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a b s t r a c t 

Biometrics on mobile devices has attracted a lot of attention in recent years as it is considered a user- 

friendly authentication method. This interest has also been motivated by the success of Deep Learn- 

ing (DL). Architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) have established convenience for the task, improving the performance and robustness in compar- 

ison to traditional machine learning techniques. However, some aspects must still be revisited and im- 

proved. To the best of our knowledge, this is the first article that explores and proposes a novel gait bio- 

metric recognition systems based on Transformers, which currently obtain state-of-the-art performance 

in many applications. Several state-of-the-art architectures (Vanilla, Informer, Autoformer, Block-Recurrent 

Transformer, and THAT) are considered in the experimental framework. In addition, new Transformer 

configurations are proposed to further increase the performance. Experiments are carried out using the 

two popular public databases: whuGAIT and OU-ISIR. The results achieved prove the high ability of the 

proposed Transformer, outperforming state-of-the-art CNN and RNN architectures. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Biometrics has become a relevant topic for security and authen- 

ication purposes [1] . Among the different biometric traits, gait be- 

avioural biometrics has attracted considerable attention in recent 

ears; for example, in surveillance scenarios where popular bio- 

etric traits such as face and fingerprint are hard or impossible 

o distinguish. Gait recognition uses the movement pattern of sub- 

ects by focusing on specific characteristics such as the arm swing 

mplitude, step frequency, and gait length [2] . Depending on the 

pecific application scenario, gait pattern can be captured using vi- 

ual sensors such as surveillance cameras [3] or inertial sensors 

uch as the accelerometer and gyroscope included in wearable de- 

ices [4] . 

The popularity of gait recognition has also increased with the 

uccess of Deep Learning (DL) [5,6] . Architectures based on Convo- 

utional Neural Networks (CNNs) and Recurrent Neural Networks 
∗ Corresponding author at: School of Engineering, University of Kent, United King- 

om. 

E-mail address: p.delgado-de-santos@kent.ac.uk (P. Delgado-Santos) . 
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RNNs), such as Long Short-Term Memory (LSTM), have proven to 

e convenient for the task, improving performance and robust- 

ess compared to traditional machine learning techniques. How- 

ver, these popular DL architectures still have several disadvan- 

ages that must be revisited and improved. The main drawbacks 

re [7,8] : i) Sequential computation, not allowing parallelisation 

ithin batches; ii) compression and condensation of the previous 

ime samples, limiting the past information seen, and iii) vanish- 

ng gradients during back-propagation; the forget gate in a RNN 

emoves a small portion of the previous state after each sample. 

Transformers are more recently proposed DL architectures that 

ave already garnered immense interest due to their effective- 

ess across a range of application domains such as language as- 

essment, vision, and reinforcement learning [9] . Their main ad- 

antages compared with traditional CNN and RNN architectures 

re [7,8,10] : i) Transformers are feed-forward models that process 

ll the sequences in parallel, therefore increasing efficiency; ii) 

hey apply Self-Attention/Auto-Correlation mechanisms that allows 

hem to operate in long sequences; iii) They can be trained effi- 

iently in a single batch since all the sequence is included in every 

atch; and iv) They can attend to the whole sequence, instead of 

ummarising all the previous temporal information. Recent studies 
under the CC BY-NC-ND license 
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ave successfully proved the advantages of Transformers for time- 

equential data, outperforming traditional CNN and RNN architec- 

ures [11–13] . 

Several Transformer architectures have been recently proposed 

n the literature [9,14] . The original one, the Vanilla Transformer, 

as introduced in 2017 by Vaswani et al. [7] . It was based solely

n Self-Attention mechanisms, dispensing with recurrence and 

onvolutions layers entirely. Impressive results were achieved on 

he machine translation task, reducing also the training costs of 

he best models compared with the literature. Despite these im- 

rovements, the Vanilla Transformer has disadvantages for some 

pplications based on time series: i) the computational complex- 

ty of the attention mechanism is quadratic O (L 2 ) where L denotes 

he length of the input sequence; and ii) the total memory usage is 

 (N � L 2 ) where N indicates the number of encoder/decoder lay- 

rs, limiting the scalability of the model with long sequences. As 

 result, different Transformer architectures have recently emerged 

ith the aim of addressing the shortcomings of the Vanilla Trans- 

ormer, including: Informer [11] , Autoformer [10] , Block-Recurrent 

ransformer [8] , and THAT [13] , among others. 

The present article intends to explore and propose novel be- 

avioural biometric systems based on Transformers. The main con- 

ributions of the present study are as follows: 

• An in-depth analysis of state-of-the-art deep learning ap- 

proaches for gait recognition on mobile devices. 
• An overview of the main concepts of Transformers, including 

the key differences between popular architectures proposed in 

the literature. 
• To the best of our knowledge, this is the first study that ex- 

plores the potential of Transformers for behavioural biometrics, 

in particular, gait biometric recognition on mobile devices. Sev- 

eral state-of-the-art Transformer architectures are considered in 

the evaluation framework (Vanilla, Informer, Autoformer, Block- 

Recurrent Transformer, and THAT), comparing them with tradi- 

tional CNN and RNN architectures. In addition, new configura- 

tions of the Transformers are proposed to further improve the 

performance. 
• An extensive experimental framework using popular pub- 

lic databases in gait biometric recognition. On the existing 

whuGAIT [15] and OU-ISIR [16,17] databases, the proposed 

Transformer outperforms traditional CNN and RNN architec- 

tures and achieves competitive results compared with the state 

of the art. 
• We make our experimental framework available to the research 

community in order to advance mobile gait recognition re- 

search 

2 . 

The exploration and analysis included in the present study can 

lso be very useful for other research lines, for example: i) improv- 

ng the authentication performance of other behavioural biometric 

raits such as handwritten signature and keystroke [18,19] , among 

any others, ii) improving the prediction and monitoring of dis- 

ases [20] , and iii) facilitating the training and synthesis of new 

ata [21,22] . 

The remainder of the article is organised as follows. 

ection 2 summarises previous studies in the field of gait recog- 

ition on mobile devices. Section 3 explains the main concepts of 

ransformers and the key differences between the architectures 

onsidered in the study. Section 4 describes the databases and 

xperimental protocol while Section 5 provides a description of 

he system details. Section 6 describes the results achieved and 

omparison with the state of the art. Finally, Section 7 draws the 
nal conclusions and future research lines. 

2 https://www.github.com/BiDAlab/ExploringTransformers . 
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. Related works 

Gait biometric recognition enables subjects to be authenticated 

ased on their walking patterns. Due to the exponential increase 

n the number of mobile devices and the high precision of their 

ensors, the interest in gait recognition based on mobile devices 

s on the increase [4] . One of the most popular approaches is 

ased on the Inertial Measurement Units (IMU), e.g., accelerome- 

er and gyroscope [28] . Table 1 provides a summary of the most 

elevant methodologies for gait biometric recognition on mobile 

evices based on DL methods. It is important to highlight that 

ll approaches consider the same experimental protocol proposed 

n Zou et al. [15] for two popular public databases in the litera- 

ure: i) whuGAIT [15] , which comprises accelerometer and gyro- 

cope data acquired from mobile devices, and ii) OU-ISIR [16,17] , 

hich includes accelerometer and gyroscope data obtained from 

MU sensors. 

