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ABSTRACT

Biometrics on mobile devices has attracted a lot of attention in recent years as it is considered a user-
friendly authentication method. This interest has also been motivated by the success of Deep Learn-
ing (DL). Architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have established convenience for the task, improving the performance and robustness in compar-
ison to traditional machine learning techniques. However, some aspects must still be revisited and im-
proved. To the best of our knowledge, this is the first article that explores and proposes a novel gait bio-
metric recognition systems based on Transformers, which currently obtain state-of-the-art performance
in many applications. Several state-of-the-art architectures (Vanilla, Informer, Autoformer, Block-Recurrent
Transformer, and THAT) are considered in the experimental framework. In addition, new Transformer
configurations are proposed to further increase the performance. Experiments are carried out using the
two popular public databases: whuGAIT and OU-ISIR. The results achieved prove the high ability of the

proposed Transformer, outperforming state-of-the-art CNN and RNN architectures.

© 2023 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Biometrics has become a relevant topic for security and authen-
tication purposes [1]. Among the different biometric traits, gait be-
havioural biometrics has attracted considerable attention in recent
years; for example, in surveillance scenarios where popular bio-
metric traits such as face and fingerprint are hard or impossible
to distinguish. Gait recognition uses the movement pattern of sub-
jects by focusing on specific characteristics such as the arm swing
amplitude, step frequency, and gait length [2]. Depending on the
specific application scenario, gait pattern can be captured using vi-
sual sensors such as surveillance cameras [3] or inertial sensors
such as the accelerometer and gyroscope included in wearable de-
vices [4].

The popularity of gait recognition has also increased with the
success of Deep Learning (DL) [5,6]. Architectures based on Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks
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E-mail address: p.delgado-de-santos@kent.ac.uk (P. Delgado-Santos).
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(RNNs), such as Long Short-Term Memory (LSTM), have proven to
be convenient for the task, improving performance and robust-
ness compared to traditional machine learning techniques. How-
ever, these popular DL architectures still have several disadvan-
tages that must be revisited and improved. The main drawbacks
are [7,8]: i) Sequential computation, not allowing parallelisation
within batches; ii) compression and condensation of the previous
time samples, limiting the past information seen, and iii) vanish-
ing gradients during back-propagation; the forget gate in a RNN
removes a small portion of the previous state after each sample.
Transformers are more recently proposed DL architectures that
have already garnered immense interest due to their effective-
ness across a range of application domains such as language as-
sessment, vision, and reinforcement learning [9]. Their main ad-
vantages compared with traditional CNN and RNN architectures
are [7,8,10]: i) Transformers are feed-forward models that process
all the sequences in parallel, therefore increasing efficiency; ii)
They apply Self-Attention/Auto-Correlation mechanisms that allows
them to operate in long sequences; iii) They can be trained effi-
ciently in a single batch since all the sequence is included in every
batch; and iv) They can attend to the whole sequence, instead of
summarising all the previous temporal information. Recent studies

0031-3203/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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have successfully proved the advantages of Transformers for time-
sequential data, outperforming traditional CNN and RNN architec-
tures [11-13].

Several Transformer architectures have been recently proposed
in the literature [9,14]. The original one, the Vanilla Transformer,
was introduced in 2017 by Vaswani et al. [7]. It was based solely
on Self-Attention mechanisms, dispensing with recurrence and
convolutions layers entirely. Impressive results were achieved on
the machine translation task, reducing also the training costs of
the best models compared with the literature. Despite these im-
provements, the Vanilla Transformer has disadvantages for some
applications based on time series: i) the computational complex-
ity of the attention mechanism is quadratic O(L?) where L denotes
the length of the input sequence; and ii) the total memory usage is
O(N ® L?) where N indicates the number of encoder/decoder lay-
ers, limiting the scalability of the model with long sequences. As
a result, different Transformer architectures have recently emerged
with the aim of addressing the shortcomings of the Vanilla Trans-
former, including: Informer [11], Autoformer [10], Block-Recurrent
Transformer [8], and THAT [13], among others.

The present article intends to explore and propose novel be-
havioural biometric systems based on Transformers. The main con-
tributions of the present study are as follows:

e An in-depth analysis of state-of-the-art deep learning ap-
proaches for gait recognition on mobile devices.

e An overview of the main concepts of Transformers, including
the key differences between popular architectures proposed in
the literature.

e To the best of our knowledge, this is the first study that ex-
plores the potential of Transformers for behavioural biometrics,
in particular, gait biometric recognition on mobile devices. Sev-
eral state-of-the-art Transformer architectures are considered in
the evaluation framework (Vanilla, Informer, Autoformer, Block-
Recurrent Transformer, and THAT), comparing them with tradi-
tional CNN and RNN architectures. In addition, new configura-
tions of the Transformers are proposed to further improve the
performance.

e An extensive experimental framework using popular pub-
lic databases in gait biometric recognition. On the existing
whuGAIT [15] and OU-ISIR [16,17] databases, the proposed
Transformer outperforms traditional CNN and RNN architec-
tures and achieves competitive results compared with the state
of the art.

* We make our experimental framework available to the research
community in order to advance mobile gait recognition re-
search?.

The exploration and analysis included in the present study can
also be very useful for other research lines, for example: i) improv-
ing the authentication performance of other behavioural biometric
traits such as handwritten signature and keystroke [18,19], among
many others, ii) improving the prediction and monitoring of dis-
eases [20], and iii) facilitating the training and synthesis of new
data [21,22].

The remainder of the article is organised as follows.
Section 2 summarises previous studies in the field of gait recog-
nition on mobile devices. Section 3 explains the main concepts of
Transformers and the key differences between the architectures
considered in the study. Section 4 describes the databases and
experimental protocol while Section 5 provides a description of
the system details. Section 6 describes the results achieved and
comparison with the state of the art. Finally, Section 7 draws the
final conclusions and future research lines.

2 https://www.github.com/BiDAlab/ExploringTransformers.
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2. Related works

Gait biometric recognition enables subjects to be authenticated
based on their walking patterns. Due to the exponential increase
in the number of mobile devices and the high precision of their
sensors, the interest in gait recognition based on mobile devices
is on the increase [4]. One of the most popular approaches is
based on the Inertial Measurement Units (IMU), e.g., accelerome-
ter and gyroscope [28]. Table 1 provides a summary of the most
relevant methodologies for gait biometric recognition on mobile
devices based on DL methods. It is important to highlight that
all approaches consider the same experimental protocol proposed
in Zou et al. [15] for two popular public databases in the litera-
ture: i) whuGAIT [15], which comprises accelerometer and gyro-
scope data acquired from mobile devices, and ii) OU-ISIR [16,17],
which includes accelerometer and gyroscope data obtained from
IMU sensors.

In the past few years, the research community has focused on
DL models to improve the robustness of gait recognition systems,
extracting more discriminative features. As both the spatial and
temporal information of the gait pattern is important for the task,
DL architectures based on CNN and RNN have been utilised. One of
the earliest systems based on DL models using CNNs was created
by Gadaleta and Rossi [23]. The authors used CNNs for feature ex-
traction and a Support Vector Machine (SVM) for the final classi-
fication with 0.15% misclassification rates. The score was obtained
in less than five walking cycles with their own collected database.
Their results proved how DL methods could extract more discrim-
inative features compared with previous machine learning meth-
ods. The same model was evaluated in Zou et al. [15] following a
predefined experimental protocol, obtaining an accuracy of 92.91%
in the whuGAIT database [15], and 44.29% accuracy in the OU-ISIR
database [16,17]. Another approach based on CNNs was presented
by Delgado-Escafio et al. [24], dividing the data into two branches,
according to each sensor (accelerometer and gyroscope). The out-
put of both branches were concatenated to produce a joint fea-
ture vector. Cross-validation was used, achieving 95.20% accuracy
with the OU-ISIR database using their own experimental protocol.
Following the predefined experimental protocol presented in Zou
et al. [15], results of 92.89% and 44.29% accuracy were achieved in
the whuGAIT and OU-ISIR databases, respectively. However, by us-
ing only CNNs, the system focuses mainly on spatial characteristics,
leaving out the temporal information.

