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Abstract

The mixture regression model is an important technique used in statistical
modelling to investigate the relationship between variables. It has been applied
in many fields such as genetics, finance and biology. In this research, we focus on
its application to genetic data. As we know gene expression data normally con-
tains unknown correlation structures even after normalization, hence it raises
a great challenge for the existing clustering methods such as the Gaussian mix-
ture(GM) model and k-mean. Here we use the exponential power distribution
to robustly overcome the clustering of gene expression data by treating the data
as a mixture of regression. The exponential power distribution (EPD) is a scale
mixture of Gaussian distributions that has varying shape parameters. In this
study we introduce and develop our method based on two different aspects of
multiple regression with random errors distributed according to the exponential
power distribution. The first aspect is estimation: we use both the Expectation-
Maximisation algorithm (EM) and the Newton-Raphson method to estimate
the parameters of the exponential power distribution mixture regression mod-
els. The second aspect is simultaneous variable selection and clustering: we
develop a LASSO-type method to select only the related variables in a large
dataset, especially for a high dimensional dataset. The novelty of this research
regarding to the Expectation-Maximization algorithm is that we convert each
penalised mixture regression estimation problem to a LASSO (Least absolute
shrinkage and selection operator) problem. The performance of our method is
assessed on both independent and dependent data. We also compared the EPD
mixture regression with Gaussian mixture regressions by simulations and real
data analyses. We also derive the model selection criteria such as AIC, BIC
and EBIC for both EPD mixture and GM models.
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Chapter 1
Introduction

The past few decades have witnessed a tremendous amount of studies on the
problem of relating a response variable to a set of covariates through a regression-
type model under a homogeneity assumption in which the regression coefficients
are the same for different observations. Since these coefficients may change for
different subgroups, the above assumption may be inadequate when the popula-
tion under investigation is heterogeneous. Such heterogeneity can be modelled
with a Finite Mixture Regression (FMR) model, for example, the Gaussian
mixture regression (Staedler et al., 2010; Grun and Leisch, 2007; Sung, 2004;
Fan and Li, 2001; Williams and Rasmussen, 1996). Gaussian mixture(GM)
regression models have many applications in several research fields such as ge-
netics, econometrics and social sciences. In Gaussian mixture models, given
covariates, the response variable is assumed to follow a Gaussian mixture dis-
tribution and the observations are assumed to be independent of each other,
which are often invalid in practice. For example, gene expression data may
have a non-Gaussian mixture distribution with correlated structures (Zhang
and Liang, 2010). Thus, a question is naturally raised: if the above Gaussian
mixture assumptions do not hold, what kind of models should we use in order
to avoid potential modelling biases? In this thesis, it’s shown that mixtures of
exponential power distributions(EPD) can be employed to address the above

issue and to achieve a more flexible modelling.




The exponential power distribution introduced by Subbotin (1923) had not at-
tracted any attention until Box and Tiao (1973) re-examined this model. Since
then, it has been widely used in economics and finance as a generalized Gaus-
sian distribution, as shown by Liu and Bozdogan (2008), Theodossiou (1998),
Rachev and Mittnik (2000), and Toyli et al. (2002). Very recently, Zhang and
Liang (2010) applied the exponential mixture model to provide a more robust
analysis of some structured genetic data. Zeckhauser and Thompson (1970) was
the first to study the simple linear regression model with exponential power er-
ror terms. The EPD is often used to fit the data with distribution tails heavier
or lighter than Gaussian tails (Box and Tiao, 1973). The tail shape of an EPD
is described by its shape parameter. The exponential power distribution (EPD)
is a scale mixture of Gaussian distributions that has varying shape parameters.
Therefore. the EPD is more flexible compared to a Gaussian distribution in
practice. The use of the EPD mixture can reduce the modelling bias and also

increase the robustness of data analysis to outliers.

In order to select a “better” model, we need to choose a suitable informa-
tion criterion for model selection. The Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are the most widely used model selec-
tion criteria in the literature. The AIC proposed by Akaike (1974) uses the
Kullback-Leibler distance to justify the goodness of a selected model. The AIC
penalizes the number of parameters less strongly than the BIC does, which was
developed by Schwarz (1978). The nature of BIC is different from AIC as it
assumes that one of the models is the “true” model. Chen and Chen (2008) pro-
posed an extended family of BIC (EBIC), which considers both the number of
unknown parameters and the complexity of the model space. In this study, we

use these information criteria to assess the performance of the selected model.

There are two goals in this thesis. The first one is to build a so-called Expectation-
Maximisation (EM) algorithm to calculate the maximum likelihood estimators
for exponential power mixture regression models. Another target for this the-

sis is to develop a method to perform cluster analysis and variable selection




simultaneously for high-dimensional non-Gaussian regression data. Here, the
novelty lies in that we convert a general penalised regression estimation prob-
lem to a special L; penalised regression (i.e., LASSO) problem, where LASSO
is short for Least absolute shrinkage and selection operator (Tibshirani, 1996).
The proposed method is assessed on both simulated and real data, and is also
compared to the existing Gaussian mixture regression based approach. The
simulations and the real data analysis suggest that exponential power mixture
regression models can provide a more robust analysis than Gaussian mixture

regression models.

