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Abstract

A possible solution of combining General Relativity and Quantum Mechanics is given by 

means of writing the Dirac equation in curved space-time using Weyl’s tetrad formalism.

First some background information is given about the necessity and problems of 

incorporating gravity into Quantum Mechanics. Then the fine details are described of how 

the Dirac Hamiltonian can be found in Riemannian spaces. The rest of the thesis is devoted 

to applying this method to describe the effects of stationary and rotating gravitational 

sources. This results a possible test of the Equivalence Principle in the quantum domain, as 

well as finding the limit of the applicability of various approximations of the Earth’s field. 

Finally a general relativistic treatment of the COW experiment is given.
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Chapter I: Introduction

1 Introduction

1.1 Historical remarks

It is a truism that any experiment performed on the Earth is done under the effect of 

gravity. Gravitation, one of the four basic interactions governing the structure and 

behaviour of the material world, has by far the smallest effect. To detect a gravitational 

effect objects of large masses which are electrically and magnetically neutral have to be 

used. The gravitational coupling is so weak that the gravitational attraction between two 

protons is 1039 times less than the electric repulsion; an alternative comparison would show 

that the order of magnitude of the gravitational term in the Hamiltonian is approximately 

109 times less than the rest mass energy term when a particle in the Earth’s field is 

considered. Even the Sun causes very little distortion of space-time; a ray passing by its 

disk is deflected only by 1.75 seconds of arc. It is very difficult to detect these effects, 

since the order of experimental error involved in these experiments, until recently, used to 

exceed gravitational effects by several orders of magnitudes.
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For these reasons it is standard practice to ignore the effect of gravity in the case 

of laboratory experiments and to apply whatever physical theory is relevant; equivalently, 

to apply the physical theory in flat, rather than in curved space. It sounds even more 

plausible that this procedure is above all justifiable in the quantum regime: whoever 

thought that gravitational effects would manifest themselves at the quantum level?

It is now more than twenty years since Colei la, Overhauser and Werner succeeded 

in performing an experiment which made it possible to detect gravitational effects in 

neutron interferometry. This experiment and the improved follow-up versions are 

commonly referred to as the COW experiments (for details see Ch. 2.4). When in 1975 

Colella, et al. reported on their detection of gravitational effects in neutron interferometry, 

their paper meant a lot more than simply a report on an experiment no-one had done 

before. It proved that the standard practice of ignoring gravity when talking about quantum 

systems was wrong. To put it right was not a matter of putting an extra term in the 

calculations: a whole conceptual problem arose when one tried to combine general 

relativity and quantum mechanics. The phase shift in the experiment was explained by the 

authors using Newtonian mechanics, and this was a satisfactory approximation, because of 

the order of the experimental error involved. Since 1975, however, new experiments have 

been suggested, and the use of atomic interferometers is expected to increase the accuracy 

of the COW experiments by a factor of 101 °, which will take us to the regime where 

relativistic corrections become relevant. So apart from the matter of principle, that the 

proper description of gravitational effects is achieved by using Einstein’s general relativity, 

there is a practical need too for a higher order description of gravitational effects on 

quantum systems.
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1.2 Aim of thesis

As explained in the previous section, the direct evidence of gravitational effects 

manifesting themselves in neutron interferometry established a demand for describing 

general relativistic effects in quantum systems. In this work a synthesis of the distinct 

fields of General Relativity and Quantum Mechanics is attempted.

The aim of this thesis is to find the proper method of analysing the behaviour of 

quantum particles, especially spin-l/2  particles in an Earth-bound laboratory, i.e. to give a 

description of gravitational and non-inertial effects on them. The method used throughout 

this work is to find the Dirac Hamiltonian in whatever circumstance and approximation is 

appropriate.

First it is necessary to define the correct procedure for the determination of the 

frame, and solving various technical problems such as using the epsilon symbol in curved 

spaces, absorbing the determinental factor of the invariant volume element into the 

wavefunction, and taking the proper non-relativistic limit of the resulting Hamiltonian.

When these problems are clarified the effects of curved spaces and accelerated 

frames on spin-'/i particles can be examined by giving an approximate description of the 

effect of the Earth’s gravitational field. Comparing the effects of gravity and acceleration a 

test of the Equivalence Principle is gained in the quantum domain. Further studies of 

rotating frames in Minkowski, Schwarzschild and Kerr spaces would provide a higher 

order description of experiments performed in laboratories.

Using the results of these analyses I attempt to give a general relativistic 

description of the COW experiment.
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1.3 Outline of thesis

This thesis is a report of my work concerning non-inertial and general relativistic effects on 

quantum systems, specifically on spin-fi particles.

Chapter 1 consists of general remarks, including a historical review of the topic, a 

statement of objectives, an outline of the thesis and general remarks on notation.

In Chapter 2 the theoretical and experimental backgrounds of this work is 

reviewed. This includes short discussions of the relevant theoretical concepts of Quantum 

Mechanics and General Relativity, as well as raising the problem of applying these two 

simultaneously. Then a brief overview of neutron and atomic interference experiments, 

testing gravitational and non-inertial effects on quantum systems, is given. In the end a 

summary of the preceding results in the field of finding the Dirac Hamiltonian in various 

spaces is presented.

Chapter 3 shows how the Dirac equation may be written in a general Riemannian 

space. It enters into details of the steps of the procedure such as choosing coordinates, 

determining the frame, various methods of finding the connection coefficients, using the 

epsilon symbol in curved spaces, absorbing the determinental factor of the invariant 

volume element into the wavefunction, and taking the proper non-relativistic limit of the 

resulting Hamiltonian. As examples of the use of the above, then, the form of the 

momentum operator is derived in isotropic and spherical polar coordinates, and the effects 

of rotation and position dependence of the frame are investigated.

The thesis proceeds in Chapter 4 to the application of the method described above, 

to give a description of the effect of stationary gravitational sources on spin-Vi particles. 

The Dirac Hamiltonian is written in the Schwarzschild field and then being compared with 

the corresponding result in an accelerated Minkowski space. Then remarks are made and 

conclusions arising from this analysis are drawn concerning the Equivalence Principle.

Chapter I: Introduction
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Chapter 5 examines the effects of a rotating gravitational source on Dirac 

particles. To analyse the situation rotating frames in Schwarzschild and Kerr spaces are 

used and the resulting Hamiltonians are compared with each other, as well as, with the 

purely non-inertial effects of an accelerated rotating frame to determine the limits of the 

applicability of these three models when describing experimental results in Earth-based 

laboratories.

A reanalysis of the COW experiments takes place in Chapter 6 as a general 

relativistic derivation of the phase shift is presented.

A summary of the main results of the thesis and some directions for further study 

are given in Chapter 7.

Finally references of all the work cited in this thesis is included.

5
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1.4 Conventions

Small Latin indices (a,b,...i, j,...) run from 1 to 3 referring to spatial components, while 

small Greek indices (a. ... k , /j , ...) running from 0 to 3 note all space and time

components. Unmarked indices, both Latin and Greek, (a,b,...a, /3,...) refer to coordinate

basis components, indices with hat \a,b,...d, ft , . . )  refer to orthonormal basis 

components.

The Greek letter phi is used in several contexts, but different letter types are used: 

O denotes the “gravitational potential”, 0 the phase shift and cp is the polar angle. There

is a similar “degeneracy” in the notation concerning theta: 6L' denotes the basis I-forms 

and $ is the other polar angle. Also, a g with a single index g; means one component of 

the “gravitational acceleration” and with two indices g it refers to the metric tensor. 

Evidently g with a vector notation is the acceleration.

G denotes the universal gravitational constant, M the mass of the gravitating 

source. If the gravitational source is rotating, a is used to denote its angular momentum per 

unit mass, and to or a)'=(0,0,to) its angular velocity, to is used also, as the angular velocity 

of a rotating frame of reference, which has the same value as the angular velocity of the 

rotating mass. An a>uv with two indices refer to the connection 1-forms.

F^vk- and C0Vk are the connection coefficients or Christoffel symbols and the 

structure constants, respectively. The ordinary derivative is usually denoted with a comma:

A.... =■il.v
to t
dxv

Square bracket [] is used for commutator, curly brackets {} are used for

anticommutator relationships.

6
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The signature of the space-time metric is g^v is used to denote the

metric tensor in an arbitrary space in coordinate basis, and g ̂  = Tf̂ v notes metric in 

orthonormal basis, i.e. the Minkowski metric tensor.

Basis 1-forms are denoted by 9^, and the dual vectors by ev . The duality is

expressed as

(# ',« ,)  (i.i)

whereas the scalar product is denoted by ordinary brackets:

{ e \ 6 v ) = g MV and (eM,ev)=g^v. (1.2)

The wedge product of the 1-forms is antisymmetric

dxf' a  dxv -  -dxv a  dxM . (1-3)

The line element in coordinate basis is

ds2 = gflv dxM dxv , (1.4)

and in orthonormal basis

ds2 = llfn;0p 6 \  (1.5)

At some points in this thesis equations have been simplified by using the 

convention h — 1 or c = 1 or both, though in other places they have been retained for 

clarity. The summation convention is used throughout the thesis, when the same index 

appears twice, once in covariant and once in a contravariant position.

7
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2 Background

2.1 The theory of gravity - General Relativity

“Gravity is a habit that is hard to shake off’ (T. Pratchett, Small Gods)

Physics, trying to explain the behaviour of the inanimate world, is a collection of 

mathematical models, consisting of differential equations, accompanied by rules 

correlating mathematical results and meaningful quantities of the physical world. In the 

case of the “gravitational interaction” it is Einstein’s theory of general relativity which is 

the accepted model at present. Here the differential equations are geometric requirements 

on space and time together with the field equations describing the interaction of matter and 

space.

Studying gravitational effects is probably the oldest discipline in science: it can be 

considered as old as man who looked up at the stars in the early days of history. During 

this long time several concepts had to be demolished as more accurate observation 

techniques developed. Also, the theoretical study of gravitation has always relied on

8
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advancements in mathematics: inventing calculus provided a useful tool for Newton to 

formulate his theory, and general relativity could not exist without Riemannian geometry.

Shortly after the publication of Einstein’s Special Theory of Relativity (SR) it 

became clear that it was inconsistent with Newton’s Theory of Gravity, because of its 

space but not time dependence. The generalisation of SR (laws of physics are invariant 

under all, not only linear transformations) provided a new theory of gravity. “The 

extension of the principle of [special] relativity implies the necessity of the law of the 

equality of inertial and gravitational mass. The general theory of relativity must yield 

important results on the laws of gravitation.” [Einstein, 1924]

Based on the idea of Galileo’s falling body experiment Einstein generalised the 

theorem, that no experiment in mechanics can distinguish a gravitational field from an 

accelerated frame, to formulate the equivalence principle (EP): no experiment in physics 

can distinguish the local effects of gravity and acceleration. A consequence of this 

principle is that light travels on a curved path. Together with Fermat’s least action 

principle it leads to the idea of curved spaces.

General Relativity (GR) is a theory of gravity describing it in terms of curved 

spaces. Picturesque examples for GR can be given: the Earth orbiting the Sun can be 

explained by saying that in a curved space curved orbits are natural or another example is 

the bending of light by massive stellar bodies. In this theory, terms such as gravitational 

field, force or gravitational interaction have no meaning any more. Many different 

mathematical entities are associated with gravitation: the metric, the Riemann curvature 

tensor, the covariant derivative, the connection coefficients, etc. Each of these plays an 

important role in gravitation theory, and they are all related to each other. Thus the terms 

“gravitational field” and “gravity” usually refer in a vague, collective sort of way to all of 

these entities.

9
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Research in the field of GR may involve a purely mathematical analysis of the 

differential equations of the model (Einstein’s field equations) finding as many exact 

solutions as possible. See for example Kerr [1963] or for a summary on the subject Kramer 

et al. [1980], The other type of research in general relativity involves the mathematical and 

physical interpretation of the obtained solutions. In my research I contributed to this latter 

type of work using the known solutions for certain cases, such as Schwarzschild’s, Kerr’s 

or the accelerated frame metric, analysing their properties and effects on quantum systems.

Experimental tests of gravity can be done on two levels: with the technological 

advances of the last century the solar system, providing objects with large masses, became 

a good source of observational data, whereas experiments in Earth-bound laboratories 

allow controlling of various conditions. The dynamic progress of experimental techniques 

provoked the quotation “General relativity is no longer a theorist’s paradise and an 

experimentalist’s hell’’ [Misner et al., 1973], Overviews on experiments performed to test 

general relativity are by Vessot [1984] and Cook ] 1988],

I have no intention to give a complete description of the principles of GR here. 

Even a short summary would take up more space than this dissertation. I intend to give 

only a basic insight into its concepts, and refer the reader to various textbooks for details 

[see for example Misner et al., 1973], Another short and very picturesque, with hardly any 

equations involved, introduction is given in Feynman’s book [Feynman et al., 1975], I will 

define each quantity when necessary as it turns up along the calculations.

In mathematics curved spaces are dealt by using Riemannian geometry. A space is 

characterised by a metric

ds2 = gflv dxn dxv (2.1)

10
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which carries all the information about the space. Characteristic quantities are usually 

calculated from the components of the metric tensor, carrying special information about 

the space, for example the connection coefficients are calculated in a coordinate basis, as

r %  = - X PK UCvu, - g> Æ/.I.K )• (2.2)

Unlike in SR, where the metric has only a passive role, in GR the metric plays an 

active role, because the geometry of the space is not fixed in advanced, but determined by 

the mass distribution. To obtain a metric, Einstein’s field equations should be solved. 

These are complicated nonlinear tensor equations, and no general solution is known. There 

are a few special cases, such as the field outside a spherically symmetric body at rest, in 

which the field equations can be solved. The metrics I use in my calculations are

• Schwarzschild space: outside the surface of a spherically symmetric, stationary 

gravitational source [Stephani, 1990]

els 2 = 1- 2
GM

\  rc !
c2d r  -■ I

- 2
GM
rc*

dr2 -  r2 [dû2 + sin 2 û dtp2) (2.3)

Kerr space: outside the surface of a spherically symmetric, rotating gravitational source 

[Hawking and Ellis, 1974]

ds~ = Z

with

r dr2
+ dû2 + (r " + a2 )sin2 ûd(p2 -  d r  + sin2 û dep -  dt)

Z = r 2 + cd cos2 lì and A = r 2 - 2  mr + a2

(2.4)

(2.5)

lat space in an accelerating, rotating frame of reference [Hehl and Ni, 1990]

ds2 =
( a ■ x  ^

i +  -  r

2
c2d r  -

f
dx' + (Û

— X JC
i y  
c dt

l  c ; V
c

7

(2 .6)

11
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In GR contravariant, covariant and mixed tensors are defined by their 

transformation properties. The method of changing the position of indices is to apply the 

metric tensor. For example lowering the last index of the connection gives:

¡IV  K (2.7)

where the usual summation convention is used.

A helping tool to deal with Riemannian geometry is the use of differential forms, 

which may make calculation easier. An example is given in Appendix 3.12.1.

Finally 1 should note here that in this thesis gravity is treated in the classical way, 

i. e. it is not quantised and torsion is not considered.
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2.2 Quantum Mechanics

At the end of the I9lh century, a series of experimental results (e.g. spectrum of blackbody 

radiation, photoelectric effect, electron diffraction) were presented, which were impossible 

to explain by the classical physics model. These observations led to the development of 

quantum theory. Quantum mechanics (QM) is the presently accepted way to describe the 

behaviour of matter and light in all its details on the atomic scale. As our everyday 

experience concerns large objects only, one may find that QM “represents an abrupt and 

revolutionary departure from classical ideas, calling forth a wholly new and radically 

counterintuitive way of thinking about the world” [Griffiths, 1995],

In QM particles and waves are characterised by the probability density, which is 

the square of the wavefunction. To determine the wavefunction, the wave-equation has to 

be solved. The first such wave-equation was written down by Schrodinger by substituting 

differential operators for T and p into the non-relativistic energy relation:

T = _P_ 
2 m

(2 .8)

to get the Schrôdinger equation of a free particle

ih — 'Y = -  —  v 2vr
dt 2m

(2.9)

A starting point for a relativistic equation could be Einstein's energy relation

T-. 2 2 2 , 2 4E = p c + m c

giving the Klein-Gordon equation

( 2 . 10)

f az

dr
-V; y¥  + m  =  0 (2 . 11)

with the usual h = c = 1 convention. The Klein-Gordon equation expresses nothing more 

than the relation between energy, momentum and mass, so this equation has to hold for any

13
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particle. For particles with a spin, all the spin components have to satisfy the Klein-Gordon 

equation.

The wave-equations for spin Vi (Dirac and Weyl equations) and spin 1 (Maxwell 

and Proca equations) particles can be derived from the transformation properties of spinors 

under the Lorentz group [Ryder, 1996 Ch. 2. and references therein). Therefore these 

equations simply express a relation between the components of the wavefunction; in 

Weinberg’s words, they are a confession that we have too many spin components 

[Weinberg, 1964 ].

The focus of this thesis is the effects on massive spin Vi particles, therefore the 

Dirac equation will be used:

which equation became famous by successfully predicting the existence of antiparticles 

and the correct value for the electron magnetic moment [for details see for example 

Shankar, 1988).

In QM observables are represented by operators, and measurement results 

correspond to the eigenvalues of the operators. Therefore physically meaningful results 

require real eigenvalues, i.e. the operators have to be Hermitian.

I would like to note here that the above mentioned wave-equations are relativistic 

in SR sense only, but they are not consistent with GR!

