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Abstract

The mixture regression model is an important technique used in statistical 
modelling to investigate the relationship between variables. It has been applied 
in many fields such as genetics, finance and biology. In this research, we focus on 
its application to genetic data. As we know gene expression data normally con­
tains unknown correlation structures even after normalization, hence it raises 
a great challenge for the existing clustering methods such as the Gaussian mix- 
ture(GM) model and k-mean. Here we use the exponential power distribution 
to robustly overcome the clustering of gene expression data by treating the data 
as a mixture of regression. The exponential power distribution (EPD) is a scale 
mixture of Gaussian distributions that has varying shape parameters. In this 
study we introduce and develop our method based on two different aspects of 
multiple regression with random errors distributed according to the exponential 
power distribution. The first aspect is estimation: we use both the Expectation- 
Maximisation algorithm (EM) and the Newton-Raphson method to estimate 
the parameters of the exponential power distribution mixture regression mod­
els. The second aspect is simultaneous variable selection and clustering: we 
develop a LASSO-type method to select only the related variables in a large 
dataset, especially for a high dimensional dataset. The novelty of this research 
regarding to the Expectation-Maximization algorithm is that we convert each 
penalised mixture regression estimation problem to a LASSO (Least absolute 
shrinkage and selection operator) problem. The performance of our method is 
assessed on both independent and dependent data. We also compared the EPD 
mixture regression with Gaussian mixture regressions by simulations and real 
data analyses. We also derive the model selection criteria such as AIC, BIC 
and EBIC for both EPD mixture and GM models.
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Chapter 1 

Introduction

The past few decades have witnessed a tremendous amount of studies on the 
problem of relating a response variable to a set of covariates through a regression- 
type model under a homogeneity assumption in which the regression coefficients 
are the same for different observations. Since these coefficients may change for 
different subgroups, the above assumption may be inadequate when the popula­
tion under investigation is heterogeneous. Such heterogeneity can be modelled 
with a Finite Mixture Regression (FMR) model, for example, the Gaussian 
mixture regression (Staedler et ah, 2010; Grun and Leisch, 2007; Sung, 2004; 
Fan and Li, 2001; Williams and Rasmussen, 1996). Gaussian mixture(GM) 
regression models have many applications in several research fields such as ge­
netics, econometrics and social sciences. In Gaussian mixture models, given 
covariates, the response variable is assumed to follow a Gaussian mixture dis­
tribution and the observations are assumed to be independent of each other, 
which are often invalid in practice. For example, gene expression data may 
have a non-Gaussian mixture distribution with correlated structures (Zhang 
and Liang, 2010). Thus, a question is naturally raised: if the above Gaussian 
mixture assumptions do not hold, what kind of models should we use in order 
to avoid potential modelling biases? In this thesis, it’s shown that mixtures of 
exponential power distributions(EPD) can be employed to address the above 
issue and to achieve a more flexible modelling.
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The exponential power distribution introduced by Subbotin (1923) had not at­
tracted any attention until Box and Tiao (1973) re-examined this model. Since 
then, it has been widely used in economics and finance as a generalized Gaus­
sian distribution, as shown by Liu and Bozdogan (2008), Theodossiou (1998), 
Rachev and Mittnik (2000), and Toyli et al. (2002). Very recently, Zhang and 
Liang (2010) applied the exponential mixture model to provide a more robust 
analysis of some structured genetic data. Zeckhauser and Thompson (1970) was 
the first to study the simple linear regression model with exponential power er­
ror terms. The EPD is often used to fit the data with distribution tails heavier 
or lighter than Gaussian tails (Box and Tiao, 1973). The tail shape of an EPD 
is described by its shape parameter. The exponential power distribution (EPD) 
is a scale mixture of Gaussian distributions that has varying shape parameters. 
Therefore, the EPD is more flexible compared to a Gaussian distribution in 
practice. The use of the EPD mixture can reduce the modelling bias and also 
increase the robustness of data analysis to outliers.

In order to select a “better” model, we need to choose a suitable informa­
tion criterion for model selection. The Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are the most widely used model selec­
tion criteria in the literature. The AIC proposed by Akaike (1974) uses the 
Kullback-Leibler distance to justify the goodness of a selected model. The AIC 
penalizes the number of parameters less strongly than the BIC does, which was 
developed by Schwarz (1978). The nature of BIC is different from AIC as it 
assumes that one of the models is the “true” model. Chen and Chen (2008) pro­
posed an extended family of BIC (EBIC), which considers both the number of 
unknown parameters and the complexity of the model space. In this study, we 
use these information criteria to assess the performance of the selected model.

There are two goals in this thesis. The first one is to build a so-called Expectation- 
Maximisation (EM) algorithm to calculate the maximum likelihood estimators 
for exponential power mixture regression models. Another target for this the­
sis is to develop a method to perform cluster analysis and variable selection
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simultaneously for high-dimensional non-Gaussian regression data. Here, the 
novelty lies in that we convert a general penalised regression estimation prob­
lem to a special L\ penalised regression (i.e., LASSO) problem, where LASSO 
is short for Least absolute shrinkage and selection operator (Tibshirani, 1996). 
The proposed method is assessed on both simulated and real data, and is also 
compared to the existing Gaussian mixture regression based approach. The 
simulations and the real data analysis suggest that exponential power mixture 
regression models can provide a more robust analysis than Gaussian mixture 
regression models.

The following chapters present the details with appropriate examples and illus­
trations.

Research Structure

The remainder of this thesis is organized as below: In Chapter 2, the back­
grounds for gene expression data and information criteria used in model se­
lection are reviewed. The algorithm for the maximum likelihood estimation is 
addressed in Chapter 3. In Chapters 4 and 5 the behaviour of the maximum 
likelihood estimation for Gaussian mixture and exponential power mixture re­
gression are investigated. In chapter 6, a new method for variable selection is 
developed by using LASSO and forward selection arguments. In Chapter 7, the 
classification of exponential power mixture regressions is discussed. The final 
remarks and further discussion are given in Chapter 8.
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Chapter 2 

Background

2.1 Gene expression data analysis

Gene expression is the process by which the information encoded in a gene is 
used to direct the assembly of a protein molecule. It is like books in a library, 
where each gene contains information to make a protein.

Gene expression data can be normally described in a table which shows the 
performance of each gene under certain conditions as below:

condition 1 condition 2 condition 3 condition 4 ...
gene 1
gene 2
gene 3 gene expressions
gene 4

What is a motif? In genetics, a motif is a pattern of nucleotides in a DNA 
sequence or in a protein sequence which is often used to predict the underlying 
gene functions. There are two kinds of sequence of motifs: the first one is the
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2.1. Gene expression data analysis

sequence of motifs that appears in the exon of a gene, which may also encode 
the structural motifs of proteins; the second is those sequences of motifs that 
are outside of the gene exons, they are normally at the up-strain or the down- 
strain of the gene expression and regularized, which can explain why regulatory 
sequence motifs exit.

There are two common ways to analyse genetic data: the column-centred anal­
ysis and row-centred analysis, as detailed in the following two subsections.

2.1.1 Column-centred analysis

In column centred analysis or condition-centred analysis, the conditions are 
divided into several groups under the assumption that each group is homoge­
neous. Table for this kind of analysis can be shown as below:

group 1 group 2
condition 1 condition 2 condition 3 condition 4 ...

gene 1
gene 2
gene 3 gene expressions
gene 4

The analysis of the yeast stress dataset in Chapter 5 is condition-centred. This 
dataset contains 496 yeast genes under 173 experimental conditions. Their gene 
expressions are the log-intensities of the expression of yeast under the changes 
of the environment.
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2.1. Gene expression data analysis

2.1.2 Row-centred analysis

Another common way for gene expression to be handled in data analysis is 
through row centred analysis or gene centred analysis. In this analysis, genes 
are grouped into different sub-populations under the assumption that the pop­
ulation is heterogeneous, as demonstrated in the table below:

condition 1 condition 2 condition 3 condition 4 ...
group

1
gene 1 
gene 2

group
2

gene 3 
gene 4

gene expressions

The gene and motifs data which will be use in Chapter 6 is row-centred.

2.1.3 Link gene expression to transcript factors

The key mechanism to make a cell functional is transcriptional regulation which 
is often regulated by proteins. A transcription factor is a group of proteins that 
read and interpret the genetic information in the DNA. They bind to the DNA 
and help initiate a program of increased or decreased gene transcription. As 
such, they are vital to many important cellular processes. Understanding the 
structure and function of a transcription factor (in particular, finding tran­
scription factor binding sites, i.e regulatory DNA motifs) is a crucial step to 
studying the regulatory mechanism of gene expression. Liu et al. (2002) as­
sume that gene expressions link the scores of regulatory motifs through a linear 
function. So if the gene expression is described by the response variables and 
the candidate motifs are the covariates in a regression format, the problem of 
clustering gene expression can be equal to the problem of regression clustering.



2.1. Gene expression data analysis

The dataset in Conlon et al. (2003) and Liu et al. (2002) contains two parts, 
one shows relative expressions of 4,443 genes and the other provides the so- 
called motif-matching scores of 2,155 candidate motifs to each gene. The aim of 
the analysis is to identify a subset of candidate motifs in the regulatory region 
of a gene that can explain its relative expression level.

2.1.4 Issues

The traditional way to tackle the above problem is the linear regression mod­
elling proposed by Conlon et al. (2003), which regress the genes against candi­
date motifs under the assumption that the population is homogeneous. How­
ever, the assumption may not be true as genes may work in various groups (or 
biological pathways). This motivates us to use the so-called mixture regres­
sion model, where the population can be allowed to be heterogeneous (Khalili, 
2010). Ivhalili (2010) fitted the Gaussian mixture of regression to the above 
dataset.

In the Gaussian mixture regression modelling, the conditional distribution of 
the response variable given covariates is assumed to be Gaussian. This may 
be invalid as shown in the following example, where we used Gaussian mixture 
regression model to cluster the dataset of gene expression and motifs mentioned 
before. We obtained two groups and depicted the residuals for each group by 
using Q-Q plot as shown in Figure 2.1. It suggests that the gene expressions in 
both group are not Gaussian distributed.

Here, we propose an exponential power mixture model for the above data, 
removing the restrictions on the distribution shape parameter. The difference 
between the Gaussian distribution and exponential power distribution(EPD)is 
shown in below figure. We expect to obtain better fit to the data compared to 
Gaussian mixture regression.
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2.2. Finite mixture models

normal Q-Q plot (GM)
CL

normal Q-Q plot (GM)
CM

w - 2 - 1 0 1 2

Theoretical Quantiles for group 1 Theoretical Quantiles for group 2

Figure 2.1: The Q-Q plot of the residuals for each GM group of the motifs 
dataset.

From the Figure 2.2, it can be seen that the shape of the exponential power 
distribution has a sharper head and heavier tails comparing its shape parame­
ter a < 2 compared to the Gaussian distribution’s which with a =  2, and the 
head of the exponential power distribution is flatter and the tail is lighter when 
a  >  2.

2.2 Finite mixture models

What is mixture modelling?

The mixture modelling of heterogeneity in a cluster analysis context is very use­
ful, as it is very flexible from both the practical and theoretical perspectives. 
Mixture modelling is a method to model a mixture of subgroups within the pop­
ulation. It has been applied in many fields such as modelling gene expression 
microarray data, economics and engineering etc. There are two assumptions in 
finite mixture modelling:
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2.2. Finite mixture models

0.6

o.o-3 -2 -1 0 1 2 3

Figure 2.2: Exponential power distribution against Gaussian distributions.

• the population is made up of a finite number of homogeneous groups;

• the groups can be identified based on the similarity in the patterns of the 
response variables.

Parametric formulation of univariate mixture models We let y =
(yi, ..., yn)T be a random sample observed in a population, where the superscript 
T denotes vector transpose and r/, denotes an observed value for i =
Let f(yi) be the probability density function of ?/,, which can be expressed as

where the fk{yi) are component density functions of the mixture, 7r*, is the 
mixing proportion or weight, such that 0 <  <  1, and J^fc=1 tt*, =  1, for
k =  1

K

(2.1)
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2.2. Finite mixture models

For those fk(yi) that belong to some parametric family, we write the component 
densities fkijli) as fk{y,\0k), where Ok is the vector of unknown parameters for 
the kth component density. Hence, we can rewrite the mixture density / ( ^ ) in 
equation(2.1) in the form:

where =  (7Ti,..., kk- i , ■■■■> ^ I)T 1S the vector contains all the unknown pa­
rameters.

Finite mixture regression models

Regression models are used to predict one variable from one or more other vari­
ables, and finite mixture of regression models is a flexible tool for modelling 
data arising from many fields, such as biology, genetics, stocks etc. Mclachlan 
and Peel (2001) provide a review of finite mixture of regression models: When 
a random variable with a finite mixture distribution depends on certain covari­
ates, we obtain a finite mixture of regression^FMR) model.

where (3 is a (P  +  1) dimensional regression coefficients vector and X  is a 
n x (P  +  1) covariates matrix. The error vector e satisfied that E(e) =  0 and 
Var(e) =  a2I.

Suppose we have a dataset (y^x;), i =  1 , . . . , n ,  such that E(yi\x.i) = fio +  
fiiXn +  +  . . .  +  fipXip. where the ith observation ¡ji on the response vari­
able y depends on the ith vector, Xj, on the n x (P  +  1) covariates matrix,

K

(2.2)

k=l

Considering a multiple linear regression model

y  — X/3 +  e

12



2.2. Finite mixture models

where X  =  (xl5. . . ,  x n)T and Xj =  ( l ,Xn, . . . ,  x iP), i =  1 , . . . ,  n with 1 being 
the design value for the intercept in the model.

In the finite mixture regression model, the parameter 0k in the kth compo­
nent density f k(y\0k) is a vector of unknown parameters. In particular, in a 
finite exponential power mixture regression model 0k =  (/3k, ak, a/.)7", where 
(3k =  (PkO: Pki, ■ ■ ■, /5fcp)T, for k =  1,..., K , is the kth regression coefficient vec­
tor, ak and ak are the dispersion and shape parameter of the kth component 
respectively. The density in a finite exponential power mixture regression model 
can be written as follows:

K

f  {yt lx,, ) =  ^ 7 r fc/ fc {yi |xi,0fc) ,
k=1

where the parameter vector T =  (7Ti , . . . ,  nx-i, CT)T is the vector containing 
all the unknown parameters in this mixture model, and £ =  ( 0 f , . . . ,

The density of the kth component can be written as 

fk ('Vi Ix*,0fc) = 2akT (1 /ak)
exp V i  ~  xf/3; I OLk

( a 2k)ak/2

Note that, the Gaussian finite mixture regression model is a special case of the 
above model when setting the shape parameters ak =  2 for k =  1 , K.

In the following, we will provide a brief introduction to the methods for es­
timating finite mixture distributions. The advantages and disadvantages of 
each method will be discussed.

13



2.2. Finite mixture models

2.2.1 Estimation

Over the past hundred years, there have been various methods developed for 
estimating finite mixture models, including the method of moments, minimum- 
distance methods, maximum likelihood and Bayesian approaches.

The earliest work on estimating mixture models was based on the method of mo­
ments by Pearson (1894), who focused on two-component univariate Gaussian 
mixtures. Since then, the method of moments has been employed to estimating 
other mixture models.

The minimum distance method is another way to estimate the parameter set 
in a mixture model. Let the joint density function F(y|X, \I/) =  n"=i /  (Vi lx i> ^ ) 
under the assumption that t/i,. . .  ,yn are identify and identity distributed. The 
minimum distance method minimizes the distance between the mixture density 
function F(y|X, Tf) and the estimated mixture density function F(y|X, Tr) for 
y =  (yu ..., yn)T. The comprehensive properties for minimum distance methods 
were investigated by Titterington et al. (1985).

As a result of the invention of the high speed computer, many new methods 
have been developed recently. There are mainly two categories for these meth­
ods, namely, likelihood-based methods and Bayesian methods. Rao (1948) was 
the first to use the maximum likelihood to estimating mixture models. He fitted 
a mixture of two univariate distributions with equal variances to the data by 
using Fisher’s method of scoring. However, his method has not been pursued 
further until Hasselblad (1966) addressed a few computational issues related 
to his method. Dempster et al. (1977) formulated the problem into an missing 
data framework and developed the expectation-maximization(EM) algorithm. 
After that, there have been extensive studies along this direction and the EM 
has become one of the most popular and efficient approaches to mixture model 
estimation.

The Bayesian approach to mixture modelling is based on posterior simula­
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2.2. Finite mixture models

tion via the Markov chain Monte Carlo(MCMC)approach. The first study that 
considered Bayesian estimation by using posterior simulation for mixture mod­
els was Gilks et al. (1989). The use of Bayesian methods for estimation was 
limited until Gelfand and Smith (1990) identified that most Bayesian compu­
tations can be done by using the Gibbs sampler. Recently, some case studies 
had also considered this method, such as (Dellaportas, 1998) and (Vounatsou 
et al., 1998), and there are also many references to Bayesian mixture analysis 
provided by Mclachlan and Peel (2001).

There are quite a lot of literatures on how to fit a finite mixture model. Here, 
we focus on the EM algorithm as the fitting of mixture models by ML is a clas­
sic example of the so-called incomplete data problem. A brief introduction will 
be given to the EM algorithm in Chapter 3, starting with the general setting of 
the arbitrary component distributions, which will be followed by how to apply 
the algorithm to particular cases. The EM algorithm will then be employed to 
estimate a Gaussian mixture distribution with two components based on twenty 
observations. The results will demonstrate that the EM algorithm can provide 
good estimative except for some scenarios in which the population means are 
quite close to each other or there are big differences in the variances of the 
component distributions.

2.2.2 Evaluating model fit and complexity

In some of the complicated regression models, such as the finite mixture model 
of regression, a large number of covariates are normally involved. Some of them 
may be correlated when making predictions of the response variable and some 
may not. Therefore, it is important to select a model which contains only the 
relative variables. However, as we do not know which covariates can be used 
to predict the response variable, we need methodologies to help us choose the
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“best” subset of covariates for the prediction.

What we need to be aware of is that there is no such an methodology that 
can provide a perfect model for the data. Due to the principle of parsimony, 
variable selection as one approach of model selection intends to make a trade-off 
between bias and variance. The more parameters selected in a model, the less 
bias and the larger variance that may exist, and vice versa. Therefore, the bal­
ance between under fitting and over fitting must be taken in into consideration 
in model selection.

There are many methods of model selection in the literature. Two issues are 
addressed as relevant to these methods. One is how do we define an appropriate 
selection criterion and the other is how do we implement the corresponding se­
lection procedure? We will explore and discuss these issues in the next sections. 
The methodologies are described addressing the first issue in Section 2.3and the 
procedures for searching the “best” model are provided in Section 2.4.

2.3 Information criteria for model selection

The question of how many components should be included in a mixture model is 
difficult to be completely resolved. As far as we know, there are two approaches 
to modelling data with finite mixture distributions. The first is to modelling un­
known distributional shapes by providing an appealing semi-parametric frame­
work, such as the kernel density method; the second is to provide model based 
clustering by using the mixture model. In both cases, the number of compo­
nents K  in a mixture model needs to be known, which is called the problem 
of model order selection. For each component, we need to select the covariants 
for the regression equations, which is called the problem of feature selection. 
Therefore, we split the model selection problems into two sub-problems, namely, 
the problems of model order selection and feature selection.
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Both empirical and theoretical approaches are considered. Empirical approaches 
include bootstrap and cross-validation, and the theoretical approaches include 
Kullback-Leibler information, Akaike information criterion(AIC), Bayesian in­
formation criterion(BIC) and others. AIC and BIC are the most commonly used 
approaches for model selection. The famous Japanese statistician Akaike (1974) 
proposed the Akaike information criteria(AIC) based on Kullback-Leibler infor­
mation to justify the goodness of a selected model. The goal of AIC is to find 
the model that gives the best prediction without considering the correctness of 
the model. The AIC penalizes the number of parameters less strongly than the 
Bayesian information criterion (BIC), which was developed by Schwarz (1978), 
using Bayesian formalism, and the nature of BIC is different from AIC as it 
assumes one of the models is the true model.

2.3.1 AIC

Assume we have a data set y  =  (ya, yn)T which is drawn from some density / .  
Hence / ( y  |X) denotes the true density while / m(y |X, fm) denotes an estimator 
of /  where m denotes the mth model and T,,, are the maximum likelihood 
estimators for model m. In order to measure the divergence of /(y|X ) with 
respect to / m(y|X, T,m), the Kullback-Leibler information is used:

^ { / ( y | x ) , / m( y | x , * m)} =  / / ( y | X ) l o g / T T  , dy

=  j /(y|X ) log /(y|X )dy

-  J /(y | X )lo g /m(y|X,ff>m)dy. (2.3)

The best fit model will give small Kullback-Leibler information, hence the 
aim is to minimise the result of equation 2.3. As the first term of the above 
equation does not depend on m, only the second term is related. Therefore,
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minimizing the Kullback-Leibler distance K { f (  y|X), / m(y|X, Trm)}  is the same 
as maximizing

K m =  /  /(y|X ) log / m(y|X, 'Sfm)dy.

A simple way to estimate Km is given by

1 n
- Y ' l o g / m(yi|Xi, ^ m) 
n '

i=1
-lo g L (# m|y,X) 
n

where L(\I,m|y,X) is the likelihood function for model to. But this gives an 
overestimate of the expected log density, the bias is denoted as b(Km). Hence, 
an information criterion for model selection can be obtained by using bias- 
corrected log likelihood function:

log L(\i/m|y, X ) — b(Km), (2.4)

where the aim of the selected model is to maximize equation 2.5 and minimize 
the Kullback-Leibler information 2.3.

The general expression of equation(2.5) is in the form

—2 log L('Erm|y, X ) +  2C, (2.5)

where —2 log L(T,m|y, X ) measures the goodness of fit and C is the penalty that 
shows the complexity of the model. The aim is to choose a model to minimize 
equation(2.5).

Akaike (1974) showed that b(Km) is equal to the total number of parame­
ters in the selected model m, we denote it as dm. Thus, Akaike’s information

18



2.3. Information criteria for model selection

criterion(AIC) of model m is defined as:

AICm -  —2 log L(4>m\y, X ) +  2dm. (2.6)

In order to avoid over fitting, AIC penalizes —2 log likelihood, —2 log L(^\y, X ), 
by adding twice the number of estimated parameters. For the same outcome 
variables, AIC selects the “best” model with the lowest value.

There are also some limitations to the AIC, such as those models which are 
related to time series analysis when it is not a consistent estimator of the order 
of an auto-regression. When the number of observations goes to infinity, the 
order chosen by AIC is not reliable as it’s too large compared to the true order.

2.3.2 BIC

Both Akaike (1974) and Schwarz (1978) proved AIC by developed a Bayesian 
information criterion(BIC) for model selection. BIC has a heavier penalty for 
over-fitting compared with AIC when large sample sizes are applied.

Under the assumption that the observations are independent, Bayesian infor­
mation criterion for selected model m is defined as:

BICm =  - 2  log L { \ X ) +  dm log(n), (2.7)

where n is the number of observations. BIC is much preferred when the number 
of observations is large, and even for the situation when n is not very large, 
BIC still should be preferred as it provides a heavier penalty than AIC does, 
as log(n) > 2 when n > 8. It can be derived by using for Bayesian model 
evidence, the log-posterior problem of the model as follows:
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Derivation The model selection through the Bayesian approach is to max­
imize the posterior probability of the selected model with the given dataset. 
The formula for calculating the posterior probability of model m is:

/(y ]X , model m )/(m odel m)
/(m odel m|y, X ) = ------------------— )------------------,

where /(y|X , model m) is the marginal likelihood of model m and /(m odel m) 
is the prior probability.

BIC assumes that the probability of each selected model is the same, therefore 
to maximize the posterior probability is the same as maximising the marginal 
likelihood:

/(y|X , model m) =  J /(y|X , model m, \I>m) d ^ r

L(^m\y,X)d^r

Hence, to maximising the posterior probability is equivalent to maximising

log J L(Tm|y, X )

By Taylor series and the law of large number, we can show that:

/ j
L(Tm|y,X)dT’m «  log L (# m|y, X ) -  - y  log(n). (2.8)

By times —2 on the left hand of equation(2.8), we have the BIC for a selected 
model m as:

BICm =  —2 log L(È m\y, X ) +  dm log(n), (2.9)

where dm is the number of free parameters to be estimated. The smaller the
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BIC the better the model fit. So we choose the model which minimizes the BIC.

The BIC (Schwarz, 1978) provides a good balance between the log-likelihood 
and the number of free parameters. For the GM model, the number of param­
eters of 7r is K  — 1, a is K  and /3 is (p +  1) x K, by letting shape parameters 
equal to 2, it gives

BICm =  - 2  log L(Vm|y, X ) +  (2K  -  1 +  (p +  1) x K)  log(n).

For the EPD mixture model, the number of parameters of it  is K  — 1, a  is K,  
¡3 is (P +  1) x K  and a is K,  leading to

BICm =  —2 log L(Vm|y, X ) +  (3K  -  1 +  (P +  1) x K)  log(n).

2.3.3 AIC vs. BIC

Both the AIC and BIC are penalized-likelihood criteria used for model selec­
tion, they are used to choose the “best” predictor subsets and to compare 
non-nested models. AIC is the relative distance between the unknown true 
likelihood function of the data and the fitted likelihood function of the model 
plus an estimated bias. The lower the AIC value, the closer the fitted model 
is to the truth. BIC is to estimate the function of the posterior probability to 
evaluate a model is true or not, thus, the smaller the minimum BIC’s value 
is, the more likely the fitted model is the true model. Hence we can see that 
AIC tries to find the model with the best prediction while BIC tries to find 
the model that is most likely to be true under the assumption that one of the 
models is true.

The theory of AIC and BIC are completely different, but in practise, the only 
difference is the penalty. The penalty of BIC is larger than the penalty of AIC 
when the number of observation is large. Hence, BIC is much preferred in com­
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plex models. For a model with a large sample size, the AIC may face the risk of 
choosing a model with too many parameters because its penalty is not related 
to the sample size, while BIC may face the risk of choosing too few parameters 
when the sample size is very large.

For some large data, the model selection by using AIC or BIC directly can 
be extremely computationally intensive, hence how to efficiently select a model 
for large dataset is a problem. In the next part the methods of feature selection 
are considered and focused on the Lasso method.