To overcome this drawback, RNNs were proposed, extracting
temporal features from the time sequences. Watanabe et al. cre-
ated an end-to-end RNN with a softmax layer [25]. The model was
tested with the experimental protocol presented in Zou et al. [15],
achieving a 91.88% accuracy with whuGAIT database, and 66.36%
accuracy with OU-ISIR database. Zou et al. evaluated RNNs in Zou
et al. [15] over the OU-ISIR database achieving 78.92% accuracy.
They also presented the whuGAIT database and proposed a pre-
defined experimental protocol, achieving 93.14% accuracy.

Hybrid approaches have also been proposed in the literature,
achieves a more complex structure, where the CNN extracts spa-
tial features while the RNN obtains temporal features. Ordofiez
and Roggen presented in Ordéfiez and Roggen [27] DeepConvL-
STM, which comprises convolutional layers, followed by recurrent
and softmax layers. The model obtained 95.8% F1-score for the
activity recognition task with the Opportunity database [29]. The
system was also evaluated for gait recognition in Zou et al. [15],
achieving 92.25% and 37.33% accuracy for the whuGAIT and OU-
ISIR databases, respectively. Also, Zou et al. presented in [15] an
hybrid approach with two-parallel branches, one CNN and one
RNN. The extracted features were independent in each branch, ob-
taining a view of the raw data with both convolutional and recur-
rent layers. After each branch, the features were concatenated and
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-;Trﬂfnlary of the most relevant methodologies for gait biometric recognition based on DL methods.

Category Year Ref. Description Performance Database
2016 [23] CNN Feature Extractor + SVM Classifier 92.91% whuGAIT
CNNs 44.29% OU-ISIR
2019 [24] Fusion CNN + Euclidean Distance 92.89% whuGAIT
40.60% OU-ISIR
2020 [25] End-to-End RNN 91.88% whuGAIT
66.36% OU-ISIR
RNNs 2020 [15] End-to-End RNN 91.88% whuGAIT
66.36% OU-ISIR
2021 [26] End-to-End Multi-RNN 93.14% whuGAIT
78.92% OU-ISIR
2016 [27] Cascaded CNN + RNN 92.25% whuGAIT
37.33% OU-ISIR
CNNs o RNNs 2020 [15] 2-Parallel Branches: CNN + RNN 93.52% WhuGAIT
2021 [26] 2-Parallel Branches: CNN + Multi-RNN 94.15% whuGAIT
89.79% OU-ISIR
2022 Present Work 2-Parallel Branches: Temporal and Channel Modules 94.25% whuGAIT

Proposed Temporal: Auto-Correlation + GBR' CNN Layers and Recurrent Layer
Transformer Channel: Auto-Correlation + GBR CNN Layers 93.26% OU-ISIR

Gaussian Range Encoding in both Temporal and Channel Modules

fed into a fully connected layer. The authors achieved 93.52% accu-
racy on the presented whuGAIT database.

Previous approaches are based on prior gait cycle detection.
The input of the DL models is an interval time between two con-
secutive occurrences of the gait pattern, i.e. putting the same
foot on the ground [4]. Gait cycle detection is usually a tedious
task that can induce to errors due to the sensor restrictions (e.g.,
noise-sensitive, sensor specification, body placement, etc.). To solve
this problem, Tran et al. proposed in [26] a new approach using
window-based data segment. The authors used a Multi-RNN model
considering fixed-length segments as input, without the need to
extract gait cycles. The authors achieved an accuracy of 93.14% for
the whuGAIT database, and 78.92% for the OU-ISIR database. In ad-
dition, the same authors introduced an hybrid approach, achiev-
ing 94.15% and 89.79% accuracy for the whuGAIT and OU-ISIR
databases, respectively.

Despite the success of CNN and RNN architectures, some of
their limitations could still be revisited and improved, such as lim-
ited window sizes for RNNs. By summarising all previously ob-
served information into one vector, these approaches miss tempo-
ral information that is relevant to gait biometric recognition. Due
to the limitations highlighted, this article explores the potential
of recently developed Transformer architectures for gait biometric
recognition and proposes new configurations to further improve
the results. Table 1 also includes the results achieved using our
proposed Transformer.

3. Methods

This section provides an overview of the main concepts of
Transformers, including the key differences between recent archi-
tectures proposed in the literature. To facilitate the understanding
of this section, we include in Fig. 1 a graphical representation of
the different Transformer architectures. As the present article is re-
lated to behavioural recognition, we focus only on the encoder part
of the Transformer.

3.1. Vanilla transformer

The original Vanilla Transformer was presented in Vaswani
et al. [7] for the task of machine translation. It was defined as a
multi-layer encoder-decoder architecture with no recurrence and
convolution layers. Fig. 1 A. provides a graphical representation
of the encoder, which is composed of a stack of N identical lay-
ers. Each layer is mainly formed by two different sub-layers: i)
a multi-head Self-Attention mechanism (Full-Attention), and ii) a
point-wise feed-forward network. Subsequent of each sub-layer,
a residual connection and a layer normalisation are considered
(Add & Norm in Fig. 1). The input sequence is a matrix X € R<L
where ¢ is the number of channels and L the length of the se-
quence.

The encoder maps each sample [ of the input sequence X =
(X0, X1,...,X},...,Xx;) into hidden states Z = (zg,21,...,2},...,2p)-
The output of each sub-layer is LayerNorm(X + sublayer(X)),
where sublayer(X) is the function implemented by the multi-head
Self-Attention mechanism (Full-Attention) or the point-wise feed-
forward network. Both the input X and output Z have the same di-
mension L to facilitate the work of the residual connections. As no
recurrence and convolutional layers are considered in the Vanilla
Transformer, a previous encoding of the model is needed to keep
certain information about the sample [ of the sample in the input
sequence. This is achieved using a positional encoding placed at
the input of the model.

We describe next the key aspects of the positional encod-
ing, multi-head Self-Attention mechanism (Full-Attention), and the
point-wise feed-forward network for a better understanding of the
Vanilla Transformer, and the later Transformer implementations.

3.1.1. Positional encoding

This stage encodes the relative and/or absolute position pos of
the sample [ of the input sequence. In the original work, Vaswani
et al. [7] preserved the relative context using a fixed point encod-
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Fig. 1. Graphical representation of the Transformer architectures used in this study (Vanilla Transformer [7], Informer [11], Autoformer [10], Block-Recurrent [8], THAT [13],
and our proposed Transformer). Q: Queries; K: Keys; V: Values; Nx,Hx,Rx: they refer to the number of layers of each type; FFT: Fast Fourier Transform; TDA: Time Delay
Aggregation; HAR CNN: Human Activity Recognition CNN; GBR CNN: Gait Biometric Recognition CNN.
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Auto-Correlation (Autoformer [10]); and (d) Cross-Attention (Block-Recurrent Transformer [8]). The solid line represents the input sequence and the red one (second line)
the current states in Cross-Attention. The red points/series are the sample | of the sequence of length L with V values, K keys, and Q queries. The orange points represent
the mapped points/series along the entire sequence, while the grey ones are points not mapped. Figure adapted from [10].

ing with the sine and cosine functions:

PE (pos a1y = Sin(pos/]00002l/L) )

PE (o5 2141y = COS(pOs/]00002l/L)

where L is the total length of the input sequence. The positional
encoding has the same length L as the embeddings, so that the
two can be summed. The output of the positional encoding is:

X =X+ PEg (2)

3.1.2. Multi-head self-attention mechanism

This mechanism is responsible for mapping scattered points
along the entire sequence, studying the long-range dependencies.
This mechanism avoids the limited time window problem of pre-
vious architectures (e.g., RNNs). The information aggregation is ac-
complished with a Full-Attention mechanism where the outputs
are the weighted sum of the values V according to the canonical
point-wise dot-product of the queries Q with the corresponding
keys K. Fig. 2(a) provides a graphical representation of the Full-
Attention mechanism. The solid line represents the input sequence
with its values V, keys K, and queries Q. The red point represents
the sample [ in the sequence with length L. The orange points are
the scattered points mapped in the Full-Attention mechanism for
the red point at sample [. The Full-Attention mechanism can be
defined as:

T
Attention(Q,K,V) = softmax(Qi)V (3)

N

where d;, is the dimension of the queries Q and keys K, and \/a is
a scaling factor that enables flatter gradients. Q = XWj, K = XW,
V = XWy, are the linear projections of X in the corresponding pro-
jection parameters dy, di, and d, respectively where Wy € RExdy,
Wy € R and W, € RL*dv, The computational cost is quadratic
0(L?) where L denotes the length of the input sequence.