In the past few years, the research community has focused on 

L models to improve the robustness of gait recognition systems, 

xtracting more discriminative features. As both the spatial and 

emporal information of the gait pattern is important for the task, 

L architectures based on CNN and RNN have been utilised. One of 

he earliest systems based on DL models using CNNs was created 

y Gadaleta and Rossi [23] . The authors used CNNs for feature ex- 

raction and a Support Vector Machine (SVM) for the final classi- 

cation with 0.15% misclassification rates. The score was obtained 

n less than five walking cycles with their own collected database. 

heir results proved how DL methods could extract more discrim- 

native features compared with previous machine learning meth- 

ds. The same model was evaluated in Zou et al. [15] following a 

redefined experimental protocol, obtaining an accuracy of 92.91% 

n the whuGAIT database [15] , and 44.29% accuracy in the OU-ISIR 

atabase [16,17] . Another approach based on CNNs was presented 

y Delgado-Escaño et al. [24] , dividing the data into two branches, 

ccording to each sensor (accelerometer and gyroscope). The out- 

ut of both branches were concatenated to produce a joint fea- 

ure vector. Cross-validation was used, achieving 95.20% accuracy 

ith the OU-ISIR database using their own experimental protocol. 

ollowing the predefined experimental protocol presented in Zou 

t al. [15] , results of 92.89% and 44.29% accuracy were achieved in 

he whuGAIT and OU-ISIR databases, respectively. However, by us- 

ng only CNNs, the system focuses mainly on spatial characteristics, 

eaving out the temporal information. 

To overcome this drawback, RNNs were proposed, extracting 

emporal features from the time sequences. Watanabe et al. cre- 

ted an end-to-end RNN with a softmax layer [25] . The model was 

ested with the experimental protocol presented in Zou et al. [15] , 

chieving a 91.88% accuracy with whuGAIT database, and 66.36% 

ccuracy with OU-ISIR database. Zou et al. evaluated RNNs in Zou 

t al. [15] over the OU-ISIR database achieving 78.92% accuracy. 

hey also presented the whuGAIT database and proposed a pre- 

efined experimental protocol, achieving 93.14% accuracy. 

Hybrid approaches have also been proposed in the literature, 

chieves a more complex structure, where the CNN extracts spa- 

ial features while the RNN obtains temporal features. Ordoñez 

nd Roggen presented in Ordóñez and Roggen [27] DeepConvL- 

TM, which comprises convolutional layers, followed by recurrent 

nd softmax layers. The model obtained 95.8% F1-score for the 

ctivity recognition task with the Opportunity database [29] . The 

ystem was also evaluated for gait recognition in Zou et al. [15] , 

chieving 92.25% and 37.33% accuracy for the whuGAIT and OU- 

SIR databases, respectively. Also, Zou et al. presented in [15] an 

ybrid approach with two-parallel branches, one CNN and one 

NN. The extracted features were independent in each branch, ob- 

aining a view of the raw data with both convolutional and recur- 

ent layers. After each branch, the features were concatenated and 

https://www.github.com/BiDAlab/ExploringTransformers
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Table 1 

Summary of the most relevant methodologies for gait biometric recognition based on DL methods. 

Category Year Ref. Description Performance Database 

CNNs 

2016 [23] CNN Feature Extractor + SVM Classifier 92.91% whuGAIT 

44.29% OU-ISIR 

2019 [24] Fusion CNN + Euclidean Distance 92.89% whuGAIT 

40.60% OU-ISIR 

RNNs 

2020 [25] End-to-End RNN 91.88% whuGAIT 

66.36% OU-ISIR 

2020 [15] End-to-End RNN 91.88% whuGAIT 

66.36% OU-ISIR 

2021 [26] End-to-End Multi-RNN 93.14% whuGAIT 

78.92% OU-ISIR 

CNNs + RNNs 

2016 [27] Cascaded CNN + RNN 92.25% whuGAIT 

37.33% OU-ISIR 

2020 [15] 2-Parallel Branches: CNN + RNN 93.52% whuGAIT 

2021 [26] 2-Parallel Branches: CNN + Multi-RNN 94.15% whuGAIT 

89.79% OU-ISIR 

Proposed 

Transformer 

2022 Present Work 2-Parallel Branches: Temporal and Channel Modules 94.25% whuGAIT 

Temporal: Auto-Correlation + GBR CNN Layers and Recurrent Layer 

Channel: Auto-Correlation + GBR CNN Layers 93.26% OU-ISIR 

Gaussian Range Encoding in both Temporal and Channel Modules 
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ed into a fully connected layer. The authors achieved 93.52% accu- 

acy on the presented whuGAIT database. 

Previous approaches are based on prior gait cycle detection. 

he input of the DL models is an interval time between two con- 

ecutive occurrences of the gait pattern, i.e., putting the same 

oot on the ground [4] . Gait cycle detection is usually a tedious 

ask that can induce to errors due to the sensor restrictions (e.g., 

oise-sensitive, sensor specification, body placement, etc.). To solve 

his problem, Tran et al. proposed in [26] a new approach using 

indow-based data segment. The authors used a Multi-RNN model 

onsidering fixed-length segments as input, without the need to 

xtract gait cycles. The authors achieved an accuracy of 93.14% for 

he whuGAIT database, and 78.92% for the OU-ISIR database. In ad- 

ition, the same authors introduced an hybrid approach, achiev- 

ng 94.15% and 89.79% accuracy for the whuGAIT and OU-ISIR 

atabases, respectively. 

Despite the success of CNN and RNN architectures, some of 

heir limitations could still be revisited and improved, such as lim- 

ted window sizes for RNNs. By summarising all previously ob- 

erved information into one vector, these approaches miss tempo- 

al information that is relevant to gait biometric recognition. Due 

o the limitations highlighted, this article explores the potential 

f recently developed Transformer architectures for gait biometric 

ecognition and proposes new configurations to further improve 

he results. Table 1 also includes the results achieved using our 

roposed Transformer. 

. Methods 

This section provides an overview of the main concepts of 

ransformers, including the key differences between recent archi- 

ectures proposed in the literature. To facilitate the understanding 

f this section, we include in Fig. 1 a graphical representation of 

he different Transformer architectures. As the present article is re- 

ated to behavioural recognition, we focus only on the encoder part 

f the Transformer. 
3

.1. Vanilla transformer 

The original Vanilla Transformer was presented in Vaswani 

t al. [7] for the task of machine translation. It was defined as a 

ulti-layer encoder-decoder architecture with no recurrence and 

onvolution layers. Fig. 1 A. provides a graphical representation 

f the encoder, which is composed of a stack of N identical lay- 

rs. Each layer is mainly formed by two different sub-layers: i) 

 multi-head Self-Attention mechanism (Full-Attention), and ii) a 

oint-wise feed-forward network. Subsequent of each sub-layer, 

 residual connection and a layer normalisation are considered 

 Add & Norm in Fig. 1 ). The input sequence is a matrix X ε R 

c×L 

here c is the number of channels and L the length of the se- 

uence. 

The encoder maps each sample l of the input sequence X = 

x 0 , x 1 , . . . , x l , . . . , x L ) into hidden states Z = (z 0 , z 1 , . . . , z l , . . . , z L ) .

he output of each sub-layer is Layer Nor m (X + sublayer (X )) , 

here sublayer(X ) is the function implemented by the multi-head 

elf-Attention mechanism (Full-Attention) or the point-wise feed- 

orward network. Both the input X and output Z have the same di- 

ension L to facilitate the work of the residual connections. As no 

ecurrence and convolutional layers are considered in the Vanilla 

ransformer, a previous encoding of the model is needed to keep 

ertain information about the sample l of the sample in the input 

equence. This is achieved using a positional encoding placed at 

he input of the model. 