( 2. 12)

14
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2.3 Combining QM and GR

Any theory of the fundamental nature of matter must of course be consistent with relativity 

as well as with quantum theory. GR usually concerns the behaviour of big objects, on the 

scale of the solar system or larger, whereas QM plays an important role in the micro world. 

Thus there seemed to be no need for these models to be applied simultaneously until the 

COW experiments proved the opposite.

To resolve the problem of wave-particle duality, William Bragg once suggested 

using the corpuscular theory on Monday, Wednesday and Friday, and the undulatory 

theory on Tuesday, Thursday and Saturday (Sunday is a day off). A similar phrase could 

easily be applied for the theories of QM and GR considering that the two models are really 

different. The language of GR is a language of scalars, four-vectors and tensors, while the 

Dirac equation describes the state of quantum systems by spinors. The possible 

combination of the two models was not even understood by Dirac, but later Weyl gave a 

solution to this by applying tetrad-fields. This method will be described in Chapter 3. In 

spite of all the differences in the essence of these theories, Anandan claims that “gravity 

appears to be deeply rooted in the wave-particle duality of matter” [Anandan, 1980 and 

references therein].

The general theory of relativity is compatible with all other classical theories, but 

a complete unification with quantum theory has not been achieved. “Quantum theory 

assumes a Minkowski space of infinite extent, whereas GR shows that the space is 

Riemannian.” [Stephani, 1990] But it is possible to introduce a locally flat coordinate 

system at every point of space-time, and consequently get rid of the gravitational effect, 

which makes it possible for the two theories to work simultaneously at regions of small 

curvature.

There are various possibilities to combine GR and QM.

15
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• The successful unification of the weak and electromagnetic interaction gave rise to the 

idea of including the strong and gravitational interactions, as well. Creating this “theory 

of everything” (superstring theory), has not been achieved, so far. In case of a source- 

free weak field the quantization of the gravitational interaction can be done and it 

results in massless, spin 2 quanta [Stephani, 1990 Ch. 13.2], However, the general 

solution for quantizing the gravitational field has not been found.

• Another possible solution for the problem of the coexistence of GR and QM is the 

semiclassical gravity theory. In this case the gravitational field is treated classically, 

whereas the rest of the fields are quantized. Einstein himself was a supporter of this 

view. The main problem in this approach is the interpretation of states. Even the 

vacuum state is not universal: what one observer regards as vacuum, the other may 

regard as a mixture of particles.

• A third approach involves quantization in a given classical gravitational field. When 

one tries to carry out the quantization procedure in curved space-time difficulties arise 

because of the non-flat space-time. The most spectacular example of these difficulties 

is the prediction of the creation of particles by a gravitational field. Hawking [1975] 

found that in black holes particles are created, and they have a thermal spectrum

1026 Kequivalent to a black body of temperature --------, where M is the mass of the black
M

body measured in grams. In this approach the problem of the back-reaction of the 

particle creation on the metric is still unsolved.

Let me comment here on the different roles of gravity in quantum and classical 

mechanics following Sakurai’s (1994] argument. In the classical equation of motion of a 

falling body

m'x = (2.13)

16
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the mass term cancels, as a consequence of the equivalence of inertial and gravitational 

mass. As mass does not appear in the equation of a particle trajectory, gravity, in classical 

mechanics, is often said to be a geometric theory. On the other hand, in the wave- 

mechanical formulation

l.- n
------ V2 + /?; O = — ^

2 m * dt
(2.14)

mass does not cancel, and it always appears in the combination . To see a nontrivial

quantum-mechanical effect of gravity, therefore, we must study effects in which h appears 

explicitly. In the analysis of the COW experiments (Chapter 2.1) it is found, that the phase

shift depends on proving that at the quantum level gravity is not a purely geometric

concept.

17
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2.4 Experimental results and interpretation

2.4.1 Neutron interference experiments

Gravity is known as a theory of the large scale and quantum mechanics is associated with 

the small scale. It was experimentally demonstrated that neutrons are subject to 

gravitational acceleration, and found that they fall on a parabolic trajectory [Dabbs et al., 

1965]. Though this incorporates small particles and gravity, it is a classical phenomenon, 

without any quantum mechanics involved. Some time later a neutron interference 

experiment was suggested by Overhauser and Colella [1974] in which gravity and quantum 

mechanics would play an essential role, simultaneously. The experiment was carried out 

and the report on it [Colella et al., 1975] was the first to contain a formula with both the 

gravitational acceleration and Planck’s constant in it. Therefore they provided, in principle, 

the first link between GR and QM. This experiment is usually referred to as the COW 

experiment.

The authors used a Bonse-Hart type [Bonse and Hart, 1965] interferometer, which 

is equivalent to a double slit arrangement (see Figure 2 .1). The interferometer consisted of 

a silicon single crystal. Three slabs were cut from the crystal. The first two slabs served as 

beam splitter and mirror, whereas the last recombined the two beams. By means of this 

setup one does not observe any interference pattern directly. Instead it is designed for 

observing a phase shift induced by varying external parameters. If the apparatus is rotated 

around the incident beam to change the difference in height, and hence the gravitational 

potential, between the interfering beams, then a phase shift between the two beams can be 

observed. This phase shift was explained by the authors using Newtonian mechanics, 

assuming that neutrons travel in the gravitational potential of Earth. Considering the 

accuracy of the experiment this was a suitable approximation. They found

18
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A0s,m = Qf.rav s'n a  -  (cl + «cos0)tan0 sin a  .
h

(2.15)

with a  the angle of the rotation of the interferometer, A and m the de Broglie wavelength 

and the mass of the neutrons, cl and a the dimensions of the interferometer, and Othe Bragg 

angle. A 10% discrepancy was found between this formula and the experimental data. This 

was explained by taking into account the bending of the interferometer base during rotation 

out of the horizontal plane; after correcting for this, the discrepancy between the 

(Newtonian) theory and experiment was reduced to 1%.

Figure 2.1: Schematic diagram of the neutron interferometer used in the COW 
experiment. Figure reproduced from paper by Colella et al., 1975

Increasingly precise measurements were carried out |Staudenmann et al., 1980 

and Werner et al., 1988] and the experiments were re-analysed by Horne [1986] taking into 

account the fact that the interferometer was an eight-path rather than a two-path device. 

Experimental and theoretical values were then found to agree within 0.8% [Werner, 1994],
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Laboratories on the surface of the Earth rotate relative to the “fixed stars”, 

therefore non-inertial effects, such as Coriolis force, are observable due to the rotation of 

the frame. In 1913 Sagnac demonstrated that optical interferometry is sensitive to rotations, 

and in 1925 Michelson, Gale and Pearson succeeded in constructing an interferometer in 

which the effect of the rotation of the earth was observable. A derivation using classical 

mechanical arguments shows, that on the rotating Earth, neutrons also experience a 

Sagnac-type shift [Werner, 1994], The form of the phase-shift is

. AjimCOAr.
W S a g n a c  =  Q s a g n #  CO S«  = X-----7----- COS C O S «  (2.16)h

with co the angular velocity of the Earth, Ao the area of the interferometer and Ü, the 

colatitude at the place where the experiment is carried out. It was found that the effect of 

the rotation of the Earth adds only a small contribution to the gravitational effect; 

A0 . S “ 2x 10 4 A0SfOV. Nevertheless, using an interferometer in a vertical plane (with

consequently no gravitationally induced phase shift) this Sagnac shift was also verified 

[Werner et al., 1979].

Following the logic of Einstein’s equivalence principle in the quantum limit an 

experiment, corresponding to COW, searching for a phase shift in an accelerated frame of 

reference, rather than a gravitational field, was carried out by Bonse and Wroblewski 

[1983]. An interferometer oscillating in a horizontal plane was used, taking stroboscopic- 

type measurements at the inversion points of the movement. It was proved, to an accuracy 

of 4%, that the effects of acceleration and gravitation are the same.

I would like to note here that these experimental results provide a proof of the 

equivalence principle only within the limits of their accuracy. But the theoretical 

considerations for the phase shifts in gravitational field all relied on using Newtonian
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potential V = mgh or a homogenous g-field, which is equivalent with the non-inertial 

effect of an accelerated frame, and not a genuine gravitational field!

As was made clear above, the theory with which the experimental data has been 

compared in these experiments is Newton's theory of gravity. From a fundamental point of 

view, however, this is unsatisfactory; the theoretical expression for the phase shift should 

be derived from General Relativity. General relativistic treatment of the COW experiment 

is presented in Chapter 6.
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2.4.2 Atomic interferometry

As compared with neutron-wave interferometers, atomic beam interferometers offer 

several advantages:

• atoms can be prepared with very low velocity by means of laser cooling;

• atoms have a larger mass and therefore a smaller de Broglie wavelength;

• sources of atomic beams are easier to handle;

• because of the internal degrees of freedom there are additional effects that can be 

tested;

• atoms may have larger spin and larger magnetic moments than single neutrons.

Atoms are of course more complex objects and should be described in an n- 

particle approach. In some approximation, this yields a Pauli-type equation with magnetic 

and electric dipole moments or its respective relativistic version. This represents a centre - 

of-mass motion with additional degrees of freedom. [Audretsch et al., 1992b]

Apart from atomic interferometers based on a Young’s double slit arrangement 

there are four other types in use: the most recent ones built by Kasevich and Chu [1991] 

and Shimizu et al. [1992],

In the COW experiment a sensitivity of 10“2g was reported. At present the most 

accurate measurement of gravitational acceleration is done by using a superconducting 

gravimeter, which is able to measure up to 10”'°g . Atomic interferometry promises further 

improvement, expecting to achieve a sensitivity of 1CT12 g . At these accuracies we have to 

ask the question whether we measure general relativistic or other types of corrections. 

Local fluctuations in the gravitational acceleration caused by tides ( 10”7 g ) and changes of

Based on review papers of Adams et al [ 1994], and Audretsch et al. [ 1992b|
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atmospheric pressure ( 1 0 g/mbar)  can be subtracted, having a characteristic frequency. 

But other effects such as the vertical motion of the Earth’s crust ( \0~9 g/ cm ) and changes 

in the local distribution of mass (a physicist at a distance of 1/// produces 10“'°g ) produces 

anomalies at the order of the experimental accuracy. In the interference technique by the 

means of two nearby paths for particles the closer the two paths the less the effect of local 

fluctuations, but at the same time the relativistic effect is also reduced.
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2.5 Examining the Dirac equation in non-inertial frames and 

gravitational fields

The above mentioned experiments, although involving atoms and neutrons, are not 

sensitive to spin effects. Therefore it was not necessary to use the Dirac equation in 

analysing them. In the studies of Wu [1988] and Xia and Wu, [1989] it was found that the 

spin polarisation of spin1/» particles in the Earth's field is also affected, therefore in the 

analysis of experiments involving elementary particles in the Earth's field the use of the 

Dirac equation is necessary. The Dirac equation

and the Hamiltonian is used as characteristic quantity.

One such analysis was carried out by Fischbach [ 1980] who has determined the 

Hamiltonian for a Dirac particle in Schwarzschild space. In the calculation he has used 

isotropic coordinates which simplifies the form of expressions, therefore makes calculation 

easier. He has got

In this expression the momentum is substituted for —i-h---- , differential with respect to
dx,

isotropic coordinates, which should not have been done as will be explained in Chapter 

3.9. A revised version of the above mentioned paper is published by Fischbach et al. 

[1981], but the same mistake was made. I shall present the derivation of the Dirac 

Hamiltonian in Cartesian coordinates in Chapter 4.1, and shall remark on how the 

Hamiltonian in isotropic coordinates should be interpreted.

ih y ^ D ^  = mc2'¥ (2.17)

is often rearranged in to the form

fP¥ = i b d y (2.18)
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Hehl and Ni [1990] have performed a similar calculation for particles in an 

accelerated and rotating frame. They found the Dirac Hamiltonian:

H = (ime 1 + ;
a ■ x P P+ JL.p2 + J i - p . £ £ p - a - ( L  + S)2m 2m — c2 — 4 me

(ih
. ( a x p ) .

( 2 .20)

(with an error that the fi was missing in the last term). Comparison of the resulting 

Hamiltonians in case of acceleration (setting co = 0 in (2.20)) and under the effect of 

gravity (modified (2.19)) furnishes a test for the equivalence principle, which will be 

carried out in Chapter 4.4. We shall see there signs of the equivalence principle not holding 

in the quantum domain.

Investigation of the Dirac equation in non-inertial frames was done by Chapman 

and Leiter [1976]. The analysis is in general terms, and the Hamiltonian is not calculated.

Further studies involving the use of the Dirac equation in the Earth’s gravitational 

field were carried out using the Kerr metric by Lalak et al. [1995] and Wajima et al.

[ 1997], In these papers approximate forms of the Kerr metric are quoted, but the authors do 

not give a proper definition of coordinates. Moreover, to the same order of approximation, 

the expressions for the metric are found to be different (see Chapter 5). I shall therefore 

present a complete derivation of the Dirac Hamiltonian in Kerr space in Chapter 5.2. Then 

the Dirac Hamiltonian will be determined in Chapter 5.3.

25



Chapter 3: On the Dirac equation in Riemannian spaces

3 On the Dirac equation in Riemannian spaces*

In this chapter it is explained how to write the Dirac equation in general Riemannian 

spaces using Weyl’s tetrad formalism. This method is described in great detail, as are the 

problems of using different coordinate sets and moving reference frames. Some illustrative 

examples are provided here, some will be appended in Chapters 4 and 5.

3.1 Writing out the Dirac equation

The outcome of an experiment clearly depends on two things: on the space-time in which it 

is examined, and on the setting of the actual experimental setup which may be for example 

accelerating. Basically, given a metric, which carries all features of space-time, and 

choosing a frame, given by the basis vectors, we should be able to derive all characteristic

* A condensed version of the material in this chapter is to be submitted for publication | Varju and Ryder, c]
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quantities from this information. For example the Hamiltonian, i.e. the energy-function; to 

find the Hamiltonian in case of spin-1/» particles, the Dirac equation has to be solved.

The way in which the general relativistic formalism of four-vectors and tensors on 

the one hand, and the spinor wavefu net ions of quantum mechanics on the other, could be 

combined was not understood after the publication of general relativity. The relativistic 

wave-equation of Dirac (describing spin 1/2 particles) was only consistent with special 

relativity, but not with general relativity. The problem of compatibility was solved by 

Weyl who applied tetrad-fields. A tetrad defines a frame of reference at each point of 

space-time, a tangent space, which is locally inertial; in this frame space-time is 

Minkowski. Thus at each point of space-time a local flat frame is defined and Dirac’s 

equation is reconstructed. It reads

From this we see immediately, what we are after: e , y1’, Tv ; the basis vectors, spin 

matrices and connection coefficients.

This method is described in books and papers [see for example Sexl and 

Urbantke, 1983, Fischbach et al., 1981 or Hehl and Ni, 1990] in certain special cases, but 

there are still unanswered questions when this simple-looking formula is used. In this 

chapter it will be illustrated what sort of problems turn up when different coordinates are 

used, and the equivalence of different-looking Hamiltonians is shown.

//ry"D„vF = /»T/ (3.1)

In writing the Dirac equation all effort is made to find the covariant derivative:

(3.2)
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3.2 Coordinates

Coordinates are similar to some kind of “ruler”; we use them to determine the relative 

position of events (usually measured from the origin of the reference frame). The most 

frequently used coordinates are Cartesian, spherical polar and cylindrical polar coordinates. 

The choice of the coordinate system, however, influences the way in which the final result 

is written, in the same way that readings of a distance differ if rulers of centimetre or inch 

gratings are used. The distance is the same, only the expression describing it differs with 

the choice of coordinates. For example the momentum operator in spherical polars reads

(
[Arthurs, 1970] p = -ih

coordinate form is p = -  ih

— + -  -  
dr r r

\

( a d

d cot â ) 
d û + 2

\

•sin û dep
while the Cartesian

Vdxc dyc dzc

In this chapter we are going to use three sets of space coordinates, while the time 

coordinate t is unchanged. These are

a, spherical polars r,ih,(p

b, Cartesian coordinates xc , yc , z.c

c, “isotropic” coordinates [Mpller, 1972] x; , y , , z,

The transformation relating Cartesian and spherical polar coordinates is: 

xc = r • sin $• cos (p
yc = r ■ sin ù ■ sin cp . (3.3)
zc = r ■ cos

The isotropic radial coordinate is

r = r, m
ir,

(3.4)
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where m is the Schwarzschild radius. The advantage of using isotropic coordinates is that 

the Schwarzschild metric expressed in these coordinates takes a form when the spatial part 

has a common factor [see also Weinberg. 1972, p. 181]:

cls '

in
2 n

( v111+ —

■clt2 - + - 111

2 r,
(dr2 + rydû2 + r2 sin : â dip2) (3.5)

The definition of the isotropic Cartesian coordinates to first order in O is

x, = x c ( 1 - 0 )

v, =vc -(l-0) . . . inwith 0  = — (3.6)

Z, = ' c -  0 -  <I>)

It is known from the principle of general covariance that physics is independent of 

the choice of coordinates, so in a sense we can feel free to choose any sort of coordinates 

for our calculation. While this is true, we must be careful about interpreting the result in 

these arbitrarily chosen coordinates, and this is what we are going to illustrate below. In 

the words of Misner et al. [1973]: “The names given to coordinates have no intrinsic 

significance. A coordinate transformation is perfectly permissible, and has no influence on 

the physics or the mathematics of a relativistic problem. The only thing it affects is easy 

communication between the investigator who adopts it and his colleagues.”

