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Abstract

Refactorings are source-to-source behaviour-preserving program transformations
that are used for improving program structure. Programmers refactor code to
adapt it when new functionality is added or when the code is being repaired –
refactoring serves to keep the code “clean” and more maintainable. Refactoring
can also be used as an exploratory technique for understanding source code.

The process of refactoring has been automated through the implementation
of tools; these tools assist programmers by handling the consistent application of
behaviour-preserving changes to the code. It is desirable that the implementations
of refactorings are correct: bugs might otherwise be introduced in refactored pro-
grams. The correctness, i.e. behaviour-preservation, of refactoring is traditionally
probed by testing the refactored program and not the refactoring implementation
directly. Recently, automated testing techniques have been used to test implemen-
tations of refactorings directly, but the coverage of testing is partial at best. The
verification of refactorings is more challenging but determines whether a refactor-
ing is behaviour-preserving for all possible programs. We study the verification
of refactorings using the proof assistant Isabelle/HOL for untyped and typed λ-
calculi.

Some of the issues encountered during verification are technical rather than
purely theoretical: they relate to the embedding of the programming language in
the proof environment. The reasons for our choice of techniques are discussed. We
also discuss other practical considerations such as the readability of mechanised
refactorings, and the avoidance of computationally expensive refactorings.
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Preliminaries

This chapter introduces notation, definitions and notions used throughout the
dissertation. The λ-calculus and its theory are outlined, some methods for en-
coding language syntax are introduced and the choice of substitution operation is
discussed.

The symbol
def

= will be used to denote definitional equality,
∧

= for abbreviations
and ≡ for identity. The abbreviation “iff” stands for “if and only if”, and “wrt”
abbreviates “with respect to”.

λ-calculus

The λ-calculus is the surviving fragment of a system that was intended to be a
foundation of mathematics. The calculus is considered to be a canonical func-
tional programming language, but it has also had a profound impact on other
areas of computer science, for instance automated reasoning, and mathematics.
Barendregt (1997) surveys the influence the calculus has had in the first six decades
of its existence.

The pure untyped calculus will be described next and we will build on this
when defining other languages in Chapters 5 and 6. More details on the calculus
can be obtained from the books by Barendregt (1981) and Hankin (1994).

Let V be a denumerable set of variable names x, x′, y, z, . . . ranged over by the
metavariable v. We will use the symbol ∇ as a constructor to flag variable occur-
rences. An abstraction, such as λv ·M , is an expression representing a function.
Application (or combination) of a function to an argument is usually denoted by
juxtaposition in the λ-calculus, but the symbol “◦” will be used explicitly here.
The expression occurring on the left of “◦” is called the operator, and the expres-
sion on the right is the operand. Let M and N range over expressions in this
language. The grammar of the calculus is as follows:

M ::= ∇v Variable
| λv ·M Abstraction
| M ◦N Application

Let Λ denote the least set induced by this grammar. In λx ·M , M is called
the body of the expression and λ binds occurrences of x in M . Variables in an
expression that are not bound are said to be free; “y ∈ FV M” predicates that
y is a free variable in expression M . The operation “BV M” produces the set

1
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containing the names of all variables bound in the expression M . The scope of
bound variables extends to as right as possible modulo parenthetical enclosure.
Parenthesis are used to disambiguate scopes in linear representations of terms. In
terms of precedence, “λ” is weaker than “◦”.

To facilitate explanation, we will not explicitly use ∇ to mark variable occur-
rences in this chapter. However the symbol will be used in the formal developments
described in Chapters 5 and 6.

The grammar of contexts is obtained by extending the previous grammar with
a new clause: “[]”, called a hole. Let C be a metavariable ranging over this
set, then it stands for a context. If C stands for a context having n holes then
this is reflected by writing C followed by n occurrences of the symbol []. A
hole can be filled by expressions in Λ, yielding other contexts (if holes are still
present) or expressions in Λ (if all holes have been filled). In general, contexts can
have multiple holes, but it is useful to define single-holed contexts. Contexts will
be used to define contextual-equivalence – a characterisation of congruence – in
§ 4.1.2.

α-conversion refers to the renaming of bound variables such that their new
names are fresh – i.e., they do not appear free in the expression. Often this conver-
sion is done implicitly; in order to facilitate reasoning, expressions are identified
up to renaming of bound variables. This practice abstracts away name informa-
tion, retaining the pure binding structure – i.e., scope information. The symbol
≡α is used to denote identity modulo renaming of bound variables.

Substitution is the canonical transformation operation for expressions in the λ-
calculus. It is parametrised by two expressions and a variable, and it transforms
the first expression by substituting its free occurrences of the variable for the
second expression. We will define different substitution operations later, and
justify our choice of operation based on its suitability for the model of refactoring
we will use.

Substitution occurs during β-reduction. This reduction may take place when
an abstraction (the operator) is applied to some other expression (the operand),
and results in the latter being substituted for free occurrences of the bound vari-
able in the body of the operator.

A β-reducible subexpression is called a β-redex. When an expression is reduced
to a normal form, or value, then it cannot be reduced any further. There are
different kinds of normal forms and further details will be provided below.

A reduction strategy is a commitment to a consistent position in expressions
where redexes are picked. For example, one might choose to reduce operands
themselves prior to reducing the operator. This is called applicative-order reduc-
tion. Normal-order reduction is an alternative reduction strategy that involves
substituting the operands unevaluated into the operator then reducing the whole
expression.

β-reduction is the means through which computation takes place in the cal-
culus, and it is crucial that reduction is deterministic – in the sense that at most
one normal form must exist for any term; the actual definition of what constitutes
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a normal form, as previously mentioned, may vary with the calculus’ specific def-
inition and use. Values of the “standard” unityped lambda calculus – technically
known as the λK-calculus – are terms in head normal form (HNF). Terms having
such a normal form are said to be solvable. The definition and motivation for
HNF are given in (Barendregt 1981).

Variable capture is a potential side-effect of substitution. Capture occurs when
a free variable becomes bound. That is, a free variable in the operand becomes
bound when the operand is placed inside the operator. To avoid capture occurring
during β-reduction, the reduction rule may be given with a precondition to ensure
that capture does not take place – e.g., none of the free variables in the operand ap-
pear bound in the operator. Alternatively, the substitution might rename bound
variables (i.e., perform α-conversion) such that capture is avoided. Different defi-
nitions of the substitution operation will be discussed below. A substitution that
allows capture will be used throughout the dissertation and to balance this the
β-rule will be conditional on non-capture, as shown in the definition below.

Equational theory

The relation ≃⊆ Λ × Λ formalises the equational semantics of expressions in Λ.
It is defined inductively through the following rules. The names of the rules occur
on their right and their side-conditions occur on the left. The first set of rules
induce the core theory of the λ-calculus.

Fresh(z, M)
λx ·M ≃ λz ·M [z/x]

(α)

¬Captures(N, M)
(λx ·M) N ≃M [N/x]

(β)

x /∈ FV (M)
λx · (M ◦ x) ≃M

(η)

The second set of rules ensure that ≃ is an equivalence relation:

M ≃M
(Refl)

N ≃M

M ≃ N
(Symm)

M ≃M ′ M ′ ≃ N

M ≃ N
(Tran)

The last set of rules ensure that ≃ is a compatible relation:

M ≃M ′ N ≃ N ′

M ◦N ≃M ′ ◦N ′
(CompApp)

M ≃ N

λx ·M ≃ λx ·N (CompAbs)
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The equivalence and compatibility properties make ≃ a congruence relation.
The rule CompAbs is the rule of weak extensionality, often called ξ. Fresh(z,M)
predicates that the variable z is fresh in M : a weak definition of this says that z
does not appear free in M . Another definition for Fresh(z,M) says that z does not
appear either free or bound in M ; this definition avoids the problem of shadowing
(described further down). We will use the latter definition. Captures(N,M) means
that substituting M for one of the free variables in N might capture free variables
in M . These predicates will feature in later chapters and their definitions will be
made precise then.

Language encoding

In order to produce machine-checkable proofs about the correctness of metapro-
grams one must also include a specification of the programming language under
study. Some specification techniques lend themselves better to automated reason-
ing. We discuss this here and describe some techniques. This is covered in more
detail in §3.2.

In informal reasoning we usually identify expressions up to α-equivalence, but
formal reasoning requires making explicit how this is done and requires the im-
plementation of this conversion. Having concrete variable names makes this more
difficult, so this motivated de Bruijn (1972) to develop an anonymous represen-
tation for expressions – i.e. removing the names of bound variables from the
calculus. In the de Bruijn indices representation the abstraction clause stipulates
a binding but does not explicitly name the variable being bound. Variable oc-
currences are natural numbers measuring the distance, in terms of the number of
abstractions, from the binding occurrence that binds them. For example, λx.λy.x
becomes λλ2, and so does λy.λz.y . Free variables in de Bruijn indices are treated
as if they were bound by binding occurrences outside the expression, so a free
variable is recognisable since it is a number greater than the number of λs that
precede it. Every time a substitution takes place the indices of free variables need
to be “shifted” to preserve their reference to the “external” binding occurrence.

Locally nameless representation (McBride & McKinna 2004) is an improve-
ment of de Bruijn’s technique. It is a hybrid approach: bound variables are
de Bruijn indices while free variables are named.

The choice of which technique to use largely depends on what one has to use
it for; none of the techniques are generally “clearly better” than the rest since
each technique seems to have a niche of applications where it is more suitable.
The de Bruijn system is criticised because of its poor readability (although it is
certainly more readable than combinatory logic). On the other hand, it is more
amenable for automation since by using it one avoids having to explicitly perform
α-conversion. This is because through de Bruijn indices one does not represent
individual expressions but rather their α-equivalence class. Thus when using a
de Bruijn representation we do not deal with elements in Λ but with those in the
quotient set Λ/≡α

.
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The locally-nameless technique is an improvement over de Bruijn indices since
shifting free variables is avoided altogether. This is accomplished by treating free
and bound variables differently in the grammar itself. We outline more techniques
for encoding languages in §3.2.

The following pseudocode snippets demonstrate how Λ might be encoded using
classical (i.e., having concrete variable names), de Bruijn, and locally-nameless
representations. Names are represented using natural numbers in the following
example, but making Exp and ExpLN parametric to the type of names yields a
more abstract definition. Exp encodes a language having concrete names, ExpDB
is the de Bruijn index encoding and ExpLN uses locally-nameless representation.

data Exp = Var Nat

| Lam Nat Exp

| App Exp Exp

data ExpDB = VarDB Nat

| LamDB ExpDB

| AppDB ExpDB ExpDB

data ExpLN = FreeLN Nat

| BoundLN Nat

| LamLN ExpLN

| AppLN ExpLN ExpLN

Using these datatypes, λx.λy.(x ◦ z) might be represented as:

• Lam 0 (Lam 1 (App (Var 0) (Var 2))) in Exp,

• LamDB (LamDB (AppDB (VarDB 2) (VarDB 3))) in ExpDB,

• LamLN (LamLN (AppLN (BoundLN 2) (FreeLN 0))) in ExpLN

Substitution

Substitution plays a central rôle in λ-calculi and its definition is influenced by the
encoding of the language. We now describe two problems that might occur in
expressions, then describe how variable capture can be mitigated. Further details
on this can be obtained from (Hankin 1994, §2.3), (Barendregt 1981, §C) and
(Pierce 2002, §6).

These problems might arise from using a name-carrying syntax encoding. The
encoding used also affects the definition of the substitution operation, since it
might be defined to avoid problems such as:

Shadowing: In terms such as λx.λx.x the second binding of x is said to shadow
the first. This expression is α-equivalent to λy.λx.x, where no shadowing
occurs. Shadowing can be confusing and lead to mistakes in expression
manipulation.
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Variable capture occurs when a previously free variable becomes bound during
expression transformation. For example consider the application
(λx.λy.x) ◦ y. We cannot β-reduce this to λy.y since the meaning of the ex-
pression would be changed – y becomes bound. Had the binding occurrence
instead been z instead of y then the reduct λz.y would be acceptable.

To avoid variable capture we can either ensure that the arguments given to
the substitution operation are such that capture cannot take place, or else we
would need to rename bound variables to avoid capture. The latter option
involves using a renaming definition of substitution. Different definitions
of substitution will be described in the next section, but we anticipate this
by pointing out that the (β) rule in the logic given earlier has the side-
condition ¬Captures(N,M). We will not be using a renaming definition of
substitution in our work. The inputs to the substitution will come from the
inputs that the user gives to the refactoring operation. The user is alerted
if using the inputs they provided would entail name capture, otherwise the
program is transformed. This model is described in more detail further
down.

Shadowing is not a problem semantically, but variable capture is. The most
drastic solution to this problem is to use a terse combinatory logic since this would
eliminate the need for variables altogether. However, Turner (2006) points out
that “It would seem that only a dedicated cryptologist would choose to write other
than very small programs directly in combinatory logic”. This “variable-free”
philosophy has prosperred somewhat however, and developed into richer languages
to facilitate programming – an early example of which is FP (Backus 1978). This
has also spurred a style of programming called point-free programming (Cunha
2005). The language we have in mind however is not restricted to applicative
terms alone, and therefore variables must feature in the object language.

The following methods assist in transforming expressions in a name-carrying
language encoding while avoiding name capture:

Curry substitution assumes the presence of an infinite list of “next fresh vari-
ables” which can be consumed for renaming binding and bound variables in
the rand before substitution. This is a renaming substitution operation.

Barendregt variable convention assumes that bound and free variables are
always distinct in expressions we reason about. That is, reasoning is con-
strained to a subset of Λ such that for every pair of expressions M and N
in this subset we have that FV M ∩ BV N = ∅. Assuming this convention
makes renaming unnecessary, since capture is impossible. Shadowing still
remains possible, however.
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Variable-capturing substitution

The differences between three different substitution operations are illustrated next.
A similar exposition is given in Pierce (2002). We distinguish between the opera-
tions using a subscript numeral.

M [N/1x]
def

=



















y if M ≡ y and y 6= x

N if M ≡ y and y = x

λy · (M ′[N/1x]) if M ≡ λy ·M ′

(M ′[N/1x]) ◦ (M ′′[N/1x]) if M ≡ (M ′ ◦M ′′)

(1)

M [N/2x]
def

=































y if M ≡ y and y 6= x

N if M ≡ y and y = x

λx ·M ′ if M ≡ λy ·M ′ and y = x

λy · (M ′[N/2x]) if M ≡ λy ·M ′ and y 6= x

(M ′[N/2x]) ◦ (M ′′[N/2x]) if M ≡ (M ′ ◦M ′′)

(2)

M [N/3x]
def

=







































































y if M ≡ y and y 6= x

N if M ≡ y and y = x

λy ·M ′ if M ≡ λy ·M ′ and y = x

λy · (M ′[N/3x]) if M ≡ λy ·M ′ and y 6= x

and y /∈ FV N

λz · ((M ′[z/3y])[N/3x]) if M ≡ λy ·M ′ and y 6= x

and y ∈ FV N then use fresh z

i.e. z /∈ (FV N ∪ FV M ′)

(M ′[N/3x]) ◦ (M ′′[N3/x]) if M ≡ (M ′ ◦M ′′)

(3)

The three substitution operations are given in order of sophistication. The
first operation does not do what we expect it to: it does not only replace N for
free occurrences of x, but replaces N for all occurrences of x. The operation is
too weak.

The second operation is an improvement over the first: it substitutes N for
only free occurrences of x. The difference between the second and third operation
is that the third substitution also avoids capturing free variables in N by changing
the bound variable to a variable that does not occur freely in N – this ensures
that the newly-introduced variable z does not capture free variables in N either.

In the formalisations of refactorings described in Chapters 5 and 6 we will use
a substitution operation of the second kind – a variable-capturing substitution.
This substitution is used since it formalises the operation required: it is up to the
user to provide parameters to the refactoring, including the choice of names. The
possibility of variable capture is checked prior to applying the transformation, so
a substitution is only performed if there is no chance of capture. If the checks
fail then the user is alerted and can choose to re-attempt the refactoring using
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different arguments, or else they could choose to abort the refactoring altogether.
They might need to perform a different refactoring to adapt the program further
before re-attempting their original refactoring.

This model will be called interactive. An alternative approach would be to
compensate: the refactoring would rename variables such that the refactoring can
go through, then the user is informed of this measure when the refactoring is
complete.

In the interactive model the side-conditions of a refactoring will lie explicitly in
the definition of the refactoring. This is because it does not rely on sophisticated
transformation operations (such as a renaming substitution) where these are not
required. These two approaches are explained further in §2.2.1.

By using a variable-capturing substitution one avoids a technical difficulty:
one may express formulæ involving substitution as equations. If the renaming
substitution is used instead then such formulæ must be expressed using a relation
that contains α-congruence. For example, we might want to prove that substitut-
ing a term for a variable that does not occur free in an expression is a redundant
operation. This is formulated as follows for the second substitution operation:

∀L. x /∈ FV M −→M [L/2x] = M

The result can then easily be proved by induction on the structure of expres-
sions. The formulation using the third substitution operation is as follows:

∀L. x /∈ FV M −→M [L/3x] ≡α M

This is because the third definition may introduce new variable names, so
its output cannot be guaranteed to be identical to the result had renaming been
avoided. The result must therefore be shown to be equivalent modulo α-equivalence.
Berghofer & Urban (2007) illustrate the difficulty of proving such a result when
using a language encoding involving concrete variable names; they call proving
the formula shown previously a “tour de force”. They then proceed to compare
the use de Bruijn indices and that of nominal techniques, described in §3.2, for
encoding language syntax in order to mitigate this difficulty.
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Chapter 1

Introduction

Programs are not only written to be executed, but also to be understood – later
in time and potentially by people other than the author of the original code.
Understanding the program code is a precondition to fixing or updating it, or
adapting the code for reuse. Due to the sheer size of programs, writing program
code in a style that facilitates comprehension is a very valuable skill. But even
well-structured program code might need to be altered at some point in its life
(software would not be soft if it was difficult to change) and each change can
potentially degrade the structure of the program. Ill-structured programs are
more difficult, and expensive, to maintain.

Refactorings are a kind of program transformation. Program transformations
assist programmers in fulfilling both goals of programs – to be executed and to be
understood. For example, program optimisation contributes towards a more effi-
cient execution, while refactoring contributes to understanding and maintaining
programs. Another kind program transformation, program derivation, contributes
to the correct construction of programs from their specifications. Various kinds
of program transformations have been implemented; this has enabled them to be
applied to large programs and has made them accessible to programmers. For ex-
ample, it is common for compilers to offer options to perform various optimisations
during compilation.

Refactorings are procedures that assist programmers in keeping software un-
derstandable; they transform program code1 to improve its clarity without chang-
ing its behaviour2. They offer a more powerful way to modify program code
than changing it one character or line at a time. As with other modifications of
program code, refactorings can be undone (rolled back) if they are found to be
unsuitable. Refactoring can also be performed on abstract models of software and
other artifacts – Mens & Tourwé (2004, §V) include “database schemas, software
architectures and software requirements” among the kinds of artifacts that would

1Refactoring focuses on existing code, as emphasised by the subtitle of the book by
Fowler & Beck (1999).

2Behaviour-preservation is usually taken to mean that for identical inputs, the original and
refactored programs return identical outputs. Here we do not consider resource-usage efficiency
as being part of a program’s behaviour, and therefore might not be preserved by a refactoring.

10
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benefit from refactoring. Here we study only the refactoring of program source
code.

Perhaps the simplest refactoring is renaming a variable. This is not a mere
invocation of a text editor’s search-and-replace feature, since it respects scop-
ing rules – recall that a refactoring must preserve program behaviour. More
sophisticated examples of refactoring involve transforming a data structure (this
might be done to conform to Parnas’ principle of information hiding) or moving
definitions between modules (while respecting the definitions’ dependencies and
avoiding name-clashes).

Refactorings have provisos to ensure that a program is not transformed if
its behaviour will be changed as a result of that transformation. These side-
conditions are checked in the course of applying the refactoring. We study the
static application of refactorings, however dynamic refactoring has been studied
by Roberts (1999) and others. If the side-conditions are not satisfied then the
refactoring behaves like the identity function.

Refactorings have been automated and integrated with program development
environments. Some such tools will be described in §2.1.1. Partially-automated
refactoring tools automate the process of transforming program source code (and
checking their side-conditions). Fully-automated refactoring tools extend partially-
automated tools with the automatic detection of sites in source code which could
be refactored and suggest a possible refactoring to use.

Such tools help make software modification manageable – indeed they are
necessary for managing large programs since even renaming a variable can become
daunting in a moderately-sized body of code.

1.1 Correctness of refactorings

Automated refactorings are useful because they enforce rigour with ease and au-
tomate tasks which are tedious and error-prone. However the usefulness of tools
also depends on their quality: the tools themselves need to be correct otherwise
they might introduce bugs in programs, leading to unspecified behaviour during
their execution. Since tools are programs too, if a tool is to be correct then the
specification against which it is checked must be correct to start with. In this work
we study the correctness of refactorings: refactorings are correct if they preserve
behaviour of arbitrary programs.
In order to assess whether a refactoring is correct we could either:

Test : traditionally each application of a refactoring is tested to check that the
behaviour of the refactored program is identical to its original form. Recent
research has studied testing refactorings directly. This is described further
in §2.1.2.

Verify : this involves producing a formal proof that for all possible programs the
refactoring does not change program behaviour.
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We take the second approach to check refactorings. In turn, the correctness of
our proofs will be checked by machine – this will be described in the next section.

Applying a refactoring might not improve a program’s structure; this depends
on the structure of the original program and the refactoring chosen. What might
be considered to be a refactoring for one program might be an obfuscation3 for an-
other. We will therefore take the partial-automation approach mentioned earlier,
and we rely on human guidance in applying the refactorings.

1.2 Objective

We seek to study the decisions that need to be made when verifying a refactoring
mechanically, and the choices available for each decision. Two of the decisions
which must be made early concern the logic and the proof assistant used. Some-
times these two decisions have to be made together since many proof assistants
provide a single logic in which to work. There are many varieties of proof assistant
to pick from, and some characteristics will be described in Chapter 3. We have
chosen to work with the Isabelle proof assistant. This is a generic proof assistant,
that is, it is designed to host a number of embedded object logics; of these we will
use HOL, a higher-order logic based on Church’s simply-typed theory.