We describe next the key aspects of the positional encod- 

ng, multi-head Self-Attention mechanism (Full-Attention), and the 

oint-wise feed-forward network for a better understanding of the 

anilla Transformer, and the later Transformer implementations. 

.1.1. Positional encoding 

This stage encodes the relative and/or absolute position pos of 

he sample l of the input sequence. In the original work, Vaswani 

t al. [7] preserved the relative context using a fixed point encod- 
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Fig. 1. Graphical representation of the Transformer architectures used in this study (Vanilla Transformer [7] , Informer [11] , Autoformer [10] , Block-Recurrent [8] , THAT [13] , 

and our proposed Transformer). Q: Queries; K: Keys; V: Values; Nx,Hx,Rx: they refer to the number of layers of each type; FFT: Fast Fourier Transform; TDA: Time Delay 

Aggregation; HAR CNN: Human Activity Recognition CNN; GBR CNN: Gait Biometric Recognition CNN. 

4 
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Fig. 2. Graphical representation of Attention and Auto-Correlation mechanisms. (a) Full-Attention (Vanilla Transformer [7] ); (b) ProbSparse-Attention (Informer [11] ); (c) 

Auto-Correlation (Autoformer [10] ); and (d) Cross-Attention (Block-Recurrent Transformer [8] ). The solid line represents the input sequence and the red one (second line) 

the current states in Cross-Attention. The red points/series are the sample l of the sequence of length L with V values, K keys, and Q queries. The orange points represent 

the mapped points/series along the entire sequence, while the grey ones are points not mapped. Figure adapted from [10] . 

i

w

e

t

3

a

T

v

c

a

p

k

A

w  

t

t

t

d

w

a  

V

j

W

O

a

p

A

h

w  

t

d

3

V

c

b

o

v

c

s

d

d

s

A

3

n

f

l

p  

l

t

i

F

ng with the sine and cosine functions: 

P E (pos, 2 l) = sin (pos/ 10 0 0 0 

2 l/L ) (1) 

P E (pos, 2 l+1) = cos (pos/ 10 0 0 0 

2 l/L ) 

here L is the total length of the input sequence. The positional 

ncoding has the same length L as the embeddings, so that the 

wo can be summed. The output of the positional encoding is: 

ˆ x l = x l + P E (l) (2) 

.1.2. Multi-head self-attention mechanism 

This mechanism is responsible for mapping scattered points 

long the entire sequence, studying the long-range dependencies. 

his mechanism avoids the limited time window problem of pre- 

ious architectures (e.g., RNNs). The information aggregation is ac- 

omplished with a Full-Attention mechanism where the outputs 

re the weighted sum of the values V according to the canonical 

oint-wise dot-product of the queries Q with the corresponding 

eys K. Fig. 2 (a) provides a graphical representation of the Full- 

ttention mechanism. The solid line represents the input sequence 

ith its values V , keys K, and queries Q . The red point represents

he sample l in the sequence with length L . The orange points are 

he scattered points mapped in the Full-Attention mechanism for 

he red point at sample l. The Full-Attention mechanism can be 

efined as: 

At tent ion (Q, K, V ) = sof tmax ( 
QK 

T 

√ 

d k 
) V (3) 

here d k is the dimension of the queries Q and keys K, and 

√ 

d k is 

 scaling factor that enables flatter gradients. Q = XW Q , K = XW K ,

 = XW V are the linear projections of X in the corresponding pro- 

ection parameters d k , d k , and d v respectively where W Q ε R 

L ×d k , 

 K ε R 

L ×d k , and W V ε R 

L ×d v . The computational cost is quadratic 

 (L 2 ) where L denotes the length of the input sequence. 
5 
Alternatively to apply one single projection of the queries, keys, 

nd values, better results can be achieved with h independent 

rojections to d k , d k , and d v respectively. The multi-head Self- 

ttention is based on a concatenation and final projection of the 

 independent heads: 

MultiHead(Q, K, V ) = [ head 1 , . . . , head h ] W 

O (4) 

here head i = At tent ion (Q i , K i , V i ) and W 

O ε R 

hd v ×L is the final at-

ention matrix. To achieve the same length L of the input sequence, 

 v = L/h . Therefore the attention matrix of Full-Attention is L × L . 

.1.3. Point-wise feed-forward network 

In addition to the multi-head Self-Attention sub-layer, the 

anilla Transformer has a point-wise feed-forward network. This 

onsists of two linear transformations with a ReLU activation in 

etween, operating in each position independently. The input and 

utput dimensions are the same, L . 

To summarise, the Vanilla Transformer has shown great ad- 

ances in Natural Language Processing and Computer Vision appli- 

ations but still needs to be adapted for time sequences. Aspects 

uch as the periodicity or seasonality, and long- and short-range 

ependencies still need to be revisited [14] . To alleviate these 

rawbacks, different Transformers have been proposed in the re- 

earch community, modifying aspects such as the multi-head Self- 

ttention sub-layer and the positional encoding. 

.2. Informer 

Zhou et al. presented in [11] a new Transformer architecture 

amed Informer. Informer is an adaptation of the Vanilla Trans- 

ormer for Long Sequence Time-series Forecasting (LSTF). Some 

imitations of the Vanilla Transformer are the quadratic time com- 

lexity O (L 2 ) and the high memory usage O (L 2 ) for each encoder

ayer; and the inherent limitation of the encoder-decoder architec- 

ure. To overcome these drawbacks, the authors proposed several 

mprovements. The multi-head Self-Attention mechanism based on 

ull-Attention was changed by ProbSparse-Attention to scattered 
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oints, as provides Fig. 1 B . The Full-Attention to the input se- 

uence is reduced to half, more favourable handling long-range se- 

uences. The canonical dot-product was replaced by a scaled dot- 

roduct. Informer reduces the time complexity to O (L log L ) and 

he memory usage to O (L log L ) for each layer. In addition, previ-

us studies have shown a potential sparsity in Full-Attention. As a 

esult, the authors decided to use a selective strategy on all prob- 

bilities, i.e., Sparse-Attention [30] (sparsity coming from separate 

patial correlations) and LogSparse-Attention [31] (selecting points 

hrough exponentially increasing intervals). Fig. 2 (b) provides a 

raphical representation of the ProbSparse-Attention mechanism. 

he solid line denotes the input sequence with the extracted val- 

es V , keys K, and queries Q . The red point represents the sample

in the input sequence. The ProbSparse-Attention mechanism, un- 

ike the Full-Attention mechanism that looks at all previous points, 

hooses selected dominant points (orange) in the input sequence, 

hile the grey ones are not used. 

.3. Autoformer 

Autoformer was presented by Wu et al. [10] for the task of 

ong-term forecasting. In this Transformer architecture, the origi- 

al multi-head Self-Attention mechanism based on Full-Attention 

as changed by Auto-Correlation. Contrary to previous Transform- 

rs, where the proposed dot-product only establishes point con- 

ections, the Auto-Correlation mechanism not only utilises long- 

ange dependencies but also periodicity-based dependencies. Using 

eries-wise instead of point-wise connections, Autoformer achieves 

 (L log L ) time complexity and O (L log L ) memory usage for each

ayer, and breaks the information utilisation bottleneck. Fig. 2 (c) 

hows a graphical representation of Auto-Correlation. It takes into 

onsideration series of points in the same position during previous 

eriods of the input sequence instead of scattered points. 