2.3.4 EBIC

There are two goals of model selection: one is to select the ’’ best” model to un­
dertake a prediction and then to focus on the accuracy of the prediction. The 
other is to identify the selected features and focus on the consistency of the 
selection. The methods of model selection such as AIC, cross-validation (CV), 
generalized cross-validation (GCV) are based on the predicted accuracy of the 
selected model, while the BIC assumes the prior is uniform over all models. If 
the number of features is not large and all the features are fixed, we do not 
have a feature selection problem. In such situation, the above criterion work 
well for the prediction accuracy which is our first goal, and it does not conflict 
with feature selection. But when the dimension (P +  1) is more huge compared 
to a moderate sample size n, the criterion such as AIC, CV, GCV and BIC, 
etc. are too liberal as they tend to choose too many features.

Chen and Chen (2008) proposed an extended family of BIC, which consid­
ered both the number of unknown parameters and the complexity of the model 
space. Chen and Chen (2008) also showed that for a large dataset, the extended 
Bayesian information criterion(EBIC) had very small loss in the positive selec­
tion rate while it was tightly central to the false discovery rate.
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Assume we have a finite mixture regression model with large dimension (P + 1) 
and relatively small sample of size n, such that:

where the response variable y, for the ith entity depends on x, where Xj is a 
vector of covariates X , for i — 1, The observations on covariates can be 
written as an n by (P  +  1) matrix such that X  =  (x i, . . . ,  x n)T. The regression 
coefficient (3 is a (P  +  1) by K  matrix, here (3k is sparse which means there are 
only few elements that are non-zero. Each (3k is a (P  +  1) dimensional column 
vector, for k — 1 ,..., K.

Now we let s be a subset of (1 , . . . ,  (P  +  1)). Denote ^ (s ) with those parame­
ters outside s equals to zero. Let Sj be the set of all combinations of j  indices 
in (1 . . . . ,  (P  +  1)). The prior/probability on Sj is inversely proportional to the

assign an eaual probability, i.e. pr(s\Sj) =  for any s € Sj as all the mod­
els in Sj are equably plausible. We assign the probability pr(Sj) propotional 
to (Sj) in EBIC, 0 <  £ < 1, instead assign the probability pr(Sj) propo­
tional to log(n) in BIC. Therefor the prior p(s) is propotional to K~^(Sj) for 
7  =  1 — £. Hence, the family of extended BIC of a model m is defined as follows:

EBICm(S) =  -2 1 0g P (^ m(5 )| y ,X )+ d rn(s)log(n) +  2fllog-'(S j ), (2.10)

for 0 <  7  < 1. Where Trm(s) is the maximum likelihood estimator of \I/m(s), 
dm(s) is the number of parameters in s for selected model m. In this study, we

K

. For each s in the same subspace S j ,

consider j  =  2 , thus n ( S j )
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2.3.5 BIC vs. EBIC

Recall that

BICm =  - 2  log L(4?m\y, X ) +  dm log(n),

EBICm(s) =  —2 log L(4>m(s)\y, X ) +  d m(s)log(n) +  2 fllog '(S j).

For a high dimension dataset, there are two issues related to BIC: the first one 
is that it penalizes too much with dmlog(n); the other one is it penalizes too 
little with the prior.

Unlike the BIC which selects an equal prior probability for each model, the 
EBIC provides a different prior probability for the model in different submodel 
classes. So instead of assigning the prior probability of Sj which is proportional 
to n(Sj) in ordinary BIC, the EBIC assigns the prior probability of Sj which is 
proportional to n(Sj) ,̂ for 0 < £ < 1 .

2.4 Regression shrinkage and selection

As a result of the rapid improvement of scientific technology in recent decades, 
large data from various fields are now widely collected by scientists. As a result, 
model selection which was developed to solve the problem of how to estimate 
those large data(in N,P  or both) become an extremely important part of sta­
tistical modelling. Some limitations can easily be identified in the traditional 
methods in which stepwise regression with AIC and BIC criteria for the choice 
of the optimal model were commonly used. Tibshirani (1996) proposed a new 
model selection method called Lasso which overcame the limitations. Efron 
et al. (2004) proposed that an effective algorithm, LARS, to solve Lasso. In 
this section a brief review of the basic idea and history of Lasso and LARS will
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be given based on the original paper on regression shrinkage and selection via 
Lasso (Tibshirani, 1996) and lease angle regression (Efron et ah, 2004).

2.4.1 Background

At the very beginning of building a model, as many independent variables as 
possible are chosen to avoid bias that may exist in the models which caused by 
lacking of important variables. But actually what we really need is to identify 
the most related variables of the observed variable, i.e. variable selection(or 
model selection). Therefore, variable selection is a very important step in the 
process of building a model.

Bradley Efron, a professor at Stanford University who proposed bootstrap­
ping, said that the most important problem in the modern statistics field is 
variable selection. However the problem remained in research on the AIC as 
the information criterion becomes incapable of action as a result of too much 
computation when the number of model variables is too large, and the method 
is incapable of action for higher dimension model selection problems despite 
there are many guidelines to improve the rules, such as BIC etc. Stepwise 
regression combined with AIC and BIC criterion for optimal model selection 
has generally been used to solve classification and regression problems. It has 
been proved that the practicability of this method was acceptable. But there 
were still many problems with this traditional method: the research of Breiman 
(1995) pointed out that using this method to chose a model was very unstable. 
Fan and Li (2001) pointed out that random errors existed in the calculation 
process of this method, and it was also difficult to study its theoretical prop­
erties, and for classification or regression problems of larger datasets, a large 
amount of calculations were always required.
In general the model selection should meet the following requirements:
(1) High accurate prediction;
(2) Scientific significance of the selected variables;
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(3) High stability of the model;
(4) should avoid the partial in hypothesis tests;
(5) Low computational complexity.

But only some of the above requirements can be achieved by using approaches 
such as stepwise regression, the traditional optimal subset selection, ridge re­
gression. principal component regression and partial least squares. Therefore, 
how to effectively tackle these problems to achieve the goal of statistical mod­
elling has become one of the hot topics in statistical research. The proposal of 
the Lasso method with its effective algorithm undoubtedly provides a feasible 
solution to these problems. A brief introduction of Lasso is given as below.

2.4.2 Lasso and LARS

Breiman (1995) proposed a new method of model selection based on the idea 
of penalized least squares, called “Non-negative Garrotte” . Later on Tibshi- 
rani (1996) inspired a new variable selection method- Least absolute shrinkage 
and selection operator, so called Lasso, based both on the “Bridge Regression” 
which was proposed by Frank and Friedman (1993) and “Non-negative Gar­
rotte” which was proposed by Breiman (1995). The Lasso method used the 
function of the absolute value of coefficients of the model as a penalty to shrink 
the model coefficients; the small absolute value of the coefficient of the model 
automatic shrunk to zero. By doing so, a little bias was sacrificed in order to 
reduce the variance of the predicted values and may improve the accuracy of the 
overall prediction. Compared with the traditional methods of model selection, 
the Lasso method did better to overcome the short comings of the traditional 
methods which meant that it received great attention in the field of statistics. 
In order to solve the drawback of lacking an effective algorithm in this method, 
lots of research were undertaken: first, Fu (1998) putted forward the ’’ Shooting” 
algorithm, then Osborne et al. (2000) proposed the corresponding homotopy
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algorithm after he found that the solution path of Lasso regression was piece- 
wise linear. Although Lasso regression problem were better solved by using 
these algorithms compared to originally used off-the-shelf quadratic program 
solvers, its effectiveness was still unable to meet the requirements until Efron 
et al. (2004) proposed the Least Angle Regression(LARS) algorithm to solve 
the calculation problems of Lasso which made the Lasso method more popular 
and more widely used.

2.4.3 Lasso and its other related methods

We denote the coefficients of a model by /3, which corresponds to the loss func­
tion l(/3), here we use the log-likelihood function. Let (3 be a (.P+1) dimensional 
vector, then the penalized likelihood function of parameters:

p
m  + Y .p > . ,m  !)■

3=1

when 1(13) =  (y — X/3)2, P\3(\Pj\) =  this becomes the “Bridge Regres­
sion” by Frank and Friedman (1993). When q =  1, this is the Lasso regression 
which is also called a Lx regularization. In fact, when q =  2, this is the ridge 
regression which is also called a L2 regularization.

Considering a multiple linear regression model

y =  X/3 +  e

where the response variables y =  (yx, y2, • • •, yn)T, the predictor matrix of y is 
X  =  (x i,x 2, . . .  ,x „ )T. For « =  1 ,2 ,... ,n, we have x, =  ( l ,x n ,x i2, ...,x iP)T, (3 
is a (P  +  1) by K  matrix where (3k is a (F  +  1) dimensional column vector, for 
k =  1,..., K. The error vector e satisfied that E(e) =  0 and Var(e) = a2I. We 
also assume: E(yl\3ci) =  (3q +  P\Xn +  /32Xi2 + . .  .+fipXip. Be aware that this is a
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sparse model i.e there are some coefficients equal to 0 in /30: Pi, P2 , . . . ,  ftp, the 
purpose of model selection (or variable selection, feature selection) is to iden­
tify those coefficients equal to 0, and estimate the other non-zero parameters 
according to the acquired data, namely finding the sparse model.

For the linear model, the model selection can be expressed as the following 
optimization problems:

P =  argnnn |^||y — X/3||2+A|/3|| (2.11)

where |/3| is the submission of full absolute values of least square estimates, i.e

l/3|=Ef=il^l-

There are two processes of the above function: find the coefficients for sig­
nificant variables and estimate those corresponding coefficients. These two 
processes are carried out separately when treated with traditional methods. 
However in actual processing they often have difficulties because there are not 
any other restrictions on the parameter space and the two processes of Lasso 
and associated method are carried out simultaneously. Lasso is actually equiv­
alent to considering the following issues:

/3 =  arg min |y-x/3||s subject to '̂ ~̂ \/3J\< t.
i=1

The above inequality equation effectively restricts the parameter space.

Let
m  = \(y -  X/3)T(y -  X 0)  + A|/3|o, (2.12)

in order to minimize f(/3) for the tth component, assume the predict variables 
are all relative to y, i.e. fttj 7  ̂ 0 for j  =  (1 and 1 < t < K, we
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differentiate the function with respect to f3t to obtain:

Let the above derivative equal to zero, we have

n

Y^XtiiVi -  x f A )  =  Asign(f3t)

where sign(/3t) denotes the signal of (3t.

If the variable are sparse, i.e there are some variables not related to the obser­
vations, this implies we have some =  0 such that Pt] — 0 ,for j  =  
and t =  1 ,..., K. where the function is not differentiable at the point, then by 
using the Karush-Kuhn-Tucker(KKT) theory, we have

The KKT conditions for optimising f(/3) for the tth component can be written
as:

such that, 7 1 =  sign(/3ij) if f3tj ±  0, =  [-1 ,1] if (3tj =  0, for t =  1 , . . . ,  K
and j  =  1 , . . . ,  P. Therefore, j3t is a solution of the tth component of /3 in the 
equation(2.11) if and only if it satisfied equation(2.13).

However this does not scale well and is not transparent. Then the student 
of Tibshirani, Fu (1998) proposed a more efficient algorithm according to the 
“bridge regression” . The current popular approach is the least angle regression 
algorithm proposed by Efron et al. (2004). It is also efficient to solve the Lasso 
problem and connects the Lasso to forward stagewise regression.

n

G [—A, A].
i= 1

n

(2.13)
¿=1
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2.5 Rand index

Mixture models can be used to partition data points into meaningful groups. 
The methods to measure the accuracy of clustering and to compare differences 
in clustering are very important issues in clustering. The Rand index(short 
for statistician W.M.Rand (Rand, 1971)) is a famous criterion for clustering 
comparisons, which gives the degree of agreement for two partitions.

Suppose we have a set of n elements S = {o i,...,on}, let U = {u i,...,uR} 
and V =  {iq, ...,Vc} are two partitions with R subsets and C subsets respec­
tively. Let a be the number of pairs of elements that are in the same sets in U 
and in the same sets in V, b be the number of pairs of elements that are in the 
different sets in U and in the different sets in V, c be the number of pairs of ele­
ments that are in the same sets in U but in the different sets in V, and d be the 
number of pairs of elements that are in the different sets in U but in the same 
sets in V. For example, let C =  ( 1 , 2 ,3), (4, 5, 6) and C' =  (1 , 2 ), (3,4, 5), (6) 
are two sets. In this case, there are 2 paires of elements that are in both sets, 
i.e. pair (1,2) and (4, 5); there are 7 pairs of elements that are seperate in both 
sets, i.e. pair (1,4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6) and (3,6); there are 2 pairs 
of elements that are in set C but not in set C1, i.e. pair (1,3) and (2,3); there 
are 4 pairs of elements that are in set C' but not in set C, i.e. (3,4), (3, 5), (4, 6) 
and (5 ,6). Hence we have a — 2, b =  6, c =  2, and d =  4 in this example.

We can see that a and b represent the agreement degree and c and d repre­
sent disagreement degree. Hence, the Rand index, R, can be written as:

R
o, T b

a T 6 T c T d
(2.14)

The range of the Rand index is between 0 and 1. If the Rand index equals 
to 1 this means the two data clusters U and V perfectly agree. On the other 
hand, if the Rand index equals to 0 this means the two data clusters do not
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agree on any pair of elements, i.e. a = b =  0. The value of the Rand index 
being equal to 0 is an extreme case, but it is desirable for the similarity index 
to take a constant value or to take a value close to 0. The issue of the Rand 
index is that its expected value between two random partitions is not constant 
value.

The adjusted Rand index was proposed by (Hubert and Arabie, 1985) by taking 
the generalized hyper-geometric distribution as the model of randomness, i.e 
the two partitions are picked randomly such that both the number of cluster 
and the elements in each cluster are fixed under the assumption that the num­
ber of two clusters in the two clusterings must be same.

Let be the number of elements that are in both set iq and Vj, where rq. 
represents the total number of elements in set w, and nj represents the total 
number of elements in set Vj. These notations are shown in Table 2.1.

Table 2.1: Table of notations

U /  V V\ V2 Vc sum of u
Ui nu nu Til c ni.
U2 n2i n22 n2C n2.

Ur um nR 2 urc nR.
sum of v n.i n. 2 n.c n

The adjusted Rand index is a corrected-for-change version of the Rand index. 
The general form of the adjusted Rand index, ARI, is defined as:

ARI
Index-Expected Index 

Maxindex-Expected Index ’
(2.15)

where the expected index under the generalized hyper-geometric model was 
shown by (Hubert and Arabie, 1985) to be:
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Thus, the adjusted Rand index of equation 2.15 can be rewritten in the fol­
lowing form:

As mentioned above, the range of the Rand index is between 0 and 1, hence 
the expectation of the Rand index is greater or equal to 0. The upper bound 
of the adjusted Rand index is 1 and its expectation is 0, and the wider range 
gives a more sensitive index.

In our next simulations, by given the minimum BIC  of the mixture model of 

regression T 0 (?/jIx o &k), we estimated by let _ xhere-
k=1 Y *k9(yi\xi,0t)

t= 1
fore if T{j =  max1<t<£ rtj, we assign the ith observation to the kth cluster C*,. 
This leads to the partition C of f/j. Here we use the adjusted RAND index p 
of (Hubert and Arabie, 1985) to assess the level of agreement between C and 
another partition C. The larger the value of p, the higher the level of agree­
ment the two partitions have. The maximum value of p equals to 1 when the 
two partitions are identical. In our simulation section, we use the RAND index 
directly to assess the quality of a clustering based on the true partition C is 
known.
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Chapter 3

Estimation in finite mixture 
regression models

In this Chapter, we first define the concept of maximum likelihood (ML) estima­
tion for a general mixture regression model f ( y |x, \&), where 'L is a parameter. 
Then, we introduce two approaches for calculating the ML estimator: a Newton- 
Raphson iteration-based direct approach and the Expectation-Maximisation 
algorithm-based indirect approach.Then we implement these algorithms for es­
timating Gaussian mixture regression and exponential mixture regression re­
spectively followed by illustrate these algorithms by simulations and real data 
analyses.

3.1 Maximum Likelihood Estimation

Suppose that we have an independent sample (?/,,x¿), 1 <  i <  n, where con­
ditional on Xj, yi drawn from the regression density f(y  |x, \&) with parameter 
\R The likelihood function of T' can be written as follows:

n 

i=  1
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3.2. Direct Approach

where y =  (r/i,. . ., yn)T and X  =  ( x i , . . .  , x „ )T. The log-likelihood can be writ­
ten in the following form:

log L(^/|y, X ) =  5^1og/(j/i|xi,^ ). (3.1)
1=1

When the parameter T' is unconstrained, its AIL estimator T can be ob­
tained by solving the score function:

S(y|x,¥)
91ogL(^|y,X)

a *
(3.2)

When the parameter is constrained, we need to replace the above log- 
likelihood function by an appropriate Lagrange multiplier.

In the following subsections, how to calculate the maximum likelihood esti­
mator of '3> by the direct and indirect approaches is discussed.

3.2 Direct Approach

In this subsection, we derive a set of equations for estimating in the model

K

f(y i\xi,'f!) =  ¡̂rj 'Kkf k(yi\xi,Qk),
k= 1

where y =  (y i ,... , yn)T are observations on the response variable y, X  =  
(x i , . . . , x n)T are observations on the covariate x =  (x1, . . . , xp )T, and the 
parameter £ =  (0\, . . . ,  0^ ) r , 'T =  (7Ti,. . . ,  tik- i , CT)T is a vector containing

K
all the unknown parameters in the above model, with a constraint Y2 k̂ =  1 -

k= 1
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3.2. Direct Approach

We have the log likelihood function

logL(tf|y,X)
n

^ l° g / ( r / i| x i, 'S') =  J ^ log  l ^ 2 n kfk(yi\xi,0k) \ (3.3)
K

i= 1 i=1 fc= 1

Note that 7rfc, A: =  1 , . . . ,  n are constrained. We need to construct the following
K

Lagrange multiplier log L(vl/|y, X ) — X(Y^ nk — 1)- In order to estimate the
k= 1

parameters of the tth component, we differentiating the equation (3.3) with 
respect to 'fq and setting it to zero, we have

01ogZ,(tt|y,X)
dOt

0, t =  l , . . . ,  K.

and
K

d[logL (^|y,X ) -  A( £  7rfc -  !)]
k= 1

dnt
=  0, t =  1 ,. . . ,  K.

(3.4)

(3.5)

In the following, we further solve the equations (3.4) and (3.5) respectively: 
Regarding equation (3.4), we note that:

n

log L(\I/|y, X ) =  5^ 1og /(y i| x i,^ )
i= 1

=  X ! log \ nkfk(yi\^i, Ok) >
¿=1 L k= 1 J

n

=  y^log{7Ti/i(yi|Xi,gi) H----- +KKfK(yi\Xi,0K)} .
i= 1

So we can rewrite equation (3.4) in the following form:
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3.2. Direct Approach

dlogL(#ly,X)
de,

where for t =  1 , . . .  , K,

d (E  log { E  ^kfk{yi\^i,ek) } )
i= 1 k = l

dOt

Ktfïiyi

i=1 Y ,n tfM xi,O t)
E

t=i

E
¿=1

n t f U i V i  1X i , e t ) f M 1 X i , e t )

K 1 Si \ f t { V i IX i, 0 t )

t= 1

i=l

a io g /t(^ lx?;,0 t 
1 de,

Tt(yi\Xi,&) =
ntft(yi\xi,et)

K

E K t f t ( y i \ x i , 0 t)
t=i

(3.6)

is the posterior probability that yl comes from the tth component of the mixture 
model.

By defining the score function

/ , x vE  d\og f A y e t) 
S(y|X,C) = 5 > -  * Jtyy" tJ

i= 1
ee.

for t =  1 the equation (3.6) becomes S(y|X, £) =  0. Then we adopt

the Newton-Raphson iteration

C(s+D = C(s) + [i(C{s)\y,X)]-lS(y\XX{s)),
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3.2. Direct Approach

where the J (£^|y,X ) is the information matrix

/ ( C (s)| y , x )
_  as(y|x,Ç) 

■
_  _  V' _ d2 log ft{yj\xj , 0 1)
-  ^ Tt od^d1;2=1

and C(s+1) is the (s +  l ) th iteration of £.

By calculate he information matrix with respect to /3, a and a, we have:

V -  d2 log f t(yi\xi,Ot) rt{yi\xi,^(3)) ^  i2V “i/2H  / t\ ,
L Ti— ) (x*x*) (Xi- ) ’
2=1 twf̂ t K 2)at/2 2=1

X
t=l

n-
<92 iog f t  (îji |Xj, Of

datdaj 5 ^ r‘ (yi|xi,i'(s))
¿=i

i 2 r  ̂( i / « 0  \

+ VrAylx- * « )  [ 1  f£MlAh) _ fH lZ M+  z ^ ri^ l  *> M rv4 r n u  I r n / r v AQ ^ r ( i / a t) V r ( i M )

+

v -  d2 lo g /t(yt|xi, 6t)
ï ^ Tt —
i= 1

<9(72 X
2=1

ri(?/i|Xi, Vp(s))
2(7?

l î / i - x f A l “* (° f )
( -a t/2)-l

¿=1

To solve the equation (3.5), we let

K

A =  l o g L ( ¥ | y , X ) - A ( 5 > * - l )
k= 1

n r  X  'j K

=  5Zlog i X^7rfĉ fc(î/<iXi,0fc) f ~ AE 7rfc ” *)•
¿=1 . k=) k=  1
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3.2. Direct Approach

Then equation(3.5) becomes

3A
d'Kt

d E  log {  E  nkf k{yi\xi, 0k)
j=i u = i______________

dnt
y ^  /t (^ lx»i Ot)_____ ^ _

i=l £  Kkfk(yi\xi,Ok)
k= 1

K
Multiplying both sides of the above equation by E  7rfc, we have

k= 1

(3.7)

Ô7TÎ
y  y  7Tt/t(yilx i) @t)

k= i  i= l  £  7rfc/fc(yi|xi,0fc)  
k= 1 

K
n J27TtMyi\xi,ot)Y.1T----------------------------------------------------------------- '

î==1 E v k f k { y i \ x i , O k )
k= 1

n — A =  0,

which implies A =  n.
Now we substitute A =  n into (3.7) to obtain:

K

A k

This implies

/t(lh|Xi> &t)
K

i=1 E K k f k ( y i \ X r , O k )
k= 1

1 1 7Tt/t(yt|Xi; ^t)

U  i=1 711 E TTk/fcfailXi.flfc)
1 y ^  A(y»l*A ^t) 
n 7rtî= 1
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3.3. Indirect approach

Consequently, the proportion parameter 7it can be estimated by

E r/ ( 2fc|xi,^t)
.S+l _  t= l 
t ~~ „ t =  l , . . .K .

3.3 Indirect approach

In statistics, an expectation-maximization (EM) algorithm is an indirect ap­
proach to finding the maximum likelihood(ML) or the maximum a posterior 
(MAP) estimates of parameters in a statistical model, which depends on un­
observed latent variables. EM is an iterative method which alternates between 
performing an expectation(E) step and maximization(M) step. In the E-step, 
the missing data are estimated by using the observed data and current estimate 
of the model parameters. In the M-step, the expected complete likelihood func­
tion is maximized under the assumption that the missing data are known. The 
estimates of the missing data from the E-step are used in lieu of the actual 
missing data.

Following Dempster et al. (1977), to apply the EM algorithm, we first need 
to formulate the above problem into an incomplete-data problem in the next 
subsection.

3.3.1 Formulation as an Incomplete-Data Problem

Suppose (y,,Xj), i =  1 , . . . , n  are independent observations drawn from the 
mixture regression density

K

f { y |x, « ')  =  ^ 7Tfc/ fc(y|x, T').
k= 1

In the EM framework, the observed-data y  =  ( jq, . . . ,  yn)T and X  =  ( x i , . . . ,  x n)T
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3.3. Indirect approach

are viewed as being incomplete, as the associated component-label vectors

Note that z* is distributed according to a multinomial distribution consisting 
of one drawn on K  categories with probabilities ni, . . . ,  ttk , that is

by let Zki =  I, and zt, =  0 for t =  1 , . . . ,  K  if > rt where t ^  k. The 

complete-data is therefore defined as

Incomplete and complete data

Here, /(y|X , and / ( y ,  z|X, # )  are viewed as incomplete and complete den­
sity functions respectively.

The incomplete density function is related to the conditional density / ( y|z, X, \&) 

by
/ (y|X, V&) =  /  /(y|z, X , )/(z|X, *)dz, (3.8)

J  z

which can be proved as follows.

z i , . . . , z „  are not available, where z =  ( z i , . . . , z n)T with z« being a K  di­
mensional vector, defined by

îk
1 j/j £ the kth component 
0 yi ^ the /etti component
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3.3. Indirect approach

/ ( y , z , X , g )  
/ ( X . v V)

dz

=  /  /(y ,z | X ,^ )d z

=  / ( y | X , ¥ )

i.e. / ( y  X. * )  is a marginal function of / ( y, z|X, ,F).
From equation (3.8) we obtain the complete-data likelihood for VP, which is

M * | y ,  X )  =  / ( y, zjX, * )  =  / ( y|z, X , * ) / ( z | X ,  * ) .  

Note that

/(y| z,X , i») =  Y [f(y i
i = 1

n , x,;, = n  n  9
i=i fc=i

and also that
n K

/(zi*)=nn7Tz ikk '
i= 1 /c=l

We have the complete-data likelihood of ’F

n K
r z ik
rfcLe i®  | y ,x )  =

i=l k= 1 
n X

=  n  n  {^kfkiviixi, Qk)Yik,
*=i fc=i

and the complete-data log-likelihood of ^  as follows:

n K

logLc(^|y,X ) =  XX zik {log?rk +  log f k(yi\xi,Ok)}  . (3.9)
¿=1 k= 1
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3.3. Indirect approach

3.3.2 EM algorithm

After obtaining the complete log-likelihood, we use the EM algorithm to find 
the ML estimator of \EP The algorithm includes two steps: the E-step and 
the M-step. In the E-step, we calculate the expectation of the complete log- 
likelihood of Tp and in the M-step, we maximise the above expectation.

E-Step

Let be the initial value for if. Given the data (y, X ) and the current value 
of we calculate the of the conditional expectation of log Lc(if\y, X ) with
respect to z. We have

= £ » , . , {log L .(*| y ,X )| y ,X } (3.10)

— E.jr(&\j/(s)
K  n s

E X  Zik \ log 7ifc + log fk (Vi | Xj, Gk
k= 1 i=l ^

| y , x

The above equation shows that this expectation is being effected by using 
T»(0) as the first iteration for iP On the (s +  l ) th iteration, we use Q(if\ 
where T,ls-> is the value of after the sth EM iteration.