To verify a refactoring we need to define the following in the proof assistant’s
input language:

• the programming language for which refactorings are being studied

• metalinguistic operations (e.g. substitution)

• program equivalence relation: the original and refactored programs must
stand in this relation.

In later chapters we verify a number of refactorings for two languages and dis-
cuss improvements to the approaches taken. Through this we seek to contribute
to the development of high-assurance correctness proofs for refactorings. Assur-
ance is partly drawn from the correctness of the proof environment used (i.e. the
proof checker must be correct and the logic used needs to be sound). The envi-
ronment might also implement a facility to extract the refactoring from the proof,
thus realising the implementation through the verification effort. This approach
might seem to be high-effort and expensive, but can be justified since, as with all
metaprograms, bugs in refactorings can leads to the propagation of bugs to other
software.

3Like a refactoring, an obfuscation is a behaviour-preserving source-to-source transformation.
Unlike a refactoring, an obfuscation is intended to make programs harder to understand (for
security purposes). Drape (2004) describes data-oriented program code obfuscation, including
correctness and efficiency criteria.
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1.3 Organisation

The next chapter provides more background on refactoring, including an outline
of past research and implementations of refactoring tools. Then in Chapter 3 we
describe mechanical theorem proving, in particular Isabelle/HOL, and techniques
for encoding programming languages.

Chapter 4 discusses reasoning apparatus for program equivalence and de-
scribes the refactorings verified in this dissertation. Chapter 5 presents the ver-
ification of a number of refactorings for a simple extension of the λ-calculus, and
Chapter 6 presents the verification of a type-based refactoring in an extension
of PCF (Plotkin 1977).

Chapter 7 surveys other work to verify refactorings and outlines work done
to verify other kinds of program transformations. Chapter 8 concludes the dis-
sertation by reflecting on observations made in previous chapters, particularly
Chapters 5 and 6, and suggests directions for future work.



Chapter 2

Refactoring

The chapter starts with a chronological outline of research on refactoring. This
is followed by descriptions of refactoring tools. In the second part of the chapter,
refactoring is discussed more abstractly, two models of refactoring are described,
followed by Robert’s idea of using “postconditions” to improve the composition
of refactorings.

2.1 Background

The observation that restructuring software makes it more reusable and benefits its
maintenance motivated the practice of refactoring. The requirements of software
might evolve during the software’s lifetime, pressing the software to evolve too.
Refactoring assists in adapting software for reuse or in adapting it prior to applying
improvements/corrections (or possibly after such an activity). Opdyke (1992) and
Griswold (1991) develop these observations in their theses, described in §7.

Opdyke and Griswold studied this idea for different languages: C++ and
Scheme respectively. The nature of the programming language used influences
refactoring since program analysis is part of the refactoring process: refactoring
a program in a language is at least as complex as the analysis the refactoring
needs to perform. This is because refactoring must check whether transforming
a program structurally will indeed preserve its behaviour. Opdyke suggested
structuring refactorings into preconditions and transformations, and Griswold
studied the merits of combining information from two graph-based representations
of programs to reason about behaviour-preservation.

Roberts et al. (1997) developed the Refactoring Browser: a tool for refactoring
Smalltalk programs. It was the first refactoring tool implemented. Roberts (1999)
contributed the idea of postconditions to reason about the composition of refac-
torings, and also that of dynamic refactoring (in which program analysis and
program transformation performed at runtime). The nature of the language he
used made it necessary for some refactorings to be applied dynamically: analysis
is difficult to perform statically since Smalltalk is dynamically scoped and dy-
namically typed. Code can be transformed at runtime too because of Smalltalk’s

14
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reflection facility.
Fowler & Beck (1999) wrote the first book on refactoring and concentrated on

refactoring Java programs. The book takes a practical approach and provides
practical advice on integrating refactoring in one’s code development routine.
From the start the authors emphasise the need for testing. They advocate carrying
out small, incremental code updates and testing them in tandem. Unit testing was
a key component of this approach. This echoes Roberts et al. (1997)’s message
about the importance of having good test suites, and that the results are only as
good as the test suites themselves. Fowler’s book contains over 70 refactorings
for Java, specified (as one would expect) as precondition checks to make and
transformations to apply.

Perhaps one of the reasons that refactoring became so popular is that it is
compatible with the pervading idea that to some extent program code is in con-
stant flux. That is, one never assumes code to be complete since it might be
subjected to continuous modification in response to an evolved design, or to be
reused elsewhere.

In recent years there was a strong push to treat refactoring more formally.
This contributed to the possibility of verifying refactoring transformations rather
then relying solely on the partial nature of testing. The need for testing is not
likely to be eliminated with verified refactorings, at least in the near future, but
it contributes to limiting the sources of errors. The goal of verification is to prove
that refactorings are indeed behaviour-preserving program transformations.

Mens et al. (2005) formalised refactorings as graph transformations and the
behaviour-preservation property as graph-property preservation. Cornélio (2004)
studied the correctness problem from a (algebraic) “laws of programming”-based
refinement view. Ettinger focuses on studying the use of program slicing, a tech-
nique originally used in debugging, for refactoring. Slicing involves extracting the
subprogram (called “slice”) that affects a particular variable in a program. This is
difficult to automate but Ettinger suggests a new technique which he calls sliding
and proves its suitability for refactoring (i.e. its behaviour-preservation wrt pro-
grams). These verification efforts, together with other related work, are surveyed
in more detail in Chapter 7.

A large part of the work done in refactoring addressed object-oriented pro-
gramming languages. As a result, one comes across many refactorings that address
features of OO-languages such as type-based refactorings related to the object hi-
erarchy, e.g., pushing methods up or down the hierarchy. However refactoring
in the context of other paradigms has been pursued for several years too (cf.
Griswold’s work on Scheme described earlier).

Li (2006) wrote her doctoral thesis on the design and implementation of HaRe,
a refactoring tool for the functional programming language Haskell. Li’s work is
described in more detail in §7.1. This work was produced in the context of the
Refactoring Functional Programs1 project at the University of Kent. The work
described here is a continuation of this project.

1partially supported by EPSRC grant GR/R75052/01
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2.1.1 Automation

Compilers were programmers’ first tools and enabled them to encode abstractly
and freed them from the need to target a specific machine. Similarly, refactoring
tools enable programmers to devote more attention to the design of a program by
facilitating its modification.

Manual refactoring is problematic: its repetitive nature makes it unsuitable to
be performed by humans since it is highly vulnerable to error. This characteristic
also makes it suitable for automation by machine since machines enforce rigour
with ease. Many refactoring tools have been developed and some of these tools
will be described next.

Refactoring Browser was the first refactoring tool. In the course of its devel-
opment Roberts et al. (1997) had to answer questions such as “what are
the characteristics of such a tool?” and “what makes it usable?” for the
first time. For example, the authors sought to hasten analysis so that the
programmers would not be discouraged from using this tool due to an in-
hibiting time-cost. They also worked to integrate the tool tightly with the
program development environment to ease programmer access to the tool’s
functionality.

Garrido implemented refactorings as executable specifications in Maude and ver-
ified them. This was the first time refactorings were certified in this manner.
Her work is described further in §7.4. Her implementations do not form part
of a tool yet.

JunGL is a scripting language for specifying refactorings by declaratively describ-
ing their side-conditions and transformations in a language-generic manner.
It is intended to enable programmers to create and alter refactorings with
relative ease.

HaRe is a refactoring tool for Haskell, a functional programming language. HaRe
also provides an API which programmers can use to extend its catalogue of
refactorings.

Haskell is a statically-typed functional language with a Hindley-Milner typ-
ing system, and it also supports ad hoc polymorphism through type classes.
Its other language features include static scoping, and monads to organ-
ise the semantics (in separating pure from effectful computation). HaRe
works for the full Haskell’98 language specification. It has been integrated
with the most popular IDEs among Haskell programmers. One of the prac-
tical features implemented in HaRe is code-layout preservation (including
comments, indentation, etc) to make the program easily recognisable after
refactoring.

Development on HaRe is being succeeded with the development of Wrangler
– a refactoring tool for Erlang. Unlike Haskell, Erlang is highly used in
industrial settings. Therefore it is necessary that tools for Erlang must not
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only be experimental – they must be of very good quality if they are to be
used. Erlang is a functional and concurrent programming language, and it
is very different from Haskell in many respects. The experience acquired in
developing HaRe is now being employed in developing Wrangler.

2.1.2 Testing and verification

Traditionally, programmers were advised to test refactored programs to ensure
that behaviour was preserved. This form of testing is called regression testing.

Fowler advocated producing “self-checking code”, based on a principle that
“classes should contain their own tests”. This practice is not specific to object-
oriented programming. It is considered to be good practice to write test code
incrementally, in tandem with adding features to a program. Test code is ac-
cumulated while the program is being written, and the tests can be combined
together to test more features together. This approach is called unit testing and
makes use of a framework to write test cases. The test cases are then collected into
test suites. The framework facilitates writing and running the test cases quickly
and easily, and the tests themselves contribute towards documenting the program.
In this approach one distinguishes between failures (a failed test) and errors (a
fault for which there was no test). Neither should be produced when running the
tests after applying a refactoring.

Using this testing approach, the assurance of behaviour-preservation is only as
good as the test suites’ coverage. The process of generating test suites has also
been automated. QuickCheck is a popular automatic testing tool that generates
test cases for a program from a specification of its properties. The test cases are
generated randomly and are used to find bugs by showing that the program does
not satisfy the specification.

Recently research has been made into applying testing tools to the implementa-
tions of refactorings directly, rather than to the refactored programs. Daniel et al.
(2007) test refactoring engines (implementations of refactorings) by generating
abstract syntax trees to use as input to refactoring engines and check whether
behaviour is preserved. The approach taken by Li & Thompson (2007) involves
using QuickCheck and writing a specification consisting of properties that should
be preserved by a refactoring. QuickCheck will then attempt to perform random
refactorings on a program supplied by the tester and checks if the specification is
violated.

Despite the availability of better tools and methods to test refactorings, testing
cannot prove a refactoring correct. This can be proved by verifying the refactoring:
formally proving that it is behaviour-preserving for all programs. This comes at
the expense of increased difficulty, especially for realistic programming languages.
This approach involves formalising the semantics of a programming language and
proving the refactorings correct modulo these semantics. The features of the
programming language greatly influence the ease with which refactorings can be
verified. Chapter 7 surveys research on the verification of refactorings.
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2.2 Notions

Since the first thesis on refactoring (Opdyke 1992), a refactoring has been defined
to consist of a set of side-conditions and a program transformation. The side-
conditions are conjoined into a precondition to program transformation: unless
all the side-conditions are satisfied, the transformation is not effected.

Let ≃ be a semantic equivalence relation over programs and T an endofunction
on programs (i.e., the transformation operation). The requirement for refactorings
to be behaviour-preserving intuitively suggests the following formulation:

λp. if (T p ≃ p) then (T p) else p

That is, if the transformed program is equivalent to the original program then
transform the program otherwise return it unchanged. However, as widely known,
the antecedent is undecidable for nontrivial languages (unless their theory is in-
consistent), so refactorings cannot be implemented in this manner. Let Q be an
effective predicate defined over programs. If Q is sufficient for (T p) ≃ p then the
following formulates a behaviour-preserving program transformation:

λp. if (Qp) then (T p) else p

Then in order to verify a refactoring one must prove that:

∀p. (Qp) −→ (T p) ≃ p

The correctness of the refactorings verified in Chapters 5 and 6 is formulated in
this manner.

One could say that refactorings “come in pairs” since a refactoring and its
inverse are both refactorings. The inverse of a refactoring is used implicitly when
undoing a refactoring. However the specification of a refactoring often favours
moving in one direction since the side-conditions are defined over the original
program rather than the refactored program. The reason for this is that defin-
ing side-conditions over a transformed program might be disadvantageous: if the
transformed program fails the check then the effort spent transforming it would
have been wasted. This will be discussed further in later chapters.

2.2.1 Interact vs. Compensate

Refactorings can be implemented to behave in two ways: they can interact with
the user to ensure program behaviour-preservation, or the user might have to
compensate for additional changes effected by the refactoring. These two models
were described briefly in the Preliminaries chapter.

Both models will be illustrated using automata having the IDE as their ini-
tial state. The compensating (also known as conservative) model works thus:
if preconditions fail then the transformation may still take place but only after
some other code has been transformed such that the overall transformation is
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Figure 1: Compensation-based refactoring

behaviour-preserving. The user is informed about this change after the refactor-
ing is complete and might then have to transform the code again (e.g. to rename
some variable name that was picked by the refactoring tool).

This model is illustrated in Figure 1. Note that the refactoring tool is invoked
from the IDE and is passed a program and the chosen refactoring as parame-
ters. The user provides any further arguments needed by the refactoring, and the
refactoring tool runs the refactoring.

The interactive approach, modelled in Figure 2, uses less automation and more
user involvement. Should the side-condition checks fail then the user is asked to
choose between aborting the refactoring or else providing different arguments so
that the refactoring may be attempted afresh.

The interactive approach requires that more assumptions are explicit and
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Figure 2: Interactive refactoring
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checked before the transformation is attempted. The compensation approach
discharges some assumptions and transferring them elsewhere: for instance, it
would require verifying an algorithm that produces fresh variable names relative
to a specific expression.

We favour the interactive model because it avoids leaving too much to the
machine. Automation is useful only to a certain extent; automating the wrong
aspects runs the danger of becoming a nuisance to the user. The compensating
model can be seen as an extension of the interactive model with further automa-
tion. The interactive model affords the user greater control.

2.2.2 Composition of refactorings

Roberts (1999) contributed the idea of postconditions to facilitate the composition
of refactorings. Since refactorings are endofunctions it is natural to imagine their
composition to be ordinary function composition.

Compound refactorings are useful to programmers since they reliably auto-
mate complex program transformations. This saves the programmer having to
manually apply the various smaller refactorings in a composite refactoring. Many
useful refactorings can be constructed this way – indeed Kniesel & Koch (2004)
see this as an accessible method of constructing correct refactorings. Their work
is described in §7.6.

Let # denote (sequential) function composition, and let r1 and r2 be two refac-
torings. We can define a new compound refactoring, r, as follows:

r
∧

= r1 # r2

Refactoring r consists of applying refactoring r1 then refactoring the result

using r2 . Recall that
∧

= is being used to denote abbreviations. However this
definition of refactoring composition is näıve, since it might be the case that when
applying r only r1 is carried out. That is, if after refactoring using r1 the resulting
program does not satisfy the side-conditions of r2 then r would be equivalent to
r1. In order to ensure that the compound refactoring is applied whole we can
collect the side-conditions together at the start so that a program is accepted for
refactoring only if it will be refactored by each elementary refactoring in turn.

Continuing this example, let the respective side-conditions be denoted as Q1

and Q2 and the respective transformations be T1 and T2. The compound refac-
toring is expressed as follows:

r
∧

= λp. if ((Q1 p) ∧ (Q2(T1 p))) then ((T1 # T2)p) else p

This definition ensures that programs given to r2 from r1 pass the side-condition
checks. However this compound refactoring would be improved if its side-conditions
could be formulated to address the original program, rather than the transformed
program or an intermediate step – if possible we would like to eliminate side-
conditions like Q2(T1 p). Roberts (1999) put forward the idea of deriving refac-
torings’ postconditions and using them to discharge preconditions of refactorings
they are composed with.
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Let P be a predicate. Establishing that P is a postcondition of T1 entails
proving the theorem ∀p. P (T1 p). This formula may be weakened since it is un-
necessarily strong: we are not interested in all programs being transformed by T1

but only in a bounded universal quantification. That is, we are only interested in
programs that satisfy the side-conditions of r1. Therefore we can instead prove
the weaker theorem ∀p. (Q1 p) −→ P (T1 p).

Let P1 be a postcondition for refactoring r1. If r2 has Q2 as q1 ∧ . . . ∧ qn and
if it can be shown that P1 −→ qi ∧ . . . ∧ qm then we can weaken Q2 by dropping
the conjuncts qi ∧ . . . ∧ qm. Ideally Q2(T1 p) can be shown to be implied by Q1

since in practice this would allow us to avoid having to transform programs before
checking them. It is desirable to avoid checking transformed programs since if the
check fails then the transformation would have been wasted effort. Having the
side-conditions of a compound refactoring defined in terms of the original program,
rather than intermediate steps, improves the performance of refactoring.



Chapter 3

Computer-assisted theorem
proving

Automated reasoning support is crucial for large formal developments since com-
puters assist in both checking and organising the development. Such tools, called
proof assistants, have been used for both general mathematics and also specifically
in computer science to verify models of software and hardware.

Proof assistants often provide services beyond proof checking by offering a suite
of tools that automate parts of the proof development, for example, solvers or proof
search tools. This facilitates proof development by carrying out deduction steps on
the user’s behalf – for instance by term rewriting. Depending on the system used,
it might be up to the user to ensure that such a procedure would terminate by not
adding rules causing it to diverge. The proof tools might support different modes
of input; for example, proofs might be written in a stylised fragment of natural
language or as a sequence of tactics (instructions that transform the proof state).
A proof assistant might also interface with other tools – for instance, interactive
tools might invoke automatic tools as oracles to solve parts of a problem, or might
mark up the formalisation for LATEX rendering. Some proof assistants also provide
facilities for extracting and optimising computational content from proofs.

There are a variety of proof tools available; Wiedijk (2006) compiled proofs of
the irrationality of

√
2 checked by 17 principal proof assistants. Some of these tools

address a specific niche or have distinct characteristics. For example they might
be intended for educational use rather than for large developments, or they might
be especially suitable for computer science-related formalisations. Some tools
have gathered sizable communities or accumulated a large quantity of contributed
mechanisations.

Usage of proof tools is increasing steadily; this is partly due to maturing
tools and the increasing power of commodity computers, better user interfaces
and better support through an active community. Aydemir et al. (2005) sought
to find out the current state of affairs with regards to the ease of mechanising
results about programming language theory – in particular they use the language
F<: (System F extended with subtyping) as a kind of “litmus test” for tools and
techniques. This initiative stems from a hypothesis that mechanically verified
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software will become more commonplace.
This chapter will provide some background to mechanical theorem proving,

focusing on Isabelle/HOL, and will discuss the use of such tools for reasoning
about programming languages.

3.1 Development of proof tools

In 1954, Davis (2001) implemented the first theorem prover, using Presburger’s
decision algorithm. The AUTOMATH project started in 1968 and was one of the
first large projects for mechanising mathematics; techniques invented during its
development are still in use today. Development on the system LCF (Paulson
1987) started in 1972 and addressed the program logic described by Scott (1993)
(circulated as an unpublished manuscript since 1969). LCF has had many descen-
dants, many of which replaced the original logic by more expressive systems. The
system Mizar (Rudnicki 1992) started in 1973 and was intended for the mech-
anisation of mathematics. Unlike AUTOMATH and LCF, the Mizar project is
still active. One of the Mizar system’s characteristics is its input language: a
stylised fragment of English used in mathematics. Each of these three systems
was innovative and had a large influence on future systems.

The number of tools available makes choosing a proof tool more difficult. While
the comparison in (Wiedijk 2006) is based on proof scripts, reviews such as that
by Grioen & Huisman (1998) examine several aspects of the tools from a practical
angle. Such a “consumer’s report” tabulates criteria on which tools were compared
and helps to inform newcomers of the characteristics of specific tools.

In the work described in this report we use Isabelle/HOL: an embedding in
Isabelle of HOL (a system of classical higher-order logic based on Church’s simple
type theory and used in the HOL proof environment (Gordon & Melham 1993)).
Isabelle is described in more detail in the next section. Like many other proof
tools, Isabelle is heavily influenced by LCF. The connection between LCF and
Isabelle has been outlined by Gordon (2000); we summarise this next. In §3.1.4
we explain why Isabelle is suitable for our work.

3.1.1 LCF

LCF was a first order logic of domains originally described by Scott in 1969, but
the name (“Logic for Computable Functions”) is due to Milner. In this logic types
corresponded to domains. While in Stanford, Milner started the project to de-
velop a computer-based proof checker for LCF and the resulting system was later
known as Stanford LCF. After moving to Edinburgh, Milner continued improv-
ing Stanford LCF and thus Edinburgh LCF was created. One of the significant
differences between Edinburgh LCF and its predecessor was its extensibility: the
system was defined within a meta-language, the functional programming language
ML, designed for the sole purpose of hosting it.
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Since then ML has evolved into an independent programming language (Milner
1997). ML fragmented into different dialects due to its popularity, but in the
late 1980s it was standardised by means of a canonical definition. Moreover, its
definition was formal: ML was the first programming language of its size having
a formal definition.

One of the innovative features of ML was its type system (known as the
Hindley-Milner type system); this was used to specify an abstract datatype “thm”
of theorems. Each theorem was a value in this type, and proofs were terms that
constructed this type. Users carried out proofs by using tactics (higher-order
functions applied to simplify the proof goal). Checking the proof entailed type-
checking the proof term; this is decidable for the Hindley-Milner system.

It is impressive that although ML was designed to accommodate LCF it had a
profound effect on computer science in several ways. ML influenced the designs of
various other functional programming languages. Moreover, ML and its descen-
dants (e.g. OCAML) still serve as meta-languages to descendants of LCF (e.g.
HOL, Isabelle, Coq).

When a proof tool is described as being LCF-style it means that the tool
is implemented as a library in a (statically typed) programming language and it
uses an abstract datatype of theorems which guarantees soundness. Initially users
had to embed their proof developments in the meta language too: this involves
writing ML code and making calls to the proof tool. Gradually the underlying
ML layer was concealed from users of the proof assistant by enabling all the
contents of a theory to be encapsulated in a theory file. Some assistants also
offer facilities for users to implement tactics in the theory file itself rather than
resorting to the metalanguage. Tools in the LCF tradition also tend to adhere
to the de Bruijn principle: they rely on a small “trusted core” (kernel) which
can be checked manually for soundness, and some of these tools produce proof
objects that can be checked by independent tools. This principle was suggested
by Nicolaas de Bruijn, the architect of the AUTOMATH system mentioned earlier.