Choosing coordinates for any calculation always involves a trade-off; one set of 

coordinates will have advantages and disadvantages compared with other sets. Because of 

symmetry properties of the space the metric may look simple in one coordinate set, but the 

form of the momentum operator may be very complex. Also it often happens that one 

would like to compare Hamiltonians calculated in different spaces and frequently the 

relevant calculations are done using different coordinates: we end up with Hamiltonians 

expressed in different coordinates, and then the question arises how to compare them. For
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example, when the effects of gravitation and an accelerated frame are to be compared, we 

have to write the Dirac equation in Schwarzschild space and in an accelerated Minkowski 

space. The first calculation is undoubtedly of the simplest form using isotropic coordinates, 

while in the latter case it is advantageous to use Cartesians. This problem is worked out in 

detail in chapter 4.
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3.3 Frames

Reference frames (or bases) are different type of objects from coordinate systems. They 

have a physical meaning and so cannot be chosen arbitrarily. They correspond to the room 

in which the experiment is done. A reference frame can also be rotating or accelerating and 

depending on this property the expression gained in the calculation will be different - 

although the space itself is the same; as the outcome of the corresponding experiment will 

differ when the setup is rotating or accelerating because of non-inertial effects. In Section 

3.1 1 an example is given how the form of the Hamiltonian depends on the choice of the 

basis and not on coordinates.

When changing to a moving frame, often a coordinate transformation is 

performed. This coordinate transformation itself, however, does not correspond to a 

moving frame! But when the basis vectors are read off from the metric, the most natural 

one will be the one corresponding to the moving frame. It will be illustrated in Section 3.10 

in case of a rotating frame.

We also make a distinction between a coordinate basis and an orthogonal basis of 

1-forms. To make the difference clear, let us illustrate it with an example. The invariant 

line element in spherical polars in Minkowski metric reads:

ds2 = dt2 - d r 2 - r 2dû2 - r2 sin2 û dip1. (3.7)

The choice

0 ° =dt,  0 ' =dr,  0 2 = dû,  0 3 = dip (3.8)

corresponds to a coordinate (holonomie) basis, while

0"=c/f, 0 ' =dr,  0 2 = rdû , 0 2 = rsin ôdip (3.9)

corresponds to an orthonormal basis, since

ds1 = (0 0 ) 2 -  ( 0  1 ) 2 -  (© 2 ) 2 -  ( 0  ’ ) 2 (3.10)
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and the orthonormality condition

=Vâp (3.11)

or equivalently

(3.12)

are satisfied. The relationship between coordinate and orthonormal bases is given by the 

tetrad (see Section 3.4).

For each calculation there is a choice of using coordinate or orthonormal bases. In 

a coordinate basis reading off the basis vectors and 1-forms from the metric is obvious, but 

finding the spin matrices is a non-trivial matter, whereas in an orthonormal basis finding 

one-forms is difficult but the form of spin matrices simply coincides with the special 

relativistic forms.
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3.4 Tetrad formalism

To make clear the distinction between quantities expressed in an orthonormal basis on the 

one hand, and in a coordinate basis on the other, I shall use letters with hats to denote 

orthonormal indices and plain letters for coordinate indices. The tetrad components make 

the connection between orthonormal and coordinate 1-forms:

0 K = h*adxa . (3.13)

From the duality condition (1.1) between the one-forms and the basis vectors, it 

follows that the basis vectors are related to the differentials by the inverse tetrad

e*=h*aK  • (3-14)

The tetrad components are used to transform tensors between coordinate and 

orthonormal form

= h /1 Ka and Ka =h*a AT . (3.15)

A special case of the tensor transformation is the metric tensor. In coordinate basis 

the metric is denoted by g c>li . From the definitions of orthonormal basis, (3. IO)-(3.12), it

follows that in orthonormal basis the metric tensor is Minkowski g Kk —r\KA. So changing 

from coordinate to orthonormal basis gives

h \ h \  g ap = l f X. (3.16)

Tetrads can be also used to calculate the Dirac equation, as was done by Held and 

Ni [1990]. The object of anholonomicity is expressed in terms of the tetrad components as

C / =  h , " / , / (< ) f h"„ (3.17)

The Dirac spin matrices can also be given using orthonormal or coordinate bases. 

They have to fulfil

\ya, r P} = 2 g aP or \y* ,y i } = 2ri**. (3.18)
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In the case of the orthonormal basis this relation is satisfied by the usual Dirac matrices: 

y 5 = p ,  f  = p a ‘, (3.19)

and in coordinate basis they can be expressed using the tetrad components,

y a = hKa y * . (3.20)
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3.5 The connection coefficients

There are alternative methods to calculate the connection coefficients. In the case of no 

torsion the connection coefficients are determined from the formula

 ̂̂ KV .il ~  G> K 'X .fJ  8 K [ l . \  8  X/.1.K- CX/UK kX )

with

\e eA = C /  eLC K  ’ c  A J ^  K-À C f l  *

(3.21)

(3.22)

When using a coordinate basis the basis vectors simply have the form of

etl = d fl. (3.23)

therefore they commute, and so the terms in the second bracket of (3.21) vanish. In this 

case then, the connection coefficients can be derived from differentials of the metric.

On the other hand in an orthonormal basis the metric is constant 

( g x = diag(],-\- \ , -]))  so the first bracket in (3.21) vanishes and the connection

coefficients are determined from the structure constants C ?KA

indices:

after lowering the third

- C . ..
/JVA.

(3.24)

The connection coefficients can also be determined using differential geometry. In 

this formalism a duality exists between space and functions [see for example: Israel, 1979, 

Flanders, 1989 or Ryder, 1998]. This may reduce the amount of calculations in certain 

circumstances, however in my calculations I have found it easier to use the other methods. 

In differential geometry one solves the Cartan-Maurer equations for the basis 1-forms 0 '1 

clQ̂  +co\  a Qv =0 (3.25)

and the metric compatibility condition
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dg»v =ûV  +ÛV  (3.26)

to get the connection forms C0//v. Then the connection coefficients can be found from

c o \ = r \ Ke \  0.27)

As mentioned above, the tetrad components can also be used to calculate the 

connection coefficients. I shall now show that expression (3.17) follows from the definition 

(3.22). To see this, use the duality condition

(efi,Q*) = ô; (3.28)

to give

C j  = ( k , e j  ,0 * ) . (3.29)

Changing to a coordinate basis (3.29) reads

C j  = ([/," da,h'l 3„], h* dx”)=

= (Klà,, hf ) d j + A“ h! 3„ 3 , (as A“ ) 3„ -A | J 3„ 3„, (3.30)

, dx'1̂  =

= { K  a hH ) 3/, -  hl  (dp K  ) 5« » K  dxn)

The duality relation (d, , dxj \ = ô/  then gives

c j  = Af (3„ hi  ) hi -  hi (dp hi ) hi . (3,31)

Using

0  = (dj‘ ) = (h'l hp ) = hi ) h$ + h[ (da hp ) (3.32)

gives for (3.31 )

c j  = - K  hi  (3„ A ')+  Af A“ (3s K )  (3.33)

which is (3.17). This has the opposite sign to the formula used by Hehl and Ni [1990].

To illustrate the different methods for calculating the connection coefficients 

examples are included in Appendix 3.12.1.
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3.6 The epsilon symbol

Equation (3.2) contains commutators of gamma matrices. Evaluating these commutators 

will lead to expressions involving the epsilon symbol. The totally antisymmetric Levi- 

Civita tensor was introduced in quantum mechanics, with all indices in covariant position. 

In GR. however, the (upper and lower) position of indices is also important because of the 

summation convention and the fixed position of the free indices, so the e symbol needs to 

take up covariant and contravariant indices. The expression

/ l/'V r' l =2e/;, I2® a k (3.34)

(Equations A15 & A22 of Itzykson and Zuber, 1980) looks improper having the free 

indices (/,/) upstairs on the left hand side, and downstairs on the right hand side. To 

eliminate this problem, I define e symbols with mixed indices, e.g. the above expression 

would read

i [y',y ' j = 2 e \  I2 ® o k. (3.35)

For completeness 1 add that the other commutators have the form

[y°,7 'J = 2a' . (3.36)

In this thesis I am using this convention. As in most of my calculations 

orthonormal bases are used, lowering and raising indices is done by using the Minkowski 

metric, so

=r)U 1l Jm eimk ’ (3-37)

therefore with a metric

£l2 3= l, £ i23=1, £ l2 3= - l .  (3.38)

Please note that with my convention the sign of some identities are opposite to the special 

relativistic case

£„, £'■/,„ = -  {rij,iikm-  Tjjm T)k, ) and £,.,, £iJI = - 2  S'k. (3.39)

37



Chapter 3: On the Dirac equation in Ricmannian spaces

Here 8 V̂ = diag( 1,1,1, l) is the Kronecker delta, which appears only with one covariant 

and one contravariant index. r)̂ v =diag( 1, — — l) =?]pv are the components of the

Minkowski metric with two covariant or two contravariant indices.
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3.7 Invariant volume element

We recall from quantum mechanics that the quantity with a physical meaning is the 

expectation values of operators, which we expect to be invariant under change of 

coordinates. When comparisons are being made, it is expectation values that have to be 

compared.

From integral calculus it follows that under a general coordinate transformation

x —* x the volume element d 4x transforms according to

dx14 /
c l X

dx
cl4x , (3.40)

where dx
dx

is the inverse of the Jacobian of the transformation x —> x

Applying the transformation rule to the determinant of the metric tensor gives

det g' = dx
a ?

detg , (3.41)

so in order to be able to form invariant integrals, we have to introduce a determinental 

factor

detg d 4x (3.42)

for the invariant volume element [see Weinberg, 1972, Dirac, 1973 or Adler et al., 1965]. 

This implies that in a general curved space spatial integration has to be carried out using

| r / 3x Ĵ—detgij VF+ O . (3.43)

Therefore we get that the Hamiltonian is Hermitian when the spatial integration is 

carried out using the correct measure, i.e.,

(H) = \ d ’x detgy T*+ //  O = (// + ). (3.44)
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However, it is more convenient to absorb this factor into the wavefunction by 

performing a transformation. The required transformation, according to Audretsch and 

Schäfer [1978], is:

V4
V = XV- (3.45)

8 oo j

Then the corresponding Hamiltonian

H' = x H x ' -  (3.46)

is Hermitian when the integration is carried out in the usual (flat space) sense:

(H') = J'd\x VF,+ H' O' = (3.47)
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3.8 Nonrelativistic limit

We are considering experiments in the laboratory, where we are always dealing with non­

relativistic events, therefore we must consider a proper non-relativistic limit for Dirac’s 

theory. It is well known that in the non-relativistic limit, spin Vi particles are described by a 

two-component wavefunction in the Pauli theory. The usual method of demonstrating that 

the Dirac equation goes to the Pauli equation in the small momentum limit uses the fact 

that two of the four components of the Dirac spinor becomes small [see for example Ryder, 

Ch. 2.6],

One writes the four-spinor in the form of 

vp = f (p'
X)

(3.48)

two two-spinors. Then with the Hamiltonian of the form

( s  o '
H = (3.49)

where S  and 0 (referring to the “even” and “odd” parts) are each 2 x 2  matrices, the Dirac 

equation

E XY = H y (3.50)

can be written as two coupled equations:

E(p = 5 œ + ô y
(3.51)

E y  = Ocp -  S  x

Using the Dirac representation X <<(P >n the non-relativistic limit we only keep 

terms of me2 as the coefficient of x ■ Note here, that both E (the total energy) and S  (the

even part of the Hamiltonian) usually contains an me2 restmass term. Then from the 

second equation of (3.51 ) we get
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X =
2 me

cp. (3.52)

Substituting into (3.52) the equation for (p gives

E cp = S (p + 0 0
2 me (P- (3.53)

Thus the non-relativistic Hamiltonian gets the form

H  = g
2 me

(3.54)

However if one goes beyond the lowest order approximation, the above method 

encounters several problems [Foldy and Wouthuysen, 1950]: in the presence of external 

fields the Hamiltonian associated with the large components is found to be not Hermitian 

and the components of the velocity operator do not commute. A systematic procedure 

developed by Foldy and Wouthuysen (FW transformation), which is a canonical 

transformation, decouples the Dirac equation into two two-component equations, and is 

free from the above mentioned problems. What’s more, the transformation has very 

interesting consequences, for example the transformed position operator corresponds to a 

particle being spread out over a region of size of the Compton wavelength (rather than a 

point particle as in the Dirac representation).

The reason why four components are needed to describe the state of particles is, 

that the Dirac Hamiltonian contains odd operators. Essentially, the FW transformation 

brings the Hamiltonian into a form in which the odd terms vanish. Considering a particle in 

an external field, three successive FW transformations have to be applied for the odd

terms to vanish in the nonrelativistic limit, i.e. keeping terms of order (kinetic energy/^

Writing the Hamiltonian in the form H = ¡5 m e  +0 + 8  the result of applying these 

transformations [Bjorken and Drell, 1964], is:
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(
H = P me +

2 me" 8 m c36 + £ o 2 48 m c
ih

8 m c2 „ 4
0 , 0

(3.55)

in which equation* we can recognise the terms of (3.54).

* Please note here, that the notation of S  here does not refer to the full even part of the Hamiltonian, as was 

the case before in (3.54), but to the difference between the even part and me2. This notation is kept for 
historic reasons.
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3.9 Momentum operator in different coordinates

The form of the momentum operator in Cartesian coordinates is the well known expression

p  =  — ift
f  d d d ^

dxc dyc dz.c j
. On the other hand, its form in other coordinates is not this

straightforward. Fischbach et al. [1981] used the above mentioned isotropic coordinate set

(3.6) and substituted p = - ih d d , which is clearly not identical to the
d x, d y,  3  z,

differential operator with respect to the Cartesian coordinates. Therefore his Hamiltonian 

should be interpreted differently.

Below I shall show how one can determine the form of the momentum operator in 

an arbitrary set of coordinates. 1 use the sets x , , y , , z, and r, $, (p as examples. For the 

sake of simplicity I work only up to first order in O in the case of isotropic coordinates.

To achieve the aim of writing the momentum in an arbitrarily chosen coordinate 

set let us first have a look at the Dirac Hamiltonian in Minkowski space using Cartesian 

coordinates

Hc = [5 m + a- pc (3.56)

This formula suggests that writing the Dirac Hamiltonian in the chosen 

coordinates will help to determine the form of the momentum operator. So in the following 

I am going to write the Dirac equation in Minkowski space, using isotropic and spherical 

polar coordinates.
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3.9.1 Isotropic coordinates

We have from (3.6)

x, = x c (l - O )  =

and similarly for the v and z coordinates. Thus the Minkowski line element will become

xc = x, (l+O ) => dxc — (l + O) dx, + d (S>x, (3.57)

ds2 = dt2 -  (dxc2 + dyc~ +dzc~) =

= dt -  (l + 2 0 ) (dxi~ +dy,~ +dz,~) ~
- 2  (l + 0 )  (dx, ¿/Ox, +dy, dOy, + dz., d<f>z, )

(3.58)

Please note here, that although O is the gravitational potential, (3.57) is only a 

coordinate transformation and this metric still refers to flat space (we shall see that all of 

the connection coefficients are zero).

Neglecting terms in 0~ as usual, and using

with

d O  9 0  d O<70 = —  dx, +-—  dy, + —  dz, = - g - d x  
ox, oy, dz,

(3.59)

8, =
d O

d ^
(3.60)

gives

ds2 = dt -  (l +  2 0 )  (dx," + d y 2 +dz,  ) + 2 ( g -dx)  (x, dx, +y ,  dy,  +  z, dz , )
(3.61)

Note that from the definition of g it follows that as xc and x, are equal to zero

order, g = g, to first order and also g
dx, ) = £ c dxc

to first order. I.e.

the metric tensor reads

f ] 0 0 0
0 — (l + 20 - 8 x , y ¡  + 8 y , XI 8x , Z ,  +8 z , x '

fiv 0 g , ,  y ,  + ~ { \  + 2 0 - 2 g , v , )
+ 8y , Z i

0V 8  x, Z, +8 z , x i 8  Z, >7 + 8  v, Zi - (l + 20 -- 2 8 z , Z i ) y

1/ =O L1V (3.62)
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Chapter 3: On the Dirac equation in Ricmannian spaces

We now write the Dirac equation, using an orthonormal basis. The orthogonal 

basis one forms will take the form

0 " = dt and 0 ' = (l+O ) dx,' -  g ,' (x_-dx) 

and the dual basis vectors are

(3.63)

e* = — and e, = (1 —0 )
0 dt ’ dx,' Sn

* d ^x ----
v

(3.64)

The orthogonality of the time components is trivial, and for the space components

we have

© ', e.) = i(l+0)<fc;, (l-O). — )+((i+o)&;, g, a t
X

\ dxk

g ‘ (-xk dxk), ^

(3.65)

which is to first order in O gives

Q d e -j) = U x \ , — ) + [dxll , g
dxk ' - ( g ‘ (** dxk), dxj

S j + g j x '  8 1 - g 1 xk 5j  = 

S'

(3.66)

because g' is proportional tox .

Calculating the commutators of the basis vectors gives

t v  e;\ = 0 (3.67)

\e , eLi’ / J ( 1 - 0 ) 4 - ,  ( , - o )  *
ox, ox.