Alternatively to apply one single projection of the queries, keys,
and values, better results can be achieved with h independent
projections to dy, d, and d, respectively. The multi-head Self-
Attention is based on a concatenation and final projection of the
h independent heads:

MultiHead (Q, K,V) = [head;, .. ., head, |W° (4)

where head; = Attention(Q;, K;, V;) and WO e R"vxL is the final at-
tention matrix. To achieve the same length L of the input sequence,
dy = L/h. Therefore the attention matrix of Full-Attention is L x L.

3.1.3. Point-wise feed-forward network

In addition to the multi-head Self-Attention sub-layer, the
Vanilla Transformer has a point-wise feed-forward network. This
consists of two linear transformations with a ReLU activation in
between, operating in each position independently. The input and
output dimensions are the same, L.

To summarise, the Vanilla Transformer has shown great ad-
vances in Natural Language Processing and Computer Vision appli-
cations but still needs to be adapted for time sequences. Aspects
such as the periodicity or seasonality, and long- and short-range
dependencies still need to be revisited [14]. To alleviate these
drawbacks, different Transformers have been proposed in the re-
search community, modifying aspects such as the multi-head Self-
Attention sub-layer and the positional encoding.

3.2. Informer

Zhou et al. presented in [11] a new Transformer architecture
named Informer. Informer is an adaptation of the Vanilla Trans-
former for Long Sequence Time-series Forecasting (LSTF). Some
limitations of the Vanilla Transformer are the quadratic time com-
plexity O(L?) and the high memory usage O(L?) for each encoder
layer; and the inherent limitation of the encoder-decoder architec-
ture. To overcome these drawbacks, the authors proposed several
improvements. The multi-head Self-Attention mechanism based on
Full-Attention was changed by ProbSparse-Attention to scattered
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points, as provides Fig. 1 B. The Full-Attention to the input se-
quence is reduced to half, more favourable handling long-range se-
quences. The canonical dot-product was replaced by a scaled dot-
product. Informer reduces the time complexity to O(L log L) and
the memory usage to O(L log L) for each layer. In addition, previ-
ous studies have shown a potential sparsity in Full-Attention. As a
result, the authors decided to use a selective strategy on all prob-
abilities, i.e., Sparse-Attention [30] (sparsity coming from separate
spatial correlations) and LogSparse-Attention [31] (selecting points
through exponentially increasing intervals). Fig. 2(b) provides a
graphical representation of the ProbSparse-Attention mechanism.
The solid line denotes the input sequence with the extracted val-
ues V, keys K, and queries Q. The red point represents the sample
I in the input sequence. The ProbSparse-Attention mechanism, un-
like the Full-Attention mechanism that looks at all previous points,
chooses selected dominant points (orange) in the input sequence,
while the grey ones are not used.

3.3. Autoformer

Autoformer was presented by Wu et al. [10] for the task of
long-term forecasting. In this Transformer architecture, the origi-
nal multi-head Self-Attention mechanism based on Full-Attention
was changed by Auto-Correlation. Contrary to previous Transform-
ers, where the proposed dot-product only establishes point con-
nections, the Auto-Correlation mechanism not only utilises long-
range dependencies but also periodicity-based dependencies. Using
series-wise instead of point-wise connections, Autoformer achieves
O(L log L) time complexity and O(L log L) memory usage for each
layer, and breaks the information utilisation bottleneck. Fig. 2(c)
shows a graphical representation of Auto-Correlation. It takes into
consideration series of points in the same position during previous
periods of the input sequence instead of scattered points.

Fig. 1 C. provides a graphical representation of Autoformer. The
multi-head Auto-Correlation sub-layer comprises two main sub-
blocks: i) an aggregated top-k similar sub-series, calculated by Fast
Fourier Transform (FFT) and based on periodicity (instead of scat-
tered points like the Self-Attention family), and ii) Time Delay Ag-
gregation (TDA) among periods (instead of point-wise dot-product
like in the Self-Attention family), used for the information aggre-
gation.

The aggregated top-k similar sub-series presents series-wise con-
nections based on period-based dependencies. The sub-series are
correlated between them at the same position in previous pe-
riods, which are congenitally sparse. For an input sequence X =
(X0, X1, .- Xyt x1), X € RL where ¢ is the number of chan-
nels and L the length of the input sequence, the Auto-Correlation
Rxx(t) can be obtained by FFT based on Wiener-Khinchin theo-
rem as:

Sxx (f) = FFT(X)FFT*(X) (3)
Rxx () = FFT™1(Sxx (f))

where FFT* is the conjugate operation, FFT~! its inverse, and
Sxx (f) is the Auto-Correlation obtained in the frequency domain.

The Time Delay Aggregation (TDA) sub-block links the sub-series
over the selected time delays 7, ..., 7. This operation aligns sub-
series in the same phase of the predicted periods, contrary to
point-wise dot-product in the Self-Attention family. Finally, the
sub-series are aggregated by softmax normalised function. The
Auto-Correlation mechanism can be defined as:

Rox(t1). ..., Rok (1) = SoftMax(Ro k (1), .- .. Rox (i)
k
Auto — Correlation(Q. K. V) = > Roll(V, 1)Ro k(1)
i1

(6)
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where argTopK takes the output of topK Auto-Correlations along I,
Rq  is the Auto-Correlation between Q and K series, and Roll(V, T;)
scroll X with a 7 time delay, re-introducing the elements moved
beyond the first position to the last one.

3.4. Block-recurrent transformer

Hutchins et al. introduced the Block-Recurrent Transformer in
Hutchins et al. [8] for the task of auto-regressive language mod-
elling. This Transformer introduces a recurrent form of atten-
tion. It is presented as an alternative to using the dot-product or
periodicity-based series mechanism, which fix an attention win-
dow size. The Block-Recurrent Transformer summarises the se-
quence that the model has previously seen. The time complexity is
linear O(L) for each layer. The recurrent layers operate on series-
wise connections as in the Autoformer, achieving linear memory
consumption O(L) in each layer. The Block-Recurrent Transformer
is based on a sliding-window attention mechanism [32]. Given an
input X with length L, a causal mask is applied by a sliding win-
dow with size W where every sample can attend only to the previ-
ous W samples. Being the attention matrix of Full-Attention L x L,
the Block-Recurrent Attention matrix is W x W, where W << L.
The sliding-window attention processes multiple blocks of size W
at the same time.

Fig. 1 D. provides a graphical representation of the Block-
Recurrent Transformer architecture, which comprises two main di-
rections: i) vertical direction (Self-Attention Layer in Fig. 1 D.),
where layers are placed in the usual way; and ii) horizontal direc-
tion (Recurrent Layer in Fig. 1 D.), where layers contain recurrence.
Both directions attend to the input sequence X and to the current
states S.

The vertical direction presents a multi-head Self-Attention sub-
layer with two attentions: i) Full-Attention to the input sequence
X as shown in Fig. 2(a); and ii) Cross-Attention applied in a simi-
lar way to the original Vanilla Transformer [7], with the main dif-
ference being that the queries Q come from the current states S,
which are initialised to 0, whereas the keys K and values V are
extracted from the input sequence X, Fig. 2(d).

The horizontal direction also presents a multi-head Self-
Attention sub-layer with two attentions: i) Cross-Attention to the
input sequence X to extract the queries Q while the keys K and
values V are extracted from the current states S, Fig. 2(d), and ii)
Full-Attention to the current states S, Fig. 2(a). The horizontal di-
rection applies recurrence where the residual connections are re-
placed by gates, allowing the model to forget. Also, the gates help
the model to apply Full-Attention and Cross-Attention in parallel.
For the recurrence, the current states S are modified by residual
connection gates. The input of the state at the next window (s,,,1)
depends on the output of the state at the actual window (s ):

Swil =SwOZ+2zw O (1 -g)
g=0(b®) (7)
ZW = W(Z)hw + b(z)

where © is the point-wise multiplication, g the gate, z, the
learned convex combination, b® and b@ are trainable bias vec-
tors (learned functions between the distance of the query Q and
key K), W the weight matrix, h,, the output of the corresponding
sub-layer (i.e., multi-head Self-Attention mechanism or point-wise
feed-forward network), and o the sigmoid function.