From equation(3.10), we can see that log Lc(Tr|y, X ) is linear in the unob­
servable data Zik, therefore, the E-step at the (s +  l)th iteration simply requires 
the calculation of the current conditional expectation of zik given the observed 
data y, i.e.

Q(tf|¥(s)) =  £ * (.){lo g L c(tf|y,X )|y,X } (3.11)

=  E\J/0)
K  nEE zik{ log7Tfc +  log f k(yi\xi, 6k)}

_k= 1 i= 1 
K  n

| y , x

-- E,T,(i ^ 2 (zik\y, X)[log 7Tfc +  log /fc^ lx j, 0k)
k=l i= 1

42



3.3. Indirect approach

K  n

-  EE E ^ s ) ( z ik|y,X) {logTTfc +  \o g fk(yi\xu d k)} .
k= 1 ¿=1

Note that

^ o)(^ fc| y ,X ) 0 -p(zik =  0|yi,Xi, ^ (s)) +  1 -p{zik =  1|yi,Xi, ^ (a))

p(zik =  1| yu xi,^f{a))

p(zik =  1, zit =  0, t ±  i\yi,Xi, ^ (a))
p(zik =  l ,z it =  0 , t ^ i i yj\xj,

f ( y ^ * {s))
f k{yi, x,, £ {s))p(zik =  l,Zjt =  0 , t ^ i )

f in  N , ^ (s))

/fc(yilxi,^(a))7r^}
/(y i| x i,^ (a))

Tfc(jji |Xj, ^ (s)).

Substituting the above formula into equation (3.11), we have

K  n

<2(^|W(s)) =  '^2 '^2Tk(yi\x.i, ^ {s)) {logTrk +  l°g f k{yi\dk)}
k= 1 i= 1

=  T i(yx|xx, ^ (a)) {logTTi + l o g / i ( ï / i | x i ,0 i) }  H-------

+ T K (yn |xn, ^ (s)) {logTTK +  lo g /x (2/n|xn, 0 ic)} •

M-Step

Similar to the E-step, in order to find the updated estimate \E,^+1\ we max­
imise Q(\Er|vI/^')) w.r.t 'E over the parameter space Q.

We know from Section 3.2 that, for the finite mixture model, the calculation of 
7r[‘s+1̂ is independent of <̂ s+1 ̂ as shown below.
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3.3. Indirect approach

Let

K

B = Q (*  |^(s)) - A ( ^ 7 T fc- l )
k= 1

K

= E9W {log Lc(̂ /\y, X)|y, X }  -  A ( J > fc -  1)
fc=l

=  Ti(yi|xi,^(s)) { lo g 7Ti + log /i(y i| x 1 )0 1)} +  ---

+TK(yn\Xn, ^ (s)) {log7rK +  log f K (l/n|x„, 0A)} -  7TA' -  1)
A'

A" n

= EE Tfc(i/i|Xi, ^ (i)) {logTTfc +  log /fc(i/j|Xj, 0 k )}
¿=1

fc=l

K

+  J 2 Tt(Vi\*> ^ (S)) {log 7Tt +  lo g /i (yi|xi, 0 t)} -  A (J ^ 7rfc -  1 ).
2=1 k= 1

In order to find the global maximum estimate of irt, we need to solve the 
derivative equation of B with respect to ivt and let it be equal to zero:

| ?  =  E r t(«i|xi>* W ) i - A  =  0 .
01Tt f - ' 7Tt2=1

By rearranging the equation we obtain

n

E n f e l  x j,4 ,(‘ ))
IT, =  — ------- J----------  (3.12)

As we know the summation of the proportion estimators nk, k =  1 , . . . ,  K  
equals to 1 , we can solve the above equation by summing up the terms from 1 

to K  on both sides of the equation:

k  ± r t { y i \ ^ M s ) )

E -— w- =  1.
t=i
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3.3. Indirect approach

Rearranging the equation, we get:

K  n

A = £ £ ^ | x „ *
t= 1 ¿=1 
A  n  (s)

- EE 7t(yi|xi,0 W'
K

t - 1  i _ i  £  T T ^ / f c i y i l X i , ^ )  
k=1

j(s)>

A' (W

i=1
w

k=i

= E1 n
¿=l

From equation (3.12), we have the updated estimate of irt at the (s +  1) 
iteration, which is given by

th

(s+l) ¿=1
f2n(yi\^i,^{s))

n
(3.13)

Concerning the updating of the remaining parameters £ on the M-step of the 
(s +  l ) th iteration, we differentiate Q(V&|\I/ )̂ wjth respect to £ and set it to 
zero. We have

ag(^|^(s)) 
dcT~ ^

dE {logL e(\l/|y, X)|y, X }
9C

K  n

£ £ £ ( ? / *
k=l i= 1

d\ogfk(yi\x.i,Ok)
d(

0 .

The detail of how to estimate the parameters via the second derivative of 
can be find in Chapter 5.1.
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3.3. Indirect approach

The E-step and M-step are alternated repeatedly until the difference |y, X ) —
L(\&^|y, X ) is less than a pre-specified value.

Following Dempster et al. (1977), we show that the incomplete-data likelihood 
function L('F|y, X ) is not decreased after an EM iteration; that is L(\F(S+1) |y, X ) ^ 
£(\jds)|y, X ), for s =  0,1, 2 . . .  as follows.

Proof. We define:

l(y|X,ffO =  log /(y|X , \P) =  log J / ( y ,  z|X, ffr)dz

We know from the E-step that:

Q (* | * (s)) =  E |log ¿(ff' ly, X)|y, X , |

=  £ {lo g /(y ,z | X ,t f)| y ,

we want to prove that if

Q(^(«+i)|^(»)) ^  Q(Tr(s)|T'(s)).

then

¿ (y | X ,^ +1>) ^Z(y|X,tf<s>) 

we can rewrite the /(y|X, t?) in the form:

w x-*> = E{log Hfiysrly |y’x> '6<‘ l}
= E { lo g /(y , z|X. \F)|y, X. <->} -  E {log /(z|y, X, *)|y, X, <*>}
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3.3. Indirect approach

where we define that

H (*  |*(s)) =  E {log  / (  z|y, X , v|>)|y , X , . 

Now we want to show that if

/(y|X, vj>(s+1)) =  q (^(»+ i)|^M)

and

/(y | X ,^ (s)) =  Q (^ {s)\^{s)) -  H('&{a)\'B{8))

then,
Q(^i(s+1)|^(")) ^ Q(,Jr(s)|i|r(s)).

Here we prove by contradiction, i.e. we aim to prove the opposite of our 
goal is not true, hence we prove

mxJ/lM-blVjjrW) ^ //(vp(fc)|ip(fc))

is not true.
By rearranging the above equation, we have

//(vp(s+1)|vp(s)) _  //(vj>(s)|̂ r(s)) ^ 0 

B[log/(z|y, X, * (*+I))|y,X, *<*>] -  £[log/(z|y. X, *<*>)|y, X, *'*>] f  0,

which implies,

E
/ (  z | y ,X .^ (s+1)) 
/ ( z | y ,X ,* (a>)

| y ,x ,^ (s) ^  o.
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3.3. Indirect approach

Now we can calculate it as 

E
f  / ( z l y . X , ^ )

\ /(z|y,X,«P<*>) j
i  i o g £ ^  / ( ^ l y . x . * 1 x . ^ w

\ /(z|y,X,*<*>)

=  l o g / ^ h d h ^ l / ( z | y , X , * M ) d z  
J /(z |y , X , *&'')

=  log 1 =  0

Hence convergence must be obtained with a sequence of likelihood values 
that are bounded as described above. □
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Chapter 4

Maximum Likelihood Estimation 
of Gaussian Mixture Regressions

A Gaussian mixture regression model is a parametric density function which 
can be represented as the sum of weighted Gaussian density components. It is 
often applied in biometric studies. The most common method of estimating the 
parameters is based on the Maximum Likelihood. There are many applications 
of Gaussian mixture regression models, such as imitation learning for multiple 
tasks (Cederborg et ah, 2010), regression classification (Sung, 2004), trajectory 
clustering (Gaffney and Smyth, 1999), and among others.

In this chapter we will firstly illustrate that how the EM algorithm is used 
to estimate Gaussian mixture regression models, followed by build a Gaussian 
mixture model to reflect grouping structures in the data. At last, we will de­
scribe two simulations, one of them shows the performance of the EM algorithm 
in estimating a two-component Gaussian mixture model, and the other assesses 
the effect of the sample size on the accuracy of Gaussian mixture regression- 
based clustering.
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4.1. Methodology

4.1 Methodology

Suppose we have an independent sample (?/i,x,), 1 <  i < n, where conditional 
on x, i/i drawn from the model

tt \ a \ 1 < ( y - * TP)2f(y\x,P,a) = — ^ e x p ( -------— ------
\j2-ko 2crz

where P =  (fa, fa ,. . . ,  /3P)T, and x* =  (1, xn , . . . ,  xiP)T. 
The likelihood function can be written as

n
L (^|y,X ) =  J J - ^ e x p (

t l  V 27TCT
( V i  ~ x f/3)2

2cr2 ■)

=  (27TC72) 2 e x p ( -— ^ ( ^ - x f / 3 ) 2),
4=1

and the log-likelihood function is

1 n
log L(xP|y, X ) =  -|log(27T(T2) -  _ x ^ ) 2-

t=i

Then we differentiate the log-likelihood function with respect to C and let 
it equal to 0. By solving the equation, we have the following estimators:

P =  (X TX ) - 1X Ty,
y (/„  -  X ( X TX ) _ 1X ) y

a2 =  --------------------------------- ,n

where In is an n x n unit matrix.

Now suppose that (y^x*), i =  l , . . . , n  are drawn from the following finite 
Gaussian mixture regression model with K  components,

K

/(y|x, = ^ 7 T fe/ fc(y|x,0fc).
fc=i

In the EM framework, the observed-data D =  (r/i, x p . . . ;  yn, xn)r are
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4.1. Methodology

viewed as an incomplete data. We combine it with the indicator to form 
the complete-data

Dc =  (D, z).

It follows from equation (3.9) that the complete-data log-likelihood for 4/ 
can be written as

n K

logLc(vE'|y,X) =  5^5^-Zifc{log7Tfc +  lo g /fc(yi|xj,0fc)}
i=l k=1 

n KEE Zi k {\ogT T k -  -  log(2 (Vi ~ x f /3fc)2 
2 o*

7T CTi, -
i=l fc=l

-}•

4.1.1 E-Step

We calculate the expectation of the complete-data log-likelihood based on the 
current values of parameters 'id6') below:

<2(4|'I'(s)) E\y(s){logL c(^|y,X ) |y,X}

Tl(yi\x -1 , 'h(s)){log7Ti +  log f i  ( jji |xX, 0i)} -f-----

+TK (yn IX„, 4 {s)) {log 7TK +  log f K(yn |xn, eK) }

T\{y\ |xi, 4>(s)) {log 7Ti -  i lo g (27Tf7i) -  —  ^ - — } + ••• 

+^A'(yn|x„,4 (s)){log7TA' -   ̂log(27ra|.) -  }■

4.1.2 M-Step

In this step we estimate the parameters in the (s +  l ) th iteration, based on the 
parameters obtained from the sth iteration. For this purpose, we maximise the 
expectation of the complete-data log-likelihood from the last step.
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4.1. Methodology

To update the value of 7rt, we define

£  =  Q(T|T(S> ) - A ( ^ 7 r fc- 1 )
*=l

=  Ti(yi|xi, vf'(s)){log7T1 -  i  log(27T(J?) -  V̂l 2^ -— } +  •■•

T 1~K (?/n |Xru 4/(s) ) { log 7T/c -  ^ log(27T<7 )̂ -  ^  X» ) _ } _  7Tfc -  l).
Z AGk  k= 1

Then, we differentiate B with respect to 7rt and set it to be zero. This gives 
A =  n, and

7T
Ë  Tt(î/i|Xi, 4'(s)) 

(s+1) _ t=l_______________

n

Following on, we update the remaining parameters

c - - * '

where (3 = , . . . ,  (3TK)T and a 2 = (af, kJ ■

In the M-Step of the (s +  l ) th iteration, function Q('F|'lds)) is differentiated 
with respect to (3 and cr2 respectively:

8 C (*|*W ) _
d( \ dQMVM)

d a 2

=  0 .

By solving the above equations, we get the estimated (3 and a2 of the tth
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component for the (s +  \)th iteration:

n

i=  1

¿=1
n

E 7i(Zhlx*>4'(s))
i=  1

We define W^s) =
i=l5Z

n

( Tt(yi\xi,'i!{s)) 0 0 ^
0 ‘ . 0 

 ̂ o 0 rf(r/n|xn, ^ (s)) )

let X* =  W ^ 2X , and y* =  W 1/2y, hence, we converted the generalised 
regression estimation problem to a least square problem, such that

The similar approach has been used by Benagliz et al. (2009).

4.2 Simulation

After discussing the EM algorithm and the process of its iterations, we assess 
two simulations: the first one is to discuss the accuracy of estimation by using 
EM algorithm in a two-component Gaussian mixture model; the second one is 
to assesses the effect of the sample size on the accuracy of Gaussian mixture 
regression-based clustering, under different scenarios.
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4.2.1 Simulation 1 (Univariate Gaussian mixture model)

In this simulation, we assess the accuracy of the EM-based estimation for a 
two-component univariate Gaussian mixture model.

Suppose we have a simple univariate Gaussian mixture model /  =  ^ifi{y) +
^2/ 2(2/)) where fi{y) and / 2(y) are Gaussian probability density functions, 7Ti

2
and 7r2 are proportions of each component with the constraint nk =  1.

k= 1

We simulated 100 observations y — (?/i, • • •, ?/ioo)r from two sub-populations: 
N (5,2) and 7V(1,1) with proportions 0.6 and 0.4 respectively. The real log- 
likelihood of the parameters is —219.516. The initial values of the parameters 
are randomly chose with constraints that 7Ti +  7T2 =  1, cr̂  > 0 and o\ >  0.

After run the simulation 100 times, we obtained 100 estimates for each param­
eter and 100 estimated log-likelihood. We averaged these estimates and calcu­
lated the corresponding empirical bias for each parameter and log-likelihood. 
The mean square errors for the estimator were also obtained. The results are 
shown in Table 4.1.

Table 4.1: Simulation of a 2 components univariate Gaussian mixture model.

T w o  com p on en ts  G aussian m ixtu re m odel

7T M a £ ( * | y , x )
7T1 7T 2 Ml M2 Cl C2

Real 0 .600  0.400 5.000 1.000 2.000 1.000 -2 1 9 .5 1 6

E-B ias - 0 .0 3 0  0.027 0.280 0.023 - 0 .0 5 5 - 0 .0 2 7 - 0 .0 0 1

M ean squared error 0.008 0.005 0.086 0.060 0.038 0.010 0.003

From the above Table 4.1, we realise that the estimated log-likelihood is 
very close to the real log-likelihood. The mean square errors are very small for 
all parameters in general, but the mean square errors for the first group are 
larger than those for the second group. It suggests that the mean square error, 
which indicates the accuracy, of each estimate is proportional to the underlying
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sub-population variances.

4.2.2 Simulation 2 (Gaussian mixture regression mod-

In this simulation we assesses the effect of the sample size on the accuracy of 
Gaussian mixture regression-based clustering, under the following scenarios:

1. different number of components;

2. different proportion weight of each component;

3. different correlation structure of covariates;

4. equal and unequal component variances;

5. various regression coefficients.

Suppose we have a parametric mixture model of regression:

k= 1
where each component is Gaussian distributed.
Let X  =  ( x i , . . .  , x n)T be the covariate matrix, and X; =  (1, Xu, . . .  ,Xi^)T =  
( l,x * )T, where x* =  (xn , . . . ,  Xie)T denote the ith observations on 6 covari­
ates. We generated x* from N (0, E), where E =  (pl2-ml)1<J)m<6 and 0 <  p < 1 
is a constant. For i =  1 ,.. . ,n, conditional on x,, we generated yt from K- 
component Gaussian regression model. We standardised both y and the covari­
ates in X  in order to compare groups and penalties. The results are summarised 
in terms of the averaged RAND index over 100 replicates in the following tables.

Simulation 2.1 (Two components)

In this simulation we assess the effect of various regression coefficients on the 
accuracy of Gaussian mixture regression-based clustering. We consider two dif­
ferent scenarios with large or small distances between the regression coefficients

els)

K
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respectively. Both scenarios contain the following cases: (1) component vari­
ances are equal or unequal; (2) component proportions are equal or unequal; 
(3) the correlation structure of covariates is different.

Data with relatively large distance between the regression coeffi­
cients We let the regression coefficients f31 =  (0, 3, 3,3, 3, 3, 3)T and f32 =  
(0, —1, —1, —1, —1, —1, — l ) r , and consider the different combinations with the 
rest parameters: (cq, a2) : (1,1), (2, 2), (1.5, 2.5), (1.5, 3.5), p : 0.5, 0.75, (iq, 7r2) : 
(0.5, 0.5), (0.3, 0.7). The results of averaged R AND indexes under the differ­
ent scenarios are summarized in Table 4.2. Figure 4.1 shows the box plots 
of RAND indexes when the two component variances are equal while Figure 
4.2 shows the box plots of RAND indexes when the two component variances 
are unequal. In the Figures, from the left to the right the following cases are 
considered: (iq =  7t2 =  0.5, p =  0.5), (7q =  7t2 =  0.5 ,p =  0.75), (7q =  0.3, 
vr2 =  0.7,p =  0.5), (tti =  0.3, 7r2 =  0.7, p =  0.75).

Figure 4.1: Rand indexes of GM regression model with 2 equal variance com­
ponents when the distance of the regression coefficients between the 2 groups 
are relatively large.

From Table 4.2, ft can be seen that when the distinction between two groups 
are clear, the RAND indexes of GM model with a large sample size are about

56



4.2. Simulation

Table 4.2: Averaged RAND indexes for GM regression model with 2 compo­
nents when the distance of the regression coefficients between the 2 groups are 
relatively large. (The numbers in the parenthesis are the standard errors)

Equal variance cases: k = ‘2 and p =  6

Cases 7T = 0.5 7T = 0.3
p o n =  100 n =  1000 n =  100 n =  1000

0.50 1 0.931(o.oo8) 0.975(o.oo2) 0.972(o.oo6) 0.993(o.ooi)
2 0.881(o.oio) 0.976(o.oo3) 0.882(o 036) 0.988(o.oo2)

0.75 1 0.958(o.oo8) 0.988(o.ooi) 0.964(o.oo6) 0.992(o.ooi)
2 0.915(o.oi2) 0.975(o.oo2) 0-951(o,oo8) 0.989(o.ooi)

Unequal variance cases: k =: 2 and p =  6

Cases 7T = 0.5 7T = 0.3
P o\ 02 n =  100 n =  1000 n =  100 n =  1000

0.5 1.5 2.5 0.926(o.oi3) 0.983(o.oo2) 0-925(o.oio) 0.987(o.oo2)
1.5 3.5 0.885(0.032) 0.978(o.oo2) 0.914(o.oi3) 0.977(o.oo2)

0.75 1.5 2.5 0.950(o.oo8) 0.988(o.oo2) 0.956(o.oo8) 0.985(o.ooi)
1.5 3.5 0.927(o.oio) 0.981(o.oo2) 0-941(o.oo9) 0.983(o.oo2)

3% — 8% larger than the one with a small sample size under different scenarios. 
The standard errors of RAND indexes are also smaller for GM model with a 
large sample. When the variance of each component are equal, the difference 
of RAND indexes between large data and small data when the variances are 
equals to 2 is bigger than the difference of RAND indexes when the variance 
are equals to 1. Similarly, in the scenario where the component variances are 
unequal, the RAND indexes were improved more when variance are 1.5 and 3.5 
compared to variance are 1.5 and 2.5 respectively. It shows that the advantage 
of clustering with large sample size is more obviously when the variance are 
large as it takes more information.
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Figure 4.2: RAND indexes of GM regression model with 2 unequal variance 
components when the distance of the regression coefficients between the 2 
groups are relatively large.

From the Figure 4.1 and 4.2, we can see that the dispersion degrees of RAND 
indexes with small sample size is much bigger than the one with large sam­
ple size under all scenarios, which means the model with large sample size has 
higher stability. Therefore, the more reliable clustering results can be expected 
when the sample size become larger.

To sum up, when regression coefficients of the two groups are significantly 
different from each other, the GM model under large sample size has better 
performance on clustering compared to relatively small sample size in all situ­
ations.

Data with relatively small distance between the regression coeffi­
cients In this simulation, we illustrate the performance of RAND index of 
GM regression model with a small dataset and a relatively large dataset when 
the distance between the regression coefficients for each component are rela­
tively small, i.e the distinction between the two groups are not clear.
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Firstly, we let the regression coefficients ¡31 =  (0 ,1 ,1 ,1 ,1 ,1 ,1)T and (32 =  
(0,1.5,1.5,1.5,1.5,1.5, 1.5)t respectively. Similar as in the previous simula­
tion, we consider the different combinations of the regression coefficients with 
the rest parameters: (cri, cr2) : (1,1), (2, 2), (1.5, 2.5), (1.5, 3.5), p : 0.5,0.75, 
(7Ti,7r2) : (0.5, 0.5), (0.3, 0.7). The results of averaged RAND indexes under the 
different scenarios are summarized in Table 4.3. Figure 4.3 shows the box plots 
of RAND indexes when the two component variances are equal while Figure 
4.4 shows the box plots of RAND indexes when the two component variances 
are unequal. In the Figures, from the left to the right the following cases are 
considered: (îti =  7t2 =  0.5, p =  0.5), (7Ti =  7t2 =  0.5 ,p =  0.75), (7Ti =  0.3, 
7r2 =  0.7,p =  0.5), (tt! =  0.3, tt2 =  0.7, p =  0.75).

p=0 5 p=0 5 p=Q5 p=0 5

Figure 4.3: Rand indexed of GM regression model with 2 equal variance com­
ponents when the distance of correlation coefficients between the 2 groups is 
relatively small.

From 4.2 we can see, when the distance of regression coefficients is small, 
the accuracy of clustering of both samples is about 20% worse compared to 
the situation when the distance is large under all scenarios. However, the dif­
ference between the RAND index of two samples is larger, compare with the 
previous simulation. The RAND indexes with the large sample improved about
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Table 4.3: Averaged RAND indexes of GM regression model with 2 components 
when the distance of the regression coefficients between the 2 groups is relatively 
small. (The numbers in the parenthesis are the standard errors)

Equal variance cases: k — 2 and p =  6

Cases 7T = 0.5 7T = 0.3
P a n =  200 n =  1000 n =  200 n =  1000

0.50 1 0.611(o.oi8) 0.775(o.oi3) 0.766(0.023) 0.915(o.oo8)
2 0.432(0.032) 0.676(o.oi9) 0.651(0.034) 0.824(0.021)

0.75 1 0-661(0.025) 0.842(0.008) 0.845(o.oii) 0.938(o.oo5)
2 0-551(0.025) 0.732(o.oi8) 0.7 1 4(0,037) 0.878(o.oi2)

Unequal variance cases: k =  2 and p =  6

Cases 7r = 0.5 7T = 0.3
P o\ d2 n =  200 n =  1000 n =  200 n =  1000

0.5 1.5 2.5 0.523(0.028) 0.775(o.oi2) 0.681(0.026) 0.8468(o.oi4)
1.5 3.5 0-6 1 6(0.030) 0.760(o.ooi7) 0.583(0.029) 0-75 7(0.022)

0.75 1.5 2.5 0-6 14(0.028) 0.818(o.on) 0.667(0.020) 0.890(o.009)
1.5 3.5 0.636(0.024) 0.827(o.oi3) 0.660(o.o32) 0.826(o.oi8)

15% — 20% compared to the RAND indexes with the small sample. The stan­
dard errors of survival rates are also smaller under large sample.

From the Figure 4.3 and 4.4, we can see that the dispersion degrees of RAND 
indexes with the small sample is much bigger than the one with the large sample 
under all scenarios, which means the model with large sample size has higher 
stability. Therefore, the more reliable clustering results can be expected when 
the sample size are larger.

Overall, when the distinction between two groups are not clear, the GM model
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p=0 5 p=fl 5 p=0 .5 p=0 5

t»ï8S «-100C n-2CC n-ICOO n-20C n-1000 i**2W «-1WC

RAM) «iflex 2S RAJŒ riOcM RAHE nSe* Ï1 RAHD««Jex32

Figure 4.4: Rand indexed of GM regression model with 2 unequal variance 
components when the distance of correlation coefficients between the 2 groups 
is relatively small.

with large sample size obviously has better performance than GM model with 
relatively small sample size in all situations, and the advantage are more out­
standing in this simulation compared with the last one.

Simulation 2.2 (Three and four components)

The above two simulations show the effects of RAND indexes under several 
scenarios when there are only 2 components of the Gaussian mixture model. In 
this simulation we consider more complicated situations that when the Gaus­
sian mixture model with 3 and 4 components receptively, under the following 
scenarios: 1. Component proportions are different; 2. The correlation structure 
of covariates are different.

In the case that the mixture model has components, we let the correlation 
coefficients are (31 =  (0, 3,3,3, 3, 3 ,3)T, (32 =  (0,1.5,1.5,1.5,1.5,1.5,1.5)T and 
/33 =  (0, - 1 , - 1 , —1 , - 1 ,—1 ,-1  )T respectively, and consider the different com­
binations with the rest parameters: (oq, og, as) : (1,1,1), (2,2,2), p : 0.5,0.75,
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{tt\i 7t2. vr3) : (0.2,0.3, 0.5), (0.4,0.2, 0.2). When the number of components are 
4, we let (3l =  (0 ,3 ,3 ,3 ,3 ,3 ,3)r , /32 =  (0,1.5,1.5,1.5,1.5,1.5,1.5)r , f33 =
(0 ,1 ,1 ,1 ,1 ,1 ,1)T and /34 =  (0, - 1 , - 1 ,  - 1 , - 1 ,  -1 ,  - 1 ) T, and consider the dif­
ferent combinations with the rest parameters: (cti, ct2, cr3, cr4) : (1,1,1,1), (2, 2, 2, 2), 
p : 0.5,0.75, (7n,7r2,7r3,7r4) : (0.1, 0.2, 0.3, 0.4), (0.25, 0.25, 0.25, 0.25). The re­
sults of averaged RAND indexes under the different scenarios are summarized 
in Table 4.4. Figure 4.5 shows the box plots when the number of compo­
nents is 3, in this Figure, from the left to the right the following cases are 
considered: ((iri, 7r2, 7t3) =  (0.2, 0.3, 0.5), p =  0.5), ((7Ti , 7t2,7t3) =  (0.2, 0.3,0.5)
,p =  0.75), ((tT]., tt2, 7t3) =  (0.4, 0.2, 0.2),p =  0.5), ((vn, tt2, tt3) =  (0.4, 0.2,0.2), 
p =  0.75). While Figure 4.6 shows the box plots when the number of com­
ponents is 4, in this Figure, from the left to the right the following cases are 
considered: ((7Ti, 7r2,7t3, 7r4) =  (0.1,0.2,0.3, 0.4), p =  0.5), ((7Ti, 7t2, 7t3,7r4) =  
(0.1, 0.2,0.3, 0.4) ,p =  0.75), ((ti"i , 7t2, tt3, 7t4) =  (0.25,0.25,0.25,0.25),p =  0.5), 
((7T!, 7T2, tt3, 7t4) =  (0.25, 0.25,0.25,0.25), p =  0.75).