3.1.2 HOL

The Cambridge LCF system was an improvement on the Edinburgh system. In a
separate project concerned with studying hardware verification (rather than pro-
grams) the LCF system was tweaked to support a “Logic of Sequential Machines”
that was devised by Mike Gordon. The resulting system was called LCF-LSM.
LCF was not suitable for reasoning about hardware since extra results concern-
ing strictness and definedness had to be proved; these were relevant for software
but less so for hardware. For the first version of HOL, LCF was adapted to use
a classical higher-order logic and the HOL system inherited LCF’s efficient im-
plementation of its algorithms. The HOL system had several offspring and is
still being developed. Proof developments in HOL are not restricted to hardware
verification; indeed higher-order logic has been found suitable for very diverse for-
malisations. The HOL system’s influence is also appreciable from how an informal
gathering of HOL users is now an international conference (TPHOLs).
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3.1.3 Isabelle

Isabelle was intended to be an extensible LCF-style proof environment that would
lessen the amount of ML code required to embed a new object logic. It provided a
logical framework consisting of a minimal intuitionistic higher-order logic (referred
to as Isabelle/Pure). Various logics have been embedded in Isabelle, e.g., FOL,
Constructive Type Theory, LCF, HOL, etc. The most developed embedding is
HOL, a classical higher order logic based on the logic used in the system HOL
(described previously). Isabelle provides several facilities at the metalogical level
and these facilities (e.g. unification) are inherited by object logics or can be
instantiated (e.g. simplifier, program extraction (Berghofer 2003)).

Initially Isabelle was used as an ML library and users divided their formalisa-
tions into “definitions” and “proofs”; definitions were put in a “theory” file and
proofs were written as ML code. In more modern versions of Isabelle the proofs
migrated to the theory file. Isabelle users need not code or know ML unless they
need to implement tactics or other new functionality in Isabelle. Theory files are
more user-centric: they are less cluttered and easier to read than raw ML code
since they hide the lower language levels. Users can write proofs using different
styles:

Procedural style involves using tactics to refine goals into simpler subgoals. Us-
ing this style involves backwards reasoning most of the time.

Declarative style involves using a stylised fragment of natural language (over-
lapping with the vernacular of mathematics) to construct proofs by forward
reasoning. This proof style is more natural for mathematics and more read-
able than tactic scripts. It also enables more modular proof development
and proofs are more easily changed and reused. In Isabelle this mode is
called Isar (for “Intelligible semi-automatic reasoning”) and is inspired by
the input language used by Mizar. It is described in detail by Wenzel (2002)
and a compact overview is given by Nipkow (2003).

The suitability of which proof style to use depends on the nature of the for-
malisation; for example, backwards reasoning seems more suitable for tasks such
as verifying microprocessors (Gordon 2000, §7.3). Another form of proof style
involves building proof terms, but Isabelle does not allow the user to manipulate
proof terms directly. However due to work by Berghofer (2003) proof terms can
be extracted from Isabelle proofs.

As with other LCF-style systems, proof checking is done by means of type-
checking and is decidable. Users can build proofs interactively by querying the
proof state and simplifying goals (backward reasoning), or else generating facts
from other facts until the theorem is proved (forward reasoning). Isabelle has a
larger kernel than the HOL system since Isabelle’s kernel also includes higher-
order-unification code, but using Berghofer (2003)’s proof-term-extraction mech-
anism the proofs can be checked by a system with a much smaller core. This
improves assurance of the proofs’ correctness. Technical details of Isabelle are
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provided in Paulson (1994) and Nipkow et al. (2002) provide an accessible tuto-
rial on Isabelle/HOL.

3.1.4 Choosing Isabelle/HOL

It would have been possible to work in other environments but Isabelle/HOL was
a very appealing candidate. Like some other systems, it is a mature product and
has undergone many years of development. This development was also directed
at its usability. For instance, it has a Proof General (Aspinall 2000) interface and
it also comes with a suite of tools to manage the organisation and presentation of
formal developments. Further work (Haftmann et al. 2005) was done to improve
the presentation of LATEX scripts generated from theory files.

One of the reasons for Isabelle’s maturity is that two sites (University of Cam-
bridge and Technische Universtät München) pooled their resources and invested
in its development; this in turn facilitated the gathering of a sizable community
of Isabelle users.

We chose Isabelle/HOL also because of the following reasons:

• It is a “safe” system (i.e. its design employs the de Bruijn principle); this is
desirable for the verification of metaprogramming systems such as refactor-
ings.

• Various other related work (on the verification of program transformations)
has been done using Isabelle/HOL. Using Isabelle/HOL facilitated compar-
ison and learning from related work.

• The availability of packages such as the nominal datatype (Berghofer & Urban
2007) is particularly mature in Isabelle. This affords greater flexibility when
choosing techniques to use.

3.2 Language encoding

Irrespective of the proof environment chosen to host a formalisation, one could
choose between different techniques to encode the language.

The languages specified in Chapters 5 and 6 will be encoded using first-order
abstract syntax and concrete variable names. This enables reasoning about names
and is suitable for our purpose. There are many other techniques to pick from.
Some of these techniques were described in the Preliminaries section. As explained
then, one cannot really speak about a technique being “better” than another but
rather that it might be more suitable to solve a particular problem Some more
techniques are outlined next.

Berkling keys is a hybrid method due to Klaus Berkling that indexes named
variable occurrences with the distance to their binding occurrence. The
distance is relative to each name; this is achieved through having “binding
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contexts” for each scope and variables with the same name must specify
which (embedded) binding context they refer. These indexes (keys) serve
to “protect” the names from capture during substitution: the names them-
selves are not changed but the variables are made to refer to the appropriate
context (similar to the “shift” operation in de Bruijn indices). This tech-
nique is described further in (Reinke 1997).

Higher-order abstract syntax (Pfenning & Elliot 1988) exploits a meta-language
to define binders in the object language in terms of binders in the meta-
language. Such an embedding is shallow due to the dependence of the object
language on the meta-language for some of its clauses. This technique had
been developed for embedding deductive systems.

Explicit Substitutions : Substitution is classically an implicit operation, i.e.
it is a metalinguistic operation. The key idea in explicit-substitution calculi
(or λσ-calculi) is that substitution becomes part of the language and avails
itself to explicit reasoning.

The λσ-calculi (Abadi et al. 1990) provide a theory of substitutions along
with the usual theory for λ-calculi. The syntax in these calculi is com-
posed of two categories: expressions and substitutions. Substitutions can
be composed, appended to substitution-lists and applied to expressions.

McKinna & Pollack (McKinna & Pollack 1993) emulate the Barendregt con-
vention by separating free and bound variable names. This approach is
called locally named.

Gordon/Melham axioms (A. D. Gordon & T. Melham 1996) are five axioms
(validated as theorems using the HOL system) for nominal reasoning about
α-equivalent terms in the untyped lambda calculus.

Nominal Logic (Gabbay & Pitts 1999) is recent work that seeks to introduce
the notion of “fresh” variables in the logic thus avoiding many of the prob-
lems associated with name-based methods. In this theory the central opera-
tion is swapping (permuting variables) rather than substitution. This work
has been partially implemented for Coq and for Isabelle (Urban & Tasson
2005).
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Chapter 4

Verifying refactorings
mechanically

This chapter discusses our choice of programming language and method to verify
refactorings. In the next two chapters a number of refactorings will be verified.
These refactorings will be described at the end of this chapter and in the next
chapters we will focus on the verification itself.

4.1 Reasoning about programs

4.1.1 Languages

In order to verify refactorings for a language we must first formalise that lan-
guage’s semantics. Not all programming languages have a formal definition and
this inhibits reasoning about the correctness of their programs. The correctness
of algorithms that manipulate programs in the language cannot be checked either,
and the usual approach in this case is to formalise a subset of the language.

Refactorings have been studied for various languages and in the chapters that
follow we will focus on studying refactorings for functional programming lan-
guages. Functional languages have contributed to the precise understanding of
programs and have also benefited greatly from research made into other language-
paradigms. This cross-fertilisation has led to multi-paradigmatic languages which
offer improved flexibility and expressiveness to programmers compared to early
programming languages.

The semantics of functional languages are usually easier to formalise and the
programs in this paradigm are considered to be particularly amenable to math-
ematical reasoning. Rather than being pure doctrine there seems to be evidence
for this: the first non-toy language to have a formal definition was a a functional
language – Standard ML (Milner 1997). It is also likely to be the first language of
its size to have a fully mechanised definition (Lee et al. 2007). Other than being
of purely academic interest, functional languages are also useful (cf. the oft-cited
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manifesto by Hughes (1989)) and have been applied to several non-academic prob-
lems. Despite the suitability of functional programs for mathematical analysis,
they were isolated from practical use for a while because it was difficult to com-
bine their inherent purity (in terms of computation) with the real-world through
input/output. This was addressed in the thesis by Gordon (1994). The λ-calculus
is considered to be a canonical functional language and serves as a springboard to
more sophisticated languages (when enriched with additional primitive notions).
The pure calculus is far removed from any recognisable programming language.
A reasonable compromise involves bringing the λ-calculus closer to a “real” pro-
gramming language by extending it with more primitive features. In Chapters 5
and 6 we verify refactorings for two extensions of the λ-calculus.

4.1.2 Program equivalence

There are many criteria by which programs can be considered to be equivalent.
Some definitions for equivalence between programs will be described next. Wher-
ever reference is made to a theorem in this section but no citation is provided
then a reference to the treatise by Barendregt (1981) is intended by default. Let
the set of programs be the set of closed λ-terms, denoted by Λ0.

Definition 4.1.1 A term t is said to be solvable, denoted by t $ if it can be
reduced to head normal form, otherwise it is said to be non-solvable, denoted by
t0.
The term (λx. x x)(λx. x x) is the canonical non-solvable term and it is usually
abbreviated by the symbol Ω. Non-solvable terms are not considered to have any
meaning and are usually equated with Ω.

As a weak definition of equivalence, we can consider equivalent all solvable
terms, and equate all non-solvable terms.

Definition 4.1.2 Solvability equivalence, denoted by ≡↓, is the largest equiva-
lence between terms such that s ≡↓ t iff s$ and t$, or s0 and t0.

As previously explained there are many definitions of equivalence that can be
used. The definition we have just seen is not useful in practice, and the next
definition is a better candidate.

Definition 4.1.3 For a reduction relation R we define R-convertibility, denoted
by =R, as the reflexive, transitive and symmetric closure of R such that s =R t iff
(s, t) ∈ R∗=.

In order to derive theorems of convertibility a proof system is defined as for
αβη-convertibility in the Preliminaries chapter.

A weaker equivalence abstracts away the structure of terms and focuses on
their behaviour. It is intuitive to formalise this equivalence in terms of contexts;
this was first done by Morris (1968). The definition requires programs to reduce
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to the same normal form in all contexts, or else diverge in all contexts. In fact, we
do not actually require normalisable terms to converge to the same normal form
since if two terms converge to different values then there will be a context that
distinguishes them. This is made precise in the following definition.

Definition 4.1.4 Contextual equivalence, denoted by ≡C, is the equivalence be-
tween terms such that s ≡C t iff ∀C. C[s]$←→ C[t]$.

Quantification over all contexts makes this equivalence difficult to prove. It
turns out that we do not need to check all contexts, but only specific contexts.
This is due to the Context Lemma, described next.

Definition 4.1.5 An applicative context is single-holed context with a hole at
head position and applied to any number of terms (e.g. [], ([] t), ([] t t′), etc, for
arbitrary t, t′, . . ., are applicative contexts).

Lemma 4.1.6 (Context Lemma) Let CA range over applicative contexts, then
s ≡C t iff ∀CA. CA[s]$←→ CA[t]$.

This approach is described in detail by Abramsky (1990), and Pierce (1997)
provides an overview of operational program equivalence. The Context Lemma
captures the intuitive notion of programs behaving in the same manner “for all
inputs”.

Note that convertibility is an intensional equivalence (i.e. convertible terms
encode the same algorithm) and behavioural equivalence is an extensional equiv-
alence (i.e. related terms fulfil the same function). We will use an intensional
equivalence in the formalisations described in the next two chapters, but we dis-
cuss other work based on extensional equivalence further down and in §7.7.

4.2 Refactorings verified

In the following two chapters we describe the verification of the refactorings
“extract a definition” and “enlarge definition type”. The first refactor-
ing is composed of several smaller refactorings which are verified separately and
then used to verify the compound refactoring. We will describe all the mechanised
refactorings below using pseudocode fragments to illustrate their transformation.
The refactorings will be formalised and their side-conditions explained in more
detail in the following chapters.

In the following code fragments the left pane illustrates the original program
and the right pane suggests the transformation effected by the refactoring. The
two panes are separated by the symbol “⇆” to suggest that the refactoring can
be applied in both directions. The code fragments do not necessarily show all
the transformations effected by a refactoring but the full transformation will be
described in the accompanying explanation.
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4.2.1 Rename a definition#

"

 

!
f := ...

⇆

meaningfulName := ...

This refactoring simply renames a definition. The new name chosen must not
appear free in the body of the expression otherwise the renaming would lead to
name capture. The new name must not already be defined in the same scope
otherwise this would lead to name clash. All the call sites of f must be updated
to use the new name. This refactoring is verified on page 45.

4.2.2 Add/drop a redundant definition'

&

$

%
f := ...

⇆

g := ...

f := ...

This refactoring adds or removes a definition; the variable bound to this def-
inition (i.e. the name of the definition) must not appear free in the body of the
expression and must not clash with other definitions in the same scope. This
refactoring is verified on page 46.

4.2.3 Demote a definition'

&

$

%

f := F

in let g := G

in ...

⇆

f := F

in let g := G

in let f := F

in ...

This refactoring reproduces the outermost definition inside the definition di-
rectly below it. We look at a particular instance of this refactoring; as mentioned
by (Li 2006, §2.8) it is not uncommon to find varying definitions of similar refac-
torings. This refactoring is verified on page 48.
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4.2.4 Declare/inline a local definition'

&

$

%

f := ...M...

⇆

f := let g := M

in ...g...

This refactoring produces a local definition from a subexpression, or inlines a
definition in all its calling sites (i.e. in all free occurrences of the variable with
which it is bound). This refactoring is verified on page 53.

4.2.5 Extract a definition'

&

$

%

f := ...M...

⇆

g := M

f := ...g...

“Extract a definition” is a non-trivial, compound refactoring which we define
by composing the previous three refactorings using the transitivity rule. This
refactoring is verified on page 56.

4.2.6 Enlarge definition type'

&

$

%

f :: T

f := ...

⇆

f :: Either T T’

f := Left ...

“Enlarge the definition type” is a type-based refactoring that transforms a
definition of a certain type into a coproduct with the original term as a left
injection. This refactoring might be useful for adapting code prior to extending
its functionality to make use of the broader type.

Although the refactoring itself is straightforward, its verification requires prior
proof obligations concerning the type system. In particular, the Substitution
Lemma needs to be proved – this establishes that substitution is type-sound.
This refactoring is verified on page 68.
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4.3 Techniques

The proofs of the theorems described in the next two chapters have been checked
by Isabelle – specifically, the proofs have been checked using Isabelle2005. The
theory files are available on the accompanying CD. The LATEX scripts for the
next two chapters have also been generated using Isabelle’s suite of tools and its
presentation facilities. This helps ensure consistency between the mechanisation
and the presentation of the results. As well as verifying the refactorings we have
sought to communicate them (i.e. their side-conditions and the transformation
they effect) in a compact yet understandable manner.
We now discuss the techniques used in the next two chapters.

Language definition

We embed the languages in the next two chapters in different ways and make
observations on the effect this has on proofs. As described in §3.2, the technique
used to encode both languages is name-carrying first-order abstract syntax. In
the second formalisation we discuss a slight weakening of the side-conditions to
admit more realistic programs for refactoring. We will also discuss increasing
the level of abstraction by anonymising the language’s syntax and the price this
brings on soundness since it precludes being able to catch problems related to
name capture (there would be no names to reason about). On the other hand this
could significantly simplify the proof process and afford more time to be spent
on verifying other aspects of the refactoring, such as type-soundness. Such an
approach would be comparatively “lightweight”.

Proving equivalence

The semantics of programs will be described equationally (since only the equa-
tional fragment of the program logic is required for the task at hand) and results
will usually be proved by induction on the structure of expressions. Reduction
steps are done explicitly using the (β) and transitivity rules. Since the logic is
embedded in HOL we use the quantifiers and connectives at the HOL-level to for-
malise side-conditions of the rules of the equational logic. For the second language
we have used a logic described in the book by Gunter (1992).

An alternative approach would have involved specifying a weaker relation than
convertibility, as described in §4.1.2. This would have required different mathe-
matical machinery, including the prior development of a tractable method to prove
equivalence coinciding with the weak equivalence. Gordon (1994) and Pitts (1995)
provide examples of this approach. Through this other approach one could verify
more transformations, but verifying transformations using extensional equivalence
is generally more challenging.

Extensional equivalence is usually formalised as contextual equivalence, but
due to the quantification over all contexts the method is intractable for even sim-
ple languages. Finding the right induction hypothesis to use in an induction on
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the structure of contexts is not easy. More tractable methods have been sought,
and one solution borrows from Labelled Transition Systems and the Calculus of
Communicating Systems. Using this method programs are related using a bisim-
ulation relation. This equivalence is then proved to imply contextual equivalence
(Pitts (1995) uses this method for PCF extended with streams). Coinductive rea-
soning is used to prove programs equivalent using this more tractable method.
Moreover, this technique is also ideal for reasoning about languages in which non-
terminating systems or potentially infinite data is defined. Glesner et al. (2007)
mechanise proofs using this method, as described further in §7.7.



Chapter 5

“Extract a definition”

5.1 Introduction

The goal of this chapter is to verify the extract/inline a definition refactoring.
Since it is a compound refactoring, leading up to its verification will be the ver-
ification of some other refactorings that are its intermediate steps. Reflecting
the relationship between compound and elementary refactorings, the correctness
proofs of the elementary refactorings are lemmata to the proof for the compound
refactoring.

As is common with formal developments, a large number of lemmata are gen-
erated in order to support higher-level reasoning. We concentrate on describing
the definitions and main theorems here.

We rely on the proof assistant to check the proofs and, assuming inference to
be sound, if there are any bugs then they must be in the definitions we use. The
presentation given here is consistent with the actual proof development since this
chapter was generated from the scripts.

The presentation at times reveals the underlying systems in which this work
was embedded. We will reason about programs using an equational logic embed-
ded in HOL, which in turn is embedded in Isabelle’s logical framework. HOL’s
connectives and quantifiers are used in the specification of theorems, leaving the
embedded logic very simple.

A simple programming language will be defined in the next section. Expres-
sions in this language are distinguished from terms in the metalanguage through
the use of a sans serif typeface for metalanguage terms. For example, consider the
term:

if (x ∈ DV Top (letrec d · e)) then (letrec (d[M/x]) · e) else letrec (d[M/x]) · (e[M/x])

In this term, “if..then..else” is a term in the metalanguage, “(letrec d · e)” is a
term in the object language, and “(x ∈ DV Top (letrec d · e))” is a proposition in
HOL.

We proceed as follows: the programming language we study will be described,
and various definitions will be provided to formalise notions required to assert
the correctness of refactorings. Several structural refactorings will be verified and
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some of these refactorings will then be composed together into the “extract a
definition” refactoring; the proof of correctness for this refactoring will also be a
composition of the proofs for its constituent refactorings. An experimental style
is adopted in the formalisation: different techniques are tried and their outcomes
compared. In §5.4.2 we discuss improvements to the approach taken to define
the language – e.g., the (de)merits of the definition used for fixpoint expressions.
These observations will be discussed at the end of the chapter and used to improve
the approach taken in the next chapter.

5.2 Metatheory

5.2.1 Language

The language defined below is the λ-calculus extended with recursive definitions.
Conventionally, letrec is used to declare recursive definitions. The language is
defined as two syntactic categories: that of expressions and that of declarations.
These are mutually recursive. The language is inspired from that used by Li
(2006).

Let V be a denumerable set of variables, ranged over by metavariables x, y, z.
We will use metavariables M,N,L, e to range over expressions and D, d, dec to
range over definitions. Metavariables might appear indexed or primed. The lan-
guage of programs is the least set obtained inductively from the following gram-
mar:

M ::= ∇x Variable
| λx ·M Abstraction
| M ◦N Application
| letrec D ·M Definition

The language of definitions is defined next. The two grammars are mutually
dependent.

D ::= ε Empty definition
| x := M Single definition
| D ‖ D′ Parallel definitions

A parallel definition is malformed if and only if two definitions for the same
variable are provided in parallel; only unambiguous definitions are well-formed.

5.2.2 Predicates and operations

Most of the formal definitions we will use are presented in this section. Elsewhere
in the document, a fixpoint combinator is defined in §5.4.2 and another substitu-
tion operation is defined in §5.4.4. All these definitions will play a part in deriving
the correctness proof for “extract a definition”. Note that since the grammars of
expressions and definitions are mutually dependent, many predicates and oper-
ations defined over programs are also defined in mutually-dependent pairs (i.e.
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for expressions and definitions respectively). As a result of this, recursive defini-
tions are given as mutually-recursive pairs of definitions, and proofs using those
definitions are done by simultaneous induction.

Definition 5.2.1 Top-level declared variables are letrec-bound variables of which
binding instances occur in the outermost subterm or occur directly below other top-
declared variables.
DVTopd ε = ∅
DVTopd x:=M = {x}

DVTopd (d1 ‖ d2) = DVTopd d1 ∪ DVTopd d2

DVTop ∇i = ∅
DVTop λi ·e = ∅
DVTop (e1 ◦ e2) = ∅
DVTop letrec d ·e = DVTopd d

As anticipated, note that this definition is split into two definitions DV Topd
and DV Top given inductively on definitions and expressions respectively. We will
use the naming convention of appending ‘d’ to the names of notions concerning
definitions.