The Block-Recurrent Transformer applies layer normalisation
before the multi-head Self-Attention sub-layer, and before the
point-wise feed-forward network. Dropout is also introduced be-
fore the multi-head Self-Attention sub-layer and after the point-
wise feed-forward network.
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3.5. THAT

Contrary to images, which have spatial information in two di-
mensions (2D), temporal sequences might consider spatial infor-
mation in one dimension (1D) in each time position. Furthermore,
they can extract temporal information for each time position in a
second dimension. The spatial information is available in the same
way, between the different channels of each time sample, which
can be called as channel-over-time features. On the other hand,
being a temporal sequence, there are time-over-channel features,
which need to be treated as a temporal sequence.

Based on this idea, the Two-stream Convolution Augmented Hu-
man Activity Transformer (THAT) model was proposed by Li et al.
[13]. The authors proposed a new Transformer architecture for Hu-
man Activity Recognition (HAR). Fig. 1 E. provides a graphical rep-
resentation of the THAT Transformer. The model contains two par-
allel modules for the feature extraction: i) Temporal Module (in
charge of time-over-channel features), and ii) Channel Module (in
charge of channel-over-time features). Subsequently, all extracted
features are concatenated for the prediction task.

The authors claimed that the original positional encoding con-
sidered in the Vanilla Transformer [7] might not be sufficient to
capture all the temporal information along the sample as it is de-
fined on a single point. As a result, the authors proposed a Gaus-
sian range encoding, suggesting the use of a range of points rather
than just one. Furthermore, several ranges g can be used at the
same time, allowing to have different contexts of the sample x;.

Assuming g € RS different ranges, N (ug, 08) € RLXC is
a Gaussian distribution with the probability pS(l). Being p, =

(@,..., @) the distribution over the G ranges with a nor-

malisation factor ¢, V = (vq,...,v5) is the values vector over the
ranges. All pu, o, and V variables are initialised randomly and re-
adjusted with the training of the whole model. To summarise, the
output of the Gaussian range encoding at the position of sample [
is:

X=x+V'p (8)

In addition, as the point-wise feed-forward layer proposed in
the Vanilla Transformer [7] focuses attention on a single point in
time, the authors implemented a multi-scale CNN with adaptive
Scale-Attention in both Temporal and Channel Modules. They re-
placed the linear transformations of the original feed-forward layer
with a HAR CNN. Also, by introducing Scale-Attention Adaptive, the
training can be adjusted to the different ranges introduced by the
Gaussian range encoding.

Finally, THAT has quadratic time complexity O(L?) and the
high memory usage O(L?) for each encoder layer, since the model
uses Self-Attention (i.e., Full-Attention similar to the Vanilla Trans-
former).

3.6. Proposed transformer

Finally, Fig. 1 F presents the new proposed Transformer based
on a selection of the best components presented in previous Trans-
former architectures. First, we consider a parallel two-stream ar-
chitecture with Temporal and Channel Modules, similar to the
THAT approach presented in Li et al. [13]. Unlike the THAT model,
we consider a Gaussian range encoding as input of both Temporal
and Channel Modules. In addition, for the Temporal Module (left
branch), we consider a combination of multi-head Auto-Correlation
layers, proposed in Autoformer [10], and a recurrent layer in be-
tween, proposed in Block-Recurrent Transformer [8]. For the multi-
head Auto-Correlation layer, we design a specific multi-scale Gait
Biometric Recognition (GBR) CNN sub-layer. Regarding the Channel
Module (right branch), we consider a multi-head Auto-Correlation
sub-layer together with a multi-scale GBR CNN sub-layer. After
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each sub-layer, a residual connection is applied followed by a
normalisation of the layer, similar to the Vanilla Transformer [7].
The time complexity and memory usage of each layer with Auto-
Correlation is O(L log L), whereas for the recurrent layer this is
o(L).

4. Experimental protocol

Two popular public databases used for research in gait recogni-
tion on mobile devices are considered in the evaluation framework
of the present study: i) whuGAIT [15], and ii) OU-ISIR [17]. These
databases have been selected as they also contain predefined ex-
perimental protocols for the identification task (i.e., development
and evaluation datasets), allowing for a fair comparison between
existing state-of-the-art approaches.

4.1. WhuGAIT database

The whuGAIT database was introduced in Zou et al. [15]. This
database comprises accelerometer and gyroscope data acquired us-
ing Samsung, Xiaomi, and Huawei smartphones in unconstrained
scenarios. The sampling frequency of the accelerometer and gyro-
scope sensors is 50 Hz. A total of 118 subjects participated in the
acquisition, and both walking and non-walking sessions were con-
sidered.

Regarding the experimental protocol of the whuGAIT database,
Zou et al. proposed in [15] a predefined division of the database
into development and evaluation datasets in order to facilitate the
comparison among approaches. For each subject, 90% of the sam-
ples are considered for development while the remaining 10% for
the final evaluation. In total 33,104 samples are considered for
the development dataset whereas the remaining 3,740 samples are
used for the final evaluation.

4.2. OU-ISIR database

The OU-ISIR database was presented in Ngo et al. [17]. This
database comprises 745 subjects; the largest public mobile device
gait biometric database to date. Data from accelerometer and gy-
roscope sensors were collected using three IMUs and a Motorola
ME860 smartphone around the waist of the subject. The sampling
frequency of the sensors is 100 Hz. Subjects had to perform 4
different activities (two flat walking, slope-up walking, and slope-
down walking). The database is divided into two different subsets.
The first subset includes data from 744 users collected by one IMU
located in the middle of the subject’s back at waist-height. The sec-
ond one contains data from 408 subjects collected by the three
IMUs and the smartphone.

Regarding the experimental protocol of the OU-ISIR database,
we consider the predefined division of the database into devel-
opment and evaluation datasets proposed by Zou et al. [15]. For
each subject, 87.5% of the samples are considered for development
while the remaining 12.5% for the final evaluation. In total 13,212
samples are considered for the development dataset whereas the
remaining 1,409 samples are used for the final evaluation.

5. Systems details

This section provides the system configuration details of the
Transformers and traditional DL architectures (i.e., CNNs and RNNs)
considered in the experimental framework of the study.

The same inputs to the models is used for all approaches. For
the whuGAIT database, a total of 80 time signals (around 1.5 s
each) are extracted from the 3-axis accelerometer and gyroscope
sensors following the approach presented in Tran et al. [26]. Also,
we consider an overlapping of 97% between samples in training.
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For the OU-ISIR database, 128 time signals (around 1.5 s each) are
extracted from the 3-axis accelerometer and gyroscope sensors fol-
lowing the approach presented in Zou et al. [15]. Also, we consider
an overlapping of 61% between samples in training.

For a better comparison of Transformer architectures with pop-
ular DL architectures, we consider the following approaches: i)
CNNs, ii) RNNs, and iii) a hybrid configuration based on the combi-
nation of CNNs and RNNs. These DL models are widely considered
for gait biometric recognition, achieving state-of-the-art results as
described in Section 2. CNNs have shown advantages in capturing
spatial dependencies, while RNNs are better to capture the tempo-
ral dependencies.

We provide next a description of the networks parameters:

e CNN: we consider four 1D convolutional layers with 6 units
each and kernel size 5, followed by one dense layer with %L
units (where L is the length of the time sequence), and one
softmax layer. After every 2 convolutional layers, we use max-
pooling and dropout with a 0.5 rate. ReLU activation functions
are used in both convolutional and dense layers. The total num-
ber of model parameters is 57.3K and 35.4M for the whuGAIT
and OU-ISIR databases, respectively.

e RNN: we consider three LSTM layers with 3 units each followed
by one dense layer with %L units, and one softmax layer. The
total number of model parameters is 785.2 K and 3.6 M for the
whuGAIT and OU-ISIR databases, respectively.

o CNN-RNN: it comprises two parallel modules, i) four convolu-
tional layers with 6 units each and kernel size 5, and ii) three
LSTM layers with 3 units each. After both modules, a feature
concatenation is applied, followed by one dense layer with %L
units, and one softmax layer. We also consider dropout with 0.5
rate after each convolutional layer. The total number of model
parameters is 870.5 K and 40.4 M for the whuGAIT and OU-ISIR
databases, respectively.

e Vanilla Transformer [7]: we consider the positional encoding
together with the encoder part of the Vanilla Transformer.
The model consists of N =5 layers. For the multi-head Self-
Attention sub-layer, 8 heads are considered with Full-Attention
whereas for the point-wise feed-forward network we consider
two linear layers (layer 1 with L units and layer 2 with L4
units) with ReLU activation and dropout in between. The to-
tal number of model parameters is 705.7 K and 3.4 M for the
whuGAIT and OU-ISIR databases, respectively.

