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Abstract

This thesis presents a fault-tolerant, Peer-to-Peer (P2P) based grid scheduling 

system for highly dynamic and highly heterogeneous environments, such as home 

networks, where we can find a variety of devices (laptops, PCs, game consoles, etc.) 

and networks.

The number of devices found in a house that are capable of processing data has 

been increasing in the last few years. However, being able to process data does not 

mean that these devices are powerful, and, in a home environment, there will be a 

demand for some applications that need significant computing resources, beyond the 

capabilities of a single domestic device, such as a set top box (examples of such 

applications are TV recommender systems, image processing and photo indexing 

systems). A computational grid is a possible solution for this problem, but the 

constrained environment in the home makes it difficult to use conventional grid 

scheduling technologies, which demand a powerful infrastructure.

Our solution is based on the distribution of the matchmaking task among 

providers, leaving the final allocation decision to a central scheduler that can be 

running on a limited device without a big loss in performance.

We evaluate our solution by simulating different scenarios and configurations 

against the Opportunistic Load Balance (OLB) scheduling heuristic, which we found 

to be the best option for home grids from the existing solutions that we analysed. The 

results have shown that our solution performs similar or better to OLB. Furthermore, 

our solution also provides fault tolerance, which is not achieved with OLB, and we 

have formally verified the behaviour our solution against two cases of network 

partition failure.

ii



Contents

Abstract............................................................................................................................. ii

Contents...........................................................................................................................iii

List of Publications......................................................................................................... vi

Table of Figures............................................................................................................. vii

Table of Tables................................................................................................................ xi

Acknowledgement.......................................................................................................... xii

Chapter 1. Introduction..................................................................................................1

1.1 Research Assumptions and Focus..................................................................... 1
1.2 Outline of the thesis............................................................................................ 3

Chapter 2. The Home Environment............................................................................. 4

2.1 Applications....................................................................................................... 4
2.1.1 Face Recognition........................................................................................5
2.1.2 Recommender System.................................................................................7
2.1.3 Health Systems...........................................................................................8

2.2 Power Consumption..........................................................................................9
2.3 The Home Environment..................................................................................11

2.3.1 Devices......................................................................................................11
2.3.2 Communication Aspects......................................................................... 14

2.4 Zeroconf and Universal Plug-And-Play (UPnP)........................................... 17
2.5 Requirements.....................................................................................................18
2.6 Final Considerations........................................................................................ 19

Chapter 3. Grid Computing........................................................................................20

3.1 Introduction..................................................................................................... 20
3.2 Computational Grid for Limited Devices....................................................... 24
3.3 Scheduling....................................................................................................... 25

3.3.1 Resource Discovery................................................................................ 26
3.3.2 System Selection..................................................................................... 26
3.3.3 Job Execution...........................................................................................27
3.3.4 Scheduling Algorithms........................................................................... 28

3.4 Fault Tolerance................................................................................................30
3.4.1 Introduction to Fault Tolerance................................................................30
3.4.2 Techniques for building fault tolerant systems..................................... 31
3.4.3 Fault Tolerance in Grid Systems............................................................ 32
3.4.4 Network Partition.................................................................................... 34

3.5 Summary......................................................................................................... 35
Chapter 4. Proposed Home Grid................................................................................ 37

4.1 Scheduling Architectures................................................................................ 39
4.1.1 Fully Decentralized Architecture........................................................... 39
4.1.2 Fully Centralized Architecture.................................................................43
4.1.3 Hybrid Architecture................................................................................ 45

4.2 Component-Based Solution............................................................................ 47
4.3 Device Registering and Resource Discovery................................................50

iii



4.4 Scheduling System..........................................................................................57
4.5 Fault Tolerance Mechanisms..........................................................................62

4.5.1 Failure Detection...................................................................................... 62
4.5.2 Scheduler Crash...................................................................................... 63
4.5.3 Recovering the Scheduler.......................................................................73
4.5.4 Provider Crash..........................................................................................76
4.5.5 Consumer Crash...................................................................................... 77
4.5.6 Job Replication.........................................................................................78
4.5.7 Network Partition.................................................................................... 82

4.6 Summary......................................................................................................... 85
Chapter 5. Evaluation of Scheduling Performance...................................................91

5.1 Methodology................................................................................................... 91
5.2 Discrete Event Simulation.............................................................................. 92
5.3 Benchmarks..................................................................................................... 93
5.4 General Simulation M odel............................................................................. 95

5.4.1 Consumer.................................................................................................97
5.4.2 Jobs and Work Items............................................................................... 97
5.4.3 Size of messages..................................................................................... 98
5.4.4 Network Simulation................................................................................ 99
5.4.5 Processor................................................................................................ 103
5.4.6 Number of Instructions......................................................................... 104

5.5 Scenarios........................................................................................................108
Chapter 6. Simulation Results..................................................................................110

6.1 Optimistic Load Balance (OLB)................................................................... 110
6.2 Static Scenario............................................................................................... 112

6.2.1 DMS Version 1 ......................................................................................113
6.2.2 OLB Information Flow ......................................................................... 114
6.2.3 Results: DMS1 vs. OLB........................................................................ 115
6.2.4 DMS Version 2 ......................................................................................117
6.2.5 Results: DMS2 vs. OLB........................................................................ 117

6.3 Dynamic Scenario.........................................................................................119
6.3.1 Disconnection Mechanism.................................................................... 120
6.3.2 Dynamic OLB........................................................................................120
6.3.3 Dynamic DM S2.....................................................................................121
6.3.4 Simulation Set-up...................................................................................121
6.3.5 Long CPs and long DP: DMS2 vs. O LB .............................................. 122
6.3.6 DMS version 3 .......................................................................................124
6.3.7 DMS3vs. O LB......................................................................................125
6.3.8 Static scenario: DMS3 vs. DMS2.........................................................126
6.3.9 Impact of the Job List size.................................................................... 127
6.3.10 Impact of the Network Usage............................................................... 129
6.3.11 Scalability on the number of providers: DMS3 vs. OLB.....................131
6.3.12 Short CP and Short DP: DMS3 vs. OLB...............................................132

6.4 Fault Tolerance Scenario...............................................................................133
6.4.1 Election’s Utility Function.................................................................... 133
6.4.2 Job completion timeouts....................................................................... 136
6.4.3 Scheduler’s failure: DMS version 4 ..................................................... 138
6.4.4 Scheduler’s failure: Recovery vs. No Recovery..................................140

6.5 Discussion......................................................................................................143

IV



Chapter 7. Model Checking Results........................................................................144

7.1 UPPAAL........................................................................................................144
7.2 Scenario 1: Simple partition......................................................................... 146

7.2.1 C onsumer T emplate...............................................................................146
7.2.2 Provider Template..................................................................................148
7.2.3 Scheduler Template................................................................................150
7.2.4 Partition Template..................................................................................151
7.2.5 Deadlock Verification........................................................................... 152

7.3 Scenario 2: Complex Partition..................................................................... 152
7.3.1 Partition Template..................................................................................153
7.3.2 Consumer Template.............................................................................. 154
7.3.3 Provider T emplate..................................................................................156
7.3.4 Scheduler Template................................................................................158
7.3.5 Deadlock Verification........................................................................... 160

7.4 A proof of deadlock preservation with abstract models............................. 162
7.5 Discussion..................................................................................................... 165

Chapter 8. Conclusions and Future Work................................................................167

8.1 Conclusions................................................................................................... 167
8.2 Overall Contributions....................................................................................168
8.3 Future W ork.................................................................................................. 169

8.3.1 Simulation parameters........................................................................... 169
8.3.2 More schedulers.....................................................................................170
8.3.3 Security.................................................................................................. 170
8.3.4 Model Checking.....................................................................................171
8.3.5 Data Grid................................................................................................ 171

References..................................................................................................................... 172

APPENDIX A -  Recommender Systems................................................................... 184

APPENDIX B -  Resource Description....................................................................... 189

APPENDIX C -  Pseudo-code for the proposed solution..........................................196

APPENDIX D -  C++ Code of DMS and OLB scheduling algorithms...................207

APPENDIX E -  Abstract Templates.......................................................................... 211

v



List of Publications

1. Silva, E. L., Linington, P., A P2P Based Scheduler for Home Grids, RECENT 

TRENDS IN WIRELESS AND MOBILE NETWORKS, Communications in 

Computer and Information Science, 2011, Volume 162, Part 3, 325-336, 

Springer fhttp://www,springerlink.com/content/h3nx27221m5n628m/). June 

2011.

vi

A

http://www,springerlink.com/content/h3nx27221m5n628m/


Table of Figures

Figure 1 - Energy per bit for Nokia N95 WLAN and 3G........................................... 11

Figure 2 - Centralized Model........................................................................................15

Figure 3 - Decentralized M odel....................................................................................15

Figure 4 - Hierarchical Centralized M odel..................................................................16

Figure 5 - Hierarchical Decentralized Model...............................................................17

Figure 6 - Interaction between meta-scheduler and local schedulers........................ 26

Figure 7 - Task dependency taxonomy of Grid scheduling algorithms.....................28

Figure 8 - Example of a network partition................................................................... 34

Figure 9 - The fully decentralized scheduling architecture........................................ 40

Figure 10 - Example of a job description.....................................................................41

Figure 11 - Fully centralized scheduling architecture................................................. 43

Figure 12 - Hybrid scheduling architecture..................................................................45

Figure 13 - Software components for each component in the proposed home grid. .48

Figure 14 - Registration workflow................................................................................51

Figure 15 - Pseudo-code for the consumers sending a job.......................................... 52

Figure 16 - Pseudo-code for the scheduler registering a job........................................53

Figure 17 - Pseudo-code for the consumers handling the jobs submission response. 55 

Figure 18 - Pseudo-code for the providers handling the job description broadcast by

consumers................................................................................................................. 56

Figure 19 - Example of a job submission timeline where a provider becomes on and

off............................................................................................................................. 58

Figure 20 - Communication between provider and scheduler during a job request

from the provider......................................................................................................59

Figure 21 - Pseudo-code for the scheduler handling the schedule request from

providers................................................................................................................... 59

Figure 22 - Pseudo-code for the provider handling the schedule response from the

scheduler................................................................................................................... 60

Figure 23 - Scheduling information flow...................................................................... 61

Figure 24 - Pseudo-code for the consumer handling the job submission timeout.....63

Figure 25 - Pseudo-code for the start of an election process....................................... 70

Figure 26 - Pseudo-code for the election component handling the election timeout. 70

vii

À



Figure 27 - Pseudo-code for the election component handling the

SCHEDULEFAILURE message.......................................................................... 71

Figure 28 - Pseudo-code for the election component handling the scheduler elected

message.....................................................................................................................73

Figure 29 - Pseudo-code for the ID recovery performed by the consumers..............74

Figure 30 - Pseudo-code for the queue recovery performed by the providers.......... 74

Figure 31 - Pseudo-code for the recovery performed by the scheduler.....................74

Figure 32 - Pseudo-code for the scheduler handling the recovery timeout............... 76

Figure 33 - Pseudo-code for the provider handling connection timeout................... 77

Figure 34 - A solution to avoid job replication using “is alive?” messages............... 79

Figure 35 - A solution to avoid job replication that gives preference to the first

provider that has completed the job........................................................................ 80

Figure 36 -  Updated pseudo-code for the providers handling the job description.... 83

Figure 37 - Pseudo-code for the schedulers handling the merge process.................. 86

Figure 38 - Pseudo-code for the merge completion and failure messages................ 87

Figure 39 - Interaction between objects in the simulation........................................... 92

Figure 40 - Average time of Linpack Benchmark....................................................... 94

Figure 41 - Dhrystone benchmark results..................................................................... 95

Figure 42 - Abstract Simulation Model.........................................................................95

Figure 43 - Realization of the Link component............................................................ 96

Figure 44 - Connections between communication components............................... 100

Figure 45 - Simulated TCP communication................................................................ 101

Figure 46 - Abstract model of the network simulation...............................................103

Figure 47- Pseudo-code for our proposed scheduler.................................................. 104

Figure 48 - Sample of C++ code.................................................................................. 105

Figure 49 - Sample of Assembly code generated from C++ code.............................105

Figure 50 - Pseudo-code for OLB scheduler............................................................... 106

Figure 51 - DM Sl’s information flow........................................................................113

Figure 52 - OLB's information flow............................................................................ 114

Figure 53 - Jobs completed / second of simulated time: DMS1 vs. OLB...................116

Figure 54 - Scheduler's CPU Usage: DMS1 vs. OLB................................................ 116

Figure 55 - Jobs completed / second of simulated time (load from 0.01 to 0.09):

DMS2 vs. OLB....................................................................................................... 117

Figure 56 - Scheduler’s CPU Usage: DMS2 vs. OLB................................................118

viii



Figure 57 - Scheduling Time: DMS2 vs. OLB.......................................................... 118

Figure 58 - Jobs completed / seconds of simulated time (load from 0.1 to 0.9): DMS2

vs. OLB................................................................................................................... 119

Figure 59 - Jobs completed / second of simulated time: DMS2 vs. OLB...............123

Figure 60 - Jobs completed / second of simulated time: DMS2 vs. OLB...............124

Figure 61 - Jobs completed per second of simulated time: DMS3 vs. OLB........... 125

Figure 62 - Jobs completed: DMS3 vs. OLB (dynamic scenario -  short CP and long

DP).......................................................................................................................... 126

Figure 63 - Network Usage: DMS3 vs. DMS2 (Static Scenario).............................. 126

Figure 64 - Impact of the job list size.......................................................................... 128

Figure 65 - Performance curve for the impact of the job list size..............................128

Figure 66 - Performance curve for the impact of the job list size: higher load....... 129

Figure 67 - Jobs Completed: DMS3 vs. DMS2 (Static Scenario)..............................129

Figure 68 - Network Usage: DMS3 vs. OLB (1KB of executable file).................... 130

Figure 69 - Network Usage: DMS3 vs. OLB (20 KB of executable file)................. 131

Figure 70 - Jobs completed: DMS3 vs. OLB (20 KB of executable file and load from

0.01 to 0.09)............................................................................................................ 131

Figure 71 - DMS3's scalability when increasing the number of providers................ 132

Figure 72 - Jobs completed: DMS3 vs. OLB (short CP and short DP -  Pmjn = 1)... 133

Figure 73 - Jobs completed: scheduler on powerful device and on limited device. 134

Figure 74 - Scheduling time comparison: scheduler on powerful device and on

limited device..........................................................................................................135

Figure 75 - Scheduler’s CPU usage: scheduler on powerful device and on limited

device...................................................................................................................... 135

Figure 76 - Network usage comparison: scheduler on powerful device and on limited

device...................................................................................................................... 136

Figure 77 - Job completion considering job's timeouts.............................................. 137

Figure 78 - Job’s retrials considering job's timeouts...................................................138

Figure 79 - Job completion: DMS3 vs. DMS4 (Tct = 60 s).......................................140

Figure 80 - Jobs completed per second: Recovery vs. No recovery..........................142

Figure 81 - Representation of Uppaal’s Urgent and Committed locations............... 145

Figure 82 - Simple partition scenario: model of consumers’ behaviour................... 147

Figure 83 - Simple partition scenario: model of providers’ behaviour..................... 148

Figure 84 - Simple partition scenario: model of scheduler’s behaviour....................150

IX



Figure 85 - Simple partition scenario: partition template..........................................151

Figure 86 - Complex partition scenario: partition template....................................... 153

Figure 87 - Complex partition scenario: model of consumers’ behaviour.................155

Figure 88 - Complex partition scenario: model of providers’ behaviour..................157

Figure 89 - Complex partition scenario: Pmerger template....................................... 158

Figure 90 - Complex partition scenario: model of scheduler’s behaviour.................159

Figure 91 - Template for random selection of scheduler.......................................... 160

Figure 92 - Abstract Provider Template.....................................................................161

Figure 93 - Resource description diagram.................................................................190

Figure 94 - Abstract Consumer Template..................................................................211

Figure 95 - Abstract Pmerger Template.....................................................................212

Figure 96 - Abstract Scheduler Template.................................................................. 212

x



Table of Tables

Table 1 - Examples of Grid efforts.............................................................................. 22

Table 2 - Power required from the N95 to submit a job in a fully decentralized

model........................................................................................................................42

Table 3 - Power required from the N95 considering a face recognition application. 47

Table 4 - The summary of the messages used in the proposed protocol.....................87

Table 5 - Constant values for the instructions of DMS scheduling algorithm........ 105

Table 6 - Constant values for the instructions of OLB scheduling algorithm......... 107

Table 7 - Parameters for the dynamic simulation: Long CPs and long DP...............122

Table 8 - Configuration used for the simulation of the fault tolerance scenario..... 139

Table 9 - Set-up used for the simulation of the fault tolerance scenario considering

no recovery of the scheduler’s queue...................................................................141

Table 

Table

10 - Recommendation Techniques................................................................... 186

11 - Strengths and Weaknesses of recommendation techniques....................187

xi



Acknowledgement

It is the end of another tough journey, and I would like to thank the people that 

made this work possible.

I am very grateful to my supervisor, Professor Peter Linington, for his 

constructive criticism and guidance during the period of this work. His experience 

was very important to improve style and correctness in the thesis.

I also owe my gratitude to the late Dr. David Shrimpton for his support and 

dedication during the first year of my PhD.

I would also like to thank Professor Michael Rolling and Mr. Ian Utting for the 

comments and suggestions for the improvement of this work during the panel 

meetings.

A special thank to Dr. Rodolfo Gomez for being a great friend during all these 

years of my PhD and for helping me with the model checking presented in the thesis.

Many thanks to my great friend Natália for being always present and supportive 

whenever I needed. Thanks also to Susanne, Gift, Ismini, Valeschka, Paulo, Olga, 

Carlos and Márjory for being like a family to me and make this journey easier.

Thanks to the Programme Alban and to the School of Computing of the 

University of Kent for the financial support for this project.

Many thanks to my friend Corine for helping me to be awake during the nights 

that I had to work and for the amazing chocolates that were sent to me. Additionally, 

thanks to my dear friends that were always present: Michèle, Ana, Julie, Lauryn, 

Fábio, Bárbara, Yvonne and Silvia.

A very special thanks to Dr. Marchia Campos for always believing in me since 

my undergraduate degree.

Finally, I cannot find words to describe how grateful I am to my parents, 

Ednilson and Sebastiana, and to all my family, especially to my brother Eberth and 

my sister Erika, for the unconditional love, support and encouragement that they 

have given to me.

xii



To my parents Ednilson and Sebastiana.



"Start by doing what is necessary, then what is possible, and suddenly you are doing 
the impossible."

(St. Francis o f Assisi)

xiv



Chapter 1, Introduction

1 Introduction

The number of devices found in a house that are capable of processing data has 

been increasing in the last few years. However, being able to process data does not 

mean that these devices are powerful, and they may not be able to run complex 

applications within an acceptable time for the user.

One example of this kind of application is a recommender system [1-4] for 

digital television, where the user provides their preferences about TV shows and/or 

movies, and the system provides him with some suggestions of what to watch. To 

identify suitable shows or movies, the system usually compares the preferences of 

the user with the preference of other users with similar tastes, by applying some 

matching techniques to the recorded data. The techniques that provide the best 

results for the recommendation (e.g. the use of Single Value Decomposition -  SVD 

[5-8]) usually demand much processing power, and for that reason they cannot be 

implemented on Set-Top Boxes (STBs) that are usually limited in terms of their 

processing capabilities. More information on recommender systems is presented in 

Appendix A of this thesis.

Distributing the processing of an application to more powerful devices is one 

alternative for extending the capabilities of the limited components and so allowing 

them to run complex applications. However, it is necessary to define, for example, 

the mechanism to find the powerful devices that are available, how the devices 

should communicate and how to decide what devices should receive which 

processes.

A Computational Grid [9-13] emerges as a suitable option for these challenges, 

since it has been designed for the distribution of application processing in dynamic 

and heterogeneous environments, which happens to be the case for home networks.

The following section describes the assumptions and the objectives of this thesis.

1.1 Research Assumptions and Focus

This thesis is concerned with the architecture for provision of home grids. It

assumes that:
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a) in a home environment there will be a demand for some applications that 

need significant computing resources, beyond the capabilities of a single 

domestic device, such as a set top box (examples of such applications are 

TV recommender systems, image processing and photo indexing 

systems);

b) there will be a significant number of devices available, which can be used 

in combination to fulfil the demand;

c) many of the devices will be mobile, or at least portable, so that they may 

be removed from, or returned to, the home without warning;

d) constraints on the home’s energy footprint will result in these devices 

being switched on and off in an unpredictable way; some devices will be 

in continuous operation (e.g. associated with domestic services like 

refrigeration or security) but economy will dictate that these have quite 

limited capabilities;

e) the devices will have different hardware architectures and capabilities, so 

that not all devices will be suitable for the support of all the required 

applications;

f) the devices connect to each other through a router (wirelessly or using 

cable); some devices may not be able to connect directly with the router 

(because they use a technology not supported by the router) and will take 

part in the network using another device as a proxy;

g) the main objective is to perform application tasks as quickly as possible, 

and it is assumed that the tasks are free-standing, computationally 

intensive pieces of work;

h) the grid system may receive tasks from different applications 

simultaneously.

The aim of this thesis is to propose an architecture and supporting protocols to 

manage the available resources. It describes:

a) the registration and identification of devices;

b) the discovery of suitable resources;

c) the negotiation of constraints on their use (matchmaking);

d) the scheduling and allocation of tasks on devices;

2
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e) fault tolerant mechanisms for the system, including election and recovery 

of a new scheduler after failure.

The resources are not available to investigate the performance and efficiency of 

the proposed architecture in a wide variety of configurations, and so the main thrust 

of the investigation will be by discrete event simulation, supported by benchmarking 

to characterize available devices and validate the simulation.

1.2 Outline of the thesis

This thesis is organized using the following structure:

• Chapter 2: this chapter presents the types of applications that are 

expected to use our proposed system, and it also shows the possible 

devices and network set-ups for connecting devices in the home 

environment;

• Chapter 3: presents the literature review for the thesis, including an 

overview of grid systems, the state of the art of scheduling mechanisms 

and grids for limited devices;

• Chapter 4: describes the architecture and protocols proposed in this 

thesis;

• Chapter 5: describes the methodology for evaluation of the proposed 

system and the simulation models;

• Chapter 6: describes the simulated scenarios and analyze their respective 

results;

• Chapter 7: presents the formal verification of the proposed system for 

two cases of network partition;

• Chapter 8: presents the final considerations and possible future work.

At the end, we present the bibliography used for this thesis and the supporting 

material as appendixes.

3



Chapter 2. The Home Environment

2.1 Applications

The solution presented in this thesis was designed with the main objective of 

creating an infrastructure that enhances the computational capabilities of the devices 

in the home network and allows more complex applications to be executed faster.

For example, recommender systems usually provide recommendations for a 

single person using the preferences from other people with similar tastes. As 

mentioned in the Chapter 1, to achieve better accuracy, the recommender systems 

must rely on techniques that demand high computational power such as SVD or 

genetic algorithms. In this case, one can argue that the STB can compute the 

recommendations in an offline mode, before the user needs it (e.g. while the user 

sleeps), and give a quick response when asked for it, which is a valid approach.

However, when we consider a novel recommender system that provides 

recommendations to a group of people, it may be required that the recommendations 

be computed on demand, in the situations where the data from all the participants 

cannot be known a priori for offline processing. In this scenario, a STB on its own 

could take a long time to produce an accurate result. This computation could be done 

more quickly if the STB could use the computational power of other devices in the 

home (through a domestic computational grid, for example).

Another example of an application that could use the grid infrastructure is a 

video surveillance system where images captured by cameras are analysed in a 

search for criminals. Such application could use the computational power of the grid 

systems running in the homes in the neighbourhood. Facial recognition algorithms 

are computationally expensive, which makes them appropriate to run in a grid 

system. For example, research like that presented in [14] and [15] proposes the 

deployment of face recognition algorithms in a grid system.

Further examples of applications include health systems. With the aging of the 

population, this kind of application will become more common, and they will 

become an economically viable solution for patient care [16]. In-home and nursing- 

home pervasive networks may assist residents and their caregivers by providing 

continuous medical monitoring (e.g., some of them are devoted to continuous 

medical monitoring for degenerative diseases like Alzheimer’s, Parkinson’s or
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similar cognitive disorders), memory enhancement, control of home appliances, 

medical data access, and emergency communication [17].

Some of these applications will be realised by using pervasive wearable sensors 

that can send the collected data to a central device, which can then use the grid to 

produce result in a shorter time. The work presented in [18] uses a grid to reduce the 

total execution time of an electrocardiogram application that analyses complicated 

signals. With the improvements of digital stethoscopes, we can also envisage 

computational grids being used to improve the performance of applications that 

analyse the signals captured by those devices.

The applications mentioned here may involve high network usage to transfer the 

matrices of preferences, in the case of the recommender system, or to transmit the 

images captured by the cameras, in the case of the surveillance system, for example. 

For that reason, grid systems for the home environment should attempt to minimize 

the use of the network by their own protocols.

A home grid solution can also serve as a resource for conventional grid 

applications such as SETI@Home' and FightAIDS@Home1 2, where one of the 

devices connected to the Internet, for example, could distribute the tasks to the home 

grid.

In the following sub-sections, we describe the requirements from some of these 

applications on the grid.

2.1.1 Face Recognition

Face recognition techniques are very useful for a number of applications that can 

be used in the home environment such as surveillance systems, identity 

authentication, access control to the property, content-based indexing and video­

retrieval systems, for example.

It is well known that it gets harder to distinguish faces as the database grows, 

since growth reduces the variances between the faces, affecting the recognition 

accuracy of the system [19].

In order to solve this problem, Zhang et. Al. [19] proposes dividing the large 

database into sub-databases by maximizing the variance in the sub-databases, but 

reducing the variance between them.

1 SETI@Home website: http://setiathome.berkelcv.edu/
2 FightAIDS@Home website: http://fightaidsathome.scripps.edu/
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In order to improve performance, the solution in [19] keeps copies of the 

database in the provider nodes with enough storage capabilities in the grid, so that 

they only need to distribute the images that will have to be analysed and distribute 

the recognition processes that will use the sub-databases.

Since the recognition processes are independent, the grid system should be able 

to handle independent jobs, which can simplify the scheduling process.

In this case, where the database does not have to be transmitted frequently 

through the network, most of the time of the application is spent processing the jobs, 

thus requiring a mechanism that is able to find the appropriate resources that will 

process such jobs. Since most devices in the home may disconnect from the grid 

without warning, the grid system that supports such applications should handle that 

dynamicity and make the best use of the available resources, which includes 

providing a fault tolerance mechanism that allows the application to recover from a 

faulty state without having to rerun all the jobs.

For example, the database described in [20] contains the coordinates of eyes, tip 

of the nose and centre of the mouth for 130 subjects, in 32 different conditions each 

(the database also contains a label that identifies each one of these conditions). All 

the information uses 110 KB of space in the disk, which is a relatively small value to 

be transmitted via the network. If we consider a similar database representing 

information about 1000000 criminals, for instance, the amount of memory required 

for the database would be approximately 800 MB (this number can be reduced using 

compression techniques -  by simply adding the database file to a zip file on 

Windows, it can be reduced to approximately 260 MB, for example).

The database may be large, but once it has been distributed to the providers, the 

application will send only a small amount of data. For example, if we assume a 

scenario where the recognition processes/executables have been distributed with the 

database, only the image to be analysed (40 KB in the case of the images captured 

from CCTV cameras used in [20], for example) will need to be sent, plus a set of 

descriptive information (possibly less than 10 KB).

Since the network usage is reduced once the database is distributed (from 260 

MB to approximately 50 KB in the example above), a grid system protocol that does 

not add much usage of the network itself may help to improve the performance of 

the application.

6
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This kind of application also requires means to describe the minimal quality of 

service requirements that should be met by the providers, e.g. the amount of storage 

needed for the database.

There might be a situation where a new provider with high computational 

resources connects to the grid and the recognition processes are sent to the grid 

before this new device has had time to acquire the database. In this case, it might be 

better that a less powerful provider that already contains the database has priority in 

processing the jobs instead of the more powerful one. Considering this scenario, for 

optimization purposes, it may be simpler for the scheduling process if the providers 

themselves decide if they can process the jobs and are thus themselves candidates to 

do such processing.

2.1.2 Recommender System

A recommender system for a group of people should be able to retrieve the 

preferences of the participants in order to provide a good/accurate recommendation. 

Such information could be stored in a database in the internet, or they could be 

retrieved from mobile devices carried by the participants (e.g. mobile phones, 

tablets), which would, most likely, be running on battery power.

This kind of application requires that the grid system not only presents a 

scheduling and fault tolerance mechanisms, but also that techniques applied do not 

add unnecessary processing and communication to the mobile devices, since it will 

cause their batteries to drain more quickly.

Since mobile devices save power by sleeping, there is a definite penalty to 

polling the client. This way, solutions that avoid client polling are better.

The grid should simplify the registration of the devices in the grid, so that the 

registration does not require much communication and processing, to save battery on 

those devices running on it. For example, it is not necessary that the registering 

device should communicate with all the others in the grid, or find out about all the 

available services provided by other devices at register action time; it could be done 

on demand.

In the literature, there are some solutions for computing SVD in parallel, 

especially for environments with shared memory, like clusters, for example. Some 

solutions can be found for environments with distributed memory, but it is still an
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open research topic to find more efficient ways to solve the problem in such 

environments.

The computation of SVD in parallel basically consists in dividing the matrix into 

blocks and distribute the processing of these blocks. Most of the time is spent on 

running the sub-processes rather than communication -  for a r x r matrix block, the 

cost of data movement is 0(r2), while typically 0 (r3) operations are performed using 

the data [21].

In the case of recommender systems for TV, the matrix can become very large, 

since there are thousands of media contents that can be chosen, but it may not require 

much storage or bandwidth to transfer it (normally only the small blocks will need to 

be transmitted with the jobs). For example, the data set provided by the GroupLens 

Research Group containing 100000 ratings for 1682 movies by 943 users requires 

approximately 2MB of storage. The amount of storage may increase with more 

movies and users, but this database can be pre-distributed similar to the face 

recognition database presented in the previous section. Once a recommendation is 

required, only the preferences of the people involved in the decision making process, 

which can be considerably less than 2MB, especially if one of the user does not have 

many preferences yet. This poses the requirement for the grid protocol to minimize 

the network usage not to degrade the performance of the system.

Should a new solution for the recommendation or the SVD problem require the 

transfer of more data in order to get better results, the network usage by the grid 

protocols would probably becomes irrelevant.

2.1.3 Health Systems
Some health systems could be implemented following the example of the face 

recognition systems, where instances of the data to which the biological signs will be 

matched to are stored a priori in the resources that will process the task, so that the 

communication overhead by the application can be reduced.

Considering the previous statement, we can assume that the requirements of the 

health system applications are similar to the ones presented for the face recognition 

system, specially the one related to a fault tolerance mechanism, so that the 

application does not have to resubmit all the jobs and downgrade its performance.

3 GroupLens Research: http://www.grouplens.org/node/73
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Most of the biological signs (e.g. blood pressure, blood sugar, heartbeat, body 

temperature, body fat) may be collected and analysed continuously, and the size of 

the data is expected to be small and not require much bandwidth or storage, 

concentrating most of the time of the application on the computation of the tasks.

Another scenario for health systems is described in [22], where the biological 

signs are collected by wearable sensors and sent to a mobile device (e.g. mobile 

phone, PDA) for storage and display. This allows the biological signals to be 

collected even when the person is outside the home.

The mobile devices may then act as the consumer of the application, send the 

jobs to the grid and wait for the results. This brings the requirements for a grid 

protocol that does not require much communication from the consumers, since 

mobile devices may be running on battery.

2.2 Power Consumption

Since some of the devices may be running on battery power (e.g. the wearable 

sensors for the health applications, or mobile phones carrying preferences in the 

recommender system or submitting jobs to the grid), it is important to minimize 

processing and communication in such devices, so that their batteries do not become 

drained quickly. Some of these devices (e.g. sensors) may not be directly 

participating on the grid, but may use a proxy instead, in which case they may not be 

affected by any communication overhead generated by the grid protocols. However, 

other devices (e.g. mobile phones) that participate directly in the grid will be affected 

by the protocols if those devices are required to send, receive and process many 

messages.

In terms of power consumption, CPU/memory and wireless interfaces are 

responsible for a considerable part of it. For example, a Toshiba 410 CDT mobile 

computer demonstrates that nearly 36% of power consumed is by the display, 21% 

by the CPU/memory, 18% by the wireless interface, and 18% by the hard drive, as 

mentioned in [23],

Even though improvements in battery technology have been made, such 

improvements are not in the same speed/level as the ones for processing power and 

storage, and it is unlikely that a dramatic solution to the power problem is 

forthcoming [24],

9
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It is important to understand the power characteristics of mobile radio used in 

wireless devices in order to design efficient communication protocols.

A typical mobile radio may exist in three modes: transmit, receive, and standby. 

The transmit mode is the one with maximum power consumption, while the standby 

mode is the one with the minimum. For example, the Proxim RangeLAN2 2.4 GHz 

1.6 Mbps PCMCIA card requires 1.5 W in transmit, 0.75 W in receive, and 0.01 W 

in standby mode [23]. Power consumption for Lucent’s 15 dBm 2.4 GHz 2 Mbps 

Wavelan PCMCIA card is 1.82W in transmit mode, 1.80 W in receive mode, and 

0.18 W in standby mode. These facts should be taken into consideration when 

designing protocols that involve devices with limited power resources, such as the 

grid system proposed in this thesis.

In [25], we can find an analysis of the amount of energy used to transfer data 

using some wireless technologies: Bluetooth, WiFi (802.11) and GSM/EDGE. When 

considering Bluetooth, it was observed that for a fixed data production rate, 

increasing the sniff interval causes a proportionate decrease in power consumption; 

however, for a fixed sniff interval, decreasing data production rate does not cause a 

considerable decrease in power consumption. As for WiFi, it demands high energy 

for the wakeup and connection maintenance, while low energy is required per bit 

transmission and high bandwidth. For the cellular technology (GSM/EDGE), low 

energy is required for connection maintenance, but high energy is needed per bit 

transmission and low bandwidth.

In Figure 1 (extracted from [26]), we can see how the power consumption varies 

with the type of technology and the bit-rate used in the network card for the 

smartphone Nokia N95. The results show that the higher the bit-rate used, the more 

energy efficient the data transfer is. We can also see that the 3G technology is more 

sensitive to the change in the bit-rate ratio.

In the home environment, there could be devices connected using a variety of 

technologies, and the grid should be generic enough to work with any topology and 

independent of the technologies in order to simplify its deployment and usage.

Network costs related to power consumption can be classified in two types [23]: 

communication related and computation related.

10
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kB.'s

Figure 1 - Energy per bit for Nokia N95 WLAN and 3G.

Communication involves activities in the source (transmitter) and in the 

destination nodes. In some cases, e.g. ad hoc networks, there is also the cost of being 

an intermediate. The activities in the transmitter include sending control, route 

request and response, and data packets (originating at the node itself or routed 

through it). The receiver is used to receive data and control packets (some of which 

are destined for the receiving node and some of which are forwarded).

The computation aspects are mainly related with protocol processing, including 

CPU, main memory, disk and other components usage.

There are some tradeoffs between computation and communication costs. A 

technique that attempts to lower communication costs may increase the computation 

ones, and vice-versa. For example, data compression techniques, which reduce 

packet length (and hence energy usage), may result in increased power consumption 

due to increased computation. A grid system for the environment envisaged in this 

thesis should try to find a balance between these two costs.

2.3 The Home Environment

This section presents characteristics of the home environment in terms of devices 

that can be found in such environment and how they can be set to communicate with 

each other.

2.3.1 Devices

Designing a Computational Grid for the home environment imposes some 

difficulties, mainly regarding the discovery and scheduling services, as we can find a
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number of different devices that can form part of the grid, and all with different 

capabilities, especially related to the technologies that allow them to communicate 

with each other.

In this section, we are going to describe some of these devices, indicating how 

they can be part of the Grid (as a resource provider or a consumer) and pointing out 

some possible architectures to group them when building the Grid system.

The first group of devices we can think of when talking about designing such a 

domestic grid system is the one composed of desktop computers and laptops, which 

were owned by over 70% (seventy percent) of households in the United Kingdom in 

2008, according to [27], This number is expected to keep rising, at the same time that 

the number of computers per house is also expected to increase. The other good 

reason for including these devices in the domestic grid is the fact that they are 

equipped with good processing, storage and communication capabilities, that can be 

shared with others devices that lack such good resources.

Another group of devices that can contribute to the grid, by providing relatively 

good processing power and, eventually, storage capacity, is the new generation of 

game consoles (e.g. Sony PlayStation, Nintendo Wii, Microsoft X box). They are 

also supplied with good communication potential to enable multiplayer games 

through a network (online). The usage of these devices has also increased, and is 

being incorporated in the home media centres of many families in the United States 

[28],

With the actual popularity of interactive digital television, we can now find 

another device that can be part of the proposed grid system: the Set-Top Box (STB). 

The main duty of a STB is audio and video processing, but they are also capable of 

running applications. Since it is not a general purpose device, the STB generally has 

limited processing power and storage, and some may not have any way of 

communicating with other devices. Nevertheless, these devices have been evolving 

very fast and it is already possible to find STBs with a large amount of disk space (to 

store media content) and better processors (not very fast though). The growth of 

interactive services via the Internet and the development of IPTV (TV transmitted 

via the Internet Protocol) have forced the introduction of a communication medium 

in the STBs, usually a V.90 modem or an Ethernet card, which facilitates the 

inclusion of these devices in the home grid.
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Any STB with communication capabilities can be part of the grid, sharing 

available processing power (especially when not decoding audio and video) and also 

making use of the resources shared by the other devices in the grid (for example, 

when executing a recommender system using techniques that are computationally 

heavy, e.g. SVD). The extra storage that can be found in some STBs can also be 

employed in the case of developing a data grid.