+ (1 - 0 ) ^ - ,  g , x k d
dx'. dxk

+ g, xk —k -, ( l-O )
' dxk ’ dxj

(3.68)

= (1 - 0 ) 3, . (l « > )  dx,
d

dxj
+ (1 - 0 ) (1 - 0 ), -,

\ 3 d ' " 3 t a 1
/ * gj X dx, dxk dx ; ’ QJ l__

_

dx,
(3.69)
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d • +

8,

dx) dxk dx)
d , ak 3 dgi u ,“ A' —  —  ~ g i ~ X

dx) dxk dxk dxj ' ' dxj dxk

(3.70)

g._Ë_ + (_g.)_Ë_ + g.5*_L _g. 5V O / / -s / 6 ./ ^ I k * /dx7 dx7 dx
* J L
' 5xA

= 0

We have from (3.21) and (3.22) that

(3.71)

r ... =o.
KÄß

(3.72)

As promised above, the space is flat Minkowski space. The covariant derivatives then 

reduce simply to the basis vectors,

D , e„ + - r 7 AJ KÀfi (3.73)

and so the Dirac equation reads

Ht — T* = (/3m - i h a - e ) ^  
dt

(3.74)

H, = ßm — i-hoc-e (3.75)

We now compare our results in Cartesian and in isotropic coordinates. We use the 

equality of the expectation values: (Hc ) = ( / / ,) ,  which gives:

| dxc dyc dzc ^  Hc O = | yjdet g , dx, dy, dz, 0 + H, T' (3.76)

As explained in Chapter 3.7., the next step is to absorb the determinental factor:

det g , = (1 + 2 0 - 2  gXi x,)(\ + 2 ® - 2 g yi y, )(l + 2 O -  2 gZ; z, ) =
= 1 + 6 0 - 2  (gJf x, + g y ,  + gZ/ z , ) =  • (3.77)
= 1 + 40

Then, according to (3.46)
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H', = (detg,Ÿ* H, (detg , ) ^  =

= H, +( de t g , f *  H, ,  (detg , ) ^

= H, -  ih (det g , [(] d, + a ‘ g: (x • d), - o ]

(3.78)

which gives up to first order in O

H' = H, + ih[aid, ,o ]

= H, + iha‘(-g i)  = 
= H , -  iha ■ g

(3.79)

So the equality of the expectation values gives for the momentum

p = —the — ih g —

-ih (1 - 0 ) + g
dx, dx, + g

(3.80)

which to first order in <E> gives

P = ~ih{ 1 -  O) ----- ihg (xc - p)+ ihg
dx, —L —

(3.81)

or

-ih-
dx,

(l + 0 ) p - g c (xc ■ p ) -  ih g (3.82)

The main result of this section is the above expression for the momentum operator

in isotropic coordinates, which is clearly not identical with p -  — ih d _d____ d_
d x, d y i d z,
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3.9.2 Spherical polar coordinates

As above we begin by writing the line element in terms of the chosen coordinates. 

Differentiating (3.3) and substituting into the Cartesian form of the line element gives:

cIs2 = dt2 -  (dxc" + clyc 2 + clzc 2) =
= dt2 — dr2 - r 2 d d 2 - r 2 sin2 d d(p2

Choosing

0  " = d t , 0  ' = d r , 0  2 = r  d d , 0  ' = r  sin ddtp

and

a i a
dt 1 dr 2 r dd 2 r sin d dtp

gives similarly to the previous case

p  _ p  _ p  _
Î22 2Î2 22Î ^

r iâ3 = - r Si s = - r ssi =
r id  =  “ r 323 =  “  r 332 =  ''"S in  d C O s d

Substituting into (3.1) gives after a rearrangement:

(3.83)

(3.84)

(3.85)

(3.86)

tTr-H' = Hpnlar 'P

f a r ( a i a
Bi n -  id a 1 — h - + a 2

r l dr r y

/ 1 a cot?? '
r dd  2 r

+ a j ___ a_
r sin d dtp

>*¥

(3.87)

This exhibits the Hamiltonian in spherical polar coordinates. It is seen, for

( a 1 ^
V d r r )

example, that the radial component of the momentum operator is —ih 

can be gained using different methods [see Arthurs, 1970 or Dirac, 1974], too.

This result
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3.10 Effect of rotation of the reference frame; Fermi-Walker transport

The space-time metric defines the background geometry in which we are working and to 

describe a particular physical system we need also to specify a frame. Afterall, it is not the 

space that might be moving but the frame, relative to the gyroscope. Rotation can be 

intrinsically defined by using Fermi-Walker (FW) transport. For a non-rotating, non­

accelerating vector, the FW derivative is zero. The Dirac equation depends on both the 

metric and the frame. The discussion of Hehl and Ni [1990] makes no mention of frames, 

but we shall show below how to cast the problem in such a way that the roles of frames 

and coordinate systems are kept distinct.

Let us consider a rotating reference frame in Minkowski space-time. Defining the 

coordinates

xc = x cos cot -  y sin co t 
yc = x sin co t + y cos co t
zc = z

the line element becomes:

(3.88)

ds2 = dt2 — {dxc ’ + dyc 2 +dzc" ) =
= dt2 -  co2 (x2 + y 2)dt2 -  {clx2 + dy2 + dz.2)+

+ 2 CO y dx dt - 2  co x dy dt
(3.89)

Please note that at this point we have the metric written in rotating coordinates, but it does 

not mean that anything would be rotating. One reads off the most natural frame with the 

orthonormal basis and dual vectors:

O 0 = d t , O 1 = dx -co y d t , O 2 = dy + (0 x d t , O ' = dz, (3.90)

e 0
a a a— + coy----- co x —
dt dx dy

_ a _ a a
“ a ?  = â ?  = a!

(3.91)

and hopefully it will correspond to a rotating frame, which will be examined below. 

It turns out that Dirac’s equation is then
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t o -T *  = Hrnt V dr
\fim + a -  p - ( 0  (L  + S  )} T* (3.92)

with

p = -  ihV_, L , = -H t
A dy V dx

, 3. = —O" . ? (3.93)

Details of this calculation is given in Appendix 3.12.2.

Although this space is flat, we got additional terms, proportional to the angular 

velocity corresponding to non-inertial effects caused by the rotation of the frame. The spin- 

rotation coupling term was predicted by Mashhoon [1988], and a corresponding expression 

was found by Hehl and Ni [1990] as a special case of a=0.

To verify that the frame (3.91) is actually rotating one must calculate the Fermi- 

Walker derivatives of the basis vectors [Straumann, 1991], The relevant expression is

■(«o. ep ) \  + C V  ep)eo (3 -9 4 )v r  = v .  e<o lp

with

V<„eP = e /,r % (3.95)

being the covariant derivative of ep in the direction of ea ; eg is tangent to the worldline 

and Ae = V e0 is the acceleration; ( , ) denotes scalar product of two covariant vectors. 

In the case of (3.91) using results (3.157) one gets

> II <1 A II -A “1 II o (3.96)

v /,w e =V e = e P ' = e T2 = axv 0 C1 v 0 C1 cfj l 10 10 (JJC2 (3.97)

Y7 l' w s- sV() e2 = -  (Oet (3.98)

which shows that the frame is not accelerating but is indeed rotating in the ( 1-2 ) plane.

As mentioned before, Hehl and Ni calculated the Dirac Hamiltonian in a rotating 

and accelerating frame. In their paper [Hehl and Ni, 1990] a reference to a coordinate
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transformation is made, which is not the proper way of handling non-inertial frames. In the 

following I am going to show that the basis they choose does really correspond to a 

rotating and accelerated frame, using the notion of the FW derivatives. They chose for the 

basis

ed =
1

f
( CO ^

k \

- — X X ek. ax cl +  = [ A ) )

e = e,

and they got for the connection

£  .r„ ijk
CO

c .
i/o a ■ x  

c

T -  = - r  . =
0/0  / 00

1 +
a ■ x

Now we check the motion of this frame

4 n = V,„ eb =
= .. e - = no /'

a ■ x

_  a

which corresponds to a frame being accelerated with acceleration o, and

V o e-j = V 0 e7 - ( c , ,  e; )A io + ( 4 n, e })e, =

r K
j0 «V " e- =

1 + a ■ x

(3.99)

(3.100)

(3.101)

(3.102)

( 3 . 103)
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c ' , 0)k /  
= '

c~
(3.104)

which corresponds to a frame rotating with angular velocity OX as claimed by the authors.

Please note that these relations hold only to first order in the acceleration and the

angular velocity of the frame.
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3.11 Dependence of the Hamiltonian on the choice of basis

Having the Minkowski metric in spherical polars, as in (3.83) the choice of basis one- 

forms of (3.84) seemed fairly obvious, and the result we gained was what one would 

expect from other references [Arthurs, 1970 or Dirac, 1974], Below, an example is given 

of what result one obtains if one chooses a less trivial, position dependent basis:

0 °

9'

9 :

O'

= dt

sin û cos tp dr + r cos û cos tp dû -  r sin $ sin (p d<p 

sin û sin <p dr + r cos û sin (p dû + r sin û cos (p dtp 

cos û dr -  r sin û dû

(3.105)

Then the basis vectors will be

e- = 3_
dt

3 1 3 1 . 3e- = sin û cos tp---- b — cost? cos®---------------sin®----
dr r dû rsin û dtp

Q . 3 1 q . 3 1 3e- = sin û sin tp —■ + — cos û sin tp----- 1---------cos tp -—
dr r 3t? r sin# dtp

n 3 1 . 3e — cost/--------sin û —
dr r dû

(3.106)

As these expressions correspond to O' = dxc' and e; = it is trivial that they are
dx r

orthonormal, and all the connection coefficient components are zero. Therefore the 

covariant differential operator will take the form of the basis vector, as in (3.73). So we get 

for the Dirac equation

0 = rrYY + ih 7  dY =

nYY + ihß
f \

ydt y

or

+ a

-a , 3 1 3 1 . 3 ^sin û cos tp---- b — cos û cos tp-------------- sin tp----
dr r dû rsin$  dtp

q • 3 1 3 1sin û sin tp---- b — cos û sin tp-----1---------
dr r 3 û r sin û

cos tp
dtp

( 3 . 107)
-b

3 1 3cost?------- sin û —
dr r 3 û
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which is different from (3.87). The coefficients of the a  matrices correspond to the 

components of the momentum in the directions of the basis vectors, and these are not the 

unit polar vectors, so this is the reason why these components are different from the ones 

given by (3.87).

The results of (3.87) can be derived from (3.107) using the method explained in 

the book of Sexl and Urbantke [1983]. Introducing

y° = y°

y 1 = sin û costp y 1 + sin ?)sinç> y 2 + cos?) y ' 
y 2 = cos?) costp y 1 + cos?)sin tp y 2 -  sin ?)y ' 
y ' = -  sin?/? y 1 +cos<py2

(3.108)

will give

~o dV 1 rW a y
0  = m'V + ih i y ------ 1- y ---- + y ~-------- 1- y —:---------- (3.109)

dt dr r dû ' rsin?) c)<y>

As {y'u, y v j = 2 cliag( 1 ,-I ,-l ,-l ) and {y'', y ' } = 2 diag( 1 , - l 1 ,-l ) there must be

transformation such that y ;< = S 1 y ,( S and this will imply T* = S 'F . So (3.107) will

give

0  = m S ] xV + ihS~ y° S ^ , _ avP+ y S S -----
dt 1 dr

+ y 2 S -

+ y~ S

dû dû

dS
V /

/•sin û dtp dtp

+

> 1

(3.110)

j)

Multiplying by S gives

n  .7/ -, a  I ^  1 2 I M  3 I 9 ^0 — 111 +  ih ß  h-------H OC-------h OC----------h OC----------- r--- +
dt dr r dû rsin û dtp

S dS2 1 _ dSa  —S ----- + a  —
r dû /-sin ?) dtp

-I hvp
( 3 . 111)

and now it is only to prove that
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i i dS 1a  = c r  S ——  (3.112)
du

and

9 cotûo r ------
2

, 1 c dS~'
= « ' • $ (3.113) sin u dep

are satisfied.
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3.12 Appendices

3.12.1 Appendix: Examples of calculating the connection coefficients

Below examples are given of the calculation of the connection coefficients using different 

methods described in Chapter 3.5. The metric

ds1 = dr2 + r 2 dû2 + r 2 sin 2 id dip2. (3.1 14)

is used, describing E' in spherical polars.

The choice of a coordinate basis corresponds to

0 ' = d r , 0 2 = dû,  0  3 = dxp (3.115)

and

= d_ _ d_ _ d_
e' ~ dr ’ *2 “  dû ’ * 3 “ dip

(3.116)

with the metric tensor components

f \  0  0  ^

g v = 0 t-2 0

0  0  r 2 sin 2 û
(3.1 17)

and

8 U =

1 0
0 1

9r
0 0

0
0

1
Jr  s i l f  i)

While an orthonormal basis would be

(3.1 18)

0  1 = d r , 0  2 = r dû,  0  ' = r sin û dip (3.119)

ttnd

dr ’ r d û e> =
J ___ d_

r sin û dip
(3.120)
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with the metric tensor components

Srj =

M O O  
0 1 0 

v0 0 1

and

g" =

M 0 0^ 
0 1 0
0 0 1v

(3.121)

(3.122)

A The traditional method using equation (3.21)

A.l In coordinate basis

The non-zero derivatives of the metric components (3.1 17) are

8 22.1 —
§ 3 3 .1  = 2r sin 2 û (3.123)
g 33 2 = 2 /- sin û r cost?.

Substituting these values into (3.21), and noting that in coordinate basis the 

structure constants Cijk vanish, gives for the non-zero connection coefficients:

T]22 7 , 1̂212  ̂ ’ Mz21  ̂ >
M33 ~ - r s in 2 , F,,, = rs in : $ , F,,, = rsin 2 û , (3.124)
F,,, = -rs in  ûcosû , r ,23 = r sin cost) , r 332 =rsin ûcosû.

A.2 In orthonormal basis

In this case one has to find the non-vanishing commutators of the basis vectors. Using 

(3.120) these are

J _ d _  
r2 dû ’

J ____d_
r2 sin û d(p

(3.125)

(3.126)
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and

r ] cos$ d
le2’ = ----r sin û a(p

The non-zero components of the structure constant Cijk

(3.127)

then turn out to be, using

(3.127)

= -C  2 = —
21

(3.128)

= -c ..2 = - ! (3.129)

O f .î _  COt Û"̂32 r
(3.130)

Lowering the third indices with the metric (3.121) makes no change to the values. 

Then with (3.21), on noting that in case of an orthonormal basis the derivatives of the 

metric tensor components vanish one gets

r = - r — ___122 

r

212

= - r

r
1

133 313 r
cot Û

(3.131)

r

Please note here, that the connection coefficients found in (3.124) and (3.131) are 

different. This is because the connection is not a tensor, so it is not invariant, but depends 

on the choice of the basis, too. Also one can observe, that when working in an orthonormal 

basis, the connection coefficients are antisymmetric in the first two indices, and when 

working in a coordinate basis, the connection coefficients are symmetric in the last two 

indices.
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B With differential geometry

B.l In coordinate basis

Using the metric compatibility condition (3.26) gives

dg | , 2m, | 0  ,

dg22 = 2 ft),2 =  2 /• dr ,

d g ,, =  2ft) „  =  2 r  sin 2 dr +  2 r 2 sin tlfcos id did.

and

dgjj = ft)(; + co a = 0  for / ^ /.

Raising indices is done using the metric tensor, so 

CD' i = 0

2 1 , 1 ,ft) 2 = —  r  d r  = — c/r
r ~ r

ft) 2 3 = ———-— (rsin 2 id dr + r 2 sin dcos id did)—— dr + cot id did. 
r~ sin “ id r

Now the Cartan-Maurer equations (3.25) give, as d d Ll =0 from

lemma,

ft) 1 2 A did + CO' 3 A dep = 0 ,
,  1 , 

ft) i a  dr H—  dr a  did + CO~3 a  dep — 0 , 
r

co ' i a  )//• + ft) ’ 2 a  r/t3 + — r/r a  dep + cot id did a  dep = 0 .
r

From the 2IHl equation of (3.135) one can deduce that

ft)2, = -d id  , 
r

and from the 3ld equation

ft)2, = — dep and co'i = cotiddcp .

(3.132)

(3.133)

(3.134)

the Poincaré

(3.135)

(3.136)

(3.137)
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The rest of the non-zero connection 1-forms can be obtained from these via 

lowering and raising indices and interchanging the indices using (3.133). Summarising the 

results for the connection I-forms:

co11 =0  , co12 = —r dd , co13 = - r  sin 2 d dep ,
. 1  . 1  oco i = — ch9 , co~i = — dr , ft>~3 = -sin  $cosddep , (3.138)

r r

co\ — —dep , ft)3 2 =cot ddep , co} 2 = — dr + cot tid'd, 
r r

Finally, using equation (3.27) gives for the non-zero connection coefficients

I   I— 2   T—'2
1 22 — ~~l , 1 12 —— , 1 21 —— ,

r r

F 133 = - r s in 2 d , r 313 = —, r \ ,  = — , (3.139)
r r

r 2» = -sin  dcosd , T3 23 =cotd , V'm =cotd , 

which is equivalent to (3.124) on lowering the first indices.

B.2 Using orthonormal basis

In this case all the derivatives of the metric tensor components vanish, so (3.26) gives

ffln =fi)a = © a = 0  (3.140)

and

CÔ .+CO : =0 for i ^ /. (3.141)ij ji J v ’

Now the Cartan-Maurer equations (3.25) give, 

ft)12 a  r dd  + ft)13 a  r sin d dep = 0  ,

dr a  eld + ft)2i a  dr + co23 a  r sin ddep = 0 , (3.142)

sin ddr  a  dep + r cos d dd  a  dep + ft)3i a  dr + ft) 32 a  r dd = 0 .