Definition 5.2.2 Free variables
FVd ε = ∅
FVd x:=M = FV M - {x}

FVd (d1 ‖ d2) = FVd d1 ∪ FVd d2 - DVTopd (d1 ‖ d2)

FV ∇i = {i}

FV λi ·e = FV e - {i}

FV (e1 ◦ e2) = FV e1 ∪ FV e2

FV letrec d ·e = FV e ∪ FVd d - DVTopd d

In the last clause of the previous definition recall that set difference binds more
weakly than union.

Definition 5.2.3 λ-bound variables
BVd ε = ∅
BVd x:=M = BV M

BVd (d1 ‖ d2) = BVd d1 ∪ BVd d2

BV ∇i = ∅
BV λi ·e = BV e ∪ {i}

BV (e1 ◦ e2) = BV e1 ∪ BV e2

BV letrec d ·e = BV e ∪ BVd d
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Definition 5.2.4 letrec-bound variables
DVd ε = ∅
DVd x:=M = {x} ∪ DV M

DVd (d1 ‖ d2) = DVd d1 ∪ DVd d2

DV ∇i = ∅
DV λi ·e = DV e

DV (e1 ◦ e2) = DV e1 ∪ DV e2

DV letrec d ·e = DV e ∪ DVd d

Many of the definitions are given by primitive recursion as above. Some, such
as the next definition, are defined non-recursively.

Definition 5.2.5 Fresh variables:
Fresh x M

def
= x /∈ FV M ∪ BV M ∪ DV M

Such non-recursive definitions are more abstract and are comparatively more
difficult to use for mechanical proofs. The proof assistant employs a term rewriting
engine (called the “simplifier”) that can assist in unifying, pattern-matching and
rewriting clauses from definitions given by primitive recursion. This is of great
help in automating parts of proofs, but the nature of a definition might preclude
such automatic mechanisms from being used and it is up to the human user then
to arrive at the results manually. In fact we will not use "Fresh" since it is
not amenable to this automation. Further down another predicate is defined by
primitive recursion and proved to be logically equivalent to "Fresh". We will
use the refined predicate from that point onwards in the development for the
automation benefit it brings.

The predicate for variable capture is defined next; it plays a central rôle in the
rest of this chapter. We will discuss an improved definition of this predicate in
the next chapter.

Definition 5.2.6 Variable capture:
Captures M N

def
= ∃ v∈FV N. v ∈ BV M ∨ v ∈ DV M

The next definition is used when converting parallel definitions into a sequence
of definitions – for example, letrec (d1 ‖ d2) ·M becomes letrec d1 · (letrec d2 ·M).
This transformation cannot be done if d1 invokes a definition in d2. The predicate
defined next expresses dependency between definitions: a definition D1 depends
on another definition D2 if the former invokes definitions found in the latter. This
predicate is used to ensure that definitions given in parallel can indeed be nested
in the manner described above; if the definitions are mutually recursive then they
must be nested in one another in order to prevent letrec-bound variables from
becoming free or from becoming bound by different binding occurrences.

Definition 5.2.7 Dependent definitions:
Dep D1 D2

def
= DVTopd D2 ∩ (FVd D1 - DVTopd D1) 6= ∅
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Next we define a substitution operation for this language. As explained in the
Preliminaries chapter we will use a substitution operation that permits variable
capture.

Definition 5.2.8 Variable-capturing substitution
ε[M/x] = ε

y:=N[M/x] = if x = y then y:=N else y:=N[M/x]

(d1 ‖ d2)[M/x] = if x ∈ DVTopd (d1 ‖ d2) then d1 ‖ d2

else d1[M/x] ‖ d2[M/x]

∇i[M/x] = if x = i then M else ∇i
λi ·e[M/x] = if x = i then λi ·e else λi ·e[M/x]
(e1 ◦ e2)[M/x] = e1[M/x] ◦ e2[M/x]

letrec d ·e[M/x] = if x ∈ DVTop letrec d ·e then letrec d ·e
else letrec d[M/x] ·e[M/x]

The operation defined next nests a definition within another definition. This is
used in nesting mutually-recursive parallel definitions inside each other to preserve
their meaning and to prepare the parallel definition to be changed into a sequence
of definitions as explained earlier when introducing the Dep predicate.

Definition 5.2.9 Local definition: inserting a definition within another defini-
tion’s scope.
ε ≪ d’ = ε

y:=N ≪ d’ = y:=letrec d’ ·N
d1 ‖ d2 ≪ d’ = (d1 ≪ d’) ‖ (d2 ≪ d’)

The next predicate is defined for recursive single definitions; this predicate is
used when converting a letrec expression into an expression in the pure (letrec-
free) λ-calculus. The rules for performing this conversion will be given in the logic
defined further down.

Definition 5.2.10 Recursive definitions: a definition is considered to be recursive
if the defined variable occurs free in the defined expression.
Rec x:=M = x ∈ FV M

Definition 5.2.11 Definitions are well-formed if and only if parallel definitions
define different variables. Expressions are well-formed if and only if all definitions
they contain are well-formed.
WFPredd ε = True

WFPredd y:=N = WFPred N

WFPredd (d1 ‖ d2) = WFPredd d1 ∧ WFPredd d2 ∧ DVd d1 ∩ DVd d2 = ∅
WFPred ∇i = True

WFPred λi ·e = WFPred e

WFPred (e1 ◦ e2) = WFPred e1 ∧ WFPred e2

WFPred letrec d ·e = WFPredd d ∧ WFPred e
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Definition 5.2.12 Subexpressions and subdefinitions
M ⊆Λ ε = False

M ⊆Λ x:=N = M = N ∨ M ⊆Λ N

M ⊆Λ d1 ‖ d2 = M ⊆Λ d1 ∨ M ⊆Λ d2

M ⊆Λ ∇x = M = ∇x
M ⊆Λ λx ·N = M = λx ·N ∨ M ⊆Λ N

M ⊆Λ N ◦ N’ = M = N ◦ N’ ∨ M ⊆Λ N ∨ M ⊆Λ N’

M ⊆Λ letrec d ·N = M = letrec d ·N ∨ M ⊆Λ N ∨ M ⊆Λ d

We now give another definition for a variable-freshness predicate. Unlike the
previous definition, its characteristic function will be defined recursively: the new
definition is less abstract. We prove the two definitions equivalent on page 44.

Definition 5.2.13 Fresh variable predicate
n ♯ ε = True

n ♯ x:=N = x 6= n ∧ n ♯ N

n ♯ d1 ‖ d2 = n ♯ d1 ∧ n ♯ d2

n ♯ ∇x = n 6= x

n ♯ λx ·N = n 6= x ∧ n ♯ N

n ♯ N ◦ N’ = n ♯ N ∧ n ♯ N’

n ♯ letrec d ·N = n ♯ d ∧ n ♯ N

5.2.3 Logic

Equational logic is a fragment of FOL in which judgements are equations. We
embed this logic in the proof assistant’s logic (HOL) and use it to reason in the
theory of program equations. A refactoring is behaviour-preserving iff the original
and refactored programs stand in the relation ≃ induced by the following rules.

λ-rules

z ♯ M

λx ·M ≃ λz ·M[∇z/x] alpha

¬ Captures M N

λx ·M ◦ N ≃ M[N/x]
beta

x /∈ FV M

λx ·M ◦ ∇x ≃ M
eta

Equivalence rules

M ≃ M refl
M ≃ N

N ≃ M
symm

M ≃ M’ M’ ≃ N

M ≃ N
tran
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Compatibility rules

M ≃ M’ N ≃ N’

M ◦ N ≃ M’ ◦ N’
compApp

M ≃ N

λx ·M ≃ λx ·N compAbs

letrec-rules

letrec ε·M ≃ M garbage

letrec d1 ‖ d2 ·M ≃ letrec d2 ‖ d1 ·M exchange

¬ Rec x:=N

letrec x:=N ·M ≃ λx ·M ◦ N
cNRec

Rec x:=N

letrec x:=N ·M ≃ λx ·M ◦ (fix ◦ λx ·N) cRec

¬ Dep d1 d2

letrec d1 ‖ d2 ·M ≃ letrec d1 ·letrec d2 ·M nest

Dep d1 d2 Dep d2 d1

letrec d1 ‖ d2 ·M ≃ letrec d1 ≪ d2 ·letrec d2 ≪ d1 ·M nestRec

Compatability rules are only provided for the lambda-fragment of the lan-
guage; they are not provided for letrec terms since a letrec term is meaningful
only if it is convertible to a lambda term (this extension of the λ-calculus is con-
sistent).

5.3 Some lemmata

The results discussed next support the lemmata proved later, which in turn sup-
port correctness proofs of refactorings.

5.3.1 Equivalence between freshness definitions

Some definitions are easy to read while others lend themselves better to automa-
tion by the proof assistant. The definition for Fresh z M is more compact and
clear, and the definition for z ♯ M is more detailed and usable by the prover’s
automatic procedures. However, the two definitions are logically equivalent and
therefore interchangeable.

In order to prove this logical equivalence we need to define freshness over
definitions (in Fresh z M the metavariable M ranges over expressions and not
over definitions). Since the grammars of expressions and definitions are mutually-
dependent, formulæ about properties of the language must be stated conjoined
together.



CHAPTER 5. “EXTRACT A DEFINITION” 44

Definition 5.3.1 Variable freshness defined over definitions:
Freshd x e

def
= x /∈ FVd e ∪ BVd e ∪ DVd e

We prove the two definitions equivalent next. Note that ‘=’ is HOL’s bi-
implication connective.

Lemma 5.3.2 (equivFreshDefns)

∀ M z. (z ♯ M) = Fresh z M

Proof sketch The left-to-right direction is proved by simultaneous structural
induction on M and D in (z ♯ M −→ Fresh z M) ∧ (z ♯ D −→ Freshd z D)

and projecting the first conjunct. The opposite direction uses the same method
but performed on (Fresh z M −→ z ♯ M) ∧ (Freshd z D −→ z ♯ D)

Refining the definition of the original predicate to take advantage of automatic
procedures will facilitate proofs of theorems relying on its definition. Adapting
definitions is not uncommon in mechanical reasoning: for instance if a definition is
given recursively on the first argument but a proof requires induction on a different
argument, an equivalent definition defined inductively on the second argument is
sought.

5.3.2 Other basic properties

Various proofs of peripheral yet crucial properties are given throughout the for-
mal development to support the larger theorems. These lemmata include routine
results such as Lemma 5.3.3. It asserts that renaming a non-recursive definition
will not make it recursive.

Lemma 5.3.3 (rename orth rec)

z ♯ letrec x:=N ·M ∧ ¬ Rec x:=N =⇒ ¬ Rec z:=N[∇z/x]

Proof sketch By induction on the structure of N . The proof also uses the for-
mulæ below (proved by simultaneous induction on expressions and declarations
and projecting the formula concerning expressions):

• ∀ z N. z ♯ N −→ z /∈ FV N

• ∀ x z N. z ♯ N ∧ x /∈ FV N ∧ x 6= z −→ z /∈ FV (N[∇z/x])
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Note that despite the absence of HOL quantifiers the formula of lemma (re-
name orth rec) is universal since the free variables are implicitly universally quan-
tified.

Earlier on we mentioned that occasionally meta-parts of the logic will show
through: note the =⇒ in the previous formula. It denotes Isabelle’s logical impli-
cation (i.e. at the logical framework level); HOL’s material implication is denoted
by −→. The formula was originally entirely in HOL, but was converted to this
meta-form to enable this theorem to be used directly as a rule. This will help
explain the occurrences of the different implication symbols in the scripts. The-
orems will occasionally be displayed in rule form to improve readability (e.g. in
§5.4.1).

5.4 Refactorings

All the refactorings verified below involve definitions in some way. Most of the
correctness proofs for refactorings will follow the same pattern: we first prove the
case for a non-recursive definition, then prove the recursive case, and combine
the two in the main result. The proofs for non-recursive and recursive cases are
symmetric, in the sense that they differ only in the letrec -to-λ interpretation
rule (i.e. using rule cNRec rather than cRec or vice versa) and the other tactics
are mostly the same (except for instantiations of the intermediate terms in tran
since these reflect the different λ-expressions that recursive and non-recursive
letrec expressions are convertible, to using the logic defined earlier).

Perhaps the most interesting aspect of the behaviour-preservation theorems are
refactorings’ side-conditions. Side-conditions constrain which programs are trans-
formed by the refactoring. They must be sufficient for behaviour-preservation, but
if they are too strong the usefulness of the refactoring is diminished: it would mean
that there are many programs which could be admitted for behaviour-preserving
transformation but which are not.

5.4.1 Rename a definition

This is one of the simplest refactorings. While it does not contribute to verifying
the “extract a definition” refactoring, its simplicity lets us focus on the verification
rather than the refactoring itself.

Formulæ will occasionally be displayed in rule form to improve their read-
ability. The non-recursive case of this refactoring is formulated as the following
lemma:

Lemma 5.4.1 (rename nonRec)

z ♯ letrec x:=N ·M ∧ ¬ Rec x:=N

letrec x:=N ·M ≃ letrec z:=N[∇z/x] ·M[∇z/x]
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Proof sketch Apply cNRec to either side and relate the resulting using tran.
Apply compApp to either side yielding two subgoals:

• λx ·M ≃ λz · (M [λz/x]) is proved using alpha

• N [∇z/x] = N is proved since x /∈ FV N (derived from unfolding the as-
sumption ¬ Rec x:=N) and thus N ≃ N by refl

Lemma 5.4.2 (rename Rec)

z ♯ letrec x:=N ·M ∧ Rec x:=N

letrec x:=N ·M ≃ letrec z:=N[∇z/x] ·M[∇z/x]

Proof sketch Similar to previous proof, except that cRec is used instead of
cNRec, and the second subgoal is proved by applying compApp again and using
refl to close the branch fix ≃ fix, and alpha for closing the second branch
λx ·N ≃ ∇z · (N [λz/x]).

The two lemmas are now combined to prove the overall theorem; it asserts
that irrespective of whether a definition is recursive, it can be renamed without
the program’s meaning being changed if the new name is fresh. This is proved for
arbitrary variables and programs, as is clear from the formal definition as a HOL
formula:

Theorem 5.4.3 (rename a definition)

∀ z x N M. z ♯ letrec x:=N ·M −→ letrec x:=N ·M ≃ letrec z:=N[∇z/x] ·M[∇z/x]

Proof sketch By case analysis on Rec x:=N ; either case is immediate
from Lemmas 5.4.1 and 5.4.2 respectively.

5.4.2 Add/drop a redundant definition

As refactorings become more complex the details of definitions made earlier (§5.2.2)
become more important since the complexity of the refactoring realises the subtle
implications of a definition. The “rename a definition” refactoring is a very basic
refactoring and consequently does not really “stress-test” our definitions; it is a
very easy refactoring to verify.

The refactoring we seek to prove at the end of this chapter, i.e. “extract
a definition”, is very different in this regard since it is rather complex. Conse-
quently it will test our definitions better. From this point on we will be working
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towards verifying that refactoring, starting by verifying its elementary refactor-
ings. “Add/drop a redundant definition” is a component refactoring of “extract
a definition”.

In the logic given earlier we have used the constant fix in the definition of
the rule cRec, without having defined fix. We now define this constant in the
programming language.

The constant fix needs to be a closed expression in our language. We consider
two definitions, compare them and choose one.

Definition 5.4.4 Concrete fixpoint combinator:
fix

def
= λ0 ·λ1 ·∇0 ◦ (∇1 ◦ ∇1) ◦ λ1 ·∇0 ◦ (∇1 ◦ ∇1)

Definition 5.4.5 Abstract fixpoint combinator:
fix’ f x

def
= λf ·λx ·∇f ◦ (∇x ◦ ∇x) ◦ λx ·∇f ◦ (∇x ◦ ∇x)

The first definition fixes the names of variables the fixpoint combinator uses.
The second definition could only be used under the assumption that f 6= x , and
using either definition requires that ¬ Captures fix M to be able to β-reduce
fix ◦ M . We will pick the first definition since it requires less side-conditions,
but the nature of this solution indicates that fix had better be defined primitively
rather than as a constant. This involves including fix in the language’s definition
and adding a rule in the logic to unwind fix expressions: fix ◦M ≃M ◦ (fix ◦M).
We will take this approach in the language formalised in the next chapter, but
use this constant definition as a compromise in the current language.

Theorem 5.4.6 (add_drop_a_redundant_definition’)

∀ h N L.

h /∈ FV L ∧ ¬ Captures L (fix ◦ λh ·N) ∧ ¬ Captures L N −→
L ≃ letrec h:=N ·L

Proof sketch By case analysis on Rec x:=N and using cNRec and cRec as
before to convert the expressions in each case into pure λ-expressions. The proof
then relies on proving the following lemma (by simultaneous structural induction
on M and D):

(x /∈ FV M −→ M[N/x] = M) ∧ (x /∈ FVd D −→ D[N/x] = D)
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Refining side-conditions

We now discuss the side-conditions of this refactoring and how they can be min-
imised. The first side-condition (h /∈ FV L) ensures that the chosen h does not
capture any variables in L; this seems reasonable. Replacing it with h ♯ L would
have been a stronger alternative since this proposition would require h not to
appear at all in L.

The second and third side-conditions ensure that the terms related by ≃ are
β-convertible (i.e. they satisfy the side-conditions of rule beta). The third side-
condition, ¬ Captures L N , cannot be made smaller but the second side-condition,
¬ Captures L (fix ◦ λh ·N) can be decomposed further. We could split it into
¬ Captures L fix and ¬ Captures L λh ·N . We could refine ¬ Captures L λh ·N
further into ¬ Captures L N (and by idempotence of conjunction we drop this
assumption since it already appears in the side-conditions). To do this we could
use the following lemma:

Theorem 5.4.7 (nocap_subterm_fix)

¬ Captures L N ∧ FV (fix ◦ λh ·N) ⊆ FV N =⇒ ¬ Captures L (fix ◦ λh ·N)

Proof sketch FV (fix ◦ λh ·N) ⊆ FV N is proved by induction on the structure
of N . The rest of the formula is proved by unfolding the definition of Captures
and reasoning set-theoretically.

The improved specification of the refactoring is given next.

Theorem 5.4.8 (add_drop_a_redundant_definition’’)

h /∈ FV L ∧ ¬ Captures L N −→ L ≃ letrec h:=N ·L

Proof sketch The proof uses the same approach as for Theorem 5.4.6 and uses
Lemma 5.4.7.

Reducing side-conditions avoids wasteful computation when the refactoring is
applied to a program since less computation is needed to fulfil sufficiency checks.

We will use observations such as these to improve our work, especially in the
the formalisation of the second language. These observations will be summarised
at the end of the chapter.

5.4.3 Demote a definition

As done previously, we prove the non-recursive and recursive cases (wrt h) as
separate lemmata and combine them in the main theorem.

We now define a predicate over definitions to detect variable capture; the one
we have so far works only for expressions. As previously mentioned, definitions
occur in such pairs due to the mutually recursive syntactic categories. We will be
requiring this definition for further proofs, such as the lemma shown below.
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Definition 5.4.9 Variable-capture predicate for definitions:
Capturesd d n

def
= ∃ v∈FV n. v ∈ BVd d ∨ v ∈ DVd d

Lemma 5.4.10 (CapSubsumesDVT)

(∀ N f. ¬ Captures N ∇f −→ f /∈ DVTop N) ∧
(∀ D f. ¬ Capturesd D ∇f −→ f /∈ DVTopd D)

Proof sketch We first prove the lemma (DVTthenDV), formulated below, by
simultaneous induction on the structure of M and D:

(x ∈ DVTop M −→ x ∈ DV M) ∧ (x ∈ DVTopd D −→ x ∈ DVd D)

The proof proceeds by unfolding Captures and Capturesd, using the lemma
(DVTthenDV) and reasoning set-theoretically.

Various routine lemmata are needed in preparation to support the refactoring’s
verification. For example, the following lemma establishes that variables do not
become free as a result of substitution.

Lemma 5.4.11 (free_inheritance2)

(h 6= f ∧ f /∈ FV M ∧ f /∈ FV N −→ f /∈ FV (M[N/h])) ∧
(h 6= f ∧ f /∈ FVd D ∧ f /∈ FV N −→ f /∈ FVd (D[N/h]))

Proof sketch Simultaneous induction on the structure of M and D.

Some of the lemmata serve to lessen the side-conditions by exploiting depen-
dencies between them. Recall that this was also done for the previous refactoring
to avoid wasteful computation when applying the refactoring. For example, the
next lemma uses properties of small terms to prove properties of larger terms:

Lemma 5.4.12 (noCapDefs)

(¬ Captures L N ∧ ¬ Captures L M −→ ¬ Captures L letrec h:=N ·M) ∧
(¬ Capturesd D N ∧ ¬ Capturesd D M −→ ¬ Capturesd D letrec h:=N ·M)

Proof sketch Simultaneous induction on L and D, unfolding Captures and Cap-
turesd, and set-theoretical reasoning.
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Because of the sequence of β-reductions, propositions like the one shown be-
low started appearing as the side-conditions of this refactoring. That is, the
β-reduction can only be performed if this side-condition is satisfied.

¬ Captures (L[N/h]) M

Notice that this is a property of the transformed program and if the property is not
satisfied then the effort spent pre-checking and transforming the program would
have been wasted. In order to avoid wasted computation the side-conditions need
to be concerned solely with the original program. This requires further lemmata
to keep the side-conditions pertinent to the original term. This “adaptation” of
side-conditions is performed by the following lemmata :

Lemma 5.4.13

(i) (noCapPreservation) :

(¬ Captures L M ∧ ¬ Captures N M −→ ¬ Captures (L[N/h]) M) ∧
(¬ Capturesd D M ∧ ¬ Captures N M −→ ¬ Capturesd (D[N/h]) M)

(ii) (noCapPreservation’):

(¬ Captures L N ∧ ¬ Captures L M −→ ¬ Captures L (M[N/h])) ∧
(¬ Capturesd D N ∧ ¬ Capturesd D M −→ ¬ Capturesd D (M[N/h]))

Proof sketch Simultaneous induction on L and D, unfolding Captures and Cap-
turesd, and set-theoretical reasoning.