Fig. 1 C. provides a graphical representation of Autoformer. The 

ulti-head Auto-Correlation sub-layer comprises two main sub- 

locks: i) an aggregated top-k similar sub-series, calculated by Fast 

ourier Transform (FFT) and based on periodicity (instead of scat- 

ered points like the Self-Attention family), and ii) Time Delay Ag- 

regation (TDA) among periods (instead of point-wise dot-product 

ike in the Self-Attention family), used for the information aggre- 

ation. 

The aggregated top-k similar sub-series presents series-wise con- 

ections based on period-based dependencies. The sub-series are 

orrelated between them at the same position in previous pe- 

iods, which are congenitally sparse. For an input sequence X = 

x 0 , x 1 , . . . , x l , . . . , x L ) , X ε R 

c×L where c is the number of chan-

els and L the length of the input sequence, the Auto-Correlation 

 XX (τ ) can be obtained by FFT based on Wiener–Khinchin theo- 

em as: 

S XX ( f ) = F F T (X ) F F T ∗(X ) (5) 

R XX (τ ) = F F T −1(S XX ( f )) 

here F F T ∗ is the conjugate operation, F F T −1 its inverse, and

 XX ( f ) is the Auto-Correlation obtained in the frequency domain. 

The Time Delay Aggregation (TDA) sub-block links the sub-series 

ver the selected time delays τ1 , . . . , τk . This operation aligns sub- 

eries in the same phase of the predicted periods, contrary to 

oint-wise dot-product in the Self-Attention family. Finally, the 

ub-series are aggregated by softmax normalised function. The 

uto-Correlation mechanism can be defined as: 

τ1 , . . . , τk = argT opK 

τ ε (1 , ... ,L ) 

(R Q,K (τ )) 

ˆ R Q,K (τ1 ) , . . . , ˆ R Q,K (τk ) = Sof tMax (R Q,K (τ1 ) , . . . , R Q,K (τk )) 

Auto − Correlation (Q, K, V ) = 

k ∑ 

i =1 

Roll(V, τi ) ̂  R Q,K (τi ) 

(6) 
6 
here argT opK takes the output of topK Auto-Correlations along l, 

 Q,K is the Auto-Correlation between Q and K series, and Rol l (V, τi ) 

croll X with a τ time delay, re-introducing the elements moved 

eyond the first position to the last one. 

.4. Block-recurrent transformer 

Hutchins et al. introduced the Block-Recurrent Transformer in 

utchins et al. [8] for the task of auto-regressive language mod- 

lling. This Transformer introduces a recurrent form of atten- 

ion. It is presented as an alternative to using the dot-product or 

eriodicity-based series mechanism, which fix an attention win- 

ow size. The Block-Recurrent Transformer summarises the se- 

uence that the model has previously seen. The time complexity is 

inear O (L ) for each layer. The recurrent layers operate on series- 

ise connections as in the Autoformer, achieving linear memory 

onsumption O (L ) in each layer. The Block-Recurrent Transformer 

s based on a sliding-window attention mechanism [32] . Given an 

nput X with length L , a causal mask is applied by a sliding win-

ow with size W where every sample can attend only to the previ- 

us W samples. Being the attention matrix of Full-Attention L × L , 

he Block-Recurrent Attention matrix is W × W , where W << L . 

he sliding-window attention processes multiple blocks of size W 

t the same time. 

Fig. 1 D. provides a graphical representation of the Block- 

ecurrent Transformer architecture, which comprises two main di- 

ections: i) vertical direction (Self-Attention Layer in Fig. 1 D. ), 

here layers are placed in the usual way; and ii) horizontal direc- 

ion (Recurrent Layer in Fig. 1 D. ), where layers contain recurrence. 

oth directions attend to the input sequence X and to the current 

tates S. 

The vertical direction presents a multi-head Self-Attention sub- 

ayer with two attentions: i) Full-Attention to the input sequence 

as shown in Fig. 2 (a); and ii) Cross-Attention applied in a simi- 

ar way to the original Vanilla Transformer [7] , with the main dif- 

erence being that the queries Q come from the current states S, 

hich are initialised to 0, whereas the keys K and values V are 

xtracted from the input sequence X , Fig. 2 (d). 

The horizontal direction also presents a multi-head Self- 

ttention sub-layer with two attentions: i) Cross-Attention to the 

nput sequence X to extract the queries Q while the keys K and 

alues V are extracted from the current states S, Fig. 2 (d), and ii) 

ull-Attention to the current states S, Fig. 2 (a). The horizontal di- 

ection applies recurrence where the residual connections are re- 

laced by gates, allowing the model to forget. Also, the gates help 

he model to apply Full-Attention and Cross-Attention in parallel. 

or the recurrence, the current states S are modified by residual 

onnection gates. The input of the state at the next window ( s w +1 )

epends on the output of the state at the actual window ( s w 

): 

s w +1 = s w 

� g + z w 

� (1 − g) 

g = σ (b (g) ) 

z w 

= W 

(z) h w 

+ b (z) 

(7) 

here � is the point-wise multiplication, g the gate, z w 

the 

earned convex combination, b (g) and b (z) are trainable bias vec- 

ors (learned functions between the distance of the query Q and 

ey K), W the weight matrix, h w 

the output of the corresponding 

ub-layer (i.e., multi-head Self-Attention mechanism or point-wise 

eed-forward network), and σ the sigmoid function. 

The Block-Recurrent Transformer applies layer normalisation 

efore the multi-head Self-Attention sub-layer, and before the 

oint-wise feed-forward network. Dropout is also introduced be- 

ore the multi-head Self-Attention sub-layer and after the point- 

ise feed-forward network. 
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.5. THAT 

Contrary to images, which have spatial information in two di- 

ensions (2D), temporal sequences might consider spatial infor- 

ation in one dimension (1D) in each time position. Furthermore, 

hey can extract temporal information for each time position in a 

econd dimension. The spatial information is available in the same 

ay, between the different channels of each time sample, which 

an be called as channel-over-time features. On the other hand, 

eing a temporal sequence, there are time-over-channel features, 

hich need to be treated as a temporal sequence. 

Based on this idea, the Two-stream Convolution Augmented Hu- 

an Activity Transformer (THAT) model was proposed by Li et al. 

13] . The authors proposed a new Transformer architecture for Hu- 

an Activity Recognition (HAR). Fig. 1 E. provides a graphical rep- 

esentation of the THAT Transformer. The model contains two par- 

llel modules for the feature extraction: i) Temporal Module (in 

harge of time-over-channel features), and ii) Channel Module (in 

harge of channel-over-time features). Subsequently, all extracted 

eatures are concatenated for the prediction task. 

The authors claimed that the original positional encoding con- 

idered in the Vanilla Transformer [7] might not be sufficient to 

apture all the temporal information along the sample as it is de- 

ned on a single point. As a result, the authors proposed a Gaus- 

ian range encoding, suggesting the use of a range of points rather 

han just one. Furthermore, several ranges g can be used at the 

ame time, allowing to have different contexts of the sample x l . 