From the 2nd equation of (3.142) one can deduce that

co~\=dd,  (3.143)

and from the 3ld equation
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co \  = sin tidcp and ojyi = cos&dcp. (3.144)

The rest of the non-zero connection 1-forms can be obtained from these via 

lowering and raising indices and interchanging the indices using (3.141). Summarising the 

results for the connection 1-forms:

co' i =co2 2 -  co 'i = 0 , 

co' 2 = -c o 2î = - d â  , 
co's =-co' î = -sin  â clcp , 

co2\ =-ar  î = -c o s ôdcp.

(3.145)

Finally, using equation (3.27) gives for the non-zero connection coefficients

r' ¿2 =

r 'j j  =■

r 233

r 2ü =-

r :,i3 =- 

■ rS.3 =■

î
r
cot Û 

r

(3.146)

which is equivalent to (3.131) as lowering indices in orthonormal basis makes no change to 

the value.

C Tetrad components

The tetrad transforming between bases (3.1 15) and (3.1 19) is

h 'i = l ,  // 22 = r , h 23 = rsin û (3.147)

and

h- = 1, h-; = -  , h? = — 1—  . (3.148)
r rsint>

The non-zero derivatives of the tetrad-components (3.147) are

dji  22 = 1 , 3,// 3 = sin $ and c)Ji \  = rcos$  . (3.149)

Using (3.17) gives for the structure constants
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- C  121 = < v = y h j2 ( d 2

= y >h ' <i P  3  ̂ 1 - s , h \ )

= c J = K 3  ,  l r .

r r

--------sin â = — ,
r sin ù r

(3.150)

(3.151)

1 1 cot Ûrcos$ = -------- , (3.152)
r rsin

all the rest are zero. One can see that this is equivalent to (3.128)-(3.130)

3.12.2 Appendix: Details of the derivation of the Dirac Hamiltonian in Section 3.10

Again, in this calculation orthonormal basis will be used, with the traditional method 

described in Appendix 3.12.1 .A.

The non-vanishing commutators of the basis vectors (3.91) are

d

and

and

r I d d '\e., e- = - cox — ,—L 0 i j dy dx_

r 1 d\e-, e, = - CO— .L 0 2 J dx

zero components of the st

c  2 = -C--2 = COoi 10

C -'02 = -C  120 = -CO .

=  0) -

dv
(3.153)

(3.154)

(3.155)

(3.156)

Lowering the third indices with the metric g = d i a g introduces a minus sign to 

the values of the above. Then with (3.21) one gets

(3.157)
r . . . =  - r  - =  0012 102

=  - r . . . =  0021 210

r . .120 =  - r 2ÎÔ =  CO
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The covariant derivatives then are

Dô = e° + 4 Lr , r r , =120
a a a i . ;

=  ------h CO v --------CO X ------------- 1(7' (0
31 ' dx dy 2

(3.158)

and

D _a_
ax' '

(3.159)

So the Dirac equation reads

a /t
mT' = -j ih ¡5 — I- p — o  ' co -  ¡3 a p + ih [3(o 

dt 2 —
a a

V --------- X -------
dx dy

VF, (3.160)

which gives for the Hamiltonian

hH = Bm — a co + a  p -  ihco
2 ~ ~

( _a__ d_
dx dy

(3.161)

as in (3.92).
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4 Effect of a stationary gravitational source on Dirac particles*

In this chapter a study is performed of the effect of a stationary gravitational source on 

spin-'/2 particles. In Section 4.1 the proper, general relativistic treatment is followed, i.e. 

(he particle is considered as being in a Schwarzschild field. In Section 4.2 the effect of an 

accelerated frame in Minkowski space is investigated. After a review of the Equivalence 

Principle in Section 4.3, the Hamiltonians found are being compared in Section 4.4 

providing a test of the Equivalence Principle.

When the effect of gravity is mentioned, it is common to introduce the notation: 

m CM „
O

rc
(4.1)

and

8 ,  = -

50 (4.2)

* A condensed version of the material in this chapter has been published in Varju and Ryder, 1998

65



Chapter 4: Effect of a stationary gravitational source on Dirac particles

where m is the Schwarzschild radius and r is the radius: r = + (x2)~ + (r2 ^ or

r = -  x ; x

Nonrelativistically O corresponds to the gravitational potential, and g to the 

gravitational acceleration. Then it follows that

and

with

Si =
d m m dr

dx‘ r r~ dx1
m

— rTr
(4.3)

Si x' =

We can also see, that

dO d f f\
T T  = t t U , x ) = -  Si dx dx

(4.4)

(4.5)

dg,
dx1

m Xj g
- — n„ +3 2 (4.6)

Thus the derivative of the gravitational acceleration can not be neglected, the 

gravitational field in a Schwarzschild space is non-uniform. This accounts for the tidal 

effect.

4.1 Schwarzschild field

The Schwarzschild solution is most commonly referred to in spherical polar coordinates as 

in Equation (2.3)

(. . GM c 3ds = 1- 2 -

rc
c 7d t2 --

■ 2 -

GMr dr1 -  r 2 (dû2 -+- sin 2 zT dep2) , (4.7)

rc~

i . e .
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gflv = dia8 1- 2 -
GM
rc - 2 GMr

rc "

2 2 • 2 a•, r , r sin u (4.8)

However in certain situations it is more convenient to work in Cartesian 

coordinates. To obtain this form, a coordinate transformation

xfl = (et, r, ù , (p) —> x^ = {ct, x1, x2 , x3) (4.9)

has to be performed with

r = Vh T  • (•'"’) ••('' )

t? = cos- ' x 3 '

ep = tan

v  r  )
1 x 1^

\ x >

(4.10)

3 xa d xpThe metric tensor transforms according to g 'v = ——---—  gap, hence to first

order in O the metric becomes: 

(1 -2 0 )c2dt2 -ds2
( 1 A 

1 + 2 (dx' )2 +( 2 X 
1 + 2 * ^ (dx 2 )2 + ( ) \ 

1 + 2 (dx2 )
cLv y l  c ) c

V /
■ [(g, x 2 +  g 2 x 1 ) clx1 dx2 + (g 2 x 3 + g x 2 ) dx1 dx3 +  (g , x 1 +  g , x 3 ) dx3 r/x1 ]

(4.11)

with g, defined in (4.3).

The space defined by the metric (4.11) will be used to calculate the Dirac 

Hamiltonian (2.18) following the same method as was used in Appendix 3.12.1.A.2. One 

finds the orthogonal basis one-forms ©p to be

©u = ( l - O )cdt and 0 ' = dx' + ^ y  (x • dx), (4.12)
c~

and the dual tetrad vectors are given by
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/. , \ l  3 . d gj
V c d t  ' dx' c2 r) x-  /

(4.13)

For details see Appendix 4.5.1.

The non-zero structure-constants (3.22) turn out to be

C - - C  =o/o too
8i
c

c m = 8 i - g n g ) ,c

(4.14)

and the connection coefficients, defined by (3.24) are

r ... = - r . . .  =0/0 / 00
gi
c

r A = ¿rig ¿¡¡g,- 8 x 8  j)-

(4.15)

For details of the calculation, see Appendix 4.5.2.

It is then straightforward to write out the Dirac equation and find the Hamiltonian

H = (l-«D )Pmc2 +{\-<5>)c(gc - p )+^-(a -  g ) - - ( a -  g jx  - p). (4.16)
— Ic — c ~

Details of the calculation can be found in Appendix 4.5.3.

The expectation value of this Hamiltonian is

(H) = J dx dx2 dx2 7 -  det g XT+ H . (4.17)

where (det g) refers to the spatial part of the metric (4.1 1) and dx'dx2dx2 is the Cartesian 

volume element. Absorbing, as explained in Chapter 3.7, the determinental factor into the

cp 5
wavefunction, we define T*' =

[h ) = Jc/ v ^  h ' xv ' ,

T' such that (4.17) simplifies to
V “  /

(4.18)

with:
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( o  ^ (
1 + — H

l 2 J \ 2 y

= (l -  o ) ¡5 me2 + (l -  < E > ) c  (a ■ /?)- — igc ■ g)(x ■ p ) .
(4.19)

This is the Hamiltonian in the usual sense. In the following I shall drop the prime, 

denoting this transformed Hamiltonian by H.

The proper non-relativistic limit will be obtained by applying three successive 

Foldy-Wouthuysen transformations as described in Section 3.8. Equation (4.19) then gives:

c  —  —  c  —

£  =  -  Pm (g ■ x) .
(4.20)

Hence

0 2 = oc'a' p,pj  - a ' Pi (gjXJa k pk + a ' g Jpkxk) -  

- { g j XJa k pk + a J g jPkxk)a' p, =

= P2 ~ 2 p - ( g - x ) p - 2 ( p - g)(y -p)+2ha-(g_x p)

(4.21)

and

\0 .S \  =  - \ ( a - p \ pm( g_- x )J =

= 2/3/f/O (a ■ p)+ ihPm (a ■ g)

and

\o, \ô, £]] = [a ■ p, 2/3/??<i>(a • /?)+ ihpmioc ■ g)J = 
= -  4/3/7?/? • O p + 4hpmcr • (g x /?) .

When the formulae[O, /?, ] = -  ihg, ,
k  . Pi J =  ihS* ,

U i ’Pi] = - ^ 7  8 a + 3~r r

a ' a 1 = -  g" +ie"k o k ,

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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and

[«', /jj = 2 a' ¡5 = - 2  [5a' (4.28)

are used.

The term containing 4 is of the order —-  which is not of interest. Also, the term
m

\p, d\ vanishes, as the Hamiltonian is independent of time. Evaluating H to the desired 

accuracy gives:

H = p m c 2 -  f im (g -x )+ -P -p 2 ~  p • (g x)p ■ (g x p)----£ - ( p  . g ){x-p)
2m 2me ~‘ ~ ~ 2mc~ ~~ ~ me ~  — —

(4.29)
This is the main result of this Chapter, and expresses the Hamiltonian for a Dirac 

particle in a Schwarzschild field. The table below shows the interpretation of these terms,

and the approximate orders of magnitude in case of a thermal neutron (de Broglie 

wavelength of 2A and kinetic energy of 20meV).

term interpretation order of magnitude
/3mc2 rest-mass energy 10 eV

-¡3 m(g_ x) redshift of rest-mass energy (verified by COW) 1 eV

P 2
2m

kinetic energy 10-2 eV

f  ,  p-(g-x)p2me ~~ — —
redshift of kinetic energy 10'" eV

+ .  , °  ■ U x P) 2 me' ~~ ~
spin-orbit coupling 10'29 eV

( p - g h - p )me'
square of radial component of momentum 10 " eV

Table 1: Meaning and approximate order of the terms of the Hamiltonian.

The result is quoted in this form for easy comparison with the Hamiltonian in an accelerated frame [Hehl 

and Ni, 1990] in the next section. But for proper handling we note that

here p ■ [g ■ x)p = P\ [g ■ x)pt + p2{g ■ x)p2 +p^{g ■ x)p?. All the other scalar products are e.g.

(g ■ xj = gjX , product of a covariant and a contravariant component, and summed over the spatial indices.
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For the sake of comparison with other works I should like at this stage, however, 

to make the following observation. We may, instead of the coordinates (4.10), introduce 

isotropic coordinates (x/, yi, zi) with the definitions

*/ = x ' ( \ - % J  ’ y< ’ z' = * 3 ( l-< % )2 (4.30)

, G
and O = ----- r . Note that to first order 0  = 0 .  In terms of these2 / 2  2 2 c y xi + v / + z,

coordinates it may be shown [Mpller, 1972] that the Schwarzschild metric (4.7) becomes

( , _ 0 ' / V
ds1 = (l + 4 / / )  (dx,2 + dy,2 + dz, 2 )- 2

1 + O'/
2 2c~dt (4.31)

which is exact to all orders in O '.

In previous work on the Dirac equation in a Schwarzschild field, Fischbach et al. 

[1981] assumed the form (4.31) for the metric with the momentum operator defined by

f '  '  '  N /  ̂ a a ^p = -  ih a a a 1 . ., i din contrast with p — —ina x, a y, a z, dx' d x 1 3 „r
. His

calculations yielded the Hamiltonian [Equation 2.37b of Fischbach et al., 1981]

77, = (l -  O)/? me2 -  ih (l -  20)c (a ■ d , )—— (a ■ g). (4.32)

In quantum mechanics momentum is defined by p = -  ih— , differentiation with

respect to the Cartesian coordinates. Using the results of Chapter 3.9.1 this means that in 

Fischbach's coordinates the momentum operator becomes

p — — ih (l -  O) "_a____ a_
a x, dy,

ihg -  ihg
f

\

a 1 (4.33)
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The Hamiltonian (4.19) can he derived from (4.32) using the above form of the 

momentum operator. Substituting the expression for -  ihd, gives

H, O-<*>)£ me + (l -  20) ca 

(l -0)15 me2 + (l - 0 ) c a  •

(4.34)

which is equivalent to (4.19).

Performing three successive FW transformations to (4.34) gives [Equation 2.44 of 

Fischbach et al,  1981]

2 m
, 3 _ f O , Ht h

P~ + T ^ -~P~ + 2 £ • P + _ , g ■a x p )
2 \ m me 2m c y

(4.35)

As far as the Dirac particle in a Schwarzschild field is concerned, our Hamiltonian 

(4.29) differs from Fischbach’s (4.35), as it stands, in that (4.35) does not feature the last 

term of (4.29); and the coefficients of the gravitational correction terms are also different. 

But with redefining the momentum operator, one can see that the two expressions mean the 

same.

Please note here, that Fischbach’s g is defined with the opposite sign (cf. Equation 2.29 of Fischbach et al., 

1981 and (4.2)). Here the sign of the ag is changed to opposite for correspondence with the convention 

applied in this thesis.
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4.2 Accelerated frame in Minkowski space

The Equivalence Principle states the equality of the local effects of a gravitational field and 

a uniformly accelerated frame. When a gravitational field is compared to a uniformly 

accelerated frame, there is a trivial difference between the two effects, caused by the 

differences in structure of the two: one has a source, the other does not. For this reason the 

usual statement of the equivalence principle is restricted to small regions. Locality is a key 

point here, because the gravitational field being central, i.e. having a source, is never 

uniform, which results in tidal effects. A comparison of the Schwarzschild field and a 

uniformly accelerated frame is to be made in Section 4.4, where all tidal terms are to be 

neglected. Neglecting ail tidal terms may be a case of throwing out the baby with the bath 

water, as we do not know whether the existence of these neglected terms arises from the 

fact that a curved space is considered, or because it is a central field.

Another possibility for the comparison of gravity and acceleration may be to 

consider an accelerated frame where the acceleration-field has a similar structure to the 

gravitational field, i.e. it is central, it has a “source”, too. Such an accelerated frame could 

be produced if an electrically charged box was pulled by a fixed object with an opposite 

charge, but negligible mass (to avoid gravitational effects). To describe such a situation the 

Kerr-Newman space has to be considered. This situation can not be dealt with using the

method of Held and Ni, by changing the constant a to a, = — —- x i in a rigid frame.
r

I would like to note here that there is no such thing as a homogeneous 

gravitational field which is supposed to be identical with an accelerated frame. According 

to my understanding of the Equivalence Principle, it is about the equivalence of a 

gravitational field and an accelerated frame in a small region, i.e. up to a certain 

approximation. This approximation is believed to be equivalent of neglecting tidal terms.
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Also, tests for the Equivalence Principle are aimed to determine the order of the 

approximation up to what it is satisfied.
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4.3 The Equivalence Principle

Of all the principles at work in gravitation, none is more central than the equivalence principle. 

It forms the foundation of General Relativity by stating that the effect of gravitational 

acceleration by a massive object is the same as that of an oppositely directed mechanical 

acceleration. “This assumption of exact physical equivalence makes it impossible for us to 

speak of the absolute acceleration of the system of reference, just as the usual theory of 

relativity forbids us to talk of the absolute velocity of a system; and it makes the equal falling 

of all bodies in a gravitational field seem a matter of course.” [Einstein. 19111

“Physics is simple only when viewed locally: that is Einstein’s great lesson”

[Misner et ai, 1973, p. 19.]

The whole idea of the equivalence principle originates in the observation that all 

bodies, regardless of their composition, fall under gravity in the same way. We may recall 

Galileo’s alleged experiments at the leaning tower of Pisa. Experimental tests looking for a 

discrepancy between the inertial and the gravitational masses, which would manifest itself 

in causing different gravitational acceleration for objects A and B, and characterised by the 

ratio:

“a ~ aB
2 (aa + a B)

(4.36)

have been sought for more than 300 years. Tests of this type was first recorded by Galileo 

using inclined planes to dilute gravity. Pendulums were used by Newton in 1687 (he had 

found that 7] < 10 * ) and by Bessel in 1832 (/] < 2x10°). Torsion balances were used by 

Eotvos in 1922 (77 <5x10 ’) and by Dicke in 1960s (77 < 10 2). [see references of Vessot, 

1984]

These tests confirmed the principle of equivalence to a very high accuracy, 

showing that gravitational acceleration is almost certainly independent of composition. 

However, with a nonzero experimental error involved, one cannot be sure that it is exactly
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true, and there is still a good reason for searching for an anomaly. This search has so far 

been done by means of theoretical reasoning, because if there is any discrepancy it is too 

small to be detected at the present level of experimental accuracy.

The above tests (of Galileo, Newton, et al.) all involved neutral matter, and a 

natural question would be whether or not the equivalence principle would hold for 

electrically charged objects. It was found by DeWitt and Brehme [1960] that a charged 

particle in a gravitational field experiences a self-interaction force, but it does not do so in 

an accelerated frame of reference. The authors claimed that the reason behind this is that a 

charged particle carries with it an electromagnetic field, which is by no means local, and 

therefore it “can not be considered as a local device”.