Specifying the side-conditions in terms of the original, rather than the trans-
formed, program is another recommendation we make at the end of the chapter
to implement computationally economical, apart from correct, refactorings. The
previous lemmata contribute to proving the following lemma:

Lemma 5.4.14 (noCapPresLemma)
¬ Captures L N ∧ ¬ Captures N N ∧ ¬ Captures L M ∧ ¬ Captures N M

¬ Captures (L[N/h]) (letrec h:=N ·M[N/h])

Proof sketch Rather than proving this from first principles we have opted to
prove it by combining smaller lemmas to facilitate the proof. Constituent lemmas
include ( noCapPreservation) and ( noCapPreservation’) described above.
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The non-recursive case of this refactoring is proved next:

Lemma 5.4.15 (lift_or_demote_NRec)

¬ Captures letrec f:=letrec h:=N ·M ·L N ∧
h 6= f ∧
¬ Captures L M ∧
¬ Captures N M ∧ ¬ Rec h:=N ∧ ¬ Captures L ∇h ∧ ¬ Captures N ∇f =⇒
letrec h:=N ·letrec f:=M ·L ≃ letrec h:=N ·letrec f:=letrec h:=N ·M ·L

Proof sketch As in previous refactorings, both sides of the equivalence rela-
tion are transformed using rule beta and kept in relation using tran. Rules
compApp and compAbs are used to decompose both expressions in relation si-
multaneously, and lemmata such as ( noCapPreservation), described earlier, are
used to satisfy the side-condition of beta and avoid having to prove results about
the Captures predicate from first principles.

The side-conditions are explained in more detail next:

• ¬ Rec h:=N is the case considered by this lemma.

• h 6= f since if h = f then the conclusion of the theorem becomes
letrec f:=N ·letrec f:=M ·L ≃ letrec f:=N ·letrec f:=letrec f:=N ·M ·L.
This is not valid if f is recursive (since occurrences of f in M would be
substituted with N instead of M, and this is incorrect unless we break the
assumption of arbitrarity of N and M). We could restrict the refactoring to
transform non-recursive definitions, and add that as a side-condition, but
we will explore the more general alternative here.

• ¬ Captures (letrec f:=letrec h:=N ·M ·L) N (this is required for the RHS
letrec h:=N ·letrec f:=letrec h:=N ·M ·L to β-reduce). This side-condition
also implies ¬ Captures letrec f:=M ·L N (which serves the same purpose,
except that this time it is for the LHS), and that N , M and L do not
capture N . Since the letrec unfolds to a term which must β-reduce, capture
is forbidden by the side-condition of the rule beta; this side-condition is
inherited as a side-condition of the refactoring, as in previous refactorings.

• The side-conditions ¬ Captures L M ∧ ¬ Captures N M together with the
assumption ¬ Captures L N ∧ ¬ Captures N N (derived from the previous
side-condition through lemma simplerCap)1 are needed to imply
¬ Captures (L[N/h]) (letrec h:=N ·M[N/h]) ∧ ¬ Captures (L[N/h]) M

(using lemma noCapPresLemma), to enable us to specify the refactoring only
in terms of the program to be transformed, rather than the transformed
program.

1This lemma states that: ¬ Captures letrec f:=letrec h:=N ·M ·L N =⇒
¬ Captures L N ∧ ¬ Captures N N
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• ¬ Captures L ∇h and ¬ Captures N ∇f are needed to preserve (non)recursion.

The specification of the refactoring’s recursive case is similar (differing only in
the complement assumption Rec h:=N), and includes the side-condition
¬ Captures fix ∇f . The proof follows the same approach used in the non-
recursive case.
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Lemma 5.4.16 (lift_or_demote_Rec)

¬ Captures letrec f:=letrec h:=N ·M ·L N ∧
h 6= f ∧
¬ Captures L M ∧
¬ Captures N M ∧
Rec h:=N ∧ ¬ Captures L ∇h ∧ ¬ Captures N ∇f ∧ ¬ Captures fix ∇f =⇒
letrec h:=N ·letrec f:=M ·L ≃ letrec h:=N ·letrec f:=letrec h:=N ·M ·L

As in previous refactorings, the two cases are combined to verify the refactoring.

Theorem 5.4.17 (lift_or_demote’)

¬ Captures letrec f:=letrec h:=N ·M ·L N ∧
h 6= f ∧
¬ Captures L M ∧
¬ Captures N M ∧ ¬ Captures L ∇h ∧ ¬ Captures N ∇f ∧ ¬ Captures fix ∇f
=⇒
letrec h:=N ·letrec f:=M ·L ≃ letrec h:=N ·letrec f:=letrec h:=N ·M ·L

Proof sketch By case analysis on Rec h:=N ; each case is immediate
from lift_or_demote_NRec and lift_or_demote_Rec respectively.

5.4.4 Declare/Inline a local definition

We now define a different substitution operation. The substitution operation de-
fined earlier substitutes variables for terms, the new one does the converse. We
could have used the old operation in this refactoring, but it will be interesting to
see both types of substitution used to explore how different program transforma-
tions interact without changing program behaviour.

Definition 5.4.18 Subterm-for-variable substitution
ε[x:M] = ε

y:=N[x:M] = if x = y then y:=N else y:=N[x:M]

(d1 ‖ d2)[x:M] = if x ∈ DVTopd (d1 ‖ d2) then d1 ‖ d2

else d1[x:M] ‖ d2[x:M]

∇i[x:M] = if M = ∇i then ∇x else ∇i
λi ·e[x:M] = if M = λi ·e then ∇x else if x = i then λi ·e else λi ·e[x:M]
(e1 ◦ e2)[x:M] = if M = e1 ◦ e2 then ∇x else e1[x:M] ◦ e2[x:M]

letrec d ·e[x:M] = if M = letrec d ·e then ∇x else

if x ∈ DVTop letrec d ·e then letrec d ·e
else letrec d[x:M] ·e[x:M]

As with the substitution operation defined in §5.2.2, we will need lemmata,
such as Lemma 5.4.13, that shift the focus of properties of a transformed program
to the original version. For the new substitution operation we prove the following
lemma.
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Lemma 5.4.19 (capImp)

(¬ Captures M N −→ ¬ Captures (M[g:N]) N) ∧
(¬ Capturesd D N −→ ¬ Capturesd (D[g:N]) N)

Proof sketch Simultaneous structural induction on M and D, unfolding Cap-
tures and Capturesd and reasoning set-theoretically.

The lemma proving the non-recursive case of this refactoring is proved next.

Lemma 5.4.20 (declare_or_inline_NRec)

¬ Rec f:=M ∧
¬ Rec g:=N ∧
g 6= f ∧ g ♯ M ∧ N ⊆Λ M ∧ ¬ Captures M N ∧ f /∈ FV N ∧ f /∈ DVTop N =⇒
letrec f:=M ·L ≃ letrec f:=letrec g:=N ·M[g:N] ·L

Proof sketch As for Lemma 5.4.15.

The side-conditions for this case are the following:

• ¬ Rec f:=M indicates the specific case being proved.

• ¬ Rec g:=N is assumed since we inline definition g:=N simply by replacing
occurrences of g with N . This näıve substitution does not preserve recursion
– note that with the definition g:=N removed after recursion, free occurrences
of g in N will not have the same definition to recur on, thus changing the
meaning of the expression.

• g 6= f since g = f would make the transformed program recursive, since
f ∈ FV (M[g:N]) .

• g ♯ M since we assume g to be a fresh name.

• N ⊆Λ M expresses that we expect the newly-declared definition to be ex-
tracted from the main expression.

• ¬ Captures M N is needed since it implies ¬ Captures (M[g:N]) N, which is
required for a β-reduction to go through.

• f /∈ FV N since we require that the definition not be recursive; if f ∈ FV N

then definition f would be recursive, contradicting the principal assumption
of this case since N is a subexpression of M . f ∈ FV N might come about
if N is extracted from below a binding of f, thus freeing its occurrences in N.



CHAPTER 5. “EXTRACT A DEFINITION” 55

• f /∈ DVTop N is also related to preserving non-recursion: we require that
¬ Rec f:=letrec g:=N ·M[g:N]. Therefore we require that f /∈ FV N and
f /∈ FV (M[g:N]) . The former appears as the previous side-condition. In
the case that f /∈ DVTop M then we require that f /∈ DVTop (M[g:N]) since
this would guarantee that f /∈ FV (M[g:N]). This is proved by assuming
that f /∈ DVTop N, therefore this assumption is inherited by the refactorings
since it could not be discharged.

The second side-condition could be removed if the inlining operation handled
recursive definitions differently by changing them into fixpoint expressions. How-
ever, fix is not part of the core language and generating a fix expression would
require generating names. This might make the refactored program harder to
read, so we avoid this approach in spite of the generality it provides.

The side-conditions of the recursive case’s lemma are mostly the same, the
only exception is that Rec f:=M replaces ¬ Rec f:=M. The side-conditions used to
preserve meaning in the non-recursive case (g 6= f, f /∈ FV N, and f /∈ DVTop N)
act to preserve the meaning in the recursive case since if they are not satisfied
then the recursion would be done on a different expression rather than the one
intended. The lemma for the recursive case is formulated next.

Lemma 5.4.21 (declare_or_inline_Rec)

Rec f:=M ∧
¬ Rec g:=N ∧
g 6= f ∧ g ♯ M ∧ N ⊆Λ M ∧ ¬ Captures M N ∧ f /∈ FV N ∧ f /∈ DVTop N =⇒
letrec f:=M ·L ≃ letrec f:=letrec g:=N ·M[g:N] ·L

These two cases are combined to prove the main theorem, but the side-conditions
will be changed slightly:

• The side-conditions g 6= f ∧ g ♯ M are abbreviated using g ♯ f:=M

• ¬ Captures M N ∧ f /∈ FV N are abbreviated by ¬ Capturesd f:=M N (this
abbreviation is proved sound using Lemma 5.4.19)

The refactoring’s correctness is formulated next. Its proof combines the non-
recursive and recursive cases described previously.

Theorem 5.4.22 (declare_or_inline)

¬ Rec g:=N ∧ g ♯ f:=M ∧ N ⊆Λ M ∧ ¬ Capturesd f:=M N ∧ f /∈ DVTop N =⇒
letrec f:=M ·L ≃ letrec f:=letrec g:=N ·M[g:N] ·L
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5.4.5 Extract/Inline a definition

This refactoring is composed of the last three refactorings that have been verified.
It is proved by transitivity steps through these three refactorings. It involves the
following steps:

1. letrec f:=M ·L is the original expression, and is changed to

2. letrec f:=letrec g:=N ·M[g:N] ·L by declare_or_inline, and

3. letrec g:=N ·letrec f:=letrec g:=N ·M[g:N] ·L using
add_drop_a_redundant_definition, and finally to

4. letrec g:=N ·letrec f:=M[g:N] ·L by using lift_or_demote’.

As any compound refactoring, this refactoring inherits the side-conditions of
its constituent refactorings. It is not always obvious which refactorings the side-
conditions originate from since, as we saw earlier, the side-conditions might need to
be adapted. Moreover, further adaptation of the side-conditions may be necessary
in order to “interface” between the constituent refactorings – i.e. proving that
the output of a refactoring in a composite always satisfies a precondition of the
successive refactoring. Roberts calls these “postconditions” and recall that they
serve to lessen the number of potentially wasteful checks made on programs after
they have been transformed. This was described in §2.2.2.

For example, applying “lift or demote” required the satisfaction of these pre-
conditions:

¬ Captures letrec f:=letrec g:=N ·M[g:N] ·L N ∧
g 6= f ∧
¬ Captures L (M[g:N]) ∧
¬ Captures N (M[g:N]) ∧
¬ Captures L ∇g ∧ ¬ Captures N ∇f ∧ ¬ Captures fix ∇f

Note that the first, third and fourth conjuncts are propositions concerning a (in-
termediate) transformed program. To avoid potentially wasteful computations
we proved the implication of the first conjunct from a property of the original
program:

Lemma 5.4.23 (postProperty)
¬ Captures letrec f:=letrec g:=N ·M ·L N

¬ Captures letrec f:=letrec g:=N ·M[g:N] ·L N

This proof for the “extract a definition” refactoring is not split into two cases,
but is proved by repetitively invoking the transitivity rule and using the proofs of
its constituent refactorings.
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Theorem 5.4.24 (extract_a_definition)

g /∈ FV L ∧
¬ Rec g:=N ∧
g ♯ f:=M ∧
N ⊆Λ M ∧
¬ Captures fix ∇f ∧
¬ Captures L ∇g ∧
¬ Captures N ∇f ∧
¬ Captures L M ∧
¬ Captures N M ∧
¬ Captures letrec f:=letrec g:=N ·M ·L N ∧
¬ Captures L (M[g:N]) ∧ ¬ Captures N (M[g:N]) −→
letrec f:=M ·L ≃ letrec g:=N ·letrec f:=M[g:N] ·L

5.5 Conclusion

This exercise provided a glimpse at some of the issues which one immediately
encounters when verifying refactorings mechanically in this manner. We have
verified a number of refactorings, ranging from trivial and elementary to non-
trivial and compound. A refactoring can have multiple formulations (as pointed
out by Li in her thesis in §2.8 when discussing the “design space” of refactoring
formulations), but we have attempted to provide sufficient motivation to justify
the formulation of refactorings verified here.
Possible improvements to this work include:

Object language Clearly the language we have used here is extremely simplistic
and far removed from a usable programming language. It would be inter-
esting to apply this approach for a more sophisticated language. Exploring
the tractability of using this approach on a non-applicative language would
be an interesting exercise too.

Weaker assumptions Side-conditions are a very interesting part of the correct-
ness formulæ since they guide the implementation of correct (behaviour-
preserving) refactorings. Unless one is careful it is possible to end up with
assumptions stronger than needed. This is elaborated further in the next
chapter.

This verification effort has served to empirically gather a collection of obser-
vations that can help improve our next attempt. We have emphasised the need to
specify refactorings in such a way that they are not only behaviour-preserving but
also computationally economical. This is discussed further in the next chapter.



Chapter 6

“Enlarge definition type”

6.1 Introduction

We now consider a larger system resembling PCF (Plotkin 1977) extended with
unit and sum types. The language has the following types: natural numbers (as
the only base types), function space, sums and unit. The typing rules, operation
definitions and proof system are presented below and used to verify a type-based
refactoring. Non-recursive and recursive definition clauses are not part of the core
language but are “syntactic sugaring”. We will see that a substantial amount
of work goes into type-system-related results, while the correctness proof of the
refactoring is comparatively straightforward.

6.2 Metatheory

6.2.1 Language

We use the same conventions used when defining the previous languages, but have
two more metavariables, T and t, both ranging over types. The grammar of the
language is the following:

M ::= ∇x
| λx : T ·M
| M ◦N
| fix x : T ·M
| unity
| zero
| succ M
| pred M
| ifz L M N
| inLT M
| inRT M
| 〈M ⇐ x〉L〈y ⇒ N〉

58
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The clause fix x : T ·M binds x in M and is unfolded recursively to solve the
fixpoint equation x = M x. This unfolding is captured by the rule FP in the logic
presented in §6.2.5. zero is a constant of the type of natural numbers, and succ
and pred are unary functions in that type. unity denotes the only value inhabiting
the unit type. ifz is a ternary function and evaluates to either its second or third
arguments depending on whether its first argument is zero. The last clause stands
for “case of” expressions: if L is a left injection then the left branch is evaluated,
and similar for the right branch. Note that it binds x in M and binds y in N .

Note that the language is explicitly typed; uniqueness of types is proved as
part of the groundwork further down. The system of types is defined next. Gnd
is a category of ground types; here it contains a single element Nt.

T ::= γGnd
| T → T ′

| Unit
| T + T ′

We formalise a typing context as a finite map from variables to types. We
will use Γ and G as metavariables ranging over type contexts. The operations
extend and contract are used to manipulate the typing context. “extend” extends
a context with a type for a variable, and “contract” deletes the typing of a variable
in the typing context. Formally:

Definition 6.2.1 extend Γ x t
def
= λv. if v = x then Some t else Γ v

Definition 6.2.2 contract Γ x
def
= λv. if v 6= x then Γ v else None

Contexts are extended safely by first deleting the typing of the variable to be
typed and then extending the context. We abbreviate this extension operation
using the following definition.

Definition 6.2.3 Γ, x:t
def
= extend (contract Γ x) x t

6.2.2 Type system

Type judgements will be written Γ ⊲ M :: T and their rules are:

G x = Some t

G ⊲ ∇x :: t
tvar

G, x:t1 ⊲ M :: t2

G ⊲ λx:t1 ·M :: t1 → t2
tabs

G ⊲ M :: t1 → t2 G ⊲ N :: t1

G ⊲ M ◦ N :: t2
tapp



CHAPTER 6. “ENLARGE DEFINITION TYPE” 60

G, x:t ⊲ M :: t

G ⊲ fix x:t ·M :: t
tfix

G ⊲ zero :: γNt tzero

G ⊲ M :: γNt

G ⊲ succ M :: γNt
tsucc

G ⊲ M :: γNt

G ⊲ pred M :: γNt
tpred

G ⊲ L :: γNt G ⊲ M :: T G ⊲ N :: T

G ⊲ ifz L M N :: T
tifz

G ⊲ unity :: Unit tunit

G ⊲ M :: T

G ⊲ inLT+T’ M :: T+T’
tleft

G ⊲ M :: T’

G ⊲ inRT+T’ M :: T+T’
tright

G ⊲ L :: T+T’ G, x:T ⊲ M :: S G, y:T’ ⊲ N :: S

G ⊲ 〈M⇐x〉 L 〈y⇒N〉 :: S
tcase

6.2.3 Language extensions

We define let and letrec expressions as readable abbreviations of expressions in
the language defined above. This creates two “levels” of the language: the core
language and the definitional extension. This approach is an improvement over
that taken in the previous chapter to define the language used.

Definition 6.2.4 let x:t:=N in M
def
= λx:t ·M ◦ N

Definition 6.2.5 letrec x:t:=N in M
def
= λx:t ·M ◦ fix x:t ·N

6.2.4 Predicates and operations

In this section the principal predicates and operations are defined as in the pre-
vious language. These will be used in the definition of the typed equational logic
in the next section and in subsequent formulations and proofs.
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Definition 6.2.6 Free variables
FV ∇i = {i}

FV λi:t ·e = FV e - {i}

FV (e1 ◦ e2) = FV e1 ∪ FV e2

FV fix i:t ·e = FV e - {i}

FV zero = ∅
FV (succ M) = FV M

FV (pred M) = FV M

FV (ifz L M N) = FV L ∪ FV M ∪ FV N

FV unity = ∅
FV inLt M = FV M

FV inRt M = FV M

FV 〈M⇐x〉 L 〈y⇒N〉 = FV L ∪ (FV M - {x}) ∪ (FV N - {y})

Definition 6.2.7 Bound variables
BV ∇i = ∅
BV λi:t ·e = BV e ∪ {i}

BV (e1 ◦ e2) = BV e1 ∪ BV e2

BV fix i:t ·e = BV e ∪ {i}

BV zero = ∅
BV (succ M) = BV M

BV (pred M) = BV M

BV (ifz L M N) = BV L ∪ BV M ∪ BV N

BV unity = ∅
BV inLt M = BV M

BV inRt M = BV M

BV 〈M⇐x〉 L 〈y⇒N〉 = BV L ∪ (BV M ∪ {x}) ∪ (BV N ∪ {y})

The following predicate is defined as in the previous formalisation.

Definition 6.2.8 Captures predicate
Captures m n

def
= ∃ v∈FV n. v ∈ BV m
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As in the previous chapter, the substitution operation used here does not prevent
variable capture.

Definition 6.2.9 Substitution
∇i[M/x] = if x = i then M else ∇i
λi:t ·e[M/x] = if x = i then λi:t ·e else λi:t ·e[M/x]
(e1 ◦ e2)[M/x] = e1[M/x] ◦ e2[M/x]

fix i:t ·e[M/x] = if x = i then fix i:t ·e else fix i:t ·e[M/x]
zero[M/x] = zero

succ N[M/x] = succ (N[M/x])

pred N[M/x] = pred (N[M/x])

ifz L N N’[M/x] = ifz (L[M/x]) (N[M/x]) (N’[M/x])

unity[M/x] = unity

(inLt N)[M/x] = inLt (N[M/x])

(inRt N)[M/x] = inRt (N[M/x])

〈M⇐x〉 L 〈y⇒N〉[K/i] = if i = x ∧ i = y then 〈M⇐x〉 L[K/i] 〈y⇒N〉
else if i = x ∧ i 6= y then 〈M⇐x〉 L[K/i] 〈y⇒N[K/i]〉
else if i 6= x ∧ i = y then 〈M[K/i]⇐x〉 L[K/i] 〈y⇒N〉
else 〈M[K/i]⇐x〉 L[K/i] 〈y⇒N[K/i]〉

Definition 6.2.10 A variable x is fresh in M , written x♯M , if x does not appear
in M .
n ♯ ∇x = n 6= x

n ♯ λx:t ·N = n 6= x ∧ n ♯ N

n ♯ N ◦ N’ = n ♯ N ∧ n ♯ N’

n ♯ fix x:t ·N = n 6= x ∧ n ♯ N

n ♯ zero = True

n ♯ succ M = n ♯ M

n ♯ pred M = n ♯ M

n ♯ ifz L M N = n ♯ L ∧ n ♯ M ∧ n ♯ N

n ♯ unity = True

n ♯ inLt N = n ♯ N

n ♯ inRt N = n ♯ N

n ♯ 〈M⇐x〉 L 〈y⇒N〉 = n ♯ L ∧ n ♯ M ∧ n 6= x ∧ n ♯ N ∧ n 6= y
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Definition 6.2.11 Subexpressions
M ⊆Λ ∇x = M = ∇x
M ⊆Λ λx:t ·N = M = λx:t ·N ∨ M ⊆Λ N

M ⊆Λ N ◦ N’ = M = N ◦ N’ ∨ M ⊆Λ N ∨ M ⊆Λ N’

M ⊆Λ fix x:t ·N = M = fix x:t ·N ∨ M ⊆Λ N

M ⊆Λ zero = M = zero

M ⊆Λ succ N = M = succ N ∨ M ⊆Λ N

M ⊆Λ pred N = M = pred N ∨ M ⊆Λ N

M ⊆Λ ifz L N N’ = M = ifz L N N’ ∨ M ⊆Λ L ∨ M ⊆Λ N ∨ M ⊆Λ N’

M ⊆Λ unity = M = unity

M ⊆Λ inLt N = M = inLt N ∨ M ⊆Λ N

M ⊆Λ inRt N = M = inRt N ∨ M ⊆Λ N

M ⊆Λ 〈N1⇐x〉 L 〈y⇒N2〉 = M = 〈N1⇐x〉 L 〈y⇒N2〉 ∨ M ⊆Λ N1 ∨ M ⊆Λ L

∨ M ⊆Λ N2

6.2.5 Logic

The logic has only (typed) equations as assertions, written Γ ⊢M ≃ N :: T . The
rules of the logic are organised into categories to improve readability. The struc-
tural rules serve to facilitate the handling of typed equations. The λ, equivalence
and compatibility rules have also been used in the previous chapter. The last two
categories provide the rules of the PCF-like language extended with sum types.