Similar to STBs, we can also find other limited devices in the home environment 

that are not able to contribute to the grid with processing power, but can make use of 

it, and this is the main reason for building the domestic grid, so novel applications 

can be created for such devices. Mobile phones and Personal Digital Assistants 

(PDAs) are examples of such devices. However, the latest models of these devices 

have shown great improvements in terms of processing power and communication 

(many of them presenting more than one alternative for this: GPRS, 802.11, 

Bluetooth and Infra-red), which could also be used to process some jobs sent by grid 

applications. The main drawback of them is the use of batteries, that can be drained 

very fast when executing such jobs or using certain technologies for exchanging data 

(using 802.11 consumes more battery than using GPRS, for example).

If we assume that, in the home environment, these devices can also be found 

plugged into an electricity power source, and they can be very useful to increase the 

capabilities of the grid system, not just as consumers, especially for the new models 

to come. Note that not all phones or PDAs in the grid will have the capabilities to run 

jobs, and they may be running on battery power, a fact that should be taken into 

consideration for the grid protocol. These devices can be configured to run 

exclusively as consumers, and discard messages that are not meant for consumers (it 

is preferable for the devices to do a small amount of processing and identify that the 

message should be discarded, rather than trying to process the whole message that is 

not going to lead to any real contribution to the grid).

Sensors are another example of devices that may also be limited by the use of 

batteries, but in this case, they are also very limited in processing power, storage and 

communication, which makes them mainly consumers of the grid resources. There 

may be cases where sensors will not take part in the grid, but only feed data to 

another device that is participating in the grid.

Because of such limitations, we have the requirement for an efficient discovery 

and scheduling system that can reduce network throughput required between devices
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and the processing required by these activities (discovering and scheduling) and, 

therefore, take more advantage of the available resources.

There are other devices commonly found in homes that are, at present, generally 

incapable of processing information, not even to store or transmit/receive it. 

Examples of such devices are refrigerators, freezers and microwaves. In a near 

future, it is expected that this kind of equipment will have some extra capabilities 

and be able to process information and, consequently, take part in the grid, acting as 

a consumer or even as resource provider.

As some of them are always plugged into an electricity source (and thus most 

likely to be available in the grid), it would be interesting to provide such devices 

with more processing power, or even storage capacity, so that we could use them to 

provide persistent services and so make better use of electricity.

Other devices like printers, scanners, cameras and TV sets, for example, would 

be helpful for input and output of information. If these devices acquire other kinds of 

resources, they can also be made available in the grid.

Considering the devices mentioned above, we can see that a grid system for the 

home environment is already possible, and can be a great incentive for the 

development of novel applications for the limited devices present in the house. In the 

near future, we expect new devices to be able to add value to this grid.

2.3.2 Communication Aspects

Here we introduce the different ways of grouping the devices that we are 

considering, aiming to find those that could produce good results.

The first model to be considered consists of letting one of the devices be 

responsible for receiving requests from all the other devices, scheduling the jobs and 

coordinating them. This central point is also required to keep a database with the 

information about resources and services available in the grid. Figure 2 shows this 

centralized model.
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Devices

Links between devices

Coord inator

Figure 2 - Centralized Model

This model requires a device to be always on, so the others can interact with it to 

make use of the grid infrastructure. This model introduces a single point of failure 

that can compromise the whole system. Nevertheless, this kind of model benefits 

limited devices, freeing them from additional processing and communication, since 

the central device does most of the processing.

The grid scheduling system must be efficient in order not to overload the central 

device in order to provide good performance and to allow this device to contribute to 

the grid with processing power, if it is not limited and has enough capabilities to do 

so. It also should be designed in a way that it does not require too much 

communication from the limited battery-operated devices that send jobs to the grid.

An alternative to the centralized model is the decentralized model, where all 

devices communicate with each other (see Figure 3), sharing the responsibility for 

finding resources, scheduling and coordinating jobs.

Devices

Links between devices

Figure 3 - Decentralized Model

The first advantage of adopting a decentralized model is the exclusion of the 

single point of failure, found in the centralized model, since it does not have to rely 

on a single node to coordinate the whole system.

The distribution of coordination tasks between all devices might not be the most 

appropriate for a home grid for the applications mentioned earlier in this chapter. 

Depending on the algorithms and techniques used to perform such tasks, this model
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would be the best option for applications that would not involve very limited 

devices.

As an attempt to avoid this unnecessary processing in the limited devices, 

especially those that act only as resource consumers, devices can be grouped in a 

hierarchical model, where some of them interact with the core of the grid via another 

device, with better resources, acting as a gateway. Figure 4 shows a hierarchical 

centralized model in which the core of the grid is organized as a centralized model 

and some devices communicate with the grid via devices in the core. Some of the 

devices may also be organized into a sub-network (e.g. a sensor network) that also 

communicates to the main grid via a gateway.

A grid that follows a hierarchical centralized model would require an efficient 

fault tolerance mechanism, because, despite its benefit, this kind of model adds 

another point for failure: the gateway. Failure in this component may prevent devices 

from accessing the grid, unless these devices can adapt to use another gateway for 

this communication.

Network

Devices

Links between devices 

C oordinator

G ate ways

Figure 4 - Hierarchical Centralized Model

The Hierarchical Decentralized Model (see Figure 5) is very similar to the 

previous model, except that it has the advantage of eliminating one of the points of 

failure: the central device. It also presents the gateways as possible points of failure, 

which can be solved with an adaptive mechanism, as mentioned before.

All the models have their own pros and cons, and it is difficult to say which 

one is the best. It will depend on the chosen information services (discovery, 

scheduler and coordination), i.e. on the technologies and algorithms they adopt, and
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also on the type of applications and devices that are targeted to benefit from the 

system.

It is difficult to define a fixed topology for the home grid, since it will depend on 

the devices available in each house. In any case, we need to specify a good fault 

tolerance model that defines what behaviours the devices in the grid must follow if 

the system fails or becomes disconnected (whether planned or not).

If we cannot find equipment which is connected to the home grid most of the 

time, other mechanisms that suit the current topology must be defined for the 

management of the grid. Since the topology of the home network may change very 

often with devices connecting and disconnecting, the grid must be able to adapt itself 

to the new topologies, taking into account the limitation of the devices, avoiding 

unnecessary processing during the adaptation process.

We will return to this categorization when discussing the selection of scheduling 

mechanisms in Chapter 4.

2.4 Zeroconf and Universal Plug-And-Play (UPnP)

The configuration of network devices seamlessly and without any user 

intervention is a principle of the Zeroconf4 and the UPnP5 techniques. They provide 

mechanisms for devices to register themselves in the network and get their own IP 

address.

Links between devices 

^  Gateways

Network

Devices

Figure 5 - Hierarchical Decentralized Model

4 http://www.zeroconf.org
5 httir/Avww.upnp.org
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The Zeroconf is a protocol that defines an IP network without any manual 

configuration. The network is built by using three main tasks: The first one manages 

the numeric network addresses for the connected devices; the second one handles the 

host names for the devices; and the third one publishes and searches services for the 

devices. Probably the most known implementation of Zeroconf is Apple’s Bonjour, 

which is proprietary. The Avahi is a free software implementation of the Zeroconf.

The UPnP consists of six layers, which are addressing, discovering, description, 

controlling, eventing and presentation (where only the first three layers are 

compulsory). The addressing layer is the same as in the Zeroconf and is responsible 

for assigning an IP address to the device.

UPnP was created to facilitate networking in the home and corporate 

environments, and it defines protocols for devices to join a network, use and publish 

services using other protocols such as HTTP, TCP/IP, XML and SOAP (for the 

service requests).

Many manufacturers of technological devices (e.g. printers, computer, TVs) have 

been adding support for UPnP in their products, but UPnP is based on a more 

complex configuration. However, there are some research projects (e.g. [29] and 

[30]) that propose some alternatives to incorporate devices such as sensors into an 

UPnP network.

If the home network is composed of devices that support UPnP or Zeroconf, it 

makes sense to use the existing infrastructure for the registration in the grid system. 

In this thesis, we do not assume that all devices support these technologies, so we 

propose our own simple registration mechanism, which can be later adapted to use 

any existing protocol in the future.

2.5 Requirem ents

Based on the applications described in this chapter, we have the following 

summary of the requirements for a home grid scheduling protocol:

A. Communication costs:

1. Low communication overhead for consumers;

2. Avoid client polling.

B. Computational costs:

1. Keep the processing in consumer devices to a minimum.

C. Failure properties:
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1. Recover from a faulty state without having to rerun all the jobs (this 

should take into considerations the communication and computational 

costs requirements above).

D. Configuration management:

1. Simple registration mechanism;

2. Handle independent jobs;

3. Provide means to describe minimal QoS requirements for the jobs.

In Chapter 3 and Chapter 4, we refer back to these requirements when we present 

a decision that satisfies them.

2.6Final Considerations

In this chapter, we have presented some applications that can run in the home 

environment and make use of a grid system to improve their performance.

Even though the requirements that those applications impose to the grid system 

are not exactly the same, they have many similarities, and this thesis provides a 

solution that is generic enough to support those applications and that could be used 

by future applications as well.

One can argue that it is easier to simply buy a powerful computer and leave it on 

to execute these applications. That would be the case if we have a critical health 

application that would need a very reliable set of resources. However, it may be 

financially more difficult for some homeowner to acquire resources that are more 

powerful and it would be better to have the grid to make better use of the existing 

processing power.
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3 Grid Computing

3.1 Introduction

Considering the under-used computational power available in the home 

environment (computers, game consoles, PDAs, etc.), it is possible to envisage the 

creation of a domestic computational grid structure. Grid computing [12, 31, 32] 

basically consists of sharing resources in a flexible, secure and coordinated way. 

These resources can be storage and processing power, or even specialized facilities 

such as a TV screen, for example. Some policies and quality of service parameters 

must be defined to determinate when and how a resource can be used in the grid.

The following description of grid computing is based on a survey of grid 

technologies [31],

From the point of view of the user, we can find different types of services that 

can be provided by a grid:

• Computational services: are secure services that allow the execution of 

application jobs by distributed computational resources. Grids providing 

these services are commonly known as Computational Grids, and are the 

kind of grids that this research concentrates on.

• Data services: provide access and management of distributed datasets.

• Application services: permit the application management and provide access 

to remote software and libraries transparently for the user.

• Information services: these services are related to the extraction and 

presentation of data acquired by using grid services (computational, data 

and/or application);

• Knowledge services: services concerning the acquisition, use, retrieval, 

publishing and maintainability of knowledge to assist the users in achieving 

their objectives.

Building a Grid requires the development of a number of services, which include 

security, information, directory, resource allocation and payment mechanisms [31, 

32], Some services for application development, execution management, resource 

aggregation and scheduling are also required.
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Barker et al. [31] identifies that the main characteristics of a Grid are:

• Multiple administrative domains and autonomy: the resources may be 

distributed in multiple administrative domains and each resource’s owner has 

the autonomy to manage it.

• Heterogeneity: the resources can be based on a great variety of technologies.

• Scalability: a grid may be composed of a few integrated devices or of 

millions.

• Dynamicity or adaptability: as the possibility of failures is high in a Grid, 

because of the large number of resources that can be present, the resource 

manager or applications must adapt to use the available resources and 

services efficiently and effectively.

The main components of a Grid are: (i) Grid fabric, representing all the available 

resources (operating systems, libraries, protocols, computers, networks, etc.); (ii) 

Core Grid middleware, which refers to the core services of the Grid (security, 

discovery, storage access, QoS aspects such as resource reservation and trading, 

etc.); (iii) User-level Grid middleware, including the services to support application 

development, execution management, resource aggregation and scheduling; and (iv) 

Grid applications and portals, which consist of the applications that run in the Grid 

environment.

Computational Grids were designed for applications that are expensive 

computationally. According to Vraalsen et al. [33], an application is suitable for grid 

environments if it has a high ratio between computation and communication, which 

has complexity at least of the order of 0(n2). Since SVD has complexity in the order 

of 0((m + n)3) [6, 34] (where m and n are the number of rows and columns of the 

matrix, respectively), it can be seen as a potential application to run in a grid.

Nowadays, we can also see computational grids as a mean to extend the 

capabilities of limited devices and help them perform complex applications such as 

the ones mentioned in the Chapter 2.

There are plenty of efforts in developing Grid infrastructures, as presented in 

[31], but most of them are not suitable for limited devices in terms of processing, 

bandwidth and storage.
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From the initiatives presented in Table 1 (which compiles some of the most well 

known conventional grid technologies), Globus [35] is possibly the most used 

technology by the grid community, also described in [36] as the de facto standard in 

the Grid computing community. Globus provides generic services to address issues 

such as security, resource discovery, resource management and data movement; and 

these services are often used for the development of new services inside the grid. For 

example, many grid schedulers (also referred to in the literature as meta-schedulers) 

make use of the Grid Security Infrastructure (GSI) provided with the Globus Toolkit 

(GT). Globus itself does not provide a grid scheduler.

Table 1 - Examples of Grid efforts

Initiative Focus and technologies developed Category

Globus

Basic software infrastructure for computations that integrate 

geographically distributed computational and information resources

-  www.alobus.ore.

Core

Middleware 

and Toolkit

Legion

Supports transparent scheduling, data management, fault tolerance, 
site autonomy and a wide range of security options -

leaion.virainia.edu

Core

Middleware 

and Toolkit

AppLeS
Application-specific approach to schedule individual parallel 

applications -  apples.ucsd.edu
Grid Scheduler

Harness

Builds on the concept of virtual machine and explores dynamic 

capabilities. Focuses on parallel plug-ins, P2P distributed control 
and multiple virtual machines -  www.epm.oml.aov/harness

Programming 

environment 

and runtime 

system

WebFlow

An extension of the Web model that can act as a framework for 

wide-area distributed computing -
www. n pac. svr. edu/users/haupt/W ebFl o w/demo. html

Application 

runtime system

GrADS
An adaptive programming and routine environment -

hioersoft.cs.rice.edu/erads

User-level

middleware

JXTA
Provides core infrastructure that is essential for creating P2P 

computing services and applications -  www.ixta.ora

Core

middleware

Another Globus service used by grid schedulers is the Grid Resource Allocation 

and Management (GRAM), responsible for coordinating the jobs (submitting, 

monitoring and controlling). If an application does not need state management, 

executing only input and output data, GRAM may not be appropriate, since it may
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delay the response of the application. In this case, it is recommended that the 

possibility of developing an application-specific service should be considered.

It is important to point out that GRAM is not a resource scheduler, but an engine 

that can communicate with local resource schedulers via a standard message format. 

GT already provides interface implementation to some resource schedulers like the 

Condor and Portable Batch System (PBS) schedulers, for example. By default, 

GRAM uses a “fork scheduler”, i.e. it just sends a new process to be held by the 

operating system.

Similar to Globus, Legion [37-39] also provides an infrastructure based on 

objects for resource sharing in a grid. It has an object called the Enactor, which is 

responsible for the execution of the tasks once they are scheduled. The Enactor also 

allows resource reservation. Legion also supports the addition of new scheduler 

objects, but, in contrast to Globus, Legion provides a default scheduler, which is 

very simple and schedules jobs randomly without considering any QoS issue such as 

load, CPU power or bandwidth. Chapin et al. [38] presents an improved version of 

the default random scheduler for independent tasks. Both scheduling solutions 

involve querying a Collection object for available resources. The Collection object 

contains the information about all the resources registered in the grid.

According to the “Lessons Learned” section in [39], the flexibility added with 

the separation of the scheduler and the Enactor objects was never used, because 

complex scheduling techniques that require reservation are useful only for a small set 

of applications.

An important grid initiative that is not present in Table 1 is OSGA [40], a 

service-oriented architecture that standardizes core functionalities and behaviours of 

grid system. The standards include security aspects such as identification, 

authentication and access control policies; it also covers the discovery of services, 

description of jobs and the management of their lifecycle, including exception 

handling.

The OSGA standards are based on web services specifications (e.g. WSRF, 

WSDL, UDDI, etc.). In fact, the newest versions of GT are implementations of 

OSGA.

These technologies require a big infrastructure of powerful devices to run the 

grid without suffering with performance issues. In our case study of a home grid, we 

assume that such an infrastructure does not exist and it is difficult to guarantee
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resources to run components such as the Collection, in Legion, or the GRAM or GSI 

in Globus. Our distributed scheduling solution does not require such an infrastructure 

and does not require devices to know about each other, and still provides good 

performance and fault tolerance.

The next section presents a brief overview on computational grid solutions for 

limited devices.

3.2Computational Grid for Limited Devices

Some work has also been developed in terms of grids for limited devices, as in 

[10, 11, 13, 41-44], Most of these papers focus on allowing limited devices to use 

existing powerful grid infrastructures, which has a different scope from this thesis. 

The closest work to that presented here is [13], where a grid with home devices 

(called embedded-Grid or e-Grid) is presented. The main objective of the grid in [13] 

is to export the power of embedded devices in the home to an external grid, with a 

powerful device (usually a PC) acting as a gateway that communicates with the 

external grid server and manages the embedded devices.

In the e-Grid, the gateway is also responsible for deciding if a certain embedded 

device can participate on the grid and receive jobs to be processed. This is done by 

checking if the overall performance gain from all devices together is greater than the 

overhead of monitoring activities and communication latencies. For this purpose, the 

gateway computes a degradation factor for the addition of a new device, and based 

on this factor it is decided whether the new device can be part of the grid or not.

Generally, the external grid server generates all the workload for the e-Grid. In 

this thesis, we are mainly interested in a workload generated by the limited devices 

in the house, and we expect a device with low capabilities to act as the central 

device, instead of a powerful device as in e-Grid.

Ahuja et al. [10] presents a survey of grid technologies for devices in wireless 

networks (Wireless Grid), and groups them in three categories: (i) Sensor Networks 

and Grids, (ii) Fixed Wireless Grids and (iii) Mobile Wireless Grids. Research has 

been done in terms of grids for sensor networks and mobile wireless grids, which can 

bring ubiquity to the grid.

In this thesis, we are interested in developing a computational grid in the home 

environment, which can have characteristics from the three categories of wireless 

grid mentioned above: a house may have sensors to identify presence of someone or
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to check temperature or for smoke, for example [category (i)]; people have been 

adopting fixed wireless networks at home for connecting to the Internet though a 

wireless router, and the connected devices inside the house are expected to be part of 

a local network [category (ii)]; a person may want to use his/her grid at home from 

the mobile phone, for example, while he/she is away from home [category (iii)]. In 

this domestic grid, we can also find devices connected via a wired network.

3.3 Scheduling

Scheduling is a very important factor in computational grids in order to allow 

them to provide good performance results. In particular, scheduling can be the 

mechanism for maximizing the resources available to end users and to exploit idle 

resources [45].

Although several efforts have concentrated on developing scheduling systems, 

most of these systems schedule jobs within a single machine or across clusters of 

homogeneous machines.

In the context of grids, single machines and clusters represent resources that can 

be used to process jobs, and they possess their own local scheduler. Thus, we can 

identify the need for higher-level schedulers that can have a general view of the 

resources and are able to communicate with their local schedulers in order to send 

jobs to them. These higher-level schedulers are commonly referred in the literature 

as meta-schedulers and they are responsible for handling the heterogeneity of grid 

environments. In this thesis, the terms scheduler and meta-scheduler are used 

interchangeably, referring to the same component.

Figure 6 (extracted from [45]) shows an example of the interaction between a 

meta-scheduler (usually a centralized component) with local schedulers in 

conventional grids running through the Internet.

A meta-scheduler is usually responsible for managing the access to resources and 

the load balance between them.

According to Adzigogov et al. [45], meta-scheduling is composed of three 

stages: Resource Discovery, System Selection and Job Execution. Each stage 

contains sub-stages, but meta-schedulers are not obliged to have all of them.
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Figure 6 - Interaction between meta-scheduler and local schedulers.

3.3.1 Resource Discovery
It is during the resource discovery phase that the scheduler defines a list of 

resources that can run a certain job. Resource discovery includes three sub-phases:

- Authorization Filtering: at this stage, the resources are selected based on the 

privileges of the job owner. If the owner has no authorization to run a job 

using a certain resource, that resource is not considered to run the job.

- Application Definition: this is where the requirements for the job are 

specified in terms of minimum CPU power, storage, memory, etc. Some 

smart compilers or other tools have been used [45] in order to provide a more 

accurate and complete definition of these requirements.

Minimum Requirements Definition: this sub-stage uses the requirements 

defined in the previous sub-stage in order to find the most capable resources 

for running the job. It is usually combined with the steps of the system 

selection stage.

3.3.2 System Selection

Once the set of candidate resources is defined, one of them must be selected to 

run the job. This selection happens during this stage and is performed in two steps:

- Information Gathering: here is where the meta-scheduler gathers information 

about the resources in order to find those that match with the job
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requirements. This is usually done by sending queries to a centralized service 

that maintain information about all the resources in the grid, like the Monitor 

and Discovery Service (MDS) from the Globus Toolkit, for example.

System Selection: this stage is where the final decision about which resource 

is going to run the job is made. This decision can be random, or based on the 

information gathered (e.g. host’s load and memory), on estimated 

information (e.g., job execution time) or on some optimization criteria (e.g., 

minimizing the execution time or fragmentation of resources) [45], Once the 

selection is complete, the meta-scheduler starts preparing the job to be 

submitted to the chosen resource. Section 2.3.4 presents a discussion about 

the algorithms for the selection of the resources.

3.3.3 Job Execution
Once the matchmaking process is complete, it is time to run the job. This can be 

done using the following steps:

- Advance Reservation: reservation of a resource is only possible if supported 

by the local scheduler, since it is the only one with control over the resource. 

Reservation can be very useful in cases where a required resource is most 

likely to be very busy all the time, or when it is required for future usage like 

a demonstration, for example.

- Job Submission', this is the stage where the job is sent to the selected 

resource’s local scheduler for execution.

- Preparation Tasks: in this step, the binary executable job and the required 

input and output data are moved to the designated places.

Monitoring Progress', this is the stage where the running time of the jobs is 

verified; depending on the application, if the job is taking too long to run, it 

may be rescheduled, which can be significantly costly on grid systems.

- Job Completion', at this step, the job’s owner (consumer) is notified of the job 

completion. Moreover, this step can be very difficult to perform because of 

the high probability of failures in the grid. Ensuring job completion 

notification is an open research topic.

Cleanup Tasks: this step consists of the removal of any temporary local 

settings that have been defined for the job execution. It also includes any
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communication with the resource in order to gather information for data 

analysis regarding the execution of the job. The cleanup process is also 

executed on the hosts for the binary, input and output data.

In the next section, we describe some scheduling algorithms, applied in both 

grids and other distributed systems.

3.3.4 Scheduling Algorithms

Dong and Akl [36] and Krauter et al. [46] present taxonomies and surveys on 

scheduling; they also present open issues regarding grid scheduling. Krauter [46] 

focuses on classifying grid scheduling systems according to the taxonomy it 

proposes, without mentioning the algorithms used internally by those systems. Dong 

and Akl [36] focuses on the scheduling algorithms and approaches used by 

distributed system, specially computational grids.

Figure 7 shows the taxonomy of grid schedulers based on the dependency of the 

tasks proposed by Dong and Akl [36],
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Figure 7 - Task dependency taxonomy of Grid scheduling algorithms.

According with this taxonomy, we have two main categories of schedulers when 

considering the task dependency: those that deal with independent tasks and those 

with dependent ones (according to the requirement D.2 in section 2.5, home grids 

need to be able to process independent jobs).

Improvements to the grid infrastructure have allowed better support to dependent 

tasks by the schedulers [36], and they usually use directed acyclic graphs (DAGs) to
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model the jobs, where the vertices represent the jobs and the edges represent the 

precedence between jobs. Most of the systems in this category use static 

mechanisms, which does not deal well with the dynamic change of the resources in 

the grid (which does not comply with the requirement C. 1 in section 2.5).

For grid schedulers that attempt to optimize the performance of a particular 

application (e.g. AppLeS [47]), many static heuristic algorithms can be used (e.g. 

Min-Min, Max-Min, XSuffrage, MET, MCT -  more detail about these algorithms 

can be found in [36, 48, 49]). Such algorithms usually use predicted performance of 

the resources in order to allocate the tasks. In highly heterogeneous and dynamic 

environments such as the home environment, the performance of these algorithms is 

less effective, since the static prediction may not reflect the grid current state when 

the tasks are sent for processing.

Silva et al. [50] presents a static solution for scheduling independent jobs without 

performance predictions and based on replication, where tasks are scheduled to more 

than one resource in order to improve the performance. This solution works fine on 

environments where resources are abundant, which is not the case of home 

environments.

Dynamic schedulers are suitable for scenarios where it is difficult to estimate the 

cost of applications or when jobs arrive dynamically at the scheduler. Condor [51] 

and Legion are examples of systems that use dynamic scheduling, but they both 

require an infrastructure that cannot be guaranteed in the home environment, in order 

to get information about the state of the resources.

Dynamic schedulers often make use of load balancing techniques to improve the 

performance. The four basic approaches to achieve dynamic load balance are [36]:

• Unconstrained FIFO (First-In-First-Out): also known as Optimistic Load 

Balance (OLB) [48], this approach attempts to keep the balance by 

assigning the jobs to the next available resource. If more than one 

resource is available at the same time, one of them is chosen arbitrarily. 

OLB is one of the easiest grid schedulers [52], but it does not provide 

optimal results;

• Balance-constrained: this approach assumes that resources receive more 

than one task, and attempts to rebalance the loads on all resources by 

periodically shifting waiting tasks from one waiting queue to another. It
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can be very costly in terms of communication, requiring adaptive 

rebalancing heuristics to improve scalability and performance;

• Cost-constrained: this approach is an improved balance-constrained 

approach. It considers the communication costs in order to decide if a job 

should be moved from one resource to another;

• Hybrid: this approach mixes static and dynamic scheduling, by applying 

static scheduling to scenarios where the tasks are certain to be executed, 

and dynamic to the others.

3.4 Fault Tolerance

In this section, we give an introduction about fault tolerance and describe how it 

is addressed in grid systems. Fault tolerance is one of the requirements identified in 

section 2.5 (C.l).

3.4.1 Introduction to Fault Tolerance
Stand-alone systems are prone to failures, and so are distributed systems like 

computational grids, for example. The difference is that in the case of distributed 

systems, a failure does not mean that the entire system suffers a breakdown, and it 

can continue working and recovery actions can take place on the affected parts of the 

system.

Fault tolerance, in the context of this thesis, is the capability of the system to run 

continuously and reliably execute jobs in spite of failures [53], and plays an 

important role in the success of distributed systems, including computational grids.

According to Jin et al. [54], failures in distributed computing systems can be 

divided into three categories:

a) Node crash: participants in the grid (nodes) may shutdown or stop 

working correctly for a number of reasons (e.g. hardware damage, battery 

drained, switched off by the user, etc.);

b) Network failure: a link between two nodes may stop working or the 

network can be overloaded, for example;

c) Process fault: tasks being processed may fail because of a bug in the 

code, or because it is allocated to run on a provider with inappropriate 

resources for the execution of the job (e.g. insufficient storage,
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incompatible operating system). Cases where tasks take too long to be 

completed because the provider’s CPU is highly loaded also fall in this 

category.

Although there are various techniques that can be used for detecting and 

correcting faults in distributed systems [54, 55], many of the current grids have one 

or more components that are not fault-tolerant [56],

3.4.2 Techniques for building fault tolerant systems

The main techniques for building fault tolerant systems are:

• Timeouts [54, 57]: network timeouts can be used to detect node crashes 

and network failures (although they cannot distinguish the type of crash); 

consumers and brokers can determine timeouts for task completion in 

order to find process faults (but it cannot determine if a bug happened or 

if the provider is overloaded, for example);

• Unreliable Fault Detection (UFD) [54, 55, 57, 58]: the most general of 

the available techniques, this consists of having all components sending 

“/  am alive” messages to each other. If after a certain period a component 

Cl does not receive a message from C2, Cl then adds C2 to its 

“suspicious” queue, which stores all the components that Cl “thinks” 

may have crashed. Since it is difficult to determine if C2 really crashed 

or, if it is just too slow, the method allows Cl to make mistakes about the 

status of C2, thus the name of the mechanism. When Cl receives the 

message from C2, Cl updates its own “suspicious” queue by removing 

C2 from it and increases the time to wait for the messages from C2. The 

UFD algorithm presented in [55] assumes the use of Reliable Broadcast, 

where all broadcast messages sent by correct processes are guaranteed to 

be delivered, which increases the overhead on the communication; this is 

different from our proposed mechanism, which can be implemented with 

UDP broadcast;

• Replication [56-58]: this technique consists of making replicas of a 

service (e.g. scheduler and replication server) or running a process in 

more than one server, so that if one of them crashes, the other can be used

31



Chapter 3. Grid Computing

instead, keeping the systems working normally. An example of the use of 

replication is a grid system where a consumer/broker sends two different 

versions of a task (one that is more efficient with some resources, and 

another that works better on others, for example) to the grid, and stops the 

execution of one of them after receiving the result from the other. Data 

replication can also be used in grid systems, so that the resource selected 

to execute a task can get the required data from the nearest position.

• Transactions [56, 57, 59]: considering a group of activities to be 

executed, the system has the ability to rollback to the state before the start 

of the execution of the group, in the case of some failure of one of the 

activities;

• Retrial [57, 58]: this technique consists of restarting the process from 

scratch once a crash is identified;

• Checkpoints [57-60]: during the execution of a task, checkpoints are sent 

periodically to another server, so the task execution can be resumed if the 

previous provider executing it crashes. This technique is very useful 

when there are long tasks being sent to the grid, where restarting it from 

scratch in case of failure could degrade the performance. Some systems 

may assume that the checkpoint server will never fail, while other may 

apply replication of this server.

The choice of what technique to use depends on many factors such as the 

objectives of the system, implementation issues, target applications and computing 

infrastructure [58]. For this reason, different grid systems adopt different solutions. 

The following sections present the support for fault tolerance that some systems 

provide, starting with Globus GRAM, which is extensively used by other systems.

3.4.3 Fault Tolerance in Grid Systems

Hwang and Kesselman [57] describe the Globus GRAM protocol as being too 

generic, since it was designed to be used by any meta-scheduler system, which 

would make the support of fault tolerance more difficult. Although GRAM provides 

mechanisms to monitor the status of the nodes, and to attest whether the node is still 

active or not, GRAM cannot detect if a certain job has been completed or failed. For
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this reason, grid applications that rely on GRAM for tasks execution (e.g. Condor-G, 

CoG Kit, Nimrod-G, Ninf-G), often ignore fault-tolerance, or end up creating their 

own mechanisms, which usually cannot be reused.

Because of this lack of a fault recovery system in Globus GRAM, Hwang and 

Kesselman [57] present a general framework for fault tolerance. It consists of a 

failure detection service (FDS) and a failure handling framework (called Grid-WFS). 

With the FDS, it is possible to identify both application crashes and user-defined 

exceptions by using a specific notification mechanism. Usually, grid systems do not 

provide any support for user-defined exceptions. With Grid-WFS, the user can 

specify a policy for how to recover the operation from a crash (e.g. “retries at most 3 

times” or “replicate the operation at hosts X and Y”). Grid-WFS uses the concept of 

workflows to achieve its generic failure handling mechanism and to separate it from 

the application code.

Most grid systems use timeouts or UFD in order to detect failures, so they can 

usually only identify host crashes or network failures. However, distributed systems 

like NetSolve [61], DOME [62] and PVM [63] use some system-specific polling, 

notification or generic heartbeat mechanisms, similarly to FDS, to allow the 

identification of a failure in the application.

Once a failure is detected, fault-tolerant systems must take some action in order 

to deal with the crash and keep the system working. Condor [51] provides fault- 

tolerance by using checkpoints, where applications can use the Condor Checkpoint 

Library. The Condor system assumes the existence of a reliable checkpoint server to 

store all checkpoints. The main limitation of Condor is that its checkpoint library is 

restricted to some platforms. In contrast to Condor, Condor-G [51, 64] uses retrial on 

the same machine.

The MAG system [58] providers a portable checkpoint mechanism by using Java 

technology. MAG also supports the use of replication as an alternative to provide 

fault tolerance.

The fault handling mechanism adopted by OurGrid [65] system is replication. 

OurGrid also offers an infrastructure to manage checkpoints by using third party 

components (e.g. the Condor checkpoint library).

NetSolve uses retrial in the first available machine to handle faults [66],

GridTS [56, 59] relies on a tuple space (TS) to work, therefore it specifies the 

replication of the TS in different machines, so if the current TS fails, its replica is
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used instead. To avoid an inconsistent state of the TS in the case where a broker or 

resource crashes, GridTS uses transactions. Finally, GridTS supports the use of 

checkpoints to allow tasks to resume their execution in other devices in case of 

failure of the original resource processing them.

Another grid framework that uses TS is presented in [67], but differs from 

GridTS, in that no fault handling mechanism is specified.

Because, in conventional grids, tasks usually take a long time to be executed, 

checkpointing appears to be a good choice to improve the performance of the 

system, and has been supported by most of the fault-tolerant grid systems. The use of 

checkpoints and replications assumes the existence of a reliable infrastructure in 

order to keep the good performance that these techniques can provide. This kind of 

infrastructure can easily be found in conventional grids, but is not the case in the 

home environment that we are assuming for our grid system. In the next chapter, we 

introduce the fault detection and handling mechanisms adopted for our system.

3.4.4 Network Partition

Network partition is a phenomenon where a computer network splits, usually as a 

result of an error, into more than one sub-network that continues to work 

independently [68, 69], Figure 8 illustrates the partition of a network A into sub­

networks A’ and A” .

Figure 8 - Example of a network partition.

After the partition, devices in A’ can only communicate with the others in A’, 

losing their communication with those devices in A” . This kind of situation may 

generate inconsistencies between servers that are now in different sub-networks.

When replicated services such as the scheduler or checkpoint server, for 

example, end up in separate sub-networks, the grid system should guarantee the
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consistency of the services/servers when the partitions merge again, which can be a 

very difficult task.

To avoid this problem, grid systems usually assume that the core services/servers 

are located inside a fault-tolerant network topology that provides reliable broadcast 

and devices are connected to the network via at least two interfaces, which could 

avoid the partition of the network. Jin et al. [54] specifies that a fault-tolerant 

network topology is a requirement for robust grid systems. Perhaps this is the reason 

why the partition of networks is not usually addressed in research papers about grids.

Out of all the research papers about grids that have been studied for this thesis, 

only [70] mentions network partition as a potential problem, and it uses a majority 

consensus protocol in order to ensure that only one core of the system exists when a 

partition happens.

Home grids are expected to function with fewer resources than conventional 

grids, and they are also expected to present higher network heterogeneity, including 

devices that can be connected through ad-hoc networks, which are highly prone to 

suffer network partition due to the dynamic change in the topology [71].

Our proposed system does not assume the existence of a fault-tolerant network 

topology and it can be implemented using UDP broadcast, which does not guarantee 

the delivery of the broadcast messages. In the case of a network partition, it is 

possible to have more than one instance of our system running, one in each sub­

network, since the participants may elect a new scheduler when it is detected that 

there is no scheduler in their sub-network.

In Chapter 3, we present a description of how our system identifies that the 

partitions have been merged, and what the procedures to maintain the consistence of 

providers and scheduler are.

We have used model checking to verify that our system continues to work when 

the network is partitioned and after it is merged. The model is presented in Chapter 

6, which explores two scenarios of network partition.

3.5Summary

In this chapter, we made a brief introduction to computational grid technologies 

(for both powerful and limited devices), and we then concentrated on the scheduling 

and fault handling in grids, which are the focus of this thesis.
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We also exposed the pros and cons of the most common fault tolerance 

mechanisms to constrained environments such as the one assumed in this thesis; and 

we described how some grid systems use such mechanisms.

At the end of the chapter, we made a discussion about the viability of building a 

home grid and the pros and cons of network topologies for the communication 

between the devices in the house.
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4 Proposed Home Grid

Peer-to-peer (P2P) systems have to deal with participants that remain 

disconnected for long periods, which is different from what happens in conventional 

grid systems [72], However, that work envisages that large-scale grid systems will 

develop to present this characteristic of current P2P systems, meeting a demand for 

the grid to adapt to the higher dynamicity of resources.

This high dynamicity is already a characteristic that can be found in the domestic 

grid being defined in this work, since most resources may be kept switched off for 

most of the time. Domestic grids are not only dynamic, but can also be very 

heterogeneous, being composed of devices with different capabilities and also 

different network technologies. These devices can vary from a refrigerator with low 

processing capability connected to the grid via Ethernet to a mobile phone or a 

computer connected via wireless technologies, for example. The devices in the house 

that would most likely have the “always on” characteristic (switched on for most of 

the time) would be a refrigerator, a microwave or a router, for example.

Gradwell [73] investigates three of the most mature scheduling systems for grid 

computing: Nimrod-G[74], GrADS [75] and Condor-G [51]; and presents a 

description of similarities between these systems which are dependent on their 

centralized control. These similarities are:

• The assumption of one central point in the grid, which allows them to know 

about all the jobs on all nodes on the grid.

• The centralized control (full or partial) of the scheduling policies for all the 

nodes.

• The assumption that the resource allocation for the jobs and the job 

scheduling are done by the same part of the scheduler.

If it was possible to guarantee that there is a device, powerful enough to run a 

central scheduler without compromising the performance of the grid, and that this 

device is switched on all the time (or most of time), a centralized system like the 

ones mentioned above could be used for the domestic grid. The devices with the 

“always on” characteristic will probably not have the required processing power to
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support sophisticated fully centralized scheduling systems in the near future, so 

adopting this kind of system in a domestic grid would degrade performance, since 

the centralized scheduler demands time for distributing the tasks, and implementing 

it on low processing power devices would delay the distribution of the tasks.

In conventional grids, centralized schedulers gather information about the load 

status of the resource to try to promote good load balance for the grid system, adding 

more traffic to the network. Furthermore, when a scheduling system is described as 

distributed, it means that a central scheduler for a particular group of resources can 

communicate with other central schedulers and they can send tasks to each other, 

without really distributing the scheduling activity.