Informer [11]: we consider the same structure as the Vanilla

Transformer but changing in the multi-head Self-Attention sub-

layer the Full-Attention to ProbSparse-Attention. The model is

composed of N =15 layers. For the multi-head Self-Attention
sub-layer, 8 heads are considered whereas for the point-wise

feed-forward network we consider two linear layers (layer 1

with L units and layer 2 with L x4 units) with ReLU activation

and dropout in between. The total number of model parameters
is 705.7 K and 3.4 M for the whuGAIT and OU-ISIR databases,
respectively.

o Autoformer [10]: the same structure as the Vanilla Transformer

is considered but changing the Self-Attention mechanism for

the Auto-Correlation mechanism. The model comprises N =5
layers with 8 heads in the multi-head Auto-Correlation sub-
layer. For the point-wise feed-forward network we consider two
linear layers (layer 1 with L units and layer 2 with L %4 units)
with RelU activation and dropout in between. The total num-
ber of model parameters is 1.0M and 3.4M for the whuGAIT and

OU-ISIR databases, respectively.

Block-Recurrent Transformer [8]: it comprises 12 layers: N =9

multi-head Self-Attention layers with Cross-Attention and Full-

Attention (8 heads), followed by R = 1 recurrent layer, and M =

2 more multi-head Self-Attention layers with Cross-Attention
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and Full-Attention (8 heads). In each layer, the point-wise feed-
forward network is composed of two linear layers (layer 1 with
L units and layer 2 with L x4 units) with ReLU activation and
dropout in between. The total number of model parameters is
24 M and 3.3 M for the whuGAIT and OU-ISIR databases, re-
spectively.

THAT [13]: this is a two-stream convolution Transformer ar-
chitecture. In the first stream (Temporal Module) the time-
over-channel features are analysed. To this aim, Gaussian range
encoding is used together with the original multi-head Self-
Attention sub-layer (Full-Attention with 8 heads). The HAR CNN
sub-layer is based on a multi-scale CNN (3 convolutional layers
with L units each, ReLU activation functions, and kernel sizes 1,
3, and 5 respectively, followed by dropout layers). The Tempo-
ral Module contains N = 9 layers. For the second stream (Chan-
nel Module) the data is transposed to extract the channel-over-
time features, adopting the original Vanilla Transformer struc-
ture with positional encoding. The multi-head Self-Attention
sub-layer contains Full-Attention with 6 heads. The HAR CNN
sub-layer is based on a multi-scale CNN (3 convolutional layers
with L units each, ReLU activation functions, and kernel sizes
1, 3, and 5 respectively, followed by dropout layers). The Chan-
nel Module contains H =1 layer. The total number of model
parameters is 611.7 K and 4.7 M for the whuGAIT and OU-ISIR
databases, respectively.

Proposed Transformer: we consider a two-stream Transformer
based on Temporal and Channel Modules. Both modules use
Gaussian range encoding. The Temporal Module comprises 12
layers: N = 9 multi-head Auto-Correlation layers (8 heads), fol-
lowed by R = 1 recurrent layer (8 heads), and M = 2 multi-head
Auto-Correlation layers (8 heads). In each layer, the GBR CNN
sub-layer is based on a multi-scale CNN (4 convolutional layers
with L units each, ReLU activation functions, and kernel sizes 1,
3, 5, and 7 respectively, followed by dropout layers). The Chan-
nel Module comprises H = 1 layers. In all of them we consider
multi-head Auto-Correlation mechanism with 6 heads. The GBR
CNN sub-layer is based on a multi-scale CNN (4 convolutional
layers with L units each, ReLU activation functions, and kernel
sizes 1, 3, 5, and 7 respectively, followed by dropout layers).
These parameters have been selected according to the perfor-
mance achieved with the proposed Transformer. The total num-
ber of model parameters is 2.6 M and 6.7 M for the whuGAIT
and OU-ISIR databases, respectively.

For the training of the models, we use cross-entropy and Adam
optimiser with default parameters (learning rate of 0.001). All
models are adapted to the gait biometric recognition task. To this
aim, after the models we include 2 convolutional layers (L units
each, ReLU activation functions, and kernel sizes 128, followed by
dropout layers) with max-pooling and a linear layer with softmax
activation function. For the THAT and proposed Transformer, we
also consider feature concatenation of the Temporal and Channel
Modules as described in Fig. 1 E. and F.

6. Experimental results

This section aims to analyse the performance of the different
state-of-the-art Transformer architectures considered in this study
(i.e., Vanilla, Informer, Autoformer, Block-Recurrent Transformer,
THAT, and our proposed architecture) for the topic of gait biomet-
ric recognition on mobile devices. Section 6.1 provides a compari-
son of Transformer architectures with traditional DL architectures
such as CNNs and RNNs. Finally, Section 6.2 provides a compar-
ison of the proposed Transformer architectures with the state of
the art.
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Table 2
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Comparison in terms of accuracy of traditional DL models (CNN, RNN) and recent Transformers for biometric gait recognition. GRE: Gaussian Range
Encoding; N, M: Number of multi-head Auto-Correlation layers before and after the recurrent layer, respectively; R: Number of recurrent layers.

Database
Model whuGAIT OU-ISIR
CNN 75.31% 32.51%
RNN 82.42% 44.15%
CNN + RNN 84.54% 46.63%
Vanilla Transformer [7] (Positional Encoding + Full-Attention) 87.73% 54.51%
Informer [11] (Positional Encoding + ProbSparse-Attention) 89.26% 59.40%
Autoformer [10] (Positional Encoding + Auto-Correlation) 89.44% 63.10%
Block-Recurrent Transformer [8] (Positional Encoding + Full- and Cross-Attention) 91.78% 64.52%
THAT [13]: Temporal Module (GRE + Full-Attention + w/o Recurrent Layer), Channel Module (Positional 92.99% 85.74%
Encoding + Full-Attention)
Proposed Transformer
GRE + Full-Attention + w/o Recurrent Layer 90.96% 57.06%
GRE + ProbSparse-Attention + w/o Recurrent Layer 91.07% 59.48%
GRE + Auto-Correlation + w/o Recurrent Layer 91.15% 60.61%
Temporal Module GRE + Auto-Correlation + w/ Recurrent Layer (N=8,R=1, M =2) 92.23% 59.20%
GRE + Auto-Correlation + w/ Recurrent Layer (N=9,R=1, M = 2) 92.45% 68.20%
GRE + Auto-Correlation + w/ Recurrent Layer (N=10,R=1, M = 2) 91.16% 53.73%
GRE + Auto-Correlation + w/ Recurrent Layer (N=9,R=1,M=1) 92.30% 56.50%
GRE + Auto-Correlation + w/ Recurrent Layer (N=9,R=1, M = 3) 91.10% 57.06%
Positional Encoding + Full-Attention 91.68% 70.55%
Channel Module GRE + Full-Attention 92.28% 90.77%
GRE + ProbSparse-Attention 93.26% 91.20%
GRE + Auto-Correlation 93.64% 92.19%
Temporal + Channel Modules Temporal (GRE + Auto-Correlation + w/ Recurrent Layer) Channel 94.25% 93.33%
(GRE + Auto-Correlation)

6.1. Transformers vs. traditional DL architectures

Table 2 provides a comparison of traditional DL models and
recent Transformers for the whuGAIT and OU-ISIR databases. The
best results achieved for each database and module configura-
tion (Temporal and Channel) are remarked in bold. First, we
can see that the Vanilla Transformer outperforms the traditional
DL models (CNN, RNN, and CNN + RNN) in both databases.
The Vanilla Transformer achieves an accuracy of 87.73% in the
whuGAIT database (absolute improvement of 3.19% accuracy com-
pared with the CNN + RNN approach), and 54.51% in the OU-
ISIR database (absolute improvement of 7.88% accuracy compared
with the CNN + RNN approach). These performance improvements
demonstrate the advantages of Transformers compared with tradi-
tional CNN and RNN architectures, for example, the ability to train
the model using large time sequences, attending to all the previ-
ous samples at the same time. In addition, we can also observe a
considerable gap in the results between the whuGAIT and OU-ISIR
databases. This is due to the OU-ISIR comprising more challeng-
ing database including many more subjects, sensors, and walking
styles. This trend is also observed in the original article for tradi-
tional CNN and RNN architectures [17].