Working out the electrostatic potential of a point charge in Schwarzschild space 

Leaute and Linet [1983] found that it is different from the potential resulting in an 

accelerated frame which fact violates the equivalence principle. Besides DeWitt’s self­

force they discovered an additional force arising from the electric field induced by the 

potential in Schwarzschild space. Piazzese and Rizzi [1991] examined the observability of 

this discrepancy, and found that for a gravitational source of very large angular momentum 

in a small neighbourhood of its “turning point” (where the reversal of the tidal force’s 

direction takes place) this effect may be observable. This was the only case when they 

found the EP failing. Otherwise, including the case of the Schwarzschild space, the effect 

of the above mentioned discrepancy was found “quite unobservable” |Piazzese and Rizzi, 

1991],

We should also note that spinning neutral particles deviate from geodetic motion 

by terms involving the Riemann tensor explicitly, which is an expression of the fact that 

spin is a nonlocal phenomenon [Papapetrou, 1951], It may therefore be expected that terms 

involving spin may violate the Equivalence Principle.
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According to the general theory of relativity, we must include as part of the mass 

of an object, the binding energy holding it together. This includes the nuclear binding 

energy, the energy from the electromagnetic forces holding the atom together, the 

intermolecular forces holding solids together, and the gravitational energy that holds such 

massive bodies as the Earth together. These very different forms of energy might 

contribute to mass or with Einstein’s words [1906]: “the mass of a body is a measure of its 

energy-content”. This is the basis of these very precise experimental tests with material 

bodies of widely different composition. Tests of the equivalence principle involve the 

question of how various forms of energy contribute to mass.

It is common to make a distinction between various forms of the EP. The EP is 

called strong if it says that locally all laws of nature are the same in a gravitational field 

and in an accelerated frame, i.e. locally the acceleration caused by gravity can be 

transformed to zero for point particles provided there are no fields present other than 

gravity. We call the EP weak if it concerns not all the laws of nature but only laws of 

motion of freely falling particles (the experiments of Eotvos et al. and Dicke et al. 

provided direct evidence for the weak and indirect for the strong EP). In other words it 

leads to the universality of free fall. For a classical point-like particle it means that in the 

absence of any interaction other than gravity, particles with the same prescribed velocity in 

some point of space-time move along the same path irrespective of their mass. We may 

also find that some books divide the strong EP into two: the very strong EP applies to all 

phenomena, whereas the medium strong EP to all but gravitational phenomena 

[Weinberg, 1972, Ch. 3.1 and Ciufolini and Wheeler, 1995].
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4.4 Conclusions on the Equivalence Principle

When the Equivalence Principle is tested, what is involved is essentially a comparison of 

results in an accelerated Minkowski frame and a frame in Schwarzschild space. The 

relevant metrics in spherical polars are, as in Equations (2.6) and (2.3)

els2 = f ax '  
+  2 =

v c
c ldt~ -  dr2 -  r 2 (dû2 +sin ’ dip1) (4.37)

y

and

ds2 = - 2 GM,
rc

9 T ?c dt~ --
_  ? .GM r ■ dr2 -  r 2 (dû2 + sin 2 û dep2), (4.38)

rc

respectively.

Considering these equations, one can see that there are already differences 

between the two cases at the level of the metrics. For example, in Equation (4.37) only the 

temporal part of the metric has a coefficient different form unity, whereas in Equation 

(4.38) both g ()0 and gn depend on position. We can notice this difference, which seems to 

be a fundamental one, but can not deduce any physical differences between the two cases. 

One has to keep in mind that only invariant quantities carry physical information and a 

metric is not such a thing. Even if we derive quantities from the metric, and they are found 

to be different, one has to be careful about which observer measures the given quantity.

Below a comparison is made involving the Hamiltonian of a Dirac particle in the 

two cases. In an accelerated frame the Hamiltonian has the form of

H -  \3 me2 + /) m (a • x) + -@— p 2 -t----p ■ (a ■ x )p + o a  ■ (ax /?)(4.39)
2m 2mc~ ~ ~ 4mc“ ~

[results of Hehl and Ni, 1990 substituting ro = 0].

Comparing (4.29) and (4.39), which equations describe the effect of gravitational field and 

acceleration on spin Vi particles, yields a test of the medium strong equivalence principle.
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Here we mean the usual view about an accelerated frame and a frame in gravitational field 

being locally indistinguishable. Putting a = - g , into equation (4.39), gives us that the flat-

space energy-mass terms and their redshifted forms are the same in the two cases. On the 

other hand in case of the higher order correction terms we do not get agreement. Although 

both Hamiltonians contain a spin-orbit coupling term, which first turned up as a result of 

Held and Ni's calculation [ 1990], the coefficients of these are different by a factor of 2. 

Also, an additional term appears in our calculation in the gravitational case, which has not 

been mentioned before, and is the same order of magnitude as the redshift to the kinetic 

energy term. This term is proportional to (x- p )~, i.e. the radial component of momentum

squared, as x and g are both in the direction of the normal to the surface of the Earth.

On neglecting all quantum corrections, the Hamiltonians (4.29) and (4.39) can be 

rearranged. The fourth term in (4.29) can be written as

t  P ■ P (g ■ t) , 2me ~~
(4.40)

which is of the form of a Darwin term [Bjorken and Drell, 1964], Rewriting it in the form

ß
tme

V2<t> = - ß
2 me"
J _
lmc~

div grad O = 

divg
(4.41)

makes it clear that this term vanishes in vacuum. Similarly, this can be applied to the fourth 

term in (4.39), which Hehl and Ni [1990] called a redshift to the kinetic energy. Still 

neglecting quantum corrections, the last term in (4.29) can be written as

~ ~ K p , Pi g ‘ *J (4-42)me"

which is of the form of a second derivative of the potential, and therefore it represents a 

tidal term, and hence curvature. A test of the equivalence principle, applying as it does 

neglecting tidal terms, will ignore this term.
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We conclude that the difference between the Hamiltonians in the cases of a 

uniformly accelerated frame and a frame in a Schwarzschild space consists only of 

quantum terms. This is the order up to which we find the EP holding. We have also found, 

that the discrepancy contains a spin term, as was suggested earlier.

For completeness we must add, that although the comparison was made on the 

level of Hamiltonians, the difference between the two cases will manifest itself at the level 

of expectation values as well; this makes the statement physically meaningful. This follows 

from the fact that both Hamiltonians are formulated for the same scalar product (4.18), i.e. 

when integrating the different Hamiltonians over the same volume element the expectation 

values of the Hamiltonians are going to be different, as well. This is now a statement about 

observables and therefore offers a possibility to distinguish an accelerated frame from one 

in a gravitational field by a measurement. Experimental verification of this might not be 

too remote, as the use of atomic interferometers is capable of increasing the accuracy of the 

COW experiments by a factor of 1 0 [Adams et ah, 1994],

The above reasoning holds in case of spin Vi particles only, as the use of the Dirac 

equation has been crucial in obtaining our results. The Dirac equation is a first order wave- 

equation, and such equations exist for particles of all spins except spin 0 [Weinberg, 1964], 

It may be the case, then, that a similar problem with the equivalence principle holds for 

particles of all non-zero spins; but that this problem disappears for spin 0 particles. It 

should be remembered that spin 0 particles obey the Klein-Gordon equation, but that 

equation expresses nothing other than the Einstein relation between energy, momentum 

and rest-mass (see Section 2.2). Such a relation holds for every component of a spin non­

zero particle.
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4.5 Appendices

4.5.1 Appendix: Basis 1-forms and vectors in the calculation

To see that the basis 1-forms satisfy the criteria of an orthonormal basis, one has to check 

if (3.10) is satisfied.

( e 4) 2 -  ( e 1)2 -  ( e 5)2 -  (©s)i =((i-<i>)<*)1-  X(<k' + (4.43)
/ = 1 . 2 . 3

gives after dropping terms of second and higher order in O

(I -  2 0 )dt 1-  X  (( dx'f + 2g'dx'(,v, ))=
'=''2'3 ( \ (4.44)
= (I -  2d>)dt2 -  X  W  ) + 2x'dx' (g, dx1)),

i= l ,2,3

which after rearranging is equivalent to the metric (4.1 1).

The duality of the basis 1-forms and vectors can be checked using equation (3.28). 

There is no mixing of the temporal and spatial 1-forms in the basis 1-forms, so only the 

space-space duality has to be checked:

(er Q ' ) = ( d l - g , x kdk,dx l + g 'x mdx'") =

= + (<*i. 8 ' xmdx'" ) ~ ( g :xk d ,, dx 1) = (4.45)

= 8 / + g Jx m8 r - g , x t 8 i = 8 / .

4.5.2 Appendix: Finding the connection coefficients

The method described in Appendix 3.12.1.A.2 is followed. The commutators of the basis 

vectors give, up to first order in O

k>’ e;\ = lO + 0 )9 ,,a f ~g,xJ dk | :
= [0,0, p , =g.d,

(4 .46 )

and
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k ’ e]\ = I3* -giX'dk’d j - g jx 'd i l  =

= - Ag j y  - gj (ay  y +(djgi y  a, +g . (a jXk y
= -  g,A + gfij  ■

This gives for the structure constant:

^ o „ o 
C n; =  ~ (  n  = S i

c / = A g , + A g , .

Lowering the third indices gives (4.14).

4.5.3 Appendix: Writing the Dirac equation

The covariant derivatives are

D = g. + — y 0 y' Fo o a y ’ ' (0/0

= 0 + ^ A  + - « •  g

A  = A ~ g r* A  • ^|;/ - /  i , =

= A -  g ,x 'a , --Ifi® ;cr'(- gugj + g ]-gi )=

= A - g kx a, - - i e "  ,o g ]-gi .

So the Dirac equation reads

f 1 f  i \
mV =ihp (l + 0)a, +-a-g+a* dk - g kx'dl - - ie"  ,a' g ,-g,

which gives, using (3.38),

mV =ihP j O + ^ A  + ^ a -g + a * (a *  -  gkx'dl )-^28'mocmg ^ ' ¥ . 

Substituting p ~ - ihd and rearranging (4.54) gives for the Hamiltonian (4.16).

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

H* ,(4.53) 

(4.54)
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5 Effect of a rotating gravitational source on Dirac particles*

“According to present plans the next gravitational project in space will be a measurement of 

the frame-dragging effect predicted to result from the Earth’s rotation.” (Vessot, 1984)

Earth is a rotating massive body, therefore all terrestrial experiments are performed in the 

field of a rotating gravitational source. Such a field is described by the Kerr metric. The 

Kerr metric is quoted in a wide range of forms in various textbooks and papers. It should be 

a simple matter to find the relation between these using coordinate transformations, but in 

practice this is less straightforward. For example in d’lnverno’s book [1992] the coordinate 

transformation from Boyer-Lindquist coordinates to Kerr coordinates is wrongly quoted; 

the correct transformation is given in [Hawking and Ellis, 1974]. (See Appendix 5.5.1.)

In papers [Wajima et al., 1997 and Lalak et al., 1995] approximate forms of the 

Kerr metric are quoted, but without a proper definition of coordinates. Up to the same 

order the expressions for the metric are found to be different. Wajima et al. [1997] have

* A condensed version of the material in this chapter is to be submitted for publication [Varju and Ryder, b|
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ds2 = 2 0 . 2 0 2 2GMa t , 7\c- + 2 0  + —— + —r r [x- + y )
c r

d r

+ (x cly -  y dx )dt -  I -  2^- (dx2 + dy2 +  d z 2)2 2 c r
2 0

(5.1)

where the substitution O = -  was made and a is the angular momentum per unit mass
/•

of the source; while Lalak et al. [1995] use

ds2 = c2 + 2 0 O 2 5
dt2 -  ^ 5* ° (x dy -  y dx)dt -2 9c r~

/ 20  2 0 2 A(dx2 + dy2 + dz.2) ,
(5.2)

O 1 csubstituting —  = ------—. (The quantity O is introduced here as the new parameter for
c - 2 r

easy comparison of the two metrics, because the authors expressed the metric using 

different parameters: G and rR.) These metrics are clearly different, although the authors 

claim to work up to the same order, using asymptotically static coordinates in both cases.

2 GMaThe last term in the first parenthesis of (5.1),  ̂ “ (x2 + y 2)dt2, is2 } c r
i not even correct

dimensionally. As the authors do not refer to the source where they have derived their 

metrics, it is difficult to tell what the cause of disagreement is. Therefore I find it necessary 

to present a complete derivation of the Dirac Hamiltonian in Kerr space working up to the

order of fm ) 2 " rna 2and 2

v r  , l )
. This approximation should be used in the case of the Earth, as

we have — = 6-10 10 and—= 10 1 . I also present the corresponding calculation in 
r r

Schwarzschild space, and refer to the result of an accelerated frame, for comparison with 

the Kerr case. Then I investigate the differences between these cases at different levels of 

experimental accuracy. The effects should in fact be studied in a rotating frame, as the
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Chapter 5: Effect of a rotating gravitational source on Dirac particles

experiments are done on the Earth, so laboratories fixed to the Earth rotate relative to the 

fixed stars. Even in the case of the Kerr metric a rotation of the frame should be performed 

as the Kerr metric in its form (5.13) describes the gravitational field of a rotating massive 

body, as viewed from a fixed point outside it.

To obtain the Dirac Hamiltonian we use the method described in Chapter 3. 

Throughout this chapter c= 1 convention is used.

5.1 Rotating frame in Schwarzschild space

The exact Schwarzschild metric in isotropic coordinates (p,fi,(p) with the relation

Because an observer on the Earth is rotating with the Earth, we must consider a 

frame rotating relative to the fixed stars:

(5.3)

reads [Mpller, 1972]

Changing to static isotropic Cartesian coordinates,

a-«; = psin0cos<p , ys = p sin 6 sin (p , z5 = pcos0 , (5.5)

we get

ds2 (5.6)
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xs = x cos (O t — y sin CO t , y s = x sin® t + y cos co t , zs = z

which gives for the relevant order of approximation

ds2 = , 2 in 3 m'1 + ----+
2 \

P 2 p-

+ 2co

(clx1 + dy2 + dz. )- 2m 2ni ^
------+ ---- r-

P P~
dt2 4

I + 2m
P

(xc/y -  y dx)dt.

We identify the metric components:

( 2m 2m2 ^
8 00

P P ‘
£oi ‘ Sio ® 1 + 2/?;

P
V ,

£ 02 <? 20 ® I + 2m
P

* > g // =
f 2m 3m2  ̂1 + ----+ ------
v P 2p- y

The tetrad components satisfying gttjS = rj^ h^a hv p are

/?0 o =

//'o =

d '/ =

f 2 h/?/ m ------1----- -

P

P 2p- /

/V
C 2 h

, 7 / 7  7771 + —+
V P 4p-

<5 './ ,

with the inverse components:

V  =
7" 2 h

, 777 7771 + — + -----
V

h-‘ = -

hJ =

P 2 p-

 ̂ 777 ^
l+ —

P
777 3 / 7 7------1-----

2 h

p 4 p -

We shall have recourse to the following definitions below:

777 d o  X , 7 7 7
— ’ 8i ~ -, , — i >p dx p

û) = (0,0, to), /  = (twxx) = (co y, — co x,0).

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5. 12)
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5.2 Rotating frame in Kerr space

The exact Kerr metric is [Stephani, 1990]

( d r 2 ^ds = I ■+dir + (r2 + a2 )sin 2 û dtp2 - d t2+

2 mr I 2 a / , VH-------(a sin “ itd(p-dt) ,

with

E = r 2 + a2 cos2 û and A = r 2 -  2 mr + a

Up to the order of

ds2 = -

( ni 'l

V ' /

and 1 ma ^

v  r  y

' 2m2

, r y
d r  +

one finds

2/7? 4/n2 2
+ ----+ ——

r r '
dr 2 + r 2 (//¿U + sin 2 û dip2 )-

4/777/ . 2 o , ,-----— r sin ~ 7> dip d t .
r~

The transformation to isotropic coordinates, with (5.3) leads to 

1 2 / / /  2 /7 /2 2r/.W = -
P P

f

dt2 +

2/77 3/7/ 2 3

P 2 p :
(r/p2 + p 2 [dû2 + sin2 ôdcp2 ))-

4/777/
?

P"
p sin 2 û dtp d t .

Changing to static isotropic Cartesian coordinates using (5.5) gives

ds2 = - 1 - 2/77 2/77 2 A

p p
f

+

dt2 +

, 2 /7/ 3/771 + ----+
2 h

P 2P
(r/x5 2 + dys 2 + dz s 2 ) -

4/777 / 7 / y s  -  y 5 dxs
dt.

P~ P

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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Transforming to an Earth-bound, rotating frame, as in (5.7) above, gives for the relevant 

order of approximation

, 2m 3m2 ^ds — / 2m 2m ^

P P ‘

2a>

dr + 1 + -

{ P "

(xdy -  y dx)dt.

(idx1 + dy2 + d z2)+

6m 
5~P

(5.18)

In the above we have used the relationship

2 , 2 2a = — tor- ~ —top",
5 5 K

(5.19)

which holds for a spherical, rotating gravitational source.

The presence of the last term in (5.18) shows that the rotation of the gravitational 

source and the effect of the rotation of the reference frame are different. The metric 

components are then

2m 2m2 'i
Soo =  - 1— 1

V P P '  J
6 ? »  Ì(NII©&0 =  CO 1 

^
 

1 uo
+

’ Sol — 5 108 io ~~ (O 1 + 6m 
5 P

v ,

x ’ 8ij =
' 2 m 3m  ̂1 + ----+ ------

(5.20)

p 2 p

and hence the tetrad components are (calculated as before):

/ 0h o =

/;' i =

f  2 \111 111
P 2 p- 7

( 2 m m + — + -----
V P 4 p

and the inverse tetrad components:

, /do -

8 ‘j ,

1 m 
5 P

\
f  ,

(5.21)

; 0K  =

/r ' =

2 2 A, /« mI + —+ -----
p 2p '

f o 2 ^in 3m ----+-----
p 4p

’ K  =

5 / '.