The following chapters present the details with appropriate examples and illus-

trations.

Research Structure

The remainder of this thesis is organized as below: In Chapter 2, the back-
grounds for gene expression data and information criteria used in model se-
lection are reviewed. The algorithm for the maximum likelihood estimation is
addressed in Chapter 3. In Chapters 4 and 5 the behaviour of the maximum
likelihood estimation for Gaussian mixture and exponential power mixture re-
gression are investigated. In chapter 6, a new method for variable selection is
developed by using LASSO and forward selection arguments. In Chapter 7, the
classification of exponential power mixture regressions is discussed. The final

remarks and further discussion are given in Chapter 8.




Chapter 2

Background

2.1 Gene expression data analysis

Gene expression is the process by which the information encoded in a gene is
used to direct the assembly of a protein molecule. It is like books in a library,

where each gene contains information to make a protein.

Gene expression data can be normally described in a table which shows the

performance of each gene under certain conditions as below:

condition 1 condition 2 condition 3 condition 4
gene 1
gene 2
gene 3 gene expressions
gene 4

What is a motif? In genetics, a motif is a pattern of nucleotides in a DNA
sequence or in a protein sequence which is often used to predict the underlying

gene functions. There are two kinds of sequence of motifs: the first one is the




2.1. Gene expression data analysis

sequence of motifs that appears in the exon of a gene, which may also encode
the structural motifs of proteins; the second is those sequences of motifs that
are outside of the gene exons, they are normally at the up-strain or the down-
strain of the gene expression and regularized, which can explain why regulatory

sequence motifs exit.

There are two common ways to analyse genetic data: the column-centred anal-

ysis and row-centred analysis, as detailed in the following two subsections.

2.1.1 Column-centred analysis

In column centred analysis or condition-centred analysis, the conditions are
divided into several groups under the assumption that each group is homoge-

neous. Table for this kind of analysis can be shown as below:

group 1 group 2
condition 1 condition 2 condition 3 condition 4
gene 1
gene 2
gene 3 gene expressions
gene 4

The analysis of the yeast stress dataset in Chapter 5 is condition-centred. This
dataset contains 496 yeast genes under 173 experimental conditions. Their gene
expressions are the log-intensities of the expression of yeast under the changes

of the environment.




2.1. Gene expression data analysis

2.1.2 Row-centred analysis

Another common way for gene expression to be handled in data analysis is
through row centred analysis or gene centred analysis. In this analysis, genes
are grouped into different sub-populations under the assumption that the pop-

ulation is heterogeneous, as demonstrated in the table below:

condition 1 condition 2 condition 3 condition 4

group | gene 1

1 gene 2
group | gene 3 gene expressions
2 gene 4

The gene and motifs data which will be use in Chapter 6 is row-centred.

2.1.3 Link gene expression to transcript factors

The key mechanism to make a cell functional is transcriptional regulation which
is often regulated by proteins. A transcription factor is a group of proteins that
read and interpret the genetic information in the DNA. They bind to the DNA
and help initiate a program of increased or decreased gene transcription. As
such, they are vital to many important cellular processes. Understanding the
structure and function of a transcription factor (in particular, finding tran-
scription factor binding sites, i.e regulatory DNA motifs) is a crucial step to
studying the regulatory mechanism of gene expression. Liu et al. (2002) as-
sume that gene expressions link the scores of regulatory motifs through a linear
function. So if the gene expression is described by the response variables and
the candidate motifs are the covariates in a regression format, the problem of

clustering gene expression can be equal to the problem of regression clustering.




2.1. Gene expression data analysis

The dataset in Conlon et al. (2003) and Liu et al. (2002) contains two parts,
one shows relative expressions of 4,443 genes and the other provides the so-
called motif-matching scores of 2, 155 candidate motifs to each gene. The aim of
the analysis is to identify a subset of candidate motifs in the regulatory region

of a gene that can explain its relative expression level.

2.1.4 Issues

The traditional way to tackle the above problem is the linear regression mod-
elling proposed by Conlon et al. (2003), which regress the genes against candi-
date motifs under the assumption that the population is homogeneous. How-
ever, the assumption may not be true as genes may work in various groups (or
biological pathways). This motivates us to use the so-called mixture regres-
sion model, where the population can be allowed to be heterogeneous (Khalili,
2010). Khalili (2010) fitted the Gaussian mixture of regression to the above

dataset.