The Vanilla Transformer architecture [7] was improved using
ProbSparse-Attention (Informer [11]) and Auto-Correlation (Auto-
former [10]). Analysing the results included in Table 2, we can ob-
serve that both Informer and Autoformer outperform the Vanilla
Transformer in both whuGAIT and OU-ISIR databases. In particular,
for the whuGAIT database, the Informer and Autoformer achieve
89.26% and 89.44% accuracy, respectively, in comparison with the
87.73% accuracy achieved for the Vanilla Transformer (absolute
improvement of around 1.6% accuracy). Regarding the OU-ISIR
database, much better results are achieved by Informer and Aut-
oformer compared with the Vanilla Transformer (59.40%, 63.10%,
and 54.51% accuracy, respectively). Also, Autoformer outperforms
Informer in both databases, proving the potential of the multi-head
Auto-Correlation mechanism, replacing the point-wise connections
for series-wise connections.

The Block-Recurrent Transformer [8] was presented as an al-
ternative to use the dot-product or periodicity-based series mech-
anism, which fixes an attention window size. Analysing the re-
sults of Table 2, the Block-Recurrent Transformer outperforms pre-
vious Transformers for both whuGAIT (91.78% accuracy) and OU-
ISIR (64.52% accuracy) databases. This is an absolute improvement
of 2.34% and 1.42% accuracy compared with Autoformer for the
whuGAIT and OU-ISIR databases, respectively.

The THAT Transformer [13] proposed a two-stream approach
based on Temporal and Channel Modules. This Transformer archi-
tecture outperforms all previous Transformers, achieving accura-
cies of 92.99% and 85.74% for the whuGAIT and OU-ISIR databases,
respectively. The improvement is much higher for the OU-ISIR
database with an absolute improvement of 21.22% accuracy com-
pared with the Block-Recurrent Transformer. The main reason for
this improvement is the proposed Gaussian range encoding in the
Temporal Module, better capturing the temporal information of the
sample in comparison with the positional encoding considered in
all previous Transformers. Moreover, by having multi-scale con-
volutions instead of feed-forward linear layers, more discrimina-
tive patterns of each subject are captured. THAT also demonstrates
how, by obtaining features from two points of view (time-over-
channel features and channel-over-time features), complementary
information can be captured, achieving better performance.

In addition, we show in Table 2 the results achieved by our pro-
posed Transformer under different configurations. First, we anal-
yse the impact in the system performance of each of the mod-
ules individually. The Temporal Module with Self-Attention (Full-
and ProbSparse-Attention) and without recurrent layer (“w/o re-
current layer” in Table 2) achieves values of 90.96% and 91.07%
accuracy for the whuGAIT database and 57.06% and 59.48% accu-
racy for the OU-ISIR database, respectively. These results are fur-
ther improved by replacing the Self-Attention mechanism with the
Auto-Correlation mechanism (91.15% and 60.61% accuracy for the
whuGAIT and OU-ISIR databases, respectively). In addition, when
including the recurrent layer (“w/ recurrent layer” in Table 2), the
Temporal Module achieves better results (92.45% and 68.20% ac-
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Fig. 3. Cumulative Match Characteristic (CMC) curves of the traditional DL models (CNN, RNN, CNN + RNN) and recent Transformers (Vanilla, Informer, Autoformer, Block-
Recurrent, THAT, and the proposed Transformer) for both whuGAIT (top) and OU-ISIR (bottom) databases.

curacy for the whuGAIT and OU-ISIR databases, respectively), be-
ing the best configuration N =9 Multi-head Auto-Correlation lay-
ers, R =1 recurrent layer, and M = 2 Multi-head Auto-Correlation
layers. On the other hand, we can see that the Channel Module
with Full-Attention is also able to extract discriminative features
for the task, achieving accuracy values of 91.68% and 70.55% for the
whuGAIT and OU-ISIR databases, respectively. Moreover, includ-
ing the Gaussian range encoding (instead of positional encoding),
the Channel Module improves the results (92.28% and 90.77% for
the whuGAIT and OU-ISIR databases), becoming even better when
the Self-Attention mechanism with Full-Attention is replaced by
ProbSparse-Attention or Auto-Correlation, (93.26% and 93.64% ac-
curacy for the whuGAIT and 91.20% and 92.19% accuracy for the
OU-ISIR databases, respectively).

Finally, we can see how the combination of both Temporal and
Channel modules (“Temporal + Channel Modules” in Table 2) out-
performs all previous Transformer architectures for both whuGAIT
(94.25% accuracy) and OU-ISIR (93.33% accuracy) databases. In
particular, the proposed Transformer achieves absolute improve-
ments of 2.47% (Block-Recurrent Transformer), 4.81% (Autoformer),
4.99% (Informer), and 6.52% (Vanilla Transformer) accuracy for
the whuGAIT database. This improvement is even higher for the
OU-ISIR database with absolute improvements of 28.81% (Block-
Recurrent Transformer), 30.23% (Autoformer), 33.93% (Informer),
and 38.82% (Vanilla Transformer) accuracy. It is important to high-
light that in the OU-ISIR database, which is far more challenging
than whuGAIT in terms of number of subjects and walking ac-
tivities, the proposed Transformer achieves considerable improve-
ments in comparison with the THAT approach (93.33% vs. 85.74%
accuracy), an absolute improvement of 7.59% accuracy. These re-
sults highlight the high potential of the proposed Transformer
which are produced for several reasons. First, the Gaussian range
encoding allows to introduce in each sample details about its rela-
tive position with respect to the contiguous samples (before the
Temporal Module) and about the different channels (before the
Channel Module), obtaining more complex information. Another
advantage is the two-stream architecture, where each of the mod-
ules extracts different features (the Temporal Module extracts time
features while the Channel Module extracts spatial features). By
extracting features from two different perspectives, a more global
view of each sample is obtained. In addition, the application of
Auto-Correlation in the multi-head Self-Attention mechanism to-
gether with the Gaussian range encoding in both Temporal and
Channel Modules allow the extraction of series-wise connections
in each range of the encoding, analysing the different behaviour
of each sample in different environments. Furthermore, including
the recurrent layer proposed in the Block-Recurrent Transformer
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to the Temporal Module offers a comprehensive analysis. The mod-
ule summarises all the information seen previously, giving a more
global view of each sample with respect to the rest. In addition, by
including a multi-scale CNN instead of the original feed-forward
network, the whole model is series-wise: from the Gaussian range
encoding that extracts the position of each sample based on a
range of points, multi-head Auto-Correlation with Block-Recurrent
Attention, which extracts information periodically based on series,
and multi-scale CNN that applies convolutions with different ker-
nels to test the behaviour of samples in different ranges. Finally,
the proposed Transformer achieves an absolute improvement of
0.92% in the whuGAIT database (94.25% accuracy) compared with
the OU-ISIR database (93.33% accuracy). Some of the differences
between the databases that may produce this improvement are:
i) number of subjects (118 for whuGAIT and 745 for OU-ISIR); ii)
amount of data available per subject (33,104 training samples for
whuGAIT and 13,212 for OU-ISIR); iii) different devices (Samsung,
Xiaomi, and Huawei smartphones for whuGAIT and three IMUs
and a Motorola smartphone for OU-ISIR); and iv) different types
of walking (walking and non-walking for whuGAIT and walking,
slope-up and -down for OU-ISIR).

Previous results correspond to the Rank-1 accuracy. Neverthe-
less, in some applications we might be interested in having a
ranked list of possible subjects of interest (e.g., in forensic appli-
cations). Fig. 3 shows the Cumulative Match Characteristic (CMC)
curve of the traditional DL models commonly used in biomet-
ric recognition (CNN, RNN, CNN + RNN) and recent Transform-
ers (Vanilla, Informer, Autoformer, Block-Recurrent, THAT, and the
proposed Transformer) for both whuGAIT and OU-ISIR databases.
In general, we can see the same trend in both databases for all
approaches, improving the accuracy results with the Rank val-
ues. For example, for the proposed Transformer, the accuracy in-
creases from 94.25% (Rank-1) to 97.37% (Rank-10) for the whuGAIT
database whereas for the OU-ISIR database this value increases
from 93.33% (Rank-1) to 98.08% (Rank-10).