1 m
5 P (5.22)
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5.3 Dirac equation in the Earth’s field

We notice that the Kerr case (5.21) (5.22) and the Schwarzschild case (5.10) (5.1 1) differ 

only in a factor of one of the tetrad components. Introducing a constant b for this factor we 

can treat the two cases together:

(1 oh o =

h ‘ o =

in nr------h-
2 y

P 2 p 2

r  ,
( , m ^I +b  —

P
(5.23)

h'j =
m nr2 \

P 4 p
5 ' j ,

; 0K =

K

lrJ =

m mi \

P 2p
( \  

1 +b —
P

/?/ 3/77---- +

/ '  ,

2 A

(5.24)

P 4p-
<5,- ' ,

with b = 1 in case of a Schwarzschild space, and b = — in a Kerr space.

In this chapter the connection coefficients are calculated from the tetrad 

components, using formulae (3.17) and (3.24). These give for the tetrad (5.23) and (5.24)

rm = ~ Tm = 0 -® )« / ’

rr,ô = T  0  - b ) i f ,  8j -  f j  Si) +  0  +  h ® /  ’

rw  = “ T'ô; -  ^ 0 -M ( / ;w v + / ; g ,),
(5.25)

% = (pyr s , - n , k g j )
( 3 ^

1 - - 0  
2

(for details see Appendix 5.5.2).

Then one writes the Dirac equation similarly to the previous cases to get the Dirac 

Hamiltonian,
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H = 0  + - 0
2

pm -  ih I -  2 0  + — 0 : (tt d)-

+ ih (1 -  (I - h ) 0 ) ( f  ■ d)+ *  (1 -  3 0 )(a • g) (5.26)

h
(I -  b)o ■ ( /  x g )+ ^  (i -  (i -  6 )0 ) {o ■ co).

The expressions of the basis vectors and covariant derivatives are given in Appendix 5.5.3. 

The determinant of the spatial part of the metric tensor is

det gi
3 -

+  20 + - 0 - (5.27)

because the terms containing off-diagonal components are of second order in CO.

Absorbing the determinental factor into the wavefunction, and transforming the 

Hamiltonian as described in Chapter 3.7 gives, after relabelling H' —» H ,

H = — 0  + — 0 2 Wm-ih 1 - 2 0  + - 0 2 (a d) +

+ ih (l -  (l - /? )0 ) ( /  -d)- ih 9 .  ̂
- - 0

4 /
fe-A')- (5.28)

“ ( l -  b)a ■ ( /  x £ )+ 1 (1 -  (l -  b )o )(c ■ o) ) + 1  ih ( /  • g).

As the above Hamiltonian still depends on the value of h we can see that the effect 

of Kerr space is different from the effect of Schwarzschild space. However, to see the 

differences caused in laboratory experiments, we have to take the non-relativistic limit. The 

proper non-relativistic limit can be obtained by applying three successive Foldy-Wouthuysen 

transformations as explained in Chapter 3.8. To calculate all these terms would be difficult, 

but as we are only interested in the order at which the difference between the two cases 

becomes manifest, it is sufficient to consider the leading terms. The odd and even parts of 

the Hamiltonian are
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0 = — ih

s  =

- 2 0  + - 0 2 
4

a d - i h  1 --<D 
4

2

a ■ g

3
0 / I / / 7  +  ih (l -  (l -  h ) o ) f  ■ d + — i hf  ■ g -

-  -  0 -  &)o: • ( /  x #)+ * (l -  (l -  a)o )(ct • ffl).

(5.29)

The odd terms contain no h , so they are the same in the two cases. The difference 

will come from the terms £ ------— -\o, [<9, £}]. To the leading order we have for the
8 /77 c

difference:

ih (l -  / ? ) 0  /  • d (5.30)

As only the leading order correction is of interest, one may use the approximate

expression

p = -ih d (5.31)

Higher order corrections to the momentum can be obtained using the method described in 

Chapter 3.9.

In case of a thermal neutron (kinetic energy of 20 meV), the momentum

p = p m E kln = ^2x940MeV / 2x2meV = 1.9xl03e^  (5.32)

is of order p ~ 2x10' . Therefore the order of the difference term is

777(1- / 7)0 / -a -  0 - p  »  6 x l O “ 10 x l 0 ~ "  x 2 x l 0 3 eV  «  10_l9e V .  ( 5 . 3 3 )
— r
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5.4 Conclusion

When analysing terrestrial experiments it has to be taken into account that the Earth’s 

gravitational effect is properly described by a rotating frame in Kerr space, which is a rather 

difficult calculation. The effect can be approximated by using a rotating frame in 

Schwarzschild space, or even a rotating accelerated frame. The question is, at different 

levels of experimental accuracy, which approximation is sufficient. In this chapter the 

comparison between a Kerr and a Schwarzschild field was carried out, and it was found that 

the difference between the cases becomes apparent at energies of 1CT19 eV . A comparison 

between an accelerated frame and the Schwarzschild field was carried out in Chapter 4 and 

it was found that the difference between the two is of the same order as the redshift of the 

kinetic energy, that is 10" eV . This is the level of accuracy where the differences between 

the gravitational effect and the effect of acceleration become distinct.

For comparison we note here that the gravitational term detected in the COW 

experiment (redshift of the restmass term) is of the order of 1 eV . Atomic interferometers 

are expected to increase this accuracy by a factor of 1 0 10 so it is becoming clear that further 

experimental developments will make it necessary to use general relativity in analysing the 

behaviour of quantum systems.
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5.5 Appendices

5.5.1 Appendix: Comparing the Kerr and Boyer-Lindquist forms

Equation (19.27) of d’inverno [1992] gives the Kerr metric in Boyer-Lindquist coordinates:

(a sin 2 0  dtp -  dt)~ -  S'% -̂  ((r2 + a 2) dtp -  a dt)~ -
P~ P~

dsBL =

(5.34)
P_
A

■dr1 -  p  2d û 2 ,

with (p ,0 ,<p) the standard polar coordinates, and

r 2 = p 2 -  a 2 cos2 p and A = r2-2 m r  + a2 . (5.35)

For the same metric in Kerr coordinates Equation (19.28) of the same reference

gives

dsK = dt 2 -  dx2 -  dy1 —dzP -

2 mr
4 7 ?r +a z

dt + - (xdx+ ydy)+ —----- 7  ( ydx — xdy ) + — dz
a" + r~ ' r

(5.36)

and from equations (19.29) and (19.66) the transformation connecting the two cases,

x = rsin âcos (p + a sin r7sin ç  
y = r sin Osin (p -  a sin Ocos (p 
z = r cos 0

dt — dt + 2 mr .----- dr .
A

(5.37)

On substituting (5.37) and (5.35) into (5.36) one can see, that

2

c/.v I -  ds2BL = -  2sin 2ùad(pdr----^sin 2 ù d r2 . (5.38)
r~

On the other hand, Hawking and Ellis [ 1974] has the same form of the metrics as 

d’inverno (equations (5.29) and (5.30)), but the transformation connecting them are 

different. They have
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X + iy = (;r + ia )sin û ■ exp / j* d(p + — dr
{ J A

z = r cos û

t = f , r" +a" ,dt H-----------dr -  r ,J A
(5.39)

which agrees with the last two equations of (5.37) but, instead of the first two there, this 

transformation provides

x + iy = (r + (a)sin i3(cosa: + i sin a )  , (5.40)

with

a  = (D + , ........... arctan —= (5.41)
2 2 2 2 V a -  m yci — m

instead of a = (p . The good news is, that substituting (5.39) and (5.35) into (5.36) gives 

(5.34).

5.5.2 Appendix: Calculation of the connection coefficients

First the structure constants have to be calculated from the tetrad components, using the

formula (3.17). These give:

0
W ( a  À  )=
h°h; * (a, h \  -  9„*‘, )+ h. Jh; * (ay , -  a ,i , \  )=

(5.42)

= W d A  =

1 + 0 + - 0 2 
2

V
A

-  o  + -  o ;
4 5 ‘d* O + —O- 

2

< V  = l k aht P(d p h ]a - d ah }p ) =

= hò°htkfakhJa- d 0h\  )+h(t'h!kfakhJl - d ,h Jk ) = 

= /? -0/?■* (¿)̂ /e'0) + /¿() 1 h. k fakh 11 3 ,h 1 k ) =

(5.43)

(5.44)
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( 1 V
1 + o  + —o  

2
1 -  O + ^ O 2 | (5* (ak (l + bO)a ' )-

~(\ + bO)a'
f 2 A

1 -  O + -  O
4

r  i 3
1 + 0  + - 0 2

4 y

(5.45)

(a, (l + M>)a')+ a  5- (<5/g, - 8 ]k g,  ) =
-  bg,aJ -  (l + bO)e, J"'com + a'g, -  8 / a'g, 
{ \-b )g ,a j - { \ + m ) e , ]m(om.

(5.46)

Similarly

C, 6 = 0 

and

C =y
f 3 1 - - 0  

2

Lowering the last indices and using (3.24) gives (5.25).

(5.47)

(5.48)

5.5.3 Appendix: Basis vectors and covariant derivatives

Using (5.24) gives

g6

e =

f 2 y. m m 
1 + —+ ---- -

P 2  p

m 3 m---- +

a, -(l+ao)/' a, ,
y 

2 3

P 4  p-

(5.49)

and the covariant derivatives turn out to be using (5.25)
^ i ,  . . . . . . .  r

Do = I + O + -  O
2 a0 -0 + M»)/' a, + -(i-o )(a-g )-2

- /  (1 -  a ) a  • ( /  X g ) + ^  (1 + p o ) ( o )  • a )

D = -  O + -  O 
4 + -  0 -  ¿Ofe • /)«*  + fe • g ) f k)+ ~ i

3  ̂- O  
2

(5.50)
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6 General relativistic treatment of the COW experiment*

We may recall, from Chapter 2.1.1, the gravitational phase shift derivable from Newtonian 

mechanics

= qgrav sin a = Inh-j^-m2 A0 sin a  ,

and the Sagnac-shift:

Ad).. = a, cos«:r  Sagnac jl Sagnac
4 mncoA0 

h
cos ùL cos a .

(6 . 1)

(6 .2)

As was made clear above, the theory with which the experimental data has been 

compared in the experiments is Newton’s theory of gravity. From a fundamental point of 

view, however, this is somewhat unsatisfactory; the theoretical expression for the phase 

shift should be derived from General Relativity. A step in this direction has been taken by 

Anandan [1977], who gave a special relativistic discussion of the behaviour of neutrons in 

a gravitational field. Anandan used the Klein-Gordon equation, simulating the gravitational
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and rotational effects of the Earth by passing to an accelerating and rotating frame of 

reference. The discussion is special relativistic in the sense that the Klein-Gordon equation 

is used; and it is consistent with general relativity since it makes use of the Equivalence 

Principle. Crucially, however, the Klein-Gordon equation is not capable of exhibiting spin 

effects, and the neutron is a spin Vi particle. To find any gravitational spin effects, the 

correct procedure is to write down the Dirac equation in a curved space.

Anandan found the following expression for the phase shift:

A</> = A0 ,rav + A0 ™, =
_ gAm2 gAK 2Q.nAm hQ.nAK2 (6.3)

h2K c2 h me2

[ k = is the wavenumber of the neutron, Qn = cocosi}L is the component of the
A

angular velocity of the Earth normal to the interferometer surface). The first two phase 

terms are caused by gravity and the second two by the rotation of the reference frame. The 

first term in (6.3) is equivalent to (6.1) (Anandan assigns normal vector to the area, so 

gA = gA() sin a  and ClnA -  CO cost)L A0 cosa where a  is the tilt angle of the

interferometer). The third term corresponds to (6.2), the Sagnac term . The other two terms 

are too small to have been detected (yet).

It may be of interest to note that a completely classical derivation of the phase 

shift has been given by Mannheim [ 1998], His calculation is based on the fact that particles 

moving in a gravitational potential at higher paths have greater gravitational potential 

energy and therefore a smaller kinetic energy, than particles on lower paths, and it 

therefore takes them longer to arrive at the place of interference. Mannheim finds: *

* A condensed version of the material in this chapter is accepted for publication at the American Journal of 

Physics [Varju and Ryder, a].
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(6.4)

n Ij
which is equivalent to (6 .1), on noting that v = —, p = ---- and again gA = gA0 sin a  .

m 2k

In this chapter I present my calculation to obtain the formula for the phase shift 

using general relativistic arguments. When this is done the calculated phase is almost, but 

not exactly, the same as the one found by Anandan.

6.1 The Dirac Hamiltonian

As it has already been mentioned in Chapter 2.5, following the studies of Xia et al. [1989] 

it became known that there are spin polarisation effects of spin Vi particles in the Earth’s 

gravitational field. Since here 1 also want to draw attention to spin effects, in particular the 

Mashhoon spin-rotation coupling, the correct procedure is clearly to start with the Dirac 

equation in the Schwarzschild field of the Earth, and then to take, in an appropriate 

manner, its non-relativistic limit. It is my aim to show that in this limit we finish up with 

terms like (6 . 1) and (6 .2 ) above, as well as correction terms; and, in addition to these, 

terms involving spin. It is clear, of course that in obtaining this result we shall work to

and O, the gravitational potential. Before proceeding, however, I should like to make an 

explanatory remark about the procedure. Some of this have been explained above, but for 

completeness I feel it helpful to repeat them here.

The gravitational field of the Earth is, strictly speaking, described by the Kerr 

solution, which is the generalisation of the Schwarzschild solution to a rotating source. The 

Kerr solution, as usually quoted, is given in a frame of reference which is not rotating; this

certain orders of approximation in the various “small” quantities in the theory, such as
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can be envisaged as an asymptotically inertial frame, from which one “looks down” on the 

rotating source. In the present problem, however, the interference apparatus is on the 

surface of the Earth, which is rotating! The correct procedure is then to write the Kerr 

solution, but in a rotating frame. The exact application of the Kerr solution to the Dirac 

equation is, however, very complicated, and appropriate approximations have to be made; 

and even then the resulting Hamiltonian is not in a very tractable form.

So much for the Kerr solution. The next best procedure is to consider the 

Schwarzschild solution, again in a rotating frame of reference. The philosophy of this step 

is that the contribution of the rotation of the Earth to its gravitational field may be ignored; 

we need only retain the fact that, in whatever form we choose to represent the gravitational 

field of the Earth, our observations are made in a rotating frame. The Dirac Hamiltonian 

may be calculated in this case, to a suitable order of approximation, but this turns out also 

not to be tractable enough to deal with. The essence of the intractability, here and above, is 

that the form of the momentum operator as well as the integration measure, in curved 

space, are not trivial (see Fischbach [1980] and Varju and Ryder [1998] or Chapter 3). To 

enter into the details of these would cause unnecessary trouble, particularly in view of the 

fact that the final result will be, by virtue of our approximations, unchanged. Finally, the 

Equivalence Principle* may be appealed to, and the Dirac equation written down in

* “It may he worth remarking that the usual Equivalence Principle is considered to be that which 

describes as equivalent the gravitational field of a non-rotating body, and an accelerating frame of reference. 

Strictly speaking, in our view, it should be borne in mind that there are two types of non-inertial forces -  

accelerations and rotations -  and therefore there should be two Equivalence Principles, so that, taken 

together, they would have the consequence that gravitational mass is equal lo inertial mass both as measured 

by acceleration and as measured by rotation. As usually presented in General Relativity, the Equivalence
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Minkowski space, but in an accelerating and rotating frame. This calculation was first 

performed by Hehl and Ni [1990] and provides the most suitable form of the non- 

relativistic Hamiltonian for our present purposes. It is important to remark once more that 

to the order of approximation which concerns us [see the conclusions of Chapter 5], the 

three calculations described above are equivalent, so we are perfectly justified in choosing 

the approximation which gives the Hamiltonian which is easiest to work with.

The Dirac Hamiltonian found by Hehl and Ni [ 19901 is

/ /  =  pme f q_- x ) P 2 P a-x / \ ph ( \+ —— + - — p + - — p  —p -0)-{L + S )+ - ----Ta_(axp).  (6.5)
2m 2m— c~ — 4mc~ —\ c

This Hamiltonian enables us to find the phase shift, as will be explained in the next section.

Principle equates gravitational mass to inertial mass measured by acceleration, but it should be noted that the 

Eôtvos experiment is actually concerned with rotations.” (L. H. Ryder|
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6.2 The phase shift

We write the total Dirac Hamiltonian in the form

non—in ( 6 . 6 )

where the indices refer to the free particle and non-inertial terms, respectively. The phase 

shift is defined relative to the free particle situation, and is therefore caused by the second 

term. Subtracting the free particle terms from (6.5) gives

We now consider the interferometer, consisting notionally of two paths. Because 

the size of the wavepacket can be assumed to be much smaller than the macroscopic 

dimension of the loop formed by the two alternate paths, we can apply the concept of a 

classical trajectory. For simplicity consider a rectangular interferometer OABC, with the 

beam split up at O. travelling along OAB and OCB, and finally interfering at B, as shown 

in the diagram. Here R is the radius of the Earth, a is the acceleration due to gravity, and xq 

and vo are the dimensions of the interferometer.