P=C 5 p=0 5 p=05 F=C 5

»-«0 •*iooe « -tt  n.a*o *-;wx «-tec «-not

UIC«M>!7 «WOCm**«

Figure 4.5: Rand indexed of GM regression model with 3 components.

From Table 4.4 we can see, on one hand, the accuracy of clustering by using 
RAND indexes of GM model with a large sample is much better than the one 
with a small sample, and the standard errors of survival rates are also smaller
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Table 4.4: Averaged RAND indexes for GM regression model with 3 and 4 
components. (The numbers in the parenthesis are the standard errors of the 
survival rates)

Equal variance cases: k =  3 and p = 6

Cases 7r =  (0.2, 0.3,0.5) 7r =  (0.4,0.4, 0.2)
P a n =  400 n =  2000 n = 400 n =  2000

0.50 1 0.891(o.oio) 0.958(o.oo3) 0.794(0.035) 0.859(0.045)
2 0-849(o.oi3) 0.946(o.oo2) 0-7 1 8(0.037) 0.898(0.023)

0.75 1 0.869(0.035) 0.966(o.oo2) 0.884(o.on) 0.926(0.028)
2 0.857(o.oii) 0.953(o.oo3) 0 .8 0 8 (o,oo26) 0.890(o.o34)

Equal variance cases: k = 4 and p =  6

Cases 7r =  (0.1,0.2,0.3,0.4) 7r = (0.25,0.25,0.25,0.25)
P (7 n = 400 n =  2000 n =  400 n =  2000

0.50 1 0-712(0.028) Oot—H00o

0.620(o.o33) 0.828(0.025)
2 0-6 1 8(0.026) 0.835(0.026) 0.538(0.029) 0.776(o.oi2)

0.75 1 0.748(0.036) 0.922(o.oo4) 0.720(0.026) 0.852(0.025)
2 0.676(o.oi9) 0.859(0.024) 0.590(0,023) 0.835(o.oo6)

for GM model with large sample for all cases. The table also shows that the less 
the number of components are, the better the performance it has on clustering. 
On the other hand, the improvement of clustering between large data and small 
data are bigger when it has more components.

Difference between the results of box plots is shown in the last simulations, 
the Figure 4.5 and 4.6 illustrate that although the degrees of dispersion of 
RAND indexes for the small sample are higher than the ones for large sample, 
the difference of the stability of the GM model between two samples is less 
obvious.
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RAM) MB«

Figure 4.6: Rand index of GM regression model with 4 components.

Generally speaking, all our simulation results show that, the GM model with a 
large sample gives a better clustering prediction compared to the model with a 
small sample in all scenarios. However the accuracy of clustering changes under 
different situations.
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Chapter 5

Maximum Likelihood 
Estimation of Exponential 
Power Mixture Regressions

In the Gaussian mixture regression modelling, the conditional distribution of 
the response variable given covariates is assumed to be Gaussian. As we men­
tioned before, this may be invalid in practice. Here, to tackle the problem, we 
propose exponential power mixture regression models to improve the model-fit 
to the data by relaxing the restrictions on the shape parameters in Gaussian 
mixture regression models.

In this chapter, first of all, we build an exponential power mixture model 
to reflect grouping structures in the data. Then we develop the identifiability 
of the model followed by present the details on how to calculate the maximum 
likelihood estimators of the above model by using the EM algorithm. The nov­
elty lies in that we convert a regression estimation problem to a least square 
problem. Next, we conduct three simulations to assess the performance of 
maximum likelihood estimation of exponential power regression in estimating 
and clustering, under the following scenarios: 1. the data are drawn from a 
Gaussian mixture regression model; 2. the data are drawn from an exponential 
power mixture regression model; 3. the data with clumpy correlations, which
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means they are neither drawn from a Gaussian mixture nor exponential power 
mixture of regression model. All results are compared with maximum likeli­
hood estimation of Gaussian mixture regressions. At the end of this chapter 
we apply our method on the gene expression and motifs dataset.

5.1 Methodology

Similar to Chapter 4, there are 2 steps in maximum likelihood estimation(MLE) 
of the exponential power mixture model of regression by using the EM algo­
rithm: In the E-step, the missing data are estimated by using the observed data 
and current estimate of the model parameters. In the M-step, the expected com­
plete likelihood function of the exponential power mixture of regression model 
is maximized under the assumption that the missing data are known.

Suppose we have an independent sample (?/j,Xi), 1 <  i < n, where con­
ditional on x,, yi drawn from the following finite exponential power mixture 
regression model with K  components,

K

k=1

where the parameter vector 4' =  (7Ti,. . . ,  ttr- i , C' )T is the vector contain­
ing all the unknown parameters in this mixture model, and £ =  (6 j , . . . ,  0 ^ )T.
0k =  (/3k, Qfc, ak)T, k =  1 , . . . ,  K.

In the exponential power mixture regression model, the density of the kth com­
ponent can be written as

66



5.1. Methodology

Recall that the latent variable is

Z{k
Di E the fcth component 
Hi ^ the /cth component

In the EM framework, the observed-data D =  (yi, x x; . . .  ; yni xn)T are 
viewed as an incomplete data. We combine it with the indicator to form 
the complete-data

D c =  (D, z).

The complete-data log-likelihood for T' can be written in the following form

n K

logLc(^ ) =  Zik{ log7Tfc +  log/fc(yt|xj, Ok)}- (5.1)
i=1 k=1

5.1.1 E step:

Similar as shown in the previous Chapter, we calculate the expectation of the 
complete-data log-likelihood based on the current value of where T»(s)
stand for the value of all parameters after the sth iteration.

Q (tf|tt<*>)= £*<.) (logLc(tf)| y ,X )
'  n K

E E  Zik (log (7Tfc) +  log / fc(yj|xj, Gk))— Ext,(s
. i=1 k=1 
n K

|y,x

E E  (■Zik |y,X) [log (7Tfc) +  log fk{yi\Xi, &k)]
l i= 1 k= 1

n K

=  E E  -S'xl/(*s) (̂ ik |y 5 fh (jji |x*, öfc)]
2=1 k= 1 

n K

=  E E  rfc(r/j|xi,^(s)) [log (7Tfc) +  log/fc(yi|xi,0fc)]
i=i fc=i
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71 K KEE T-fc(^|Xi,^(s))l0g (TTfc) +  EE Tk {yi,^{S)) log/fc(j/i|Xi,0fc)
¿=1 fc=l i= 1 fc=l

E E r̂ lx- ̂ (S)) log (^ )  +  E E Tfc *W)log 2akr (l/a'k)

y i-* lP k \ ak

i=1 fc=l 
n K

E E ^ N - ^ ’) (CT2w / 2
¿=i fc=i v

n X= EE rfc(yi|xj,^(s))log (7rfc) +  A,
¿=i fc=i

where

n ft"
-4 =  E E ^ ( ^ ^ (s))iog

Oik
n K l ^ - x f / 3  kr

2=1 k= 1 2fft r ( l /a n )  ' (^)“‘/2

Given the observation data (y, X ), the expectation of latent vector z

Eqi(s) î Zik |y)X) -Pvp(s) {Ejfc |y, X }

=  Tfc ( ^ | X j , ^ ( s ) )

T T ^ /fc^ lx * ,^ )
K  , \

E 4 ” f t ( y i \ * i , o {t
t= l

TT{ks) f k { y i \ y i i , 0 {̂ )

f  (y x,^(s))

5.1.2 M step:

(?)
by calculating the maximization of the expectation of the log-likelihood. In 

this step we estimate the parameters on the (s +  l ) th iteration, based on the 
parameters obtained from the sth iteration. For this purpose, we maximise the
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expectation of the complete-data log-likelihood from the last step.

Estimate ixt

To update the value of nt, we define

K

B =  Q ( t f | t f W ) - A
vfc= 1

n K  n K

=  S rfc(^lx*’ ^ (S)) loS (t O + X! S r*(^|x*> (̂S)) lo6
¿=1 k̂ t

Oik

K

i— 1 k^t 
n

+  ^ ri(^ lx*-i,(s)) log

u:

¿=i fĉ i 2akY(\/ak)

T a  \a k  n 
!)<W2 '

2=1

2 = 1 20-iT ( l /a t)
T,(s))

T /Q I at

1=1

|y. - x f  A  
K 2)“t/2

K
-a y^7rfc - 1

,fc=l

Then, we differentiate B with respect to 7rt and set it to be zero, which gives 
A =  n, and ift on the (s +  l ) th step is

7~t {yi |x* ,
7ft(s+1) _  ¿=1

n
(5.2)

Estimate (3t

There are two ways to estimate (3tl the first one is to convert the problem to 
a least square estimation problem, and the second way is to use the Newton- 
Raphson method. The details are as follows.

Least square approach In order to estimate /3\s+1\ we derive the expecta­
tion of the complete-data log-likelihood function, A, with respect to f3t and set
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it equals to 0, we have

dA

dPt E
i= 1 
n

d\yi - x f / 3 4
cr,¡)Qt/2

rt(yi|x,:, ^ (s)) 9 |y* -  x fp , n'

i= 1 K ) “ ‘ dpt

t -
t=l ( w )

^  |yj -  x f p t|( ‘  ̂ ( x i V i  -  X iX ? P t)
¿=1 O i)c

=  0.

We re-arrange the equation to get:

, _ Tq |(“‘ - 2)/  y \T( at 12/i x * Mt| XW“  (oi)Xii=i v '
A ( y i \ ^ i ,  vE,( 's-)) , T

=  2 ^ — ( - ^ —
hu-2!

XiX-lPt-

By solving the above equation, we get the estimated Pt on the (s +  l ) ih iteration

P
(s+l) E L ,  n't £ U>)* 1»  -  * »

E r .i  iy- ~ x ^ » i'(Qt"2)x ,x r '

Let W j be a square matrix where it has the entries of Tt(yt\xt, |yi — x f/3 t | ^
i =  (1, on the main diagonal and zeroes elsewhere:

it-2

/  T tij/ilx i,«^ ) \ y i - x [p t\( *  ̂ 0
W ,  = 0

0

0

0
\

0 Tt(yi\xi,Af{s)) \yn -  x£pt\( * ) /
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5.1. Methodology

We define X* =  W ^ X ,  and y* =  W ^ y ,  hence, we converted the gener­
alised regression estimation problem to a least square problem, such that

0 t +1) =  (X*TX *)-1X*Ty*.

Newton-Raphson approach We can also use Newton-Raphson method for 
hnding successively better approximations to ¡3t of function A.

Recall that,

n K

A =  ^ T ^ K ^ l o g «/c
n K

i= 1 k= 1
2akr (l/ a k)

(s)) \yi -  x f/3fc|Qfc

(a2k)ak/2

The first derivative of the function A with respect to (3t is:

ÔA
dPt

at
h  ì)at/2 2

x; A
|2y«t/2 )-i

(y* - x f / 3 1) ( - x f )

Q< è ?  w ) » /2 ”

and the second derivative of A is:

d2A (W
(\yi ~~ x i/3f |2) ( ( - x D  (xD

r (^2)at/2

+a«E ^ (‘s)) / a t
r (^2)“ t/2

2 \  ( a t / 2 ) - 2

— -  1
2

x2 ( ¡2/i — xf/3 t (î/< - x î a ) 2 (x D  ( - x *)
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-  ( ( i * - x f A i f ’ - 1 (x,xn (X, -  d )  .
(°?)at/2 i=1

Therefore, by implanting the Newton-Raphson method, we have:

f t«*«> _  &  _  f
\d(3td p j

= P\S) +  (at -  1)_1

&4\

rt(2/j|xi) ^ (s)) I T R  |a‘ -2 __ T
Z_v f~2\at/2 \Vi X* p
¿=1

!)at/2 x !x l
-1

X 5Z /tv,̂ ?wV2~  ~  x̂ P 2 (& - x̂ )x -
¿=1 K 2)at/2

Both the least square and the Newton-Raphson approach give the same re­
sult of + \

Estimate of

Similarly as above, to estimate of, we calculate the derivative of the function 
A with respect to (1 /o f) and set it equals to 0.

We have:

dA

adp) i= 1

<9(log(l/at))
3(1/*?)

J 2 Tt(yi\xi,v{s)) \yi - x f / 3 t|Qf y  ( l /(J2t ) 

3[1 /2  log (i/crf)]

(tti/2) —1

Z=1

i= 1

|y< (l/crf)

3 (i /* ? )

i= 1
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5.1. Methodology

2

i= 1
0.

By re-arranging the equation, we have:

i= 1 2=1

( _2\at/2 \yi-*-TPt\at
{at ) -

Hence, the estimated o f on the (s +  \)th iteration, (o-2) ^ 1), can be written 
in the following form:

Estim ate at

As at can not take a negative value, we define a new variable r)t =  log(at), 
where r/ can take values from ~oo to oo. We use Newton-Raphson method to 
update at as follows.

We can write A in the following form:

(5.3)

2=1 k= 1 2=1 k= 1
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n K n KEE rfc(|/i|xi, ’i {s)) lo g ( -1- )  +  EE Tk(Vi\Xi, ^ (s))log(
= 1 k=1 

n K

EE Tk(Vi\Xi, ^ (S))

2 <Tfc

| Vi - X j  'flfci
(a2)Qfc/2

i=l fc=l 
.T/a |afc

r ( i / o i ) )

¿=i /c=i

The first derivative of the function A with respect to at is:

dA
dat

n /
5 3 ri(^ ix< .® (s)) (
i= 1 '

n

- J 2 Tt(yi lx o ^ (s))

l  +  r / ( ! M )  i
\at r  (1 /at) a

\Vi-*iPt\
2=1 O’«

log
Ot

and the second derivative of the function A with respect to at is:

d2A
da2t ¿'T t(yi|x<,® (*)) f - ^ 2

2=1

2 r ( i / c p )  
at r  ( i M )

1 ( T" (l/at)
a2t \ r ( l /Q t)

/ r - ( i M )
Vr(iM)

~ Y l Tt(yi
2=1

bt - ¿ [ P i

2 =  1

E  2 r ' ( l /q ,)  
\ a ? + a ? r ( l / a , )

1 /  r" (i/tti)
a t  \  r ( l / a , )

- E T|,!,'ix ''
2=1

b* ~
(7t

2

fT '( l / q , )
Vr(l/a.)

where

dl/Y{l/nt) =  ^ ( r i l M ) ) - 1 
9at <9at ( r ( i / o,,))- 2r ' ( i / qj) •
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Note that

which implies,

Oit = e

dat der,t
dr)t dr]t

By chain rule, the first derivative of the function A with respect to rjt is:

dA dA dat dA
0r)t dat drjt dat

and the second derivative of the function A with respect to r]t is:

d2A
dvì

d (d A dA dat
Oitdat \drjt

d (  dA dat
dat dr\t

dat \dat drjt Oit +  T
dA dat
dnt drjt

d2 A dat dA dat
-at +

da2 dri,
d2 A 2 dA

' a i + da

dat drjt

Oitda2
d2 A dA
-R— Oit +  —— ) at,

which implies,

d2A
drjtdrjj

V dot 1 1 d a i

a2 a
«1

V
datdak

a

daKda1nKai ^
d2 A 

d a td a k OtOik
dA

^  I ai<
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for k ^ t, where
d2A 32A

drjtdr)k datdak

By applying the Newton-Raphson method

T] =
 ̂ m  \

(*+i)
( V\ ^

m  ) m

i  rjt is

(s+l) (  S'1 A
Vt -  Vt  - \da2

( s )

/  d2A 
\ drjdri1

(  \

-1

<9 an

\ £ £ a « J

( .s)at=a;

Hence, the tth component of the estimated shape parameter a, at, after the 
(s +  l ) th iteration is:

a (S+1) _  ,JS) (s )
OLt =ort

id 2 A d A y 1 dA
~~l ^ \ da2 at dat J dat

for 1 ^ t ^ K .

To avoid extreme values of at, we added a small constraint value r, such that

at — r = eVt.

The first and second derivative of A with respect to rjt becomes:

-(on -  r )
dA dA
drjt dott

d2 A d2A
dr]2

t . 2 dA .
a A at~ r)
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therefore, the updated at on the (s +  l ) th iteration is:

 ̂(s+1) i { (s) \at =  r + [at — r )e 

= r +  (cr[s'1 — r)e

¿4dctf^ t - r )2+ ^ t {a t - r )] §±(a t - r) »

19af {at r)-td d
( s )at=<*t

for 1 <  t ^  K.

5.2 Theoretical Property

5.2.1 Identifiability

In statistics, identifiability is a property which a model must satisfy in order 
for inference to be possible. That means different values of the parameter 
must generate different probability distributions of the observations. Suppose 
we have an independent sample (r/,,Xj), 1 <  i < n, where conditional on x, 
y,L drawn from a exponential power mixture regression model {/(i/|x, (3, a, a )} 
where X  =  ( l ,x i ,  ...,xn)T, and x,: =  ( l ,x n ,... ,x iP)T =  ( l ,x * )T, i =  1, . . .  ,n, 
(3 G ( - 0 0 , 0 0 ), a2 G (0, 00), cv G (0, 00), is said identifiable if the relation is of 
the form

k  k *

^ 2 n kf(y\x,(3k,a l ,a k) = Y  Kfivl*-, PI, «1*, al), 1/ G K1, x  G Rp+1 (5.4)
k=1 k=1

where K  and K* are positive integers. Note that Ylk=i Tt =  SitL 1 nk = 
1 and 7rk > 0, 1 <  k < K, n*k >  0, 1 <  k < K*, implies that K  =  
K*, and that there exists a permutation v on 1,2,..., K  for any x, such that 
x T/31 =  x T/3„(fc), which implies f3*k = (3u(k), then we have « ,  (3*k, o f , a*k) =

('Xu(k) 1 (3u(k) > )'

Theorem  5.1. The above exponential power mixture regression models are 
identifiable.
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5.3. Simulations

Proof. The poof of Theorem 5.1 follows by the theorem 1 in Zhang and Liang 
(2010), for mixture regression models, we use x T/3 instead of // in (Zhang and 
Liang, 2010). □

5.3 Simulations

In this section, we assess the effect of data structure on the accuracy of the 
EM-based clustering and estimating of exponential power mixture regression 
models. The simulations are under the following scenarios: 1. the data are 
drawn from a Gaussian mixture regression model; 2. the data are drawn from 
a exponential power mixture regression model; 3. the data are drawn from a 
mixture regression model which is neither Gaussian distributed nor exponential 
power distributed. All results are compared with the EM-based clustering and 
estimating of Gaussian mixture regressions.

5.3.1 Simulation 1 (GM)

In the first simulation, we assess the accuracy of the EM-based clustering of 
exponential power mixture regressions for a 3-component Gaussian mixture 
regression model, and compare the results with the EM-based clustering of 
Gaussian mixture regressions.

Suppose we have a 3-component parametric mixture regression model:

3
/(y*|Xi,^) =  ^TTfc/fcij/ilXiA), 

k= 1
where each component is Gaussian distributed.

Let X  =  (xx, . . . ,  x 5 0 o ) t  be the covariate matrix, and X; =  (1, x^ , . . . ,  Xi )̂T =  
(1, x*)T, i = 1 , . . . ,  500, where x* =  (xn ,. . . ,  xi3)T denote the ith observations 
on 3 covariates. We generated x* from N (0 ,1). For i =  1 , . . . ,  500, condi­
tional on x,, we generated yi from a 3-component. Gaussian mixture regression 
model. Both y and the covariates in X  were standardised. The interceptors
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5.3. Simulations

An — Am — A )3 — 0, and let ( A i , A i , A i )  ~  t^[l,2], (A 2, ^22,^ 32) ~  t^[2,3],
(A 3, A 3, A53) ~  f/[3,4] respectively. The proportion of the 3 components was

3
randomly selected with the constraint 77 k =  1, and the variance is 1 for all

k= 1
components. The real parameters of the model are summarised as below:

(7n, tt2, 7t3) =  (0.509,0.209,0.282)

0
1

A52 A)3 0 0 0

fill A 2 A3 1.423 2.432 3.749

A21 fi 22 A3 1.695 2.380 3.415

An fi 32 A3 1.777 2.499 3.988

(cp, 0-2, 03) =  (1,1,1)-

The Q-Q plot of observation y is shown in Figure 5.1. The Figure 5.1 also 
proved that the data is Gaussian distributed.

To set the initial values of parameters, we let 7Tfc ~  U(0,1) with constraint
3

JJ 7Tfc =  1, A*; ~  G[l, 3], and the variances ~  U[ 1,3], where k =  1, 2, 3 and
k= 1
.i 1......1-

Let D =  100 datasets. The GM implement Mclust gave a result of 2 com­
ponents with proportions n = (0.511,0.489). By selecting the best fit, we 
compare BIC for the number of components k =  1,2, 3, 4, 5. The results are 
summarised in the Table 5.1:

Table 5.1: Averaged value of AIC, BIC, EBIC and RAND indexs for data 
generated from GM regression model with dimension is 4.

k Ane(min B IC ) Ave{min AIC) Ave(min EBIC) Ave(RAN D)
GM 3 1650.273 1565.981 1563.857 0.750

k Aue(min B IC ) Ave(vain AIC) Ave(min E B IC ) Ave(RAND)
EPD 3 1663.735 1566.799 1667,319 0.729

From Table 5.1, we can see for the EM-based clustering of Gaussian mixture 
regressions, by fixing the shape parameters equal to 2, it gives the min BIC =
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Normal Q-Q Plot

Theoretical Quanti I es( Normal )

Figure 5.1: The Q-Q plot of observation y drawn from a GM mixture regression 
model.

1650.273(with corresponding minAIC =  1565.981 and minEBIC =  1653.857) 
when it has 3 components with the RAND index= 0.750. For the EM-based 
clustering of exponential power mixture regression, it reached its min B IC =  
1663.735(with corresponding min AIC =  1566.799 and minEBIC  =  1667.319) 
when it has 3 components with the RAND index= 0.729. It shows that when 
the data are generated from a Gaussian mixture regression model, the EM- 
based clustering of Gaussian mixture regressions is more accurate than the 
EM-based clustering of exponential power mixture regressions.
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5.3. Simulations

We use the Q-Q plot to illustrate the residuals of each component after 
clustering by both EPD and GM respectively, shown in Figure 5.2 and 5.3.

normal Q-Q plot (EPD) normal Q-Q plot (EPD) normal Q-Q plot (EPD)

Theoretical Quantiles for group 1 Theoretical Quanties for group 2 Theoretical Quantiles fix group 1

Figure 5.2: The Q-Q plot for the residuals after EPD based clustering.

Both Figure 5.2 and 5.3 show that the residuals of each component are 
Gaussian distributed.
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normal 0 - 0  plot (GM) normal O-Q plot (GM) normal Q-Q plot (GM)

3O
è
a i

.32•̂=3ta
3D

«NJ
CL
3O
à
en

.32—c
.T,

3<D

Theoretical Qualities for group 1 Theoretical Quantiles for group 2 Theoretical Quantiles for group 1

Figure 5.3: The Q-Q plot for the residuals after GM based clustering.

5.3.2 Simulation 2 (EPD)

In the second simulation, we assess the accuracy of the EM-based clustering 
of exponential power mixture regressions for a 2-component exponential power 
mixture regression model, and compare the results with the EM-based cluster­
ing of Gaussian mixture regressions.

Suppose we have a 2-component parametric mixture regression model:
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f(Vi |Xi,^) =  7Ti/i(2/i|Xi,0i) +  7T2/ 2(^|x,;,f92), 

where each component is exponential power distributed.

We use the same X  that in the Simulation 1. For i =  1, . . .  ,500, conditional 
on Xj, we generated yr from a 2-component exponential power mixture regres­
sion model with the shape parameter 1 < ak < 2, for k =  1,2. Both y and 
the covariates in X  were standardised. The interceptors 0m = 002 =  0, and 
let (Pu , P2i,Pn) ~  ?/[—0.5,0.5], (0u,022,032) ~  U[3,3.5] respectively. The 
proportion of the 2 components was randomly selected with the constraint 
7Ti +  7t2 =  1, and 0 < crj? < 0.5 for k — 1, 2.

The Q-Q plot of observation y is shown in Figure 5.4. From the Figure 5.4 
we can see that y is not Gaussian distributed.

To set the initial values of parameters, we let irk ~  U(0,1) with constraint
2

nk =  1, 0jk ~  £7[1,3], o-fc ~  C/[l,3], and the variances cr̂  ~  f/[l,3 ], where
k= 1
k =  1, 2 and j  =  1 , . . . ,  4.

Let D =  100 datasets. By selecting the best fit, we compare BIC for the 
number of components k =  1, 2, 3,4, 5. The results are summarised in the Ta­
ble 5.2:

Table 5.2: Averaged value of minimum AIC, BIC, EBIC and RAND indexs for 
data generated from EPD mixture regressions with dimension is 4.