Research like that presented in [76] and [77], for example, uses the concept of 

multi-agent systems to distribute the work of the scheduling system. In [76], 

scheduling agents communicate between themselves using coordination messages to 

find a global scheduling solution after each one of them have found the best local 

solution. In [77], agents are used for resource discovery purposes, where each agent 

has a cache with information about some other agents called its “neighbours”; when 

an agent does not have information about a particular resource, it seeks the 

information from its neighbours, which involves a big communication overhead. In 

this thesis, we also use agents for the resource discovery and scheduling 

mechanisms.

Inspired by multi-agents solution, in this thesis, the idea is to create simple 

components that do not require much processing power from the devices where they 

are running, and to reduce the communication overhead. The communication 

between these components is done mostly by broadcasting small messages and 

communicating with a central device that does little processing to make the final 

scheduling decision.

The remainder of this chapter describes our proposed solution for grid systems 

running on home environments.

We start with the description of how the system should behave without 

considering failures. Only in section 4.5, we describe the additional behaviour for the 

components in case of failures.
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4.1 Scheduling Architectures

In Chapter 2, we have described some applications that could make use of a 

home grid, and found that most of the applications would use the grid to improve 

their performances, which would make a reliable grid system the ideal world. Since 

grids are unreliable by their nature (since devices can become unavailable at any 

time without a warning), a fault tolerance mechanism would be the main requirement 

for the grid system.

Considering the type of applications mentioned in Chapter 2 and the limitations 

of the devices in the home network, we have to analyse what is the best scheduling 

architecture that should be used in our solution. The main possibilities are analyzed 

in the following sub-sections.

Here we will not discuss solutions where a Network Weather Service (NWS) 

exists, as in the conventional grid systems. A NWS corresponds to an external 

service that periodically monitors the status of the devices in the network, instead of 

the scheduler itself. The ideal case would be to have the NWS running in a different 

device that is not the scheduler to improve the fault tolerance of the system. This 

additional device would also be required to be on most of the time, making the NWS 

not a very attractive solution for home environments, and for that reason it was not 

considered in this discussion. Another disadvantage of NWS is that they also add 

more traffic to the network.

For this analysis, we grouped the main solutions found in the literature into three 

architectures/models: Fully Decentralized, Fully Centralized and Hybrid. There are 

many ways that grid scheduling protocols can be created using these models. In the 

following sections, we focus on those solutions that would require the least amount 

of energy from consumers, considering that they can be running on battery from the 

requirements in the Chapter 2, and taking into consideration the faults that can 

happen and the limitations of the environment.

4.1.1 Fully Decentralized Architecture

Considering the difficulty of finding a device powerful enough to run the 

scheduler without damaging the performance of the system and that is always on, the 

obvious choice of architecture would be the fully decentralized one, where no central 

device is required and all the devices communicate with each other.
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Figure 9 illustrates the number of messages exchanged between consumers and 

providers using this kind of architecture. As will see later in this chapter, this 

architecture requires fewer messages to schedule a job when compared to the other 

architectures discussed later. In Figure 9, we represent a grid with one consumer and 

two providers.

• In the step 1, the consumer broadcasts the job to all the providers;

• In the steps 2 and 3, each provider performs the matchmaking and reply to 

the consumer informing it that they can execute the task;

• In the step 4, the consumer decides which provider will execute the task and 

sends it to the chosen one;

• In the step 5, the chosen provider completes the job and sends the result to the 

consumer.
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%  Provider

Figure 9 - The fully decentralized scheduling architecture.

The decision making process performed by the consumer can be as simple as 

picking the first provider who replies (which would save battery for those devices 

that use it), or to make additional processing to choose the best one based on the 

characteristic of the providers (e.g. distance from the consumer).

An alternative for the information flow could be the consumers simply 

announcing that they have a job in step 1, receive the state of the providers in the 

steps 2 and 3, perform the matchmaking process based on the information received 

and send the job to the chosen provider. This scenario adds more processing to the 

consumers, which is not ideal for those running on battery. However, it could be a 

good alternative for environments where the objective is to optimize the use of the 

grid for one application and where providers can be reserved.
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Even though this architecture uses fewer messages to schedule a job, the amount 

of power required from consumers will vary according to the number of providers in 

the grid.

For example, suppose that the consumer sends the job description in Figure 10.

message=l 
j ob_id=10 
CPU=1500 MHz 
Storage=50 MB 
OS=Windows 
RAM=2024 MB 
Power=100 %

Figure 10 - Example of a job description.

The size of this description is approximately 696 bits. Assuming that the 

consumer is a smart phone Nokia N95 and that it spends 0.005 mJ per bit to use the 

network (as mentioned in the Chapter 2), the power spent to send this job description 

(Cj) would be 3.48 mJ (the typical capacity for the battery of a N95 is 12600 J).

Now assume that the response from the providers contains only the message type 

and the job identification to which it refers. The size of the message would be 

approximately 160 bits (equivalent to a SMS with 20 characters), requiring 0.8 mJ of 

power from the smart phone to receive it (Cr), for each message received from a 

provider (0.8 x N mJ of total power, where N is the number of messages received).

Assuming that once the provider is selected the consumer sends the job to the 

provider, and considering a job of 32768 bits (the size of the source code used for the 

Linpack benchmark presented in the section 5.3), the cost of transmitting the job (Ct) 

from the N95 would be approximately 163.84 mJ.

This way, the power required to submit a job (Pj) could be computed using the 

following formula:

Pjd = Cj + (Cr x N) + Ct.

The Table 2 shows the power required to submit a job for different numbers of 

providers in the grid (considering only the network usage), assuming that all of them 

reply to the consumer.

Chapter 4. Proposed Home Grid
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Table 2 - Power required from the N95 to submit a job in a fully decentralized model.
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N Power (mJ)

1 168.12

5 171.32

10 175.32

Since the chosen provider may leave the grid without any warning to the 

consumer while processing a job, we have to consider the cost of handling this kind 

of fault.

If we assume that the system is not fault tolerant and that a job is resubmitted 

after the identification of a failure, the energy required just to send the job to another 

provider would be Ct (disregarding the power required to select another provider). In 

a scenario where M failures happen before the job is completed, the consumer would 

have user M x Ct J of energy to retransmit the job to the selected providers. 

Assuming five failures (M = 5), for example, the Nokia N95 would spend 

approximately 819.20 mJ of energy only to send the job to the providers chosen to 

execute the job, which is much higher than the 0 mJ from a fully centralized 

architecture (see section 4.1.2), or the 17.4 mJ from our hybrid solution (see section 

4.1.3).

Broadcasting the job with its description in the step 1 of Figure 9 would consume 

more network resources, but it would avoid the consumer having to resubmit it to 

some providers in case of failures (the consumer would still need to send the job to a 

provider that connected to the grid after the job has been announced).

A common and simple technique for fault tolerance that can be used is the 

replication of the job, but even in this case the consumer is still required to spend 

energy sending the job to at least two providers. Furthermore, we assume that it may 

be difficult to find many resources available in the home at the same time, and this 

would be a waste of resources.

Note that, in this section, we have only considered the energy costs for the 

network usage; complex fault tolerant mechanisms may require more processing 

from the device as well, which also increases the amount of energy used.
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Since some applications mentioned in Chapter 2 require fault tolerance and some 

of them have battery-powered devices as consumers, we decided not to use a fully 

centralized model for our solution.

4.1.2 Fully Centralized Architecture

In this architecture, the scheduler is responsible for gathering the status 

information from the providers, perform the matchmaking based on the collect 

information and choose the provider that should execute a task. This is the 

architecture followed by most grid scheduling solutions in the literature (including 

the OLB scheduling heuristic).

Figure 11 illustrates a fully centralized architecture considering one consumer, 

one scheduler and two providers.

• In the step 1, the consumer sends the job to the scheduler;

• In the step 2 the scheduler sends a confirmation to the consumer;

• The steps 3 to 6 represent the communication between the scheduler and the 

providers in order to acquire the status information for the matchmaking 

process;

• In the step 7, the scheduler decides which provider should execute the job and 

sends the job to the chosen provider;

• In the step 8, the provider completes the job and sends the result to the 

consumer;

• In the step 9, the provider informs the scheduler of the job completion.
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This architecture uses more network resources than the fully decentralized 

architecture (4 more messages), but it requires less energy from consumers,
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especially for handling faults of providers, since the scheduler deals with it. 

However, this architecture makes it more difficult to recover from failures of the 

scheduler, requiring the consumer to resubmit all the jobs again. Furthermore, this 

solution requires the scheduler to know where the providers are and keep checking if 

they are still alive.

Following the same reasoning used in the previous section, we can compute the 

amount of energy that the consumer requires to send a job (Pjc) by the formula:

Pjc = Ct + Cr.

This formula corresponds to the cost of sending the job to the scheduler (step 1 

of Figure 11) plus the cost of receiving its response.

Considering the Nokia N95 as a consumer, the total amount of energy for the 

consumer to submit a job would be 164.64 mJ, independent of the number of 

providers.

In the case where the scheduler deal with timeouts for the job completion, the 

consumer may not be involved in the fault tolerant procedure, so it would not spend 

additional energy. However, some energy will be spent if the consumer is involved 

in that process (e.g. managing timeouts and sending reminders).

Some centralized systems usually assume that the central device is fault tolerant, 

usually by using replication of the scheduling service. In the home environment that 

we envisage for this thesis, it may not be possible to guarantee enough resources to 

use the conventional techniques to make the scheduler fault tolerant.

Even though the scheduler may fail, we expect that this type of failure happens 

less frequently than the provider’s failures, since we can adopt election mechanisms 

that can chose the most reliable devices to act as the scheduler (as the one we 

propose in this thesis). Even if the scheduler fails and the consumers have to 

resubmit the jobs, the resubmissions would happen less often than in the case of the 

provider’s failure in the fully decentralized model, requiring less energy from the 

consumers.

A variant of this architecture is to make the scheduler use broadcast messages to 

retrieve the status information from the providers, reducing the network usage and 

eliminating the need to keep checking if the providers are still alive. However, the 

single point of failure is not eradicated.
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4.1.3 Hybrid Architecture

In this architecture, we also have a central scheduler, but in this case, the 

consumers announce the jobs to the providers via broadcast messages. The providers 

are then responsible for performing the matchmaking process and interact with the 

scheduler to get the final decision about the job execution, avoiding further 

processing by the consumer.

Figure 12 shows an example of how this architecture may work.

• The steps 1 and 2 represent the registration of the job with the scheduler;

• In the 3, the consumer sends the job description to the providers;

• In steps 4 and 5, the providers tell the scheduler that they can process the job;

• In steps 6 and 7, the providers receive the decision of the scheduler;

• In steps 8 and 9, the chosen providers complete the task and inform the 

consumer and the scheduler, respectively.

4

o•  o
Consumer
Scheduler
Provider

Figure 12 - Hybrid scheduling architecture.

Compared to the fully centralized architecture, the hybrid architecture seems to 

have the same number of messages exchanged. However, considering the presence 

of more providers, only those providers that can process the job will communicate 

with the scheduler, whereas in the fully centralized architecture there is always the 

communication between providers and schedulers (if such communication does not 

happen, the scheduler will end up with out-of-date information about the status of the 

providers to run the matchmaking process).

This architecture uses more network than the fully decentralized one, but it 

requires less processing by the consumers, which makes a better alternative for our 

solution based on the requirements specified in Chapter 2.
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Considering the flow of information in Figure 12 and the reasoning presented in 

the section 4.1.1, we can use the following formula to compute the amount of energy 

spent by a consumer to submit a job:

Pjh = Ct + Cr + Cj.

Using this formula, we can estimate that a Nokia N95 device would spend 

approximately 168.12 mJ of energy to submit a job to the grid, independently of the 

number of providers available.

If the scheduler broadcasts the job description (step 3) instead of the consumer, 

the amount of energy required from the consumer to submit a job in the hybrid 

model becomes the same as in the fully centralized model (in other words, Pjh =

Pjc).
In the case where providers fail, the analysis is also similar to the one presented 

for the fully centralized solution. We may have the case where the central device 

deals with those faults, freeing the consumer from further processing. However, in 

order to alleviate the process on the central scheduler (which we assume may be 

running in a limited device), the consumer may be in charge of some activities, such 

as sending reminders to the providers or the scheduler when a timeout for the job 

execution is reached, for example. Nevertheless, there is no need for the consumer to 

resubmit the job, unlike the fully centralized model.

Assuming that the consumer broadcasts the job description whenever a job is not 

completed in the expected amount of time due to a provider’s failure, the energy cost 

for the consumer handling this kind of fault would be M x Cj, where M is the 

number of failures. Therefore, considering the Nokia N95 as the consumer, it would 

spend 17.4 mJ (5 x 3.48) for M = 5.

Table 3 presents the amount of power that would be required from the Nokia 

N95 when running a face recognition application. For the calculations, we 

considered the example presented in the section 2.1.1, with a job of 409600 bits (50 

KB). The table shows little difference between the power consumption for 

submitting a job (Pj), but much greater power consumption is required when using 

the fully decentralized model to resubmit jobs in case of faults of the providers Pr.
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Table 3 - Power required from the N95 considering a face recognition application.
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Model Pj (N=10) Pr (M=5)

Fully Decentralized Pjd = 2059.48 mJ Prd = 10240.00 mJ

Fully Centralized Pjc = 2048.80 mJ Prc = 0 mJ

Hybrid Pjh = 2052.28 mJ Prh = 17.4 mJ

Even though we still have a single point of failure in the hybrid solution, the fact 

that providers know about the submitted jobs allows us to develop fault tolerant 

mechanisms to reconstruct the status of the scheduler in case of failures without 

adding a higher load to the consumers (which would satisfy the requirement C.l in 

the section 2.5), or requiring additional resources, such as a replicated server for the 

scheduler, for example.

Note that the fully centralized model may require the resubmission of the job 

when the scheduler fails and another one has to be selected, in which case we would 

have Prc = Pjc = 2048.80 mJ, making it much higher than Prh.

There can be many ways of organizing the communication between the devices 

in the grids in any of the presented models. However, we are mainly interested in 

providing a solution that does not add too much energy cost to the consumers and in 

finding a solution that can perform well having a central device running in a limited 

device.

The fully centralized or decentralized models may still be the best option for 

some types of applications and different environments, especially where energy and 

resources are not very constrained. In this thesis, we intend to make a generic system 

that can accommodate different applications.

For these reasons, we have chosen the hybrid model (which would satisfy the 

requirements A.l and B.l in the section 2.5), and the rest of this chapter describes 

our scheduling solution adopting the hybrid architecture, including the fault 

tolerance mechanisms.

4.2 Component-Based Solution

In our proposed solution, every device participating in the grid has a main piece 

of software composed by smaller components, which are described in this section.
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Figure 13 shows a block diagram that represents the internal view of the main 

software. Each block represents a software component that handles certain 

functionalities. The details of how the functionalities should be implemented are 

presented in the remainder sections of this chapter.

Figure 13 - Software components for each component in the proposed home grid.

With this modularity of the component’s architecture, we can use different 

mechanisms for implementing each one of them, evaluate them separately and try to 

find the best solutions.

Although all these components are present in each device, they may or may not 

all be active at the same time, which means that a device can have only the scheduler 

active or be acting exclusively as a consumer, for example.

Communication

The communication component is responsible for sending and receiving 

messages in the network, including the mechanism for broadcasting information that 

is needed in our solution.

Registration

This component’s duty is to register a device in the grid. The registering service 

has the naming service embedded in it, which gives the unique identification for the 

component/device in the grid system.

This is the component that finds the location of the scheduler and keeps this 

information to be used by the other components.
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Consumer

This component is responsible for controlling the submission of jobs and making 

sure that they are completed, either locally or by a provider in the grid, depending on 

the policy of the application, as described later in this chapter.

Provider

This component is responsible for performing the matchmaking, communicating 

with the scheduler and controlling the execution of the jobs that arrive in the device. 

This component will not be active in those devices that are set as “consumer only”, 

i.e., that can only submit jobs to the grid and do not process any job.

Scheduler

This component performs the following activities: issuing global job IDs, 

registering devices, replying to requests from providers and consumers, and carrying 

out the recovery process.

Election

This component is responsible for dealing with the processes involved in the 

election of a new scheduler, including the computation of the utility value and its 

distribution.

Descriptor Handler

This component provides mechanisms to map jobs and resource descriptors into 

a pre-defined standard. In this thesis, the standard adopted is the object-oriented 

scheme for the job and resource description presented in Appendix B (requirement 

D.3 in section 2.5).

IO Manager

Jobs may have some related input and output data. The location of this data is 

specified in the job descriptor, and can be a local or remote file or a database, for 

example. The component I/O Manager is the one responsible for reading and writing 

the data related to the jobs.
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Coordinator

This component has a very important role. In our proposed distributed solution 

for job scheduling, the Coordinator is responsible for the communication between 

local components and for gathering information such as CPU load, the battery and 

memory status, which can be used by the other components.

Security

This component is in charge of assuring that the security policies for each 

resource are followed. The other duties for this component are access control to the 

grid, the privacy and integrity of data when required by the application submitting 

the jobs and the authentication of the other components.

The definition of the security techniques to be employed in the system was left as 

future work, due to time constraints.

Fault Handler

If any fault happens (e.g. network timeouts, application errors), the Fault Handler 

is the component that will be responsible for acting on the error or informing the 

appropriate component to handle it.

4.3Device Registering and Resource Discovery

To avoid ambiguity about resources, we first need to define a mechanism to 

provide unique IDs. For this problem, Czajkowiski et al. [78] suggests two 

approaches: one is a naming service based on a naming authority; and the other is 

based on probabilistic techniques.

The first approach consists of a centralized entity responsible for issuing 

credentials for all resources, which can be of simple implementation, but it has the 

disadvantage of requiring a new component in the system that needs to be managed 

and maintained, and it may not be possible to guarantee an infrastructure for such a 

component in the home environment.

Globally Unique Identifier (GUID) [79] systems are examples of the second 

approach; they can provide random identifiers based on some information from the 

resources. GUID systems do not guarantee a unique identifier, but the probability of 

two devices having the same identifier is very low.
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Based on the statements above, we proposed the use of GUIDs in this thesis, 

where each device generates its own. The main purpose of an identification in this 

thesis is for the generation of global IDs for jobs, where the scheduler adds its own 

ID (GUID) to it (explained later in this section).

When a device joins the grid, its registration component broadcasts a 

REGISTRATIONREQUEST message (containing its GUID) to the other 

components in the grid, and only the scheduler replies with a 

REGISTRATIONRESPONSE message, so that the new device can discover the 

location of this shared space. The entering device then keeps this information for 

future use.

In order to assure that there will not be repeated IDs, even though the probability 

is very low, the scheduler keeps a data structure with the received IDs and the IP 

address of the sender, and every time the scheduler receives a new one during the 

registration process, it checks if the ID already exists. If it does not exist, the 

scheduler adds it to the data structure, or updates the ID for the same IP address of 

the sender (if it has been registered before). Otherwise, if the ID does exist and the 

sender is the same as the one stored in the data structure (i.e., same IP addresses), the 

registration proceeds normally (the REGISTRATION RESPONSE is sent by the 

scheduler); but if the IP addresses are different, the scheduler sends an 

EXISTING_ID message to the registering device. This indicates that the latter has to 

generate another GUID and restart the registration process. The workflow in Figure 

14 summarizes this registration process.
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Figure 14 - Registration workflow.
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Once the registering process is finished, the device can consume and/or provide 

resources in the grid. Furthermore, with this registering mechanism, the scheduler 

does not need to keep contacting the registered devices to check if they are active 

(requirement A.2 in section 2.5).

To submit a job to the grid, the consumer component submits a 

JOBSUBMISSIONREQUEST message to the scheduler, which includes the 

description of the minimum resource requirement for the job execution, the input and 

output data (or an indication of where to locate them); and all the other information 

necessary to run the job.

In Figure 15, we present a pseudo-code for this step of the protocol. The sendJob 

procedure is invoked for each job of the application using the grid, and it assumes 

that the same consumer sends no other job at the same time, to improve fairness of 

the grid usage.
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1. sendJob(job) {
2. //the send procedure receives the type of message,
3. //the destination, and the additional information
4. send(JOB_SUBMISSION_REQUEST, scheduler, job);
5. //lastJobSent stores the last job sent by the consumer
6. lastJobSent = job;
7. //starts the timer to wait for the response
8. //from the scheduler before retrying sending the job again
9. startTimer();
10 . }

Figure 15 - Pseudo-code for the consumers sending a job.

After receiving the JOBSUBMISSIONREQUEST message, the scheduler 

stores the received information, generates a global ID for the received job, and sends 

a JOBSUBMISSIONRESPONSE message (with this ID) to the consumer.

Figure 16 shows a pseudo-code that implements the behaviour of the scheduler 

when handling the job submission by the consumer. After executing this piece of 

code, the new job should have a global ID assigned and it should be stored in the 

scheduler’s data structure, and the new global ID should start being sent to the 

consumer who owns the job. (Note that in the pseudo-codes in this thesis, the global 

ID generated by the scheduler is referred as GLOBAL ID, while the LOCAL ID 

refers to an ID of the job set by the consumer itself when creating the job).
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1. handleJobSubmissionRequest(job) {
2. //generates and sets the the global ID of the j ob
3. job.GLOBAL ID = generatelo();
4 . //sets the job as available
5. changeStatus(job, AVAILABLE);
6. //add jobs to the data structure with jobs to be executed
7 . pendingJobs.add(job);
8. //sends the response to the consumer with the global id
9. send(JOB SUBMISSION RESPONSE, job.owner, job. GLOBAL ID,
10 job.LOCAL ID);
11 }

Figure 16 - Pseudo-code for the scheduler registering a job.

For this registering mechanism, we assume that the IP address is allocated 

manually or using the DHCP (Dynamic Host Configuration Protocol) [80], which is 

a protocol where a client requests an IP addresses to a server. Depending on the 

implementation, a DHCP server can allocate IPs to clients using one of following 

approaches:

• Dynamic allocation: the administrator defines a range of IP addresses that 

can be allocated to a client. The IP addresses are assigned to clients for a 

pre-defined period (lease time) that can be renewed/extended by the 

clients; this allows the DHCP server to reclaim (and then reassign those 

IPs) that did not have the lease renewed;

• Automatic allocation: The DHCP server permanently assigns a free IP 

address to a requesting client from the range defined by the administrator. 

This is like dynamic allocation, but the DHCP server keeps a table of past 

IP address assignments, so that it can preferentially assign to a client the 

same IP address that the client previously had;

• Static allocation: The DHCP server allocates an IP address based on a 

table with MAC address/IP address pairs, which are manually filled in 

(perhaps by a network administrator).

Home networks using wireless routers usually adopt DHCP with automatic or 

static allocation, which allow the clients to keep their IP addresses for a long period.

Our registering mechanism may not function well in those situations where the 

IP address of the clients changes frequently (e.g. DHCP server configured to use 

dynamic allocation with a short lease time), since the registering data structure may 

grow considerably (which may affect the performance of the registering service) and
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it may eventually become inconsistent (an ID being associated with the wrong IP 

address). A better registering process is required for such situations (perhaps 

defining times for the scheduler to check the correctness of the values in the 

registering data structure, eliminating those that are no longer correct).

Since we do not consider the use of timestamps (as mentioned later in this thesis 

when talking about the scheduling system) -  which also keeps the protocol simple as 

a response to the requirement D.l in section 2.5, we assume that the job global ID is 

composed by a numeric value and the ID of the scheduler that assigned it. The 

numerical part of the global ID is used to indicate the order of arrival of the jobs at 

the scheduler, which is also the order for the execution of the job.

The ID of the scheduler is also part of the global ID in order to distinguish 

between two jobs with the same numerical global ID part, but issued by different 

schedulers, which can happen in the case where a network is partitioned, for 

example. We discuss more about the global ID later in the section on the fault 

tolerance of our mechanism.

After receiving the global ID from the scheduler, the consumer then broadcasts a 

JOB DESCRIPTION message with the global job ID and the resource requirements 

to the other components, so that providers can compare these pieces of information 

with their own resource description, and verify if they are capable of executing that 

job (matchmaking).

In this way, we distribute the task of discovering resources between the 

components and not only as a task for the scheduler, which cannot be guaranteed to 

be powerful enough to perform the matchmaking and the scheduling itself without 

compromising the performance of the system. As shown later in section 5.4.6, for 

example, the matchmaking represents approximately 65% of the scheduling process 

in the OLB scheduler (increasing the percentage with the availability of more 

providers).

The Figure 17 shows a pseudo-code for the consumer’s behaviour after it 

receives the job registration response from the scheduler with the global ID for the 

last submitted job. After the execution of this code, the consumer will have assigned 

the received ID to the submitted job, keep track of its submission, broadcast its 

description and start the timer for the job execution (explained later in this thesis).

In Figure 18, we have the pseudo-code for the provider’s behaviour when it 

receives the job description broadcast by a consumer. The lines 2 and 3 of Figure 18
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represent the provider requesting its own status to the local coordinator component 

and comparing it with the job requirements, respectively. The lines 4 to 8 implement 

the fault tolerant behaviour described later in this thesis in the section 4.5.4. The 

lines 10 to 16 implement the classification of the job according to the capability of 

the provider of executing it. The job is then stored in a local data structure (line 17) 

and a scheduling request is sent to the scheduler if the provider is not awaiting a 

response from a previous request (expression “jobSent IS FALSE” in the line 23).

1. handleJobSubmissionResponse(jobLocallD, jobGloballD) {
2. //checks if the response received is for the
3. //last job sent by the consumer
4 . if (jobLocallD IS lastJobSent.LOCAL ID) {
5. if (lastJobSent.status IS NOT COMPLETE) {
6. //sets the global ID on the consumer side
7. lastJobSent.GLOBAL ID = jobGloballD;
8. //marks the job as sent; in this example, by
9. //by adding it to an internal list
10 jobsSent.add(lastJobSent);
11 //broadcasts the job description
12 broadcast(JOB DESCRIPTION,
13 lastJobSent.description);
14 //start the timer for the job timeout
15 startCompletionTimer(lastJobSent);
16 } else {
17 send(CANCEL JOB, jobGloballD);
18 }
19 } else {
20 send(CANCEL JOB, jobGloballD);
21 }
22 }

Figure 17 - Pseudo-code for the consumers handling the jobs submission response.
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1. handleJobDescription(job) {
2. //retrieves the local status information for the matchmake
3. local_status = coordinator.getStatus ();
4. //matchmake the status with the job requirements
5. processable = matchmake(local_status, job.DESCRIPTION);
6. if (isProcessingJob AND job IS chosenJob) {
7. if (processable IS FALSE) {
8. stopExecutingJob ();
9. send(CHANGE_STATUS, scheduler, job.GLOBAL_ID);
1 0 . }

11. } else {
12. if (processable IS TRUE) {
13. classifyAsProcesable(job);
14 . } else {
15. classifyAsNotProcesable(job);
16. }
17. jobs.add(job);
18. requestSchedule();
19. }
2 0 . }
21.
22. requestSchedule() {
23. if(hasProcessableJobs() && jobsSent IS FALSE) {
24. queue = getFirstMProcessableJobs ();
25. off_interval = getOldestOffInterval();
26. send(SCHEDULE_REQUEST, scheduler,
27. queue, off_interval);
28. jobsSent = TRUE;
29. }
30. }

Figure 18 - Pseudo-code for the providers handling the job description broadcast by consumers.

The information held by providers after the matchmaking process is also useful 

to reconstruct the scheduler’s status in the case of failure of the scheduler, which is 

part of our proposed solution for fault tolerance.

The only central point in our grid is the scheduler component, which is simple to 

use and requires space for storage (which is cheap), but it does not need much 

processing power. These characteristics allow us to use devices that have limited 

processing capabilities to play this role.

This distributed resource discovery mechanism makes the limited devices in the 

grid perform some processing when they receive the broadcast messages, but it is 

preferable that they make a few comparisons and verily that they cannot execute the 

jobs and stop processing instead of concentrating the resource discovery task in only 

one central limited device.

These limited devices can also be set as “consumer only”, which indicates that 

they cannot receive jobs to execute and their local components can then ignore the 

JOB DESCRIPTION messages. This decision about setting a device as “consumer
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only” can be done by the user, or a set of minimum requirements can be defined in 

order to enable the provider component in a device.

4.4Scheduling System

So far, we have described how a device registers within the grid, and how 

consumers submit their jobs using broadcast messages to find suitable resources to 

execute them. In this section, we describe the behaviour of the grid participants: 

consumers, providers and scheduler. This also includes the messages that are 

exchanged between them.

For this specification, we make the following assumptions:

• The jobs sent by consumers are independent, so that they can all be executed 

in parallel (requirement D.2 in section 2.5);

• If the application jobs are dependent, the consumer sending them is 

responsible for sending them in the appropriate order, and delaying 

submissions until previous results that are needed have been received;

• Timestamps are not considered for scheduling purposes, in order to avoid 

additional processing and communication for clock synchronization in such a 

dynamic environment;

• A reliable communication protocol (e.g. TCP) is used for the transmission of 

unicast messages.

Note that, in this section, we only describe how the system works assuming that 

we have a reliable device (one that will never disconnect or fail) running the 

scheduler. The behaviour of the system with failures of the scheduler will be 

described later in this thesis.

After the matchmaking (see previous section), providers classify the job as 

processable or not processable, and then store it locally in a queue, following the 

order of the global ID. The storage of jobs that cannot be processed by a provider 

will be useful to reconstruct the status of the scheduler if it fails. During the 

scheduling process, providers send a SCHEDULEREQUEST message to the 

scheduler with a queue (Pq) containing the first N jobs stored in their local queue 

that are tagged as processable (please refer to the Figure 18 for the pseudo-code that 

implements this behaviour). The scheduler receives this queue, selects the job that
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should be processed next by the provider (the first job in Pq that has not been 

allocated yet), and updates the queue by removing those jobs that have already been 

completed (allocated jobs are kept in the queue so they can be rescheduled in case of 

failures). This updated version of the queue and the selected job are sent back in a 

SCHEDULERESPONSE message to the original provider; if  the scheduler holds 

any data required by the allocated job (executable file and I/O data), that data is also 

attached to the SCHEDULE RESPONSE message.

Providers may leave the grid at any time and there might be a number of jobs that 

have been broadcast while they have been unavailable, as illustrated in Figure 19.

In Figure 19, Job A represents the last job received by the provider while it was 

on for the first time; Job B represents the first job received when it became on again 

after the first off period. Jobs C and D are, respectively, the last and the first job 

received before and after the second off period, and so on.

ON

time

Job A Job B Job C Job D

Figure 19 - Example of a job submission timeline where a provider becomes on and off.

In order to acquire those jobs that might have been broadcast during their off 

period, providers also inform the scheduler (within the SCHEDULE REQUEST 

message) the oldest interval of jobs where there can be jobs missing (e.g. the global 

IDs of jobs A and B in Figure 19). Based on this information, the scheduler is able to 

find out if there are jobs to be processed that were sent during that particular off 

period; if there are any, the scheduler creates a list (Ls) with the first M jobs that 

have been received in the period, and sends it to the provider. The scheduler also 

informs the provider if there are more jobs in the current interval other than those M 

jobs present in the list (using here what is called the “more flag”). Both Ls and 

“more flag” are part of the SCHEDULE_RESPONSE message.

If there are no more jobs in the current interval of jobs, providers can start 

sending the details of the next interval (if there is one).

When providers receive the list of missing jobs from the scheduler, they perform 

the matchmaking for all jobs in the list and classify them as processable or not. The 

jobs are then placed in the local queue in order of their global IDs.

ON OFF ON OFF
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In Figure 20, we illustrate the messages that should be exchanged between 

providers and scheduler during the scheduling process.

Figure 20 - Communication between provider and scheduler during a job request from the
provider.

The procedure scheduleRequest in Figure 18 (lines 22 to 30) shows the pseudo­

code for a provider sending the schedule request to the scheduler, corresponding to 

the step 1 in the Figure 20.

In the Figure 21, we show a pseudo-code that implements the behaviour of the 

scheduler when it receives the schedule request from a provider. The requests are 

queued and dealt individually by the order of arrival. The schedule procedure called 

in the line 2 represents the decision making step where a job is chosen based on the 

list of jobs sent by the provider. Its pseudo-code is presented later in this thesis in the 

Figure 47. The rest of the code in Figure 21 implements retrieval of any missing jobs 

(jobs submitted while the provider was unavailable), if any, and the submission of 

the schedule response to the provider.

1. handleScheduleRequest(queue, off_interval) {
2. //choose the job to be executed from the received queue
3. chosenJob = schedule(queue);
4. jobsList = createEmptyList();
5. //populates the jobsList with missing jobs and returns
6. //TRUE if there are more missing jobs, or FALSE otherwise.
7. more_flag = getMissingJobs(jobsList);
8. //send the schedule response to the provider
9. send(SCHEDULE_RESPONSE, chosenJob, queue,
10. jobsList, more_flag);

Figure 21 - Pseudo-code for the scheduler handling the schedule request from providers.

The pseudo-code showed in the Figure 22 implements the behaviour of a 

provider handling the schedule response from the scheduler. In the lines 4 to 14, the

1: Pq + oldest off interval

M l

2: Updated Pq + Selected Job + Is + "more flag"

l i .
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provider performs the matchmake on the missing jobs that it has received from the 

scheduler (if any), and then updates its local jobs queue.

When a provider finishes the execution of a job, it sends the result to the location 

indicated in the job description (e.g. directly to the job’s owner or to a shared 

repository) to avoid extra communication. The message containing the result is 

called JOBCOMPLETIONCONSUMER. Once that completion message is sent, 

another message, here identified as JOBCOMPLETIONSCHEDULER, is 

immediately sent to the scheduler to inform it that the job has been finished, so it can 

be removed from the local data structure.

1. handleScheduleResponse(chosen job, updated queue,
2. missing jobs, more flag) {
3. //matchmake the missing jobs
4 . for (i = 0 .. missing job.size) { xxxx
5. job = missing jobs[i];
6. processable = matchmake(local status,
7 . job.DESCRIPTION);
8. if (processable IS TRUE) {
9. classifyAsProcesable(job);
10 } else {
11 classifyAsNotProcesable(job);
12 }
13 }
14 updateLocalQueue(updated queue, missing jobs); xxx
15 jobsSent = FALSE;
16 if (more flag IS FALSE) (
17 removeOldestOffInterval();
18 }
19 if (chosen job IS NOT NULL) {
20 result = execute(chosen job);
21 //writes the result to the specified location
22 writeResult(result, chosen job.outputLocation);
23 //informs the consumer of the job completion
24 send(JOB COMPLETION CONSUMER, chosen job.owner);
25 //informs the scheduler of the job completion
26 send(JOB COMPLETION SCHEDULER, scheduler,
27 chosen job.GLOBAL ID);
28 completedJobs.add(chosen job);
29 }
30 requestSchedule();
31 }

Figure 22 - Pseudo-code for the provider handling the schedule response from the scheduler.

After sending the completion message to the scheduler, providers must keep the 

information about the completed job for some time. This information will be used for 

the recovery of the scheduler after a fault (explained later in this thesis).

These steps are illustrated in the lines 19 to 29 of Figure 22.
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Figure 23 illustrates the complete flow of information for the proposed job 

scheduling mechanism.

Router
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TS Agent
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Figure 23 - Scheduling information flow.
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4.5Fault Tolerance Mechanisms

In this section, we describe how components in the grid should act when a failure 

is identified, in order to recover the system from such a failure.

Here we assume that tasks submitted to a home grid are not going to take a very 

long time to run, in contrast to the tasks in conventional Grids. For this reason, we 

are not considering the support of checkpoints, which would add more traffic to the 

network (which can be a bottleneck to the system as shown in the simulation results 

in Chapter 5), and would require a reliable device to act as the checkpoint server.

Since we are assuming that the device that is kept on most of the time has low 

capabilities and it is going to be running the scheduler, we do not want to add more 

processing to this device (e.g. playing the role of checkpoint server as well) and so 

have the performance of the Grid system degraded.

Since it is already difficult to guarantee at least one device will be kept on most 

of the time to run the scheduler, we cannot adopt replication of the scheduler to 

recover its status when it crashes. In this case, we take advantage of our P2P 

infrastructure to elect a new scheduler and to recover the queue of tasks.

Before we describe the fault handling mechanisms for crashes of the scheduler, 

providers and consumers, we need to specify how failures are detected.

4.5.1 Failure Detection

Because of the low capabilities of the scheduler and because of the negative 

impact on the performance of the Grid caused by network congestion mentioned 

earlier, we want to keep the failure detection mechanism as simple as possible, 

avoiding the extra processing that would be needed at the scheduler to manage uare 

you alive?” messages, which also implies more network usage. For these reasons, we 

adopt timeouts as the methods for detecting faults.

Network timeouts are used to indicate a node crash or a network failure.

Scheduling a task in our system depends on providers receiving the broadcast 

message sent by consumers. Since this broadcast is done using UDP, there is no 

guarantee that providers will receive the message. It may also happen that there is no 

provider online when the message is sent, but immediately after it is sent, a provider 

might become on and will not have received the message. For these reasons, 

consumers set up a timeout for the processing task to be completed and, if this
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timeout is reached before the task is completed, the consumer can take further action 

(e.g. broadcast the message again or remove the task from the scheduler).

After sending a JOBSUBMISSIONREQUEST message, consumers also set up 

a timeout for the response from the scheduler (see pseudo-code in Figure 15). If the 

timeout is reached before the consumer receives a response from the scheduler, 

consumers can resubmit the job or choose to process it themselves. If the consumer 

receives the JOBSUBMISSIONRESPONSE message after processing the job 

itself, the consumer sends to the scheduler a CANCEL JOB message containing the 

job ID to inform the completion of the job and allow the scheduler to update its own 

local queue (see pseudo-code in Figure 17).

