities.

A novel measure for training a SLAM-PR has been 
defined as the level of memory filled as different 
pattern classes are not of the same pattern density 
and degree of variability. In the training phase, 
the discriminators are filled as equally as possible 
independently of the number of training patterns from 
each class.

The performance of a SLAM-PR, which is applicable 
to pattern recognition problems in general, has been 
estimated on handwritten numeric characters and has 
been compared with that of a template-matching' classi­
fier. Using the recognition rate as a criterion for 
comparison, an optimally trained SLAM-PR has been found 
to perform better than the template-matching classifier 
for a given amount of memory storage.

It has been found that an increase in the number 
of SLAMs per discriminator generally improves the 
recognition rate. However, the trend of 'diminishing 
return' prevails as in most recognition systems. It 
has also been found that the performance reaches an 
optimum with memory filling (about one half) and then
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deteriorates as the level of memory filled increases. 
Further experimentation shows that there is a strong 
correlation between the recognition rate and the 
average Hamming distance between the contents of the 
discriminator memories. It is therefore proposed to 
half-fill all the SLAMs by choice of n-tuples to 
increase the probability of obtaining a large average 
Hamming distance.

Ullmann (1969) has reported that given a constant 
number of training patterns, the recognition rate of 
a SLAM-PR reaches an optimum and then declines with 
increasing size of SLAMs (see section 4.3). This 
observation can now be interpreted in the light of the 
results obtained here. If SLAM-PRs are trained on the 
same number of patterns, the level of memory filled 
would shift relatively from high to low with increasing 
size of the SLAMs used, i.e. from over the optimum 
level for PRs using small SLAMs to below the optimum 
for PRs using large SLAMs.

PRs using SLAMs with weighted outputs have also 
been simulated. Various weighting schemes have been 
implemented and the variations in their performance 
indicate that improvement can be achieved by weighting 
more heavily the more frequently occurring features.
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As a consequence of the observations in the 
experimentation, a possible development (FOSLAM) to 
the SLAM is suggested. A FOSLAM incorporates the 
characteristics of the SLAM, as regards speed and 
adaptivity; it will also respond positively to only 
the more frequently occurring features in the 
training patterns and to not more than half the 
positive sets of inputs.

It is hoped that further research will be 
carried along these lines, and that improved 
recognition will be achieved.

Digital pattern recognition is a complex and 
dynamic field, a field which is more or less contem­
poraneous with the emergence and growth of computer 
technology. There are still many oustanding problems, 
some of which are of a fundamental nature. Contribu­
tions towards the solution can be expected from both 
technological and physiological sources. With time 
a clearer understanding of the subject will emerge, 
meanwhile, the situation is best assessed by Harmon:

"Digital pattern recognition has had a swift 
passage from birth to difficult and still 
clumsy adolescence. And with its less than 
twenty years of development instead of 
several billion perhaps our judgements should 
be tempered with charity."
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APPENDIX 1. NOS. OF RANDOM PATTERNS TO FILL SLAM MEMORIES.

THE LIKELY NUMBERS OF PATTERNS, GIVEN THE PATTERN 

DENSITY, REQUIRED TO FILL THE MEMORIES OF SLAM-4, SLAM-8 & 
SLAM-16 HAVE BEEN ESTIMATED BY FORTRAN PROGRAMS. THE PROGRAM 

FOR SLAM-4 IS GIVEN BELOW. (IT IS ASSUMED THAT THE COMPONENTS 

•1 • IN THE PATTERNS OCCUR RANDOMLY).

C
C PROGRAM FOR SLAM-4 
C

DIMENSION P(4),IP(4),Q(4),X(4)
WRITE (1,100)

100 FORMAT (10H SLAM-4 P=)
C
C TYPE IN PATTERN DENSITY - FORMAT F6.4 
C

READ (1,101) A
101 FORMAT (F6.4)

B = ( 1 .0-A)
P(1) = B*A
P(2) = P(1 )
P(3) " A*A • ... .... . ........
P(4) = B*B 

C
C O/P PROBS. OF OCC. FOR DIFFERENT STATES OF 2-TUPLE 
C

WRITE (1,102) P
102 FORMAT (1H ,4F8.5)

DO 103 1=1,4
Q(I) = 0.

103 IP(I) = I 
1 N = IP ( 1 )

C
C OUTPUT TRACING 
C

WRITE (1,104) N
104 FORMAT (8H IP(1)= ,12)

N = IP ( 1 )
X(1) = P (N )

C
C RUNNING SUM FOR PROB. OF SINGLE STATE OF 2-TUPLE 
C
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Q ( 1 ) = Q ( 1 ) +Q ( 1 )
IF ( IP(1 ) -4) 2,5,99

2 N = IP ( 2 )
X ( 2) = X C1 )*P(N )

RUNNING SUMS FOR JOINT PROBS.

0(2) = Q(2)+X(2)
IF (IP(2)-4) 3,21,99

21 IP(1 ) = IP(1 ) + l 
DO 22 J=2,4

22 IP(J) = IP(1 )+J-l 
GO TO 1

3 N = IPO)
X (3) = X(2)*P(N)
0(3) = 0(3)+X(3)
IF (IP(3)-4) 4,31,99 

31 IP ( 2 ) = IP ( 2 ) +1 
IPO) = IP ( 2 ) +1 
GO TO 2

4 N = IP ( 4 )
X(4) = X (3)*P(N )
0(4) = 0(4)+X(4)
IPO) = IP( 3 ) +1 
GO TO 3

MULTIPLY BY NO. OF COMBINATIONS.

5 DO 200 1=1,4 
DO 200 J=1,I 
AJ = FLOAT(J )
0(1) = Q ( I )*AJ

200 CONTINUE

OUTPUT PROBS.

105 FORMAT (7H PROBS.,4(1H ,E14.4)) 
WRITE (1,105) Q
DO 106 1=1,4 
AI = FLOAT(I)

NO. OF LIKELY PATTERNS.

106 Q (I) = A I/Q(I)
WRITE (1,107) Q

107 FORMAT (6H PATS.,4(1H ,E14.4)) 
99 STOP

END
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APPENDIX 2

GENERATION OF PSEUDO-RANDOM NUMBERS

Pseudo-random numbers in the simulations have 
been generated by the recursive multiplicative 
expression:

Rn+1 = (Rn *p) + 1 [modulo 215]

where R^ is the n ^  random number 
P is a multiplying factor.

The maximum possible sequence for the DDP-516,
15being a 16-bit word computer, is (2 -1); and the

multiplying factors which give the maximum sequences 
are found to -be •

15(2 -3) - 4.1 I is an integer.

A random number (R̂ ) between a particular range 
is obtained by

Rn (b - a ) j + a

where a is the lower limit
b is the upper limit.
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