Assuming g ε R 

G different ranges, N (μg , σ g ) ε R 

L ×G is 

 Gaussian distribution with the probability p g (l) . Being p l = 

 

p 1 (l) 
ζ

, . . . , 
p G (l) 

ζ
) the distribution over the G ranges with a nor- 

alisation factor ζ , V = (v 1 , . . . , v G ) is the values vector over the

anges. All μ, σ , and V variables are initialised randomly and re- 

djusted with the training of the whole model. To summarise, the 

utput of the Gaussian range encoding at the position of sample l

s: 

ˆ x l = x l + V 

T p l (8) 

In addition, as the point-wise feed-forward layer proposed in 

he Vanilla Transformer [7] focuses attention on a single point in 

ime, the authors implemented a multi-scale CNN with adaptive 

cale-Attention in both Temporal and Channel Modules. They re- 

laced the linear transformations of the original feed-forward layer 

ith a HAR CNN. Also, by introducing Scale-Attention Adaptive, the 

raining can be adjusted to the different ranges introduced by the 

aussian range encoding. 

Finally, THAT has quadratic time complexity O (L 2 ) and the 

igh memory usage O (L 2 ) for each encoder layer, since the model 

ses Self-Attention (i.e., Full-Attention similar to the Vanilla Trans- 

ormer). 

.6. Proposed transformer 

Finally, Fig. 1 F. presents the new proposed Transformer based 

n a selection of the best components presented in previous Trans- 

ormer architectures. First, we consider a parallel two-stream ar- 

hitecture with Temporal and Channel Modules, similar to the 

HAT approach presented in Li et al. [13] . Unlike the THAT model, 

e consider a Gaussian range encoding as input of both Temporal 

nd Channel Modules. In addition, for the Temporal Module (left 

ranch), we consider a combination of multi-head Auto-Correlation 

ayers, proposed in Autoformer [10] , and a recurrent layer in be- 

ween, proposed in Block-Recurrent Transformer [8] . For the multi- 

ead Auto-Correlation layer, we design a specific multi-scale Gait 

iometric Recognition (GBR) CNN sub-layer. Regarding the Channel 

odule (right branch), we consider a multi-head Auto-Correlation 

ub-layer together with a multi-scale GBR CNN sub-layer. After 
7 
ach sub-layer, a residual connection is applied followed by a 

ormalisation of the layer, similar to the Vanilla Transformer [7] . 

he time complexity and memory usage of each layer with Auto- 

orrelation is O (L log L ) , whereas for the recurrent layer this is

 (L ) . 

. Experimental protocol 

Two popular public databases used for research in gait recogni- 

ion on mobile devices are considered in the evaluation framework 

f the present study: i) whuGAIT [15] , and ii) OU-ISIR [17] . These

atabases have been selected as they also contain predefined ex- 

erimental protocols for the identification task (i.e., development 

nd evaluation datasets), allowing for a fair comparison between 

xisting state-of-the-art approaches. 

.1. WhuGAIT database 

The whuGAIT database was introduced in Zou et al. [15] . This 

atabase comprises accelerometer and gyroscope data acquired us- 

ng Samsung, Xiaomi, and Huawei smartphones in unconstrained 

cenarios. The sampling frequency of the accelerometer and gyro- 

cope sensors is 50 Hz. A total of 118 subjects participated in the 

cquisition, and both walking and non-walking sessions were con- 

idered. 

Regarding the experimental protocol of the whuGAIT database, 

ou et al. proposed in [15] a predefined division of the database 

nto development and evaluation datasets in order to facilitate the 

omparison among approaches. For each subject, 90% of the sam- 

les are considered for development while the remaining 10% for 

he final evaluation. In total 33,104 samples are considered for 

he development dataset whereas the remaining 3,740 samples are 

sed for the final evaluation. 

.2. OU-ISIR database 

The OU-ISIR database was presented in Ngo et al. [17] . This 

atabase comprises 745 subjects; the largest public mobile device 

ait biometric database to date. Data from accelerometer and gy- 

oscope sensors were collected using three IMUs and a Motorola 

E860 smartphone around the waist of the subject. The sampling 

requency of the sensors is 100 Hz. Subjects had to perform 4 

ifferent activities (two flat walking, slope-up walking, and slope- 

own walking). The database is divided into two different subsets. 

he first subset includes data from 744 users collected by one IMU 

ocated in the middle of the subject’s back at waist-height. The sec- 

nd one contains data from 408 subjects collected by the three 

MUs and the smartphone. 

Regarding the experimental protocol of the OU-ISIR database, 

e consider the predefined division of the database into devel- 

pment and evaluation datasets proposed by Zou et al. [15] . For 

ach subject, 87.5% of the samples are considered for development 

hile the remaining 12.5% for the final evaluation. In total 13,212 

amples are considered for the development dataset whereas the 

emaining 1,409 samples are used for the final evaluation. 

. Systems details 

This section provides the system configuration details of the 

ransformers and traditional DL architectures (i.e., CNNs and RNNs) 

onsidered in the experimental framework of the study. 

The same inputs to the models is used for all approaches. For 

he whuGAIT database, a total of 80 time signals (around 1.5 s 

ach) are extracted from the 3-axis accelerometer and gyroscope 

ensors following the approach presented in Tran et al. [26] . Also, 

e consider an overlapping of 97% between samples in training. 
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or the OU-ISIR database, 128 time signals (around 1.5 s each) are 

xtracted from the 3-axis accelerometer and gyroscope sensors fol- 

owing the approach presented in Zou et al. [15] . Also, we consider 

n overlapping of 61% between samples in training. 

For a better comparison of Transformer architectures with pop- 

lar DL architectures, we consider the following approaches: i) 

NNs, ii) RNNs, and iii) a hybrid configuration based on the combi- 

ation of CNNs and RNNs. These DL models are widely considered 

or gait biometric recognition, achieving state-of-the-art results as 

escribed in Section 2 . CNNs have shown advantages in capturing 

patial dependencies, while RNNs are better to capture the tempo- 

al dependencies. 

We provide next a description of the networks parameters: 

• CNN : we consider four 1D convolutional layers with 6 units 

each and kernel size 5, followed by one dense layer with 

3 
2 L 

units (where L is the length of the time sequence), and one 

softmax layer. After every 2 convolutional layers, we use max- 

pooling and dropout with a 0.5 rate. ReLU activation functions 

are used in both convolutional and dense layers. The total num- 

ber of model parameters is 57.3K and 35.4M for the whuGAIT 

and OU-ISIR databases, respectively. 
• RNN : we consider three LSTM layers with 3 units each followed 

by one dense layer with 

3 
2 L units, and one softmax layer. The 

total number of model parameters is 785.2 K and 3.6 M for the 

whuGAIT and OU-ISIR databases, respectively. 
• CNN-RNN : it comprises two parallel modules, i) four convolu- 

tional layers with 6 units each and kernel size 5, and ii) three 

LSTM layers with 3 units each. After both modules, a feature 

concatenation is applied, followed by one dense layer with 

3 
2 L 

units, and one softmax layer. We also consider dropout with 0.5 

rate after each convolutional layer. The total number of model 

parameters is 870.5 K and 40.4 M for the whuGAIT and OU-ISIR 

databases, respectively. 
• Vanilla Transformer [7] : we consider the positional encoding 

together with the encoder part of the Vanilla Transformer. 