In the Gaussian mixture regression modelling, the conditional distribution of
the response variable given covariates is assumed to be Gaussian. This may
be invalid as shown in the following example, where we used Gaussian mixture
regression model to cluster the dataset of gene expression and motifs mentioned
before. We obtained two groups and depicted the residuals for each group by
using Q-Q plot as shown in Figure 2.1. It suggests that the gene expressions in

both group are not Gaussian distributed.

Here, we propose an exponential power mixture model for the above data,
removing the restrictions on the distribution shape parameter. The difference
between the Gaussian distribution and exponential power distribution(EPD)is
shown in below figure. We expect to obtain better fit to the data compared to

Gaussian mixture regression.
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Figure 2.1: The Q-Q plot of the residuals for each GM group of the motifs
dataset.

From the Figure 2.2, it can be seen that the shape of the exponential power
distribution has a sharper head and heavier tails comparing its shape parame-
ter @ < 2 compared to the Gaussian distribution’s which with @ = 2, and the
head of the exponential power distribution is flatter and the tail is lighter when

a > 2.

2.2 Finite mixture models

What is mixture modelling?

The mixture modelling of heterogeneity in a cluster analysis context is very use-
ful, as it is very flexible from both the practical and theoretical perspectives.
Mixture modelling is a method to model a mixture of subgroups within the pop-
ulation. It has been applied in many fields such as modelling gene expression
microarray data, economics and engineering etc. There are two assumptions in

finite mixture modelling;:

10
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Figure 2.2: Exponential power distribution against Gaussian distributions.

e the population is made up of a finite number of homogeneous groups;

e the groups can be identified based on the similarity in the patterns of the

response variables.

Parametric formulation of univariate mixture models We let y =
(Y1, ..., yn)T be a random sample observed in a population, where the superscript
T denotes vector transpose and y; denotes an observed value for i = 1,...,n.

Let f(y;) be the probability density function of y;, which can be expressed as

K
F) =D mefuw), (2.1)

k=1
where the fi(y;) are component density functions of the mixture, m; is the

mixing proportion or weight, such that 0 < 7, < 1, and Z,}f:lwk = 1, for
R T

11




2.2. Finite mixture models

For those fi(y;) that belong to some parametric family, we write the component
densities fr(y;) as fx(yi|@x), where 8y, is the vector of unknown parameters for
the k** component density. Hence, we can rewrite the mixture density f(y;) in

equation(2.1) in the form:

flyil¥) = Zﬂkfk(yz'|9k)a (22)

where W = (71, ..., T 1, 91T, e Bz)T is the vector contains all the unknown pa-

rameters.

Finite mixture regression models

Regression models are used to predict one variable from one or more other vari-
ables, and finite mixture of regression models is a flexible tool for modelling
data arising from many fields, such as biology, genetics, stocks etc. Mclachlan
and Peel (2001) provide a review of finite mixture of regression models: When
a random variable with a finite mixture distribution depends on certain covari-

ates, we obtain a finite mizture of regression(FMR) model.
Considering a multiple linear regression model

y=XB+¢€

where 3 is a (P + 1) dimensional regression coefficients vector and X is a
n x (P + 1) covariates matrix. The error vector € satisfied that F(e) = 0 and
Var(e) = o?I.

Suppose we have a dataset (y;,x;), @ = 1,...,n, such that E(y;|x;) = Bo +
Byxi1 + Potin + ...+ Bpxip. where the i'" observation y; on the response vari-

able y depends on the i*" vector, x;, on the n x (P + 1) covariates matrix,

12
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where X = (x1,...,%,)7 and x; = (1, z;1,...,zp), 1 = 1,...,n with 1 being

the design value for the intercept in the model.

In the finite mixture regression model, the parameter 8 in the k' compo-
nent density fi(y|0) is a vector of unknown parameters. In particular, in a
finite exponential power mixture regression model 8, = (81,02, ax)”, where
Br. = (Bro. Bets - - Bip)T, for k= 1,..., K, is the k' regression coefficient vec-
tor, o7 and «y are the dispersion and shape parameter of the k*" component
respectively. The density in a finite exponential power mixture regression model

can be written as follows:

K
flyi|xi, @) = Zﬂkfk(yi‘xiuak)a
=1

where the parameter vector U = (7, ..., mx_1,¢7)7 is the vector containing

all the unknown parameters in this mixture model, and ¢ = (9{, O

The density of the £ component can be written as

Fo (s %3, 01) = O Iyi_xiTﬁk’ak
k\Yi |Xi, 0 ) = QOkF (1/0@) exXp (0,3)“’“/2 ‘

Note that, the Gaussian finite mixture regression model is a special case of the

above model when setting the shape parameters o = 2 for k =1, ..., K.
In the following, we will provide a brief introduction to the methods for es-

timating finite mixture distributions. The advantages and disadvantages of

each method will be discussed.