GM k Ave(rcim B IC ) Ave(min AIC) Aue(min EBIC) Ave(RAND)
2 1483.326 1428.536 1486.910 0.965

EPD k Aue(min BIC) Ave(min AIC) Ave(min EBIC) Ave(RAND)
2 1468.776 1371.840 1472.360 0.925

From Table 5.2, we can see that for the EM-based clustering of Gaussian 
mixture regressions, by fixing the shape parameters equal to 2, it gives the
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Normal Q-Q Plot

Theoretical Quantiles

Figure 5.4: The Q-Q plot of observation y  drawn from a exponential power 
mixture regression model.

averaged min B IC =  1483.326 (with the corresponding min AIC =  1428.536 
and min E B IC  =  1486.910) when it has 2 components with the RAND index= 
0.925. For the EM-based clustering of exponential power mixture regression, it 
reached its averaged min BIC  =  1468.776 (with the corresponding min AIC =  
1371.840 and min EBIC  =  1472.360) when it has 2 components with the 
RAND index= 0.965.
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It shows that when the data are generated from a exponential power regression 
model, the EM-based clustering of Gaussian mixture regressions is less accu­
rate than the EM-based clustering of exponential power mixture regressions. 
Compared to the previous simulation, we find that the prediction of clustering 
is more accurate when the number of components decreased from 3 to 2.

The Figure 5.5 and 5.6 illustrate the plots of the minimum BIC and the 
corresponding RAND index for both GM and EPD clustering derived over 100 
datasets, where the red line indicates the minimum BIC of GM clustering while 
the blue line is for the EPD clustering: The Figures 5.5 and 5.6 proved that the 
EM-based clustering of EPD mixture regression have smaller BIC and higher 
corresponding RAND index for most dataset, when the data were drawn form 
a EPD mixture regression.

We also undertook the same simulation for higher dimensions data: P=6 (7 
dimensions) and P=10 (11 dimensions). The results are summarized in the 
Table 5.3: The Table 5.3 shows the EM-based clustering of EPD mixture re-

Table 5.3: Averaged minimum AIC, BIC, EBIC and RAND indexes for data 
generated from EPD mixture regressions with dimensions are 7 and 11.

GM k Ave(min B IC ) Aue(min AIC) Aue(min E B IC ) Ave(RAND)
P =  6 2 1557.036 1485.388 1562.452 0.928
P  =  10 2 1609.163 1503.798 1616.776 0.957
EPD k Ave(min B IC ) Ave(min AIC) Ave(min EBIC) Ave(RAND)
P =  6 2 1542.982 1462.904 1548.398 0.965
P  =  10 2 1590.001 1476.207 1597.614 0.965

gression give better predictions than the EM-based clustering of GM regression 
under all scenarios.

The Figure 5.7 illustrate the plots of the minimum BIC and the corresponding 
RAND index for both GM and EPD clustering over 100 datasets, where the 
red line indicates the minimum BIC of GM clustering while the blue line is for
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minimumBIC for GM and EPD

dataset
for k=2 and p=3

Figure 5.5: The minimum value of BIC for both GM(red) and EPD(blue) de­
rived over 100 datasets, for data were generated from EPD mixture regressions 
with k=2, P=3 and A =  1/500.

the EPD clustering:
The Figures 5.7 proved that the EM-based clustering of EPD mixture re­

gression have smaller BIC and higher corresponding RAND index for most 
dataset, when the data were drawn form a EPD mixture regression.
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RAND index for GM and EPD

Figure 5.6: The RAND indexes for both GM(red) and EPD(blue) derived from 
100 datasets, for data were generated from EPD mixture regressions with k=2, 
P=3 and A -  1/500.

5.3.3 Simulation 3 (Clumpy correlations)

In the above simulations, the data were generated either from the Gaussian 
distribution or the exponential power distribution. In the following, we assess 
the accuracy of the exponential power mixture based clustering on the data 
which were generated from neither of the above two distributions.

87



5.3. Simulations

minimumBIC for GM and EPD RAND index for GM and EPD

minimumBIC for GM and EPD RAND index for GM and EPD

3
-C

§

dataset
for k=2 and p=10

■dataset
fo r k=2 and p=1G

Figure 5.7: The minimum value of BIC and RAND index for both GM(red) 
and EPD(blue) derived from 100 datasets, where the data were generated from 
EPD mixture regressions with k=2 and P=6, P=10 respectively.

We let X  =  (x1 ;. . . ,  Xx0oo)T be the covariate matrix, and Xi =  (1, Xn, . . . ,  xi5)T =  
(1, x*)T, where x* =  (xn , . . . ,  xi5)T denote the ith observations on 5 covariates. 
We generated x* from N(0, Ex), where =  (p̂ l~m̂ )i<i,m< 5  and 0 <  p <  1 is 
a constant. For i =  1 ,.. . ,n, conditional on x i; the response vector y has two



5.3. Simulations

components, where y, = xj(31 +  for i — 1 , . . . ,  500, and ŷ  =  x f/32 +  for
i =  5 0 1 ,..., 1000. Both y and the covariates in X  are standardised.

Let (3l — (0, 3, 3, 3,3, 3)T and (32 =  (0, -1 ,  -1 ,  -1 ,  -1 , - l ) r . For the error term 
e =  ( d , . . . ,  eiooo)T, e»> * =  1,• • •, 1000, were generated from six independent 
groups: (e i,. . . ,  £450) ~  N(2, S e), (ei5i , . . . ,  e20o) ~  N (0, £ e), (e2oi, • • •, <Noo) ~  
N (0, Ee), (e3oi) • • •) £400) ~  N(0, S e), (£401, • • •, £500) ~  N (0, S t), (£50i , • • •, £1000) 
N (—2,Ee), where Ee is determined by var(ti) =  1, cov(ei,em) =  \l — m\~ak/(2 — 
2~ak) and 0 <  ak <  1 is a constant.

Let D =  100 datasets. We assess the accuracy of the EM-based clustering 
for both GM regressions and EPD mixture regressions by considering following 
combinations: p =  (1 /4 ,1 /2 ,3 /4 ) and ak =  (1 /2 ,1 /4 ,1 /8 ,1 /16 ,1 /32 ,1 /64 ).

Figure 5.8, 5.9 and 5.10 illustrate the box plots of RAND indexes when p =  
1/4,1/2, 3/4 respectively. In each Figure, from the left to the right the follow­
ing cases are considered: ak =  1/2, ak =  1/4, ak =  1/8, ak =  1/16, ak =  1/32 
and ak =  1/64.

rt*o-1/4 and a *-1. 2 r ito -14 . afc-1«

rtto-1.4 and afc*1ft6 rfco-14 and ak-1«4

I

s

1
e

¡e
su tPL gw m

Figure 5.8: Rand indexes for GM and EPD based clustering with clumpy cor­
relation data when p =  1/4.
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r t to - ltf  and afe-V? il» *1 Q  and ak-V4 and ok -1/8

rttO“ 1/2 and ak -1/16 ifco-13 and afc=1.‘X? rbo=1/2 and afc=1*4

Figure 5.9: Rand indexes for GM and EPD based clustering with clumpy cor­
relation data when p =  1/2.

rtto -W  and afc-1/2 r tw  3«4 and afc-1/4

rtio -34  « id  a*-1'1S iho-3^4 and ak-1/32 rho-3.1 and ak-1 /M

GM OT

Figure 5.10: Rand indexes for GM and EPD based clustering with clumpy 
correlation data when p =  3/4.

The Figures 5.8, 5.9 and 5.10 prove that the EM-based clustering of EPD 
mixture regression have larger medians of RAND indexes in all scenarios. 
Which means, when the data is neither drawn form a EPD mixture regression
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nor GM regression model, the EM-based clustering of EPD mixture regression 
gives a better prediction of clustering.

5.4 Real Data Analysis

In this section, we assess the performance of the proposed procedure on real 
genetic datasets called yeast stress dataset. Gasch et al. (2000) used DNA 
microarrays to explore genome-wide expression patterns in the yeast Saccha- 
romyces cerevisiae in response to diverse environmental changes. In this study 
the dataset contains the expression levels of 496 selected yeast genes under 173 
experimental conditions (Zhang and Liang, 2010), where its columns stand for 
genes and its rows represent the experimental conditions. Here the size of the 
data y is 173 and we use the first row as observations on response variable and 
the second to the fourth rows as observations on 3 covariates.

We run both the EPD mixture regression based and GM regression based clus­
tering procedures 100 times with initial values of a, /3, a and 7r being randomly 
chosen with the constraints y ) fc=1 ^  =  1, 0 < a\ and 0 < for k =  1 , . . . ,  K . 
We compared the performances of the above two procedures. The averaged 
minimum values of AIC, BIC and EBIC are summarized in Table 5.4:

Here k is the number of components we set initially. We select the averages 
minimum BIC derived from 100 datasets as the best fit BIC for each number 
of components.

All the selection criterion shows the same results that the best fit by using 
the EPD mixture regression model is obtained when it has 2 components with 
shape index a =  (0.47, 1.69), and the best fit by using GM regression model is 
obtained when it has 3 components. The minimum BIC of GM model when 
k =  3 is larger than the minimum BIC of EPD model when k =  2. For the 
best GM fit, we use the Q-Q plot to assess the the residuals of each GM com-
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5.4. Real Data Analysis

Table 5.4: Averaged minimum values of AIC, BIC and EBIC for the yeast 
dataset

k= l k=2

coII k=4
min BIC ep 
min BIC gm

453.357
507.122

435.162
448.111

451.744
436.348

489.425
481.459

min AIC ep 
min AIC gm

434.437
491.356

388.678
413.425

394.169
382.742

404.286
408.933

min EBIC ep 
min EBIC gm

455.554
509.319

437.359
450.308

453.941
438.545

491.622
483.656

ponent. The Figure 5.11 prove that the residuals of each component that after 
GM clustering are not Gaussian distributed.

Q-Q plot o» (he residuals of real data tor group 1 O-Q pkx of die residuals of real data for group 2 Q-Q plot of die residuals of real data to» group 3

Thsorettcsl Quantles tor group 1 Theoretics! Quantiles tor group 2 "'lecretcsl QuenWes ter group 3

Figure 5.11: The Q-Q plot of the residuals of each components of real data 
after GM clustering.

We also plot the residual of each component after EPD clustering, which 
shows in Figure 5.12. This Figure also prove that the residuals of each compo­
nent after EPD clustering are not Gaussian distributed.
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5.4. Real Data Analysis

Q*Q plot of the residuals of real data for group 1 Q-Q plot of the residuals of real data for group 2

Theoretical Q uartiles fo r group 1 Theoretical Quantiles fo r group 2

Figure 5.12: The QQ-plot of the residuals of each components real data after 
EPD clustering.
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Chapter 6

Simultaneous Variable Selection 
and Clustering

In the previous chapter, we build an exponential power mixture model to reflect 
grouping structures in the data, where the data size is relatively small or all the 
covariates are related to the response vector. In modern statistics, data with 
unprecedented size and complexity are appearing more and more commonly in 
scientific fields such as genetics, engineering and finance etc. In the application 
of finite mixture of regression(FMR) models there are many covariates used, but 
the contributions to the response variables vary from each other, therefore, how 
to selecting the most important variables becomes a problem. There are various 
methods for dealing with variable selection problems for regression with many 
variables (Khalili, 2011). The old selection methods such as the all-subsets se­
lection methods, the forward and backward selection methods need extensive 
computations. Modern studies on variable selection such as boosting which was 
proposed by Freund and Schapire (1997), and Lasso (Tibshirani, 1996) solved 
this problem. Recently, Khalili et al. (2011) proposed feature selection in finite 
mixture of sparse Normal linear model in high-dimensional feature space with 
the assumption that all data are Gaussian distributed. Here, the Gaussian as­
sumption may be invalid. To tackle the problem, we propose exponential power 
mixture regression models for simultaneous variable selection and clustering in 
a high dimension.
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6.1. Variable selection for finite exponential power mixture regression models

In this Chapter, we introduce the LASSO type method in variable selection, 
and present the details on how to calculate the maximum likelihood estimators 
of a model by using the EM algorithm. The novelty lies in that we convert a 
general penalised regression estimation problem to a special Li penalised re­
gression (i.e., LASSO) problem (Tibshirani, 1996). We also introduce forward 
selection method to reduce the size of data. We conducted three simulations to 
assess the accuracy of clustering by using LASSO type method and the forward 
selection method for variable selection, via maximum likelihood estimation of 
exponential power regression, under several scenarios. All results are compared 
with maximum likelihood estimation of Gaussian mixture regressions. At the 
end of this chapter we apply our method on the gene expression and motifs 
dataset.

6.1 Variable selection for finite exponential power 
mixture regression models

Suppose we have an independent sample (t/*, x*), 1 < i < n, where conditional 
on Xj, yi drawn from the following finite exponential power mixture regression 
model with K  components,

In the sparse exponential power mixture regression model, the density of the

K

k= 1

where the parameter vector T =  (tti, . . .  is the vector contain­
ing all the unknown parameters in this mixture model, and £ =  , . . . ,  0TK)T■
6k =  (/3k, Qfe, ak)T, k = l , . . . , K .
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6.1. Variable selection for finite exponential power mixture regression models

kth component can be written as

In the EM framework, the observed-data D = (yi, Xx;. . .  ; yn, x „ )T are 
viewed as an incomplete data. We combine it with the indicator zik to form 
the complete-data

The complete-data log-likelihood for 'P can be written in the following form

where the regression coefficients is f3k =  (fao, fa\, ■ ■ ■, fap), k — 1 , . . . ,  K. The 
faj =  0, j  =  1 , . . . ,  P, if the effect of a component of x is not significant. When 
there are too many covariates in the model, the data will be over fitted.

To avoid the over fitting problem, we add a penalty to the complete-data log- 
likelihood.
We consider the penalized complete-data log-likelihood

Recall that the latent variable is

%ik \Zi)k
1 yi E the k-th component
0 yi the A:-th component

Dc =  (D, z).

n K

logLc(^|y ,X ) =  E E  zik{\ognk +  \ogfk(yi\^i,0k)}. (6.1)
i=l k=1

U * '|y,X) =  log Lc(^|y , x) — Pn(^ )
n K  K P
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6.2. Lasso type method

where the penalty

P x =  P x

with ¡3$ and a'f1 were known from the sth step of iteration.

3{s)Pkj 
(s) + P-.

a

I 3 ^  I I 6^  ' ( \ P k j  Iw IPfcj
-A  (s )  P  (s)(Tl crh

3{s)Pkj
A s )

th
kj

The reason that the regression coefficients fikj scaled by ak is it need to be 
more accurate when Ok is small.

In the LASSO, the penalty is defined as P'x ( . ) :

Px

3 (s)
P k,j

(s)
=  A 3 k ,j P,

a

3{s)
P k , j

(s)
=  A.

a

Maximizing the penalized log-likelihood is the same as maximizing the com­
pleted log-likelihood with certain constrains. The LASSO method selects a 
sub-model while the estimated Pkj =  0 if j  ^ Ik or pkj 7̂  0 if j  G 1 k- Thus 
it combines the variable selection and the parameter estimation into one step, 
which reducing computational intensity.

In the following section, we use a Lasso type method for variable selection 
in the finite mixture of regression models.

6.2 Lasso type method

In this section, we present the details on how to calculate the maximum likeli­
hood estimators 'E' by using the EM algorithm. The novelty of this research is 
that solving the regression estimation problem for (3t is converted to solving a 
problem of the Lasso for /3t.
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6.2. Lasso type method

6.2.1 EM algorithm

Similar to the previous two chapters, there are two steps in maximum likeli­
hood estimation(MLE) of the exponential power mixture model of regression 
by using the EM algorithm: In the E-step, the missing data are estimated by 
using the observed data and current estimate of the model parameters. In the 
M-step, the expected complete log-likelihood function of the exponential power 
mixture of regression model is maximized under the assumption that the miss­
ing data are known.

Suppose we have an independent sample (yj,Xj), 1 < i < n, where conditional 
on X*, yi drawn from the following finite exponential power mixture regression 
model with K  components,

K

f(Vi |Xj,*) =  ^7Tfc/fc(2/i|x*,0fc). 
k=1

In this model, the regression coefficients ¡3 =  (/31, . . . ,  (3k)T, for 1 <  k < K, 
where f3k =  ( / 3 k 0 , ■ ■ ■, (3kp)T■ The dispersion and shape parameters are
a =  (<7i , . . . ,  ok)t and a. =  (an,. . . ,  a*:)T respectively. The predictive vector 
X  =  (xi, x 2, . . . ,  x n)T where Xi =  (1, X\,. . . ,  Xp)T for i =  (1 , . . . ,  n), while the 
response variable y =  (y i ,. . . ,  yn).

E step

In this step, we calculate the expectation of the penalised complete-data log- 
likeliliood based on the current value of 'E(s\ where stand for the value of 
all the parameters after the sth iteration.

Q ( * | * (s))  =  | y , X ) | y , x )
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6.2. Lasso type method

— E.T, (s
n K

E E  Zik (log (vrfc) +  log f k (;yi |xir /3fc, a2kak))
.i=l k=l 

K  P

E Pa
fc=l j=0

l/M
Ofc

|y,x

n  K

=  1 E E  (Zik |y,X) [log(7Tfc) +  log/fc (yi \x[f3k,a î ,a k)]
l i=i fc=i 

A- P

" « E ^ E ^
/c=1 J=0

n K

=  E E  £*(») (Zik |y,X) [log(TTfc) + l o g / fc (yj |xf/3fc,fffc,Qfc)]

i / u
O'*:

t=l fc=l
A" P

- ^ E ^ E ^
fc=l j=0

n

=  E E  Tt (ÿi|xi, ' i (*1) [log U ,)  +  log/j.

W A
0 k

i=l fc=l
a : p

- ^ E ^ E ^
fc=l j=0 

n K

E E  Tfc(yi|xi, 'I '(s))log (7Tfc)
¿=1 /c=l 

n  X

+ E E  rfc(yj|xj,^(s))log Q!fc

¿=1 fc=l 
n K

- E E  7ïfc(î/i|Xi, ^ (S))
i=l fc=l 

A" P

- «  E nk E

2(7*:r  (1/ttfc)

1 ^ - x T ^ r
(a2)afc/2

o(s)
P k j

(s) I E«)*:=1 j=0
AT P

E  ^  E  i Pa/c
*;=! j=0

(7 .

a » — P'1 \k

3{s)Pkj
o(s)
P k j

a(s) | (s)L' L.
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6.2. Lasso type method

M  step

In this step we estimate the parameters dh on the (s +  l ) th iteration, based on 
the parameters obtained from the sth iteration. For this purpose, we maximise 
the expectation of the penalised complete-data log-likelihood from the last step.

Estim ate (3t

To update the value of /3t, we derivative the function Q(.) w.r.t /3t:

dQ

d[3t
y -  Tt(yi\xi, ^ (s)) d Iyi -

pi ( I \ Iftii 
°  2 ^  j =o Txt „<•)

¿=1 ( o f)Q,/2 <9/3,
n7rt-

<9/3,

Tt(yj\xi, ^ (a)) d(2/i -  xf/3 tf * at mrt A  , ____
2-  ̂ (cri)Qt <3/T rr< 2—✓ ^ I ,-ds)¿=i <9/3, at *-1 j=o

ÿ v  T t( y , ) ctt|z/. _ x TA |( « ) (x # *  -  X j x f f t )

¿=1 (<Tt)C

i M

¿ L — — ° ^ - x * f t
2=1

Xjxf /3f

n\nt
<Jt

DÌ«) I/  d/ (  l̂ (1 I 1 sgn(pti)  
1 At l ^  I A

\

1/ /  |^V| \  sgnijhj)P:XI \ U)

pi
3 ft

100



6.2. Lasso type method

We can write the above equation in a simpler form: 

dQ
d(3t

=  X r W 4y -  (X y W tX)/3t -  nAVfsgn(/3i) =  0 (6.2)

where
( 4>(Tti) 0 0 ^

0 0
^ 0  0 0(rin) J

With (f) ( Tt i ) =  ^ (s)) Iyi -  xf/3

T/t/ —  Qt^  -  (lT2)at/2

/  o

K =  aat

0

f a t -2 ')

\
p[

« «  I
M »

/ / iW

V 0 0
(  sgn(/3tl) \

M W

and

sgn(Pt) =
\ sgn{/3tp)

We define X* =  W 1//2X , and y* =  W 1,/2y, the equation(6.2) can be write 
into the following form:

dQ
d(3t

X TWtY  -  (X TWtX )p t -  n\Vtsgn(Pt)

( w r /2x v r - ^ y  (w t{V)1/2y)

-  ( w ^ X V ^ - ^ Y  (w t{v)1/2XVt(v){~ y  (Vt{v) + e i )p t 

-n \s g n ( ( V t(v) + e i ) p t)

X *tY* -  X*TX*P* -  nAsgn(/3*) =  0, (6.3)
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6.2. Lasso type method

for 1 <  t < K, where e\ =

i l

0
v r + ei =

ìli_

f  1 0 ••

■ 
o o •

• • 
o . . .  0

0

< J

\

(p+l)x(p+l)
0

0
3 M  I

p ;1»  \ M „<•>
A

and
«  =  (V ,m  +  e , ) f t

^  *

To solve equation(6.3) is the same as to optimize /3t for each t, where

n P

K  =  argmin{l/2 -  x fr )2 + nA ]^|/3*.|},
Pt i= i  j=o

for 1 <  t < K.

We have successfully converted the problem of solving the equation(6.2) into 
a Lasso problem. Now we can apply the LARS algorithm to solve the above 
optimization problem for each t, thus

A  “ ( v T '+ e i ) # , (6.4)

for 1 < t < K.
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6.2. Lasso type method

Estimate at

We update of, for 1 < t < K, by derivative Q(.) w.r.t 1 / erf and let it equals to 
0, we obtain:

2=1

<9(log (1/o-t))
5 (i M 2)

\Vi ~ x f/3 t|“ ‘ y  ( l /o f )
¿=1

a;;}

i=0
(«) I A i I

5 (1 M )
3(1/*?)

2=1

_ t 5 Z tî^ ix î’ ^ (s)) i ^ - x T A r ‘ ( !M 2)

5 [l/2  log (1 /of)]

3(1/*?)
( o t / 2 ) - l

¿=1
P

-n'Kt Y  P'x
a (; }

i=o (J(«) 1/3« I
a(i/<r

2 \ - Z ' 2
<9(l/u2

1

i = 1

( V k )
(at / 2 ) - l

2=1

A
n^ Y p '̂ ~ w  IAjK1 M 2) *n \ O'* I3= 0

2=1
^ T y ^ l x ^ ^ V t  |y* -  x f/3 tp  ai

2=1

I A i I**

a t + 2

-™*t Y
j=o

aî; }
(«)
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6.2. Lasso type method

Y rt(yi\^i,^{a)) ~ ^ Y Tt(yi|x.;, ^ (s)) | ^ -x f /3 t. . 07i= 1 ¿=1

-n7Tt Y  P\
3 = 0

( A ?

( d*»

2
t j if Cq

M
(ft

= 0. (6.5)

Consider a special case of of, if at =  1, we can solve the above equation 
directly as follows:

^ T - i ^ l X i , ^ )  
i= 1

1
(ft

(  n P

Y  Tt{yi\xi, ^ (s)) I Vi -  x f/3 t|Qi -  mrt Y  p\
\ i= l  3 = 0

which implies,

1
(ft

E L i  Tifa |xi, # {s)) I Vi -  x f/3 t|at -  riTTi Ef=o p\ ) I A i  I
/

O', =
YTi=iTt{yi\^i^ t & I“ t p/ Ix / Pt - ™ i E p O ? A I L'̂=0 a I («) I A i I\

For another special case, if at =  2, the equation(6.5) becomes

Y Tt̂ yi iXi, ^ ('s))
i= 1

n P

— Y Tt(yi lx*>^(s)) |yi - x T A l 2- 7171" * ^ ^
CTt ¿=1 i=0

M  = o
(ft

(6.6)

Solving this equation by using the quadratic formula and only considering the 
positive root as  ̂ > 0, we obtain:
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6.2. Lasso type method

a. =
ci,4T,?=i'rt(yi\xi’'i'{3))\yi-xïPt\2 N 

1 E?=in(w|xi,*(*)) '

(  nntZUP’x \ptj\\

V
If A =  0, i.e. no penalty is applied, we obtain

y
SE lbin^lx,.*^)^—xfp;| 

Er^niwixi,«-W)
Ef=0 px

/3,(S)tj
V ^s) ) °t

E?=i'u(y»|xi,tf'(®))

-2(s+l)a
2 E fe i n fe lx i, 4,(' )) », -  xf/3, (6,7)

E i f f e l * ,  *<*>)

From the above equations, it can be seen that equation(6.5) can not be solved

directly, therefore the Newton-Raphson method is applied. We calculate the 
first and second derivative of function Q(.) with respect to 1 /o f and let them 
equal to 0.

--- ^ (-2) ^
c,<Jt i=1

and

d2Q f^ | ^ (s)

d a r(-2 )

- ^ ■ ^ 2 Tt(vilx* ,^ (s)) \ y i -x jp t\at ( !M 2)
( Q i / 2 ) - l

i= 1

? • # ( ¥ ) l/y(iMT’ ,

=  E 5 ^ ri^ i Xi’ 'i ' (sy"
a <7(-2) -1

i=1 d (h ~ 21)
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6.2. Lasso type method

at
Y ( y  -  l )  ' ¿ T t(yi\xi,'Jf{8)) \vì

i=  1

( « î / 2 ) - 2

1
2 1/3« I 5 ( iM 2)

î
2

^ r i(^|xi, ^ (s)) ( l /a t2) 2
Ï=1

Cp
y i )  X y ( i / i l x i , ^ (s)) |y<

¿=1
—  X , A P (IM2)

(Qt/2) —2

lAjl (IM 2) '
3
2

As 1/cr2 can not take negative values, we define a new variable rjt =  /op(of), 
where r) can take values from — oo to oo. By implant the Newton-Raphson 
method, we obtain 

i.e.

V =

(  \  5+1hi

\ ^  /

 ̂ hi  ̂

\ V k  )

(  d2Q
V drjdri

- i

where,

( s + l )  (s)
hi =  hi

as 1 /o f =  e774.

d2Q dQ
----- R2 ( w ) ^ ---------

d(l/oi)

dQ
d (l  M 2) /  ¿ '(l/tr2

We can write the estimated at into the following form:

( i M 2)
b+i)

( i / ' e VW/̂ f2) yAhO+i dQ
d (l/Y fj) d(l/<T%) (6.8)
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6.2. Lasso type method

Estimate at

As at can not take a negative value, we define a new variable rjt =  log(at), 
where rj can take values from —oo to oo. We use Newton-Raphson method to 
update at as follows.