The model consists of N = 5 layers. For the multi-head Self- 

Attention sub-layer, 8 heads are considered with Full-Attention 

whereas for the point-wise feed-forward network we consider 

two linear layers (layer 1 with L units and layer 2 with L ∗ 4

units) with ReLU activation and dropout in between. The to- 

tal number of model parameters is 705.7 K and 3.4 M for the 

whuGAIT and OU-ISIR databases, respectively. 
• Informer [11] : we consider the same structure as the Vanilla 

Transformer but changing in the multi-head Self-Attention sub- 

layer the Full-Attention to ProbSparse-Attention. The model is 

composed of N = 5 layers. For the multi-head Self-Attention 

sub-layer, 8 heads are considered whereas for the point-wise 

feed-forward network we consider two linear layers (layer 1 

with L units and layer 2 with L ∗ 4 units) with ReLU activation 

and dropout in between. The total number of model parameters 

is 705.7 K and 3.4 M for the whuGAIT and OU-ISIR databases, 

respectively. 
• Autoformer [10] : the same structure as the Vanilla Transformer 

is considered but changing the Self-Attention mechanism for 

the Auto-Correlation mechanism. The model comprises N = 5 

layers with 8 heads in the multi-head Auto-Correlation sub- 

layer. For the point-wise feed-forward network we consider two 

linear layers (layer 1 with L units and layer 2 with L ∗ 4 units)

with ReLU activation and dropout in between. The total num- 

ber of model parameters is 1.0M and 3.4M for the whuGAIT and 

OU-ISIR databases, respectively. 
• Block-Recurrent Transformer [8] : it comprises 12 layers: N = 9 

multi-head Self-Attention layers with Cross-Attention and Full- 

Attention (8 heads), followed by R = 1 recurrent layer, and M = 

2 more multi-head Self-Attention layers with Cross-Attention 
8 
and Full-Attention (8 heads). In each layer, the point-wise feed- 

forward network is composed of two linear layers (layer 1 with 

L units and layer 2 with L ∗ 4 units) with ReLU activation and 

dropout in between. The total number of model parameters is 

2.4 M and 3.3 M for the whuGAIT and OU-ISIR databases, re- 

spectively. 
• THAT [13] : this is a two-stream convolution Transformer ar- 

chitecture. In the first stream (Temporal Module) the time- 

over-channel features are analysed. To this aim, Gaussian range 

encoding is used together with the original multi-head Self- 

Attention sub-layer (Full-Attention with 8 heads). The HAR CNN 

sub-layer is based on a multi-scale CNN (3 convolutional layers 

with L units each, ReLU activation functions, and kernel sizes 1, 

3, and 5 respectively, followed by dropout layers). The Tempo- 

ral Module contains N = 9 layers. For the second stream (Chan- 

nel Module) the data is transposed to extract the channel-over- 

time features, adopting the original Vanilla Transformer struc- 

ture with positional encoding. The multi-head Self-Attention 

sub-layer contains Full-Attention with 6 heads. The HAR CNN 

sub-layer is based on a multi-scale CNN (3 convolutional layers 

with L units each, ReLU activation functions, and kernel sizes 

1, 3, and 5 respectively, followed by dropout layers). The Chan- 

nel Module contains H = 1 layer. The total number of model 

parameters is 611.7 K and 4.7 M for the whuGAIT and OU-ISIR 

databases, respectively. 
• Proposed Transformer : we consider a two-stream Transformer 

based on Temporal and Channel Modules. Both modules use 

Gaussian range encoding. The Temporal Module comprises 12 

layers: N = 9 multi-head Auto-Correlation layers (8 heads), fol- 

lowed by R = 1 recurrent layer (8 heads), and M = 2 multi-head

Auto-Correlation layers (8 heads). In each layer, the GBR CNN 

sub-layer is based on a multi-scale CNN (4 convolutional layers 

with L units each, ReLU activation functions, and kernel sizes 1, 

3, 5, and 7 respectively, followed by dropout layers). The Chan- 

nel Module comprises H = 1 layers. In all of them we consider 

multi-head Auto-Correlation mechanism with 6 heads. The GBR 

CNN sub-layer is based on a multi-scale CNN (4 convolutional 

layers with L units each, ReLU activation functions, and kernel 

sizes 1, 3, 5, and 7 respectively, followed by dropout layers). 

These parameters have been selected according to the perfor- 

mance achieved with the proposed Transformer. The total num- 

ber of model parameters is 2.6 M and 6.7 M for the whuGAIT 

and OU-ISIR databases, respectively. 

For the training of the models, we use cross-entropy and Adam 

ptimiser with default parameters (learning rate of 0.001). All 

odels are adapted to the gait biometric recognition task. To this 

im, after the models we include 2 convolutional layers ( L units 

ach, ReLU activation functions, and kernel sizes 128, followed by 

ropout layers) with max-pooling and a linear layer with softmax 

ctivation function. For the THAT and proposed Transformer, we 

lso consider feature concatenation of the Temporal and Channel 

odules as described in Fig. 1 E. and F. 

. Experimental results 

This section aims to analyse the performance of the different 

tate-of-the-art Transformer architectures considered in this study 

i.e., Vanilla, Informer, Autoformer, Block-Recurrent Transformer, 

HAT, and our proposed architecture) for the topic of gait biomet- 

ic recognition on mobile devices. Section 6.1 provides a compari- 

on of Transformer architectures with traditional DL architectures 

uch as CNNs and RNNs. Finally, Section 6.2 provides a compar- 

son of the proposed Transformer architectures with the state of 

he art. 
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Table 2 

Comparison in terms of accuracy of traditional DL models (CNN, RNN) and recent Transformers for biometric gait recognition. GRE: Gaussian Range 

Encoding; N, M: Number of multi-head Auto-Correlation layers before and after the recurrent layer, respectively; R : Number of recurrent layers. 

Model 

Database 

whuGAIT OU-ISIR 

CNN 75.31% 32.51% 

RNN 82.42% 44.15% 

CNN + RNN 84.54% 46.63% 

Vanilla Transformer [7] (Positional Encoding + Full-Attention) 87.73% 54.51% 

Informer [11] (Positional Encoding + ProbSparse-Attention) 89.26% 59.40% 

Autoformer [10] (Positional Encoding + Auto-Correlation) 89.44% 63.10% 

Block-Recurrent Transformer [8] (Positional Encoding + Full- and Cross-Attention) 91.78% 64.52% 

THAT [13] : Temporal Module (GRE + Full-Attention + w/o Recurrent Layer), Channel Module (Positional 

Encoding + Full-Attention) 

92.99% 85.74% 

Proposed Transformer 

Temporal Module 

GRE + Full-Attention + w/o Recurrent Layer 90.96% 57.06% 

GRE + ProbSparse-Attention + w/o Recurrent Layer 91.07% 59.48% 

GRE + Auto-Correlation + w/o Recurrent Layer 91.15% 60.61% 

GRE + Auto-Correlation + w/ Recurrent Layer ( N = 8 , R = 1 , M = 2 ) 92.23% 59.20% 

GRE + Auto-Correlation + w/ Recurrent Layer ( N = 9 , R = 1 , M = 2 ) 92.45% 68.20% 

GRE + Auto-Correlation + w/ Recurrent Layer ( N = 10 , R = 1 , M = 2 ) 91.16% 53.73% 