13




2.2. Finite mixture models

2.2.1 Estimation

Over the past hundred years, there have been various methods developed for
estimating finite mixture models, including the method of moments, minimum-

distance methods, maximum likelihood and Bayesian approaches.

The earliest work on estimating mixture models was based on the method of mo-
ments by Pearson (1894), who focused on two-component univariate Gaussian
mixtures. Since then, the method of moments has been employed to estimating

other mixture models.

The minimum distance method is another way to estimate the parameter set W
in a mixture model. Let the joint density function F(y|X, ¥) = [, f (vi |x;, ¥)
under the assumption that v, ..., y, are identify and identity distributed. The
minimum distance method minimizes the distance between the mixture density
function F(y|X, ¥) and the estimated mixture density function F(y|X, ®) for
y = (¥1, ..., yn)T. The comprehensive properties for minimum distance methods

were investigated by Titterington et al. (1985).

As a result of the invention of the high speed computer, many new methods
have been developed recently. There are mainly two categories for these meth-
ods, namely, likelihood-based methods and Bayesian methods. Rao (1948) was
the first to use the maximum likelihood to estimating mixture models. He fitted
a mixture of two univariate distributions with equal variances to the data by
using Fisher’s method of scoring. However, his method has not been pursued
further until Hasselblad (1966) addressed a few computational issues related
to his method. Dempster et al. (1977) formulated the problem into an missing
data framework and developed the expectation-maximization(EM) algorithm.
After that, there have been extensive studies along this direction and the EM
has become one of the most popular and efficient approaches to mixture model

estimation.
The Bayesian approach to mixture modelling is based on posterior simula-

14




2.2. Finite mixture models

tion via the Markov chain Monte Carlo(MCMC)approach. The first study that
considered Bayesian estimation by using posterior simulation for mixture mod-
els was Gilks et al. (1989). The use of Bayesian methods for estimation was
limited until Gelfand and Smith (1990) identified that most Bayesian compu-
tations can be done by using the Gibbs sampler. Recently, some case studies
had also considered this method, such as (Dellaportas, 1998) and (Vounatsou
et al., 1998), and there are also many references to Bayesian mixture analysis
provided by Mclachlan and Peel (2001).

There are quite a lot of literatures on how to fit a finite mixture model. Here,
we focus on the EM algorithm as the fitting of mixture models by ML is a clas-
sic example of the so-called incomplete data problem. A brief introduction will
be given to the EM algorithm in Chapter 3, starting with the general setting of
the arbitrary component distributions, which will be followed by how to apply
the algorithm to particular cases. The EM algorithm will then be employed to
estimate a Gaussian mixture distribution with two components based on twenty
observations. The results will demonstrate that the EM algorithm can provide
good estimative except for some scenarios in which the population means are
quite close to each other or there are big differences in the variances of the

component distributions.

2.2.2 Evaluating model fit and complexity

In some of the complicated regression models, such as the finite mixture model
of regression, a large number of covariates are normally involved. Some of them
may be correlated when making predictions of the response variable and some
may not. Therefore, it is important to select a model which contains only the
relative variables. However, as we do not know which covariates can be used

to predict the response variable, we need methodologies to help us choose the
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“best” subset of covariates for the prediction.

What we need to be aware of is that there is no such an methodology that
can provide a perfect model for the data. Due to the principle of parsimony,
variable selection as one approach of model selection intends to make a trade-off
between bias and variance. The more parameters selected in a model, the less
bias and the larger variance that may exist, and vice versa. Therefore, the bal-
ance between under fitting and over fitting must be taken in into consideration

in model selection.

There are many methods of model selection in the literature. Two issues are
addressed as relevant to these methods. One is how do we define an appropriate
selection criterion and the other is how do we implement the corresponding se-
lection procedure? We will explore and discuss these issues in the next sections.
The methodologies are described addressing the first issue in Section 2.3and the

procedures for searching the “best” model are provided in Section 2.4.

2.3 Information criteria for model selection

The question of how many components should be included in a mixture model is
difficult to be completely resolved. As far as we know, there are two approaches
to modelling data with finite mixture distributions. The first is to modelling un-
known distributional shapes by providing an appealing semi-parametric frame-
work, such as the kernel density method; the second is to provide model based
clustering by using the mixture model. In both cases, the number of compo-
nents A in a mixture model needs to be known, which is called the problem
of model order selection. For each component, we need to select the covariants
for the regression equations, which is called the problem of feature selection.
Therefore, we split the model selection problems into two sub-problems, namely,

the problems of model order selection and feature selection.
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Both empirical and theoretical approaches are considered. Empirical approaches
include bootstrap and cross-validation, and the theoretical approaches include
Kullback-Leibler information, Akaike information criterion(AIC), Bayesian in-
formation criterion(BIC) and others. AIC and BIC are the most commonly used
approaches for model selection. The famous Japanese statistician Akaike (1974)
proposed the Akaike information criteria(AIC) based on Kullback-Leibler infor-
mation to justify the goodness of a selected model. The goal of AIC is to find
the model that gives the best prediction without considering the correctness of
the model. The AIC penalizes the number of parameters less strongly than the
Bayesian information criterion (BIC), which was developed by Schwarz (1978),
using Bayesian formalism, and the nature of BIC is different from AIC as it

assumes one of the models is the true model.