Structural rules

G ⊢ M ≃ N :: T G x = None

extend G x S ⊢ M ≃ N :: T
add

G ⊢ M ≃ N :: T x /∈ FV M ∪ FV N

contract G x ⊢ M ≃ N :: T
drop

λ-rules

z ♯ e

G ⊢ λx:t ·e ≃ λz:t ·e[∇z/x] :: T
alpha

G, x:t ⊲ e :: T G ⊲ f :: t ¬ Captures e f

G ⊢ λx:t ·e ◦ f ≃ e[f/x] :: T
beta

G ⊲ M :: S → T x /∈ FV M

G ⊢ λx:S ·M ◦ ∇x ≃ M :: S → T
eta
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Equivalence rules

G ⊲ M :: T

G ⊢ M ≃ M :: T
refl

G ⊢ M ≃ N :: T

G ⊢ N ≃ M :: T
symm

G ⊢ M ≃ M’ :: T G ⊢ M’ ≃ N :: T

G ⊢ M ≃ N :: T
tran

Compatibility rules

G ⊢ M ≃ M’ :: S → T G ⊢ N ≃ N’ :: S

G ⊢ M ◦ N ≃ M’ ◦ N’ :: T
compApp

G, x:S ⊢ M ≃ N :: T

G ⊢ λx:S ·M ≃ λx:S ·N :: S → T
compAbs

G ⊢ M ≃ M’ :: S

G ⊲ ∇x :: S G ⊲ N :: T ¬ Captures N M ¬ Captures N M’

G ⊢ N[M/x] ≃ N[M’/x] :: T

substCong

PCF-theory rules

G, x:T ⊲ M :: T ¬ Captures M M

G ⊢ fix x:T ·M ≃ M[fix x:T ·M/x] :: T
FP

G ⊢ pred zero ≃ zero :: γNt predZero

G ⊢ pred (succ M) ≃ M :: γNt predSucc

G ⊲ M :: T G ⊲ N :: T

G ⊢ ifz zero M N ≃ M :: T
ifz

G ⊲ M :: T G ⊲ N :: T G ⊲ L :: γNt

G ⊢ ifz (succ L) M N ≃ N :: T
ifz2

G ⊢ M ≃ N :: γNt

G ⊢ pred M ≃ pred N :: γNt
compPred

G ⊢ M ≃ N :: γNt

G ⊢ succ M ≃ succ N :: γNt
compSucc

G, x:T ⊢ M ≃ N :: T

G ⊢ fix x:T ·M ≃ fix x:T ·N :: T
compFP

G ⊢ L ≃ L’ :: γNt G ⊢ N ≃ N’ :: T G ⊢ M ≃ M’ :: T

G ⊢ ifz L M N ≃ ifz L’ M’ N’ :: T
compIf



CHAPTER 6. “ENLARGE DEFINITION TYPE” 65

Coproduct rules

G ⊲ L :: T G, x:T ⊲ M :: S G, y:T’ ⊲ N :: S ¬ Captures M L

G ⊢ 〈M⇐x〉 inLT+T’ L 〈y⇒N〉 ≃ M[L/x] :: S
left

G ⊲ L :: T’ G, x:T ⊲ M :: S G, y:T’ ⊲ N :: S ¬ Captures N L

G ⊢ 〈M⇐x〉 inRT+T’ L 〈y⇒N〉 ≃ N[L/y] :: S
right

G ⊲ M :: S+T

G ⊢ M ≃ 〈inLS+T ∇x⇐x〉 M 〈y⇒inRS+T ∇y〉 :: S+T
caseEta

The rules of the logic suggest that even verifying trivial refactorings for this
language will require type-related results to be proved first, since the formulation
of the refactorings will have side-conditions, inherited from the logic, asserting
well-typing of the original program. The preconditions are therefore stronger than
those of the untyped language, and the practical significance is that the meaning
of programs is preserved only if it exists (and it can only exist if programs are
well-typed). The supporting type-related results are discussed next.

6.2.6 Type-related lemmata

Most of the work in verifying the “enlarge the definition type” refactoring actually
went into proving metatheorems about the type system. We describe these next.

Lemma 6.2.12 (Inversion)

(i) Γ ⊲ ∇x :: t =⇒ Γ x = Some t

(ii) Γ ⊲ λx:t1 ·M :: T =⇒ ∃ t2. T = t1 → t2 ∧ Γ, x:t1 ⊲ M :: t2

(iii) Γ ⊲ M ◦ N :: t2 =⇒ ∃ t1. Γ ⊲ M :: t1 → t2 ∧ Γ ⊲ N :: t1

(iv) Γ ⊲ fix x:T ·M :: S =⇒ S = T ∧ Γ, x:T ⊲ M :: T

(v) Γ ⊲ unity :: T =⇒ T = Unit

(vi) Γ ⊲ zero :: T =⇒ T = γNt

(vii) Γ ⊲ succ M :: T =⇒ T = γNt ∧ Γ ⊲ M :: T

(viii) Γ ⊲ pred M :: T =⇒ T = γNt ∧ Γ ⊲ M :: T

(ix) Γ ⊲ ifz L M N :: T =⇒ Γ ⊲ L :: γNt ∧ Γ ⊲ M :: T ∧ Γ ⊲ N :: T

(x) Γ ⊲ inLT+T’ M :: S =⇒ S = T+T’ ∧ Γ ⊲ M :: T

(xi) Γ ⊲ inRT+T’ M :: S =⇒ S = T+T’ ∧ Γ ⊲ M :: T’
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(xii) G ⊲ 〈M⇐x〉 L 〈y⇒N〉 :: S =⇒ ∃ T T’. G ⊲ L :: T+T’ ∧ G, x:T ⊲ M :: S

∧ G, y:T’ ⊲ N :: S

Proof sketch Routine by case analysis on the structure of type judgements.

Using this lemma we prove that if a pre-term (expression) is typable then it
has a unique type. This is not required for the refactoring, but serves to check
the definitions and increases our confidence in the formalisation.

Lemma 6.2.13 (Uniqueness)

G ⊲ N :: S G ⊲ N :: T

S = T

Proof sketch Induction on the structure of the derivation of type judgements
and using the inversion lemma.

The principal result required before verifying the refactoring is the substitution
lemma. Prior to proving this, we need the following lemmata. Weakening and
strengthening involve broadening or restricting the typing context in a judgement
while preserving an expression’s type.

Lemma 6.2.14

(i) (Weakening):
G ⊲ M :: T x /∈ FV M

extend G x t ⊲ M :: T

(ii) (Strengthening):
G ⊲ L :: T x /∈ FV L

contract G x ⊲ L :: T

Proof sketch Induction on the structure of the derivation of type judgements,
using the typing rules and rewriting using the definitions of extend and contract.
Furthermore, the rule of extensional equality, defined in HOL, is used in order to
prove equality between typing contexts.

In the course of building these proofs we experimented with different initial
formulations. Weakening’ is a second weakening lemma that differs from the first
by focusing on the contents of the context rather than the preterm’s free variables.
This lemma uses the predicate compatible1 defined over a context, a variable, and
its type. This predicate is true when extending the context with that variable
typing is indeed a compatible extension (i.e. does not override an existing and
differing typing of that variable in the context). It is defined formally next.

Definition 6.2.15 compatible1 Γ v t
def
= Γ v = None ∨ Γ v = Some t
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Lemma 6.2.16 (Weakening’)

G ⊲ M :: T compatible1 G x t

extend G x t ⊲ M :: T

Proof sketch As for previous proof, except that the definitions of compatible1 is
also used for rewriting.

In the case where the substitution operation does not modify an expression we
use the following lemma:

Lemma 6.2.17 (idNoSubst)

x /∈ FV N ∧ G ⊲ N :: T −→ G ⊲ N[L/x] :: T

Proof sketch First proving that if x /∈ FV N then N [L/x] = N by structural
induction on N , then using this equation on the type judgement and using the
assumption G ⊲ N :: T .

Using the foundation provided by the lemmata described so far, we can now
prove the substitution lemma. This asserts that the substitution operation is
type-sound.

Lemma 6.2.18 (Substitution lemma)

G ⊲ N :: S G ⊲ ∇x :: T ¬ Captures N L G, x:T’ ⊲ L :: T

G, x:T’ ⊲ N[L/x] :: S

Proof sketch We split the goal by case analysis on x /∈ FV N , and use Lemma 6.2.17
for the first case.

The second case uses induction on the structure of the derivation of type judge-
ments and appealing to lemmata described previously. It is straightforward for
most cases. The case when N is a term of type T +T ′ requires a larger proof since
it splits into three subgoals (see rule tcase), and two of these proof obligations
split further to eliminate cases when the locally-bound variables are equal to x
or not (see the definition of the substitution operation, Definition 6.2.9). More
concretely, consider the term 〈M ′ ⇐ x′〉L′〈y′ ⇒ N ′〉. Then by the assumption
obtained through the first case split in the proof, x must be free in at least one of
M ′, L′ or N ′. Also, x might be equal to the bound variables x′ or y′ (or both).

As a short aside, the only other cases in the proof involving bound variables
occur when N is either an abstraction or a fixpoint expression. In both these cases
the bound variable could not have been x since it would contradict the assumption
that x is free in the expression – recall this assumption is due to the first case
split.

Back to the case where N is an expression of sum type. We need to analyse
the cases when x might be equal to either of the locally-bound variables. In either
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situation, by the rule tcase the context Γ, x : T ′ is extended with z : t (where z
is either x′ or y′ and t is the respective type). Then if x = z then the context is
Γ, x : T ′, x : t and we prove that this is equal to Γ, x : t (using the extensional
equality rule in HOL) to show that this case leads to a type judgement having the
correct type.

In the case x and z are distinct then we must show that the term L (to be
substituted for x) is of type T in this extended context. Since we have assumed
that (¬Captures(〈M ′ ⇐ x′〉L′〈y′ ⇒ N ′〉) L) then we know that x′ and y′ cannot
be free in L. The new context is the old context that typed L as T (i.e. Γ, x : T ′)
extended with a typing for z. We have established that z is not free in L and
z 6= x. Then the new context is a weakened version of the original Γ, x : T ′, so
the type of L must be T .

Proving the Substitution Lemma required the most effort, much more than veri-
fying the refactoring.

6.3 Refactoring

6.3.1 Enlarging the definition type

This refactoring enlarges the type of a definition into a sum of types as described
in §4.2.

Since we use a logic of typed equations, preserving the meaning of a pro-
gram involves at least preserving its type. In symbols, modulo side-conditions the
refactoring changes the expression:

let x : T := M in N

into the following:

let x : (T + T ′) := inLT+T ′ M in N [〈∇x′ ⇐ x′〉∇x〈∇y′ ⇒ L〉/x]

where x′, y′ are fresh variables and L is a newly-introduced expression. Some of
the side-conditions will constrain the values of these variables – for example, L
must be well-typed in a given context.

The statement of the theorem is fairly large, and the proof reflects this. To im-
prove manageability the proof is split to isolate deductions in small steps. These
serve as supporting lemmata needed in the overall proof. One such result merely
instantiates the Substitution Lemma with values needed for verifying this refac-
toring:

G ⊲ N :: S ∧
G ⊲ ∇x :: T ∧ G, x:T+T’, y:T’ ⊲ L :: T ∧ ¬ Captures N 〈∇x’⇐x’〉 ∇x 〈y⇒L〉
−→
G, x:T+T’ ⊲ N[〈∇x’⇐x’〉 ∇x 〈y⇒L〉/x] :: S
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The side-conditions of the refactoring are:

• G ⊲ N :: S, G ⊲ ∇x :: T, G ⊲ M :: T and G, y:T’ ⊲ L :: T express the
requirement that the original program is well-typed and that the newly-
introduced expression is of the right type.

• ¬ Captures N 〈∇x’⇐x’〉 ∇x 〈y⇒L〉, ¬ Captures N M and ¬ Captures L

M are required to ensure β-reduction can take place.

• x’ /∈ FV M and y /∈ FV M are constraints on the new variables x′ and y
introduced by the refactoring. They do not constrain the expression M
since its presence precedes the application of the refactoring.

• x /∈ FV L enables the following result:

x /∈ FV L −→
N[〈∇x’⇐x’〉 ∇x 〈y⇒L〉/x][inLT+T’ M/x] = N[〈∇x’⇐x’〉 inLT+T’ M 〈y⇒L〉/x]

Without this assumption, the RHS would have been:

N[〈∇x’⇐x’〉 ∇x 〈y⇒L[inLT+T’ M/x]〉/x]

This assumption is also used to derive an intermediate result needed in the
refactoring and serves to simplify the specification of the refactoring.

The last side-condition suggests that the refactoring could have been stated
more generally by not constraining L. The refactoring is formalised as:

Theorem 6.3.1 (Enlarge the type of a definition)

G ⊲ N :: S ∧
G ⊲ ∇x :: T ∧
G, y:T’ ⊲ L :: T ∧
¬ Captures N 〈∇x’⇐x’〉 ∇x 〈y⇒L〉 ∧
G ⊲ M :: T ∧
¬ Captures N M ∧ ¬ Captures L M ∧ x’ /∈ FV M ∧ y /∈ FV M ∧ x /∈ FV L −→
G⊢let x:T:=M in N ≃ let x:T+T’:=inLT+T’ M in N[〈∇x’⇐x’〉 ∇x 〈y⇒L〉/x] ::S

Proof sketch First unfold the let to work at the level of the core language. Use
beta on the LHS and RHS, and form a new equation from these two results using
rule tran. At this point the equation will be:

N [M/x] ≃ (N [〈∇x′ ⇐ x′〉∇x〈y ⇒ L〉/x])[inLT+T ′ M/x]

Then show that the RHS is equal to N[〈∇x’⇐x’〉 inLT+T’ M 〈y⇒L〉/x] (this
step was anticipated in the explanation of side-conditions previously). Then us-
ing the rule substCong results in a straightforward subproof. The resulting type
judgement is proved by showing that the typing context is extensionally equal to
the that used in the preconditions. This proof is also interspersed with steps to
prove the preservation of typing, including use of the instantiation of the Substi-
tution Lemma described earlier and the typing rules tleft and tvar.
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6.4 Discussion

6.4.1 Weakening the preconditions

The predicate Traps is a weaker alternative to Captures and provides us with
weaker preconditions. Unlike the definition of Captures, we give an executable
definition for Traps. As previously explained, such a definition style makes it
easier to use this definition in proofs since the term rewriting system can introduce
the clauses of the definition automatically. We have seen this for the definitions
Fresh and Fresh’ in the previous chapter. However, unlike those two definitions,
Traps and Captures are not logically equivalent. We will prove this result below.

Definition 6.4.1 Traps – a “finer-grained” version of Captures
Traps ∇i N x = False

Traps λi:t ·N M x = if i ∈ FV M ∧ x 6= i then x ∈ FV N

else Traps N M x
Traps (N1 ◦ N2) M x = Traps N1 M x ∨ Traps N2 M x

Traps fix i:t ·N M x = if i ∈ FV M ∧ x 6= i then x ∈ FV N

else Traps N M x
Traps zero M x = False

Traps (succ N) M x = Traps N M x

Traps (pred N) M x = Traps N M x

Traps (ifz N1 N2 N3) M x = Traps N1 M x ∨ Traps N2 M x ∨ Traps N3 M x

Traps unity M x = False

Traps inLt N M x = Traps N M x

Traps inRt N M x = Traps N M x

Traps 〈N1⇐y〉 L 〈z⇒N2〉 M x = y 6= x ∧ y ∈ FV M ∧ x ∈ FV N1 ∨ z 6= x ∧
z ∈ FV M ∧ x ∈ FV N2 ∨ Traps L M x

Relationship between Traps and Captures

Traps implies Captures, but not vice versa. Formally:

Lemma 6.4.2

(i) ∀ N M. (∃ x. Traps N M x) −→ Captures N M

(ii) ¬ (∀ M N. Captures N M −→ (∃ x. Traps N M x))

Proof sketch (i) is proved by induction on structure of N , unfolding Captures,
and then reasoning set-theoretically. (ii) is proved by producing a counterexample
to refute the formula’s negation: instantiating N using ∇x ◦ λx:t ·∇x and M
using ∇x.

Having weaker side-conditions is beneficial since more programs may be trans-
formed by the refactoring.



CHAPTER 6. “ENLARGE DEFINITION TYPE” 71

6.4.2 Conclusion

Compared to the previous chapter, working in a typed language brought a new
dimension to the formulation of refactoring: for the behaviour of programs to be
equal, their types must also be equal. Programs that are not well-typed are not
considered to have a meaning, and therefore there is no meaning to be preserved.
The refactoring rejects such programs since it requires its inputs to be well-typed.
The formulation of refactorings in the previous language only regarded variable
non-capture, but here well-typing becomes equally important.
Even though the refactoring studied in this chapter is simple it allowed us to make
some observations:

• Proofs related to refactoring are simpler than those in the previous lan-
guage since no simultaneous induction is needed. Recall that the mutual
dependence between syntactic categories in the previous language made it
necessary to use simultaneous induction.

• As in the previous formalisation, we have avoided post-properties in precon-
ditions to make the refactoring computationally economical.

• There might be a more general formulation of the refactoring, that is, a
formulation which effects the same transformation but guarded by weaker
preconditions. One possible candidate involves using Traps instead of Cap-
tures in side-conditions.

• Since the language is typed, assumptions concerning well-typing have ap-
peared in the refactoring’s preconditions. This draws our attention to the
interaction between refactoring tools and other development tools (viz. the
parser, or more specifically, the type checker). A different approach to this
verification would have involved embedding a type-checking algorithm for
this language, verifying it wrt the static semantics and expressing the refac-
toring’s side-conditions concerning well-typing with invocations to this al-
gorithm.

• In terms of definition style, this chapter has various improvements over the
previous one. Structuring the language into a core language and a layer of
syntactic sugaring improved the presentation of the language while keeping
the proof system simpler. We did not have to do simultaneous induction
for proving results about this language; however this would still be neces-
sary in languages having multiple syntactic categories – e.g. intra-module
and module levels. We also benefited from using executable definitions for
predicates, rather than starting from abstract definitions.

• More than half of all the work to verify this refactoring involved proving
type-theoretic groundwork to arrive at the Substitution Lemma. Such ex-
tensive prior groundwork inhibits exploration. For example, changing the
substitution operation slightly would have required redoing parts of the Sub-
stitution Lemma: this is easy for cases such as zero, but the case of clause



CHAPTER 6. “ENLARGE DEFINITION TYPE” 72

is far more challenging. The accumulation of a corpus of mechanised results
would hasten the early phase of development, but perhaps further auto-
mated support is needed to adapt previous formalisations for other contexts
of use.

Possible improvements to this work include:

metatheory implementation : using more machine-friendly techniques
(e.g. ‘locally-nameless ’) to implement the language. This will be discussed
in the next section.

metatheoretical definitions : using weaker predicates in preconditions – such
as using Traps rather than Captures.

6.4.3 More economical proof development

Low effort techniques for mechanising results on programming languages are also
valuable to other source-to-source activities apart from refactorings. For exam-
ple, a source-to-source translator for different language versions could be verified
using these techniques. These transformations share the importance of keeping
the transformed code recognisable, partly by preserving names. Names are usu-
ally chosen by programmers and must be handled very carefully by the machine.
Changing the names of variables might be distracting to programmers. Other
kinds of metaprograms, such as compilers, do not have this characteristic and in
their verification programs differing only in the names of bound variables can be
identified and represented as the pure binding graphs.

For this reason a name-carrying embedding of the language syntax is usually
ideal when studying refactoring. On the other hand, anonymous syntax lends
itself better to automation since the names are abstracted away and only the pure
binding graph is retained.

When implementing a refactoring the syntax can be anonymised before trans-
forming the program, but after transformation the variables must be named again.
The computer could generate names from scratch but since the choice of names
in programs can matter greatly it would be preferable to attempt to adapt names
from the original program. However we cannot use the original names if variable
capture or name-clash is detected. This would invalidate the whole refactoring
process, wasting the resources expended transforming and post-checking the pro-
gram. It would have been computationally cheaper to leave names in the program
and check for clashes before having done any processing.

Not every name-carrying embedding might be suitable; techniques used to
study terms in the abstract might not be suitable to verify refactorings since
these operate on programs. The Barendregt Variable Convention, described in
the Preliminaries chapter, is too strong an assumption for programs. In our
formalisation we emulate this Convention using the Captures predicate but the
weaker alternative, Traps, is a more realistic predicate to be used instead.