The pseudo-code in Figure 24 implements how the consumers behave when they 

do not receive a response from the scheduler before the timeout. Note that we 

assume that the job registration is not synchronous, so the timeout handling in Figure 

24 is not related to a connection/network timeout, which is used to identify a 

scheduler’s failure, as explained in the next section.

1. handleJobSubmissionTimeout() {
2. //read application policy to
3. //decide what to do: process the job locally
4. //or resubmit the job
5. if (POLICY IS RESUBMIT) {
6. send(lastJobSent);
7. } else if (POLICY IS EXECUTE) {
8. execute(lastJobSent);
9. lastJobSent.status = COMPLETE;
10. jobsCompleted.add(job);
1 1 . 1 
12 . }

Figure 24 - Pseudo-code for the consumer handling the job submission timeout.

4.5.2 Scheduler Crash

When a device gets a connection timeout while sending a message to the 

scheduler, it means that the scheduler has become unavailable, and the system might 

need to be recovered. The device that identified the problem then broadcasts a 

message to inform the others about the failure.

As explained earlier, we are not considering the replication of the scheduler. 

Therefore, we have to find a new device to play the role as a scheduler, which is
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done via an election by the devices currently connected to the grid. This election is 

similar to the leader election problem in distributed systems.

Leader Election Algorithms

Le Lann [81] proposed the first algorithm to be applied to networks with a 

unidirectional ring topology [82], which is not the case of home grids. The solution 

assumes that each node has a unique ID, and that ID is sent around the ring. The 

node with the highest/lowest ID becomes the leader. If our solution was based solely 

on the ID, there could be the possibility of a fully loaded device being elected as the 

new scheduler, and this would degrade the performance considerably.

There is a broad range of solutions for the leader election problem, and they vary 

according to the communication mechanism (asynchronous vs. synchronous), the 

name of the processes/nodes (unique identities vs. anonymous), and the network 

topology (e.g. ring, tree, complete graph).

Election algorithms for synchronous communication are not suitable for the 

purpose of this thesis, since we assume that the devices do not know the number of 

other connected devices or their locations. The election in our proposed system is not 

random, nor based on the identity of the nodes; it is based on a set of variable that 

define the value of the node to the system. We also do not assume a static topology 

for the home network. Based on these features, the closest related leader election 

algorithm to the one proposed here are the ones used to elect coordinators in ad-hoc 

networks.

Vasudevan et al. [83] presents a short survey on election algorithms and a 

solution for the problem in ad-hoc networks. Most of the algorithms studied assume 

a static topology (e.g. [84] and [85] that assume a ring topology where nodes are 

always connected during the election), a topology does not change during the 

election process (either before the election start or after the new leader is elected), or 

an unrealistic communication model such as a network that preserves the order of the 

messages. Such assumptions do not apply to a home environment network.

The algorithm proposed in [83] chooses the most-valued-node to be the new 

leader/coordinator, instead of a random or ID based selection. Such valuation is 

based on some characteristic such as the maximum remaining battery life, or the 

node with minimum average distance from the remaining nodes. The proposed 

solution is based on a spanning tree [86] for the diffusion of messages and is tolerant
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to dynamic topologies. It requires the participants to forward election messages and 

to send back some protocol-specific acknowledgment messages (ack). The 

evaluation of the algorithm shows that the use of broadcast messages produced better 

results than the use of TCP and UDP for node-to-node communication.

The election algorithm proposed in this thesis uses broadcast messages and does 

not require ack messages from the participants, saving bandwidth.

According to Kim et al. [87], we can distinguish two strategies for how systems 

adapt to failures. The first strategy consists of suspending temporarily the execution 

of the system in order to reorganize it, with components of the system evaluating 

themselves and competing with each other for the leadership. The second strategy is 

to allow the system to continue its correct operation and recover the system from the 

failure (which represents a very complex mechanism). The paper then presents a 

leader election algorithm with complexity between the two approaches mentioned 

before, where the leader is replaced with a pre-elected leader based on performance, 

links and connectivity. When this replacement happens, the first node that identified 

the leader’s failure makes the final decision on the new optimal pre-elected leader. 

The problem with the algorithm is that it does not specify any behaviour for the 

cases where more than one node identifies the failure at the same time.

Our solution follows the approach where the activities are suspended for a short 

period, since it is simpler and because of the limited infrastructure to allow pre­

elections of a new leader (scheduler).

Utility Function

The scheduler election process in this thesis is based on the concept of node 

utility presented in [88]. The utility u of a node, in our case, represents the capability 

of a certain device to run the scheduler, i.e., its value to the grid.

In [88], the utility value is used to elect the player that will coordinate a virtual 

region in a MMOG (Massively Multiplayer Online Game) built on a P2P network, 

and is computed by considering 6 factors that could influence the behaviour of the 

system: average latency distance, available bandwidth, player’s reliability, available 

CPU, available memory and duration time of player in some virtual region. All these 

values are collected from all peers by a device responsible for coordinating the 

election, and placed in a matrix X = (xjj)nm, where n is the number of peers and m is 

the number of factors.
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Because the value of some factor may be contrary to utility, the values in X are 

normalized according to the following rules (consider Uy the normalized value of xy):

1) In case better utility is achieved with a bigger value of a certain factor:
V  v m in

U  a — -------------------—lJ „ m a x  v m in
j ~ j

Where x j iax= maxlsiSn{Xiy} and x j1171 — min1£i:;Tl{xi;}.

2) In case better utility is achieved with a smaller value of a certain factor:
m ax _  v  Xj x tJ

v m ax v m in  Xj  -Xj

3) In case better utility is achieved with the value of a certain factor being 

kept around x*:
i  Y  v m in  

AiJ Aj
X* _^min '

U ij =
m ax  _  vXj Xtj

V X.m a*-X* ’

X t j , X ™ l n < X i j  <  X

X i j ,  X* <  X tj  <  X j 1

The normalized matrix of X, denoted as matrix U=(uy)nm, is then used to elect the 

new coordinator. Some factors can also be prioritized by applying some different 

weights to them.

As we can see, the election mechanism adopted in [88] takes into consideration 

the maximum and minimum values of all the factors for all peers, and concentrates 

the computations of utility in a single device. In case of failure of this device, 

another one (being used as back-up) takes over the election process.

In order to use the same election mechanism described above to elect the new 

scheduler, we would need to specify another method to choose the election 

coordinator, and the behaviour of the system in case of failure of this coordinator. To 

avoid this extra processing, we have adapted the method above, based on the 

characteristics of our system.

But first, we have to define the set of influencing factor (F = {fj}, j = 1,2, ..., m) 

for our grid system. For this thesis, we consider the following 5 (m = 5) factors:
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• Power supply (fj): indicates the power level of the device in terms of 

percentage; if the device is not running on battery, it indicates 100% of 

power; otherwise, it considers the level of the battery divided by 2, so that 

a device on AC power has higher utility value than a device running on 

battery power with 100% of capacity. In this case, the higher is the 

percentage, the better is the utility, since we want a device that is on for 

most of the time as the scheduler;

• Storage (f2): shows the storage capabilities of the devices. It is important 

that the new device to run the scheduler has enough space to store the 

scheduling queue and eventual data that consumers might want to send to 

the scheduler. Due to the difficulty to define appropriate bounds to the 

storage factor without adding extra load to the network, we consider that:
1

f2 —------- —.capacity
where capacity is the amount of free space available for storage and is > 1 

MB. If capacity < 1, f2 is set to 1, so that when we normalize the value of 

this function (see later in this section), its utility is set to 0 (zero), which 

reduces the overall utility value for the device, since we assume that 

higher storage contributes to a better utility;

• Availability (f2): indicates how reliable the device is in terms of 

connection to the grid. Every device is required to record the time of the 

first connection (T0) to the grid, as well as the total time the device 

remained connected to the grid (Tc). Considering Ct as the current time 

when a device computes the availability value, we assume:

Tc
fa ~ Ct-T0

High availability contributes to better utility value, since we do not want 

the scheduler running in a device that keeps disconnecting or crashing;

• Available CPU Power (f4): describes how powerful (in terms of CPU) the 

device is and how much of its CPU is available. As presented later in 

Chapter 5, the performance of the system is better when the scheduler is 

running on powerful devices. For this reason, we consider that devices 

with higher available CPU power should have higher utility. Following 

the same reasoning used for f2, we have:

Chapter 4. Proposed Home Grid
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1

where available_cpu_frequency is the frequency of the available CPU 

power and is > 1 MHz. If available_cpufrequency < 1, U is set to 1, so 

that when we normalize the value of this function (see later in this 

section), its utility is set to 0 (zero);

Considering the cases for normalization presented earlier in this section, and 

based on the description of the influencing factors above, we can say that fi and f3 

fall into the case (1) of normalization, while f2 and f* follow case (2).

In this thesis, we want devices to be able to compute their own utility values, 

since we do not have a device coordinating the election, and we also do not have a 

central system that can provide information about the other devices (like in 

conventional grid systems) in order to generate the matrix X.

Therefore, we adopt pre-defined maximum and minimum values (see below). 

This way, assuming that Xj is the value of the factor fj for the device, we have 

adopted the following rules for computing the normalized value Uj:

1) In case better utility is achieved with a bigger value of a certain factor:
Xy-miny 

1 maxy-miny

Where maxj and minj (max/ > miny) are the pre-defmed maximum and 

minimum values for fj mentioned above.

2) In case better utility is achieved with a smaller value of a certain factor:
maxy — Xj  

1 maxy-miny

3) In case better utility is achieved with the value of a certain factor being 

kept around x*:
' Xy-miny

Xj, miny <  Xj <  x*
x* -miny

maxy — Xj
Xj, x* < x j  < m a xj

, maxy-x*
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Considering fj, we could define a maximum power supply (maxi) of 100% 

(device AC power) and a minimum (mini) of 0% (with 50% representing a device 

running on battery with 100% of power as specified earlier in this section).

As for fj (j = 2, 3, 4), maxj is set to 1, while minj is set to 0.

Once the normalized value is computed for all factors, the total utility u for the 

device is computed as follows:

7 = 1

Weights (W = {wj}, j = 1,2, ..., m) can also be defined for each factor. In this 

case, we can have a generic formula to compute the total utility:

where 0 < wj < 1 and EyLi wj = 1. Factors considered more relevant for the 

computation of the utility value should have higher weight.

Proposed Scheduler Election Algorithm

Once a device finds out that the scheduler has crashed, it computes its own utility 

value (devices set as not scheduler capable -  NSC -  have utility value of “-1”) and 

then broadcasts it in a specific message (SCHEDULERFAILURE) that indicates 

that the failure was found and the election process is being started. After 

broadcasting that message, scheduler capable (SC) devices set a timer for T seconds, 

while NSC devices set the timer for (2 x T) seconds.

The pseudo-code in Figure 25 implements the step above. The startElection 

procedure should be invoked when a consumer or provider fail to communicate with 

the scheduler. After the execution of this code, the scheduler failure message should 

be broadcast, the timer started and those devices that are scheduler capable should 

set themselves as a candidate.

These timers count the time that devices have to wait for the completion of the 

election process. If the election has not been completed when then timer reaches its 

timeout, the timer’s owner restarts the election process by attaching its own utility 

value to a RESTART_ELECTION message that is also broadcast (the device is not 

required to compute the utility value again).

m

m

69



Chapter 4. Proposed Home Grid

1. startElection() {
2. startElection(SCHEDULER_FAILURE);
3. }
4 .
5. startElection(message) {
6. utility = computeUtility();
7. broadcast(message, currentScheduler, utility);
8. if (schedulerCapable IS TRUE) (
9. timer.start (T);
10. isCandidate = TRUE;
11. } else (
12. timer.start(2*T);
13. }
14. }

Figure 25 - Pseudo-code for the start of an election process.

The pseudo-code in Figure 26 shows an example of how the election timeout can 

be handled. This code uses the startElection(message) procedure in Figure 25.

1. handleElectionTimeout() {
2. if (isCandidate IS TRUE) {
3. currentScheduler = THIS;
4. broadcast(SCHEDULER_ELECTED, utility, THIS);
5. coordinator.startRecoveryTimer();
6. } else (
7 . startElection(RESTART_ELECTION);
8 . }

9. }

Figure 26 - Pseudo-code for the election component handling the election timeout.

When a device receives the SCHEDULER_FAILURE message, it computes its 

own utility value (“-1” for NSC devices) and compares it to the one received with 

the message. If the computed utility is greater than the one received with the 

message, the device broadcasts its utility (HIGHER_UTILITY message) to indicate 

that it is now a candidate and starts a timer (//) with T seconds. If the computed 

utility is less than or equal to the received one, the device stops any timer that have 

already been initiated, disregards itself as a candidate, then starts another timer (t2) 

with (2 x T) seconds, and awaits for the final decision about the new scheduler or 

until t2 reaches the timeout, when it should restart the election.

An implementation for the steps above is presented as pseudo-code in Figure 27. 

The condition is the line 2 is to avoid the code between the lines 3 and 31 to be 

executed multiple times in the cases where more than one component identifies the 

scheduler’s failure at the same time.
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If the timer of the current candidate reaches the timeout (which means that it has 

not received any greater utility value than its own), it broadcasts another message 

(SCHEDULER_ELECTED) with its utility value attached, to announce itself as the 

new scheduler, and starts the process to recover the status of the job’s queue (see the 

pseudo-code in Figure 26).

The reason for t2 being longer than tl is to avoid more than one candidate 

declaring themselves as the scheduler at the same time.

1. handleSchedulerFailureMessage(receivedutility) {
2. if (electionStarted IS FALSE) {
3. if (schedulerCapable IS TRUE) {
4. local_utility = computeUtility();
5. if (local_utility > received_utility) {
6. broadcast(HIGHER_UTILITY, local_utility);
7. timer.start(T);
8. isCandidate = TRUE;
9.
10. 
11. 
12. 
13. 
14 .
15.
16.
17.
18.
19.
2 0 . 
21. 
22. 
23.

} else {
isCandidate = FALSE;

if (timer.started IS TRUE) { 
timer.stop(); 
timer.start (2*T);

}
} else {

if (timer.started IS FALSE) { 
timer,start(2*T);

}
}
electionStarted = TRUE;

Figure 27 - Pseudo-code for the election component handling the SCHEDULE_FAILURE
message.

Since we assume that there is no guarantee that the broadcast messages are 

delivered, it may also happen that some devices do not receive the announcement 

message from the new scheduler or even the HIGHER_UTILITY messages. Those 

devices may attempt to restart the election or, if there is a candidate that has not 

received the messages, announce another scheduler as elected. If any device that 

received the new scheduler’s announcement receives a RESTART_ELECTION 

message or a SCHEDULER ELECTED from a device with lower utility value 

(including the scheduler itself), it then broadcasts the ELECTION COMPLETE 

message with the address and utility value of the elected scheduler. If a new
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SCHEDULERELECTED message brings a higher utility value than the one from 

the previous SCHEDULERELECTED message, we have two possible behaviours:

• The message is received after the recovery process is complete: devices 

keep the active scheduler and inform the sender about it, so that the 

system can continue working;

• The message is received during the recovery process: the devices assume 

the sender as the new scheduler and start a new recovery process; they 

also inform the previous scheduler of the change, so that the device 

running it can also take part in the recovery process.

It may also be possible that, due to multiple losses of packets in the network, a 

group of devices do not receive the SCHEDULER ELECTED message, and ends up 

electing another scheduler among themselves constituting a partition. When this 

happens, we use the same mechanism for detecting the presence of multiple 

schedulers and synchronizing them as after a network partition. This mechanism is 

explained later in this chapter.

The pseudo-code in Figure 28 shows the behaviour of the election component 

when it receives the SCHEDULER ELECTED message. The condition in the line 3 

is to check if the component has already received such message from the same 

scheduler before, in which case no further processing is required. The lines 5 to 17 

implement the behaviour in the case where the device processing the message also 

runs the scheduler. Since we consider factors such as the connected time to the grid 

for the computation of the utility value, we expect a low probability of devices 

computing the same utility value. However, if that happens, the decision of the new 

scheduler is done randomly by adding a random number between 0 and 1 to the 

previous utility and broadcasting the result. This situation is implemented by the 

code in the lines 6 to 11. Eventually one of the devices competing for the scheduler 

role will end up with a higher utility value and be elected, being acknowledged by 

the losing devices, which will start the recovery process.
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1 .
2 .
3.
4 .
5.
6 .
7 .
8 .
9.
10. 
11.  
12 . 
13. 
14 .
15.
16.
17 .
18 .
19.
20. 
21.  
22 . 
23.

handleSchedulerElected(senderUtility, newScheduler) {
timer.stop ( ); 
electionStarted = FALSE;
if (currentScheduler IS NOT newScheduler) { 

if (THIS is currentScheduler) {
if (utility IS senderUtility) {

//generates a random number between 
//0 and 1 and adds it to the utility 
random = RANDOM(0, 1); 
utility = utility + random; 
broadcast(SCHEDULER_ELECTED, utility, 

) else if (utility > senderUtility) {
broadcast(SCHEDULER_ELECTED, utility, 

) else {
currentScheduler = newScheduler; 
coordinator.startRecovery();

} else {
currentScheduler = newScheduler; 
coordinator.startRecovery();

)
}

}

THIS); 

THIS);

Figure 28 - Pseudo-code for the election component handling the scheduler elected message.

4.5.3 Recovering the Scheduler

Once the new scheduler has been selected, it is necessary to recover its status, 

which includes:

(i) Reconstructing the local queue of jobs;

(ii) Finding the correct identity to be assigned to the next job sent by a 

consumer.

After receiving the SCHEDULER_ELECTED message, active consumers send 

to the new scheduler the global ID of the last job accepted by the previous scheduler 

(RECOVERED message), while active providers send the queue with known jobs 

and the queue with the completed jobs (RECOVER QUEUE message). The 

procedure coordinator.startRecovery called in the lines 16 and 20 in the Figure 28 

represent this step. The coordinator component then invokes the corresponding 

procedures in the consumer (presented in the Figure 23) and provider (presented in 

the Figure 24) components.
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1. startRecovery() {
2 . lastKnownID = jobsSent.lastJob.GLOBAL_ID;
3. send (RECOVERED, scheduler, lastKnownID);
4. }

Figure 29 - Pseudo-code for the ID recovery performed by the consumers.

1. startRecovery() {
2. send(RECOVER_QUEUE, scheduler, jobs, completedJobs);
3. }

Figure 30 - Pseudo-code for the queue recovery performed by the providers.

The scheduler then identifies the greatest global ID (referred to in this thesis as 

the recovered ID) from the IDs sent by consumers and from the ID of the last job in 

the queues sent by providers (note that the queues are ordered by the global ID). Jobs 

submitted after the recovery process will be assigned with a global ID greater than 

the recovered ID.

The scheduler’s queue is recovered by putting together the jobs known by 

providers and removing those that have already been processed.

The pseudo-codes in Figure 24 show how the scheduler handles the recovery 

messages. For the handleRecoverQueue procedure, it is assumed that the 

pendingJobs and the completedJobs queues are ordered by the jobs global IDs. The 

updatePedingJobs and the updateCompletedJobs are not required to keep such order 

in the scheduler’s local data structure, since the scheduling process is done based on 

the lists sent by the providers, which are expected to be ordered.

1. handleRecoverlD(jobID) {
2. if (jobID > lastlssuedID) {
3. lastlssuedID = jobID;
4. }
5. }
6 .
7. handleRecoverQueue(pendingJobs, completedJobs) {
8. handleRecoveredID(pendingJobs.lastJob);
9. handleRecoveredID(completedJobs.lastJob);
10. updatePendingJobs(pendingJobs);
11. updateCompletedJobs(completedJobs);
12. }

Figure 31 - Pseudo-code for the recovery performed by the scheduler.

When a device that was not active during the recovery process becomes active 

again, its registration component should receive the recovered ID from the new
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scheduler. The recovered ID is then forwarded to the coordinator component that is 

responsible for communicating with any consumer or provider component to be 

activated on that device.

Consumers then have to resubmit all their pending jobs that have a new global ID 

greater than the recovered ID; whereas providers discard all the jobs in their queues 

that have a global ID greater than the recovered ID, since it is most likely that the job 

may have another global ID assigned, or that the consumer is not active to be 

informed of the change on the ID.

Providers also send the queue of completed jobs to the scheduler, so the latter 

can update its own local queue, completing the registration process of that provider, 

and allowing the returning provider to start sending the queues and ranges as part of 

the scheduling process.

After the recovery process, when the new scheduler receives an unknown job 

with global ID smaller than the recovered ID, two actions are possible:

a) The job is discarded if it is sent by a provider during the scheduling 

process;

b) The job is added to the scheduler’s queue when it comes from a reminder 

message from a consumer.

At the beginning of the recovery process, the new scheduler starts a timer for a 

short amount of time T seconds that indicates how long the recovery process should 

last. After that time, the scheduler checks if there are still recovery messages to be 

processed; if that is the case, the timer is reset for another T seconds. This process 

continues until there are no more recovery messages to be processed when the last T 

seconds have elapsed, and the scheduler sends a RECOVERYCOMPLETE 

message, indicating that consumers and providers can be (re)activated.

The pseudo-code in Figure 32 shows how the scheduler handles the recovery 

timeout. It assumes that the timer for the recovery process has been started after the 

election and that the recovery messages that arrive are queued until they can be 

processed.
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1. handleRecoveryTimeout() {
2. if (hasMoreRecoveryMessages() IS TRUE) {
3. timer.startRecoveryTimeout(T);
4. } else {
5. broadcast(RECOVERY_COMPLETE);
6 . }
7. }

Figure 32 - Pseudo-code for the scheduler handling the recovery timeout.

The main objective for this protocol is to allow a quick restart of the system with 

the recovery of most of the previous status of the scheduler, without much 

interaction with consumers, especially those running on battery.

4.5.4 Provider Crash

Providers and consumers are the nodes in our grid that are most likely to leave 

the Grid at any time. If the provider crashes immediately after sending its list of 

candidate jobs to the scheduler, the scheduler will not be able to contact that provider 

in order to deliver the information about the selected job and the updated list. When 

this happens, the scheduler simply changes back the status of the selected job to its 

initial “available” state, and waits for another provider to indicate that it is capable of 

processing that job.

If the provider stops working while processing a job, the rest of the system will 

continue to work. Eventually, the consumer reaches a timeout for that job and may 

choose to broadcast the job description again. In this case, once the scheduler 

receives the job again, it attempts to contact the provider that was selected to process 

the job in order to check if it is still working; if the communication with the provider 

fails, the scheduler changes the status of the job to “available”, so it can be processed 

by another provider; otherwise, no further action is required from the scheduler.

It may be possible that the provider has not completed the job because its 

processor has been highly used by other applications. For this reason, once the 

provider identifies that the retrial message is for the same job it is processing, the 

provider re-evaluate the requirements for processing the job against its own 

resources to check if it is still able to carry on processing the job. If the provider 

finds out that it cannot match the required resources for executing the job (e.g. 

insufficient available CPU), the provider stops processing the job and sends a 

CHANGE STATUS message (carrying the job global ID) to the scheduler to change
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the status of the job to “available”, so that another provider can process it. The 

pseudo-code that implements this behaviour is presented in Figure 18.

4.5.5 Consumer Crash

When a consumer sends a job to the grid, it specifies the description of the job, 

including where providers can get the execution code/file, and the I/O data. If the 

location of these is the consumer itself, it means that the consumer must stay on 

during the period of execution of the task, so the provider selected to execute the job 

can access the data.

If the consumer crashes before the provider is able to get all the necessary 

information to execute the job, the provider informs the scheduler of the failure 

(using the CONSUMERUNAVAILABLE message, carrying the ID of the 

unavailable consumer), and all the jobs from that consumer are removed from the 

scheduler.

The pseudo-code in Figure 33 shows how the providers handle the connection 

timeouts for the messages they send. The lines 2 and 3 implement the case described 

above, where the provider informs the scheduler that a consumer has crashed. The 

lines 4 to 5 show that the provider starts an election if any of the messages 

exchanged with the scheduler fail to be delivered.

1. handleConnectionTimeout(message, job) {
2. if (message IS JOB_COMPLETION_CONSUMER) {
3. send(CONSUMER_UNAVAILABLE, scheduler, job.owner)
4. } else if (message IS JOB_COMPLETION_SCHEDULER
5. OR message IS SCHEDULE_REQUEST
6. OR message IS CHANGE_STATUS
7. OR message IS RECOVER_QUEUE
8. OR message IS CONSUMER_UNAVAILABLE) {
9. coordinator.startElection ();
10 . }
11 . }

Figure 33 - Pseudo-code for the provider handling connection timeout.

Another option is to consider setting the jobs from the consumer as “suspended” 

and when the consumer becomes online again, during the registration process, the 

scheduler asks the consumer if the jobs must be set as “available” again, or removed. 

The problem with this approach is that the jobs may stay in the scheduler’s local 

queue for a long time, just increasing its size and, consequently, increasing the need
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for processing power to schedule a job, affecting negatively the performance of the 

system.

In this thesis (including the model checking in Chapter 7), we use the first option, 

which is simpler and involves less network usage.

4.5.6 Job Replication

In our proposed scheduling model, it is not possible to guarantee that a certain 

job will be executed only once. There might be a case where a provider (PI) 

executes a job and becomes unavailable before sending the result to the consumer 

and informing the scheduler that the job has been completed. If the same provider 

stays off for a period that is long enough for the consumer to detect a timeout for that 

job, another provider (P2) might be selected to execute this job.

Once online again, PI then sends a JOB PENDING message to the scheduler to 

indicate that the job has been executed, but with results pending submission to the 

consumer that owns the job. The scheduler then checks the status of the job. If the 

job had not been allocated to another provider, the scheduler would send a 

PROCEED message to PI, indicating that PI can complete the job execution 

process. This is to avoid extra communication with the consumer, which may be 

running on battery power.

Considering the case where PI executed a job and became unavailable before 

informing the consumer and the scheduler, and that the job has already been 

reallocated to P2, there are a number of strategies that can be adopted. Here we list 

four possibilities:

1. The scheduler sends a PROCEED message to PI and allow both 

providers to send the results to the consumer without any concurrency 

control. In the case where one of the providers fails, the other one may be 

able to deliver the result of the job execution. This is the simplest solution 

and may not be the most efficient solution, especially because it may 

require more processing and communication from consumers.

2. The scheduler may send a HOLD message to PI after verifying that P2 is 

still alive (using an “is alive?” message). If the HOLD message makes PI 

wait for the completion of the job and not process any other job, there 

may be waste of processing power of PI if the job is big and takes a long 

time to be executed. However, this option would avoid the need for
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concurrency control as a result of both PI and P2 trying to write the 

results to the same place at the same time. It may also happen that P2 

crashes just after replying to the “is alive?” message sent by the 

scheduler, causing the job not to be completed by any of the providers 

before the next timeout for the job on the consumer. To avoid this 

situation, the scheduler can send periodic “is alive?” messages to P2, and 

whenever it finds that P2 has crashed, it sends a PROCEED message to 

PI. At this point, the scheduler will only keep checking if PI is alive in 

the case where P2 comes back online (and it is then sent a HOLD). If P2 

completes the job, the scheduler sends a CANCELPROCESS message 

to PI, allowing it to continue with the processing of other jobs. The use of 

the “is alive?” message increases the network usage and may 

considerably degrade the performance of the system if this situation 

repeats very often, and for many providers. Figure 34 shows a flow 

diagram to illustrate this approach.

Figure 34 - A solution to avoid job replication using “is alive?” messages.

3. The scheduler may send the HOLD message to P2, which may respond to 

the scheduler with a HOLDSUCCESS message, which makes the 

scheduler send a PROCEED message to PI; or P2 may respond with a 

JOBCOMPLETIONSCHEDULER message, which indicates that the
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job has been executed and the results are being sent to the consumer. If 

the JOBCOMPLETIONSCHEDULER message is received, the 

scheduler then sends a CANCEL PROCESS message to PI, allowing it 

to process other jobs. This alternative would also avoid the need for 

concurrency control for writing the results, although it may waste P2’s 

processing power if it is not allowed to process other jobs during the 

“hold” period; in any case, PI may not be reliable and may crash again or 

the results may take too long to be sent to the consumer/repository due to 

the size of the data, network congestion or to unavailability of the 

consumer/repository. If the scheduler gets a connection timeout while 

sending the HOLD message to P2, the scheduler sends the PROCEED 

message to PI. However, it may have happened that P2 has already 

finished the submission of the result, but was not able to send the final 

message to the scheduler. In this case, the consumer or the shared 

repository should be able to tell PI that it does not need to resubmit the 

result, but only to send the final message to the scheduler. Figure 35 

shows a flow diagram to illustrate this approach.

Figure 35 - A solution to avoid job replication that gives preference to the First provider that has
completed the job.
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4. Another option would be to allow both providers to run the job and to 

make use of concurrency control strategies. If the consumer specifies 

another location (e.g., a remote database, a tuple space, data grid) for the 

data to be stored, we assume that the chosen repository must handle the 

concurrency control. If the consumer is responsible for receiving the 

results, we can use an Optimistic Locking strategy [89] for concurrency 

control, where the systems do not try to avoid collision, but identify them 

and take further action. In this case, once the consumer identifies that 2 

providers are sending the results, it might simply receive from both and 

ignore one; or it might ask the last one to send a message to wait, giving 

the “writing lock” to the first provider. In cases where a lock is used, the 

consumer must use some mechanism to identify any crash of the device 

holding the lock (e.g. use a timeout if the lock holder does not send any 

data for a certain period). If a crash of the lock holder is identified, the 

consumer then gives the writing lock to the other provider. The use of 

Optimistic Locking is recommended for systems with low collision rates 

and is scalable when compared to the Pessimistic Locking strategy. With 

the latter strategy, the write lock would always be given to the first 

provider, and would block any other provider to write the result, and the 

consumer itself would not be able to read it until the write lock has been 

released. The Pessimistic Locking strategy is easy to implement, but does 

not scale when multiple entities are trying to access the data at the same 

time. Since we only expect the consumer itself to read the data once it has 

been written, Pessimistic Locking emerges as a good alternative for our 

system.

Due to time constraints, it was not possible to evaluate all these options in order 

to find out which one of them produces the best performance results; hence, we have 

opted for using the simplest solution (1) in the simulations presented in chapter 5. 

The evaluation of these alternatives and the proposition of others are left as future 

work.

81



Chapter 4. Proposed Home Grid

4.5.7 Network Partition

Our proposed system does not present a specific mechanism to identify that the 

network has been partitioned. In fact, if the partition lasts only for a short period, the 

system may not even identify the failure and continue to work as if nothing has 

happened.

Long lasting partitions are more likely to require further activity from the 

components in the grid, since they allow more time for those devices in the partitions 

not containing the active scheduler to see timeouts and then detect the absence of a 

scheduler.

When this happens, those devices will attempt to elect a new scheduler. If there 

are no candidates for the role, the devices will keep periodically trying the election, 

which will stop it under one of the following circumstances:

• a candidate appears in the partition and a new scheduler is elected;

• the partitions merge and an active scheduler from the other partition 

replies to the attempt of election;

• a JOBDESCRIPTION message (broadcast by consumers immediately 

after receiving the global ID from a scheduler) arrives, so that the devices 

will try to register themselves with the scheduler that issued the global ID 

for the job described in that message (this may also mean that the 

partitions have merged).

When the separated devices manage to elect a new scheduler, there will be a 

scheduler active in each partition, and when the partitions merge again, the 

participants should be able to identify the presence of the two schedulers, so that 

further action can be taken in order to keep only one of the schedulers active.

Assume that after the partition, two grid systems G1 and G2 became active. After 

the merge, devices in G1 can receive any JOBDESCRIPTION message from G2, 

and vice-versa. Consumers in one active grid will discard these broadcast messages. 

However, providers should always check whether the scheduler that issued the 

described job is the same one that they know.

If the scheduler is different, it means that there is a high possibility of two 

schedulers being active (as mentioned above, JOBDESCRIPTION messages are 

sent immediately after consumers communicate with their scheduler). In this case,
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providers that identified the problem should send a MERGE message to the 

schedulers, informing them the presence of each other.

The reasons why only providers identify the merge in active grids are:

• We want to avoid any extra processing for consumers and they will not 

become inconsistent with the presence of another scheduler;

• If providers are allowed to continue working with the presence of more 

than one scheduler, they will add jobs to their local data structures that 

will not be recognized by their own scheduler, and then be removed after 

they receive the SCHEDULE_REQUEST_RESPONSE message from the 

scheduler. This will only add extra processing for the providers with the 

matchmaking and extra usage of the network with the transfer of job 

descriptions that will be discarded.

The pseudo-code in Figure 36 extends the one presented in the Figure 18 by 

adding the check whether the scheduler that registered the job is the same as the one 

known by the provider processing the job description. The lines 20 to 23 implements 

the submission of the MERGE messages to both active schedulers.

I .
2 . 
3.
4 .
5.
6 .
7 . 
8 .
9.
1 0 .
I I . 
12 . 
13. 
14 .
15.
16. 
17 . 
18.
19.
2 0 . 
21. 
22. 
23. 
24 .

handleJobDescription(job) {
if (job.scheduler IS currentScheduler) {

local_status = coordinator.getStatus(); 
processable = matchmake(local_status, 

job.DESCRIPTION);
if (isProcessingJob AND job IS chosenJob) { 

if (processable IS FALSE) { 
stopExecutingJob ();
send(CHANGE_STATUS, scheduler, job.GLOBAL_ID);

}
} else {

if (processable IS TRUE) {
classifyAsProcesable(job);

} else (
classifyAsNotProcesable (job);

}
jobs.add(job); 
requestSchedule();

} else {
send(MERGE, job.scheduler, currentScheduler); 
send(MERGE, currentScheduler, job.scheduler);

Figure 36 -  Updated pseudo-code for the providers handling the job description.
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Once the schedulers receive the MERGE message, they compute their utility 

values (using the formulae presented in section 3.4.2) and send them to each other 

(using the MERGE UTILITY message). They also send the size of the local data 

structure, which indicates the number of jobs known by the scheduler and yet to be 

completed, representing an additional factor for the utility value (fs).

Each scheduler compares its own fs value and the one with smaller value 

increases the utility value received from the other scheduler by 1. This procedure 

corresponds to applying the category ( 1) of normalization with max5 equals to 

biggest fs, and mins equals to the smallest fs. The idea is that the scheduler with the 

highest number of jobs is preferred, since it would avoid more usage of the network 

with the transfer of the data.

The scheduler with the lowest utility value (considering fs) stops its activity as a 

scheduler and sends a SYNC message with its own data structure to the winning 

scheduler. After receiving the SYNC message, the winner scheduler updates its own 

data structure, and then broadcasts a MERGECOMPLETE message that carries the 

information about the winning scheduler, so that the components can update their 

own information about the scheduler.

The handleMerge procedure in the pseudo-code in Figure 37 implements the 

behaviour of the schedulers when they receive the MERGE message. Here we also 

add a random number from 0  to 1 to be used to decide which scheduler should be the 

winning one, in the case where both computed utilities have the same value, as we 

show in the handleMergeUtility procedure.

In the lines 24 and 30 of Figure 37, the scheduler with higher utility starts a timer 

to measure the time it has to wait for the SYNC message from the losing scheduler. 

If after T seconds the SYNC message does not arrive, the winning scheduler assumes 

that the other scheduler has crashed and broadcasts the MERGE_FAILED message 

(see the handleSyncTimeout procedure in Figure 37). If, for some reason, the 

winning scheduler fails before the losing one can complete the submission of the 

SYNC message, the losing scheduler then broadcasts the MERGE_FAILED message 

(see the handleConnectionTimeout procedure in Figure 37).

When a device receives the MERGE FAILED message, the coordinator assume 

the sender as the new scheduler, as shown in the pseudo-code in Figure 38 

(handleMergeFailes procedure). The providers that had a different scheduler before 

the merge process will have to resubmit their pending jobs and completed jobs

Chapter 4. Proposed Home Grid
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queues (sendMergeRecoverQueue procedure). Consumers will not need to take 

further action, so that we can avoid further processing on them.

Since the broadcast channel is not reliable, some components may not receive the 

MERGECOMPLETE message and attempt to communicate with the loser 

scheduler (now inactive). The inactive scheduler then replies to the sender with a 

MERGE_COMPLETE message using a reliable channel.

4.6Summary

In this chapter, we have described our proposal for a scheduling system where 

the scheduler can run on limited devices. The proposal includes de description of the 

registering of devices, the discovery of resources, and the submission, scheduling 

and execution of jobs.

We have also explained how our scheduling system deals with failures, including 

the proposition of an election mechanism to determine a new scheduler when the 

current one fails.

The fault tolerance mechanism that aims to avoid job replication still requires 

further investigation to define the most appropriate solution. In this chapter, we have 

listed four possible solutions for this problem and have decided to use the simplest 

one in our simulations, but we cannot guarantee that this solution provides the best 

performance results, and further performance tests are required.

In Table 4, we present a brief summary of the messages in the protocol. The 

messages are listed following the order of appearance in this chapter.