2.3.1 AIC

Assume we have a data set y = (y1, ..., ¥,)T which is drawn from some density f.
Hence f(y|X) denotes the true density while f,,(y|X, W,,) denotes an estimator
of f where m denotes the m! model and W, are the maximum likelihood
estimators for model m. In order to measure the divergence of f(y|X) with

respect to f.(y|X, \ilm), the Kullback-Leibler information is used:

K{f(Y|X):fm(y|Xa\i’m)} = /f & (y(|};|(‘i’ )
. / F(y1X) log f(y|X)dy

- / FIX)log fu(y|X, B)dy.  (2.3)

The best fit model will give small Kullback-Leibler information, hence the
aim is to minimise the result of equation 2.3. As the first term of the above

equation does not depend on m, only the second term is related. Therefore,

17




2.3. Information criteria for model selection

minimizing the Kullback-Leibler distance K{f(y|X), fn(y|X, ¥,,)} is the same

as maximizing

K, = / F(31X) 108 fn(y|X, B, dy.

A simple way to estimate K, is given by

e X
Km = = 1 m iXia‘Ilm
n; 0g f (yil )

1
= —log L(W¥,, |y, X)
n
where L(¥,,|y, X) is the likelihood function for model m. But this gives an
overestimate of the expected log density, the bias is denoted as b(K,). Hence,
an information criterion for model selection can be obtained by using bias-

corrected log likelihood function:

logL(\Ilm!YaX) - b<Km>7 (24)

where the aim of the selected model is to maximize equation 2.5 and minimize
the Kullback-Leibler information 2.3.

The general expression of equation(2.5) is in the form

—2log L(W,,]y, X) + 2C, (2.5)

where —2log L(W,, |y, X) measures the goodness of fit and C'is the penalty that
shows the complexity of the model. The aim is to choose a model to minimize

equation(2.5).

Akaike (1974) showed that b(K,,) is equal to the total number of parame-

ters in the selected model m, we denote it as d,,. Thus, Akaike’s information
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criterion(AIC) of model m is defined as:

AIC,, = —2log L(¥,,|y, X) + 2d,. (2.6)

In order to avoid over fitting, AIC penalizes —2 log likelihood, —2log L(¥ |y, X),
by adding twice the number of estimated parameters. For the same outcome

variables, AIC selects the “best” model with the lowest value.

There are also some limitations to the AIC, such as those models which are
related to time series analysis when it is not a consistent estimator of the order
of an auto-regression. When the number of observations goes to infinity, the

order chosen by AIC is not reliable as it’s too large compared to the true order.

2.3.2 BIC

Both Akaike (1974) and Schwarz (1978) proved AIC by developed a Bayesian
information criterion(BIC) for model selection. BIC has a heavier penalty for

over-fitting compared with AIC when large sample sizes are applied.

Under the assumption that the observations are independent, Bayesian infor-

mation criterion for selected model m is defined as:

BIC,, = —2log L(¥ ]y, X) 4+ d log(n), (2.7)

where n is the number of observations. BIC is much preferred when the number
of observations is large, and even for the situation when n is not very large,
BIC still should be preferred as it provides a heavier penalty than AIC does,
as log(n) > 2 when n > 8. It can be derived by using for Bayesian model

evidence, the log-posterior problem of the model as follows:
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Derivation The model selection through the Bayesian approach is to max-
imize the posterior probability of the selected model with the given dataset.
The formula for calculating the posterior probability of model m is:

f(model mly, X) = f(y|X, model m) f(model m)’
f(y)

where f(y|X, model m) is the marginal likelihood of model m and f(model m)

is the prior probability.
BIC assumes that the probability of each selected model is the same, therefore

to maximize the posterior probability is the same as maximising the marginal
likelihood:

f(y|X,model m) = /f(y|X,m0del m, ¥,,)d¥,,

= / LWy, X) d¥,,,

Hence, to maximising the posterior probability is equivalent to maximising

1og/ L(¥,,

By Taylor series and the law of large number, we can show that:

y, X)d¥,,

5 d,,
log / LV, |y, X)d¥,, ~ log L(¥,,|y,X) — o log(n). (2.8)

By times —2 on the left hand of equation(2.8), we have the BIC for a selected

model m as:

BIC,, = —2log L(¥ |y, X) 4 dm log(n), (2.9)

where d,,, is the number of free parameters to be estimated. The smaller the
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BIC the better the model fit. So we choose the model which minimizes the BIC.