6.2. Comparison with the state of the art

Finally, we compare in Table 3 the Rank-1 accuracy results
achieved by our proposed Transformer with other state-of-the-art
approaches presented in the literature for gait biometric recogni-
tion: CNNs + SVM [23], RNNs [15,26], and CNNs + RNNs [15,26,27].
The best results achieved for each database are remarked in
bold. It is important to highlight that all studies consider the
same experimental protocol [15] for both whuGAIT and OU-ISIR
databases, allowing a straightforward and fair comparison between
approaches.
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Table 3
Comparison of the proposed Transformer with state-of-the-art gait biometric recog-
nition approaches in terms of accuracy.

Database
Study Method whuGAIT OU-ISIR
Ordoéiiez et al. [27] CNN + RNN 92.25% 37.33%
Gadaleta et al. (2018) [23] CNN + SVM 92.91% 44.29%
Zou et al. [15] RNN 91.88% -
CNN + RNN 93.52% -
Tran et al. [26] RNN 93.14% 78.92%
CNN + RNN 94.15% 89.79%
Proposed transformer Transformer 94.25% 93.33%

In general, our proposed Transformer has outperformed previ-
ous approaches in both databases. For the whuGAIT database, the
proposed Transformer achieves 94.25% accuracy, showing better re-
sults compared with the CNNs + RNNs approach presented in [26].
Analysing the OU-ISIR database, the proposed Transformer further
improves the results achieved by previous approaches with 93.33%
accuracy. This is an absolute improvement of 3.54% accuracy com-
pared with the best previous approach (CNNs + RNNs [26]). The
authors improved the CNN + RNN architecture using an RNN to
process each channel, combined in parallel with a CNN with two
channels, one for each sensor. These results support the high po-
tential of the proposed Transformer for gait biometric recognition.
In addition, it is important to highlight the better time complexity
and memory usage of the proposed Transformer compared with
traditional DL models.

7. Conclusions

This article has explored and proposed novel behavioural bio-
metric systems based on Transformers. To the best of our knowl-
edge, this is the first study that presents a complete framework
for the use of Transformers in gait biometrics. Several state-of-
the-art Transformer architectures (Vanilla, Informer, Autoformer,
Block-Recurrent Transformer, and THAT) are considered in the ex-
perimental framework, together with a new proposed configura-
tion. Two popular public databases are considered in the analysis,
whuGAIT and OU-ISIR.

The proposed Transformer has outperformed previous Trans-
former architectures and traditional DL architectures (i.e., CNNs,
RNNs, and CNNs + RNNs) when evaluated using both databases.
In particular, for the challenging OU-ISIR database, the pro-
posed Transformer achieves 93.33% accuracy, resulting in accu-
racy absolute improvements compared with other techniques of
7.59% (THAT), 28.81% (Block-Recurrent Transformer), 30.23% (Aut-
oformer), 33.93% (Informer), and 38.82% (Vanilla Transformer). The
proposed Transformer has also been compared with state-of-the-
art gait biometric recognition systems, outperforming the results
presented in the literature. In addition, it is important to highlight
the enhanced time complexity and memory usage of the proposed
Transformer compared with traditional DL models.

However, our proposed system still has some aspects that can
be addressed as future work. First, our proposed Transformer has
been analysed in segment-based data. Therefore, in order to re-
produce the system in continuous environments [33] it is nec-
essary to adapt the system. Furthermore, our proposed Trans-
former has been analysed on gait biometrics. Therefore, future
work will be oriented towards analysing the potential of the pro-
posed Transformer architecture for other behavioural biometric
modalities such as handwritten signature [34,35], electrocardio-
grams [36], and keystroke [19]. In addition, privacy aspects of mo-
bile authentication have not been considered yet [37], being still
a problem to address. Therefore, future work will be oriented to
improve both authentication and privacy at the same time [38].

1

Pattern Recognition 143 (2023) 109798
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
The data is already public
Acknowledgements

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement no. 860315. With sup-
port also from projects INTER-ACTION (PID2021-1265210B-100
MICINN/FEDER) and HumanCAIC (TED2021-131787B-100 MICINN),
and from Comunidad de Madrid (ELLIS Unit Madrid).

References

[1] AK. Jain, K. Nandakumar, A. Ross, 50 years of biometric research: accomplish-
ments, challenges, and opportunities, Pattern Recognit. Lett. 79 (2016) 80-105.
L. Wang, T. Tan, H. Ning, W. Hu, Silhouette analysis-based gait recognition for
human identification, IEEE Trans. Pattern Anal. Mach. Intell. 25 (12) (2003)
1505-1518.

J.P. Singh, S. Jain, S. Arora, U.P. Singh, Vision-based gait recognition: a survey,

IEEE Access 6 (2018) 70497-70527.

M.D. Marsico, A. Mecca, A survey on gait recognition via wearable sensors,

ACM Comput. Surv. 52 (4) (2019) 1-39.

A. Sepas-Moghaddam, A. Etemad, Deep gait recognition: a survey, IEEE Trans.

Pattern Anal. Mach. Intell. 45 (1) (2022) 264-284.

C. Filipi Gongalves dos Santos, D.d.S. Oliveira, L.A. Passos, R. Gongalves Pires,

D. Felipe Silva Santos, L. Pascotti Valem, T.P. Moreira, M.C.S. Santana, M. Roder,

J. Paulo Papa, et al., Gait recognition based on deep learning: a survey, ACM

Comput. Surv. 55 (2) (2022) 1-34.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,

I. Polosukhin, Attention is all you need, in: Proc. Advances in Neural Informa-

tion Processing Systems, vol. 30, 2017.

[8] D. Hutchins, . Schlag, Y. Wu, E. Dyer, B. Neyshabur, Block-recurrent transform-
ers, in: Proc. Advances in Neural Information Processing Systems, 2022.

[9] Y. Tay, M. Dehghani, D. Bahri, D. Metzler, Efficient transformers: a survey, ACM
Comput. Surv. 55 (6) (2022).

[10] H. Wu, ]. Xu, J. Wang, M. Long, Autoformer: decomposition transformers with
auto-correlation for long-term series forecasting, in: Proc. Advances in Neural
Information Processing Systems, 2021.

[11] H. Zhou, S. Zhang, ]. Peng, S. Zhang, ]J. Li, H. Xiong, W. Zhang, Informer: beyond
efficient transformer for long sequence time-series forecasting, in: Proc. AAAI
Conference on Artificial Intelligence, 2021.

[12] N. Zhang, J. Wang, Z. Hong, C. Zhao, X. Qu, J. Xiao, DT-SV: a transformer-based
time-domain approach for speaker verification, in: Proc. International Joint
Conference on Neural Networks, IEEE, 2022, pp. 1-7.

[13] B. Li, W. Cui, W. Wang, L. Zhang, Z. Chen, M. Wu, Two-stream convolution aug-
mented transformer for human activity recognition, in: Proc. AAAI Conference
on Artificial Intelligence, 2021.

[14] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, ]. Yan, L. Sun, Transformers in time
series: a survey, arXiv preprint arXiv:2202.07125 (2022).

[15] Q. Zou, Y. Wang, Q. Wang, Y. Zhao, Q. Li, Deep learning-based gait recogni-
tion using smartphones in the wild, IEEE Trans. Inf. Forensics Secur. 15 (2020)
3197-3212.

[16] H. Iwama, M. Okumura, Y. Makihara, Y. Yagi, The OU-ISIR gait database com-
prising the large population dataset and performance evaluation of gait recog-
nition, IEEE Trans. Inf. Forensics Secur. 7 (5) (2012) 1511-1521.

[17] T.T. Ngo, Y. Makihara, H. Nagahara, Y. Mukaigawa, Y. Yagi, The largest inertial
sensor-based gait database and performance evaluation of gait-based personal
authentication, Pattern Recognit. 47 (1) (2014) 228-237.

[18] R. Tolosana, R. Vera-Rodriguez, ]. Fierrez, ]. Ortega-Garcia, BioTouchPass2:

touchscreen password biometrics using time-aligned recurrent neural net-

works, IEEE Trans. Inf. Forensics Secur. 5 (2020) 2616-2628.

S. Mondal, P. Bours, Person identification by keystroke dynamics using pairwise

user coupling, IEEE Trans. Inf. Forensics Secur. 12 (6) (2017) 1319-1329.