In the Appendix C at the end of this thesis, we present all the pseudo-codes used 

in this chapter organized by the designated components.
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1.
2 .
3.
4 .
5.
6 .
7 .
8 .
9.
10.
11.
12. 
13. 
14 .
15.
16.
17.
18.
19.
2 0 . 
21. 
22 . 
23. 
24 .
25.
26.
27.
28.
29.
30.
31.
32.
33. 
34 .
35.
36.
37.
38.
39.
40.
41.
42.
43. 
44 .
45.
46. 
47 .
48.
49.

handleMerge(other_scheduler) {
mergeUtility = computeMergeUtility();
size = pendingJobs.size + completedJobs.size;
mergeRandom = RANDOM(0, 1);
send(MERGE_UTILITY, other_scheduler, mergeUtility, 

size, mergeRandom);
}

handleMergeUtility(message, received_utility, received_size, 
received_random) {

size = pendingJobs.size + completedJobs.size; 
if (size > received_size) {

mergeUtility = mergeUtility + 1;
} else if (received_size < size) {

received_utility = received_utility + 1;
}
if (mergeUtility IS received__utility) { 

if (mergeRandom IS received_random) { 
send(MERGE, message.sender, THIS);

} else if (mergeRandom < received_random) { 
send(SYNC, pendingJobs, completedJobs); 
stopLocalScheduler();

} else (
startSyncTimer();

}
} else if (mergeUtility < received_utility) ( 

send(SYNC, pendingJobs, completedJobs); 
stopLocalScheduler();

} else {
startSyncTimer ();

}
)

handleSyncMessage(pendingJobs, completedJobs) ( 
stopSyncTimer(); 
updatePendingJobs(pendingJobs); 
updateCompletedJobs(completedJobs); 
broadcast(MERGE_COMPLETE);

}

handleSyncTimeout() {
broadcast(MERGE_FAILED);

)

handleConnectionTimeout(message) { 
if (message IS SYNC) (

broadcast(MERGE FAILED);

Figure 37 - Pseudo-code for the schedulers handling the merge process.
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1. handleMergeComplete(message) {
2. currentScheduler = message.sender;
3. }
4 .
5. handleMergeFailed(message) {
6. currentScheduler = message.sender;
7. provider.sendMergeRecoverQueue();
8 . }
9.
10. sendMergeRecoverQueue() {
11. send(MERGE_RECOVER_QUEUE, currentScheduler,
12. jobs, completedJobs);
13. }

Figure 38 - Pseudo-code for the merge completion and failure messages.

Table 4 - The summary of the messages used in the proposed protocol.

Message Description

1 REGISTRATIONREQUEST Message that is broadcast by the 

components to find the location of the 

scheduler and inform their ID to it.

2 REGISTRATIONRESPONSE Message sent by the scheduler to 

inform the components that the 

registering process is complete.

3 EXISTINGLD Message sent by the scheduler to 

inform the registering components that 

it should generate a new ID and try 

again.

4 JOBSUBMISSIONREQUEST Message sent by the consumers to 

submit a job to the scheduler.

5 JOBSUBMISSIONRESPONSE Message sent by the scheduler to the 

consumer carrying the job’s global ID.

6 JOBDESCRIPTION Message broadcast by consumers to 

distribute the job description to the 

providers.

7 SCHEDULE_REQUEST Message sent by the providers to the 

scheduler to request the scheduling of a 

job.

8 SCHEDULE_RESPONSE Message sent by the scheduler to the
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providers with the result of the 

scheduling process.

9 JOBCOMPLETIONCONSUMER Message sent by the providers to the 

consumers to inform the completion of 

a job.

1 0 JOBCOMPLETIONSCHEDULER Message sent by the providers to the 

scheduler to inform the completion of a 

job.

11 CANCEL JOB Message that consumers send to the 

scheduler to cancel a job.

1 2 S CHEDULERF AILURE Message broadcast by the components 

to indicate that the scheduler has failed 

and that the election of a new scheduler 

should begin. This message also carries 

the utility value of the device.

13 RE STARTELECTION Message broadcast by the components 

to restart the election after their timers 

reach the timeout and a new scheduler 

has not been elected.

14 HIGHER_UTILITY Message broadcast by a scheduler- 

capable component with a higher utility 

than the one received from another 

component.

15 SCHEDULERELECTED Message broadcast by the elected 

scheduler to indicate the end of the 

election process.

16 RECOVERED Message sent by the consumers to the 

scheduler to inform the highest global 

job ID that they know.

17 RECOVERQUEUE Message sent by the providers to the 

scheduler to inform the jobs that they 

know.

18 RECOVERYCOMPLETE Message broadcast by the scheduler to
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indicate the end of the recovery 

process.

19 CHANGESTATUS Message sent by the providers to the 

scheduler when they are not able to 

complete a job, so that the scheduler 

can set the status of job to “available”.

2 0 CONSUMERUNAVAILABLE Message sent by the providers to the 

scheduler to indicate that a particular 

consumer is not available.

2 1 JOBPENDING Message sent by the providers to the 

scheduler to indicate that a particular 

job has been completed, but with the 

results pending submission to the 

consumer.

2 2 PROCEED Message sent by the scheduler to the 

providers to allow them to continue 

with the execution of a job in case of 

the same job being allocated to more 

than one provider.

23 HOLD Message sent by the scheduler to 

providers to request the latter to 

suspend the processing of a particular 

job.

24 CANCELPROCESS Message sent by the scheduler to the 

providers to request the latter to stop 

the processing of a particular job.

25 HOLDSUCCESS Message sent by the providers to the 

scheduler to indicate that the 

suspension of the job processing was 

successful.

26 MERGE Message sent by the providers to co­

existing schedulers, so that they can 

start the merging process.
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27 MERGEUTILITY Message that co-existing schedulers 

send to each other to inform their own 

utility values in order to define the 

winning scheduler.

28 SYNC Message used by the losing scheduler 

to send its own data structure to the 

winning one.

29 MERGECOMPLETE Message broadcast by the winning 

scheduler to indicate the end of the 

merging process.

30 M ERGEF AILED Message broadcast by the scheduler 

that is not able to communicate with 

the other one during the merge process.

31 MERGERECOVERQUEUE Message sent to the scheduler by the 

providers that used to communicate 

with the scheduler that crashed during 

the merge process.
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5 Evaluation of Scheduling Performance

In this chapter, we present how the evaluation of our proposed scheduling 

mechanism was carried out; the results of this evaluation are presented in the next 

chapter.

5.1 Methodology

There are several ways of evaluating this kind of system. One of them is by the 

use of simulations, where we can determine the behaviour of the system and study its 

behaviour without having to implement it, saving time and effort.

Another common evaluation method is formal verification techniques, such as 

model checking, which can verify a design statically and automatically without test 

benches [90], Compared with simulation, the superiority of model checking is full 

automation with useful counterexamples as by-product. However, state explosion 

that constantly occurs in large-scale systems is the main problem in model checking, 

making it difficult to complete the verification.

Another advantage of simulations is that it is easier to collect statistical data on 

performance to compare with the data from other systems, which makes it the first 

choice to evaluate systems in the literature.

Since we are also interested in the performance of the proposed meta-scheduler 

in spite of its correctness, we also opted for using simulations to compare our system 

with OLB (as explained in Chapter 6 ). Most of this chapter is dedicated to describing 

how our simulations were designed.

We have also used model checking to verify our system for some cases of 

network partition (see Chapter 7). Formal verification was chosen in this case 

because we do not compare our solution with others, since other grid systems do not 

provide any special fault tolerant mechanism for this kind of failure. Another reason 

was the time constraints, since it would take longer to implement these cases fully in 

the simulation framework.

Even though the model checking was used for a specific purpose, it also helped 

us to locate and fix problems with the protocol that could not be checked with the 

simulations, contributing to the correctness of our system.
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5.2Discrete Event Simulation

For the evaluation of this proposal we used discrete event simulation [91, 92], in 

which every change in the state of the model (e.g. sending a job, transferring a 

packet, etc.) corresponds to a time-stamped event placed in a queue to be executed 

serially and chronologically.

We have studied some simulations tools for grid systems: SimGrid [93], GridSim 

[94], EDGSim [91] and GangSim [95]. Most of them use the discrete-event concept. 

Some of them were developed for a specific purpose; GridSim, for example, focus 

on the simulation of grid economy, where the resource management is done based on 

concepts of Economics. Some of these tools support the use of real workloads for the 

simulations and the majority only supports the simulation of centralized job 

scheduling.

These tools have their own network model, and usually they are based on the 

Internet. We could not find any support for broadcasting messages in the network 

model of the tools studied. Since our proposal uses broadcast, we had to develop our 

own grid simulation tool.

Our tool was built using a discrete event simulation framework internally used in 

the School of Computing at the University of Kent [96]. The entities (simulation 

objects) in the simulation interact with each other through model queues as shown in 

Figure 39.

Figure 39 - Interaction between objects in the simulation.

The interaction between Entityl and Entity 2 is described in terms of work items, 

which represent the action to be performed, and carry some information such as the 

start time and the size of the task to be performed.

There is also another queue, which is not directly visible to the modeller, and is 

accessed by the simulation core. This queue contains the events which, in 

themselves, take no time, but typically represent the completion of some activity 

(work items), such as a processing step, a communications process, or a time-out. 

Each event marks a change in the state of the system, and it will typically enable new
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activities leading to the later occurrence of further events. The sequence is continued 

for as long as necessary to collect a view of the average behaviour of the system.

The events queue is updates by the simulation core when the simulation objects 

request the core to schedule/unscheduled an event. The events are ordered by their 

due time, which is computed by the simulation objects and provided by them to the 

core component.

The simulation core also maintains the clock of the simulation by repeatedly 

setting the current time to the due time of the next event to happen, when removing it 

from the events queue.

The simulation model also has a component responsible for collecting statistical 

data, such as average time between jobs, average delay on the network, etc.

All the objects that have been modelled in this thesis, and the relation between 

them, will be described further in this chapter.

5.3 Benchmarks

In order to simulate real devices, we first ran some benchmarks to collect real 

cost values for our simulation. The results of the benchmarks are presented in this 

section.

Processing Power - MFlops

To check the processing power, in terms of floating pointing operations, of some 

potential devices for the proposed computational Grid, we decided to run a series of 

benchmark tests with those devices we have available to create our test environment. 

For this evaluation, we have used the Linpack Benchmark [97], which consists of 

solving a dense 500x500 system of linear equations with one right hand side, Ax=b, 

in which the matrix A is generated randomly. This benchmark is very suitable for the 

purpose of our project, since, as mentioned before, one possible application for home 

grids involves SVD, which is also a computation over matrices.

The devices included in this benchmark and their respective specifications are:

• Set-top box (STB): a Philips TriMedia MHP Prototype 2000 with processor 

TM1300 running at 160 MHz, 32 MB SDRAM, 8 MB Flash Memory;

• Pocket PC: HP iPAQ with Intel® PXA255 processor, 64 MB of RAM 

memory and 32 MB of ROM flash memory, running Windows CE 4.2 and
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the Mysaifu Java Virtual Machine (JVM) [98], a free JVM for PDAs and 

Pocket PCs that aims to conform with the Java 2 Standard Edition (J2SE);

• Laptop HP: processor AMD Athlon XP 64-bit, 1.5 GHz of RAM memory, 

running Windows XP Home Edition and Java 2 Standard Edition (J2SE) 1.6;

• Laptop Dell: with an Intel Centrino Duo processor, 1 GB of RAM memory, 

running Windows XP Professional and Java 2 Standard Edition (J2SE) 1.6 .

• Smart phone Nokia N95: processor ARMI 1-based TI OMAP2420 processor 

running at 330 MHz, 64 MB of RAM memory, running Symbian OS v9.2 

S60 3rd Edition Feature Pack 1 and supporting Java Micro Edition (J2ME) - 

MIDP 2.0 profile.

• PlayStation 3 (PS3): game console equipped with a PowerPC-base Core 

processor, running at 3.2 GHz, having 512KB L2 cache, 256MB XDR Main 

RAM at 3.2GHz and 256MB GDDR3 VRAM at 700MHz; it also contains a 

60GB hard disk and can communicate via Bluetooth, USB2.0, IEEE

802.1 lb/g and Ethernet. Linux 2.6.23-rc6 is the operating system installed in 

this device and SableVM version 1.13 [99] is the Java Virtual Machine.

In our experiment, we have modified the Linpack Benchmark source code to 

make it run 1 0 0  (one hundred) times, so we could collect all the execution times and 

compute the average time for each device and avoid randomness in the results. The 

results are presented as a bar chart in Figure 40.
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Figure 40 - Average time of Linpack Benchmark

From these results we can also conclude that the average time for limited devices 

like the Pocket PC and the STB are much higher than the time for more powerful
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devices like the laptops. It is important to remember that when the benchmark was 

executed in the STB, no media content was being received/decoded, and loading 

from this could increase its average time. These results also give us an idea of which 

devices are capable of giving some contribution of processing power to the grid.

Processing Power - Mips

We also need to run a benchmark that gives us some values for common 

operations that are not based on float point processing. For this purpose we used the 

Dhrystone Benchmark, which is well described in [100].

The java implementation of the Dhrystone benchmark provided in [101] was 

used in this thesis. The results are expressed in VAX Mips, which represents the 

number of Mips (Million Instructions per Second) compared to a VAX 11/750 

machine. These results are presented in Figure 41.
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Figure 41 - Dhrystone benchmark results.

5.4 General Simulation Model

In order to simulate the grid with different scheduling mechanisms, we have 

adopted the abstract model for communicating nodes presented in Figure 42.
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Figure 42 - Abstract Simulation Model.
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The idea is to characterize the grid nodes (the devices that are participating in the

grid: consumers, providers and scheduler) by the modules:

• Application: for consumers, this module corresponds to the generation of jobs 

that are sent to the grid to be executed; in the case of providers, this module acts 

like an component of the grid, coordinating the requests for resources and jobs 

execution within the device hosting the provider; for the scheduler, it represents 

the scheduler itself, allocating jobs to providers.

• Socket: this module is an abstraction for the implementation of a communication 

protocol. It is responsible for receiving a message from the application and 

transmitting it through the network using a pre-defined protocol (e.g. TCP [102] 

and UDP [103]).

• The Link component represents an abstraction of the communication between 

grid nodes. In this thesis, this module is realized as presented in Figure 43.

Figure 43 - Realization of the Link component.

• Network Card: this is the component that is responsible for sending and 

receiving packets through the simulated network. For this thesis, network cards 

are characterized by the bandwidth for the communication. With this component 

as part of a grid node we are able to simulate devices with different network 

capabilities.

• Shared Network: this module, in this thesis, is assumed to be an active wireless 

Router.

Grid nodes are also characterized by a Processor module, which represents the 

processor of a device in terms of its computational power. In this thesis, we are 

describing this computational power according to the following two parameters 

values: MFLOPS and MIPS. The first value indicates the number of float point 

operations the processor can execute per second; the second represents the number of 

general instructions that can be executed per second by the processor. These two 

values are used to calculate how long each computation task in the simulation should
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last. This module works with the Local Scheduler module, which represents the 

operating system scheduler and controls the sequence of execution of the tasks in the 

grid node’s processor.

This modularization of the simulation model allows us to change the 

implementation of a certain module (the network card and/or socket, for example) 

without affecting the other modules.

5.4.1 Consumer

Each consumer generates groups of jobs that are sent to the grid. Each group of 

jobs has a maximum number of jobs (GROUP SIZES) that can be sent to the grid 

sequentially, without having to wait for the previous one to be completed. After 

sending GROUP SIZE jobs, the consumer application has to wait until all of them 

have been executed, before it starts sending another group. The interval between 

sending two consecutive jobs in the same group is computed by using a Uniform 

Distribution that gives Real values between 0 (zero) and a  seconds of simulated 

time. In most of the results presented in Chapter 5, we have used a =  0.5, which 

gives an average of 0.25 second of simulated time between job submissions.

After executing all the jobs of a certain group, the consumer application waits for 

an interval defined by an Exponential Distribution and then starts submitting another 

group of jobs. The parameter 2 for this distribution determines the load of the 

simulation. The average waiting time W is given by:

So, for example, if A is set to 0.01, it will give an average interval of 100 seconds 

of simulated time between groups submission; lower values for A reduce the average 

waiting time, increasing the number of groups submitted and, consequently, the load 

of the simulation.

5.4.2 Jobs and Work Items

In our simulation model, jobs are described by their computational size (Job_cs) 

expressed as a number of instructions, the input data and executable program size, 

and the resource requirement (minimum CPU speed, storage and network bandwidth, 

the type of Operation System, and the power source -  indicating if devices running 

on batteries are allowed).
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The job also specifies the proportion of common operations (mips Jactor) and 

the proportion of floating point operations (mflops Jactor). When the Processor of a 

grid node receives a job to be processed, it computes the duration of processing the 

job with both Mips (Pmips) and MFlops (Pmflops) components using the following 

formulas:

T , . . Job cs . .
1. duration _mips = -----——  x mips _ jactor

II. duration _ mflops =

Pmips 

Job cs x mflops _  factor
Pmflops

In the formulas I and II, duration mips represents how long the job would take to 

be processed if it uses only the Mips component of the Processor; while the 

duration jnflops indicates the duration of a job being processed only by the MFlops 

component of the Processor.

To compute the total time of processing a job (duration), the formula III is used: 

III. duration = duration _ mips + duration _  mflops

The work item is a component that carries temporal and statistical values related 

to all the steps of processing each job in the simulation model (e.g. the initial and 

final time of execution).

5.4.3 Size of messages

To estimate the size of data being transmitted between grid nodes, we use the 

number of bits that is most commonly used to represent the type of that data (e.g. 

integers are represented by 32 bits, while characters are expressed by 8 bits). The 

exception is the size of the input data used by the jobs, which is generated using a 

power law (Pareto) distribution, which is reported to be appropriate to model file 

sizes [104],

For example, in our simulation, a job is represented by its description, the job 

itself and the input data. The description consists of the GUID of the sender (which 

corresponds to 128 bits), of an ID of the job (represented by an integer -  32 bits) and 

the following values referring to the requirements for the job:

• CPU speed (Number of instructions): represented by a double value (64 bits); 

in our model, we specify this information in terms of Mips (Million
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Instructions per Second) and MFlops (Million Floating Point Operations per 

Second);

• Network Bandwidth (KBps): also characterized by a double value (64 bits);

• Battery: specified by a Boolean value (in 8 bits) that indicates if the grid node 

can be running on battery or not;

• Disk space (rotations per second): described by a double value (64 bits);

• Operating System (OS): represented by a byte value ( 8  bits); the value for 

each OS is pre-defmed.

Considering only the values, we assume that the size of the description of jobs is 

368 bits, which corresponds to 46 bytes. However, a piece of information identifying 

the values is also needed, for example, a tag to identify that a value FALSE 

corresponds to the requirement related to the battery usage. For this reason, we 

arbitrarily added 50 bytes to the size of the job description, resulting in a total of 96 

bytes.

Values for the size of the executable binary and for the input data can also be 

defined in our simulations, and they are set according to the experiment being 

performed, but are usually a lot more than 96 bytes.

5.4.4 Network Simulation
In order to send and receive messages, the applications in the simulation make 

use of sockets. As mentioned before, the sockets in this simulation are the 

implementation of communication protocols. For this thesis we use a simplified 

implementation of the User Datagram Protocol (UDP) [103] to broadcast messages 

(e.g. the job description sent by consumers), and a simplified version of the 

Transmission Control Protocol (TCP) [102] for any other type of communication.

In this thesis, sockets are implemented as pairs of socket components: one for 

sending packets (Sender Sockets) and another to receive packets (Receiver Sockets). 

Sender Sockets receive the message from the application, break it into small packets 

and forward these packets to the Network Card Output. The Receiver Sockets 

receive packets from the Network Card Input and, when all the packets of a certain 

message are received, the receiver socket then forwards the message to the
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corresponding application. Figure 44 illustrates the connections between these 

communication components.

N etw ork Card Shared
Netw ork

N etw ork Card

N e t w o r k  C a r d

O u t p u t

j Router
N e t w o r k  C a r d  

I n p u t

So cket m odule

Figure 44 - Connections between communication components

TCP Sockets

Here we use a simplified version of TCP that suits the purpose of our research. 

Our implementation of TCP uses a simple positive acknowledgment with 

retransmission (PAR) technique where for each packet sent, a positive 

acknowledgement must be received before the next packet can be sent (using 

retransmission when needed). Real TCP uses sliding window technique, which 

allows many packets to be sent at once and resubmits those that were not 

acknowledged, improving the communication performance.

When grid node A needs to send a message using TCP to grid node B, A’s 

Sender Socket (SSA) breaks the message into packets and starts sending them. After 

submitting a packet to the network, SSA must wait for an ACK packet. ACK packets 

are sent by the destination’s Receiver Socket, which places them into the Network 

Card Output queue. So, when B’s Receiver Socket (RSB) receives a packet from 

SSA, it places an ACK packet in B’s Network Card Output. This ACK packet will 

be received by A’s Receiver Socket (RSA), which will inform SSA that a new 

packet can be sent to RSB. This process continues until RSB receives the last packet 

of the message and sends the last ACK packet. When this happens, RSB recovers the 

message from all the received packets and forwards this message to the 

corresponding application. This process is illustrated in Figure 45.

During this communication, an ACK packet may be lost, which would make the 

socket wait forever. For this reason, we also implemented a retransmission 

mechanism based on [105], which specifies the timer for retransmission of a packet.
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The retransmission mechanism works as follows: for each packet submitted, the 

Sender Socket schedules a retransmission event to happen after RT (Retransmission 

Time) seconds. If the ACK is received before RT seconds, the scheduled event is 

cancelled. If RT seconds elapse before the ACK is received, the packet is then 

retransmitted, and a new retransmission event is scheduled. But, instead of using RT 

as the deadline for the next retransmission, RT1 is used, where RT1 = 2 x RT (back 

o ff the timer). If the ACK is not received after RT1 seconds, another retransmission 

event is scheduled for (RT2 = 2 x RT1) seconds. Retransmission events will keep 

being scheduled until an ACK is received or until RTN >= 60 seconds, where RTN = 

2 x RT(N-1). If no ACK packet is received, the Sender Socket sends a Timeout 

message to the application, which will have to act accordingly.

RT is computed based on the average Round-Trip Time (RTT), which is the total 

time from the submission of a packet until its ACK is received. The average RTT is 

updated after an ACK message is received based on Kam’s Algorithm [106], where 

the RTT for packets that have been retransmitted are not taken into account.

A - Sender B - Receiver

p a c k e t  1

P a c k e t  2

A C K  2

A C K  2

A C K  N

Figure 45 - Simulated TCP communication
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UDP Sockets

UDP Sender Sockets are used when the application needs to broadcast messages. 

This kind of socket still breaks the message into small packets, but they do not need 

to wait for an ACK packet in order to send the next one, in contrast to what happens 

with TCP Sender Sockets.

When the Receiver Socket gets a UDP packet, it does not send anything back to 

the sender. However, when the last packet of a message is received, the Receiver 

recovers the message and forwards it to the corresponding application.

Receiver Socket

In our simulation model, we consider that an application has one Sender Socket 

for each grid node it is in communication with. However every grid node application 

must have only one active Receiver Socket. This type of socket is capable of 

handling packets from both TCP and UDP Sender Sockets.

Network Router

All the Sender Sockets of a grid node application send their packets to the 

Network Card Output queue. The network card then sends the first packet on the 

queue to the shared network (represented by a wireless Router in this thesis). If the 

Router is busy processing a packet from another grid node, the newly sent packet is 

put in a waiting queue to be sent when the Router finishes the previous processing.

The packets received by the Router are then sent to the Network Card Input of 

the grid node the packet was sent to.

When the packet corresponds to a broadcast message, the Router randomly 

decides which grid node on the list of targets will be the first to receive the packet. 

After the first one is decided, the Router continues sending the packet to the rest of 

grid nodes following the order in the list (when the packet is sent to the last one in 

the list, the next one is the first on the list). For example, suppose we have a list of 

devices A, B and C that are the possible devices to receive the broadcast packet. If 

the Router randomly chooses B to be the first device to receive the packet, then the 

next one will be C, followed by A.

The abstract model of the network simulation described above is shown in Figure 

46.
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The amount of time (transmission time) that a packet takes to be delivered is 

computed as follows:

__ _ . . .  , packet size . . packet size .IV. transmission _time = (------------------------- ) + (-------------- =---------- ) + y
sender bandwidth receiver bandwidth

The values represented by sender_bandwidth and receiver_bandwidth are the 

bandwidth (in Kbytes per second - KBps) of the packet’s sender and receiver nodes, 

respectively; while packet_size is the size (in KBytes) of each the packet being 

transmitted. The value y is a constant in our model to simulate an internal delay for

the router to route a message to the receiver; here we assume that this delay should 

be very short, since it is just a quick task performed in the router, and arbitrarily set it 

to 1 microsecond.

Figure 46  - Abstract model of the network simulation.

For this thesis, we assume that each packet can have the maximum size of 1.496 

KBytes that corresponds to 1.456 KBytes of data and 0.040 KBytes of header. These 

values are based on the TCP protocol.

5.4.5 Processor

The main duty of the processor is to compute the duration for computational 

activities. This duration is computed using the formula III.

To compute the duration for I/O operations, we use the following factor f.

f  = 9 x 1 CT5 seconds/KByte

This value /  is derived from the I/O benchmark that consisted of writing and 

reading approximately 80 MB to a file (presented in [107]). The factor / i s  then 

multiplied by the data size (expressed in KB) to determine the duration of the I/O 

operation.
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In this thesis, I/O operations are performed in the scheduler and the providers in 

order to store the input data that are used by the jobs they receive.

5.4.6 Number of Instructions

To simplify the process of defining the number of instructions for the scheduling 

algorithms, we have designed pseudo-codes to help computing the number of 

instructions for each scheduling algorithm that we want to evaluate. The pseudo­

codes were then implemented in C++ and, with the help of the C++ compiler 

(MingGW [108]), we could generate the Assembly code, so we could count the 

number of instructions and use it in our simulations. The C++ code can be seen in 

the Appendix D. Note that, for presentation purposes, we refer to our proposed 

system as DMS (Distributed Matchmake Scheduling).

Figure 47 shows a pseudo-code for our scheduling model.

1. schedule(providerJobsList, n, providerlD) (
2. result = NULL;
3. i = 0;
4 .
5. while (i < n) {
6. temp = pendingJobs.get(providerJobsList.next); 
7 .
8. if (temp IS NOT NULL) {
9. if (temp.status IS NOT SCHEDULED) {
10. if (result IS null) {
11. result = temp;
12. result.providerlD = providerlD;
13. result.status = SCHEDULED;
14. }
15. }
16. } else {
17. providerJobsList.remove() ;
18. }
19. i = i + 1;
20. }
21. return result;
22. }

Figure 47- Pseudo-code for our proposed scheduler.

To demonstrate the expansion of the pseudo-code into assembly code, Figure 48 

shows the C++ code that corresponds to the lines 5 and 6  of Figure 47. In Figure 49,
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we show part of the assembly code generated by the C++ compiler for the code in 

Figure 48.

1. while (1 < n)

Figure 48 - Sample of C++ code.

1 . movl -28 (%ebp), %eax
2 . empi 16 (%ebp), %eax
3. jge LI
4 . leal -28 (%ebp), %eax
5. movl %eax, 4 (%esp)
6. movl 8(%ebp), %eax
7 . movl %eax, (%esp)
8 . movl $-1, -152(%ebp)

Figure 49 - Sample of Assembly code generated from C++ code.

After analyzing the complete assembly code generated by the compiler, we 

assumed that the ‘schedule’ algorithm for the DMS model corresponds to the number 

of instructions expressed by the formula:

V. number _ o f  instructions _D M S = a + bn + cnlog(7V)

In formula V, n is the number of jobs in the list sent by providers; and N  is the 

number of jobs in the hash map where the scheduler stores all the jobs that arrive to 

be scheduled; the constant values a, b and c are derived from the assembly code, 

where b corresponds to the number of instructions for the loop expressed on the lines 

5 to 20 of Figure 47, c is the number of instructions for the implementation of getting 

a value in the hash map that contains the jobs sent to the scheduler, and a is the 

number of instructions that are executed outside the loop.

The values that we adopted for the constants a, b and c are presented in Table 5.

Table 5 - Constant values for the instructions of DMS scheduling algorithm.

Constant Value

A 97

B 250

C 60
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For the OLB (Optimistic Load Balance) scheduler, we have adopted the 

algorithm showed in Figure 50 (pseudo-code).

1. schedule(job, m) {
2. result = null;
3. temp = new ArrayList(m);
4. i = 0;
5 .
6. while (i < M) {
7. if (readyServers [i] == true) {
8. if (match(job, providers[i])) {
9. temp.add(providers[i]);
1 0 . }

1 1 . }
12. i = i + 1;
13. }
14 .
15. n = temp.size;
16 .
17. if (n > 0) {
18. index = random();
19. index = index % n;
20. result = providers[i];
21. job.status = SCHEDULED;
22. job.serverlD = result.id;
23. }

Figure 50 - Pseudo-code for OLB scheduler.

The same rationale used to define the number of instructions for the DMS 

algorithm was used for the OLB scheduler, resulting in the following formula for the 

number of instructions:

VI. number _ o f  _ instructio ns _  OLB = a + bM  + cm + dm'

In this case Mis the number of providers in the grid; m is the number of available 

providers, i.e. those that do not have any job allocated to them; and m ’ is the number 

of available providers that have enough resources to match the job’s requirement. 

The value m is simply managed by the scheduler by decrementing a variable when a 

job is allocated to a provider and incremented when the provider sends a message 

informing the scheduler that it has finished the execution of that job and it is 

available again. The local management of m is an optimization to avoid extra usage 

of the network in order to find out how many providers are available.

For formula VI, the constant value a means the number of instructions outside 

the loop represented by the lines 6 to 13 in Figure 50, b is the number of instructions
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that should be executed by the scheduler for each provider in the grid, c corresponds 

the number of instructions executed for each available provider (which includes the 

instructions for performing the matchmaking process), and d  are the instructions for 

executing line 9 of Figure 50, and are performed for each provider that matches the 

requirement of the job.

The values that we adopted for the constants a, h, c and d  are presented in Table

6 .

Table 6 - Constant values for the instructions of OLB scheduling algorithm.

Constant Value

a 151

b 48

c 181

d 56

The main difference between these algorithms is the matchmaking process, 

which is performed by the providers in the DMS model, while it is executed by the 

scheduler in the OLB model. The main part of the matchmaking process in the OLB 

scheduler is represented by the invocation to the method match in line 8 in Figure 

50; however, the whole loop from line 6  to line 13 in Figure 50 is part of the process.

Taking a scheduling example where there is one job to be scheduled and only 

one scheduler available and capable of processing the job, the OLB scheduler would 

have to process 436 instructions (based on formula VI), while the DMS would 

require 347 (based on formula V).

When the number of jobs is increased, the size of the DMS’s data structure (the 

scheduler’s queue and the list sent by the providers) also increases, requiring more 

instructions to be executed. However, the size of the data structures reduces more 

quickly when there are more providers available, which also reduces the number of 

instructions that have to be executed by the scheduler. All the matchmaking 

processes in the DMS are done by providers, which we assume that are faster than 

the device that runs the scheduler, speeding up the process.

Considering only the line 8 in Figure 50, the matchmaking in the OLB would 

correspond to, approximately, 12% of the instructions executed (56 instructions). 

When we consider the complete loop from line 6  to 13 in the same figure as part of
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the matchmaking process, this percentage increases to, approximately, 65% of the 

total schedule process; and this percentage becomes bigger when there are more 

providers available, affecting the performance (see Chapter 6 ). If we include the 

costs involved for the scheduler to receive the status information from providers and 

store it locally, the number of instructions for the matchmaking would increase even 

more.

To simplify our simulations, we are considering only five values for the 

matchmaking: CPU speed, network bandwidth, battery usage, storage and operating 

system. In the C++ code of OLB presented in Appendix D there is an 

implementation of the method match, which corresponds to 53 instructions in the 

Assembly code generated by the compiler. This number is also used to compute the 

matchmaking done by the providers in the DMS model.

These estimated values for the number of instructions may be different 

depending on many factors such as optimizations made by the compiler.

5.5 Scenarios

In order to have a better view of how our proposed model behaves in comparison 

to OLB, we decided to evaluate three different scenarios as described below:

(i) Static Scenario: this scenario consists of simulating an environment where 

consumers send jobs at a constant rate and all devices in the grid remain 

connected to the grid until the simulation is completed.

(ii) Dynamic Scenario: in this scenario, providers keep connecting and 

disconnecting from the grid. However, in this scenario, providers do not 

disconnect while they are executing jobs, in order to avoid faults in the 

system.

(iii) Fault Tolerance Scenario: this scenario aims to evaluate the fault tolerance 

of the grid system; for this, it extends the Dynamic Scenario by allowing 

devices to leave the grid at any time (e.g. providers disconnecting while 

executing a job); the device hosting the scheduler also becomes unavailable 

in this scenario, which requires the election and recovery of a new scheduler.

In the next chapter, these scenarios are described in more detail, including the 

implementation and the results of simulations.
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The main objective of our scheduler is to maximize the number of jobs 

completed during a certain period of time. For this reason, one of the variables that 

are collected from the simulations is the number of jobs completed per second of 

simulated time.

In order to have a better understanding of the results and to help us in improving 

our scheduler mechanism, we also collect other variables from the simulation, such 

as: the mean residence, which corresponds to the total time that a job takes to be 

completed; the scheduling time, which corresponds to the amount of time that a job 

takes to be scheduled; and the CPU usage for the scheduler and also for the 

providers. Other variables are also collected and are introduced when needed to 

explain the results obtained.
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6 Simulation Results

This chapter presents the results from the simulations of the different scenarios. 

These results guided the design decisions leading to the final specification of the 

fault tolerant scheduling mechanism.

Once we have achieved a stable definition of our protocol, we have continued 

with the simulations to explore the consequences of our design choices, and to 

increase the confidence that there are no hidden bugs in the design.

We have decided to evaluate the system under extreme load conditions so that 

we could verify not only how scalable it is, but also to find external limiting factors. 

For this reason, we have implemented components for the communication to 

simulate TCP and an environment using a wireless router instead of using statistical 

data to simulate the arrival of messages at some components. As shown later in 

section 6.3.10, the network usage may influence considerably the system’s 

performance, and such test would be much harder to do using statistical data, which 

may not reflect exactly the load on the communication mean (in this case, the 

wireless router).

The simulation setups and results in this chapter will demonstrate that the 

addition of a P2P-based resource discovery process produces acceptable costs 

compared to the OLB, and a scalable and flexible infrastructure that allows fault- 

tolerant mechanisms (not provided in the OLB).

6.10ptimistic Load Balance (OLB)

Considering the requirement for a powerful infrastructure to achieve good 

performance with job dependency, we assume that the jobs submitted to our grid 

system are independent (freestanding), since we cannot guarantee such an 

infrastructure in the home environment. Therefore, the schedulers related to our 

research are those supporting independent tasks.

The objective of our scheduling solution is to maximize the usage of the 

available resources for different applications instead of a single application; and we 

consider a very dynamic and heterogeneous environment. Therefore, we cannot 

compare our solution with application-centric schedulers and we should avoid static
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algorithms, since they require knowledge about all the tasks and resources available 

in order to produce good results, not adapting well to dynamic changes in the grid.

Considering the statements above, the requirements in section 2.5 (specially D.2) 

and the taxonomy in Figure 7 in Chapter 3, dynamic schedulers for independent 

tasks would be the most appropriate for the grid environment assumed in this thesis.

From the dynamic load balancing techniques presented in the Chapter 3, the 

balance-constrained heuristic requires high network usage, which not only degrades 

considerably the performance of the system (as shown later in this chapter), but also 

demands more power from devices running on battery (which goes against the 

requirements A.l and A.2 in section 2.5), making this approach not the most suitable 

for the home environment. Although the cost-constrained heuristic performs better 

than the previous approach in terms of communication, it requires more processing 

power for the scheduler in order to compute the costs and make decisions about 

migrating jobs or not, which is a problem when the scheduler runs on a limited 

device. The Hybrid heuristic uses static scheduling, which it not very suitable for the 

scenario studied in this thesis, as explained earlier.

Based on the facts discussed above, we have decided that from the studied 

scheduling mechanisms, OLB would be the most suitable for the home environment, 

for its simplicity (with complexity of O(m), where m is the number of 

resources/providers on the grid), low footprint and adaptability to the dynamic and 

heterogeneous environment that we envisage. For this reason, we have simulated a 

version of OLB to use as a benchmark for our proposed scheduling solution.

In order to deal with the heterogeneity of resources, we added a matchmaking 

process to our OLB scheduler, where a set of QoS requirements are defined for each 

job, and the scheduler chooses arbitrarily one of the available resources (providers) 

that match those requirements.

It is common in the literature to present OLB with poor performance results 

when compared to other heuristics, but this is often an unfair comparison. OLB, 

which is a dynamic resource-driven (the objective function is to maximize the usage 

of resources) scheduling heuristic is usually compared against static application- 

driven (the objective function is to improve the performance of applications) 

scheduling heuristics. The set-up for the experiments is typically a group of known 

tasks and the common metric used in those comparisons is the makespan [36], which 

corresponds to the time taken from the scheduling of the first task in the group until
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the time when the last task is completed. The makespan is most suitable for 

measuring the performance of application-driven schedulers (where all the tasks are 

known a priori), and it does not reflect the performance of dynamic and resource- 

driven schedulers, which are best evaluated by the use of throughput or CPU usage 

as a comparison metric, which are some of the metrics used in this thesis.

One of the differences between OLB and our proposed scheduler is that an OLB 

scheduler must also perform the matchmaking, while providers perform this process 

in our solution.

In our implementation of OLB, we assume that whenever a provider comes 

online in the grid, it should send its current status and ID to the scheduler, so that it 

can use those pieces of information in the matchmaking process. For the completion 

of a job, we assume a mechanism similar to our system, where the provider sends the 

results to the consumer that started the job, and then informs the scheduler that the 

job has been completed. The difference from our system is that, in OLB, the provider 

must also send the current status to the scheduler, so it can have the most up-to-date 

information about the providers, since we cannot guarantee an infrastructure for a 

GIS (Grid Information Service) that is able to provide updated information about all 

resources.

6.2 Static Scenario

This scenario is called Static because, during the complete simulated time, none 

of the devices in the grid becomes unavailable. This kind of situation is simple but 

not realistic, since devices in the home environment are likely to turn on and off with 

a certain frequency.

At this stage, we are interested to find out how both schedulers behave in ideal 

conditions (no disconnections and/or failures) and use this information to make 

improvements to the design; it is also desirable that our system performs well in this 

kind of scenario.

First, we make a brief description of the model simulated, including the flow of 

pieces of information between the participants in the grid.