CHAPTER 6. “ENLARGE DEFINITION TYPE” 73

Nonetheless, it might be useful to have an anonymous encoding of the pro-
gramming language. As we have seen earlier, verifying the refactoring in the
typed language involved a considerable amount of work directed at type-theoretic
groundwork. Using an anonymous approach would be a partial and “lightweight”
alternative to a full verification: the effort saved reasoning about name-issues
could be invested in ensuring type soundness.
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Chapter 7

Related work

This chapter contains a review of other work on the verification of refactorings. We
focus on the refactoring of program source code: refactoring has been studied for-
mally on more abstract descriptions of programs too (cf. Van Der Straeten et al.
2007).

The early work on refactorings will be outlined next, then more recent for-
mal approaches to studying behaviour-preservation will be described in detail.
Mens & Tourwé (2004) provide a broader survey of work done on refactoring pro-
gram source code.

Griswold
Griswold’s thesis is based on the observation that restructuring programs im-
proves their maintainability, so he studies transformations that “can change the
appearance or speed of a program without affecting its input/output behaviour”
(Griswold 1991, p. 23). He also draws from an observation that maintenance is
the most expensive phase in a program’s lifetime. Griswold also gives a detailed
account of related work – including transformational/derivational programming,
and program optimisation. While he does not use the term “refactoring” explicitly
the concept is very similar – the only difference being that refactoring is usually
concerned solely with the appearance of a program and not with its speed. The
behaviour of the transformations studied by Griswold is identical to that of refac-
torings: these transformations are “guaranteed to either succeed and produce a
new program with the same meaning as the initial program, or else to fail and
leave the program unchanged” (Griswold 1991, p. 23). Griswold does not assume
program transformations to be behaviour-preserving and considers restructurings
to be a specific class of program transformations.

Griswold studies refactoring for the language Scheme, an eagerly-evaluated,
dynamically-typed, and statically-scoped language. He uses a graph-based for-
malism to reason about behaviour-preservation: a Program Dependence Graph
(PDG) is a graph containing data-flow and control-flow information. The PDG
is described in (Griswold 1991, §4) and contrasted with using the AST: the PDG
facilitates reasoning about the effects of transformations on dependencies of trans-
formed expressions. The extra information contained in the PDG (when compared

75
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to the AST) is useful to reason about behaviour-preservation. However, the PDG
is not a precise representation of the program since it lacks other information
obtainable from the AST; the transformed PDG alone might not yield correct
programs.

Griswold suggests using the two representations to complement each other and
defines an equation (which he calls globalisation) describing a necessary correspon-
dence between transformations defined over the AST and transformations defined
over the PDG. This realises his intention to transform the AST while using the
PDG to reason about behaviour-preservation.

Opdyke
(Opdyke 1992, §4) studied refactoring in the context of the object-oriented paradigm
and described seven properties that need to be preserved in order to ensure that a
refactoring is correct. The first six properties address well-formedness constraint
on programs: a refactored program must be well-formed too. Some of these prop-
erties can easily be checked syntactically – e.g., “distinct class names” – and the
last property, “semantically equivalent references and operations”, is refined into
a representation for programs and predicates that can be used in a refactoring to
help guarantee behaviour-preservation.

Refactorings can be behaviour-preserving if they act within restrictions that
would violate this property. Opdyke contrasts strong and weak restrictions, ar-
guing that while it is easier to determine violation of a strong restriction, it is
weaker restrictions that allow for more useful refactorings. For instance, weaker
restrictions allow for more sophisticated transformations on the program. The
problem is then to ensure that the refactoring is indeed behaviour-preserving for
arbitrary programs given these weaker restrictions. Opdyke provides a representa-
tion for programs that goes beyond an AST: it is a graph that contains information
such as the class hierarchy apart from the parsed program. Opdyke provides this
structure to serve as input to a refactoring. Such rich representations are not
uncommon for refactoring purposes – Eloff (2002), Griswold (1991), Mens et al.
(2005) used similar representations. Opdyke also defines several functions for use
in expressing preconditions for refactorings.

In (Opdyke 1992, §5) he describes “low-level refactorings” (elementary refac-
torings). He uses the seven properties to argue for the correctness of these refac-
torings. Then in (Opdyke 1992, §6-8) he describes “high-level refactorings” (com-
posite refactorings); these are argued to be correct by the composition of correct
elementary refactorings.

Roberts
Roberts (1999) focuses on a practical aspect of refactoring: producing fast and re-
liable refactoring tools. He studies refactorings for Smalltalk, a dynamically-typed
object-oriented language with reflection facility. His contributions are also related
to checking for behaviour-preservation. Roberts complements preconditions with
postconditions : properties that are satisfied by programs after having undergone
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a specific refactoring. Postconditions are used when composing refactorings; this
was described further in §2.2.2.

Dependencies between refactorings are a related idea; Roberts argues that
certain refactorings are carried out to enable other refactorings to be performed
– e.g. renaming a variable before extracting a method. He also argues for the
usefulness of undoing refactorings out-of-order. That is, changes would not only
be undone strictly in reverse order, as is usual. Dependencies between refactorings
also serve to support this feature: in order to undo a refactoring one must calculate
other refactorings that depend on it and undo them too if their preconditions are
no longer satisfied if the first refactoring were undone.

Roberts also contributed the idea of performing refactoring partly or fully
during a program’s runtime. He calls this dynamic refactoring and differentiates
it into the following (Roberts 1999, §5.5):

offline dynamic refactoring involves only the analysis phase of refactoring being
done at runtime.

online dynamic refactoring means both analysis and transformation phases of
refactoring are done at runtime. Roberts had also described this approach
in an earlier paper (Roberts et al. 1997) on the development of a refactoring
tool for Smalltalk.

7.1 Li

In her PhD thesis Li (2006) describes the design and implementation of HaRe, a
refactoring tool for Haskell. She describes a catalogue of Haskell refactorings and
discusses how the features of different programming languages give rise to different
refactorings for each programming language. Despite this there are refactorings
which persist across languages, and others which require some modification when
specified for new languages.

HaRe was developed as a prototype but intended for general use. Its authors
addressed concerns such as usability (such as ease of installation and use), effi-
ciency (keeping waiting time low), reliability and extensibility (through an API) in
order to make the tool generally appealing. HaRe is implemented in Haskell and
has been integrated with Emacs and Vi (which the authors found to be the IDEs
most commonly used by Haskell programmers after conducting a survey). HaRe
relies on specialised components developed elsewhere: it uses the Programatica
compiler front-end to parse full Haskell’98, and uses Strafunski for traversing and
transforming the abstract syntax tree (AST). Strafunski’s API functions are used
to perform the analysis and transformation needed by refactorings.

Refactoring tools usually operate on some abstract representation of the pro-
gram, such as the AST, but simply pretty-printing the refactored program from
the AST might be too näıve an approach since layout information about the orig-
inal program is lost. It is more useful for programmers if the refactoring tool also
preserves the layout of their programs since it keeps the program recognisable
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by them; Haskell does not enforce a specific program layout style and therefore
program layouts are often idiosyncratic. To address this concern, HaRe uses the
token-stream provided by Programatica in order to preserve the appearance of
program code, such as comments, indentation, etc. The importance of this is
emphasised in (Li 2006, §2.4) and the algorithm used is found in (Li 2006, §C).

HaRe also offers an API of its own. This provides a higher-level interface to
the APIs of Programatica and Strafunski, and facilitates the task of defining more
Haskell refactorings or program transformations for other developers. The API is
documented in (Li 2006, §F). HaRe’s API has been used in a short internship to
partially implement warm fusion as an exercise to study the use of HaRe’s API
to implement program transformations that are more general than refactorings.
This is documented in Nguyen-Viet (2004). Fusion algorithms are a family of algo-
rithms used for program deforestation – eliminating intermediate structures that
arise in the lazy evaluation of a program by transforming the program statically.
Fusion algorithms serve to optimise programs since they eliminate many unnec-
essary expensive memory allocations and operations. However the transformed
programs are usually less comprehensible; fusion algorithms are not refactorings
but are more general (yet behaviour-preserving) program transformations.

The formal specification and verification of refactorings is described in (Li 2006,
Chapter 7); this is of direct interest to our work. In this chapter Li describes λM –
a call-by-name, untyped λ-calculus extended with letrec and mimicking Haskell’s
module system. She uses λM to reason about module-aware Haskell refactorings.
Li starts by describing λLetrec, which is λM without the module system. λLetrec is
adapted from a theory for λ◦name, developed by Ariola & Blom (1997).

Using λLetrec and λM Li specifies and verifies the refactorings “Generalise a
definition” and “Move a definition from one module to another”. In (Li 2006,
§7.3) she specifies “Generalise a definition”, which we illustrate as follows using a
Haskell-like language:'

&

$

%

f := ...F...

g := G

h := ...f...

⇆

f x := ...x...

g := G

h := ...(f F)...

This refactoring extracts a subexpression (represented by F) from a definition
(f, in the above illustration) and replaces the extracted subexpression with a fresh
variable (x) which is abstracted from the original definition (i.e. f := ... be-
comes f x := ...). Finally, each calling site of the original definition is updated
into the application of the defined variable to the extracted subexpression (in h’s
definition, ...f... becomes ...(f F)...).

Li also outlines various other ways of interpreting the refactoring (she also
discusses this “design space problem” in (Li 2006, §2.8)). In her approach she uses
a renaming substitution, therefore the method is that of compensation rather than
interaction (recall these two models have been described in §2.2.1). Renaming
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is indicated by priming terms, and new variable names (e.g. x in the above
illustration) are not explicitly indicated in side-conditions but are assumed to be
fresh.

Since Li’s work is centred on the development of a refactoring tool for Haskell,
granularity is determined by the implementation: Li observes that “generalise a
definition” can be decomposed into four refactorings but treats this refactoring as
elementary, since the refactoring is implemented as an elementary refactoring for
efficiency reasons.

Using the language λM she proceeds to study the refactoring “Move a definition
from one module to another”. The specification of the refactoring immediately
brings to the fore many subtle issues concerning side-condition checks, such as
avoiding name-clashes in modules and avoiding to introduce recursive modules.
These arise because of the complexity of the relations between modules and the re-
sulting extended scopes of definitions contained inside. Module-aware refactorings
must preserve the dependencies of definitions – they must ensure that expressions
dependant on a definition will still have the definition in their scope, and the
definition itself will still be able to access the same definitions after the program
has been refactored.'

&

$

%

module M1

exports -

where

f := F

...

module M2 where

exports -

where

...

⇆

module M1

exports -

where

...

module M2 where

exports -

where

f := F

...

The side-conditions for “Move a definition from one module to another” ensure
that the move will not disrupt the program’s well-formedness. For example, if the
definition to be moved already exists in the target module, the definition in the
target module must have been imported from the source module if the refactoring
is to succeed.

The behaviour of the transformation is conditional: it splits into four cases de-
pending on whether the definition is being exported by the module, whether the
definition has dependencies within the module, and whether the source and target
modules are related (i.e. the latter is imported, directly or through some other
module, by the former). A commentary follows the specification to explain it,
suggesting the non-trivial nature of this refactoring. The argument for behaviour-
preservation addresses two points: the refactoring always produces a well-formed
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program, and the resulting program is behaviourally-equivalent since the refactor-
ing does not change the definitions themselves and the definitions’ dependencies
are preserved.

The approach taken for the second refactoring seems more interactive than
compensatory since the process is stopped whenever a side-condition fails and the
user is prompted for guidance. This suggests that the approach is compensatory
at the lowest level (viz. for α-convertibility), and that this is due to explanatory
convenience rather than style.

Our work seeks to build on Li’s to study the refactoring of functional programs.
Like Li we prefer the interactive style of implementing refactorings. Compared
to her approach, we do not decompose refactorings based on efficiency of imple-
mentation but on their relative elementarity. From this perspective, “generalise
a definition” is considered to be a compound refactoring since it can be broken
down into more elementary refactorings.

7.2 Bannwart

Bannwart (2006) studies refactoring in a Java-like imperative class-based statically-
typed language for which he provides an evaluation semantics. This work is also
summarised in Bannwart & Müller (2006).

Bannwart seeks to develop a general and scalable method for (i) proving refac-
torings to be behaviour-preserving, and (ii) applying them correctly. He is con-
cerned with the difficulty of implementing non-trivial refactorings that are guar-
anteed to be behaviour-preserving. This method may also involve generating
assertions to ascertain behaviour-preservation dynamically. He claims that this
overcomes the shortcomings of regression testing since tests are ultimately incom-
plete. Moreover, Bannwart argues that having assertions in the code is a positive
side-effect of the method since it improves program documentation and renders
the program amenable to assertion-based verification tools. The assertions form
a specification of the program, and this motivated the subtitle “refactoring with
specifications” in his thesis.

In order to ensure correct application of refactorings, Bannwart suggests the
following steps:

1. Establish “essential applicability conditions”, i.e. conditions that ensure
that the class of well-formed programs is closed under the refactoring.

2. Determine “correctness conditions” (which are usually called side-conditions).
Conditions may be added to a program as assertions; these might be checked
at runtime or else checked statically by other tools.

Bannwart differentiates correctness conditions as:

• properties that can be checked statically (they call them “a priori
checks” in Bannwart & Müller (2006), and “preconditions” in Bannwart
(2006))
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• those that can be checked dynamically (called “a posteriori checks” in
Bannwart & Müller (2006), and confusingly called “postconditions” in
Bannwart (2006))

3. The refactoring is proved to be behaviour-preserving using the above con-
ditions. These conditions must be sufficient to guarantee equivalence. Ban-
nwart’s notion of equivalence is “external equivalence”: this is true iff two
programs have the same sequence of I/O interactions with an environment,
thus rendering them indistinguishable by the environment.

Before proceeding it would be helpful to outline Bannwart’s formalisation.
Programs operate by manipulating the state s which is a triple (vars , heap, ext).
Within the state, vars maps from variables to values, heap is a mapping from
object identifiers to objects and ext is the accumulated trace of a program’s I/O
interactions. Thus the state maintains a partial memory of past states through
ext. Let Γ be a program, then the program code for Γ is denoted by codeΓ. The
state transition relation is a subset of the set of triples of form t × s × s, where
t is the set of statements (recall that the language is imperative) and s is the set

of states. The notation used is Γ ⊢ s
t−→ s′ for the transformation of state s into

s′ by statement t (found in the code of program Γ).
Having outlined the notation we now turn to expressing the external equiva-

lence property. Two programs are externally equivalent iff their cumulative inter-
actions with the outside world are identical. Let ini be the initial state (where
all variables map to initial values, and the heap and ext are empty). Let s and
s′ be states, and s.ext be the projection of ext from state s (likewise for s’.ext).
Programs Γ and Γ′ are externally equivalent iff, adapting Bannwart’s notation
slightly:

(Γ ⊢ ini
codeΓ−−−→ s) =⇒ ∃s′.(Γ′ ⊢ ini

code
Γ′−−−→ s′) ∧ (s.ext = s′.ext)

That is, after running the whole code in Γ′ we end up with the same I/O
interaction sequence as after having run program Γ. Note how this equivalence
abstracts away other state details: although the intermediate states between the
initial and final states might have been different, it is only the trace of I/O inter-
action that matters. Thus “external equivalence”, as the name suggests, abstracts
away internal resource usage or access patterns. In the case of there not being final
states s and s′ (i.e. the program is non-terminating), then finite approximations
of infinite traces are considered.

In order to render provability of this property tractable, Bannwart suggests
proving a stronger property such that the original property can be implied from
it. This involves constructing a relation between states of the two programs,
which he denotes using a prefix βR (where R stands for a particular refactoring)
that serves as a simulation relation between the original and refactored programs.
The transformation operation of a refactoring is denoted by µR and Bannwart
specifies refactorings in terms of the conditions mentioned earlier (e.g., correctness
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Figure 3: MoveField refactoring

conditions) and this transformation. Proof of external equivalence between a

program and its refactoring is done by induction on the derivation of Γ ⊢ s
t−→ s′.

Only the correctness proof of “Rename a Method” is presented in detail in
Bannwart (2006); it would have been useful to see detailed accounts for other
refactorings to appreciate the tractability of the method.

Bannwart & Müller (2006) study the refactoring “Move Field”. This refactor-
ing moves a field declared in one class (let us denote it by S) to a different class
(T) and modifying all accesses to that field to reflect this change. As specified in
Bannwart & Müller (2006), the refactoring works by (i) moving the field, (ii) redi-
recting access to this field via another field (let us denote it by target) in S that
points to T, and (iii) updating statements containing references to the moved field
and making them point to the new address (i.e. via target in S). All other things
being equal, and for the original and transformed program being denoted by P
and P ′ respectively, the change brought about in the source object is illustrated
in Figure 3. Note that for any object o of type S, the value of o.f in the original
program is accessed in the refactored program by reading o.target.f.

Note that moving a field between classes progressively builds a trail of ref-
erences from the source class. This accumulation of references forms a thread
from the original class containing the field to subsequent classes that the field was
moved to. If the field is moved several times then the program’s readability will
deteriorate rapidly: comprehending the program would require understanding the
sequence of deflections needed to access moved fields.

This accumulation can be appreciated by the example of moving field f to
T from S after it had been moved to S from T. As illustrated in Figure 4, the
definition of this refactoring results in a reference to f being refracted once again
from T to S: for any object o of type S, o.f in the original program is accessed via
o.target.target.f after the second move. This refactoring seems to be more useful
in the backward direction since it simplifies the relationships between classes.

In (Bannwart 2006, §3.2.4) he mentions that refactorings need not necessarily
be “symmetric” (i.e. reversible) since according to his definition it is sufficient for
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Figure 4: Using MoveField to move again to original class

a refactored program to simulate the original program, but the converse need not
be true. The lack of symmetry in the relation βR between original and refactored
programs makes it impossible to induce an equivalence. The (external) equiva-
lence however is defined as an identity relation defined over I/O traces for the
original and refactored programs, and is therefore an equivalence relation. Ban-
nwart discusses the reversal of refactorings in (Bannwart 2006, §3.3.2). Bannwart
also discusses data-oriented refactorings in his thesis, and provides examples of
how to implement refactorings as plugins for Visual Studio and Eclipse develop-
ment environments in (Bannwart 2006, §6). Refactoring the assertions themselves
is suggested as future work. The interaction between refactoring programs and
assertions is discussed by Goldstein et al. (2006) and will be described in §7.6.

7.3 Mens

Mens et al. (2005) describe a method to formalise and prove refactorings to be
behaviour-preserving. This method involves representing programs as graphs and
refactorings as graph transformations. They describe a variety of behaviours which
need to be preserved, each of which contribute to behaviour-preservation. Each
of these behaviours is a property of the graph representing the original program
which must be preserved in the refactored graph.

The authors argue that representing programs as an AST is not good enough
since it contains both too much information (i.e. the representation is specific
to a particular programming language) and too little information (e.g. control-
flow information is instantly available, but other kinds of information is requires
analysis to obtain). This argument was also made by Griswold (1991), his work
was described at the beginning of this chapter. The authors claim that behaviour-
preservation is not well-defined since behaviour is associated with run-time but
refactoring tools can only manipulate source code – this point of view neglects the
possibility of dynamic refactoring, put forward by Roberts (1999) and described
at the beginning of this chapter. To overcome this gap the authors suggest using
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a more appropriate representation for programs rather than the AST.
The representation suggested by the authors provides easier access to infor-

mation (e.g. dynamic calls to a method) and can be used to define refactorings
“independently of the programming language”. Language genericity is challeng-
ing: truly generic refactorings might be too trivial and too few to be significantly
useful since some concepts might exist in one programming language but not in
another (e.g. subtyping). However the authors do not have full language generic-
ity in mind since they are solely concerned with object-oriented languages. Recall
that refactoring originated as a technique associated with object-oriented frame-
works but has since been adapted for various other paradigms. The formalism
suggested by Mens et al. (2005) is suited to represent languages having features
such as classes, subtyping, and dynamic binding.

They study two refactorings: “Encapsulate Field” is used to encapsulate a
class’ public attribute by making it private and accessible through setter and
getter methods. “PullUp Method” involves moving a method to a class higher in
the class hierarchy. Three forms of behaviour-preservation are studied:

access preservation means that variables accessible from a method in the origi-
nal program are still accessible from that method in the refactored program,

call preservation means that calls in methods in the original program are also
made in the associated methods in the refactored program, and

update preservation means that variables modifiable by methods in the origi-
nal program are still modifiable (though possibly through some intermediate
means) by corresponding methods in the refactored program.

Mens et al. call their technique “lightweight” because it is concerned with
preservation of specific types of behaviour rather than full behaviour-preservation.

The technique is limited to preserving the behaviour of meaningful programs
through the specification of well-formedness criteria using graph schemas (also
called type graph): graphs are well-formed if they are instances of graph schemes.
For negative elimination they use forbidden subgraphs: graphs are malformed if
they contain a forbidden subgraph. These serve as acceptance and elimination
criteria constraining the set of well-formed programs.

Refactorings are formalised as graph rewrite rules parametrised by identifiers.
The identifiers serve to name variables or methods, depending on the refactoring.
If the rule matches a subgraph then the subgraph is transformed to the rule’s
production. The newly generated subgraph is then connected to the containing
graph according to rules provided in embedding mechanisms : a set of rules that
adapt the context (the rest of the program/graph) in order to link to the subgraph
correctly. Further constraints on refactored programs, in order to ensure that
behaviour is not changed, are expressed as negative application conditions (also
called negative preconditions): if any of these conditions are satisfied then the
refactoring does not take place. These conditions, together with well-formedness
conditions, form the preconditions for performing a refactoring.



CHAPTER 7. RELATED WORK 85

The behaviour being preserved (i.e. a property satisfied by both original and
refactored graphs) is expressed using path expressions and verifying a refactoring
involves proving that there is a correspondence between the original and refac-
tored graphs wrt the path expression. For example, using the notation used in
Mens et al. (2005), the path expression B −−→

?∗a
V is satisfied by any path ending

with an access (thus the final a in the expression) of the value held in a variable
(to be unified with V ) starting from some method body (to be unified with B).
The alphabets containing a, B and V make up part of the definition of the graph
language used in Mens et al. (2005). Note that these path expressions would not
work with an AST since it does not express this kind of information directly.
For the refactoring to be access-preserving every match of this expression in the
original graph must correspond with a path in the refactored graph.