The BIC (Schwarz, 1978) provides a good balance between the log-likelihood
and the number of free parameters. For the GM model, the number of param-
eters of 7 is K — 1, 0 is K and B is (p + 1) x K, by letting shape parameters
equal to 2, it gives

BIC,, = —2log L(¥,,]y, X) + 2K — 1+ (p+ 1) x K)log(n).

>
b}

For the EPD mixture model, the number of parameters of mis K — 1, 0 is K
Bis (P+1)x K and « is K, leading to

BIC,, = —2log L(¥,, |y, X) + (3K — 1+ (P +1) x K)log(n).

2.3.3 AIC vs. BIC

Both the AIC and BIC are penalized-likelihood criteria used for model selec-
tion, they are used to choose the “best” predictor subsets and to compare
non-nested models. AIC is the relative distance between the unknown true
likelihood function of the data and the fitted likelihood function of the model
plus an estimated bias. The lower the AIC value, the closer the fitted model
is to the truth. BIC is to estimate the function of the posterior probability to
evaluate a model is true or not, thus, the smaller the minimum BIC’s value
is, the more likely the fitted model is the true model. Hence we can see that
AIC tries to find the model with the best prediction while BIC tries to find
the model that is most likely to be true under the assumption that one of the

models is true.
The theory of AIC and BIC are completely different, but in practise, the only

difference is the penalty. The penalty of BIC is larger than the penalty of AIC

when the number of observation is large. Hence, BIC is much preferred in com-
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plex models. For a model with a large sample size, the AIC may face the risk of
choosing a model with too many parameters because its penalty is not related
to the sample size, while BIC may face the risk of choosing too few parameters

when the sample size is very large.

For some large data, the model selection by using AIC or BIC directly can
be extremely computationally intensive, hence how to efficiently select a model
for large dataset is a problem. In the next part the methods of feature selection

are considered and focused on the Lasso method.

2.3.4 EBIC

There are two goals of model selection: one is to select the "best” model to un-
dertake a prediction and then to focus on the accuracy of the prediction. The
other is to identify the selected features and focus on the consistency of the
selection. The methods of model selection such as AIC, cross-validation (CV),
generalized cross-validation (GCV) are based on the predicted accuracy of the
selected model, while the BIC assumes the prior is uniform over all models. If
the number of features is not large and all the features are fixed, we do not
have a feature selection problem. In such situation, the above criterion work
well for the prediction accuracy which is our first goal, and it does not conflict
with feature selection. But when the dimension (P + 1) is more huge compared
to a moderate sample size n, the criterion such as AIC, CV, GCV and BIC,

etc. are too liberal as they tend to choose too many features.

Chen and Chen (2008) proposed an extended family of BIC, which consid-
ered both the number of unknown parameters and the complexity of the model
space. Chen and Chen (2008) also showed that for a large dataset, the extended
Bayesian information criterion(EBIC) had very small loss in the positive selec-

tion rate while it was tightly central to the false discovery rate.
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Assume we have a finite mixture regression model with large dimension (P + 1)

and relatively small sample of size n, such that:

K
Filxo, ®) = ) mefi (i %0 0k)
k=1

where the response variable y; for the i** entity depends on x; where x; is a
vector of covariates X, for i = 1,...,n. The observations on covariates can be
written as an n by (P 4+ 1) matrix such that X = (x;,...,x,)?. The regression
coefficient 3 is a (P + 1) by K matrix, here 3, is sparse which means there are
only few elements that are non-zero. Each 3, is a (P 4 1) dimensional column
vector, for k=1, ..., K.

Now we let s be a subset of (1,..., (P +1)). Denote ¥(s) with those parame-

ters outside s equals to zero. Let S; be the set of all combinations of j indices

in (1,...,(P +1)). The prior/probability on S; is inversely proportional to the
. P+ .
size of S, k(S;), where k(S;) = ~|. For each s in the same subspace 5,
J

assign an eaual probability, i.e. pr(s|S;) = ﬁ for any s € S; as all the mod-
els in S; are equallly plausible. We assign the probability pr(S;) propotional
to £5(S;) in EBIC, 0 < £ < 1, instead assign the probability pr(S;) propo-
tional to log(n) in BIC. Therefor the prior p(s) is propotional to x~7(S;) for
~v = 1—£&. Hence, the family of extended BIC of a model m is defined as follows:

EBIC,,(s) = —2log L(¥,,(s)|y, X) + dm(s) log(n) 4 2fllog *(S;),  (2.10)
for 0 < v < 1. Where \i'm(s) is the maximum likelihood estimator of W,,(s),

d(s) is the number of parameters in s for selected model m. In this study, we
P+ 1) _(P+1)P

ider j = 2, thus x(S5;) =
consider j , thus &(S)) ( o 5
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2.3.5 BIC vs. EBIC
Recall that

BIC,, = —2log L(¥ |y, X) + dp, log(n),

EBIC,,(s) = —2log L(®,,(s)]y, X) 4+ dm(s) log(n) + 2fllog " (S;).
For a high dimension dataset. there are two issues related to BIC: the first one
is that it penalizes too much with d,, log(n); the other one is it penalizes too

little with the prior.