Note that, for presentation purposes, we refer to our proposed system as DMS 

(Distributed Matchmake Scheduling).
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6.2.1 DMS Version 1

We designed several versions for our system before we achieved the 

specification presented in the Chapter 4. In the initial version (referred here as 

DMS1), providers keep only the information about jobs that they are able to process, 

and always send the complete list of jobs to the scheduler, so a job could be selected 

by it and the list updated, with the removal of those jobs that have already been 

executed.

The complete flow of information of DMS 1 is shown in Figure 51.
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Figure 51 - DMSl’s information flow.
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Another difference from the final specification in Chapter 4 is that, in DMS1, we 

did not define a global ID for jobs, since there were no considerations about fault 

tolerance. It was meant to be a very simple protocol, by avoiding the need for such 

an ID. This way we could avoid an extra message sent from the scheduler to the 

consumer.

Since none of the devices disconnects from the grid in the static scenario, we did 

not need to include the registration process in this simulation.

6.2.2 OLB Information Flow

Here we describe the information flow for the OLB model in the static scenario. 

As we can see from Figure 52, there are fewer messages exchanged in this model 

than in DMS1 (see Figure 51).
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Figure 52 - OLB’s information flow.

Since the complete scheduling process (including the matchmaking) is performed 

by the “Scheduler”, no messages are sent from the consumers to the providers.

Similarly to DMS1, there is no global ID for the jobs, and we did not include any 

registration process for the devices. Note that providers have to send their status
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information to the scheduler, since there is not a service in the grid to provide such 

information, which is used by the scheduler to perform the matchmaking.

6.2.3 Results: DMS1 vs. OLB

The initial aim was to compare the performance of the two systems (DMS1 and 

OLB) with a high load of job submission, so we could see the point of saturation for 

each system and how many jobs were completed at the point.

The simulation was run for 100000 seconds of model time, with 10000 seconds 

of settling time (which is not taken into account for the data collection).

The processing power that we assumed for the providers was the one obtained 

from the Mips and MFlops benchmarks for the Dell laptop. This device was chosen 

as a representative high CPU device.

As for the network configuration, we used a bandwidth of 11 Mbps. This value is 

the same for the communication between all the devices involved in this simulation 

and it was chosen based on an average bandwidth value from different technologies.

Since we are most interested in the impact of the scheduling mechanism on the 

number of jobs processed, we have used negligible values (1 Byte) for the input and 

output data, and a small value (1 KB) for the executable program that will run on the 

providers. This avoids extra loading on the network, making clearer the influence of 

the scheduler on the total system’s performance.

Increase in the simulation workload can be achieved by augmenting the number 

of consumers, by changing the size of the group of jobs sent by these consumers 

(please refer to section 5.4.1) or by changing the parameter A for the Exponential 

distribution that determines the amount of time that a consumer should wait before 

sending the next group of jobs.

For this experiment, we have assumed the existence of 5 providers, and, to boost 

the load, we have simulated 1 0 0  consumers sending groups of 2 0  jobs to the grid.

The A parameter (Load Parameter) ranges from 0.01 to 0.09, which means that 

the average waiting time between groups ranges from 1 0 0  to 11 seconds 

(approximately). Figure 53 shows the comparison between DMS1 and OLB for the 

number of jobs completed per second of simulated time.
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From the results presented in Figure 53 we can see that the performance of the 

DMS1 starts to downgrade rapidly when the load parameter is greater than 0.03. It 

also shows that OLB starts to saturate at the load 0.07.

Jobs completed / second of simulation time
100

A v e ra g e  w a it in g  t im e  b e tw e e n  g roups  o f  jo b s  (seconds  o f s im u la tio n  t im e )

Figure 53 - Jobs completed / second of simulated time: DMS1 vs. OLB.

The downgrade is because a DMS1 provider always sends in full its local job 

queue to the scheduler (Step 3 on Figure 51); this queue gets bigger when the load 

exceeds the provider’s capacity; the scheduler then requires more CPU and time to 

process these big queues.

In this trial, the average size of the queue sent by providers has ranged from 2.25 

(at load 0.01) to 1750 jobs (at load 0.09), approximately. This increase makes the 

CPU of the device running the scheduler reach its peak, causing delays in the 

scheduling process. The percentage of CPU usage for the scheduler is shown in 

Figure 54.

CPU Usage - Scheduler

A v e r a g e  w a i t i n g  t i m e  b e t w e e n  g r o u p s  o f  jo b s  

( s e c o n d s  o f  s im u l a t i o n  t i m e )

Figure 54 - Scheduler's CPU Usage: DMS1 vs. OLB.
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6.2.4 DMS Version 2

In order to improve the performance of the system, we imposed a size limit for 

the queue sent by providers. Therefore, instead of sending the complete queue of 

jobs, providers only have to send the first tVjobs in their local queues.

With this change, we expect to see a reduction in the CPU usage by the 

scheduler, a reduced need for bandwidth to send the queues through the network, and 

an increase in the number of jobs completed.

This new version of DMS is referred in this thesis as DMS2.

6.2.5 Results: DMS2 vs. OLB

To verify the improvements in the performance, we have run a simulation for 

DMS2, using the same configuration used when comparing DMS1 and OLB.

For this test, we have adopted a limit of 10 jobs in the queue (N  = 10), and the 

graph in Figure 55 shows the number of jobs completed per second of simulated 

time.

The results show a considerable improvement, with the system completing 

slightly more jobs than OLB at the highest load of the simulation. In Figure 56, we 

can see the comparison of scheduler CPU usage between DMS2 and OLB.

Jobs completed /  second of simulation time
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A v e r a g e  w a i t i n g  t i m e  b e t w e e n  g r o u p s  o f  j o b s  ( s e c o n d s  o f  s i m u l a t i o n  t i m e )

Figure 55 - Jobs completed / second of simulated time (load from 0.01 to 0.09): DMS2 vs. OLB.
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Figure 56 - Scheduler’s CPU Usage: DMS2 vs. OLB.

The scheduling time presented in Figure 57 represents the average amount of 

time that a job take from the moment it is added to the scheduler’s queue until it is 

received by a provider to be processed. Although the DMS2 uses more CPU than the 

OLB, the DMS2 takes less time to schedule a job. This happens because the OLB 

depends on the status information that providers send to the scheduler to perform the 

matchmaking process. The provider’s information adds more data to the network and 

the scheduler is also required to process the information. Delays on the network 

delay the status information to be delivered and, consequently, holding-up the 

scheduling decision.
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Figure 57 - Scheduling Time: DMS2 vs. OLB.
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In this case, considering the average waiting time between groups of jobs of 11 

seconds of simulated time, there was an improvement of 5.32% in the scheduling 

time, resulted in DMS2 processing 1.54% more jobs than OLB.

To confirm the point of saturation of the systems, we have run a simulation with 

the same configuration as above, but with the load parameter ranging from 0.1 to 0.9, 

which means that the average waiting time between groups of jobs ranges from 1 0  to

1.1 seconds of simulated time.

This way, we can discover if the number of jobs completed per second is kept 

constant or if there is any increase in decrease on that ratio. The result of this 

simulation is presented in Figure 58, giving a better view of the difference in 

performance between the DMS2 and the OLB. From these results, we can confirm 

that the saturation of both systems happens when the interval between groups of jobs 

is approximately 11 seconds of simulated time.
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Figure 58 - Jobs completed / seconds of simulated time (load from 0.1 to 0.9): DMS2 vs. OLB.

6.3Dynamic Scenario

In this scenario, we are interested in evaluating DMS and OLB in a dynamic 

environment where providers take themselves out of service.

The disconnection of consumers is not considered here, so we can keep the job 

submission similar to the static scenario and be able to compare both static and 

dynamic scenarios.

The disconnection of the scheduler is also not considered in this scenario, 

because we consider this disconnection as a failure, and we do not want to introduce 

failures to this scenario, and leave simulation of them until the fault tolerance
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scenario. For this same reason, we also assume that a provider never turns off while 

processing a job.

6.3.1 Disconnection Mechanism

The disconnection of the providers is governed by two variables: the connected 

period (CP) and the disconnected period (DP), and the values for these variables are 

calculated based on Exponential distributions.

The connected period variable determines the next time that a provider should 

attempt to turn off after turning on; while the disconnected period variable indicates 

how long the device should remain disconnected.

The load parameter was already introduced in the static model. Now we need two 

other parameters for the exponential distributions that are used to calculate the CP 

and DP variables. These parameters are referred in this thesis as pep and pop, 

respectively.

The last assumption for this scenario is that there must be at least one provider 

active in the grid, so we can avoid periods where no jobs are processed, eliminating 

long idle periods from the results. Therefore, when a provider reaches the time for it 

to turn off, it only does so if there is at least one other provider on; otherwise, the 

provider has to wait until another one connects to the grid. This mechanism is 

improved in the fault tolerant scenario, when all the providers can become 

unavailable at the same time and the job time-out mechanism can be used and the 

system does not become fully idle.

6.3.2 Dynamic OLB

The flow of information for this model is similar to the one presented in the static 

model (see Figure 52), except for the fact that we have had to add a registration 

message from providers to the scheduler, since the latter needs to know what 

providers are available. The registration message is sent as soon as a provider 

becomes ready to accept work items.

One of the disadvantages of OLB is that it is not possible to guarantee the most 

up-to-date information about the providers, unless the scheduler keeps constantly 

exchanging messages with providers for this purpose, requiring more bandwidth and 

also CPU usage to process those messages.

120



Chapter 6. Simulation Results

As mentioned in Chapter 3, most of grid schedulers attempt to minimize this 

problem by making use of a Network Weather Service (NWS), and for the same 

reasons exposed in section 4.1, a NWS was not implemented in our experiments. 

Another disadvantage of NWS is that they also add more traffic to the network.

Because of this drawback with OLB, the scheduler may try to send a job to a 

disconnected provider and eventually a network timeout may occur. Whenever this 

network timeout happens, the scheduler tries to reallocate the job to another 

provider.

The scheduler cancels any current attempt to communicate with a disconnected 

provider when a registration message is received from that provider.

6.3.3 Dynamic DMS2

The flow of information for DMS2 in the dynamic scenario is the same as in the 

static scenario (see Figure 51). The difference here is in the way that providers and 

the scheduler behave when a disconnection occur.

In this model, providers never disconnect immediately after sending their local 

queue to the scheduler; instead, they have to wait until they get a response from the 

scheduler before they turn off. This decision was made under the assumption that 

once the provider sends the queue, it becomes committed to processing one of the 

jobs in the queue, and so it has to wait for a response.

This way, a network timeout never happens for DMS2, which is different from 

OLB. Later in this thesis we introduce another version of DMS and perform a 

dynamic simulation where providers can disconnect at any time.

6.3.4 Simulation Set-up

For the results presented in this session, we kept the same simulation set-up used 

for the results presented for the static scenario. The only difference here is that there 

are three parameters for the simulation instead of only one: load parameter (k), pdf 

and pDP.

In these experiments, k  is given a constant value throughout the iterations of each 

simulation, so we can observe the performance of the systems when varying the 

environment, but keeping a constant load factor.
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Only one of the parameters pep or pDP has the value changed during the 

simulation steps, while the other is kept constant, so we can define simulations with 

specific characteristics changing such as long/short connected periods (CP) and 

long/short disconnected periods (DP).

6.3.5 Long CPs and long DP: DMS2 vs. OLB
In this section we present the results of running the simulation where we can 

have long connect periods and providers staying off for a long period.

The values for the parameters of the simulation are summarized in Table 7.

The value for X was chosen based on the static simulation results, and it is the 

value for which the systems saturate for that scenario. This way we can keep the high 

load and verify which one of the systems has its performance degraded more quickly 

when the availability of providers is reduced.

Table 7 - Parameters for the dynamic simulation: Long CPs and long DP.

Parameter Value

X 0 . 1

Pcp 0.01 to 0.09 (increment of 0.02)

Pdp 0 . 0 1

By ranging pep from 0.01 to 0.09, we define that the average time between a 

connection and another disconnection ranges from 1 0 0  to 1 1  seconds (of simulated 

time). This means that when we increase the value of the parameter, we reduce the 

availability of providers in the system.

By making pop fixed at 0.01, it means that when a provider becomes unavailable, 

it stays in that state for an average period of 1 0 0  seconds (of simulated time).

The number of jobs completed per second of simulated time is shown in Figure 

59. Those results show that DMS2 is able to complete fewer jobs per second than 

OLB when the availability is reduced in this case.

When consumers broadcast a job description in DMS2, only providers that are 

available receive the broadcast message and they are the only ones capable of 

performing the job. When a new provider becomes available, it does not have any 

mechanism to find out information about those jobs that have been submitted before
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and that are still pending execution. The mechanism where providers can retrieve 

jobs from the scheduler presented in Chapter 4 is not part of DMS2, and it is only 

introduced in the DMS3, the third version of the DMS described in the next section.

Suppose that the new provider is the only one that is active, and all the others 

became unavailable. In this case, only newly submitted jobs will be processed by the 

new provider, while older jobs have to wait for another provider (that knows about 

them) to reconnect. When the new provider disconnects, the jobs that it received 

during the period it was the only provider available have to wait for it to come back 

to the grid. This can also generate unfairness in terms on usage of the system by 

consumers.

No jobs are lost permanently in this scenario because all providers eventually 

become available again.

Since a consumer has to wait for all the jobs in the current group to be completed 

before sending another group, the job submission is delayed when the phenomenon 

described above happens, making the performance of DMS2 to decrease.

Jobs completed /  second of simulation time

— *— D M S2 

—■tt’" - OLB

1 0 0  i i  2 0  1 4  1 1

A v e r a g e  c o n n e c t e d  p e r i o d  ( s e c o n d s  o f  s i m u l a t i o n  t i m e )

Figure 59 - Jobs completed / second of simulated time: DMS2 vs. OLB 
(dynamic scenario -  long CP and long DP).

The performance degradation of DMS2 becomes more evident when we increase 

the load and reduce the average connected time. The results in Figure 60 were 

obtained from a simulation with average time between group submission of 

approximately 1.1 seconds of simulated time (2 = 0.9), and average connected time 

ranging from 1 0  to 1.1 seconds of simulated time.
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Figure 60 - Jobs completed / second of simulated time: DMS2 vs. OLB 
(dynamic scenario -  short CP and long DP).

While DMS2 has the performance degraded by the reduction of provider’s 

availability, OLB saturates because of high CPU usage on providers.

To improve DMS2’s performance, we need a mechanism that allows a provider 

that just connected to the grid to find those jobs that are pending execution.

6.3.6 DMS version 3

Although DMS2 has shown good performance compared to OLB in the static 

scenario, we have seen that DMS2’s performance might not be good in the dynamic 

scenario where providers become unavailable.

In the third version of DMS (DMS3), we have added new information exchanges 

to the protocol in order to make it possible for newly connected providers to retrieve 

information about pending jobs in the scheduler. DMS3 also anticipates the fault 

tolerance mechanisms (which are not present in DMS2 or OLB), which will allow 

the recovery of the scheduler’s status.

For DMS3, we needed a way to specify the order of arrival of the jobs at the 

scheduler. Since we do not use timestamps (as mentioned in Chapter 4), we decided 

to use a simple mechanism where the scheduler allocates a numerical ID to the jobs 

and sends this ID back to the consumer during the job submission process.

DMS3 corresponds to the scheduling system presented in the section 4.4 of this 

thesis. This is the version where providers send the information about possible 

missed jobs (oldest off interval) to the scheduler, along with the queue of jobs they 

are able to process (Pq); the scheduler then replies with the selected job (if any), the
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updated Pq (Pq’), the list of jobs that have been missed by the provider (Ls) and a 

flag indicating if there are still more jobs that have been missed by the provider 

(“more flag”. Please refer to section 4.4 for the full description of DMS3.

The complete flow of information simulated for DMS3 is the same one presented 

in Figure 23 (Chapter 4).

6.3.7 DMS3 vs. OLB

This session presents the results of simulation DMS3 in the dynamic scenario, 

using the same configuration applied to the simulation of DMS2.

The number of jobs completed per second of simulated time is presented in 

Figure 61. These results correspond to the simulation with the parameters in Table 7.

Jobs completed /  second of simulation time
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Figure 61 - Jobs completed per second of simulated time: DMS3 vs. OLB 
(dynamic scenario -  long CP and long DP).

These results show that DMS3 and OLB perform similarly (with slightly better 

performance) in this configuration. The difference between these two systems 

becomes more emphatic when we reduce the availability of providers by decreasing 

the average connected period and keeping the same disconnected period (see Figure 

62).

These results show that DMS3 scales better than OLB in this case. We have also 

run the simulation with different values for A, pep and pop (although keeping the 

same job size used so far) and the results were similar to the ones presented in Figure 

62.
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Jobs completed /  second of simulation time
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Figure 62 - Jobs completed: DMS3 vs. OLB (dynamic scenario -  short CP and long DP).

6.3.8 Static scenario: DMS3 vs. DMS2

In this section, we have the comparison of results between DMS3 and DMS2 to 

check if the extra processing and network usage required by DMS3 affects the 

performance.

Since there are no disconnections in the static scenario, the information about the 

oldest off interval is always “null” in the simulations of this scenario. For the same 

reason, the list of missed jobs sent by the scheduler to providers is always empty, 

and the “more flag” is set as false for all simulations in this scenario.

Because of this, DMS3 does not add much processing to the system when 

compared to DMS2 in the static scenario. Most of the impact of applying DMS3 to 

this scenario is seen in the network usage, as we can see in Figure 63.
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Figure 63 - Network Usage: DMS3 vs. DMS2 (Static Scenario).
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This network usage is from a simulation with the same configuration presented 

earlier for DMS1 and DMS2. The load parameter ranges from 0.1 to 0.9.

The 0.3% (approximately) of difference in network usage between DMS3 and 

DMS2, shown in Figure 63, results in DMS3 processing approximately 0.03% fewer 

jobs than DMS2 (at load parameter 0.9), as we can see in Figure 67.

Despite the small loss of performance in relation to DMS2, DMS3 still completes 

more jobs than OLB.

6.3.9 Impact of the Job List size

The results presented in the other sections of this thesis use N  = 10, where N  is 

the size of the list sent by providers to the scheduler. As we have shown earlier, a big 

size of that list can considerably degrade the performance, and for this reason, we 

limited that size when we created DMS2.

In order to decide a good value for N, we ran some DMS3 simulation setups with 

different N  values. Results have shown that DMS3 performs better when N  is close 

to double of the number of providers.

For example, the results in Figure 64, presents the number of jobs completed per 

simulated time considering the same configuration used for the results in Figure 58 

(static simulation with 100 consumer, 5 providers and time between groups of jobs 

ranging from 1 0  to 1.1 seconds).

The values used for A were 1, 5, 10, 20 and 30. A=10 presented the best results, 

while N=l presented considerably poorer performance when compared to the 

remaining values, which happens because the update the provider’s local queues take 

longer to be updated with the submission of only 1 element at a time to the 

scheduler.

Figure 65 shows the curve where the performance starts to improve, reaches a 

limit, and starts to degrade. For this curve, we considered the number of jobs 

completed per simulated time from Figure 64 when the time between groups is 1.1 

seconds.

The results in Figure 65 arbitrarily use an average time of 0.25 between the 

submissions of jobs within the same group. When we increase the load of the system 

by reducing this average time to 0.005, the performance curve becomes more 

emphatic, and shows poor performance when N=  5, as shown in Figure 6 6 .
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Figure 64 - Impact of the job list size.
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Figure 65 - Performance curve for the impact of the job list size.

Considering the importance of the size of the list, an addition to the future 

version of the protocol would be for the scheduler to inform the providers about the 

size of the lists that they should send, based on the number of providers registered in 

the grid.

128



Chapter 6. Simulation Results

Jobs Completed / second of simulation time

Figure 66 - Performance curve for the impact of the job list size: higher load.

6.3.10 Impact of the Network Usage

One of the main worries during the design of our scheduler was to reduce the 

network usage, since we believed that this could affect the overall performance of 

the grid system.

In order to verify how much a higher load on the network can degrade the 

performance of the grid system, we have run the static scenario simulation with the 

same configuration used in the results presented so far, except for the fact that the 

executable file is 20 KB in this simulation, instead of the previous 1 KB. The load 

parameter ranges from 0.01 to 0.09 (submission time from 100 to 11 seconds of 

simulated time).
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Figure 67 - Jobs Completed: DMS3 vs. DMS2 (Static Scenario).

With this experiment, we expect an increased delay of the messages related to the 

grid system, and, consequently, a decrease in the number of jobs completed.
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The graphs presented in Figure 6 8  and Figure 69 show the resulting network 

usage for DMS3 and for OLB when using 1 KB and 20 KB of executable file, 

respectively.

These results show a considerable increase of the network usage. In the results 

presented in Figure 69, we can see that the use of the network is almost 100% and it 

saturates when the time between groups of jobs is 33 seconds of simulated time 

(which corresponds to 0.03 as load parameter). We can also see that, in both cases, 

the network usage is similar for DMS3 and OLB.

As we can see from Figure 55, when using 1 KB for the executable file and the 

average time between submissions of groups of jobs ranging from 1 0 0  to 11 seconds 

of simulated time, OLB saturates when the time is 14 seconds, and produces 

approximately 8 8  jobs per second of simulated time. However, when we increase the 

executable file to 20 KB, OLB saturates when the average inter-submissions time is 

33 seconds, completing approximately 30 jobs per second of simulated time, as we 

can see in the graph represented by Figure 70.

These results show that the network load can have a big impact on the total 

performance of the system in terms of number of completed jobs. For this reason, we 

have to avoid any unnecessary usage of the network by the scheduling protocol 

itself.
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Figure 68 - Network Usage: DMS3 vs. OLB (1KB of executable file).
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Figure 69 - Network Usage: DMS3 vs. OLB (20 KB of executable file).
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Figure 70 - Jobs completed: DMS3 vs. OLB (20 KB of executable file and load from 0.01 to
0.09).

6.3.11 Scalability on the number of providers: DMS3 vs. OLB

So far we have been presenting results for the dynamic scenario with the 

assumption that at least one provider is active in the grid, which can generate periods 

in the simulation where there is only one provider working.

OLB is expected to perform better with fewer providers active in the grid, since 

it has complexity on the order of O(m), where m is the number of available 

providers. For this reason, in this section we summarize the results of simulating 

OLB and DMS3 with different values for the minimal number of active providers 

(P m i n ) -

The simulations were performed with the same configuration used to obtain the 

results presented in Figure 60 (A = 0.9, pCp ranging from 0.1 to 0.9 and pDp = 0.01),
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but with different values for Pmjn, which ranges from 1 to 5 (the latter corresponds to 

a static environment in this case where we have 5 providers at most).

The graph in Figure 71 represents the difference between the number of jobs per 

second of simulated time produced by DMS3 and the total produced by OLB when 

considering an average CP of 1.1 seconds of simulated time (pep = 0.9).

Figure 71 - DMS3's scalability when increasing the number of providers.

Even though the difference is not very big in these results, they show that DMS3 

scales better than OLB with the increase of the number of active providers in the 

grid.

6.3.12 Short CP and Short DP: DMS3 vs. OLB

In the previous sections, we have discussed the results considering long 

disconnected periods for the providers. In this section, we present the results of a 

simulation with short disconnected periods and short connected periods, representing 

a very dynamic environment with many disconnections from providers.

To achieve short DP, we gave pop a constant value of 0.9 throughout the 

simulation, which makes the average disconnected period to be approximately 1.1 

seconds of simulated time. With regard to the CP, pop ranges from 0.1 to 0.9, 

corresponding to approximate average CP of 10 to 1.1 seconds of simulated time, 

respectively.

The number of jobs produced by the simulation of this configuration is presented 

in Figure 72 and once more DMS3 produces slightly better results than OLB. It was 

assumed Pmin = 1 .
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Figure 72 - Jobs completed: DMS3 vs. OLB (short CP and short DP -  Pmjn = 1).

6.4 Fault Tolerance Scenario

So far, we have shown results for simulations where none of the devices 

disconnect and cases where only providers become available. In this section, we 

explore some of the fault tolerance mechanisms specified in Chapter 4, such as the 

timeout for job completion, the election of a new scheduler and the recovery of its 

status.

6.4.1 Election’s Utility Function

One of the extra mechanisms added to our fault tolerant system is the election of 

a new scheduler, which uses the utility function described in section 4.5. One of the 

decisions taken for that function was that higher processing power should contribute 

positively to the utility value of a device during the election. In this section, we 

describe the experiment that was set in order to support that decision, and its 

respective results.

The experiment considers two cases: one with the scheduler component running 

alone (i.e., without sharing the processor with a consumer or provider component) in 

a device with limited processing capabilities; and another with the scheduler running 

on the same device as a provider, assuming the devices with higher capabilities work 

as providers.

The results in Figure 73 show the amount of jobs produced after simulating the 

static scenario considering 100 consumers and 5 providers, and the load parameter 

ranging from 0.1 to 0.9 (i.e., the average time between submission of groups of jobs 

varies from 10 to 1.1 seconds of simulated time). We chose the static scenario for 

this experiment because it keeps all the providers connected to the grid, increasing
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the load on the scheduler with the scheduling requests, which provides better 

comparison between the two cases.

In order to consider only the overhead caused by the scheduling related 

processes, we have set the job sizes to 0  (zero), so that providers do not spend time 

with the execution of the jobs. The data transferred on the network was also set to 

the minimum necessary to have jobs submitted, scheduled and completed, excluding 

I/O data.

For all the results presented so far, we have used 0.5 as the parameter for the 

Uniform distribution that defines the time interval between the submissions of jobs 

in the same group, which means that this interval ranges from 0 to 0.5 seconds of 

simulated time. When using 0.5, the simulations do not reach a saturation point, 

making it difficult to compare both simulations. For this reason, we reduced the 

parameter to 0 .0 1 , making the interval ranges from 0  to 0 . 0 1  seconds of simulated 

time.

The “Powerful device” series represents the number of jobs completed per 

second when the scheduler shares the processor with a provider, whereas the 

“Limited device” series represents the amount of jobs processed when the scheduler 

runs alone (without sharing the processor with a provider or consumer) in a limited 

device.

The results in Figure 73 show better performance for when the scheduler shares 

processor with a provider, showing an improvement of 8 %, approximately. One of 

the reasons for this improvement in performance is the difference on the scheduling 

time (see Figure 74), which is due to less CPU usage (see Figure 75) in the device 

with faster processor.

Jobs Completed / second of sim ulation time
8 0 0  

"g 7 0 0  

X 6 0 0

t  500
J 400| iOO 
^  200 
o 100 

0

Figure 73 - Jobs completed: scheduler on powerful device and on limited device.

A v e ra g e  t im e  b e tw e e n  s ubm iss io ns  o f  g roups  o f  jobs  

(seconds  o f s im u la tio n  t im e )

— Powerful device 

—«►—Limited de-ice

134



Chapter 6. Simulation Results
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Figure 74 - Scheduling time comparison: scheduler on powerful device and on limited device.
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Figure 75 - Scheduler’s CPU usage: scheduler on powerful device and on limited device.

Even though the CPU usage is much higher in the “Limited Device” case, it has 

small impact in the scheduling time, since most of the time is spent with 

communication (near 1 0 0 % of network usage), which is a bottleneck for this kind of 

system, as mentioned earlier in this thesis. Figure 76 shows the network usage for 

this simulation. The results show that the scenario with a powerful device as 

scheduler uses more network than the one with a limited device, which is due to the 

higher number of jobs processed in the first case.
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Figure 76 - Network usage comparison: scheduler on powerful device and on limited device.

6.4.2 Job completion timeouts
In DMS3, we have a mechanism where providers can find out about the jobs 

submitted during their disconnected periods. That mechanism works well when the 

scheduler is always available, since the scheduler will always know about the status 

of all the submitted jobs.

When we consider a dynamic environment with the scheduler becoming 

unavailable, it may happen that the recovery process of the new elected scheduler 

described in Chapter 4 does not recover all the jobs, since some jobs may not be 

known about by the providers that are available during the recovery.

For this reason, we have introduced timeouts for the jobs, where consumers have 

to send a reminder of the jobs that were not completed within a certain amount of 

time T.

In this section, we evaluate the impact of the timeouts in the number of jobs 

completed. At this stage, we present the results of simulating the dynamic scenario 

considering long disconnected periods (average of 1 0 0  seconds of simulated time) 

and the introduction of job completion timeouts, so we can verify if they add much 

processing and communication overhead to the system. We have also increased the 

load parameter to 0.9 (approximately 1.1 seconds of simulated time between group 

submissions), since it increase the possibility of a job timeout happening with more 

jobs submitted to the system.

In the next section, we evaluate the impact of these timeouts when the scheduler 

becomes unavailable.
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The results in Figure 77 present the number of jobs completed when there is no 

job completion timeout and when we introduce timeouts of 2 0  and 60 seconds of 

simulated time.

Jobs Completed /  second of simulation time
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Figure 77 - Job completion considering job's timeouts.

These results show that, for the “dynamic scenario”, the presence of timeouts for 

the jobs do not improve the performance of the system, but produce slightly worse 

performance than having no timeout at all.

In Figure 78, we can see the number of retrial messages (messages broadcast by 

a consumer after it gets a timeout for the job) considering T=20 and T=60 seconds of 

simulated time. A smaller timeout contributes considerably to an increased number 

of retrials and, consequently to the increase of number of messages transmitted on 

the network.

Even though there can be a small increase in network usage, we can conclude 

that, for the static scenario, the introduction of job completion timeouts does not 

have much effect on the number of jobs completed, since the jobs will probably be 

completed before the timeout in that case.

The decision of using timeouts for the jobs is up to the application, which can 

also decide the length of the timeout and how many times a reminder can be sent for 

each job. In our experiments, we did not set any bound on the number of retrials, 

assuming that this would be the worst-case scenario, with a high network usage.
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Figure 78 - Job’s retrials considering job's timeouts.

6.4.3 Scheduler’s failure: DMS version 4

Here we evaluate the performance of the system when the scheduler fails and 

then a new one has to be elected and recovered.

Since OLB does not specify fault tolerance mechanisms, we only compare the 

results with DM S3, so we can verify how the performance degrades when the 

scheduler starts to fail. In this thesis, we refer to the simulation of DMS considering 

fault tolerance mechanisms as DMS4.

The disconnection of devices follows the same procedure used for the dynamic 

scenario, where we have to specify a parameter for the connected period and another 

for the disconnected period. Consumers do not disconnect in order to keep the load 

similar to that used in the other scenarios.

Once the device that runs the scheduler disconnects, the election of a new 

scheduler starts as soon as another component (registration, consumer or provider) 

reaches a connection timeout after sending a message to the scheduler.

For the election, only the original limited device running the scheduler and those 

devices running a provider have been defined as scheduler capable (those that can 

run the scheduler and, consequently, are candidates during the election).

In order to simplify the simulation, the candidates compute a random utility 

value every time the election starts, so all the candidates may have the chance to run 

the scheduler.

As specified in Chapter 4, both election and recovery processes have to wait for a 

certain amount of time (Teiection and TreCovery, respectively) which determines its 

completion. For this reason, two new parameters where introduced to the simulation 

to represent Teiection and Trecovery■
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Before the start of the election process, consumers and providers are paused and 

they are resumed after the recovery process. This pause of those componentss 

reduces the usage of the network, allowing the exchange of messages during the 

election and recovery to be performed more quickly. For this reason, Taction does not 

need to be a high value.

For the results presented in Figure 46, we have used Teiection = 1 second of 

simulated time (although we have observed that the election in fact takes less than 2 

milliseconds of simulated time, considering the configurations that we have been 

simulating).

The results in Figure 79 were acquired after running the simulation using the 

values presented in Table 8 .

As it was expected, DMS4 produces fewer jobs than DMS3, since the device 

running the scheduler never becomes unavailable.

In order to make a fairer comparison, DMS3 uses a powerful device to run the 

scheduler (sharing processing power with a provider).

In DMS4, all the devices have the same probability of becoming unavailable, 

without a “reliable” device to run the scheduler, which goes against one of the 

assumptions for our system, but here we are interested on evaluating the 

performance of the system in extreme situations, where the scheduler becomes 

unavailable very often and many election processes happen.

Table 8 - Configuration used for the simulation of the fault tolerance scenario.

Number of consumers 1 0 0

Number of providers 5

T  recovery 2  seconds of simulated time

T  election 1 second of simulated time

Load parameter 0 . 1  (average of 1 0  seconds of simulated 

time between group submission)

Connected period Ranging from an average of 100 to 11 

seconds of simulated time

Disconnected period Average of 100 seconds of simulated 

time

Job completion timeout ( T C t ) 60 seconds of simulated time
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Figure 79 - Job completion: DMS3 vs. DMS4 (Tct = 60 s).

Note that DMS4 depends on failed communications with the scheduler in order 

to identify the scheduler’s failure and start an election. Since the load for this 

simulation is not high, it generates longer idle periods for consumers, and, 

consequently, for providers, where these components do not attempt to communicate 

with the scheduler, taking longer to identify a failure and start an election. When 

they attempt any communication with the scheduler, they also have to wait for the 

network timeout in order to identify the failure.

Associating this fact with the low availability of devices, the system can stay idle 

for long periods because of not having an active scheduler, causing the performance 

of DMS4 to fall considerably when compared to DMS3.

Another fact that also contributes to the reduction in the number of processed 

jobs is that nothing is produced during the election and recovery periods.

Since the dynamic scenario produces much better results when compared with 

our fault tolerant scenario, we decided not to continue with this kind of comparison 

and compare two fault tolerant systems instead; one with and another without 

recovery process.

6.4.4 Scheduler’s failure: Recovery vs. No Recovery
In this section, we analyze the performance of running the system without 

recovering the scheduler’s queue after the election process. Instead, all consumers 

have to resubmit the jobs that have not been completed before the scheduler’s crash.
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To simplify the explanation of the results, this alternative version of our system will 

be referred as DMS5.

For this scenario, we assume that providers do not empty their queues when they 

become unavailable, so they do not have to perform the matchmaking process again 

for the same job. Thus, to avoid generating an inconsistent state of the providers, the 

recovery of the global ID is performed similarly to that in the simulation presented in 

the previous section.

The results presented in Figure 80 show the number of jobs completed per 

second of simulated time when running the simulation with the configuration 

presented in Table 9.

We have set a fixed parameter for the disconnect period in order to have an 

average time that is longer than the network timeout, so, once the scheduler crashes, 

the devices communicating with it will identify the failure.

Here we decided to increase the connected period and the load, so we can 

augment the number of successful elections and recoveries, and evaluate the impact 

of these processes in the overall result.

Table 9 - Set-up used for the simulation of the fault tolerance scenario considering no recovery
of the scheduler’s queue.

Number of consumers 1 0 0

Number of providers 5

Trecovery (seconds of simulated time) 2 seconds for DMS4; and 1 second for 

DMS5

Telection (seconds of simulated time) 1 second

Load parameter 0.9 (average of 1.1 seconds of simulated 

time between group submission)

Disconnected period Average of 100 seconds of simulated 

time

Connected period Ranging from an average of 1000 to 111 

seconds of simulated time

Job completion timeout (Ter) 60 seconds of simulated time
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Jobs completed /  second of simulation time
85

—*— DMS4 

— DMS5

a o o o  Hi 2 0 0  142 1 1 1

Average connected period (seconds of sim ulation tim e)

Figure 80 - Jobs completed per second: Recovery vs. No recovery.

These results show that DMS5 can perform better then DMS4, which is 

expected, considering that DMS4 has at least 1 extra second of simulated time 

without jobs being processed during the recovery process. At the last point of the 

graph ( 1 1 1 ), about 2 2 0  elections happened, which means that there were at least 2 2 0  

seconds of simulated time that DMS4 did not use for job processing.

DMS5 performance is limited by the resubmission of jobs from consumers after 

the recovery process, requiring high network usage (bottleneck), which is not good 

for limited devices running on battery power. In DMS4, the scheduler attempts to 

recover its queue by communicating only with providers, saving battery of 

consumers.

On the other hand, DMS4 may have a high number of retrials for jobs that have 

reached the completion timeout. Results have shown a reduction in the number of 

retrials by augmenting the size of the queue of completed jobs that providers send to 

the newly elected scheduler during the recovery process. This permits it to recover a 

more accurate state of the scheduler and avoid unnecessary messages from providers 

with already completed jobs in the queues sent with the scheduling request to the 

scheduler, saving bandwidth.

Considering that the participation of consumers in the recovery process produces 

a more accurate recovered state of the scheduler’s queue, we can envisage a version 

of DMS4 where the participation of consumers and providers in the recovery process 

can be configured in a local policy by the administrator or by the device’s owner.
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6.5D iscussion

In this chapter, we have shown the evolution of our solution and its performance 

on different scenarios against OLB. In most of the cases, the final version of our 

solution showed better performance than OLB, being similar in others, with the 

advantage of our solution providing fault tolerance.

Due to time constraints, we were not able to explore more scenarios for this 

thesis, leaving them for future work (see Chapter 8 ).

In our simulations, we have considered that, for simplicity reasons, the queues of 

completed jobs held by providers have a pre-defined maximum size, and when a new 

job needs to be added to it after reaching the limit, the oldest one in it is removed 

first in order to keep its maximum size.

These queues are important in the process of updating the scheduler’s queue after 

the recovery because they can reduce the communication between providers and the 

scheduler to produce a successful assignment of jobs; and their sizes may increase 

the communication and time for the recovery process.

Considering this, more study is necessary to determine the best way of clearing 

up the queues of processed jobs. For example, maybe creating daemon processes to 

remove jobs from them after a certain period, or asking the provider to send 

information about the oldest job to the providers along with the scheduled job, so 

that they can perform better updates on the queues.
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7 Model Checking Results
In this chapter, we present the models for two cases of network partition and the 

behaviour of our system in those conditions.

The cases presented in this chapter have not been checked with the simulations. 

We decided to use model checking because we would not be able to compare our 

results with OLB, since it does not provide any fault tolerance for network partitions, 

and because building a simulation would demand much more time to implement it 

and to test it to make sure that it provides correct results.

Model checking also gives us the guarantee that all the possibilities have been 

verified and that there are no deadlocks, which is not possible with simulations.