GRE + Auto-Correlation + w/ Recurrent Layer ( N = 9 , R = 1 , M = 1 ) 92.30% 56.50% 

GRE + Auto-Correlation + w/ Recurrent Layer ( N = 9 , R = 1 , M = 3 ) 91.10% 57.06% 

Channel Module 

Positional Encoding + Full-Attention 91.68% 70.55% 

GRE + Full-Attention 92.28% 90.77% 

GRE + ProbSparse-Attention 93.26% 91.20% 

GRE + Auto-Correlation 93.64% 92.19% 

Temporal + Channel Modules Temporal (GRE + Auto-Correlation + w/ Recurrent Layer) Channel 

(GRE + Auto-Correlation) 

94.25% 93.33% 
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.1. Transformers vs. traditional DL architectures 

Table 2 provides a comparison of traditional DL models and 

ecent Transformers for the whuGAIT and OU-ISIR databases. The 

est results achieved for each database and module configura- 

ion (Temporal and Channel) are remarked in bold. First, we 

an see that the Vanilla Transformer outperforms the traditional 

L models (CNN, RNN, and CNN + RNN) in both databases. 

he Vanilla Transformer achieves an accuracy of 87.73% in the 

huGAIT database (absolute improvement of 3.19% accuracy com- 

ared with the CNN + RNN approach), and 54.51% in the OU- 

SIR database (absolute improvement of 7.88% accuracy compared 

ith the CNN + RNN approach). These performance improvements 

emonstrate the advantages of Transformers compared with tradi- 

ional CNN and RNN architectures, for example, the ability to train 

he model using large time sequences, attending to all the previ- 

us samples at the same time. In addition, we can also observe a 

onsiderable gap in the results between the whuGAIT and OU-ISIR 

atabases. This is due to the OU-ISIR comprising more challeng- 

ng database including many more subjects, sensors, and walking 

tyles. This trend is also observed in the original article for tradi- 

ional CNN and RNN architectures [17] . 

The Vanilla Transformer architecture [7] was improved using 

robSparse-Attention (Informer [11] ) and Auto-Correlation (Auto- 

ormer [10] ). Analysing the results included in Table 2 , we can ob-

erve that both Informer and Autoformer outperform the Vanilla 

ransformer in both whuGAIT and OU-ISIR databases. In particular, 

or the whuGAIT database, the Informer and Autoformer achieve 

9.26% and 89.44% accuracy, respectively, in comparison with the 

7.73% accuracy achieved for the Vanilla Transformer (absolute 

mprovement of around 1.6% accuracy). Regarding the OU-ISIR 

atabase, much better results are achieved by Informer and Aut- 

former compared with the Vanilla Transformer (59.40%, 63.10%, 

nd 54.51% accuracy, respectively). Also, Autoformer outperforms 

nformer in both databases, proving the potential of the multi-head 

uto-Correlation mechanism, replacing the point-wise connections 
or series-wise connections. T

9 
The Block-Recurrent Transformer [8] was presented as an al- 

ernative to use the dot-product or periodicity-based series mech- 

nism, which fixes an attention window size. Analysing the re- 

ults of Table 2 , the Block-Recurrent Transformer outperforms pre- 

ious Transformers for both whuGAIT (91.78% accuracy) and OU- 

SIR (64.52% accuracy) databases. This is an absolute improvement 

f 2.34% and 1.42% accuracy compared with Autoformer for the 

huGAIT and OU-ISIR databases, respectively. 

The THAT Transformer [13] proposed a two-stream approach 

ased on Temporal and Channel Modules. This Transformer archi- 

ecture outperforms all previous Transformers, achieving accura- 

ies of 92.99% and 85.74% for the whuGAIT and OU-ISIR databases, 

espectively. The improvement is much higher for the OU-ISIR 

atabase with an absolute improvement of 21.22% accuracy com- 

ared with the Block-Recurrent Transformer. The main reason for 

his improvement is the proposed Gaussian range encoding in the 

emporal Module, better capturing the temporal information of the 

ample in comparison with the positional encoding considered in 

ll previous Transformers. Moreover, by having multi-scale con- 

olutions instead of feed-forward linear layers, more discrimina- 

ive patterns of each subject are captured. THAT also demonstrates 

ow, by obtaining features from two points of view (time-over- 

hannel features and channel-over-time features), complementary 

nformation can be captured, achieving better performance. 

In addition, we show in Table 2 the results achieved by our pro- 

osed Transformer under different configurations. First, we anal- 

se the impact in the system performance of each of the mod- 

les individually. The Temporal Module with Self-Attention (Full- 

nd ProbSparse-Attention) and without recurrent layer (“w/o re- 

urrent layer” in Table 2 ) achieves values of 90.96% and 91.07% 

ccuracy for the whuGAIT database and 57.06% and 59.48% accu- 

acy for the OU-ISIR database, respectively. These results are fur- 

her improved by replacing the Self-Attention mechanism with the 

uto-Correlation mechanism (91.15% and 60.61% accuracy for the 

huGAIT and OU-ISIR databases, respectively). In addition, when 

ncluding the recurrent layer (“w/ recurrent layer” in Table 2 ), the 

emporal Module achieves better results (92.45% and 68.20% ac- 
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Fig. 3. Cumulative Match Characteristic (CMC) curves of the traditional DL models (CNN, RNN, CNN + RNN) and recent Transformers (Vanilla, Informer, Autoformer, Block- 

Recurrent, THAT, and the proposed Transformer) for both whuGAIT (top) and OU-ISIR (bottom) databases. 
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uracy for the whuGAIT and OU-ISIR databases, respectively), be- 

ng the best configuration N = 9 Multi-head Auto-Correlation lay- 

rs, R = 1 recurrent layer, and M = 2 Multi-head Auto-Correlation 

ayers. On the other hand, we can see that the Channel Module 

ith Full-Attention is also able to extract discriminative features 

or the task, achieving accuracy values of 91.68% and 70.55% for the 

huGAIT and OU-ISIR databases, respectively. Moreover, includ- 

ng the Gaussian range encoding (instead of positional encoding), 

he Channel Module improves the results (92.28% and 90.77% for 

he whuGAIT and OU-ISIR databases), becoming even better when 

he Self-Attention mechanism with Full-Attention is replaced by 

robSparse-Attention or Auto-Correlation, (93.26% and 93.64% ac- 

uracy for the whuGAIT and 91.20% and 92.19% accuracy for the 

U-ISIR databases, respectively). 