7.4 Garrido

Garrido uses Maude to formally specify and verify refactorings. She studies refac-
toring C’s preprocessor language (Garrido 2005) and Java (Garrido & Meseguer
2006). In both cases the languages’ semantics are first formalised in Maude as
equational theories. Maude is an algebraic specification language and its specifi-
cations might be executable. Specifications are encapsulated in modules. Within
modules one defines sorts and operations over them, along with relationships with
other modules and local variables. In functional modules one can also specify a
collection of equations to define the algebra’s equational theory. The specifications
are executable since the equations are used for term rewriting.

Garrido (2005) formalises the syntax and semantics of the language Cpp – C’s
preprocessor – in Maude. This (meta) language is independent of the program-
ming language C, and used by programmers to organise the structure of their
programs or tune the compilation according to external parameters, for instance
the kind of target platform being compiled to. Prior to compilation the source
code is transformed according to Cpp commands (“directives”) and Cpp-defined
macros are expanded.

In Garrido (2005, §6.4) she describes refactorings on C code, followed by a
catalogue of refactorings for Cpp directives. The informal description of each
refactoring is accompanied by fragments of Maude specifications. No proofs of
correctness are offered however.

In (Garrido & Meseguer 2006) this approach is repeated to formalise Java
refactorings and correctness proofs are also provided. The authors build on past
work to formalise Java in Maude and seek to address the dearth of work done on
formal refactoring. They identify two tasks: (i) formalising the specification of
refactorings, thus producing a formalised catalogue, and (ii) proving that refac-
torings are indeed behaviour-preserving.

They give the following reasons why their approach is appealing:

• refactorings are specified formally
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• the refactorings are proved to be behaviour-preserving

• the specifications are executable

• users can add their own refactoring

In this article the authors focus on three refactorings and describe correctness
proofs for two of them. The proofs are carried out using the algebra’s equa-
tional theory to show that refactored programs are equal in behaviour to the
original programs. Part of the specification of “Rename Temporary Variable”,
from (Garrido & Meseguer 2006), is shown in Figure 5. As a brief outline of the
syntax: fmod and endfm enclose a functional module, pr indicates which other
modules the current module extends, and var declares variables. The keywords
op and eq declare operations and equations respectively. The symbol <- denotes
the application of a refactoring on its RHS to a piece of program code on its LHS.
Note how the description of the refactoring in this specification follows the usual
pattern:

op RenameTemp : Name Name NatList

-> JavaBlockRefactoring.

eq B <- RenameTemp(Old, New, L)

= if precondsRenTempHold(computeSymbolTable(B),

Old, New, L)

then applyRenTemp(B, Old, New, front(L))

else B fi .

The rest of the specification elaborates further on the definitions that this
refactoring relies on. Garrido & Meseguer (2006) place their work in the context
of a plan to derive programming tools from the specification of the programming
language in order to produce correct tools. They emphasise the importance of
having generic methods, that is, being able to address several languages.

7.5 Cornélio

Cornélio (2004) studies refactorings in a language called ROOL (for “Refinement
Object-Oriented Language”) inspired from Java. The language is a sequential
class-based language with dynamic binding. The semantics of ROOL are for-
malised using weakest preconditions. Based on these semantics, Cornélio proves
laws, i.e. equations between commands, about the language. This approach is
described in detail in (Borba et al. 2004). Since ROOL is a refinement language,
commands might be programs or specifications or hybrids of both, and are used
within the refinement system to derive programs from specifications in a correct
(meaning-preserving) manner.

Cornélio then derives refactorings by appealing to these laws to show that
refactorings are “correct by construction”. This approach is also used in Cornélio et al.
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fmod RENAME-VAR-REF is

pr JAVA-REF. pr BLOCK-REF-HELPERS. pr ST-QUERIES.

var B:Block. vars Old New: Name. var L:NatList.

var ST:SymbolTable. var bs:BlockStatements. var N:Nat.

op RenameTemp : Name Name NatList

-> JavaBlockRefactoring.

eq B <- RenameTemp(Old, New, L)

= if precondsRenTempHold(computeSymbolTable(B),

Old, New, L)

then applyRenTemp(B, Old, New, front(L))

else B fi .

op precondsRenTempHold : SymbolTable Name Name

NatList -> Bool.

eq precondsRenTempHold(ST, Old, New, L)

= isDeclarationAt(ST, Old, L) and

not isNameVisible(ST, New, front(L)) .

op applyRenTemp : Block Name Name NatList -> Block.

eq applyRenTemp({ bs }), Old, New, (0 L))

= { applyRenTemp(bs, Old, New, L) } .

eq applyRenTemp(bs, Old, New, (N L))

= replaceSubtree(bs, N,

applyRenTemp(subterm(bs, N), Old, New, L)).

eq applyRenTemp(bs, Old, New, nil)

= replace(Old, New, bs) .

op replaceSubtree : BlockStatements Nat

BlockStatements -> BlockStatements.

op replace : Name Name BlockStatements

-> BlockStatements.

Figure 5: Part of the specification of “Rename Temporary Variable” refactoring
in Maude, from (Garrido & Meseguer 2006)
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class C extends D
ads
meth m

∧

= pc end; ops
end

=cds,c

class C extends D
ads
ops

end

provided
(→) B.m does not appear in cds, c nor in ops, for any B such that B ≤ C.
(←) m is not declared in ops nor in any superclass or subclass of C in cds.

Figure 6: Specification of “Method elimination” refactoring from (Cornélio 2004)

(2005) to demonstrate the use of refactoring in arranging the organisation of soft-
ware into functional layers that address different concerns – e.g., a layer of purely
functional behaviour and various layers of communication, such as GUI, database
access, etc.

In ROOL a program consists of a sequence of classes cds and a main command
c, and is denoted using cds • c.

The equivalence of two programs cds1 cds • c and cds2 cds • c, differing by the
definition of the prefixed classes, is expressed as cds1 =cds,c cds2 (where = denotes
semantic equality and =cds,c indicates that the LHS and RHS share a common
suffix or context). Class-based refactorings are then specified as equations between
the original and refactored classes against the equation’s context.

Refactorings are specified as equations followed by their side-conditions – for
example, Cornélio’s definition for the method elimination refactoring in ROOL
is shown in Figure 6. In the side-conditions, note that B.m is an invocation
of method m in class B and B ≤ C asserts that B is a subclass of C. Side-
conditions that apply when moving from the left to the right of the equation are
prefixed by (→), and (←) is used for the converse. Side-conditions that apply
when refactoring in either direction are prefixed by (↔).

In (Borba et al. 2004, §8) the authors mention that some of these ideas have
been mechanised using Maude (described in the previous section). More recently,
Junior et al. (2007) use CafeOBJ to mechanise ROOL and some of its refactor-
ings. CafeOBJ is a recent member of the OBJ family of wide spectrum languages,
i.e. languages encompassing a programming language and an algebraic specifi-
cation layer. Maude, mentioned earlier, is also related to the OBJ family. The
mechanisation follows the same pattern as the formal development: refactorings
are composed from the laws of ROOL. The authors give examples of mechanised
specifications of refactorings and their correctness proofs. However the develop-
ment was done under the assumption that the side-conditions were satisfied. That
is, the side-conditions were not mechanised and the authors set this as future work.
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7.6 Other

Mens & Tourwé (2004) survey research on refactoring from both a theoretical and
a tool-based point of view. Some of the principal approaches to formal refactoring
have been described in previous sections. We will now briefly outline other work
in which formal methods play a central rôle.

Kniesel & Koch (2004) address the difficulty encountered by end-users in defin-
ing refactorings they might need. Kniesel & Koch propose a refactoring editor 1 to
facilitate the construction of refactorings. This editor rests on their formalisation
of refactoring composition. They argue that composing refactorings is an impor-
tant operation but it is hindered by the difficulty of deducing the preconditions
for the compound refactoring from its constituents. Inspired by Roberts’ idea
of “postconditions” (described in §2.2.2), the authors formalise refactorings in a
way that facilitates the calculation of preconditions. They do this in a program-
independent manner in order to avoid having to recalculate the preconditions of
the composite refactoring on a per-program basis. Recall that the verification
of the “Extract a definition” refactoring described in Chapter 5 involved lemmas
showing that the compound preconditions implies the preconditions of intermedi-
ate refactoring steps.

Other research related to refactoring at the University of Bonn, where
Kniesel & Koch’s work originates, include the framework JTransformer, a code-
querying and transformation framework for Java programs, and GenTL – it is
similar in purpose but is language generic. It is similar to JunGL, described in
§2.1.1, developed at the University of Oxford. A different way to improve the
extensibility of refactoring tools involves producing an API using which third-
parties can develop their own refactorings. This was the approach taken in the
Refactoring Browser for Smalltalk (Roberts et al. 1997) and the HaRe tool for
Haskell (Li 2006).

Ettinger (2007) studies refactoring for a language similar to that used by
Cornélio (2004). Like Cornélio, Ettinger formalises the semantics of this language
using weakest preconditions. He focuses on using slicing to assist in refactoring.
Slicing involves extracting the portions of a program that directly or indirectly
influence the value of a particular variable at a specific location in the code. The
extracted code is called the program slice and the rest of the program is called
the complement. Slicing can be useful in refactoring when, for example, we would
like to encapsulate the code affecting a variable into a new procedure. Ideally,
the extracted code would not be duplicated into a new procedure, but removed
from the original program so as not to clutter it up. In order to mitigate the
complexity of writing slicing algorithms, Ettinger proposes a representation of
programs decomposed into an overlaid collection of slides (subprograms of the
original program) which may contain distinct but related program code. Slides
are sequentially composed together and interleaved by a padding of compensatory
code that serves to make the transformation behaviour-preserving by preserving

1their prototype is called ConTraCT, for “Conditional Transformation Composition Tool”
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the program’s binding graph. Ettinger calls this approach to building slicing algo-
rithms sliding. He presents this idea by starting from a näıve approach involving
code duplication and develops optimisations from this.

Goldstein et al. (2006) describe the method of jointly refactoring programs
and their contracts. Contracts originated in the programming language Eiffel and
are specification for parts of a program. They assert invariants, the assumptions
under which methods operate and the guarantees they provide to other methods
they call. Goldstein et al. study the use of contract information when refactoring
– for example, the contract might influence a refactoring’s side-conditions – or the
transformation of the assertions themselves as an effect of refactoring the code.
This is similar in spirit to one of the ideas described by Bannwart (whose thesis
was described in §7.2). The authors also describe the development of a tool, Crepe,
to partially automate this process. Crepe is an Eclipse plugin that makes calls to
Mathematica and uses its theorem-proving functionality to discharge proof goals
pertaining to refactoring assertions.

7.7 Program transformation

One must acknowledge that refactorings are comparatively recent examples of
behaviour-preservation program transformations. Earlier, “program transforma-
tion” actually implied behaviour-preserving program transformation. Indeed,
Philipps & Rumpe (2001) claim that work on program transformation is the
“roots of refactoring”. They emphasise the link between refactoring and prior
work in program transformation. Li described this connection too in (Li 2006,
§8.2).

Program transformations are implicitly behaviour-preserving but address dif-
ferent concerns. Examples of program transformations include program optimi-
sation and derivation. We have already seen some cross-fertilisation within the
area: Cornélio’s work, described in §7.5, applied ideas from program derivation
to refactoring.

Techniques for reasoning about a class of program transformations are often
applicable to other program transformations. Having previously described some
techniques to formalise and mechanise refactorings, we will now outline work done
to mechanise other kinds of program transformations. In our outline we describe
work that also uses Isabelle/HOL but indeed various other frameworks and proof
assistants have been used to verify program transformations.

Program optimisation is done by most modern compilers to render the target
code more efficient in some respect. For example, the optimisations com-
mon subexpression elimination and fusion work in different ways but both
minimise the memory used by the compiled program when executed.

Continuation-Passing Style (CPS) transformations are used in compilers to
render explicit the control flow in a declarative program. Minamide & Okuma
(2003) verify various CPS transformations using Isabelle/HOL.
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Glesner et al. (2007) verify different program optimisations (e.g. unreach-
able code elimination) and concentrate on nonterminating programs. They
formalise the semantics of programs as state-transition systems. Nontermi-
nating programs correspond to infinite objects and the authors use coin-
ductive reasoning to prove the transformations to be behaviour-preserving.
They use Isabelle/HOL to mechanise their proofs.

BMF (“Bird-Meertens formalism”), also called squiggol, is a relational approach
to program construction. It is an abstract form of programming involving
starting from abstract specifications and deriving programs that satisfy the
original specifications. This style of programming is combinator-based and
is also called “point-free programming”. Programs derived using such a
calculus are said to be “correct by construction”. This is similar in spirit to
the approach taken by Cornélio (see §7.5) to derive refactorings. Glimming
(2001) mechanises part of BMF using Isabelle/HOL, building on top of a
mechanisation of Category Theory.



Chapter 8

Conclusions

A number of refactorings have been verified mechanically using Isabelle/HOL. The
refactorings ranged from simple and elementary to compound structural and type-
based refactorings. The mechanisation process also served to reveal the challenges
faced when verifying refactorings formally and we have improved the technique
used in the second formalisation and suggested further improvements.

Using a proof assistant incurred a startup cost but we have benefited greatly
from using Isabelle to mechanise and present our results. Various similar and
complementary tools exist to assist in the mechanisation of mathematics, and
more are being developed for the purpose of programming language theory. For
example, the tool ott (Sewell et al. 2007) reads specifications of programming
languages and can translate them into various other languages (including LATEX,
Isabelle, Coq, etc) and can check the specification for basic flaws. These devel-
opments are very encouraging, and indeed the challenge posed by Aydemir et al.
(2005) to determine the facility with which programming language theory can be
mechanised was in response to the progress done in tool development. It is hoped
that appropriate tool support may facilitate formal development, leading to the
widespread development of correct programming tools and resulting in more cor-
rect programs for end-users. It is more pressing that metaprogramming tools are
correct since they might pass on defects to other programs.

We have not made full use of the tools available. More benefit can be derived
by using the proof assistant’s program extraction facilities to generate certified
implementations of refactorings.

In the next section observations made during Chapters 5 and 6 will be dis-
cussed, then directions for future work will be suggested.

8.1 Discussion

8.1.1 Correctness

The correctness of our proofs was checked by machine, so our trust in the proof
is delegated to the proof checker. The level of assurance in the checked proofs is
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increased if the proof checker’s design abides to the de Bruijn principle (described
in §3.1.1).

If we trust the proof checker then the validity of our proofs hinges on the defini-
tions used in the formalisation. An omitted side-condition or mistype might make
our rules too weak, leading to non-theorems becoming provable. To some extent,
checking the definitions can be automated (see the tool ott (Sewell et al. 2007),
described earlier, or the approach suggested by Cheney & Momigliano (2007)
based on bounded model-checking to search for counter-examples).

8.1.2 Economy

By “economy” we refer to both the efficiency of the specified refactorings and to
reducing the effort of formal development:

• When compared to Chapter 5, proof effort in Chapter 6 was facilitated by
using two layers of language: the first layer (core) contains language prim-
itives and the second layer consisted of a definitional extension (“syntactic
sugaring”). During proofs one needs only to unfold the syntactic sugaring
into the primitive syntax and reason at the level of the core language.

• Weak side-conditions render refactorings more generally-applicable. This
was discussed with an example in §6.4.1.

• Making the terms checked by side-conditions as small as possible may op-
timise a refactoring’s definition. Trying to split up checks on large terms
into several checks on smaller terms can help since it might spare some
unnecessary computation. This was discussed in §5.4.2.

• When specifying the side-conditions, we focused on checking the original
program rather than the transformed version. If checks on the latter fail
then the effort spent transforming the program would have been wasted.
This was discussed on page 50.

• A popular rule of thumb when using a proof assistant advises to keep defi-
nitions simple, since the complexity of definitions affects the complexity of
proofs.

• Rather than mechanising the complete system, one could save work by build-
ing on a foundation found in a mechanised corpus, if available.

• Apart from establishing a theorem, the formal development can be used
to produce the implementation of the refactoring. The proof assistant’s
program extraction facility might be used to automate this.
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8.1.3 Technique

In Chapter 5 we witnessed the effect of reasoning in a language having mutually-
dependent syntactic categories. This occurrence is not unusual in languages: con-
sider languages having module and intra-module levels as, for example, can be
seen in Li’s language λM in (Li 2006, §7.6) (described in §7.1).

Recall the two models of refactorings described in §2.2.1: interaction and com-
pensation. Choosing the model is important as a starting point since it affects
the definition of the transformation operations. After choosing to use the inter-
active model we then chose the variable-capturing definition of the substitution
operation, whereas a renaming substitution operation would have seemed more
natural had we taken the compensating approach. The interactive model requires
making all the checks prior to transformation. A variable-capturing substitution
operation is used since the checks done earlier would have served to ensure that
no capture will take place during substitution.

Had we gone for the compensation model and used a renaming substitution
operation the refactoring would have had less side-conditions – for example, one
would not need to check for variable capture. However, this model potentially
transfers effort to the user: the user might need to perform another refactoring or
choose to undo the refactoring, adapt the code, then reapply the refactoring.

As discussed earlier, if a refactoring is defined having strong side-conditions
then there are less programs to which the refactoring can be applied. We explored
weaker predicate definitions in the mechanised results. The ¬Captures predicate
formalises the Barendregt Variable Convention (BVC), described in the Prelim-
inaries chapter. While this Convention is suitable to facilitate reasoning about
programs in the abstract, the BVC is too strong an assumption when reasoning
about normal programs since they not written to adhere to this variable-naming
principle. An improvement to using Captures was discussed in §6.4.1.

8.1.4 Readability

We tried to specify the behaviour-preservation theorems such that they expose
the behaviour of the refactoring. That is, just by looking at the theorem one can
understand both the side-conditions and the transformation. Specifications such
as those in Maude, described in §7.4, are very rich in information but this can
degrade readability.

We chose this approach over another approach that was purely directed at
verifying the refactorings. Let r be a refactoring defined in the metalogic (since
refactorings are total functions they can be encoded in HOL in this manner) and
let~i represent the arguments given to r. The correctness theorems would then all
look alike modulo r and ~i:

∀p~i. (r p~i) ≃ p

While still establishing correctness, such a formulation would not have exposed
the behaviour of the refactoring being verified.
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8.2 Future work

There are several directions in which future work can be pursued.

Technical: The technical direction entails exploring different ways of achieving
the same thing to derive empirical contrasts. One might compare the diffi-
culty and benefits of using algebraic systems such as Maude or CafeOBJ to
using LCF-style proof assistants such as Coq or Isabelle, or using a logical
framework such as Twelf.

Another variation involves comparing different language encodings used
when verifying refactorings. Some encodings were described in the Pre-
liminaries chapter and in §3.2.

One could also extract certified refactorings from the correctness proofs.
This would also entail working to extract efficient implementations of refac-
torings.

Method: One could use a weaker equivalence to verify refactorings, perhaps
by adapting the method used by Glesner et al. (2007) described in §7.7.
Through such an approach one could study refactorings effecting more pow-
erful transformations.

Language-related: More work on formal refactoring in larger programming lan-
guages needs to be done. Despite that the language used in Chapter 5 is
less sophisticated than that in Chapter 6 due to being untyped, it exposed
the complexity of reasoning about languages consisting of multiple syntactic
categories. Such a multicategorical organisation in realistic languages occurs
frequently – for instance, in languages having module systems – so future
work could seek to fuse the two styles of languages studied in this disser-
tation. Another possibility for future work could involve language-generic
refactorings, e.g. for type-based refactorings in object-oriented languages as
suggested by Mens et al. (2005) (described in §7.3).

Tool-related: One could also focus on the interface between refactoring tools
and other tools in a programmer’s toolchain. For example, in Chapter 6
one could appreciate the interaction between the refactoring and the type-
checker. In this refactoring some of the side-conditions involved invoking
the type checker on parts of the program and on the new expression to be
introduced in the program.

In their work Goldstein et al. (2006) exploit the interaction between a refac-
toring tool and a theorem prover. Their work is described further in §7.6.

By studying the interface between the tools one can make explicit the obli-
gations of each tool and verify that their combined use is correct.

Refactoring-related: The mechanised refactorings could be used in exploring
the design space, described in (Li 2006, § 2.8). That is, experimenting with
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different formulations of refactorings; this is useful to study differences be-
tween similar formulations and would also serve to gradually build a proper
catalogue of mechanised refactorings.

For example, the refactoring described in §4.2.6 and verified in Chapter 6
could be specialised to focus on functions to produce the refactoring “Enlarge
return type of a function”. Rather than refactor functions of type τ → τ ′

into (τ → τ ′) + σ, this new refactoring would instead change the type to
τ → (τ ′ + σ). The work described in Chapter 6 could then be extended to
verify this refactoring.

Another possible direction involves mechanising internal quality metrics of
programs to capture the usefulness of applying a refactoring. That is, when
a user chooses to apply a refactoring the tool might assess the effect of the
refactoring on the program structure and inform the user about how the
software metrics would be changed by the refactoring.

One could focus on the usability of refactoring tools. This might involve
mechanising work such as the layout-preservation algorithm described in
(Li 2006, §2.4). Such a mechanisation would require one to bridge the gap
to work at a concrete level of programs – at least at the level of tokens. This
would provide further assurance to users of the refactoring tool: that not
only the correctness of refactoring transformations has been checked, but
also that of other related pre/post-processing steps.

The work described in this dissertation has focused on interactive refactor-
ings. The core idea of this view of refactoring is that a refactoring is not
empowered to effect any lateral changes – such as rename variables – and
if the refactoring attempt fails it may be retried by the user with different
parameters. Despite its “pure” nature this view also seems sensible, but it
would be fruitful to examine the compensating view closely and especially
to study the relationship between interactive and compensating refactorings
– for instance, how easily they could be intertransformed, or the appeal of
using one approach over the other in certain settings. This could potentially
enrich the programmer’s toolset by providing them with more configurable
refactorings as a result of an interactive-compensating hybrid approach.
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