Before we describe the models, first we briefly introduce UPPAAL [109], which 

is a tool for modelling, validation and verification of real-time systems as networks 

of timed automata, extended with data types (bounded integers, arrays, etc.).

7.1 UPPAAL

UPPAAL’s specification language provides many features which facilitate the 

description of concurrent real time distributed systems. Here we offer a brief account 

of the model (please refer to [110], and UPPAAL’s help files, for a more detailed 

presentation).

UPPAAL automata are finite state machines (locations and edges), augmented 

with clock and data variables, and synchronisation primitives. Concurrent systems 

are represented by networks of communicating automata. Concurrency is modelled 

by interleaving, and communication is achieved by synchronisation on channels, or 

by shared variables. Clocks range in the non-negative reals and advance 

synchronously at the same rate (but may be updated independently).

Edges denote instantaneous actions, and delays are possible only in locations. 

Clock and data variables can be used to constrain the execution of automata. 

Locations may be annotated with invariants, which constrain the allowed delays. 

Edges may be annotated with guards (enabling conditions), synchronisation labels 

(to distinguish observable from internal actions), and variable updates. Binary
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channels are blocking: matching input and output actions may only occur in pairs 

(a?/a!). More elaborate specifications can be obtained with the following features.

• Variables: Available types include clocks, channels, bounded integers and 

Booleans, and arrays and record types can be defined over these types. 

Common arithmetic operators (and user-defined C-like functions) may be 

used in expressions. Clock constraints are (in)equalities between clocks (and 

clock differences) and integer expressions. Clocks can be assigned non­

negative integer expressions;

• Urgent and Committed locations: Urgent and committed locations disallow 

delays, forcing the immediate execution of enabled actions as soon as they 

are entered. In addition, committed locations restrict interleaving: only 

components that are currently in committed locations may execute enabled 

actions. Figure 81 shows the notation of Urgent (a) and Committed (b) 

locations;

< s> — - -------KC>

(a) (b)
Figure 81 - Representation of Uppaal’s Urgent and Committed locations.

• Urgent and Broadcast Channels: Synchronisation on urgent channels 

(declared in Uppaal as chan <name o f the channel>) is binary, blocking, and 

must occur as soon as matching actions are enabled. Synchronisation on 

broadcast channels (declared as broadcast chan <name o f the channel>) 

matches one output action with multiple input actions, and is non-blocking on 

the output side: input actions block until the output action is enabled, but the 

output action may be executed even if no input actions are enabled;

• Templates and Selections: Parametric templates and selections provide a 

concise specification of similar components. A template provides an 

automaton and a number of parameters (bounded data variables), which can 

be read in the automaton’s expressions (e.g., guards). Parameters are 

instantiated, generating multiple processes with the same control structure 

(the template’s automaton). A selection denotes non-deterministic bindings 

between an identifier and values in a given range. Selections annotate edges,
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which may use the identifiers in guards, synchronisation labels and updates. 

Every binding results in a different (instantiated) edge between the same two 

locations.

7.2 Scenario  1: S im ple partition

In this section, we present the case where a network partition happens and one of 

the sub-networks contains only consumers that are not set as scheduler capable.

In this case, assuming that the partition occurs for a period that is long enough 

for consumers to identify the absence of a scheduler and start an election, the 

expected behaviour is that those isolated consumers fail to elect a new scheduler 

(since none of them is set as scheduler capable). They then wait until the merge of 

the partition is detected (the merge detection is described in Chapter 4), and they can 

be part of the grid again.

If the partition merges before the consumers identify the absence of the 

scheduler, those consumers will act as if the partition had not occurred.

Even though UPPAAL supports the definition of timed automata, we opted for 

not making use of this facility, and decided to make a model that is generic enough 

to verify both cases (long and short partition period), without considering time.

This model allows us not only to verify if the system is tolerant to network 

partition, but also allows us to check the behaviour of the system when consumers 

become unavailable, which was not verified with the simulations, since we had to 

keep the same load of jobs in order to have a better comparison between systems and 

scenarios.

In order to reduce the state space to be explored during verification, some of the 

behaviours that have been verified with the simulation were not added to the model. 

For example, we did not model the disconnection of providers in this case.

The remainder of this section consists of the description of the models for the 

consumer, provider and scheduler. We also describe how the partition was modelled.

7.2.1 Consumer Template

Figure 82 shows the states and transitions that represent the behaviour of 

consumers.
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The Idle state is the one where the consumer is not performing any processing 

related to the grid system. Getld represents the state where the consumer waits for a 

message from the scheduler with the global ID for the last job that has been 

submitted. At the Getld state, the consumer can also receive completion messages 

from providers (represented by the channel jobcomp in the model).

The Beast state is the one where consumers broadcast the job description to 

providers via the bcastjob channel.

The transition from Idle to Wait happens when a long partition happens, with 

time for the consumer to identify the absence of the scheduler and attempt election. 

The channel whole indicated that the partition has merged, and it models the 

behaviour where consumers detects the merge and can (re)submit tasks and receive 

the job completion messages.

jobcompjid]?
removePendingJob(auxj)

InoPendingJobs() &&cs[id] && !provlnCS() 
re s u bm it(c p[ id]] ! 
auxe = id, 
auxj = nextJobQ

whole?

Wait

!noPendingJobsQ && espd]
&& IprovlnCSQ
resu bmit[cp[ld]]!
auxe =id,
auxj = nextJobQ

jobcompjid]?
removePendingJob(auxj)

jobcomppd]?
removePendingJob(auxjj

bcastjobjcpjid]]! 
auxe = id, 
auxj = tmpj

jobidpd]? '  V y  Beast 
tmpi = auxj, 
add Pending Job( auxj)

Figure 82 - Simple partition scenario: model of consumers’ behaviour.

Here we also assume that jobs are submitted in groups of a fixed size 

(represented by the variable GROUP SIZE in the model), similar to the simulation 

models presented earlier in this thesis. The variable sent in this template stores the
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number of jobs submitted, so that the consumer stops submitting jobs when sent is 

equals to the GROUP_SIZE.

Each consumer modelled is identified by an id. The value of id is used as the 

index to retrieve values from some data structures such as cs and cp, which are 

arrays of Booleans that store the current state for scheduler and the current partition 

of the consumer, respectively. These data structures are updated by the Partition 

template presented later which represents the election and recovery processes. If 

cs[id] is set to false, it means that the consumer is not associated with the scheduler; 

if cp[id] is false, it indicates that the consumer is in another partition.

Consumers also maintain a queue of the pending jobs (those submitted jobs that 

have not been completed yet). This array is accessed/modified by some of the 

procedures in the template:

• addPending()\ inserts a job into the pending queue;

• removePendingJob(): removes a job from pending queue;

• noPendingJobs(): checks if the pending queue is empty or not.

7.2.2 Provider Template

Figure 83 presents the states and transitions for providers.

resu bm it[pp[id]]?  
a d d lfM is s in g ln O r w ', i i '' i ■ '

In o Jo b sf)
s e r d q !
mivn _ irl

resu bm it[pp pd]]?
addl fW is s  i ng I n 0  rde r( au xj. j)

bcastjo b [pp[id ]]?
a d d ln O rd er(a u x j,p

jo b c o m p s!  
auxj =  j,
¡ = ■1.
lo ckjid] =  f

addl n O rd erfau xj, pen ding) 
PSpd]
jo b s ch e d p d ]?  
j =  auxj,

au xj =  j

Figure 83 - Simple partition scenario: model of providers’ behaviour.
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In the Idle state, providers listen for messages broadcast by consumers 

(represented by the channels bcastjobs and resubmit). Once those messages are 

received, providers may add the jobs into a local queue for pending jobs. The 

procedures in the template that access/modify this queue are:

• addInOrder(): adds the jobs in the queue in the order of their global ID;

• addIfMissingInOrder(): similar to addInOrder(), but only adds to the queue if 

the job is not already in the queue;

• noJobs(): checks if the queue is empty or not;

• update(): updates the local queue based on the queue received from the 

scheduler.

If the local queue is not empty, a provider may send a queue fragment to the 

scheduler (represented by the channel senq) and move to the state Queue_Sent, 

where it waits for the response from the scheduler. While it waits, the provider can 

still receive the messages broadcast by consumers.

Providers receive the response from the scheduler through the jobsched channel, 

update their own local queue, and, if a job is scheduled (j>=0, where j  is the selected 

job), providers go to the Completion_c state, where they can send the job completion 

message to the consumer that sent the selected job using the jobcomp channel.

It may happen that the consumer (whose id is represented by c) is not in the same 

partition (cp[c] != pp[id], where id is the identifier of the provider, and pp is an 

array that indicates the partition of the provider) when the provider attempts to 

submit the completion message. In this case, providers inform the scheduler that 

consumer c is not available by using the noc channel, which will cause the scheduler 

to remove all the messages from c. Providers then return to the Idle state.

If consumer c is in the same partition (cp[c]  == pp[id]), providers may go into 

the Completion_s state, where they can send the job completion message to the 

scheduler using the jobcomps channel.

When the job completion message is sent to the scheduler, providers return to the 

Idle state.

When providers receive the response from the scheduler, if no jobs have been 

scheduled (j < 0), providers return to the Idle state.
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7.2.3 Scheduler Template

Figure 84 shows the states and transitions that represent the behaviour of the 

scheduler.

Similar to the consumers and providers, the scheduler also has a queue of 

pending jobs. Schedulers also maintain a queue of the jobs that have been allocated 

to a provider. These data structures can be accessed/modified by the following 

procedures:

• add(): inserts a job into the queue;

• addResubmitted(): adds a job, in order of global ID, to a queue, if it is 

missing;

• deallocate()\ removes the specified job from the allocated() queue;

• scheduleJob()\ selects the next job to be allocated, removes it from the 

pending queue and then adds it to the allocated queue;

• removeCons('): removes all the jobs from a particular consumer from the 

pending queue.

jobcomps? 
deallocate; auxj)

Figure 84 - Simple partition scenario: model of scheduler’s behaviour.

From the Idle state, the scheduler can receive messages from consumers (submit 

and resubmit channels) and from providers (sendqjobscomps and noc channels).

When the scheduler synchronises with the submit channel, it goes to the 

Register Job state, where it can listen to jobcomps and noc channels. It may happen
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that the scheduler takes too long to reply to the consumer, which will attempt to 

submit the job again; for this reason, the scheduler can still listen to the submit 

channel when it is in the Register_Job state, but only to the messages from the same 

consumer (c) that attempted it before.

From the Register Job state, the scheduler goes back to Idle after adding the job 

to its own pending queue, sending the job’s global ID to the consumer c (using the 

jobid  channel) if the consumer is in the same partition. If the consumer is in a 

different partition (condition !cp[c]), the scheduler returns to the Idle state without 

adding the job to its pending queue, representing a communication timeout with the 

consumer.

When the scheduler receives the queue fragment from a provider (by 

synchronising on the sendq channel), it goes into the Scheduling state. The scheduler 

then returns to the Idle state after sending the selected job (if any) and the updated 

queue fragment to the provider (via the jobsched channel).

7.2.4 Partition Template

The template in Figure 85 shows the state machine that controls the modelled 

network partition case.

cp[0] = false —~ cs[0] : 
------------ --------------------

f a l s e c p [ 0 ] = t r u e  
— o

whole! 
cs[0] =true

O
Partitioning Electing Electionfinished Join_partitions

Figure 85 - Simple partition scenario: partition template.

Merged

In this template, we start by establishing that a particular consumer is separated 

from the main partition (cp[0] = false) with the occurrence of the transition from the 

Partitioning to the Electing state.

Once the partition has happened, the isolated consumer attempts to elect a 

scheduler. However, assuming that the device running the consumer is not scheduler 

capable, no scheduler will be elected. The transition from the Election to the 

Election Jinished  state represents the end of the failed election, where the consumer 

ends up with no scheduler associated with it (cs[0J = false).

The next transition (from the Election Jinished  to the Join partitions  state) 

returns the consumer to the main network, indicating the end of the partition.
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The last transition (from Join partitions to Merged) indicates that the consumer 

registers again with the grid, being associated to a scheduler.

7.2.5 Deadlock Verification

The model to be verified was set with 2 consumers, 2 providers and 1 scheduler, 

where one of the consumers becomes isolated in another partition.

We have defined that each consumer sends 2 jobs at most {GROUP SIZE = 2). 

Such a low value was chosen with the assumption that it is enough to explore all the 

possibilities for the modelled scenario, without increasing the state space to a point 

where the model-checker runs out of computational resources to verify the model.

We have verified the model by asking the model-checker if there is a deadlock 

where there is a consumer that has not submitted the 2  jobs or have any job to be 

completed. The UPPAAL query that represents this property is:

E<> deadlock && exists (i:int[0,MAX_CONSUMERS-l]) 
(Consumer(i).sent < GROUP_SIZE ||

C o n s u m e r ( i ) . p e n d i n g . s > 0 )

The model-checker did not find a deadlock, which proves that our system 

continues to work when this case of network partition occurs.

7.3 Scenario 2: Complex Partition

In this scenario, we model a network partition case where two sub-networks 

coexist with a grid system working in each one of them, which means that the 

partition should last long enough for the devices to identify it and elect a new 

scheduler among them. This way we can verify the mechanisms for identifying the 

merge of the partitions, deciding which of the schedulers should continue to be 

active, and the synchronization between them.

In order for the election process to finish successfully (with a scheduler elected), 

we need a device that is capable of running the scheduler. Assuming that consumers 

are defined as non scheduler-capable, we have defined two partitions with a 

consumer and a provider each, where the devices running the providers can each be 

elected as the scheduler for its own partition.
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Since, in this scenario, we are interested in verifying the system when there is 

more than one scheduler, we did not model the election process, and simply assume 

that it always happen before the partition merges.

The templates described in section 7.2 have been extended with more states and 

transitions, and the results are described below.

7.3.1 Partition Template

The template presented in Figure 8 6  describes all the steps for the modelled 

network partition.

cp(0] = 0, 
pp[0l = 0 _  paitstart c|D]! _  paitstait p|0]! _

startSche[0]! 
cs[0] = 0, 
psfol = 0

cp 0

_  recFmished? _  recRnishecf? _  recFmishecf? _  sp °i ■

*0-------- 0 — 0 ------- — V
SbrtPartiionl Part Consumerf)_1 Part Providert) Election Completed Recovery slarted t RecoverylinishedJ

=  1,

= 1 Partition mera«! t= 1

Done i s
startSdie|(1 - elected!]1

= 1
0 --------- 0 = 0

Recovery finished_2

recFrnished? ^  recFinishad? recFinished?

cs[0
psp;
spie

[1 - elected), 
= (1 - elected), 

" = 0 '1 = 0. 
= 0

part:paitid_t,
s d s id j
meigecom p{sid][partp

partstart_p(1]! partstart_c[D]!

Recovery starled J  Election Completed Part Providerl Part_Consumerfl_2 StartPartition2 

Figure 86 - Complex partition scenario: partition template.

Before the start of the partition, we assume that there are 2 consumers (cO and 

cl), 2 providers (pO and p i)  and 1 scheduler (si) active in the same network. We can 

also assume the case where s i  runs in the same device as p i.

The transition from state StartPartitionl to state Part_ConsumerO_1 represents 

the partition of the network into 2  distinct sub-networks (simply identified in the 

model as 0 and 1). In this transition, we also specify that cO and pO compose the 

partition 0  (cp[0 ] = 0  and pp[0]= 0 , respectively), while the other componentss (cl, 

p i  and s i)  compose the partition 1 , which continues to work as if no partition has 

happened, since it has a scheduler. Note that, in the simple partition scenario we had 

cp as an array of Boolean values to indicate whether the device was in the main 

partition or not. However, in this scenario cp represents an array of integer values, 

indicating which partition the device belongs to.

The channels partstart_c and partstart_p correspond to control messages that 

inform consumers and providers, respectively, that the partition happened. These 

control channels are used to simplify the model and skip the election process, which 

was not modelled. The order of occurrence of these channels does not matter, and the
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use of a committed location was meant to create some determinism and reduce the 

state space, allowing us to verify the model using the resources we have available.

We assume that the device running pO is elected to run the scheduler for the 

partition 0. This scheduler (sO) is started after synchronising with the startSche 

channel, in the transition from Election_Completed to Recovery_started_1, which 

also sets current scheduler for cO and pO (cs[0]=0 and ps[0]=0, respectively).

According to the specification of our grid protocol in Chapter 4, the scheduler is 

only fully functional after the recovery process. For this reason, we have modelled 

that the partitions only merge after the recovery process, which is represented by the 

3 consecutive synchronisations with the recFinished control channel; once for each 

component in the partition: cO, pO and sO.

The transaction from Recovery Jinished_l to Partition merged l  represents the 

merge of the partitions, with all devices becoming part of the partition 1 .

The partition state machine can only move to the next state (StartPartition2) after 

synchronising with the mergecomp channel, which can only happen after one of the 

providers identifies that the partitions have been merged, and the schedulers have 

been synchronised, with one of them becoming inactive.

The transitions from StartPartition2 to Done are similar to the ones from 

StartPartitionl to Partitionjnerged_l, and represent another partition and merge 

process. The difference is that in the latter we have cO and pO forming partition 0, 

while in the former we have cO and p i  composing that partition. This way we can 

verify cases where consecutive partitions may happen for different devices.

7.3.2 Consumer Template

The consumer template in Figure 87 extends the one presented in Figure 82 by 

having extra states and transitions to handle the recovery of the scheduler after its 

election, which does not happen in the simple partition scenario.

One of the new transitions is that which synchronises with the partstart_c 

channel, which indicates that the consumer is now part of another network partition, 

and makes the consumer go to the Wait state, where it waits for a message from the 

new scheduler via the electcomp channel. This message indicates that the election 

has been completed and that the consumer can start the recovery process (move to 

the StartRecovery state).
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During the recovery process, consumers send the last global ID that they know 

(represented by jsc  in the template). We modelled this using 2 channels: nolst, which 

is used if the consumer has not submitted any job so far (jsc == 0 ); and recovered, 

which is used to send to the scheduler the last job id known by the consumer, in the 

case where it has sent some job (jsc > 0).

jobcomp[id]?
remove(auxtripte.pending.next)

Finish Recovery
recoveredfcsfid]]? ~ recFinished!

jsc:
nolstj[ciid]]!

pending.size > 0 && IprovInCSij &S re < pairing, size 
resubmit[cp[id]]!

| nextJob(auxtriple,pending,next),' rc++
süskJJ
mergecomp[s'd](cp[id]]? 
cs[id] - sid sjze> oj

resubmit [cpfid]]! 
nexUobj au xtriple, pendng.next)

!provlnCS()

sid:s’d_t
mergecomp[sfaïcp{id]]9 

cs(id]:

Beast

partstart_c(id]?

Figure 87 - Complex partition scenario: model of consumers’ behaviour.

For each job, we needed to keep three pieces of information: the global ID, the 

consumer that owns the job and the scheduler that issued the ID. In the previous 

scenario (Simple Partition), we have used separate data structures (integer arrays) to 

represent these data, which requires more memory during the verification process. 

For this scenario, we have a single integer (jsc) composed with the job ID (/), the 

scheduler ID (s) and the consumer ID (c):

j s c  — s x 100 + c x 10 +  j

The first algorism of jsc  represents the scheduler’s ID, the second represents the 

consumer, and the third, the job ID. This composition works for a small number of 

jobs, which is the case in this model, since the increase of the number of jobs 

generates more states and requires more computational resources to verify it. The

155



Chapter 7. Model Checking Results

default value for jsc  is 0, which also indicates that no ID has been assigned to the 

job. To decode jsc, we use:

j  — jsc  mod 1 0  

s = ysc / 1 0 0  

c = ( js c / 1 0 ) mod 1 0

Once the synchronisation with any of these channels happens, consumers stay in 

FinishRecovery state, waiting for the message from the scheduler that informs it of 

the end of the recovery process, which is done via the recovered channel. After 

synchronising with this channel, consumers use the control channel recFinish to 

allow the partition machine to continue its own processes.

Another synchronisation that was added for this scenario is the one with the 

mergecomp channel, which is used to inform the winning scheduler after the merge 

of the partitions. Consumers only synchronise with this channel if the 

synchronisation request comes from a scheduler different from the one they currently 

know. When this happens, consumers update the information about the current 

scheduler.

7.3.3 Provider Template

The template in Figure 8 8  presents the extended behaviour of providers, so that 

they can handle the recovery of the scheduler and the merge of the partitions.

Whenever providers synchronise with the partstart_p channel, they go to the 

WaitElection state. Once in this state, providers start the recovery process after 

receiving the election completed message from the scheduler (electcomp channel), 

and then move to the StartRecovery state.

As part of the recovery process, providers send their queue of pending jobs and 

the queue of jobs that they have processed. In our model, this is done using two 

channels: recoverq and recoverq_, respectively. Once the queues are submitted, 

providers wait in the FinishRecovery state, until the scheduler sends a message 

informing them of the end of the recovery process (using the recovered channel). 

When this happens, providers use the control channel recFinish to allow the partition 

machine to continue its own processes and then go back to the Idle state.
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As specified in Chapter 4, a provider can identify the merge of partitions when it 

receives a broadcast message with the description of a job with the global ID issued 

by a scheduler that is different from the one known by the provider. In the provider 

template, the bcastjob channel represents this message.

sid:s*d_t
mergecomp[sid]pp|id]]? w i|M 
addnOrder(jsc.pending) ""J™'1«'

getSched(jsc)

resu bmit(pp|id]]? 
addResubmitted(auxtriple.jsc,pendng)

rjfjni: .singijsc.pending),

Figure 88 - Complex partition scenario: model of providers’ behaviour.

If the global ID of the broadcast job is issued by the known scheduler (ps[ia] == 

getSchedQsc)), providers add the job to their own pending queue and return to the 

Idle state. Otherwise (if ps[id] /= getSchedfjsc)), providers go to the WaitMerge 

state and wait for the merge of the schedulers to finish; at the same time, a sub 

process is started to send a message to both schedulers to make them aware of each 

other. Figure 89 represents the state machine (Pmerger template) for this sub 

process.

Pmerger starts at the Idle state and synchronises with the bcastjob channel, 

moving to the Start Merge state if the job’s global id was issued by an unknown
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scheduler. Once in that state, Pmerger sends a MERGE message to both schedulers 

using the merge channel, and then moves to the Merging state.

When a MERGE COMPLETE message arrives (via the mergecomp channel), 

Pmerger updates the provider’s scheduler (ps[ij = sid, where sid is the ID of the 

scheduler who sent the message), and then returns to the Idle state.

partstart_p(id]?

Figure 89 - Complex partition scenario: Pmerger template.

If, in any state, another partition happens (synchronising with the partstart_p 

channel), Pmerger goes to the OFF state, and returns to Idle after the elected 

scheduler completes the recovery process and the synchronisation of the recovered 

channel happens.

7.3.4 Scheduler Template

The template in Figure 90 shows the behaviour of the scheduler in the complex 

partition scenario.

In this model, the elected scheduler is started by synchronizing with the partition 

state machine via the startSched channel, then moving to the ElectionComplete state.

The scheduler then announces its election to consumers and providers via the 

electcomp broadcast channel, and then moving to the StartRecovery state, where it 

can wait for the last known job ID from consumers and the queues from providers. 

After receiving all the recovery data, the scheduler goes to the FinishRecovery state, 

where it can inform the other components that the recovery process is complete (via 

the recovered channel). The scheduler then uses the recFinish channel to allow the 

partition machine to continue its own processes.
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Since we assume that the partition lasts long enough for the recovery process to 

finish, we do not have to model the timeouts for the election or recovery.

When schedulers receive a MERGE message from a provider, they go to the 

Merging state, where one of them is non-deterministically selected (this is to 

simplify the model by not computing a utility value for each scheduler).

The selection of the winning scheduler is done with a help of the state machine 

presented in Figure 91.

Since the Merging state is a committed location, UPPAAL non-deterministically 

chooses one of the schedulers to synchronize with the pickme channel first, forcing 

the other scheduler to send the SYNC message (using the sync channel) carrying the 

queues with the pending and allocated jobs and then becomes unavailable (OFF 

state).

EiectionCom

startSche[id]?

jobcomps[id]?r
deallocate(auxtriple,allocatedt

cid:cid_t 
submit[cid][id]? 

c = cid, 
jid ++

submit[c][id]?

Regi^tefJob
adicd_t 
nocfidjcid]?
removeCons(cid,pending)

jobcompsfid]?
deallocate(auxtriple,allocated)

Sync?
addQu eu e( au xq, pen di n g) 

Sync?
addQu eue(auxq,allocated)

Figure 90 - Complex partition scenario: model of scheduler’s behaviour.
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sid :sid_t 
pickme[sid]9

mergecom p [elected][s p [elected]]9 
Figure 91 - Template for random selection of scheduler.

The winning scheduler receives the SYNC message with the queues and then 

updates its own queues using the addQueue(A, B) procedure (adds the elements from 

queue A into B, if they are not yet in B).

When the synchronisation is over, the winning scheduler (currently in the 

Merged state) notifies the other components using the mergecomp channel, and then 

returns to the Idle state.

The synchronisations with the partstart_c and partstart_p were added to the 

scheduler template to model network timeouts after the partition of the network.

7.3.5 Deadlock Verification

We tried to verify the model using 2 consumers (with GROUP SIZE = 2), 2 

providers and 2 schedulers. Unfortunately, the state space for this scenario is very 

big, and UPPAAL ran out of computational resources. We have used a machine 

running Linux and with 6  GB of RAM memory, but UPPAAL can only use 3 GB of 

RAM and it was not able to complete the verification.

To solve this problem, we have created an abstract model for this scenario, which 

has a smaller state space than the concrete version and it does not use data structures 

for storing the information about jobs, thus consuming less memory.

Figure 92 shows the abstract provider template. Note that, for example, instead 

of invoking the addResubmitted() procedure when synchronising with the resubmit 

channel (see Figure 8 8 ), it simply sets a Boolean variable to indicate that there is 

something in the queue.

In the abstract model, there is only the idea that a job is scheduled or not, without 

being specific about what job. When providers receive a job to be processed, it non- 

deterministically assigns a consumer to the job, since no information about the jobs 

is stored.

APPENDIX E presents all the abstract templates.
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This abstraction brings many possibilities that would not happen in the concrete 

model; however, all the behaviours of the concrete model are preserved. Therefore, 

assuming that all the possible deadlocks in the concrete model are also preserved in 

the abstract one (see proof in the next section), we can assert that if no deadlock is 

found with the abstract model, there is no deadlock in the concrete model either.

We checked the abstract model for deadlocks using the following UPPAAL 

query:

E<> (deadlock && exists (c:cid_t)
Consumer(c).completed < GROUP_SIZE)

This query asks UPPAAL if there is any deadlock with any job pending 

completion. After running it, the model checker verified that there is no deadlock, 

showing that the proposed system also works in this complex partition scenario.

We also attempted to verify the abstract model with GROUP SIZE = 3, but 

UPPAAL ran out of memory and could not complete the verification.
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7.4A p ro o f o f  deadlock preservation  w ith abstract m odels

Let C and A denote two UPPAAL networks for a given job scheduling protocol 

over grids. In particular, C, the concrete model, is defined by the UPPAAL network 

doublepart_nano. xml. A, the abstract model, is defined by the network

doublepart_abstract.xml.
We omit here the formal semantics of UPPAAL timed automata networks (see 

e.g. [ I l l ]  and [112]). For the purpose of this proof, it suffices to assume that the 

behaviour of the networks, C and A, are given by transition systems [113].6 A 

transition system is a tuple (S, so, T), where S is the set of reachable states, so G S is 

the initial state, and T c  S x S  is the transition relation. A state in the transition 

system is a tuple s = (l, v), where l is a location vector and v is a valuation. A 

location vector is a vector l = (lo, ... , /«), where n is the number of automata in the 

network and /,, i : 1 ..n, is a location in the i-th automata. We will use / G l to denote 

that location / is in the location vector l. A valuation v maps each variable in the 

network to a value in its type. We will use v(x) to denote the value of variable x in v. 

We will use v |= 0  (v \k 0) to denote that the predicate 0  is satisfiable (respectively 

unsatisfiable) in valuation v. Transitions in T denote state changes due to the 

execution of an internal transition of a component in the network or the 

synchronization among different components of the network. We will use s —> s' to 

denote a transition from state s to state s' (where s and s' are not necessarily 

different).

Let C = ((C0) ..., C7), Vc, Chc) and A = ((A0, ..., A6), Va, Cha), where C0 = 

Consumer, Cj = Provider, Ci = Scheduler, C3 = Partition, C4 = Pmerger, C5 = 

ElectSched, C6 = Initializer, C7 = Exception, and A, = C, for i : 0..6 (the template 

Exception is not included in the abstract model). Let Tc = (Sc, sc,0, 7c) and 7) = (Sa, 

safi, Ta) denote the transition systems of C and A, respectively. Let ~ s E Sc x SA be 

an equivalence behavioural relation between the states of C and A. The relation ~s is 

defined so that, for any concrete state sc = (Jc, vc) e  Sc and any abstract state sa = (Ia 

Va) e  Sa, s c ~s sa holds if and only if the following conditions hold:

1. The relation between locations in the concrete model and locations in the 

abstract model is defined by the following predicates:

Provider.c3 e Tc ̂ Provider.ElectionCompleted e L

6 There is no need to resort to timed transition systems, since our models do not have clocks.
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Scheduler.ull e lc ^>Scheduler.EIectionCompleted e la
Scheduler.ul2 e lc ^Scheduler.ul e Ta
Scheduler.u21 e Tc v Scheduler.u22 e l c=> Scheduler.u2 6  Ta
Scheduler.cl e lc ^Scheduler.Bid e la
Scheduler.c2 6 lc ^-Scheduler.Elected e la
l e lc => l e Tafor all other location l

2. The relation between variables in the concrete model and variables in the

abstract model is defined by the following predicates:

Consumer.Getld e Fc => vc(Consumer.sent) = va(Consumer.sent) + 1
Consumer.Getld g lc => vc(Consumer.sent) = va(Consumer.sent)
vc(Consumer.sent)>0 => va(Consumer.sent) = vc(Consumer.sent)
vc(Consumer.completed) = v0(Consumer.completed)
vc(Consumer.pending.size) = va(Consumer.sent) -  va(Consumer.completed)
vc(Consumer.jsc) /100 = va(Consumer.s)
vc(Consumer.jsc) > 0 <=> v^Consumer.gotjobjd)
vc(Consumer.id) = v0(Consumer.id)
vc(Consumer.rc) = va(Consumer.rc)
vc(Provider.pending.size) = 0 <=> va(Provider.empty)
Provider.procesing e Fc => (vc(Provider.jsc) / 10)=io = va(Provider.c)
Provider.cl e L v Provider.c2 e Fc => vc(Provider.jsc) /100 = va(Provider.s)
vc(Provider.id) = va(Provider.id)
vc(Scheduler.id) = va(Scheduler.id)
ve(Scheduler.c) = va(Scheduler.c)
vc(Scheduler.p) = va(Scheduler.p)
V ra re  {cp,pp,cs,ps,sp,lock,elected}. vc(rar) = va(rar)

Let Chc and Cha denote the sets of channels in C and A, respectively. Let ~ch: 

Chc x Cha so that recoverq_ ~c/, recoverq and ch ~ch ch for any ch f  recoverq_.

THEOREM 1.1. The following conditions hold:

1. The initial states in the concrete and the abstract model are equivalent.

Sc,0 ~ s  Sa,0

2. The abstract model simulates the concrete model.

V  S q  Sa, S  c  S c ~ s  Sa A  S c  —^  S  c E  Tc —S 0 S  a. S  c  ~ s  S  a A  Sa =  S  a V  Sa  —^  S  a £  Ta

3. A state in the concrete model is a deadlock if  and only if  the equivalent 
state in the abstract model is a deadlock.

V  Sc, Sa. ( S c  ~ s  Sa A  0  S  c- S c  —^ S  c £ Tc) = S  0  S  a- S a S  a (S Ta

Proof. The first condition holds trivially by definition of sc,o, sa.o and ~s.

We will omit a complete proof of the second condition, which is a tedious and 

rather standard proof of simulation (as commonly found in process calculi
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textbooks). Such a proof can be simply obtained by cases, and follows by definition 

of ~s and ~ch. Instead, by way of example, we sketch here the proof for the following 

case:

1 .  Sc ~ s  Sa,

2. {Consumer.Resubmit, Scheduler.ldle} cz fc; and

3. s ’c is the next-state that results from the synchronization between 

Consumer and Scheduler on channel resubmit.

Let sc = (lc, vc), sc = (Pc; v ’c ) and sc = (l3, va). We want to prove that there exists 

s ’a = (Pa, v ’a) so that s ’c ~s s 'a and either sa = s ’a or there exist a transition sa -̂ > s ’a e 

Ta.

Note that resubmission in the concrete model implies that (1) the corresponding 

transition is enabled, and (2) the channels match. Formally,

1. vc |=  Consumer.pending.size > 0 a  -iprovInCS() a  Consumer.rc < 

Consumer.pending.size

2. vc |=  cp[Consumer.id] = sp[Scheduler.id]

Once synchronisation occurs, we have that v ’c(Consumer.rc) = vc(Consumer.rc) + 

1 and all other relevant variables (that is, those concrete variables that are related to 

abstract variables) remain unchanged.

Now, by definition of and given the hypothesis sc ~s sa, it is the case that

1. {Consumer.Resubmit, Scheduler.ldle} c  L,

2. va \= Consumer.sent -  Consumer.completed > 0 a  -,provInCS() a  

Consumer.rc < Consumer.sent -  Consumer.completed, and

3. va |=  cp[Consumer.id] = spfScheduler.id],

Then, at sa, synchronisation over channel resubmit can also occur between 

Consumer and Scheduler in the abstract model, and this results in a next-state s ’a so 

that v ’a (Consumer.rc) = va(Consumer.rc) + 1 and all other relevant variables remain 

unchanged. Hence, by definition of ~s, s ’c ~s s ’a (qed).

The third condition can be proved by contradiction, following reasoning similar 

to the one that proves the second condition.
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COROLLARY 1.2. For any reachable deadlock state sc in the concrete model, 

there exists an equivalent reachable deadlock state sa in the abstract model (that is, sc

~ s  S a ) .

THEOREM 1.3. Let sc be a state in the concrete model, and sa ~s sc be an 

equivalent state in the abstract model (sa ~s sc). I f  sc satisfies Consumer.sent < 

GROUP_SIZE or it satisfies Consumer.pending.s > 0, then sa satisfies 

Consumer, completed < GROUP SIZE.

Proof Follows trivially from the definition of ~ s, and the invariant 

Consumer.sent < GROUP SIZE, which holds both in the concrete and in the abstract 

model.

7.5 D iscussion

During the verification of the scenario 1, we were able to spot a problem with our 

protocol that was causing UPPAAL to identify a possible deadlock for the system.

In the initial modelled version of our system (MO), the job resubmission message 

was sent as a TCP message from consumers to the scheduler. After receiving such a 

message, the scheduler would then contact the provider to which the job was 

assigned (if any).

After submitting a job to the scheduler, consumers broadcast the description of 

the jobs, so that providers can find out about them and process the matchmaking. 

Since we do not assume the use of reliable broadcast, it may happen that active 

providers do not receive some broadcast messages from consumers.

The case that caused the deadlock with MO was when all providers are active 

during the whole process and none of them received the broadcast message with the 

description of a certain job. In this case, only the consumer and the scheduler are 

aware of that job, thus the job cannot be allocated to any of the active providers.

According to MO, when the consumer gets a timeout for the job, it sends a 

reminder to the scheduler, which only takes further action if the job is allocated. 

Since the job has not been allocated, none of the active providers would find out 

about the job, and it would never be processed in this scenario, unless the consumer 

has the policy of executing the job itself after a certain number of attempts.
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The solution for this problem was to convert the job resubmission message into a 

broadcast message, giving the possibility to providers to receive it, and add it to their 

own queues, so the job can be allocated to one of them.

This kind of problem could not be identified solely using our simulations, since 

all the broadcast messages in the simulation are delivered.
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8 Conclusions and Future Work

This chapter presents the conclusions about the main contribution from this 

thesis, and it presents possible work than can be carried out in the future.

8.1 Conclusions

In this thesis, we have described the home environment as a possible scenario 

where the concepts of grid computing can be applied. We have introduced a TV 

recommender running SVD as a possible application for the system. Other examples 

of applications could be a security system that analyses video images or health 

systems that require more processing power to constantly monitoring data from a 

patient in the house. The home grid can also serve as a resource for conventional grid 

applications such as SETI@Home and FightAIDS@Home.

Here we considered the fact that the grid scheduler should be able to run in a 

limited device, and we showed that the majority of the scheduling and fault tolerance 

techniques applied to conventional grid systems are not suitable for the home 

environment. Based on this, we proposed a simple P2P based scheduling protocol 

that allows limited devices to play the role as the scheduler. This scheduling protocol 

represents the main contribution of this thesis, and it can be applied to other highly 

dynamic and heterogeneous environments.

Our protocol specifies how devices are registered with the grid and how 

resources are found using broadcasting of jobs descriptions that carry the minimal 

requirements for the jobs execution. Our scheduling and allocation mechanism was 

designed to reduce loss of jobs and improve the throughput in a constrained 

environment, also allowing providers to recover jobs sent to the system while they 

were unavailable.

Our solution also takes into consideration the fact that some consumer devices 

may be running on battery power, and presents low communication overhead.

We have also described how our protocol handles faults, and we proposed a 

distributed election mechanism that is used to choose a new scheduler when the 

current one fails. We have also explained how the state of the scheduler is recovered,
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while avoiding extra communication and processing that would be needed for the 

resubmission of all jobs.

Another contribution from this thesis is the simulator, which, unlike other grid 

simulators, provides support for broadcasting and a simple version of the TCP 

protocol for the communication. Another difference is that, instead of makespan, it 

supports throughput as one of the metrics, which is ideal for evaluating task 

independent schedulers.