Finally, we can see how the combination of both Temporal and 

hannel modules (“Temporal + Channel Modules” in Table 2 ) out- 

erforms all previous Transformer architectures for both whuGAIT 

94.25% accuracy) and OU-ISIR (93.33% accuracy) databases. In 

articular, the proposed Transformer achieves absolute improve- 

ents of 2.47% (Block-Recurrent Transformer), 4.81% (Autoformer), 

.99% (Informer), and 6.52% (Vanilla Transformer) accuracy for 

he whuGAIT database. This improvement is even higher for the 

U-ISIR database with absolute improvements of 28.81% (Block- 

ecurrent Transformer), 30.23% (Autoformer), 33.93% (Informer), 

nd 38.82% (Vanilla Transformer) accuracy. It is important to high- 

ight that in the OU-ISIR database, which is far more challenging 

han whuGAIT in terms of number of subjects and walking ac- 

ivities, the proposed Transformer achieves considerable improve- 

ents in comparison with the THAT approach (93.33% vs. 85.74% 

ccuracy), an absolute improvement of 7.59% accuracy. These re- 

ults highlight the high potential of the proposed Transformer 

hich are produced for several reasons. First, the Gaussian range 

ncoding allows to introduce in each sample details about its rela- 

ive position with respect to the contiguous samples (before the 

emporal Module) and about the different channels (before the 

hannel Module), obtaining more complex information. Another 

dvantage is the two-stream architecture, where each of the mod- 

les extracts different features (the Temporal Module extracts time 

eatures while the Channel Module extracts spatial features). By 

xtracting features from two different perspectives, a more global 

iew of each sample is obtained. In addition, the application of 

uto-Correlation in the multi-head Self-Attention mechanism to- 

ether with the Gaussian range encoding in both Temporal and 

hannel Modules allow the extraction of series-wise connections 

n each range of the encoding, analysing the different behaviour 

f each sample in different environments. Furthermore, including 

he recurrent layer proposed in the Block-Recurrent Transformer 
10 
o the Temporal Module offers a comprehensive analysis. The mod- 

le summarises all the information seen previously, giving a more 

lobal view of each sample with respect to the rest. In addition, by 

ncluding a multi-scale CNN instead of the original feed-forward 

etwork, the whole model is series-wise: from the Gaussian range 

ncoding that extracts the position of each sample based on a 

ange of points, multi-head Auto-Correlation with Block-Recurrent 

ttention, which extracts information periodically based on series, 

nd multi-scale CNN that applies convolutions with different ker- 

els to test the behaviour of samples in different ranges. Finally, 

he proposed Transformer achieves an absolute improvement of 

.92% in the whuGAIT database (94.25% accuracy) compared with 

he OU-ISIR database (93.33% accuracy). Some of the differences 

etween the databases that may produce this improvement are: 

) number of subjects (118 for whuGAIT and 745 for OU-ISIR); ii) 

mount of data available per subject (33,104 training samples for 

huGAIT and 13,212 for OU-ISIR); iii) different devices (Samsung, 

iaomi, and Huawei smartphones for whuGAIT and three IMUs 

nd a Motorola smartphone for OU-ISIR); and iv) different types 

f walking (walking and non-walking for whuGAIT and walking, 

lope-up and -down for OU-ISIR). 

Previous results correspond to the Rank-1 accuracy. Neverthe- 

ess, in some applications we might be interested in having a 

anked list of possible subjects of interest (e.g., in forensic appli- 

ations). Fig. 3 shows the Cumulative Match Characteristic (CMC) 

urve of the traditional DL models commonly used in biomet- 

ic recognition (CNN, RNN, CNN + RNN) and recent Transform- 

rs (Vanilla, Informer, Autoformer, Block-Recurrent, THAT, and the 

roposed Transformer) for both whuGAIT and OU-ISIR databases. 

n general, we can see the same trend in both databases for all 

pproaches, improving the accuracy results with the Rank val- 

es. For example, for the proposed Transformer, the accuracy in- 

reases from 94.25% (Rank-1) to 97.37% (Rank-10) for the whuGAIT 

atabase whereas for the OU-ISIR database this value increases 

rom 93.33% (Rank-1) to 98.08% (Rank-10). 

.2. Comparison with the state of the art 

Finally, we compare in Table 3 the Rank-1 accuracy results 

chieved by our proposed Transformer with other state-of-the-art 

pproaches presented in the literature for gait biometric recogni- 

ion: CNNs + SVM [23] , RNNs [15,26] , and CNNs + RNNs [15,26,27] .

he best results achieved for each database are remarked in 

old. It is important to highlight that all studies consider the 

ame experimental protocol [15] for both whuGAIT and OU-ISIR 

atabases, allowing a straightforward and fair comparison between 

pproaches. 
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Table 3 

Comparison of the proposed Transformer with state-of-the-art gait biometric recog- 

nition approaches in terms of accuracy. 

Study Method 

Database 

whuGAIT OU-ISIR 

Ordóñez et al. [27] CNN + RNN 92.25% 37.33% 

Gadaleta et al. (2018) [23] CNN + SVM 92.91% 44.29% 

Zou et al. [15] 
RNN 91.88% –

CNN + RNN 93.52% –

Tran et al. [26] 
RNN 93.14% 78.92% 

CNN + RNN 94.15% 89.79% 

Proposed transformer Transformer 94.25% 93.33% 
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In general, our proposed Transformer has outperformed previ- 

us approaches in both databases. For the whuGAIT database, the 

roposed Transformer achieves 94.25% accuracy, showing better re- 

ults compared with the CNNs + RNNs approach presented in [26] . 

nalysing the OU-ISIR database, the proposed Transformer further 

mproves the results achieved by previous approaches with 93.33% 

ccuracy. This is an absolute improvement of 3.54% accuracy com- 

ared with the best previous approach (CNNs + RNNs [26] ). The 

uthors improved the CNN + RNN architecture using an RNN to 

rocess each channel, combined in parallel with a CNN with two 

hannels, one for each sensor. These results support the high po- 

ential of the proposed Transformer for gait biometric recognition. 

n addition, it is important to highlight the better time complexity 

nd memory usage of the proposed Transformer compared with 

raditional DL models. 

. Conclusions 

This article has explored and proposed novel behavioural bio- 

etric systems based on Transformers. To the best of our knowl- 

dge, this is the first study that presents a complete framework 

or the use of Transformers in gait biometrics. Several state-of- 

he-art Transformer architectures (Vanilla, Informer, Autoformer, 

lock-Recurrent Transformer, and THAT) are considered in the ex- 

erimental framework, together with a new proposed configura- 

ion. Two popular public databases are considered in the analysis, 

huGAIT and OU-ISIR. 

The proposed Transformer has outperformed previous Trans- 

ormer architectures and traditional DL architectures (i.e., CNNs, 

NNs, and CNNs + RNNs) when evaluated using both databases. 

n particular, for the challenging OU-ISIR database, the pro- 

osed Transformer achieves 93.33% accuracy, resulting in accu- 

acy absolute improvements compared with other techniques of 

.59% (THAT), 28.81% (Block-Recurrent Transformer), 30.23% (Aut- 

former), 33.93% (Informer), and 38.82% (Vanilla Transformer). The 

roposed Transformer has also been compared with state-of-the- 

rt gait biometric recognition systems, outperforming the results 

resented in the literature. In addition, it is important to highlight 

he enhanced time complexity and memory usage of the proposed 

ransformer compared with traditional DL models. 

However, our proposed system still has some aspects that can 

e addressed as future work. First, our proposed Transformer has 

een analysed in segment-based data. Therefore, in order to re- 

roduce the system in continuous environments [33] it is nec- 

ssary to adapt the system. Furthermore, our proposed Trans- 

ormer has been analysed on gait biometrics. Therefore, future 

ork will be oriented towards analysing the potential of the pro- 

osed Transformer architecture for other behavioural biometric 

odalities such as handwritten signature [34,35] , electrocardio- 

rams [36] , and keystroke [19] . In addition, privacy aspects of mo- 

ile authentication have not been considered yet [37] , being still 

 problem to address. Therefore, future work will be oriented to 

mprove both authentication and privacy at the same time [38] . 
11 
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