P. Melzi, R. Tolosana, A. Cecconi, A. Sanz-Garcia, G. Ortega, L. Jimenez-Bor-

reguero, R. Vera-Rodriguez, Analyzing artificial intelligence systems for the

prediction of atrial fibrillation from sinus-rhythm ECGs including demograph-

ics and feature visualization, Sci. Rep. 11 (2021).

Y. Sun, J. Tang, X. Shu, Z. Sun, M. Tistarelli, Facial age synthesis with label dis-

tribution-guided generative adversarial network, IEEE Trans. Inf. Forensics Se-

cur. 15 (2020) 2679-2691.

R. Tolosana, P. Delgado-Santos, A. Perez-Uribe, R. Vera-Rodriguez, ]. Fierrez,

A. Morales, DeepWriteSYN: on-line handwriting synthesis via deep short-term

representations, in: Proc. AAAI Conference on Artificial Intelligence, 2021.

[2]

3

[4

[5

[6

[7

(19]

[20]

[21]

(22]


https://doi.org/10.13039/100010661
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0001
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0002
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0003
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0004
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0005
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0006
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0007
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0008
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0009
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0010
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0011
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0012
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0013
http://arxiv.org/abs/2202.07125
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0014
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0015
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0016
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0017
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0018
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0019
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0020
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0021

P. Delgado-Santos, R. Tolosana, R. Guest et al.

[23] M. Gadaleta, M. Rossi, IDNet: smartphone-based gait recognition with convo-
lutional neural networks, Pattern Recognit. 74 (2018) 25-37.

[24] R. Delgado-Escaiio, FM. Castro, J.R. Cézar, M.]. Marin-Jiménez, N. Guil, An end-
to-end multi-task and fusion CNN for inertial-based gait recognition, IEEE Ac-
cess 7 (2018) 1897-1908.

[25] Y. Watanabe, M. Kimura, Gait identification and authentication using LSTM
based on 3-axis accelerations of smartphone, Procedia Comput. Sci. 176 (2020)
3873-3880.

[26] L. Tran, T. Hoang, T. Nguyen, H. Kim, D. Choi, Multi-model long short-term
memory network for gait recognition using window-based data segment, IEEE
Access 9 (2021) 23826-23839.

[27] EJ. Ordéiiez, D. Roggen, Deep convolutional and LSTM recurrent neural net-
works for multimodal wearable activity recognition, Sensors 16 (1) (2016) 115.

[28] S. Sprager, M.B. Juric, Inertial sensor-based gait recognition: a review, Sensors
15 (9) (2015) 1-39.

[29] R. Chavarriaga, H. Sagha, A. Calatroni, S.T. Digumarti, G. Troster, J.d.R. Mil-
lan, D. Roggen, The opportunity challenge: a benchmark database for on-
body sensor-based activity recognition, Pattern Recognit. Lett. 34 (15) (2013)
2033-2042.

[30] R. Child, S. Gray, A. Radford, I. Sutskever, Generating Long Sequences with
Sparse Transformers, URL https://www.openai.com/blog/sparse-transformers
(2019).

[31] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, X. Yan, Enhancing the lo-
cality and breaking the memory bottleneck of transformer on time series fore-
casting, Adv. Neural Inf. Process. Syst. (2019) 5243-5253 471.

[32] I Beltagy, M.E. Peters, A. Cohan, Longformer: The Long-Document Transformer,
arXiv preprint arXiv:2004.05150 (2020).

[33] I Papavasileiou, Z. Qiao, C. Zhang, W. Zhang, J. Bi, S. Han, GaitCode: gait-based
continuous authentication using multimodal learning and wearable sensors,
Smart Health 19 (2021) 100162.

[34] R. Tolosana, R. Vera-Rodriguez, et al., SVC-onGoing: signature verification com-
petition, Pattern Recognit. 127 (2022) 1-14.

[35] R. Tolosana, R. Vera-Rodriguez, ]. Fierrez, ]. Ortega-Garcia, DeepSign: deep on-
line signature verification, IEEE Trans. Biom., Behav., Identity Sci. 3 (2) (2021)
229-239.

[36] P. Melzi, R. Tolosana, R. Vera-Rodriguez, ECG biometric recognition: re-

view, system proposal, and benchmark evaluation, IEEE Access 11 (2023)

15555-15566.

P. Delgado-Santos, G. Stragapede, R. Tolosana, R. Guest, F. Deravi, R. Vera-Ro-

driguez, A survey of privacy vulnerabilities of mobile device sensors, ACM

Comput. Surv. 54 (11) (2022) 1-30.

P. Delgado-Santos, R. Tolosana, R. Guest, R. Vera, F. Deravi, A. Morales, GaitPri-

vacyON: privacy-preserving mobile gait biometrics using unsupervised learn-

ing, Pattern Recognit. Lett. 161 (2022) 30-37.

[37]

(38]

Paula Delgado-Santos received the M.Sc. degree in
Telecommunications Engineering from Universidad Au-
tonoma de Madrid, Spain, in 2020. At the same time,
she was working in a scholarship of IBM. In 2019/2020
she was working at a Swiss University, HEIG-VD, as a
Data Scientist. In 2020 she began her Ph.D. studies with
a Marie Curie Fellowship within the PriMa (Privacy Mat-
ters) EU project, supervised by Doctor Ruben Tolosana
(Universidad Autonoma de Madrid) and Professor Richard
Guest (University of Kent). She will study the richness of
background sensor data elements obtained from mobile
devices in a continuous authentication scenario. Her re-
search interests include signal and image processing, pat-
tern recognition, machine learning, biometrics and data protection.

12

Pattern Recognition 143 (2023) 109798

Ruben Tolosana received the M.Sc. degree in Telecom-
munication Engineering, and his Ph.D. degree in Com-
puter and Telecommunication Engineering, from Universi-
dad Autonoma de Madrid, in 2014 and 2019, respectively.
In 2014, he joined the Biometrics and Data Pattern Ana-
lytics - BiDA Lab at the Universidad Autonoma de Madrid,
where he is currently collaborating as an Assistant Pro-
fessor. Since then, Ruben has been granted with several
awards such as the FPU research fellowship from Span-
ish MECD (2015), and the European Biometrics Industry
Award (2018). His research interests are mainly focused
1 %, on signal and image processing, pattern recognition, and

machine learning, particularly in the areas of DeepFakes,
HCI, and Biometrics. He is author of several publications and also collaborates as
a reviewer in high-impact conferences (WACV, ICPR, ICDAR, IJCB, etc.) and journals
(IEEE TPAMI, TCYB, TIFS, TIP, ACM CSUR, etc.). Finally, he is also actively involved in
several National and European projects.

Richard Guest obtained his Ph.D. in 2000. He is Professor
of Biometric Systems Engineering and Head of the School
of Engineering at the University of Kent. His research in-
terests lie broadly within biometric and forensic systems,
particularly in the areas of image and behavioural infor-
mation analysis, standardisation and mobile systems.

Farzin Deravi received the B.A. degree in Engineering Sci-
ence and Economics from the University of Oxford, UK.,
in 1981, the M.Sc. degree in Communications Engineering
from Imperial College, UK, in 1982, and the Ph.D. degree
in Electronic Engineering from the University of Wales,
Swansea, UK., in 1988. He is currently with the School
of Engineering and Digital Arts, University of Kent, Can-
terbury, UK., where he is the Emeritus Professor of Infor-
mation Engineering. His current research interests include
the fields of pattern recognition and signal processing and
their application in security and healthcare.

Ruben Vera-Rodriguez received the M.Sc. degree in
telecommunications engineering from Universidad de
Sevilla, Spain, in 2006, and the Ph.D. degree in electri-
cal and electronic engineering from Swansea University,
UK, in 2010. Since 2010, he has been affiliated with the
Biometric Recognition Group, Universidad Autonoma de
Madrid, Spain, where he is currently an Associate Profes-
sor since 2018. His research interests include signal and
image processing, pattern recognition, machine learning,
and biometrics. He is the author of more than 150 scien-
tific articles published in international journals and con-
\ ferences, and 3 patents. He is actively involved in several

National and European projects focused on biometrics. He
has served as Program Chair for some international conferences such as: IEEE ICCST
2017, CIARP 2018, ICBEA 2019 and AVSS 2022.



http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0022
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0023
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0025
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0026
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0027
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0028
https://www.openai.com/blog/sparse-transformers
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0029
http://arxiv.org/abs/2004.05150
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0031
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0032
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0033
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0034
http://refhub.elsevier.com/S0031-3203(23)00496-X/sbref0035