We have simulated our solution and compared it with OLB using parameters that 

give us extreme situations in order to evaluate the performance and scalability of 

both systems, and to make sure that there are no hidden bugs in our design. The 

results have shown that our solution performs similar to or better than that provided 

by OLB, plus the fact that our solution supports fault tolerance and scales with the 

increase of the number of providers.

To complete this work, we have also formally modelled (using UPPAAL) part of 

the protocol and verified two cases of network partition, showing that our solution 

can tolerate those two scenarios of network failures. Other grid systems usually 

assume the existence partition-free network topology (which is not the case of 

common home networks) and do not consider such type of failure.

An additional contribution from this thesis is the resource description model 

presented in Appendix B, which can describe the variety of devices that can be found 

in a home and be used to build a complete home grid system in that environment.

8.2 O verall Contributions

As mentioned in the previous section, the main contribution of this thesis are the 

definition of the requirements for a home grid and the fault-tolerant distributed 

scheduling system that can run in a limited device and that does not require much 

processing from the consumers for the scheduling and the fault-tolerant mechanisms.

The other major contribution of this thesis is the simulator that supports the 

throughput as the evaluation metric. The simulation core developed at the University 

of Kent only provides the clock that controls the execution of events based on a 

queue and the interfaces for the development of the simulation objects/components.

We have extended the simulation core to be able to remove scheduled events. We 

also implemented all the grid components (consumer, scheduler, provider, etc.) for 

our proposed solution and for OLB, the components for the network simulation
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(including the simplified TCP and the broadcasting using UDP explained in the 

Chapter 5) and the component that simulates the processor based on the Mips and 

MFlops.

8.3 Future W ork

The focus of this thesis is on the scheduling mechanism for a home grid, but we 

have also presented an component-based architecture for the whole grid. Since we 

have only simulated the system, the immediate future work that comes to mind is the 

real implementation of it and its deployment on real devices.

The complete implementation of the system should start by the definition of 

interfaces for the software components specified in the section 3.5, which will allow 

different implementations of each component without affecting the functionality of 

the others. For example, some limited devices may require specific implementation 

for the communication component due to the variety of technologies available.

Even though we have not specified the security mechanisms for the system, we 

can still have a functional implementation of the system without the security aspects 

for testing purposes. Once the implementation is complete, it can be tested with 

simulated workload or with a real application such as a recommender system.

The following sections present other future work that can be developed.

8.3.1 Simulation parameters

Even though we have simulated a number of different configurations, we did not 

exhaust all the possibilities because of time constraints or because they were out of 

the scope of this thesis. For example, in our experiments, the providers had the same 

capabilities, and we assumed that they were all able to run all the submitted jobs; 

further simulations could involve different types of jobs and a more heterogeneous 

environment (we have mainly focused on the dynamicity of the environment and on 

the limitations of the scheduler device).

We have invested a considerable amount of time and effort in making sure that 

the simulations are correct and in trying to explore situation where our system could 

demonstrate a considerable gain in performance. For this reason, we have mostly 

used extreme scenarios that do not necessarily reflect the home environment. Future 

simulations should attempt to reflect a home environment better, e.g. the use of
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fewer consumers, the addition of input and output data and their location, consumers 

becoming unavailable, etc.

8.3.2 More schedulers

One can develop and/or simulate other types of schedulers and compare the 

results with the ones from our solution. One possibility to consider is a scheduler that 

is fully distributed (i.e., without a central device to make the final decision), which 

could be an interesting choice for comparison against our proposed solution.

A further improvement to our scheduling solution could focus on the reduction of 

the processing power required for making the final scheduling decision after 

receiving the list of jobs from the providers. In our simulations, we have 

implemented the scheduler by using a hash map as the scheduler’s local data 

structure, and a linked list to represent the list sent by the providers. Further 

optimization can still be made to the algorithms and data structures, reducing the 

CPU usage and scheduling time.

8.3.3 Security

It is necessary to define security mechanisms and policies to protect the 

information transferred in the home grid. Such security solutions should take into 

consideration the limitations of the environment.

The main aspects of security that must be addressed internally in the home grid 

system, i.e. not considering external access (e.g. to or from the Internet), are:

(i) Authentication: devices must be able to authenticate each other by 

themselves or via another device with better capacities in which they have 

trust. The second option is needed due to the device’s limitations 

(processing, storage and power).

(ii) Access control: every device has control over its own resources; for 

this reason an access policy must be elaborated, specifying which resources 

can be used by a certain device and how they can be used.

(iii) Confidentiality: applications may require that some data must be 

protected against unauthorized entities. Because of this, the grid system must 

give support to such a requirement. Nevertheless, the limitations of the 

devices impose a challenge when attending to this requirement, since some
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of them may not have enough capacity to run encryption algorithms with a 

safer key length. The grid system must then be able to adapt to such 

limitations [114].

(iv) Integrity: the data must arrive at the target device unchanged; 

otherwise applications will start giving wrong results.

(v) Availability: the central scheduler must be protected against denial o f 

service attacks that make it become unavailable.

There are many researchers working on secure infrastructures for sensor 

networks, and perhaps some of the solutions for those environments can be applied 

to the home grid.

8.3.4 Model Checking
As mentioned earlier, we have not modelled the full behaviour of the system, 

mainly due to time constraints and limitations of the tools to handle the size of the 

state space that can be generated.

Parts of the system that have not been verified formally include the election and 

the recovery processes, which have only been simulated.

Other network partition cases can also be modelled, e.g. the partition happening 

while the election or the recovery is in progress. We believe that our protocol can 

handle these cases, but we did not formally verify them for the reasons listed in the 

beginning of this section.

8.3.5 Data Grid

Our solution considers the existence of a computational home grid where the 

locations of the input and output (I/O) data required by the jobs are specified with 

their description.

Considering the existence of many different storage places in the house, there is a 

possibility of designing a home data grid [ 104] to facilitate the location of data, and 

to use such a system to store and locate I/O data for the jobs in the computational 

grid.
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APPENDIX A -  Recommender Systems

Recommender systems are designed to help users taking decisions in several 

different kinds of activity such as: choosing a restaurant, a place to visit, music to 

listen to inside a gym, a movie or any other TV content, for example. Many 

researchers have studied this kind of system, and some techniques have been 

developed with the objective of achieving better performance (typically in terms of 

accuracy and scalability).

In terms of the data used by a recommender system, we can say that, according 

to [115], they have:

• Background data: information known by the system before the 

recommendation process starts. E.g. the items to be recommended and the 

target users.

• Input data: information that must be sent to the system in order to compute 

the recommendation. E.g. the user’s preferences and rankings for the items.

• An algorithm to combine the background and input data to make suggestions 

to the users.

Based on [2, 115, 116], we can classify the recommender techniques in the 

following six groups: (1) Collaborative Filtering, (2) Content-based, (3) 

Demographic, (4) Utility-based, (5) Knowledge-based and (6 ) Hybrid.

The Collaborative Filtering (CF) technique consists of finding users with similar 

preferences to the target user, and then computing recommendations based on these 

commonalities. This is the most often implemented and most mature of the 

techniques. Systems that use CF can be either memory-based, wherein the 

recommendation is made by comparing users directly to each other using 

correlations or other measures, or model-based, in which we first create a model 

(offline mode) and then run the model to get the recommendation (online mode) 

[116, 117]. Building a model may take hours or days, with the goal to make it small, 

fast and accurate [116]. For the model building process, several methods have been 

used, including Bayesian networks [117, 118], dimensionality reduction [5, 6 ] and 

clustering [119, 120], for example.
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The Content-based method works by recommending items to the user, based on 

historical information, i.e. based on items that the user liked in the past [2, 115]. 

Systems that use this method learn a user’s preferences based on the characteristics 

of the content that this user rated, and a profile is defined. The type of this profile 

varies according to the learning method adopted (e.g. decision trees, neural 

networks, vector-based).

Demographic techniques categorize the user based on personal attributes and 

make recommendations according to demographic classes [115]. This categorization 

is done by questioning the user to gather the personal data needed. In contrast to CF 

and content-based, demographic methods have the benefit of not requiring a history 

of user ratings.

The Utility-based method uses a utility function for each user to compute 

recommendations based on how useful the item is for the user. The main objective is 

to match user need to item utility.

Knowledge-based recommendation systems make inferences about user’s needs 

and preferences and suggest an item. Knowledge-based approaches have knowledge 

about how a particular item meets a particular user need and can infer the 

relationship between a need and a possible recommendation [115].

The Hybrid approach consists of combining two or more methods mentioned 

above to gain better performance and try to avoid the problems or limitations 

presented by the individual use of the methods.

Assuming I as the set of items that can be recommended, U as the group of users 

whose preferences are known, u as the target user for the recommender system (i.e. 

the one to whom the system will suggest an item) and i as an item for which we 

would like to predict u ’s preference, Table 107 summarizes the recommendation 

techniques presented previously.

All the recommender techniques presented earlier have their strengths and 

weaknesses, as we can see in Table 117. The new user ramp-up problem is related to 

the loss of accuracy when recommending an item to a new user, since this user has 

not rated enough items to make a good suggestion. The new item ramp-up problem is 

similar to the new user problem, but related to items; since the new item has not been 

rated by enough users for a accurate recommendation, this item may never be

7 Table extracted from 115. Burke, R., H ybrid  Recom m ender System s: Survey and
Experim ents. User Modeling and User-Adapted Interaction, 2002. 12: p. 331-370.
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suggested. Gray sheep [121], also known as the Unusual User Problem, refers to 

those users with peculiar preferences that are difficult to match consistently with 

preferences of any group of people.
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Table 10 - Recommendation Techniques.

Technique Background Input Process
Collaborative Ratings from U of 

items in I.
Ratings from u of 
items in I*.

Identify users in U 
similar to u, and 
extrapolate from 
their ratings of i.

Content-based Features of items in I. Ratings from u of 
items in 1*.

Generate a classifier 
that fits u’s rating 
behaviour and use it 
on i.

Demographic Demographic 
information about U 
and their ratings of 
items in I.

Demographic 
information about u.

Identify users that 
are demographically 
similar to u, and 
extrapolate from 
their ratings of i.

Utility-based Features of items in I. A utility function 
over items in I that 
describes u’s 
preferences.

Apply the function 
defined by u to the 
items and determine 
i’s rank.

Knowledge-based Features of items in I. 
Knowledge of how 
these items meet a 
user’s needs.

A description of u’s 
needs or interests.

Infer a match 
between i and u’s 
need.

* The user u does not need to rate all the items in /, but the more items are rated the better 
is the accuracy of the recommendation. Normally some technique is used to reduce the 
sparsity o f the matrix (i.e. to fill the non-rates spaces in the matrices), as presented later in 
this section.

The drawback “L. Quality dependent on large historical data set” in Table 2 is 

related to the sparsity of the user-item matrices, i.e., lots of items with no rating. The 

sparser the matrices, the weaker are the recommendations. In [121] we can find some 

techniques that have been proposed to reduce sparsity like, for example: default 

Voting, pre-processing using average, use of filterbots and use of dimensionality 

reduction techniques.

One of the dimensionality reduction techniques is the Singular Value 

Decomposition (SVD) [5-8], a well-known matrix factorization method that factors 

and m x n  matrix R into three matrices as following:

R = U ■ S  -V'
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Table 11 - Strengths and Weaknesses of recommendation techniques

Technique Strengths Weaknesses
Collaborative A. Can identify cross-genre 

niches.
B. Domain knowledge not 
needed.
C. Adaptive: quality improves 
over time.
D. Implicit feedback sufficient.

I. New user ramp-up problem.
J. New item ramp-up problem.
K. ‘Gray sheep’ problem.
L. Quality dependent on large 
historical data set.
M. Stability vs. Plasticity 
dilemma.

Content-based B, C, D I, L, M
Demographic A, B, C I, K, L, M

N. Must gather demographic 
information.

Utility-based E. No ramp-up required.
F. Sensitive to change of 
preference.
G. Can include non-product 
features.

O. User must input utility function.
P. Suggestion ability static (does 
not leam).

Knowledge-based E, F, G
H. Can map from user needs to 
products.

P
Q. Knowledge engineering 
required.

Where U and V are orthogonal matrices of size m x r  and n x r respectively (r is 

the rank of R), and S is an r x r matrix with its diagonal entries having all singular 

values of R. These matrices are useful because of a property of SVD, which provides 

the best lower rank approximations of the original matrix R, in terms of Frobenius 

norm [6 , 122], Experiments with SVD have provided good performance in terms of 

accuracy, outperforming the traditional CF in some cases as presented in [6 ], when 

used with the Latent Semantic Indexing (LSI) technique.

The problem with SVD is that it is expensive computationally to factorize a m x 

n matrix, with a complexity in the order of 0((m+n)3) [6 , 34], Nevertheless, SVD is 

efficient in terms of storage, in the order of O(m+ri).

The “Stability vs. Plasticity Dilemma” [123, 124] represented by the drawback 

“M” in Table 2 is a characteristic of learning systems, in which such systems may 

learn correct outputs to a set of inputs, but after learning to handle new subsets of 

inputs they may fail to respond appropriately to the previously (old) learned input.

Gathering demographic information (“N”) is a disadvantage because users do not 

want to be disturbed by having to fill forms about their data, which in the TV world 

is more complicated, if they have to use a remote control to complete the task. The 

same problem occurs in asking the user to input a utility function (“O”), as in utility- 

based methods.
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Utility and knowledge-based methods are not able to learn from previous 

recommendations (“P”), which make these methods incapable of ‘discovering’ a user 

niche like the collaborative systems do. Another problem regarding the knowledge- 

based methods is that they need knowledge acquisition (“Q. Knowledge engineering 

required”), which may not be available or difficult to get. According to [115], this 

information is classified as: (i) catalog knowledge, that refers to the objects/items 

being recommended; (ii) functional knowledge, that specifies how the user needs are 

mapped to the available items; and (iii) user knowledge, some information about the 

user for promoting better quality of recommendation.

A good option to try to overcome the disadvantages of these techniques is the use 

of hybrid methods. Hybrid methods usually provide better results in terms of 

accuracy. A classification for hybrid methods and some examples can be found in 

[115], and some of the combinations still need further investigation.
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This appendix presents our proposed resource description standard to be used by 

the Description Handler component described in the section 3.5.

Independently of the kind of grid (wired or wireless), standardized mechanisms 

are required for describing resources available on the connected devices and without 

them, resource sharing would become impractical if not impossible [10, 125].

According to [126], none of the existing schemes provided for resource 

description covers all resources, but when taken together they can define most of the 

shared resources. It is impossible to define an initial schema that will cover all the 

resources that can be found in the home environment, since new 

technologies/devices (and consequently, new resources) are still to come. However, 

our first requirement that can be set for the resource description standard is that it 

must be extendable to reflect the new resources available in the grid.

Similarly to the Legion system [37], we are going to adopt a object-oriented 

model for resource description, which suits the requirement for extensibility of the 

data model. With this abstract model, we can describe the resources without referring 

to a specific system or language. In Figure 93, we present a diagram with objects that 

represent the kind of resources found in the home environment and their attributes.

In our model, we propose the object ResourceDescriptor that is the generalization 

for all kinds of resource. It is composed of three elements: the identification (ID) of 

the resource, a small description and an access policy.

The approach adopted for the issue of IDs in this thesis is presented in Chapter 3.

Since each device has control over its own resources, we need a way to identify 

how these resources can be used and the users/devices allowed access to them. We 

can do it by using an access policy, which is an important component of resource 

description. We are going to talk more about this policy later, when specifying the 

security requirements.

Each resource can be associated with any other resource. To represent this we 

have defined the association class ResourceAssociation, which contains the type of 

relationship between resources. The types supported in our model are: depends, 

provides, conflicts and suggests. This classification was based on the work presented 

in [127], and will be useful for the resource discovery system.
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• Depends: indicates that one resource depends on other resources to run 

properly. As an example we can mention a component written in Java that 

requires a Java Virtual Machine (JVM);

• Provides: specifies which other resources a certain resource may have 

available for sharing. For example, a computer that can provide disk storage or 

MS Windows as an operating system;

• Conflicts: refers to resources that are not able to be used together. For 

example, the operating system Symbian for mobile devices conflicts with a 

hardware resource that implements the x86-64 instruction set architecture;

• Suggests: recommends that a certain resource be used with another. An 

example would be Java applications or components for PDAs, where the 

description could recommend the use of a specific JVM implementation that 

could give better results.

SoftwareResource and HardwareResource

Extending the ResourceDescriptor object, we defined two main classes of 

resources: SoftwareResources and HardwareResources. This classification was based 

on [127], which describes an XML Schema for resource description (Grid Resource 

Definition Language - GResourceDL), supporting six basic resource types: concrete 

software components, software classes, concrete hardware resources, hardware 

classes, concrete data, and data classes. The concrete software component and 

software class types in GResourceDL are represented by the objects 

SoftwareResource, Application and Component in our model, where the first object 

represents any tool or operating system, being characterized by its name, version and 

vendor; and the last extends the Application by indicating the programming language 

used to develop it.

The concrete hardware resource and hardware class types in GResourceDL are 

represented by the HardwareResource object in our proposal, which was extended 

based on the grid resource class hierarchy presented in [128], which proposes an 

ontology for the grid resource description. That work classifies grid resources as 

computing resources, network resources and storage resources, which are 

represented in our model by the objects ComputingResource, NetworkResource and 

StorageResource, respectively.
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Computing Resource

ComputingResource objects describe the resource’s processing capabilities, like 

the CPU’s clock speed (e.g. 2.0 GHz), the amount of RAM memory available (e.g. 

1024 MB), and the instruction set architecture supported (e.g. ARM, MIPS, 

PowerPC, x86, x86-64).

NetworkResource

The NetworkResource object provides information about network capabilities: IP 

address (e.g. 192.168.2.5), communication interface (e.g. Ethernet, 802.1 lg, 

Bluetooth, ATM), bandwidth (e.g. 100.00 Mbps, 0.056 Mbps), and domain (e.g. 

“ S ensorNetwork”, “HomeNetwork’ ’).

StorageResource

The StorageResource object is related to the storage capacity available for 

sharing in the grid: the type of the media (e.g. Disk, DVD, Pen-drive, SD-Card), total 

and available space (e.g. 120,000.00 MB), and internal data transfer rate (the rate at 

which data is read from the physical device and transferred to the internal cache or 

read buffer [129], e.g. 10 MB/second).

lOResource

For the remaining hardware devices we can find in the home environment like 

cameras, scanners, printers, keyboards and TV sets, for example, we have defined 

the object IOResource. This object includes an identification of the location in the 

house, which can be useful to determine the closest device to the user when his/her 

location is also available. We have defined two sub-objects for IOResource: 

InputResource and OutputResource.

InputResource

This object represents devices that users can utilize to input data to some grid 

application, when required. The InputResource object has a list of formats 

(formatList) as attribute, which corresponds to the standard used to store the data 

like, for example, a webcam that can generates images in “AVI” or “MPEG”. This 

list is a string composed by the name of the supported formats (AVI, WAV, MP3, 

etc.), all separated by
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We have also defined extensions to the InputResource with the objective of 

getting more specific information about certain types of input devices: Audioinput, 

Imagelnput and Textlnput. The first object describes information about the audio 

capabilities of a device that can capture audio, like a microphone, for example; its 

attribute is the frequency response range (e.g. 20 Hz to 2000 Hz).

The Imagelnput object represents information about the maximum quality of 

image that can be acquired by devices that can capture this kind of data, like a 

camera or scanner, for example. The attributes that compose this object are the 

maximum height and width (e.g. 8.5 inches), and the maximum horizontal and 

vertical resolution (e.g. 1200 dpi) that a generated image can have. In this thesis we 

use image as a general term for static (e.g. figures) and dynamic (e.g. videos) 

images.

Devices that can be used to input information in text format (e.g. a keyboard) are 

represented by the Textlnput object, which is composed by the language (e.g. 

“English”) and the char set (e.g. “ASCII”) supported by the resource.

OutputResource

This object represents devices with capability to output data. We have 

categorized the different devices according to the type of output it produces.

The first category is represented by the Screen object, which corresponds to 

devices that show information in a monitor/screen like, for example, a TV set or a 

computer monitor. The information that describes these devices are: the height and 

width that a certain device can display (e.g. 800 pixels), the frequency in which the 

images are updated (e.g. 60 Hz) and the information to indicate if the device supports 

colours or not.

The second category is described by the Printer class, which contains information 

about printers like the model (e.g. “HP Deskjet 680C”), a boolean value indicating if 

the printer supports coloured printing, the maximum resolution (e.g. 600 dpi), the 

speed (e.g. 6 pages per second) and the kind of paper it has (e.g. “A4”).

The last category consists of devices that can emit sound, and are described by 

the Speaker object. The attributes of this object are: the audio channel type (e.g. 

“5.1”), the max power (e.g. 30 W), the minimum and the maximum frequency 

response (e.g. 18000 Hz).

193



APPENDIX B -  Resource Description

DataSet

The last two resource types in GResourceDL (concrete data and data classes) 

were mapped into the DataSet object in our model. This object plays an important 

role in the development of a data grid. It describes the data owner identification 

(depending on the authentication model adopted, e.g., it could be a X.500 Subject 

Name), the time stamp (the date and time the data was created or stored in a certain 

place), an expiry date for the data (an empty/null date means that the data will not 

expire), and the size of the date (e.g. 50 MB). The size is important information in 

case the device where the data is stored needs to make a planned shut down and need 

to find another device with the capabilities and permission to store it permanently or 

temporarily, until the date expressed by the validity field. The data location is 

expressed using the URI inherited from the SoftwareResource object.

Service

Some devices may also share resources as services, and for that reason we have 

defined the object Service that extends SoftwareResource. The Service object is 

composed of the URI for the service (inherited from SoftwareResource object), the 

operation name, the address where the service description can be found, and the 

language in which it is expressed (e.g. “WSDL” for web services description, and 

“IDL” for denoting CORBA services). The Service also contains the description of 

the operation’s parameters and result, described in our model through the 

OperationlO object, which represents the type of the element (if “input”, i.e. a 

parameter, or “output”, i.e. the return), the name of it, and the data type (e.g. integer, 

String, boolean). The Service object can be extended to allow the definition of 

specific attributes for the service invocation. In our model we have defined the 

WebService extension for web services invocation, which denotes the port type and 

the namespace for the operation.

PowerSupply

Since some of the devices in the home grid may use batteries as power supplier, 

we need to define which of them have this characteristic and be able to envisage how 

much power is still remaining, so we can provide a better fault tolerance mechanism. 

For this reason we define the PowerSupply object, which indicates the battery usage 

from the device (if it “always” uses a battery, or if it uses one “often”, or
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“occasionally”, or “never”), the maximum battery life (e.g. 5 hours), and the current 

status of the battery (e.g. 50.7% of usage). A PowerSupply object is defined as an 

attribute of hardware resources.

ResourceRequest

When a grid application needs to find resources for running its jobs, it will have 

to create an instance of ResourceRequest object, and define a list of 

ResourceDescriptors that represents the minimum requirements for running such 

jobs. We are going to talk about ResourceRequest in more detail when specifying the 

resource discovery system.
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solution

In this appendix, we aggregate the pseudo-codes used in the Chapter 4 by their 

corresponding software component.

Consumer

sendJob(job) {
send(JOB_SUBMISSION_REQUEST, scheduler, job); 
lastJobSent = job; 
startSubmissionTimer() ;

}

handleJobSubmissionResponse(jobLocallD, jobGloballD) { 
if (jobLocallD IS lastJobSent.LOCAL_ID) {

if (lastJobSent.status IS NOT COMPLETE) { 
lastJobSent.GLOBAL_ID = jobGloballD; 
jobsSent.add(lastJobSent) ;
broadcast(JOB_DESCRIPTION, lastJobSent.description); 
//start the timer for the job timeout 
startCompletionTimer(lastJobSent);

} else {
send (CANCEL_JOB, jobGloballD);

} else {
send(CANCEL_JOB, jobGloballD);

}
}

handleJobCompletion(job) { 
jobsSent.remove(job) ; 
jobsCompleted.add(job) ;

}

handleJobSubmissionTimeout() {
//read application policy to
//decide what to do: process the job locally
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//or resubmit the job 
if (POLICY IS RESUBMIT) { 

send(lastJobSent) ;
} else if (POLICY IS EXECUTE) { 

execute(lastJobSent) ; 
lastJobSent.status = COMPLETE; 
jobsCompleted.add(job) ;

}

startRecovery() {
lastKnownID = jobsSent.lastJob.GLOBAL_ID; 
send(RECOVER_ID, scheduler, lastKnownID);

}

handleConnectionTimeout(message) {
if (message IS JOB_SUBMISSION_REQUEST 

OR message IS CANCEL_JOB 
OR message IS RECOVERED) { 

coordinator.startElection();

}

Scheduler

handleJobSubmissionRequest(job) {
job.GLOBAL_ID = generatelD(ID, lastIssuedID++); 
changeStatus(message.job, AVAILABLE); 
pendingJobs.add(job);
send(JOB_SUBMISSION_RESPONSE, job.owner, job.GLOBAL_ID, 

j ob.LOCAL_ID);
}

handleScheduleRequest(queue, off_interval, message) {
chosenJob = schedule(queue, queue.size, message.sender); 
jobsList = createEmptyList();
//populates the jobsList with missing jobs and returns 
//TRUE if there are more missing jobs, or FALSE otherwise. 
more_flag = getMissingJobs(jobsList);
send(SCHEDULE_RESPONSE, chosenJob, queue, jobsList, more_flag);
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schedule(providerJobsList, n, providerlD) { 
result = NULL; 
i = 0;
while (i < n) {

temp = pendingJobs.get(providerJobsList.next); 
if (temp IS NOT NULL) {

if (temp.status IS NOT SCHEDULED) { 
if (result IS null) { 

result = temp;
result.providerID = providerlD; 
result.status = SCHEDULED;

} else {
providerJobsList.remove(temp);

}
i = i + 1 ;

}
return result;

}

handleCancelJob(jobID) {
pendingJobs.remove(jobID);

}

handleConsumerUnavailable(consumer) {
removeAllJobsFromConsumer(consumer);

)

handleJobCompleted(jobID) {
job = pendingJobs.remove(jobID); 
completedJobs.add(job);

)

handleRecoverlD(jobID) {
if (jobID > lastlssuedID) { 

lastlssuedID = jobID;
}

}
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handleRecoverQueue(pendingJobs, completedJobs) {
handleRecoveredID(pendingJobs.lastJob); 
handleRecoveredID(completedJobs.lastJob); 
updatePendingJobs(pendingJobs); 
updateCompletedJobs(completedJobs);

}

handleConnectionTimeout(message) {
if (message IS JOB_SUBMISSION_RESPONSE) { 

pendingJobs.remove(message.job);
} else if (message IS SCHEDULE_RESPONSE) { 

changeStatus(message.job, AVAILABLE);

handleRecoveryTimeout() {
if (hasMoreRecoveryMessages() IS TRUE) { 

timer.startRecoveryTimeout(T) ;
} else {

broadcast(RECOVERY_COMPLETE);
}

}

handleMerge(other_scheduler) {
mergeUtility = computeMergeUtility();
size = pendingJobs.size + completedJobs.size;
mergeRandom = RANDOM(0, 1);
send(MERGE_UTILITY, other_scheduler, mergeUtility, 

size, mergeRandom);
}

handleMergeUtility(message, received_utility, received_size, 
received_random) {

size = pendingJobs.size + completedJobs.size; 
if (size > received_size) {

mergeUtility = mergeUtility + 1;
} else if (received_size < size) {

received_utility = received_utility + 1;
}
if (mergeUtility IS received_utility) {
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if (mergeRandom IS received_random) { 
send(MERGE, message.sender, THIS);

} else if (mergeRandom < received_random) { 
send(SYNC, pendingJobs, completedJobs); 
stopLocalScheduler();

} else {
startSyncTimer();

}
} else if (mergeUtility < received_utility) {

send(SYNC, pendingJobs, completedJobs); 
stopLocalScheduler();

} else {
startSyncTimer();

)
}

handleSyncMessage(pendingJobs, completedJobs) { 
stopSyncTimer(); 
updatePendingJobs(pendingJobs) ; 
updateCompletedJobs(completedJobs) ; 
broadcast(MERGE_COMPLETE) ;

}

handleSyncTimeout( ) {
broadcast(MERGE_FAILED) ;

}

handleConnectionTimeout(message) { 
if (message IS SYNC) {

broadcast(MERGE FAILED);

handleMergeRecoverQueue(pendingJobs, completedJobs) ( 
updatePendingJobs(pendingJobs) ; 
updateCompletedJobs(completedJobs) ;

}

Provider

200



APPENDIX C -  Pseudo-code for the proposed solution

handleJobDescription(job) {
if (job.scheduler IS currentScheduler) {

local_status = coordinator.getStatus ();
processable = matchmake(local_status, job.DESCRIPTION); 
if (isProcessingJob AND job IS chosenJob) { 

if (processable IS FALSE) { 
stopExecutingJob ();
send(CHANGE_STATUS, scheduler, j ob . GLOBAL JD) ;

}
} else {

if (processable IS TRUE) {
classifyAsProcesable(job);

} else {
classifyAsNotProcesable (job) ;

}
jobs.add (job); 
requestSchedule ();

} else {
send(MERGE, job.scheduler, currentScheduler); 
send(MERGE, currentScheduler, job.scheduler);

}
)

requestSchedule() {
if(hasProcessableJobs () && jobsSent IS FALSE) { 

queue = getFirstMProcessableJobs(); 
off_interval = getOldestOffInterval();
send(SCHEDULE_REQUEST, scheduler, queue, off Jnterval) ; 
jobsSent = TRUE;

}
}

handleScheduleResponse (chosenJob, updated_queue 
missingjobs, more_flag) { 

for (i = 0 .. missingjob. size) { 
j ob = missingj obs [ i ] ;
processable = matchmake(local_status, job.DESCRIPTION); 
if (processable IS TRUE) {

classifyAsProcesable(job);
} else {
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classifyAsNotProcesable(job);
}

1
updateLocalQueue(updated_queue, missing_jobs);

jobsSent = FALSE; 
if (more_flag IS FALSE) {

removeOldestOffInterval();
}
if (chosen_job IS NOT NULL) {

result = execute(chosen_job);
//writes the result to the specified location 
writeResult(result, chosen_job.outputLocation); 
//informs the consumer of the job completion 
send(JOB_COMPLETION_CONSUMER, chosen_job.owner); 
//informs the scheduler of the job completion 
send(JOB_COMPLETION_SCHEDULER, scheduler, 

chosen__j ob. GLOBAL_ID) ; 
completedJobs.add(chosen_job);

}
requestSchedule();

}

startRecovery() {
send(RECOVER_QUEUE, scheduler, jobs, completedJobs);

}

handleConnectionTimeout(message, job) {
if (message IS JOB_COMPLETION_CONSUMER) {

send(CONSUMER_UNAVAILABLE, scheduler, job.owner) 
} else if (message IS JOB_COMPLETION_SCHEDULER 

OR message IS SCHEDULE_REQUEST 
OR message IS CHANGE_STATUS 
OR message IS RECOVER_QUEUE 
OR message IS CONSUMER_UNAVAILABLE 
OR message IS MERGE_RECOVER_QUEUE) {

coordinator.startElection ( );

}

sendMergeRecoverQueue() {
send(MERGE RECOVER QUEUE, currentScheduler,
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jobs, completedJobs);
}

Election Component

startElection() {
startElection(SCHEDULER_FAILURE);

}

handleSchedulerFailureMessage(received_utility) { 
if (THIS IS currentScheduler) {

broadcast(SCHEDULER_ELECTED, utility, THIS);
} else {

if (electionStarted IS FALSE) {
if (schedulerCapable IS TRUE) (

local_utility = computeUtility ( ); 
if (local_utility > received_utility) {

broadcast(HIGHER_UTILITY, local_utility); 
timer.start (T); 
isCandidate = TRUE;

} else {
isCandidate = FALSE; 
if (timer.started IS TRUE) { 

timer.stop ( ); 
timer.start(2*T);

}

} else {
if (timer.started IS FALSE) { 

timer.start (2*T);
}

}
electionStarted = TRUE;

}
}

}

handleHigherUtility(received_utility, failedScheduler) {
if (electionStarted IS TRUE) {

if (schedulerCapable IS TRUE) {
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local_utility = computeUtility() ; 
if (local_utility > received_utility) {

broadcast(HIGHERJJTILITY, local_utility); 
timer.start(T); 
isCandidate = TRUE;

) else {
isCandidate = FALSE; 
if (timer.started IS TRUE) { 

timer.stop(); 
timer.start (2*T);

}
}

} else {
if (timer.started IS FALSE) { 

timer.start(2*T);

handleElectionTimeout() {
if (isCandidate IS TRUE) {

broadcast(SCHEDULER_ELECTED, utility, THIS); 
coordinator.startRecoveryTimer();

} else {
startElection(RESTART ELECTION);

startElection(message) {
utility = computeUtility (); 
electionStarted = TRUE;
broadcast(message, currentScheduler, utility); 
if (schedulerCapable IS TRUE) { 

timer.start(T); 
isCandidate = TRUE;

} else {
timer.start(2*T);

}
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handleSchedulerElected(senderUtility, newScheduler) {
timer.stop(); 
electionStarted = FALSE;
if (currentScheduler IS NOT newScheduler) { 

if (THIS is currentScheduler) {
if (utility IS senderUtility) {

//generates a random number between 
I/O and 1 and adds it to the utility 
random = RANDOM(0, 1); 
utility = utility + random;
broadcast(SCHEDULER_ELECTED, utility, THIS); 

} else if (utility > senderUtility) {
broadcast(SCHEDULER_ELECTED, utility, THIS); 

} else {
currentScheduler = newScheduler; 
coordinator.startRecovery();

)
} else {

currentScheduler = newScheduler; 
coordinator.startRecovery();

I

}

Coordinator

handleMergeComplete(message) {
currentScheduler = message.sender ;

}

handleMergeFailed(message) {
currentScheduler = message.sender ; 
provider.sendMergeRecoverQueue();

)
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APPENDIX D -  C++ Code of DMS and OLB 
scheduling algorithms

The C++ code presented in this appendix was developed for counting the number 

of instructions required by the schedulers to be used in the simulations. The 

explanation of how we have computed the number of instruction from the C++ code 

is presented in the section 5.4.6 of this thesis.

Distributed Matchmake Scheduling (DMS)
♦include <string>
♦include <map>
♦include <list>

using namespace std;

class Job{ 
public:

int id;
bool isScheduled; 
int serverlD;

double cpu; 
double disk; 
double bandwidth; 
string os; 
bool battery;

} ;

class Provider! 
public:

int id;

double cpu; 
double disk; 
double bandwidth; 
string os; 
bool battery;

};
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class Scheduler{ 
public :

map<int,Job> localJobs;
void schedule (list<Job> ¿¡providerJobsList, int n,

serverlD, Job ¿¡result) ;
};

void Scheduler::schedule(list<Job> &providerJobsList, int n 
serverlD, Job &result) { 

int i = 0;
list<Job>::iterator it = (providerJobsList).begin(); 
bool resultlsSet = false;

while (i < n) {
map<int, Job>::iterator itl = localJobs.find(i);

if ( itl != localJobs.end() ) {

Job temp = (*itl).second; 
if (! (temp.isScheduled)) {

if (! resultlsSet) { 
result = temp; 
result.serverlD = serverlD; 
result.isScheduled = true; 
resultlsSet = true;

} else {
providerJobsList.erase (it); 
n = n - 1 ;

}

it++;
i = i + 1 ;

)
}

Optimistic Load Balance (OLB)

int

, int
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#include <stdlib.h> 
#include <time.h> 
#include <string> 
finclude <list>

using namespace std;

class Job{ 
public:

int id;
bool isScheduled; 
int serverlD;

double cpu; 
double disk; 
double bandwidth; 
string os; 
bool battery;

} ;

class Providerf 
public:

int id;

double cpu; 
double disk; 
double bandwidth; 
string os; 
bool battery;

} ;

class Scheduler{ 
public:

list<Job> localJobs;
list<Provider> providers; 

int m; // number of servers available 
int M; //total number of servers 
list<bool> readyServers; 
bool match(Job, Provider); 
void schedule(Job &job);
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void Scheduler::schedule(Job &job) {
Provider temp[m]; 
int i = 0; 
int n = 0;

list<Provider>::iterator it = (providers).begin(); 
list<bool>::iterator itl = (readyServers) .begin ();

while (i < M) {
if ( (*itl) == true) {

if (match(job, (*it))) {
temp[i] = *it; 
n++;

}
}
i = i + 1; 
i t+ +; 
i 11 + +;

}

if (n > 0) { // 2
srand ( time(NULL) ); 
int index = rand() % n; 
job.isScheduled = true; 
job.serverlD = temp[index].id;

}
}

bool Scheduler::match(Job job, Provider provider) {
return ((job.cpu <= provider.cpu) & (job.disk <= provider.disk) 

& (job.bandwidth <= provider.bandwidth)
& (job.os.compare(provider.os) == 0)
& (job.battery == provider.battery));

}
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APPENDIX E -  Abstract Templates

Here we present the templates for the abstract model. The abstract provider 

template is presented in Figure 92, Chapter 7.

These abstract templates are results of our effort to generate a model that requires 

less computational resource to be verified. A proof that the abstract model can be 

used to represent the behaviour of the original concrete model is presented in the 

Chapter 7.

Abstract Consumer Template

The abstract model in Figure 94 represents an abstraction for the concrete model 

of the consumers’ behaviour presented in Figure 87 (Chapter 7).

Abstract Pmerger Template

The abstract model in Figure 95 represents an abstraction for the concrete model 

of the Pmerger component presented in Figure 89 (Chapter 7).



APPENDIXE-Abstract Templates

partstart_p[id]?

Abstract Scheduler Template

The abstract model in Figure 96 represents an abstraction for the concrete model 

of the schedulers’ behaviour presented in Figure 90 (Chapter 7).

Figure 96 - Abstract Scheduler Template.
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