We can write A in the following form:

n K

-4 =  E E  TfcG A ;|x,;,^ )l0g(
Ok

n K T  a  I a k

i=1 k=1 
n K

2(7 kT (1 /OLk) '
(«) >

i=1 k=1

\yi - * i  Pk.
('al)ak/2

E E  rfc(i/î|xi, ^ (s))log (— ) +  E E  Tfc^IXi^W jlDgi
Ok

i=1 fc=l 
n K

/c=l F (1 M )
)

( s ) '
T/Q la'fe12/« - x /A  .

) a */2UJ2=1 k=l

The first derivative of the function A with respect to at is:

ÔA
dat

^ r i(y,;|xl,T '(s))
i=l

/ 1  r  ( l / a t) 1 \
Vtti T (1 /at) ol\ )

2=1

at
log

and the second derivative of the function A with respect to at is:

d2A
dc?t

X > ( ^ | x „  ^ {s))
2 =  1

r-(iM )V  
r ( i /at) )

2 T'{l/at) 
o 3t L (1 /at)

J_ ( T"(l/at) f l \
a? v r ( i / w )  1 w V
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6.2. Lasso type method

2 = 1 
n

2=1
n

i= 1

ÿ i -

Ot

( \  2 P  (1 /a ,) 1 / r" (1 /g ,) r '( l/ a , )

r ( i / o , )

where

d i / r ( i M )
da.

d(T (l/at)Y
doct ( r ( i M ) ) ' 2 r ' ( i M )  ( - 7 0ai

Note that

«t =  e7",

which implies,

¿tat
dm

= Oit.

By chain rule, the first derivative of the function A with respect to rjt is:

dA dA dat dA
drjt dat drjt dat

and the second derivative of the function A with respect to rjt is:

d2A d id A \  dAdoit 
drft dat \drjt)  0t +  dat drjt

d /  dA dat \ dA dat 
dat V<9at drjt)  0< +  dat drjt
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6.2. Lasso type method

d2A dat dA dat
da\ dr]t ^  ' dat dr)t 
d2A 2 dA 
d ^ at +  d^tat

d2A dA
Oit +  TT I Oit,

dat doit

which implies,

d2A
dritdrff

'  ( f e r a i +  U )  « i
d2 A 'OltOlkd a td a k 

r)2 A
\  d a i dag 0 i l 0 iK

(  d2A 
V&*K

daKda1aK0:i
d2 A 

d a td a k

aK + d a r  I

for k t. where
d2A d2 A

dritdrik âatdakOltOlk h.

By applying the Newton-Raphson method

/  \ (s+l) /  \ (s)
I n  i \ m

v

\ n
the updated r)t is

V IK

(  d2A 
\ dr I dr)1

(  \da  i

V /

( s + l )
=  m

d2 A d A y 1 dA
dai at 8at )  dat

(s )  . at=a].

Hence, the tth component of the estimated shape parameter a, at, after the 
(s +  l ) th iteration is:

« ( s + l )  (s)a\ = ct\' exp dai dat ) da
d2A dA \~l dA

rOLt a t = a t(»)
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6.2. Lasso type method

for 1 ^  t ^  K.

To avoid extreme values of at, we added a small constraint value r, such that

at — r =  em.

The first and second derivative of A with respect to rjt becomes: 

dA dA
■(OLt -  r)

drjt dat
d2A d2A 2 dA
a ir  =  s r (“ ‘ -  r ,  ̂ + â y (a< “ r )-

therefore, the updated at on the (s +  l ) th iteration is:

 ̂(s-|-l) __  - /  (s) \a\ =  r +  (at — r)e

=  r +  (a[s] — r)e

( g f l  +
“ t = “ t

(*)

for 1 ^ t < K.

Estim ate nt

We update the weight parameter nt, 1 <  t < K  by the direct approach. We 
know that

T,(y.|x„ ®<*))<*+1) =
4A Vi

Z l U A / . ( y*
(6.9)

By rearranging equation (6.9), we have an estimation of the weight parameter,

> + i) =  I y - rt( |Xi)^ W )i (6.10)
n

7t;
¿=i
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6.2. Lasso type method

To complete the process, we iterate the above two steps until a stopping 
criterion is attained.

The structure of the EM algorithm is rather straight forward and relatively 
simple for programming as can be seen, but there are still some technical issues 
that need to be taken care of. The first issue is focused on how to choose the 
initial values, as the bad initial values may lead the results to a local maximum 
rather than the global maximum. Another issue that needs to be considered is 
the stopping criterion, we currently let the program stop when the log-likelihood 
is lack of improvement.

By selecting the best fit, we still use AIC, BIC and EBIC criterion, which
add the penalty on the complete log-likelihood and balanced it with the number
of free parameters. The total number of parameters need to be calculated in
all selection criterion. For the GM regression model, the number of parameters

k  p
of 7T is k -  1, a2 is k, ¡3 is k +  X] S  /(|Pkj\  ̂ °), where /( .)  is an indicator

k = 1j=1
function. By fixing its shape parameters equal to 2, it gives the

K  P

AIC = -2 i ;( » | y ,X )+ 2 (3 /f - l  + X i E 7(li«l7a))) log(n)’
k =  1 j =1 
K  P

BIC = -2Îc(<P|y,X) + ( 3A - - l  +  ^ ^ / (|&j|î!0))log(n),
k = 1 j = 1 
K  P

EBIC =  —2Z~c(*|y,X) + ( 3 t f - l  + J ]  / (|̂ |#0)) log(n) +  27 log k.(^.),
k = 1 j = 1

for 0 < 7  <  1 .

Similarly to the EPD mixture regression model, the number of parameters
K  p

of 7T is K  — 1, a2 is K , /3 is K  +  Hlftkjl^1 0), a is K, we obtain
k = 1j =1
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K  P

AIC =  -2 i ; (< f| y ,X )+ 2 (4 A '- l  + y ] ^ / (|(Sw|#0|)log(n).
k =  1 j =1 
K  P

BIC =  -2 i;(# | y ,X ) +  ( 4 i f - l  +  ^ ^ / (|iw|#0|)k>g(n),
k=1 j =1 
A' P

EBIC =  -2/;(vh|y,X) +  ( 4 i L - l  +  E E / (l̂ M 0))log(n) +  27 lo g « (^ ) ,
fc=i i=i

for 0 <  7  <  1 .

There are a number of different penalties which are commonly used nowa­
days. They all have different strengths:

LASSO: Px(z) =  \z,P'
|«(s)|

=  A

Adaptive LASSO: P\{z) =  A log z,P*
l/3(s) \Ptp I
AT =  A^

( s )

d {s)Ptp
SCAD: P'x(\z\) =  \I(\z\ < A) +  (aA; l ; l)+ I{\z\ > A) a =  3.7

P'
U<*>| V tp I 
A*) =  A/(/3,(*> <  A o f ')  +W’i

K l
(aA-M u >+____fi____ I #

a—1
(5) I 
tp

> A)

Bridge: PA(z) =  AzT, P ' =  Ar ^
1—1

, 0 < r < 1

6.2.2 Simulations

In this section, we assess the accuracy of the exponential power distribution 
mixture(EPD) based regression clustering of a two-component sparse model, 
and compare the results with Gaussian mixture(GM) model based regression 
clustering. The following scenarios are considered:

112



6.2. Lasso type method

1. different number of dimensions;

2. different proportion weight of each component;

3. different correlation structure of covariates;

4. equal and unequal component variances;

5. different sample size.

We let X  =  (xx, . . . ,  x n)T be the covariate matrix, and x ; =  (1, Xn, . . . ,  Xip)T 
(1, x*)T, where x* =  {xn , . . . ,  xiP)T denote the ith observations on P  covariates. 
We generated x* from N(0, Ex), where S x =  (p ^ m*)i<;,m<p and 0 < p <  1 is a 
constant. For i =  1 ,n, conditional on x,, y% be an observation drawn from 
the model

f(Vi|xi, VP) =  tti/ i (?/i|xj, +  7r2/ 2(yi|xi,02),

where i / e l 1 and x  G Ep+1.

We let the shape parameters be randomly chosen from a uniform distribution 
with boundaries 1 and 2, then we have (a i ,a 2) =  (1.05,1.12). Let the number 
of non-zero regression coefficients in j3l and /32 are 4 and 6 receptively. They 
are randomly generated from (—1)“ (2.5 + z), where u is a random variable from 
the Bernoulli distribution with parameter 0.4 and z from a standard Gaussian 
distribution, similar to Fan and Lv(2008). Hence we denote the non-zero coef­
ficients by

(3U =  { —2.25, 3.71, -2.95, -3 .17 }, /32, = {3.15, 2.29, 3.28, -3.04, 2.74, -4 .09 }.
(6 . 11)

We consider different combination of regression coefficients with the rest pa­
rameter: n : (300,400), p : (0.5,0.75), P  : (10,100), (cri,cr2): (1,1), (2,2), 
(1.5,2.5), (1.5,3.5), (711, 71-2): (0.5,0.5), (0.3,0.5).

The averaged minimum BICs, AIC, EBIC, RAND indexs and standard er­
rors for GM-based clustering and EPD-based clustering are derived over 100
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replications in Table 6.1 and Table 6.2.

Table 6.1: Averaged minimum AIC, BIC, EBIC, and RAND indexes of GM- 
based clustering and EPD-based clustering when the variance are equal, (the 
numbers in the parenthesis are the standard errors)

E qual variance cases: n  =  100 and p  =  10, 100

Cases 7r =  0.5oIIft. p  =  100
P a G M  E P D  G M E P D

0.50 1 RAND 0 .869(o  .004) 0 .899(o .oo3 ) ° ' 742(0.003) 0 .773(o.o04)
BIC 1416.291(2.027) 1400.501(2.036) 180 9 .94 4 ,2 .132) 1768.973(3 .388)
AIC 1323.596(2.024) 1300.506(2.033) 1754.387(2 .135) 1706.009(3 382)

EBIC 1423.804(2.027) 1408.121(2.035) 1826.958(2.134) 1785.987(3 398)

2 RAND 0 .7 8 3 (o .o io ) 0.815(0.010) 0.706(0.004) 0 .720(o .oo4 )
BIC 1595.397 (3.903) 1576.975(4 .255) 1926 .769(3 .32 ,) 1891.749(4 .237,
AIC 1502.802(3 912) 1476.973(4 322) 1871.212,3 .332, 1828.785(3 988)

EBIC 1603.010(3 QOS) 1584.588(4 312) 1943.783(3 2 3 2 ) 1908.763,4 .386,
1 RAND 0.873(0.003) 0 .879 ,0  003) 0 .762(o  003) 0 .833 (o  .003)

BIC 1412.6 8 3 (! .868) 1400.7 3 1 (! .946) 1778.587(3.313) 1759.399(2 .998)
AIC 1320.0 8 8 (! .876) 130 0 .72 9 ,! 943) 1723 .030(3 .32 !, 1696.435(2.956)

EBIC 1420 .296(i .867) 1408.344(]. 899) 1795.601(3.132) 1776.413,3 .134)

2 RAND 0 .8 0 8 (o .004) 0 -829(0.003) (J.607(o.oo3) 0.751 (0.003)
BIC 1580.381(2.236) 1568.245(2.120) 1881.648(4 2 1 1 ) 1876.819(3 .179)
AIC 1487.786(2.027) 1468.243(2.136) 1826.091(4.132, 1813.855(3 3 3 2 )8

EBIC 1587.994(2.232) 1575.858,2.037) 1898.662(4 167) 1893.833(3 3 3 4 )

Cases 7T =  0.3
p  = 10 P  = 100

P a era EFD GM EFD
0.50 1 RAND 0.928(0.002) 0.932(o.oo3) ° -821(0.003) 0.847(o 003)

BIC 1375.105(i .736) 1363.751(2.015) 1759.180,1.340) 1736.271(2.271)
AIC 1282.510(i .677) 1263.749(2.016) 1703.623(i 235) 1673.307,2.136)

EBIC 1382.718(ii 878) 1371.364(2.031) 1776.194,1.356) 1753.285(2.648)

2 RAND 0.882,0 003) 0.892(o 003) 0.716(0.004) 0.809,0.005)
BIC 1540.099,2.438) 1527.678(2.246) 1870.817(3.432, 1837.471,4.113,
AIC 1447.504,2 317, 1427.676(2.147) 1815.260(3 132) 1774.507(3.364)

EBIC 1547.712,2.607) 1535.291(2.245) 1887.831,3.652) 1854.485,4.128,
0.75 1 RAND 0.890(0.003) 0.917(o.oo3) 0.846o,003 0.846o.oO3

BIC 1391.807,1.666, 1359.227(2.511) 1707.693(2.271) 1702.403(i .339)
AIC 1299.212,1.538, 1259.225(2.431) 1652.136(2.132) 1639.439(i 388)

EBIC 1399.420,1 703, 1366.840(2.536) 1724.707,2.342, 1719.417(1,393)

2 RAND 0.862(0.003) 0.870(o 003) 0.672,0 003) 0.728(o 003)
BIC 1529.881(i 807) 1525.886(1 932) 1854.786(3 317) 1833.108(2.229)
AIC 1437.286(i .708) 1425.884(i 896) 1799.229(3 132) 1770.411(2.213)

EBIC 1537.494,1.877, 1533.499,2.036) 1871.800,3.154) 1850.122(2.764)

For Table 6.1 and 6.2, generally speaking, the EPD-based clustering give 
better prediction than GM-based clustering under all scenarios. Both EPD 
and GM based clustering are more accurate when the dimensions are small 
than when the dimensions are large. When the p is large, or the variance are 
small, we also obtain better clustering results for both method, compare to the
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Table 6.2: Averaged minimum value of AIC, BIC, EBIC and RAND indexes for 
GM-based clustering and EPD-based clustering when the variacne are unequal, 
(the numbers in the parenthesis are the standard errors)

U nequal variance cases: n  =  400 and p == 10, 100

Cases 7T - 0.5

p o-l
P == 10 P = 100

--------------C M -------------- EB D U M EFT)
0.5 1.5 2.5 R A N D 0.818(0,004) 0 .847(o .oo4 ) ° -7 4 9 ,0.002) 0 .770(o.oo4)

B IC 1571.848(1 948) 1556.641 (^ .927) 2054.470,2 .044) 1901.772(3 246)
A IC 147 2 .06 1 ,i . 848) 1448.8 7 1 (1.924) 1994.598(2.034) 1833.917(3 2 4 1 )

E B IC 1579.461(2.965) 156 4 .25 4 ,! 957) 2071.484,2  047, 1918.786(3 266)

1.5 3.5 R A N D 0.812,0.003) 0.849(0.004) 0 .7 6 2 ,0 003) 0.783(o.oO 3)
BIC 1623.789(2,215) 160 8 .422(2 .185) 2183.134(2 .548) 2156.227(2 .922)
A IC 1524.002,2 ,1R7) 1500.652(2, i48) 2123.262(2 .544) 2088.372(2  297)

E B IC 1631.402(2.264) 1616.035(2.235) 2200.148(2 .765) 2173.241(3  2 2 7 )
0.75 1.5 2.5 R A N D 0.819(o .oo4 ) 0 .84Ì (0.004) 0.772(0.002) 0 .7 9 9 ,0 .002)

BIC 1570.168,2 .258, 1552.433,2.036) 1892.174(2.577) 1861.298(2.380)
A IC 1 4 7 0 .38 1 ,! .946, 1444.6 6 3 (! 92i) 1832.302(2.042) 1 79 3 .44 3 ,2 .264)

E B IC 1577.781,2 .323) 1560.046(2.027) 1909.188(2 .579) 1878.312(3 24 4 )

1.5 3.5 R A N D 0-819(0.004) 0.846(0.004) 0 .786(o ,oo3 ) 0 .803(o  .003)
BIC 1606.433,2 .055) 1594.771(2.907) 2112.425(2 .441) 2082.483(2 .084)
A IC 1505.646,2 .555) 1487.001,2.902) 2052.553(2 .431) 2014.628(2 .057)

E B IC 1614.046(2.659) 1602.384(2.943) 2129.439(2 .465) 209 9 .49 7 ,2 098)
Cases 7T = 0.3

P == 10 P = 100
P 0T o-2 C M EFT5 G M E F D
0.5 1.5 2.5 R A N D 0.873(0.002) 0.902(0.002) 0-811(0.003) 0 .852(o .oo3 )

BIC 1551.088(2.086) 1541 .228(i 520) 2049.518,3 .017) 1900.989(2.460)
A IC 1451.301(2.055) 147 33 .4 58 ,! 430) 1989.646(3 003) 1833.134(2 .264)

E B IC 1 55 8 .70 1 ,2 .135) 1548 .841(i .640) 2066.532,3  232) 1918.003(2.478)

1.5 3.5 R A N D 0.813(0.002) 0 .829(o .oo2 ) 0 .739(o .oo2 ) 0 .784(o .0 0 2 )
B IC 162 6 .79 6 ,! ggo) 1611.954,2.013) 2288.485(2 .537) 2073.683(2 .166)
A IC 152 7 .00 9 ,! 7g3) 1504.184(2.007) 2228.613(2 .441) 2005.408(2 .024)

EB IC 1634.409(2.827) 1619.567(2.347) 2305.499(2 .568) 2090.277(2 .254)
0.75 1.5 2.5 R A N D 0.846 ,0  008) 0 .8 6 6 (o .o o 4 ) 0.801 (0.003) 0 .827(0.003)

B IC 1580.306,3 .809) 1561.640(2.302) 1938.593(2.234) 1901.948(2.711)
A IC 1480.519(3.655) 1453.870(2.093) 1 87 8 .72 1 ,2 .J31) 1834.093(2.643)

EB IC 1587.919(3 926 ) 1569.253(2.453) 1955.607(2.448) 1918.962(2.884)

1.5 3.5 R A N D 0 .7 8 9 (o .o i l ) 0 .8 0 5 (o .008) 0 .832(o  .00 2) 0.851(0.003)
BIC 1629.619,4 .285) 1611.077(3 .5 2 2 ) 2199.284(3 i72) 2173.128(2 .017)
A IC 1529.832(4.654) 1503.307,3 .246, 2139.412(2 .984) 2105.273,2 .602)

E B IC 1637.232(4 7 5 5 ) 1618.690(3 907) 2216.298(3 4 8 7 ) 2190.142(2 .084)

scenario that the p is small or the variance are large. The accuracy of cluster­
ing prediction is also effect by the variety of variance, we obtain larger RAND 
index for both methods when the variance are equal compare to the scenario 
that the variance of the two component are unequal.
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6.3 Forward Selection

For the dataset with very high dimension and limited sample size, it is very 
difficult to cluster the data in full feature space, hence the forward selection 
method is a good way to pre-screen the data before we apply variable selection 
method in later stage. Forward selection method includes forward stepwise 
selection and forward stagewise selection which is similar to forward stepwise 
selection,but adding some constrains. We will discuss both methods in the next 
two sections and following with some simulation studies.

6.3.1 Forward stepwise regression

Forward selection also called forward stepwise regression is a classic model 
selection method, which predicts variables by carrying out an automatic pro­
cedure (Hocking, 1976; Weisberg, 1980; Draper and Smith, 1981). The first 
algorithm was proposed in Efroymson’s procedure which combined both for­
ward and backward stepwise regression (Efroymson, 1960). It starts with no 
predictor variables in the model, and then begins by selecting a single variable 
which give the best fit by finding the smallest residual sum of squares. Then 
we add another variable and choose the one which improves the model most 
in combination with the first. After that, we add a third variable, and choose 
the one which improves the model most in combination with the first two. We 
repeat this procedure until a certain stopping criteria is reached, such as the 
model lacks further improvement or a certain number of predictors in the model 
is reached.

For a simple regression model,

y — X/3 +  e, (6.12)

where y =  is the response vector of length n, the covariate matrix X  is an n by 
(P  -(- 1) matrix such that X  — (xx ,x2, ...,x n)T, and for i =  1,2, ...,n we have 
Xi =  (1 ,Xii,Xi2 ,...,x iP)T, and /3 =  (/30)/31, . . . , /3P) is a regression coefficient
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vector of length P  +  1. The corresponding regression coefficient will be set to 
0 when a covariate is not selected. The error vector e satisfied that E(e) =  0, 
which implies E(yl\xi) =  /30+ /fix );i4-/32Xi2 +  ---+/3pXiP, and that Var(e) =  a2In 
with In is an n x n unite matrix.

Among the covariates, we select the one with the largest absolute correlation 
with y, say Xi, then we have

y  =  * iP i+ e i,  (6.13)

then we consider the new response with the residual orthogonal to x x, i.e

y* =  y -  xi/fi +  eu (6.14)

we find another predictor which is orthogonal to x x and repeat these selection 
steps. After k steps, we have a predictor set x x, x 2, x ^ ,  then we have

y  =  x x/3i +  . . .  + x k/?fc +  e. (6.15)

Forward stepwise regression is a greedy method, it makes the best change for 
each step rather than the whole picture, and a small change in the data may 
have a big impact on the result of the selection. The advantage of forward 
stepwise regression is when it selects the best combination of two predictors it 
does not have to include the best isolation predictor from the first step. The 
disadvantage of this selection method is that it contains a bias due to its greedy 
nature for each step.

6.3.2 Forward stagewise regression

Forward stagewise regression is similar to forward stepwise regression but with 
more constraints, it has very similar behaviour with LASSO, and there is also a 
strong connection between forward stagewise regression and the boosting algo­
rithm in machine learning, for example (Efron et ah, 2004; Hasite et ah, 2001).
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It contains thousands of tiny steps before it reaches the final model, and pro­
vides the motivation for the LARS (Least Angle Regression) algorithm which 
allows forward stagewise to use relatively large steps. Stagewise regression se­
lect the first predictor variable in the same way as stepwise regression, but the 
corresponding coefficient only changes a small amount. The next step is take 
the variable with the highest correlation with the current residual and take a 
small step for that variable and repeat this procedure until a stopping criterion 
is reached (Hesterbery et ah, 2008).

The advantage of forward stagewise regression is that it is stable and it takes 
a number of steps before a variable is clearly selected, but its disadvantage is the 
computational burden as a result of too many steps during the model selection. 
The forward stagewise regression and LASSO have very similar behaviour in 
many cases such as the orthogonal predictor case, etc.

6.3.3 Simulations

In this section we assess the performance of the model with two simulations. 
In the first simulation, we divide the predict matrix X  into two parts: X i is 
the matrix where observation y is conditional on, and the X 2 is the noise ma­
trix, we generate X x and X noise independently. In the second simulation, we let 
the two parts of the prediction matrix X\ and X noise be dependent of each other.

Sim ulation 1

We let X i =  ( x i , . . . ,  x 10o)T be the covariate matrix, and Xi =  (1, xn , . . . ,  ayio)T 
(1, x*)T, where x* =  (xn ,.. . , xlW)T denote the ith observations on 10 covariates. 
We generated x* from Ar(0 ,S x), where £ x =  (p^“ m')i<i,m<p, P =  (0.5,0.75). 
For i =  1, . . . ,  n, conditional on x,, yi be an observation drawn from the model

f(yi\xi,'f') *= nifi(yi\xi,di) +  7r2/ 2(^|xi, 02),
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where y G M1 and x G M̂ p+1h

with the total sample size n = 100. A standard multivariate Gaussian N (0, Ip-w) 
was used for the generation the noise part of the predict matrix X noise. We let 
Pnoise =  200, hence the total number of dimension of X  is P =  211. For the 
first 10 rows of the corresponding covariates matrix /3, the number of non-zero 
coefficients in and /32 are 4 and 6 respectively. The non-zero regression 
coefficients are randomly generated from (—1)“ (2.5 +  z), where «  is a random 
variable of Bernoulli distribution with parameter 0.4 and z from a standard 
Gaussian distribution, similar to Fan and Lv(2008). Hence we have non-zero 
coefficients for the first ten rows of corresponding covariates which are

(3U =  {-2 .25 , 3.71, -2.95, -3 .17 }, /32* =  {3.15, 2.29, 3.28, -3.04, 2.74, -4 .09},
(6.16)

and the rest entries of the regression coefficient /3 are zeros.

We let the shape parameters be randomly chosen from a uniform distribu­
tion with boundaries 1 and 2, then we have ( « 1 , 0(2) =  (1-05,1.12). We also 
consider the variance : o\ =  cr2 =  1. The proportion parameter ir is assigned 
to be 0.5.

In this simulation, we reduce the number of variables by using one-step for­
ward selection to Nv =  10, which is about 5% of the number of the sample size. 
In each of the forward selection iterations, we choose the best 10 combinations 
of variables with the maximum penalised likelihood. In the results, we consider 
3 parameters:

the number of true variables selected 
T\ —— ------------------------------------------------------ ’

total number of true variables 
the number of true variables that missed

total number of true variables 
the number of noisy variables selected7*3 =  -------------------------------------------;------------ .

total number of noisy variables
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as Nv —> n, we expect r\ —>■ 1, r2 —> 0 and r3 —>■ 0.

We let D =  20 datasets, the results show in Table 6.3:
From Table 6.3 we can see that in this simulation if we select the number of

Table 6.3: The truth variables selected rate, the missing variables rate and the 
noise variables selected rate (the numbers in the parenthesis are the standard 
errors).

n T 2 r3
0-817(0.178) 0.183(0.212) 0.010(0.196)

variables to be approximately 5% of the sample size, more than 80% of true 
variables are selected.

The Table 6.4 presents the best combinations for the first 10 iterations of for­
ward selection. The best combinations are chosen by calculating their maximum 
penalised likelihood. The result shows that about 80% of the true variables were 
selected within the first 10 steps.

Table 6.4: Best combinations for the first 10 iterations of forward selection
com bin ation  1 com bin ation  2 com bin ation  3 com bin ation  4 com bin ation  5

step  1 4 4 4 4 4
step  2 7 7 7 7 7
step  3 11 11 11 11 11
step  4 6 6 6 6 6
step  5 5 5 5 5 5
step  6 3 3 3 3 3
step  7 2 2 2 2 2
step  8 49 161 49 161 49
step  9 8 158 8 158 8

step  10 9 71 53 186 50
com bin ation  6 com bin ation  7 com bin ation  8 com bin ation  9 com bin ation  10

step  1 4 4 4 4 4
step 2 7 7 7 7 7
step  3 11 11 11 11 11
step  4 6 6 6 6 6
step  5 5 5 5 5 5
step  6 3 3 3 3 3
step  7 2 2 2 2 2
step  8 161 161 49 49 49
step  9 158 158 8 53 8

step  10 26 65 28 47 45
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Simulation 2

In the second simulation, we let the predict matrix Xj and the noise matrix 
Xnoise are dependent on each other, we let X\ and X noise generated together 
from a multivariate Gaussian distribution iV(0, £ ), where £  =  (p'l~m][)i<iTn<p, 
for i % j  and p =  0.5, we let the dimension of X  equals to 211.