Unlike the BIC which selects an equal prior probability for each model, the
EBIC provides a different prior probability for the model in different submodel
classes. So instead of assigning the prior probability of S; which is proportional
to x(.5;) in ordinary BIC, the EBIC assigns the prior probability of S; which is
proportional to x(S;)¢, for 0 < £ < 1.

2.4 Regression shrinkage and selection

As a result of the rapid improvement of scientific technology in recent decades,
large data from various fields are now widely collected by scientists. As a result,
model selection which was developed to solve the problem of how to estimate
those large data(in N,P or both) become an extremely important part of sta-
tistical modelling. Some limitations can easily be identified in the traditional
methods in which stepwise regression with AIC and BIC criteria for the choice
of the optimal model were commonly used. Tibshirani (1996) proposed a new
model selection method called Lasso which overcame the limitations. Efron
et al. (2004) proposed that an effective algorithm, LARS, to solve Lasso. In

this section a brief review of the basic idea and history of Lasso and LARS will
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be given based on the original paper on regression shrinkage and selection via

Lasso (Tibshirani, 1996) and lease angle regression (Efron et al., 2004).

2.4.1 Background

At the very beginning of building a model, as many independent variables as
possible are chosen to avoid bias that may exist in the models which caused by
lacking of important variables. But actually what we really need is to identify
the most related variables of the observed variable, i.e. variable selection(or
model selection). Therefore, variable selection is a very important step in the

process of building a model.

Bradley Efron, a professor at Stanford University who proposed bootstrap-
ping, said that the most important problem in the modern statistics field is
variable selection. However the problem remained in research on the AIC as
the information criterion becomes incapable of action as a result of too much
computation when the number of model variables is too large, and the method
is incapable of action for higher dimension model selection problems despite
there are many guidelines to improve the rules, such as BIC etc. Stepwise
regression combined with AIC and BIC criterion for optimal model selection
has generally been used to solve classification and regression problems. It has
been proved that the practicability of this method was acceptable. But there
were still many problems with this traditional method: the research of Breiman
(1995) pointed out that using this method to chose a model was very unstable.
Fan and Li (2001) pointed out that random errors existed in the calculation
process of this method, and it was also difficult to study its theoretical prop-
erties, and for classification or regression problems of larger datasets, a large
amount of calculations were always required.

In general the model selection should meet the following requirements:

(1) High accurate prediction;

(2) Scientific significance of the selected variables;
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(3) High stability of the model;
(4) should avoid the partial in hypothesis tests;

(5) Low computational complexity.

But only some of the above requirements can be achieved by using approaches
such as stepwise regression, the traditional optimal subset selection, ridge re-
gression, principal component regression and partial least squares. Therefore,
how to effectively tackle these problems to achieve the goal of statistical mod-
elling has become one of the hot topics in statistical research. The proposal of
the Lasso method with its effective algorithm undoubtedly provides a feasible

solution to these problems. A brief introduction of Lasso is given as below.

2.4.2 Lasso and LARS

Breiman (1995) proposed a new method of model selection based on the idea
of penalized least squares, called “Non-negative Garrotte”. Later on Tibshi-
rani (1996) inspired a new variable selection method—Least absolute shrinkage
and selection operator, so called Lasso, based both on the “Bridge Regression”
which was proposed by Frank and Friedman (1993) and “Non-negative Gar-
rotte” which was proposed by Breiman (1995). The Lasso method used the
function of the absolute value of coefficients of the model as a penalty to shrink
the model coefficients; the small absolute value of the coefficient of the model
automatic shrunk to zero. By doing so, a little bias was sacrificed in order to
reduce the variance of the predicted values and may improve the accuracy of the
overall prediction. Compared with the traditional methods of model selection,
the Lasso method did better to overcome the short comings of the traditional
methods which meant that it received great attention in the field of statistics.
In order to solve the drawback of lacking an effective algorithm in this method,
lots of research were undertaken: first, Fu (1998) putted forward the "Shooting”

algorithm, then Osborne et al. (2000) proposed the corresponding homotopy

26




2.4. Regression shrinkage and selection

algorithm after he found that the solution path of Lasso regression was piece-
wise linear. Although Lasso regression problem were better solved by using
these algorithms compared to originally used off-the-shelf quadratic program
solvers, its effectiveness was still unable to meet the requirements until Efron
et al. (2004) proposed the Least Angle Regression(LARS) algorithm to solve
the calculation problems of Lasso which made the Lasso method more popular

and more widely used.