For the first 10 rows of the corresponding covariates matrix /3, the number 
of non-zero coefficients in (31 and f32 are 4 and 6 respectively. The non-zero 
regression coefficients are randomly generated from (—1)“ (2.5 +  z), where u is 
a random variable of Bernoulli distribution with parameter 0.4 and z from a 
standard Gaussian distribution, similar to Fan and Lv(2008). Hence we have 
the non-zero coefficients of the first ten rows of corresponding covariates arc

(3U =  {-2.25,3.71, -2.95, -3 .17 }, /32* =  {3.15,2.29,3.28, -3.04,2.74, -4 .09 },

and the remainder of the entries of (3 are zeros. Therefore, the observation 
vector y is only dependent on the non-zero elements of the corresponding covari­
ates matrix (3. All the other parameters are selected same as in simulation 6.3.3.

Similar to simulation 6.3.3, we reduce the number of variables, Nv, to 10, 
which is about 5% of the sample size. In each forward selection iteration, we 
choose the best 10 combinations of the variables with maximum penalised like­
lihood.

We let D =  20 datasets, the results are shown in Table 6.5:

From Table 6.5 we can see that, in this simulation we select the number 
of variables to be about 5% of the sample size, about 70% of the true variables 
are selected.
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Table 6.5: Truth variables selected rate, the missing variables rate and noise 
variables selected rate for the dependent predictor matrix X (the numbers in 
the parenthesis are the standard errors of the survival rates).

n r 2

0.676(0 .208) 0 .324(0 .221) 0 .016(0 .1 63)

Compared to simulation 1, it is more difficult to select the true variables if 
X\ and X noise are dependent, Nevertheless, the forward selection method still 
provides a good opportunity to select most of the true variables within a few 
steps.

Stopping point When working with the real data with unknown parame­
ters, the timing to stop the iterations becomes a vital step. We can only gain 
a experience from simulation studies. From both simulations above we found 
that when we selected most of the true variables, the difference of the penalised 
log likelihoods between the two steps by adding one noise variable converged to 
zero as the number of steps tended to the size of its dimensions. From our expe­
rience we know that as the number of steps gets larger, the slop of the difference 
of log-likelihood between the two steps become more stable. We realise that 
when the increasing rate of step s +  1 is less than 0.01, the true variables are 
almost selected. Therefore, we let the standardised stopping point be sp =  0.01.

6.4 Real data analysis

In this real data analysis, we are interested in exploring the relative expression 
of a gene by the binding strengths of a subset of the P candidate motifs to the 
regulatory region of the gene. This dataset contained the expression levels of 
4443 genes and 2155 of motif-matching scores of candidate motifs from Saccha­
romyces cerevisiae (Conlon et ah, 2003). We take a logarithm of our response
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variable y which states the level of genes with n =  4443, and the respective 
matrix, X np, is a n by P  matrix taken by the candidates of the motif-matching 
scores of motifs. In this dataset, the columns stand for genes while the rows 
stand for motifs, it is used to show that the BIC value of the GM model can 
be improved by the EPD approach.
Although in this dataset, the number of dimension P is not larger than the 
size of genes n, it is still a very high dimension, thus the task of variable selec­
tion remains difficult due to the potential accumulation for the noise and the 
interpret ability to cluster the genes in the full feature space, and as such a 
pre-screen might be very helpful for the variable selection in later stage. We 
screen the data by using the one step forward selection, we use single regres­
sion model to find the minimum BIC of both GM and EPD estimation for 
each candidate motif with respect to the response variables, and we fit the 
models with the number of components K  =  2,3,4 and sorted the minimum 
BICs in increasing order, thus we have BICgm =  {BICgm1, . . . ,  BICgm2155} 
and BICepd =  {BICepdl5. . . ,  BICepd2155} respectively. Then, we looked for a 
number of p, such that the variance of the first p BICs with the weight of 95% 
of the total variance of 2155 BIC values, i.e for GM clustering,

= uar(BICgm1,...,B IC gm ?Vn) =  g5 
uar (BICgnp,. . . ,  BlCgnip)

and for EPD clustering,

_  TOr(BICepd„ . ■., B lCepd^J 
rnr' !’d tiarfBICepd,,. . . ,  BICepdp)

(6.17)

(6.18)

After the calculations we find that, to satisfy equation(6.17) we have pgm =  
155, and when satisfy equation(6.18) we have pepd =  176, which means we now 
have a much more reduced matrix with 4443 rows and 155 columns for GM 
clustering and with 4443 rows and 176 columns for EPD clustering. See Figure 
6 . 1 :

We apply EPD and GM on the first group of 155 selected motifs with
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6.4. Real data analysis

number of observations

number of observations

Figure 6.1: The top panel is the plot of the 1/BICgm values, where the red 
line is the turning point when the variance of the first p 1/BICgm’s attains 
with the 95% of the total variance. The bottom panel is the plot of 1 /BICepd 
values, where the red line is the turning point when the variance of the first p 
1/BICepd’s attains with the 95% of the total variance.

K =  1,2, 3, 4, the best fit of GM model obtained when the selection criteria are 
minBICgm =  3141.524, minAICgm =  1125.812 and minEBICgm =  3160.298 
respectively, and the best fit of EPD model obtained when min BICepd =  
2704.046, minAICepd =  675.536 and minEBICepd =  2722.820. The number 
of groups is K  =  2 in all cases based on selection criterion.
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6.4. Real data analysis

For the best fit EPD model, there are 81 variables have been selected, the 
names of those selected motifs are shown Table B.l in Appendix B. Table B.2 
and Table B.3 list the name of the motifs which have been selected to group 1 
and group 2 respectively. After EPD mixture regression based clustering, there 
are 361 out of 4443 genes have been allocated in group 1. and the rest ones 
in group 2. The Table B.4 and B.5 list the name of 361 genes in group 1 in 
Appendix B.

To test whether the result is obtained by chance or not, we use bootstrap­
ping for its justification based on BIG criterion.

Parametric Bootstrapping the BICs for GM  and EPD clustering
1. Fit the finite mixture model of regression with GM clustering and EPD 
clustering to the data of response variable y and the first group of 155 selected 
motifs, which leads to the EM estimates vFgm and 4 'epd respectively.
2. Calculate the observed BIC difference, denote this by DBIC0 =  min BICgm -  
minBIC£PD, here we have DBIC0 =  3141.524 -  2704.046 =  437.478. The null 
hypothesis, H0\ GM is true.
3.Simulate a data set of size n from GM distribution with estimated parameters 
'Fgm, we denote this sample data y\,. . . ,  y*n.
4. Fit a finite mixture model with GM and EPD clustering to the simulated 
data, and calculate the corresponding bootstrap minimum BIC respectively, 
then find the difference of BICs, min BIC^M — min BICPPD, denoted this value 
by DBIC*.
5. Repeat step 3 and 4 100 times to generate the bootstrap sampling distribu­
tion of the difference between the minimum BICs, the results using a histogram 
are shown in Figure 6.2.

The histogram shows the results of minBICgM — minBICPPD, while the 
red vertical line shows where the observed BIC difference of group 1 is.
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6.4. Real data analysis

Histogram of difference of minBIC for group 1

o

200 400 600

Results o f rmnBiCqm-mtnBlCepd w fter K=30

Figure 6.2: The bootstrap sampling distribution of minBICgm-minBICepd with 
GM fit derived over 100 times, where the red line is the observed value of 
minBICgm-minBICepd for group 1.

6.The bootstrap p-value is

From the results of the bootstrap we can see that the hypothesis Ha: GM is 
true is rejected, which means the hrst dataset we selected from real data is not 
Gaussian distributed, even when each motif is chosen by the minimum BICs of 
Gaussian linear regression.

We also undertook another two bootstraps to test the second dataset, firstly 
we apply EPD and GM clustering to the second group of 176 selected mo­
tifs with K  =  1,2,3,4, the best fit by using GM models is when the se­
lection criterion are minBICgm =  2173.629,min AlCgm =  —1256.281 and 
minEBICgm =  2192.913 with the number of groups is K  =  3, the best ht by 
using EPD models is when minBICepd =  2079.561, minAICepd =  —217.711 
and min EBICepd =  2098.846 respectively with the number of groups is K  =  2 
based on BIC selection criterion.

100
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6.4. Real data analysis

To test whether the result is by chance, we used bootstrapping for its jus­
tification based on the BIC criterion, where the data are generated with the 
parameter of the best GM fit.

1. Fit the finite mixture model of regression with GM clustering and EPD 
clustering to the data of response variable y and the second group of 176 se­
lected motifs, which lead to the EM estimates 'Fgm and ^ epd respectively.
2. Calculate the observed BIC difference, denote this by DBIC0 =  min BICgm -  
min BICe p d , here we have DBIC0 =  2173.629 -  2079.561 =  94.068. The null 
hypothesis, H0: the GM is true.
3.Simulate a data set of size n from the GM distribution with estimated pa­
rameters f c M j  we denote this sample data y { , , y*n.
4. Fit a finite mixture model with GM and EPD clustering to the simulated 
data, and calculate the corresponding bootstrap minimum BIC respectively, 
then find the difference of BICs, minBIC^M — minBICPPD, denote this value 
by DBIC*.
5. Repeat step 3 and 4 100 times to generate the bootstrap sampling distribu­
tion of the difference between the minimum BICs, the results using a histogram 
are shown in Figure 6.3.

The histogram shows the results of minBICgM — minBICPPD, while the 
red vertical line shows where the observed BIC difference of group 2 is.
6. The bootstrap p-value is

The second bootstrap suggests us that we reject hypothesis Ha that EPD is 
true, which means the second dataset we selected was also not generated from 
Gaussian mixture.

100

(6.20)
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Histogram of difference of minBIC for group 2
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Results o f nmnBtCgrrwnmBiCepd when K=30.GM fit

Figure 6.3: The bootstrap sampling distribution of minBICgm-minBICepd with 
GM fit derived over 100 times, where the red line is the observed BIC difference 
for group 2.

Secondly we also apply EPD and GM on the second group of 176 selected 
motifs with K  =  1,2,3,4, based on BIC selection criterion, minBICgm =  
2173.629 when K  =  3 and minBICepd =  2079.561 when K  =  2. But this time, 
we use the best EPD fit to generalise the observations to test if the real data 
come from EPD mixture of regression.

1. Fit the finite mixture model of regression with GM clustering and EPD 
clustering to the data of the response variable y and the second group of 176 
selected motifs, which leads to the EM estimates T'gm and e p d  respectively. 
2. Calculate the observed BIC difference, denote this by DBIC„ =  min BICgm — 
min BIC^p d , here we have DBIC0 =  2173.629 -  2079.561 =  94.068. The null 
hypothesis, H0: EPD is true.
3.Simulate a data set of size n  from EPD distribution with estimated parame­
ters ^ e p d j we denote this sample data y \ , . . .  ,y*.

4. Fit a finite mixture model with GM and EPD clustering to the simulated 
data, and calculate the corresponding bootstrap minimum BIC respectively,
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6.4. Real data analysis

then find the difference of BICs, minBIC£M — minBIC^PD, denote this value 
by DBIC*.
5.Repeat steps 3 and 4 100 times to generate the bootstrap sampling distribu­
tion of the difference between the minimum BICs, the results are shown using 
histogram in Figure 6.4.

Histogram of difference of minBIC for group 2

i----------------------------------1------------------------------------- 1------------------------------------1------------------------------------- 1 i
-50 0 50 100 150 200

Results o f mi nBICgm-rmnBfCepd when K=30. EPD fit

Figure 6.4: The bootstrap sampling distribution of minBICgm-minBICepd with 
EPD fit derived over 100 times, where the red line is the observed BIC difference 
for group 2.

The histogram shows the results of minBICibM — mmBICPP£), and the red 
vertical line shows where the observed BIC difference of group 2 is.
6.The bootstrap p-value is

1 100

P =  —  ^ / { D B iC , ,  < DBiC*} =  0.3. (6.21)
i= 1

The third bootstrap suggests that the hypothesis Ha: EPD is true and can 
be accepted, which means the second dataset we selected is generalised from 
the EPD mixture of regression.
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6.4. Real data analysis

From the above two bootstrap test we can tell that the real data was not 
Gaussian distributed and therefore it is not wise to use Gaussian mixture to fit 
the data. The EPD model provides a better fit with varying shape parameters 
rather than fixing it equals to 2 as in the Gaussian mixture fit.
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Chapter 7 

Classification

Classification is an important method for statistical data analysis especially for 
multivariate data. It is a technique to separate distinct sets of training data 
whose category membership is known and to identify a new observation into 
one of the previously defined groups. A one-group classification problem was 
applied by (Jackson, 1956) to a bivariate graphical implementation of multi­
variate quality control procedure suggusted by (Hotelling, 1947) and also the 
classification problem on the two-group case and multi-group case later on. 
This classification problem has received lots of attention in many fields such as 
finance, medication, biometrics etc. e.g. (Gordon, 1981; Gnanadesikan, 1997; 
Anderson, 2003; Johnson and Wichern, 2007). The classification indicate us 
how some observations belong to a particular group. It is very useful in many 
situations, for example when there is incomplete knowledge about future per­
formance or the ’’ perfect” information can only be obtained by destroying the 
objective, not even mention sometimes the information is very expensive or 
even unavailable to obtain.

In this chapter we apply the exponential power distribution on the classifi­
cation instead of Gaussian distribution, and we focus classification on the two 
group situation. Hence as we have the non-Gaussian training data have two 
groups and the target is to find a rule that can be used to optimally assign new 
observations into one of the two groups.
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7.1. Classification for two populations

7.1 Classification for two populations

We label the two groups gi and g2 for convenience. Suppose we have regression 
data R =  (yi, x \\. . . ;  yn, xn) which comes from two groups, the two populations 
can be described with the probability density function fi(y\x) and / 2(j/|̂ c) for 
groups 1 and 2 respectively. For randomly selected regression training data, 
the first dataset is (y n ,x n , . . . ;  yini, xini) which come from g\ and the second 
dataset is (j/21, ^21; • • • \y2n2,x2n2) comes from g2l we fit a regression distribu­
tion to each dataset and obtain two probability density functions fi(y\x) and 
f 2(y|x). Now given a new observation (y,x), it is allocated in gi if it falls in 
the first group, and it is allocated in g2 if it falls in the second group.

The classification rules can also lead to existence of errors such as assigning 
an observation in gi when its actually comes from g2 or assigning an observation 
in g2 when it is actually from g1, which is because the distinction between the 
two populations is not very clear.

Let pi be the prior probability of gi and p2 be the prior probability of g2, 
where p\+p2 =  L We denote c(l|2) to be the cost of misclassification for the 
case when an observation is allocated in g\ when its actually comes from g2, 
and c(2|l) to be the cost of misclassification for the case when allocated an 
observation is allocated in g2 when it’s actually comes from gi.

Now if we have a new observation (y , x ), we assign it to group 1 if

h(y\x) > ĉ(l|2) p2

Uv\x) ^ l 1) fo
(7.1)

we assign the new observation to group 2 if

fi(y\x) < ĉ(l|2)

M v k ) c 2̂!1) Pl
(7.2)
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7.1. Classification for two populations

fi(y\x) c( 112)
by using decision theory. Where \ r t - is the density ratio, is the cost

h(y\x)
ratio and — is the prior probability ratio. 

P i

c(2|l)
P i

There are some special cases in the classification:

1. When the two prior probabilities are equal, i.e p2/p\ =  1.
The prior probabilities are often taken to be equal when they are unknown; 
hence the ratio of probability density is only compared with the ratio of the 
misclassification cost.
Hence, we allocate the new observation to g\ if

My\x) > c( 1|2)
fi(y\x) ~  c(2|!) ’

we allocate the new observation to group 2 if

fi{y\x) < c(l|2) 
f 2{y\x) c(2|l)

2. When the two misclassification costs are equal, i.e. c(l|2)
c(2|l)

= 1.

The misclassification are often taken to be unity when they are indeterminate, 
hence the ratio of the probability density is only compared to the ratio of the 
prior.
In this case, we allocate the new observation to g\ if

fi(y\x) > P2 
Mv\x) ~ Pl ’

we assign the new observation to group 2 if

fi(y\x) P2 
h  (v\x) P1

3. When both the two prior probabilities and the two misclassification costs
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7.2. Classification with two exponential power populations

are equal, i.e — =  1 and [■■■[ =  1. In this case, the classification is simply by
Pi c(2|l)

comparing the value of two density functions. We use this case as an assumption 
in simulation and real data analysis.
In this case, we allocate the new observation to gi if

h{y\x) > 1
My\x) ~

and we assign the new observation to group 2 if

h(y\x)
My\x)

For example: Assume we have a new observation (y, x ) which lets jfi(y\x) =

Hence we have0.5 and f 2(y\x) =  0.2, we find 4 f|tv =  Ì and ~  =  °'4c(2|l) pi 0 .6 ’

/ i (y k )  _  , .  
M v M

c(l|2)
c(2|l) ><£> =

0A
06 ) =  0.5,

Therefore we assign the observation (y, x) in g\ as

h{y\x) > ,c(l|2) p2 
My\x) _  c(2\l ) Pi

7 . 2  Classification with two exponential power 
populations

Classification is normally based on the Gaussian distribution due to its sim­
plicity and high efficiency. However, as we mentioned in the previous chapters, 
most real data are not perfectly Gaussian distributed; hence, there is a bias
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7.2. Classification with two exponential power populations

when using the Gaussian classification. Here we use a more general classifica­
tion distribution, the exponential power distribution classification, instead of 
the widely used Gaussian classification.

Suppose we have a training data where the dataset 1 is (pn, £n; ■ ■ ■ i Pim > Xinj 
which comes from group 1 and dataset 2 (y2i> x2p • • ■; p2n2, x2n2) comes from 
group 2, we fit an exponential power regression distribution to each dataset. 
We obtain two exponential power density functions, say fi(y\x) and / 2(p|x), 
where

/i(p|z)

Aii/l*)

wWWxp(
2cx2r (1/ q2) exp (

V] -  xJPi\°L\ 
K ) “ l/2 )

y j - x j ( 3 2\a2\
( a i ) ^  )

From Equation 7.1 and 7.2, we assign the new observation (y, x) to group 1 if

2<Jir(i/ai) exp - \yj-xJPi\ 
Gf)“i/2

r»2
2(7̂ (1/012) exp y j - x j p 2

(a\)all2
> (

c(1|2) wP2x
c(2|l) P i ’

(7.3)

we assign the new observation to group 2 if

O il
2<71 r ( i / m )

exp
T  to

\ y j~ x j  Pi\
(cr̂ )al /2

0:2
2(T2r(i/«2) exp yj-xjp2

( Î)“2/2

< -C(l|2) wP2 N 
c(2|l) Pi

(7.4)

We can rewrite the Equation 7.3 and 7.4 into the following form respectively:

QG2a ir(l/a i)
___OL2___2cr2r ( l /0:2)

exp
IQ1 I T I“2% - z j / 3 2

( ^ ) “ i /2 +
(^2)“ 2/2

> ( h M ) (Pi)

135



7.3. Simulation

«1
2a1r ( \ / o n )

Ot-2

2cr 2 r( 1/ 0̂2)

V j - x j p  1 I“1 \y,- xJ/32|Q2\ c(l|2) p2
K ) “ l/2 (^l)“2/2 ) c(2|l) Pi

7.3 Simulation

In this simulation, we randomly generate (y, x ) from groups 1 and 2, where we 
know the parameters and where they come from. Then we apply the above 
procedure for the exponential power distribution classification and Gaussian 
classification for 100 times to see how many times(percentage) we assign a data 
point to a wrong group and how many times (percentage) we assign a data point 
to a correct group. We denote a to be the shape parameter, /? is the regression 
coefficient, and n is the proportion weight.

7.3.1 Simulation 1 (Two-component simple EPD regres­
sion model)

Suppose that we have a training dataset with sample size n — 300: dataset 1 
(2/1 , x i ] .. •; yn 1 , xni),from group 1 and dataset 2 (ynl+l,xnl+1] xn), from
group 2. We have (x1, . . . , x ni) ~  N(2,T,1) and (xnl+1, .. ,  ,x n) ~  N(0, S 2), 
where the correlation structures of covariates is Si =  corr(xi,xm) =  (p'/_m')1</,m<ni 
and S 2 =  corr(xi,xm) = (p|i_m|)i</,m<n2- For the response vector we have: 
yi ~  EPD(xf/3i,<Ji,ai) for i = l , . . . , n l ,  and yt ~  EPD(xJfi2, &2 , « 2) for 
i =  (nl + 1 ) , . . .  , n. Let the shape parameter is a =  (2.7,1.3) and 7r =  (0.5,0.5).
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7.3. Simulation

The distinction between regression coefficients are not clear

In this simulation we compare the performance of classification by using Gaus­
sian classification and EPD classification in which case that the distinction 
between the regression coefficients are not clear. We let (5 = (—0.5, 0.5) and 
the value of the rest parameters we chose are shown in Table 7.1.

We generate a new observation (y,x), then apply the above procedure of 
exponential power distribution classification and Gaussian classification for 100 
times. Let “F” be the percentage we assign a wrong group and “T” be the 
percentage we assign correctly. The results are shown in Table 7.1.

Table 7.1: Compare the performance of classification by using Gaussian clas­
sification and EPD classification in the case that the distinction between the 
regression coefficients are not clear

Equal variance cases

Cases T F

P a E P D G M E P D G M

0.50 i 0.69 0.65 0.31 0.35
2 0.67 0 .63 0.32 0.37

0.75 1 0.71 0 .68 0.29 0.32
2 0.73 0 .69 0.27 0.31

Unequal variance cases

Cases T F

P Cl a 2 E P D G M E P D G M

0.5 1.5 2.5 0.71 0.70 0.29 0 .30
1.5 3.5 0 .74 0.72 0.26 0 .28

0 .75 1.5 2.5 0 .74 0.72 0.26 0 .28

1.5 3 .5  0 .70 0 .69 0 .30 0.31

From the Table 7.1, it can be seen that the the percentage we assign a 
data into a correct group by using EPD classification is higher than using GM
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7.3. Simulation

classification under all conditions. Hence, the results shows that the EPD 
classification has better performance than GM classification.

The distinction between regression coefficients are very clear

In this simulation we compare the performance of classification by using Gaus­
sian classification and EPD classification with the case that the distinction 
between the regression coefficients are very clear. We let ¡3 =  (—0.5, 2.5) and 
the value of the rest parameters we chose are shown in Table 7.2.

We generate a new observation (y,x), then apply the above procedure of ex­
ponential power distribution classification and Gaussian classification for 100 
times. Let “F” be the percentage we assign a wrong group and “T” be the 
percentage we assign correctly. The results are shown in Table 7.2.

Table 7.2: Compare the performance of classification by using Gaussian based 
classification and EPD based classification in the case that the distinction be­
tween the regression coefficients are very clear

Equal variance cases

Cases T F

P a E P D G M E P D G M

0.50 i 0 .87 0.86 0.13 0 .12
2 0.80 0.80 0.20 0 .20

0.75 1 0.89 0.89 0.11 0.11
2 0.83 0.82 0 .17 0 .18

Unequal variance cases

Cases T F

P o-i <72 E P D G M E P D G M

0.5 1.5 2.5 0 .84 0 .83 0 .16 0 .17
1.5 3.5 0 .86 0 .85 0 .14 0.15

0.75 1.5 2.5 0 .81 0.80 0 .19 0 .20
1.5 3.5 0 .82 0.81 0 .18 0 .19
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From the Table 7.2, it can be seen that the the percentage we assign a 
data into a correct group by using EPD classification is higher than or equal 
to using GM classification under all scenarios we considered. Although the 
advantage of using EPD classification is less obvious, compared with the case 
when the distinction between two regression coefficients are not clear, the re­
sults still suggest that the EPD classification performs better or equal to GM 
classification.

7.3.2 Simulation 2 (Two-component sparse EPD regres­
sion model)

Dimension smaller than sample size

In this simulation, we test the performance of classification by using Gaussian 
classification and EPD classification in a more complexed model. The train­
ing data still come from 2 groups and all the setting is similar as in the last 
simulation, unless we let the dimension is 100 here instead the dimension is 
1 in the last simulation. Suppose that we have a training dataset with sam­
ple size n =  300: dataset 1 (rq, aq;. . . ;  yni, xni),from group 1 and dataset 2 
(jjni+i > “Eni+i! • • • ]Un,xn), from group 2. For sparse regressions models, we let 
the number of non-zero value in both regression coefficients vector f3x and (32 
are 4. We denote non-zero coefficients by

(3U =  { -3 .5 , -0 .5 , -3 .5 , -0 .5 }, /32* = {0.5,3.5,0.5, -3 .5 }, 

and the value of the rest parameters we chose are shown in Table 7.3.

We generate a new observation (y,x), then apply the above procedure of 
exponential power distribution classification and Gaussian classification for 300 
times. Let “F” be the percentage we assign a wrong group and “T” be the 
percentage we assign correctly. The results are shown in Table 7.3.

From the Table 7.3,it can be seen that the percentage we assign a data 
into a correct group by using EPD classification is higher than by using GM
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Table 7.3: Compare the performance of classification by using Gaussian based 
classification and EPD based classification for sparse regression model

Equal variance cases

Cases T F

p a E P D G M E P D G M

0.50 i 0 .95 0 .94 0.05 0.04
2 0.9 0.93 0.05 0 .07

0.75 1 0.96 0.95 0.04 0.05
2 0.94 0 .93 0.06 0 .07

Unequal variance cases

Cases T F

P 0 1 02 E P D G M E P D G M

0.5 1.5 2.5 0 .95 0 .93 0.05 0.07
1.5 3.5 0 .94 0 .93 0.06 0 .07

0 .75 1.5 2.5 0 .94 0 .93 0.06 0 .07
1.5 3.5 0.94 0 .93 0.06 0 .07

classification under all conditions in sparse regression model. But the advantage 
of using EPD classification is becoming weaker as the dimension is becoming 
larger. After all, the results still shows that the EPD classification has better 
or equal performance compare to GM classification in sparse regression model.

Dimension larger than sample size

Similar as in the last simulation, we test the performance of classification by 
using Gaussian classification and EPD classification in sparse EPD regression 
model. But in this simulation we let the dimension equals to 400 which is larger 
than the sample size n =  300. The results shown in Table 7.4.

It can be seen that in Table 7.4, the performance of EPD classification is still 
better than GM classification but the advantage is quiet small as the dimension 
is very large.
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Table 7.4: Compare the performance of classification by using Gaussian clas­
sification and EPD classification for sparse regression model with dimension 
larger than sample size.

Equal variance cases

Cases T F

P a E P D  G M E P D  G M

0.50 i 0 .952  0 .950 0 .048 0 .050
2 0 .928  0 .923 0 .072 0 .077

0.75 1 0 .959 0 .956 0.041 0 .044
2 0 .937  0 .932 0 .063 0 .068

Unequal variance cases

Cases T F

P O' 1 cr2 E P D  G M E P D  G M

0.5 1.5 2.5 0 .940  0 .937 0 .060 0 .063
1.5 3.5 0 .940  0 .938 0 .060 0 .062

0.75 1.5 2.5 0 .940  0 .935 0 .060 0 .065
1.5 3 .5  0 .941 0 .938 0 .059 0 .062
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Chapter 8

Conclusion and Future Work

8.1 Overview

The mixture of regression model is an important technique used in statistical 
modelling to investigate the relationship between variables. It is applied in 
many fields such as genetics, finance and biology. Here we focus on its applica­
tion to genetic data. We considered two real genetic data in this study, the first 
one is the yeast stress dataset of (Gasch et al., 2000) which explores genome­
wide expression patterns in the yeast Saccharomyces cerevisiae in response to 
diverse environmental changes. This dataset containing the expression levels of 
496 selected yeast genes under 173 experimental conditions, where the columns 
stand for genes and the rows stand for experimental conditions. We want to 
investigate the correlations between the genes. For the second data we are in­
terested in exploring the relative expression of a gene by the binding strengths 
of a subset of the P  candidate motifs to the regulatory region of the gene. 
This dataset containing the expression levels of 4443 genes and 2155 of motif­
matching scores of candidate motifs from Saccharomyces cerevisiae (Conlon 
et al., 2003). We intend to find the motifs related to each gene. As we know 
gene expression data normally contains unknown correlation structures even 
after normalization, hence it raises a great challenge for the existing clustering 
methods such as the Gaussian mixture model and k-mean. Motivated by the 
work of (Zhang and Liang, 2010), we have introduced the mixture of exponen­
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8.1. Overview

tial power distribution models for robustly clustering of gene expression data. 
One of the reason of using EPD instead of Gaussian distribution is that the 
EPD is more flexible than Gaussian distribution. The second reason is that the 
assumptions in the Gaussian mixture model may be invalid in some applica­
tions.

We have introduced and developed our method based on two different aspects 
of multiple regression with random errors distributed according to the EPD. 
The first aspect is estimation: we use both the EM and Newton-Raphson meth­
ods to estimate the parameters of the mixture of EPD regression model. The 
model selection criterion such as AIC, BIC and EBIC were derived for both 
EPD and GM models. We have examined different simulations approaches for 
the performance of the EPD mixture model and GM. It has suggested that the 
GM performs better than EPD if the data are generated from GM model, but 
in the cases when the data come from the EPD mixture model or data points 
are clumpy correlated, the EPD mixture model has shown a better performance 
in terms of AIC, BIC, EBIC, and RAND index and produced more accurate 
estimation of parameters than GM model. We have also fitted both models 
to yeast stress dataset, it indicated that the model of mixture EPD can give a 
better clustering result than GM model.

The second aspect is variable selection: with the development of the tech­
nology, scientists allow to collect data with large amount of information. For 
example, the gene expression data can contain very high dimension with limited 
sample size. Hence, the idea of reducing the dimensionality of the problem by 
only select the related variables of the response variable has been introduced. 
The novelty of this research is that we have converted each penalised regression 
estimation problem to a LASSO problem. Here we have applied EPD with 
LASSO method to identify the important variables in the large dataset espe­
cially for high dimensional data. The simulations in Chapter 6 have illustrated 
the performance of our method in two scenarios that with sample size n =  300 
and n =  400 and with relatively large dimension P =  10 and P =  100. In both
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scenarios, we have obtained higher RAND indexes when we used EPD than 
when used GM. We have also applied EPD in forward selection to select the 
most relative variables. We have conducted simulations for both independent 
and dependent data with dimensions larger than their sample sizes. The best 
combination of the first 10 iterations in the result has contained the majority 
of relative variables. We have combined the forward selection with LASSO 
method to deal with the situations that the dimension is larger than its sample 
size. The procedure has worked well in our simulation study. For the real data 
analysis, we have used Saccharomyces cerevisiae micro-array experiments data. 
Although in this dataset, the number of dimension P  is not larger than the 
size of genes n, but it is still a very high dimension. Thus the task of variable 
selection remains difficult, this is because there is the potential accumulation 
of noise and the interpret ability to cluster the genes in the full feature space, 
hence we use forward selection method as a pre-screen before apply the variable 
selection later on. Then we use bootstrap method to exam the reliability of our 
results, it seems the mixture of EPD models still do better job than GM models.

Finally, we apply exponential power distribution on classification instead of 
Gaussian distribution, and we focus classification on the two group situation. 
Hence our goal is to sort the non-Gaussian training data into two groups and 
the emphasis is to find a rule that can be used to optimally assign new observa­
tions into one of the two groups. Similar as before, we also did few simulations 
to illustrate the performance of our method. The EPD classification shows a 
better ability to distinct the two groups, but the advantage is not very obvious 
compare to Gaussian classification.

8.2 Future work

On future work on the subject, further exploration on the ultra high dimen­
sional data is a natural path we shall follow. Working in higher dimensions is 
remarkably challenging, as we shown in real data analysis, it is difficult to apply

144



8.2. Future work

our methodology in the entire set of genes. Because for large dataset with high 
dimensions, we have to face problems such as a large number of iterations and 
estimation of many hyperparameters.

How to choose the initial values could also be an interesting point to explore. 
Because the bad initial values may lead our results to a local maximum value 
rather than the global maximum, hence, run a simulation or real data analysis 
start with reasonable initial values could give us more reliable results.

Another extension to our models presented in this thesis could be use 
Bayesian methodology for mixture of EPD model of regression. Bayesian statis­
tics gained great attention over the last decades, we could investigate the per­
formance to the combination task of estimation and variable selection by using 
the mixture EPD model within the Bayesian framework.

Finally, we can apply other penalties on our variable selection method such 
as adaptive LASSO, SCAD and Bridge. These have different strength to anal­
ysis different dataset.
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Appendix A

Supporting Calculations for 
Chapter 6

To get more calculation details, we can explore equation(6.2) part by part.

Let
£i =  Tti{yi\xi,V{s))\yi - x [ p t\(t (A.l)

The first part of the right hand side of equation (6.2) can be written as:
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Now we explore W ^  to matrix form,
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Appendix B

Selected Genes and Motifs in 
Chapter 6

In the real data analysis of Chapter 6, we use LASSO method to select the 
relative motifs. For the best EPD fit, we select 81 motifs from the total of 176 
motifs.

The name of the selected motifs are list in Table B.l, from left to right with 
increasing order of the absolute value of correlation coefficients:
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Table B.l: List of names of 81 selected motifs.

M otif.N l.6 .1 3
-1.98631485

M o t if .N l.8.3 
0.83470318

M o t if .P l .6.1 
-0.14711098

M o t if .P l .7.2 
-0.39753278

M o t if .N l .11.5 
-0.22162536

M o tif .P l.1 0 .3
-0 .79153627

M o t i f .P l .11.3 
-0.80268264

M o t if .N l .11.4 
-0.48371419

M o t if .N l .11.10 
0.08520930

M o t if .P l .8.2 
-0.32390556

M otif .N l. 12.3 
-1.12012978

M o t if .N l .11.5 
0.18443424

M o t if .N l .10.3 
-0.52923331

M o t if .N l .11.2 
-0.61390895

M o t if .P l .9.8 
-0.34747851

M o t if .N l .5.1 
-0.18794934

M o t i f .P l .5.1 
-0.20180962

M o t if .N l.7.4 
-0 .83448023

M o t if .N l.5.3 
0.08473147

M o t if .N l .12.4 
-0.05269894

M otif. P I . 11.5 
-1.09267018

M o t if .N l .11.7 
-0.89739114

M o t if .N l.9.4 
0.19402792

M o t if .N l .11.3 
-0.53896102

M o t if .N l.6.1 
-1.91988705

M o t if .N l.6.2 
0.04433817

M o t if .N l.6.3 
-0.22232244

M o t if .N l .10.2 
-0 .42315136

M o t if .N l.6.2 
-0.62357463

M o t if .N l.7.9 
-0.14754249

M o tif .P l.1 0 .4
0.37432483

M o t if .N l.6.1 
-0 .88560767

M o t if .N l .12.2 
-0.86427729

M o t if .N l .10.1 
-1.52032762

M o t if .N l .11.11 
-1.32834896

M o tif .P l.9 .3
-0.84260586

M o t if .N l.8.2 
0.43412053

M o t if .N l.9.6 
-0.77006987

M o t i f .P l .12.1 
-0.83337200

M otif. P I . 7.1 
0.11925958

M o t if .N l .8.4 
-0.82212396

M o t if .N l.8.5 
-1.70739894

M o t if .N l.9.2 
0.13365569

M o t if .N l.9.2 
-0.49696780

M o t if .N l .10.4 
-0.41664891

M o t if .N l .12.1 
-1.08987876

M o t if .P l .8.3 
-0 .75313856

M o t if .N l.9.5 
0.04788381

M o t if .N l.6.1 
0.68183372

M o t if .N l.9.2 
-0.78533679

M o t if .N l.7.11 
-1 .34798440

M o t if .P l .9.1 
-0 .60317017

M o t i f .P l .12.3 
-0.77606171

M o t if .N l .10.14 
-0.41528582

M o t if .N l.8.1 
-0 .99565205

M o tif .P l.  10.1 
-0.59745921

M o t if .N l .7.5 
0.31183043

M o t if .N l.7.1 
-0.47952442

M o t if .P l .9.3 
-0.18431995

M o t if .N l.9.5 
-0.04403038

M o t if .N l .6.2 
0.67666290

M o t if .N l .7.3 
-0 .76610623

M o t if .N l.9.3 
-0.56329600

M o t if .N l.8.3 
0.33784313

M o t if .N l .11.7 
-0.65125406

M o t if .N l .7.4 
0.92680194

M o t i f .P l .11.3 
-0 .25685018

M o t if .N l.7.6 
0.19222513

M o t if .N l .12.3 
-0.64954378

M o t i f .P l .10.2 
-0.92841767

M o t i f .P l .11.1 
-1 .40458585

M o t i f .P l .11.15 
0.20135993

M o t if .N l.7.2 
1.27840128

M o t if .P l .6.1 
-0.35814744

M o t if .N l .11.1 
-0.32648068

M o t if .N l .10.1 
-0 .99747357

M o t if .N l .11.4 
-0 .66613440

M o t if .N l.9.1 
0.18216754

M o t if .P l .7.1 
-0.13895433

M o t if .N l.8.1 
-0.99828680

M o t if .N l .8.1 
0.54208671
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The Table B.2 and B.3 list the name of the motifs which have been selected 
in the group 1 and group 2 respectively.

Table B.2: List of names of the motifs selected for group 1.

M o tif.N l.8 .2
-0.64133935

M otif.N l .6.3 
-0.22232244

M o t if .N l .12.2 
-0.86427729

M o t if .N l .12.3 
-0.72112019

M o t if .N l.6.1 
-1.91988705

M o tif.N l.8 .2
0.43412053

M o t i f .P l .12.2 
0.05462189

M o t if .N l .11.1 
0.13663764

M o t if .N l .11.5 
0.18443424

M o t if .N l .7.6 
-0.78364314

M o tif.N l.9 .5
0.04788381

M o t if .N l .10.3 
-0.90718696

M o t if .N l.9.2 
-1.76735603

M o t i f .P l .11.1 
-1 .40458585

M o t if .N l .7.6 
-1.42970594

M otif.N l.7 .1
-0.95396217

M o t if .N l.6.1 
-0.51995838

M o t i f .P l .10.2 
-0.69585839

M o t if .N l.8.1 
-0 .99828680

M o t i f .P l .12.3 
-0.77606171

M o t if .P l.  10.14 
-0 .72946548

M o t if .P l .8.3 
-0.75313856

M o t i f .P l .12.1 
-0.83031052

M o t if .N l .7.11 
0.41372746

M o t if .N l.9.2 
0.13365569

M o tif.N l.8 .3
0.33784313

M o t if .N l.9.4 
-1.54584945

M o t if .N l .12.4 
-0.05269894

M o t if .P l .9.3 
-0.84260586

M o t if .N l.8.1 
-0 .72545769

M o tif.N l.9 .5
-0.37099085

M o t if .N l .7.11 
-1.34798440

M o t i f .P l .11.15 
0.20135993

M o t i f .P l .12.3 
-0.55571714

M o t if .P l .5.1 
-0 .28513338

M o t if .P l .8.1 
-0.99711952

M o t if .N l.6.2 
-0.62357463

M o t if .N l .11.2 
-0.61390895

M o t if .P l .7.2 
-0.43995422

M o t if .P l .7.2 
-0 .39753278

M o t i f .P l .11.5 
-1.09267018

M o t if .N l .11.4 
-0.48371419

M o t if .N l .11.11 
-1 .32834896

M o t if .N l .10.1 
0.54661810

M o t if .N l .9.1 
0.18216754

M o tif.N l.7 .2
1.27840128

M o t if .N l .11.3 
-0.01006387

M o t if .P l .7.1 
0.15707986

M o t if .P l .8.1 
-0.46384682

M o t if .P l .9.8 
-0.34747851

M o t i f .N l . i l .7  
-0 .89739114

M o t if .P l .8.1 
-0.40060299

M o t i f .P l .12.3 
-0.33008944

M o t if .N l .12.1 
-1.08987876

M o t if .N l .12.3 
-1.12012978

M o t i f .P l .11.1 
-0.75808060

Table B.3: List of names of the motifs selected for group 2.

M o t if .P l .10.3 
-0 .79153627

M o t if .N l .7.1 
-0.12321588

M o t i f .P l .12.3 
-0.77606171

M o t if .N l .9.2 
-1.76735603

M o t if .P l .9.3 
-0 .85890769

M o t if .N l .7.8 
-1.81570622

M o t if .N l.9.3 
0.07965436

M o t if .N l.9.4 
-1.54584945

M o t if .N l .12.3 
-0.72112019

M o tif.N l.9 .5
-0 .04403038

M o t if .N l .11.10 
0.08520930

M o t if .N l .11.4 
-0.48371419

M o t if .N l .12.1 
0.62486316

M o t i f .P l .7.2 
-0.43995422

M o t i f .P l .11.3 
-0 .25685018

M o t if .P l .9.8 
-0.34747851

M o t if .N l .7.2 
1.27840128

M o t if .N l.6.2 
0.04433817

M o t if .N l .12.4 
-0.05269894

M o t if .N l .7.6 
-0.78364314

M otif .N l.9 .5
-0.37099085

M o t if .P l .7.1 
0.15707986

M o t if .N l .10.2 
0.47976356

M o t i f .P l .11.15 
0.20135993

M o t if .N l .8.1 
-0.99565205

M o t if .N l .9.1 
0.59945174

M o t if .N l .12.1 
-1.08987876

M o t if .P l .9.3 
-0.18431995

M o t i f .P l .11.3 
-0.80268264

M o t if .N l .8.1 
-0.99828680

M o t if .N l .5.1 
-2.02911479

M o t if .P l .6.1 
-0.14711098

M o t if .P l .9.2 
-0.24329791

M o t i f .P l .11.1 
-1 .40458585

M otif .N l. 11.1 
0.13663764

M o t if .P l .8.3 
-0.75313856

M o t if .N l .11.2 
-0.17186360

M o tif .N l. 11.1 
-1.07842663

M o t if .P l .8.1 
-0 .99711952

M o t if .N l .9.3 
-0 .56329600

M o t if .N l .11.1 
-0.37942041
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After EPD mixture regression based clustering, there are 361 out of 4443 
genes have been allocated in group 1, and the rest ones in group 2. The Ta­
ble B.4 and B.5 list the names of 361 genes which have been allocated in group 1.

Table B.4: List of names of 361 genes that have been allocated in gourp 1.

Y C L 0 5 5 W Y P L 19 2C Y C L 02 7W Y G L 0 28C Y IL 117C Y D L 037C Y D R 4 6 1 W Y B L 01 6W
2.95 2.89 2.47 2.45 2.41 2.38 2.36 2.31

Y D R 0 8 5 C Y JL 157C Y N L 1 45W Y N L 1 92W Y JL 107C Y IL 079C Y K L 1 89W Y K R 0 5 8 W
2.17 2.12 2.06 2.04 1.95 1.90 1.89 1.87

Y K L 128C Y C R 0 8 9 W Y G L 0 53W Y G L 0 52W Y O R 3 8 5 W Y JL 108C Y K L 1 09W Y B R 0 67C
1.83 1.79 1.79 1.72 1.67 1.61 1.60 1.57

Y H R 030C Y M R 137C Y L R 3 3 2 W Y K R 0 4 2 W Y N L 280C Y K L 104C Y O R 3 4 4 C Y O R 2 2 0 W
1.46 1.45 1.40 1.25 1.24 1.22 1.20 1.19

Y D L 048C Y L R 28 6C Y N L 208W Y E R 1 30C Y L R 12 0C Y B R 1 8 3 W Y L R 19 4C Y B R 2 38C
1.19 1.18 1.17 1.17 1.13 1.11 1.11 1.11

Y H R 143W Y G L 0 5 5 W Y L R 34 5W Y H R 005C Y D L 023C Y H R 011W Y A R 0 09C Y O L 0 02C
1.09 1.03 1.01 0.99 0.98 0.97 0.96 0.96

Y G L 1 93C Y L R 28 0C Y E R 1 24C Y G L 0 51W Y P L 00 8W Y B R 0 23C Y E R 1 58C Y B R 2 23C
0.95 0.95 0.92 0.90 0.87 0.87 0.85 0.84

Y B R 2 25W Y N L 0 53W Y N L 141W Y M L 046W Y O R 2 3 8 W Y F L 027C Y P L 17 7C Y J L 159 W
0.81 0.79 0.78 0.75 0.74 0.73 0.69 0.69

Y P L 1 4 9 W Y B R 1 82C Y IL 083C Y O R 1 3 7 C Y O R 1 9 3 W Y K L 2 09C Y M L 130C Y H R 084W
0.67 0.67 0.66 0.65 0.64 0.64 0.63 0.62

Y B R 1 53W Y D R 3 0 9 C Y N L 106C Y H L 039W Y O R 3 4 7 C Y O R 0 1 2 W Y N L 107W Y L R 11 9W
0.61 0.60 0.59 0.58 0.58 0.57 0.57 0.56

Y C R 0 32W Y B R 0 3 4 C Y C L 0 1 8 W Y N R 053C Y E L 05 8W Y L R 04 0C Y G R 2 3 4 W Y IL 010W
0.55 0.55 0.54 0.54 0.53 0.53 0.53 0.52

Y L R 43 3C Y G R 1 4 9 W Y IL 121W Y B R 2 14W Y M R 103C Y D L 063C Y O R 2 1 2 W Y G R 1 4 3 W
0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.51

Y L R 4 1 7 W Y L R 41 4C Y D R 2 2 3 W Y O R 2 7 3 C Y H R 142W Y E R 1 79W Y C R 0 07C Y H R 209W
0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50

Y O R 2 2 9 W Y M R 2 9 1 W Y M R 1 6 4 C Y D R 3 83C Y P L 18 3C Y G R 1 2 2 W Y O R 1 77C Y E L 02 1W
0.49 0.49 0.49 0.49 0.49 0.48 0.48 0.47

Y G L 0 74C Y B R 2 9 5 W Y H R 195W Y J R 054 W Y O R 0 6 2 C Y L R 28 1C Y K R 0 1 3 W Y O R 2 0 8 W
0.47 0.47 0.47 0.47 0.46 0.46 0.46 0.45

Y IL 060W Y P R 1 7 2 W Y J L 219 W Y O R 0 9 5 C Y G L 0 29W Y L R 25 1W Y E R 1 84C Y O R 0 3 6 W
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.44

Y P R 1 4 3 W Y L R 2 1 7 W Y N L 2 10W Y O L 0 10W Y E L 05 9W Y L R 2 5 0 W Y D L 072C Y O L 1 01C
0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43

Y K L 152C Y C R 1 0 0 C Y IL 104C Y D L 1 29W Y IL 014W Y G R 1 2 0 C Y G L 1 44C Y L R 25 7W
0.43 0.43 0.43 0.43 0.42 0.42 0.42 0.42

Y N L 281W Y D R 1 1 1 C Y L R 2 8 3 W Y L L 01 1W Y B R 2 5 7 W Y B R 0 16W Y E R 1 44C Y E R 0 57C
0.42 0.42 0.42 0.42 0.41 0.41 0.41 0.41

Y G R 1 6 1 C Y D R 2 3 3 C Y G R 0 7 2 W Y E L 068C Y P L 06 2W Y C R 0 7 2 C Y G R 0 7 0 W Y J L 084C
0.41 0.41 0.41 0.40 0.40 0.40 0.40 0.39

Y B R 2 26C Y IR 032C Y E R 1 88W Y N L 050C Y M R 2 3 8 W Y H R 065C Y P L 07 0W Y G R 2 6 8 C
0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38

Y M R 244W Y B R 1 57C Y G L 0 76C Y B L 10 1W -B Y B R 2 97W Y L R 02 4C Y H R 068W Y JL 033W
0.38 0.37 0.37 0.37 0.37 0.37 0.37 0.37

Y JL 050W Y F L 00 3C Y G L 0 47W Y M R 268C Y L R 43 5W Y G R 2 2 7 W Y K L 1 20W Y E R 0 79W
0.37 0.37 0.37 0.36 0.36 0.36 0.36 0.36

Y G L 1 71W Y G L 0 78C Y C R 0 57C Y P R 0 1 6 C Y L R 40 1C Y G R 2 9 4 W Y IL 058W Y P R 1 4 2 C
0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36

Y IL 040W Y H L 021C Y J L 032 W Y H R 201C Y J L 130C Y F L 00 6W Y J L 151C Y M R 192W
0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Y IR 040C Y D R 1 7 4 W Y N L 1 78W Y D L 111C Y L R 42 5W Y D R 3 5 8 W Y D R 0 4 1 W Y G R 1 0 3 W
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
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Table B.5: Continue of Table B.4

Y O R 2 6 7 C Y M L 045W Y G L 1 66W Y IL 056W Y M R 049C Y J R 051 W Y K L 0 18W Y O R 1 55C
0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34

Y C R 0 27C Y C L 06 7C Y M R 008C Y H L 002W Y H R 183W Y F R 0 1 7 C Y G R 1 00W Y M R 160W
0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33

Y P L 146C Y A R 0 28W Y K L 1 36W Y N L 283C Y B R 2 40C Y D R 1 8 5 C Y F R 05 5W Y E R 126C
0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Y M L 004C Y P L 23 1W Y M R 034C Y M R 0 3 5 W Y K L 2 16W Y B L 06 6C Y IL 167W Y M R 051C
0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32

Y G R 2 4 3 W Y E R 0 15W Y O R 2 2 4 C Y G L 0 50W Y D R 0 5 9 C Y M L 088W Y G R 0 01C Y D R 0 74W
0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Y C R 0 3 5 C Y L R 20 2C Y M R 088C Y G R 0 3 6 C Y D L 0 86W Y M R 272C Y G R 0 8 0 W Y M R 284W
0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Y P L 1 0 7 W Y B R 2 34C Y L R 24 1W Y B R 1 74C Y P R 0 1 4 C Y D R 3 6 8 W Y M L 062C Y M R 0 2 0 W
0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30

Y M L 110C Y P L 18 1W Y H L 036W Y E L 053C Y M L 121W Y O R 0 7 9 C Y O L 121C Y P L 22 6W
0.30 0.30 0.30 0.30 0.30 0.29 0.29 0.29

Y O R 1 69C Y M R 135C Y M R 182C Y L R 23 9C Y O R 2 1 9 C Y K R 1 0 6 W Y G R 2 55C Y G R 2 9 0 W
0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

Y IR 042C Y L L 04 9W Y IR 011C Y J L 001 W Y D R 0 8 0 W Y G R 1 4 5 W Y F L 05 5W Y N R 012W
0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.28

Y M R 081C Y L R 13 0C Y E R 0 80W Y L R 4 5 1 W Y M R 217W Y N L 022C Y L L 018C Y G R 0 76C
0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

Y O R 0 1 4 W Y D L 1 47W Y P L 01 2W Y G R 1 9 0 C Y P L 25 9C Y O R 1 6 7 C Y K L 110C Y P L 121C
0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.27

Y D R 2 8 0 W Y E R 132C Y G L 0 39W Y J L 109C Y J L 148 W Y G L 0 48C Y C L 04 9C Y H L006C
0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

Y B R 2 7 4 W Y H R 128W Y G R 2 3 3 C Y F R 0 5 2 W Y D R 4 2 4 C Y D R 1 7 8 W Y N R 046W Y D L 027C
0.27 0.27 0.26 0.26 0.26 0.26 0.26 0.26

Y IR 0 3 7 W Y L R 01 1W Y G R 2 1 6 C Y B R 0 1 2 W -B Y J L 067 W Y N L 096C Y N L 241C Y M R 208W
0.26 0.26 0.26 0.26 0.22 0.21 0.21 0.19

Y N L 069C Y N L 2 26W Y N R 061C Y E L 01 8W Y IR 035C Y D R 0 38C Y D R 1 60W Y P R 0 2 4 W
0.19 0.18 0.15 0.10 0.06 0.05 0.03 0.03

Y J R 080 C Y O L 0 03C Y L R 0 6 6 W Y P R 0 2 9 C Y J L 017 W Y G L 1 73C Y M R 267W Y N L 236W
0.03 0.00 0.00 -0.01 -0 .02 -0.02 -0.04 -0 .07

Y JL 024C Y M R 221C Y K R 0 7 9 C Y D R 0 2 9 W Y P R 1 5 0 W Y P L 04 0C Y M R 165C Y H R 191C
-0.07 -0.09 -0 .10 -0 .12 -0 .15 -0 .17 -0.20 -0.20

Y N L 011C Y N L 169C Y G R 0 6 5 C Y C R 0 4 8 W Y M R 1 4 9 W Y D R 2 0 8 W Y F L 03 8C Y A L 060W
-0.21 -0.27 -0 .32 -0 .34 -0 .35 -0 .36 -0.38 -0 .69

Y H R 127W
-0.83
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