2.4.3 Lasso and its other related methods

We denote the coefficients of a model by 3, which corresponds to the loss func-
tion ([3), here we use the log-likelihood function. Let 3 be a (P+1) dimensional

vector, then the penalized likelihood function of parameters:

.
1(B) +_ZPAJ<M3]-|>-

when {(8) = (y — XB)?, P, (I6;]) = AlB;|? this becomes the “Bridge Regres-
sion” by Frank and Friedman (1993). When ¢ = 1, this is the Lasso regression
which is also called a L, regularization. In fact, when ¢ = 2, this is the ridge

regression which is also called a L, regularization.

Considering a multiple linear regression model

y=XB+¢€

where the response variables y = (1,92, ...,%n)T, the predictor matrix of y is
X = (x1,X2,...,%,)7. Fori=1,2,...,n, we have x; = (1, Z;1, Tsa, ..., Tir) ", B
isa (P+1) by K matrix where 3, is a (P + 1) dimensional column vector, for
k=1,..., K. The error vector € satisfied that E(e) = 0 and Var(e) = 0?1. We

also assume: E(y;|x;) = Bo+ fr1xi + Pazio+. ..+ Bpx;p. Be aware that this is a
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sparse model i.e there are some coefficients equal to 0 in Sy, 81, Ba, ..., Bp, the
purpose of model selection (or variable selection, feature selection) is to iden-
tify those coefficients equal to 0, and estimate the other non-zero parameters

according to the acquired data, namely finding the sparse model.

For the linear model, the model selection can be expressed as the following

optimization problems:

B~ g { 11y - XpI* /01 } (211)

where

(3| is the submission of full absolute values of least square estimates, i.e

181=32i_118,1.

There are two processes of the above function: find the coefficients for sig-
nificant variables and estimate those corresponding coefficients. These two
processes are carried out separately when treated with traditional methods.
However in actual processing they often have difficulties because there are not
any other restrictions on the parameter space and the two processes of Lasso
and associated method are carried out simultaneously. Lasso is actually equiv-

alent to considering the following issues:

P
5 1
A= argmﬁin [EHY - X,BHQ} subject to Z|B]|§ t.

j=1

The above inequality equation effectively restricts the parameter space.

Let

£(8) = 50y = XBY (v = XB) + Nl (212)

in order to minimize f(3) for the t"* component, assume the predict variables
are all relative to y, i.e. fB; # 0for j = (1,...,P)and 1 < t < K, we
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differentiate the function with respect to 3, to obtain:

D)~ > —auly ~ X8 + Xsign(,).
L i=1

Let the above derivative equal to zero, we have
n
Zfﬂti(yi - XiTﬁr,) = Asign(B,)
i=1
where sign(3,) denotes the signal of 3,.

If the variable are sparse, i.e there are some variables not related to the obser-
vations, this implies we have some 3, = 0 such that 3; = O,for j = 1,..., P
and t = 1, ..., K. where the function is not differentiable at the point, then by

using the Karush-Kuhn-Tucker(KKT) theory, we have

n

> oyl — x50 B) € X, A)-

=1

The KKT conditions for optimising f(3) for the t** component can be written

as:
n

Zl’u,(yz‘ . X;'T:Bt) = A\, (2.13)

i=1
such that, v, = sign(B8,;) if By; # 0, v = [-1,1]if B;; =0, for t =1,... | K
and j = 1,..., P. Therefore, 3, is a solution of the ¢ component of 3 in the

equation(2.11) if and only if it satisfied equation(2.13).

However this does not scale well and is not transparent. Then the student
of Tibshirani, Fu (1998) proposed a more efficient algorithm according to the
“bridge regression”. The current popular approach is the least angle regression
algorithm proposed by Efron et al. (2004). It is also efficient to solve the Lasso

problem and connects the Lasso to forward stagewise regression.
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2.5 Rand index

Mixture models can be used to partition data points into meaningful groups.
The methods to measure the accuracy of clustering and to compare differences
in clustering are very important issues in clustering. The Rand index(short
for statistician W.M.Rand (Rand, 1971)) is a famous criterion for clustering

comparisons, which gives the degree of agreement for two partitions.

Suppose we have a set of n elements S = {01,...,0,}, let U = {uy,...,ur}
and V = {vy,...,uc} are two partitions with R subsets and C subsets respec-
tively. Let a be the number of pairs of elements that are in the same sets in U
and in the same sets in V', b be the number of pairs of elements that are in the
different sets in U and in the different sets in V', ¢ be the number of pairs of ele-
ments that are in the same sets in U but in the different sets in V', and d be the
number of pairs of elements that are in the different sets in U but in the same
sets in V. For example, let C = (1,2,3),(4,5,6) and C" = (1,2),(3,4,5), (6)
are two sets. In this case, there are 2 paires of elements that are in both sets,
i.e. pair (1,2) and (4, 5); there are 7 pairs of elements th