Hnon—in

The phase difference, to be measured in the experiment, is

( 6 .8)

Uo,yo)
C B

a
►

A x

\

Figure 6 .1 : The interferometer loop.
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We use the simple nonrelativistic relation

pdt = ^m^-dt = u/<j>d.v. (6.9)

In addition we denote by 77 and 77 the times taken for neutrons to travel along the lower 

and higher horizontal sides xo , respectively; and by pi and p2 the momentum along these 

paths.

The first term in (6.7), which corresponds to a “redshift of the rest mass”, gives, in 

its contribution to (6 .8 )

|( a  • x)df = a-R(Tt ~T2) + a - y0(-T2) . (6 . 1 0 )

The next term in (6.7), which corresponds to a redshift of the kinetic energy, gives:

|  P ' (â ' x) P = mÇL ' K xo (P\ ~ Pi)~ mcl  ' ToP2xo • (6 .11 )

The Sagnac term in (6.7) gives, in its contribution to (6 .8 )

I  tu • L df = 2 mû) ■ A0 (6 . 12)

The spin-rotation term can only be detected if the spin is flipped along one of the paths 

[Mashhoon, 1988]; we then have

co ■ S df = 2tu • S 77, . (6.13)

The spin-orbit coupling term gives

I tT 'la x p jd /1 = 2max0(j .

Details of the integrations are given in Appendix 6.4.

Putting all these together the expression for the phase shift is 

= - | 7 7 „  dt =

(6.14)

= -  ma ■ R(T] -  77 ) + ma ■ y0T2 -  — -  {ina ■ Rx0 (pt -  p 2) —
2 me'

-  2mco ■ Aq -  2co ■ STun +

ma ■ y0p0x0
(6.15)

4u/c"
2m axq(7

1 0 2
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h A(p = -  ma ■ R (T] - T 2)+ ma ■ yQT2 ----- - a  - Rx0 (/;, -  p 2) +
1— " 2 c

1 R+ r i « '  .Vo Pix o -  2 mm ■ A0 -  2m ■ STun + — - ax0o  .
2c — — 2 c

It is useful to rewrite this after introducing the “gravitational potential’’

(6.16)

T a ■ RO = (6.17)

The expression for time T is

T _ Xq_ _ >nx() _ m/U-0 

v p h (6.18)

so that the time difference between the journeys along the upper and lower paths is

T, — 72 = m x „ ----------
Pi P2

= mx,o P1 ~ P 2 

Pi P2
mx, Ap

o T ■ 
Pi

(6.19)

Neglecting terms in (ApY
V/T ;

, the phase difference then becomes

h A(p = -  me20  (r, -  T2) -  — (pi -  p2 )<t>.v0 + a ■ _yc ml\ + 7 T ^ o
2  c

h
( 6 .20)

-  2mco ■ A0 -  2m ■ STtill H------ ax{]o
2c "

R&<P = ~ - A p x 0O ( + 2
2 9 Am~c~

Pi
+ 9. ■ >o

f 2 /»
----- + ̂ P i xoP2 2c ~ ( 6.21)

-  2mm ■ A0 -  2m ■ STU)t H-----— ax0o  .
2c ~

The next step is to find an expression for Ap using general relativistic arguments. 

In the literature [see for example Werner, 1994] an expression for Ap is found using a 

Newtonian argument based on energy conservation, whereas below a general relativistic 

derivation is presented, based on Dirac’s argument [Dirac, 1975], Consider the metric

Strictly speaking there is no gravitational potential in GR. what’s more here we arc dealing with non-inertial 
effects purely. This phrase is used for convenience.
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ds2 = + 2 a ■ r dv  -  dr2 -  r 2(dtì2 + sin: dd(p~) (6 .22)

which corresponds to an accelerating frame. Under radial free fall eld = d(p = 0, and we 

have

, „ £/ • rI + 2 =-f
• ? .9r  -  r" (6.23)

where dots denote differentiation with respect to proper time. Rearranging (6.23) gives

a ■ r ( dr Y  ̂.2
l + 2 ~ -  — t 2. (6.24)

c dtv 7 y

As a boundary condition we require that if a particle falls from r — p the starting velocity

be zero — = 0  , therefore
dt

eh
ds

a -p
+  2 — = (6.25)

In the standard way we can express the following quantity as a constant:

'■ + 2 iL-r U
V y

— = b — const. = 
ds

1 a ■ p N 
1 + 2 ẑ -=

c
(6.26)

y

Hence

dt_
ds

a- p Y - (  a . r b
1 + 2 ^  1 + 2 =—=2

l  c  y
(6.27)

Substituting this into (6.24) gives, after rearrangement
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f d r >1 '*"• 
l f a .r \  Í 

1 + 2 = =
/

1 + 2 :a ■ r

\

1+2
a p

'  a- 
1 + 2 =-+

1 + 2 a ■ r

1 —
1 + 2

a - p

\

a- r
, + 2 ~ ? '  a-p

2 —= - 2 = =c
a ■ p

1 + 2 = ^ ^
c c /

> - 2 4  (p -r )
b a 

2 - (P -J
y

Up to 1st order in o and Ar this gives

v = ' dr_ '

, dt j
2 -

a - (p - r )

c

,2

(6.28)

(6.29)

This expression for v was found by assuming the boundary condition that v = 0 

at r = p .  In our case, however, the particles travelling along the vertical arms of the 

interferometer never have zero velocity. To find an expression for the velocity of a particle 

in this situation, consider an object falling from an imaginary (higher) point, where its 

velocity was zero. Let us use the notation of p, r\ and r2 for distances measured from the 

centre of the Earth as indicated in Figure 6.2.

" 0

-VO..............................

in te r f e r o m e te r  lo o p

V ( j + d v

▼ c e n tr e  o f
e a r th

Figure 6.2: Notations used in the calculation for the derivation of the momentum.
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The interferometer loop is positioned between coordinates n and r2, and p is the 

distance of a fictitious point from which a particle dropped with zero velocity gains a 

velocity of vo by the time it reaches coordinate ìq.

Using the notations in the above diagram and equation (6.29), and assuming that

p -  r,, r, -  r, «  R we get

(vo + ¿/v)2 -  V  = 2 4 -  (P -  r2 -  p  + r, ) =
c~

= 2 Ar ~ 2 v0 Av ,
c~

which gives

a Ar Av « — —
C“ v0

and hence

(6.30)

(6.31)

ma Ar m1 a Ar m2a ArX ^Ap = -------- = ---------  = -----------. (6.32)
v 0 Po h

This expression is the same as the one obtained using a Newtonian potential, 

which is not surprising, considering a first order approximation was used; this is, 

nevertheless, a gratifying result. In addition, of course, this method enables one to find a 

higher order expression for Ap, if needed.

If the OABC interference loop is tilted about a horizontal angle by an angle a,

then

Ar = y0 sin a . (6.33)

It is clear that the first term in (6.21) is second order in g . The second term, using the 

relation

2

J~ = E^  (6-34)Zm

gives
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a-y  o
( t , A111 x0 I
-------+ — rP 2*o

v p 2 2 c

which may be written as 

h

2c p  y  o
me ■ + ]

2 Ac
a An sin a? u

f 2 \me
+ 1

v

where An is the area of the interferometer. This can be re-expressed as follows 

hn
Ac

aAn sin a
f 2 \me

V E *
■ + hum  2 in h naA0 sin a  — 7  H------ aA0 sin a

p 2~ Ac“A

hum
~

2hKm

2mA2 h naA0 sin a  — -— + — -  aA(] sin a  = 
h " Ac “

hnaA0 A sin a  + -—-  aAn sin a: . 
h~ A c “

Finally, putting equations (6.21) and (6.37) together, the phase shift (6 .8 )

the form

A (f) 2nm1 , , . K 2— ;— aAfì A sin a  H----- - aA0 sin a  —  mco ■ A0
h~ Ac“ h

~ CJ2-STU„ + -  -a x ()o  . 
77 2 c

(6.35)

(6.36)

(6.37)

will take

(6.38)
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6.3 Conclusion

Equation (6.38) gives the phase shift expected in neutron interference experiments in a 

rotating frame in a gravitational field. The first and third terms in (6.38), representing the 

acceleration effect and the Sagnac effect, have already been detected. The second term,

which is v~/ 2 times the acceleration term, is beyond the accuracy of present/ 2 c“

experiments. The fourth, Mashhoon, term, should be detectable using atomic 

interferometers in the near future [Audretsch and Lammerzahl, 1992a]. The final term,

originating in spin-orbit coupling, is, for thermal neutrons, approximately 1 0 10 times the 

Mashhoon term, so is surely a “next generation” effect. It is interesting to note that the first 

three terms are proportional to the area of the interferometer, whereas the last two terms 

are proportional to its linear dimension.

Audretsch et al. 
11992b]

Anandan 
11977]

Werner [1994] Mannheim
[1998]

Varjü and 
Ryder [al

acceleration
term

mA g Am 2 
h 2K

g Am 
hv

277,7,2 1 1
hv Ir h2

correction to 
acceleration

v " mA
----;------Cl

2c ' hv

g A K
0

- - n  *---Ac2
Sagnac term 2m

— co ■ A 
h

2 co ■ Am 
h

2 m
------ coAn cos 6 [

h
-

- - ® -  A,h —
Mashhoon term

—^L(0 ■ J
V

- - -
h

spin-orbit
coupling - J

C
- - - 1

~ r  axuG 
2c

other terms p /i j (X

2Av R"-°

» “ „  , ç „ 
2*v 5 "

kco-Ajc2 
me2

GMSncoA
me2 R '

Tabic 6.1 : COW phase shifts in the literature.

Table 6.1 shows a summary of the different contributions to the phase shift for the 

COW experiment, as calculated by various authors. Using the formulae
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A = Aa sin« ; a-A  = coA0 cosO, cos a  ;

2 n  —  -  — —  ; O )  =  k c  ;
(6.39)

/ r  k2K
; ft) = kc ;

hK mA aAm2
m hv h2K (6.40)

v 2 n iA  ciA k

t()1 ; S = —h o  
2 ~

(6.41)
v

luting the different notations used in various references, one can see that: 

the leading order, acceleration, term is identical in all accounts.

the correction to the acceleration term is not shown in Werner's and Mannheim’s 

accounts, since they only worked to a lower order.

in the Sagnac term there is agreement where applicable, apart from a minus sign in 

Audretsch’s case.

the Mashhoon term only appears in two accounts and they agree apart from the sign. In 

Audretsch’s formula the angular momentum J includes orbital angular momentum and 

is in units of Planck’s constant. This explains the missing factor h.

the two spin orbit coupling terms agree, since we may put ./ = ^ . Audretsch’s 7,

however, also includes an orbital contribution.

the two other terms in Audretsch' depend on curvature, so we do not expect to get this 

type of contribution, as we are working in Minkowski space. Anandan’s two extra 

terms, which are not equivalent to Audretsch’s as they depend on the rotation of the 

source, also do not appear anywhere else.
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6.4 Appendix: Evaluating the integrals

A B
(ii * x)dt — Jci • (/? + x)dt + Jit • [R_ + Xq + y)dt +

O A
C 0

+ J a. • \R + x + Vo + J a • {jR + y)dr =
B c

= a ■ R (r, -  T2)+ a • Vq(- T2) ,

where we have used the fact that in the case of a vertical acceleration a-x = 0 .

p - (a - x) p dt = |  (a • x) p 2 dr -  ih |  (a • p)dt =

— |  (a • x) p 2 dt -  ihm j> a • ds =

(6.42)

(6.43)

= |  (a • x)p " dr =

= in |  (a ■ x) pds =
A B

= m J p]a (R  + x)dt + p a • \R + x0 + y)dy +
O A

C 0
+ in |  p2 a • \R + x + y0 jdr + /»J p a • (r + y)dy =

B C
(6.44)

CO

A (_
= tn |  p ta- R dx + m j  p2 a ■ {r + y0 )dx =

o B
= ma-Rx0 (/;, -  p2)-m a  ■ y0p2x0

L d r  =  |ft)-(rx  p)dt =

=  |  (ft) x r )  • p d r  =

= in ^ (co x r)‘ ds =

A lì
= //; |  CD x (R + x) dv + //; |  a) x (/? + A'(J + y) dy +

o A
c o

+ m |to x  (/? + x + v0 )dx + in Jcox \R+ y)dy

(6.45)

(6.46)

(6.47)
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b  c
= mcox R |  ds + in | co x x0 dy + m j"cox v0 dv =

A B

= 7n(0 x x0 • y0 -  mco x y0 • x0 =
= 2 /7/ry • x0 X y0 =

= 2 mco • 40

/l O O

|  ru • S dr = Jffl-Sdr + J f f l - S d r - | - « - S d r - J - © S d r  = 2coSTlo

a (ax p)dt = j>((7Xtf)- /;dr =

= 77/ 1 (a x a) • dy =
f  A B C B

= m (ox a)- J ds + J els -  j -  els -  J - ds
K0  A O C

= 2 m (ct x a )■ s = 2m{aXs)o_  =
= 2 m ax,,a

(6.48)

(6.49)

(6.50)
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7 Conclusions, final remarks

For the most part, the thesis has been concerned with the possibility of describing 

gravitational effects on spin-'/2  particles.

It is beyond any doubt that experiments carried out in our laboratories are affected 

by the Earth’s gravity, still it is common practice to ignore this circumstance. It had been 

believed that, because of the order of magnitude of the effect, gravity would not manifest 

on the level of quantum experiments, until Colella, Overhauser and Werner proved the 

opposite with their remarkable experiment. This experiment created a need for a theory 

combining Quantum Mechanics and General Relativity. In this thesis a work has been 

summarised concerning the consequences of using Weyl’s tetrad formalism to describe 

gravitational effects on quantum systems.

Writing the Dirac equation in Riemannian spaces has been the topic of textbooks 

and papers since 1980. Still I have not found anything in the literature of sufficiently 

detailed coverage of this topic. I made an attempt in Chapter 3 to give a thorough 

description of the problem, providing solutions to the questions I have not found being
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answered in the literature. I have touched subjects such as what is determined by the choice 

of coordinates, and how the Hamiltonian depends on the choice of the frame. 1 have 

summarised the various methods of finding the connection coefficients with examples in 

the Appendix. I have also given a possible solution of dealing with the epsilon symbol and 

a recipe of finding the form of the momentum operator in curved spaces.

The thesis proceeded in Chapter 4 to die application of the method described 

previously, to give a description of the effect of stationary gravitational sources on sp in-Vi 

particles. The Dirac Hamiltonian has been written in a Schwarzschild field and then 

compared with the corresponding result in an accelerated Minkowski space.

Comparing the Hamiltonians describing the effects of gravitational field and 

acceleration on spin Vz particles yields a test of the medium strong equivalence principle; 

that is, the statement that physical effects in an accelerated frame and a gravitational field 

are locally indistinguishable. The comparison gives us that the flat-space energy-mass 

terms and their redshifted forms are the same in the two cases. On the other hand in the 

case of the higher order correction terms we do not get agreement. Although both 

Hamiltonians contain a spin-orbit coupling term the coefficients of these are different by a 

factor of 2. Also, an additional term appears in our calculation in the gravitational case, 

which has not been mentioned before, and is the same order of magnitude as the redshift to 

the kinetic energy term. This term is proportional to (x- p)~ , i.e. the radial component of 

momentum, as jc and g are both in the direction of the normal vector to the surface of the 

Earth. On neglecting all quantum corrections, we see that the differences between the two 

cases vanish; one term being in the form of a Darwin term that vanishes in vacuum, and the 

other of the form of a second derivative of the potential, which therefore represents a tidal 

term, and hence curvature. A test of the equivalence principle, applying as it does only to a 

uniform gravitational field, will take no account of this term. We conclude that the
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difference between the Hamiltonians in the cases of a uniformly accelerated frame and a 

frame in a Schwarzschild space consists only of quantum terms. This reasoning holds only 

in the case of spin Vi particles, as the use of the Dirac equation has been crucial in 

obtaining the results. It may be the case, then, that a similar problem with the equivalence 

principle holds for particles of all non-zero spins; but that this problem disappears for spin 

0 particles.

Chapter 5 examined the effect of the Earth’s field on Dirac particles. When 

analysing of terrestrial experiments it has to be taken into account that the Earth’s 

gravitational effect is properly described by a rotating frame in Kerr space. The calculation 

of this is rather difficult, but the effect can be approximated by using a rotating frame in 

Schwarzschild space, or even a rotating accelerated frame. The question is, at different 

levels of experimental accuracy, which approximation is appropriate. To decide about the 

applicability of these three models when describing experimental results in Earth-based 

laboratories, the Hamiltonians have been calculated and compared with each other. The 

analysis showed that the difference between a Kerr and a Schwarzschild field becomes 

apparent at energies of 1CT19 eV . From the results of Chapter 4 we concluded that the 

difference between an accelerated frame and the Schwarzschild field is of the same order 

as of the redshift of the kinetic energy, that is 1CT11 eV . For comparison we note here that 

the gravitational term detected in the COW experiment (redshift of the restmass term) is of 

the order of I eV . Atomic interferometers are expected to increase this accuracy by a factor 

of 1010 so it is becoming clear that further experimental developments will make it 

necessary to use general relativity in analysing the behaviour of quantum systems.

A reanalysis of the COW experiments was made in Chapter 6 and a General 

Relativistic derivation of the phase shift was presented. The acceleration and the Sagnac 

terms have already been detected. The Mashhoon term is expected to be detectable using
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atomic interferometers in the near future, but there are terms which are far beyond the 

accuracy of present experiments. It is interesting to note that three of the terms in the 

expression for the phase shift are proportional to the area of the interferometer, whereas the 

other two terms are proportional to its linear dimension.

A further step in this study could be a study of torsion, and the effect it may have 

on quantum systems. Due to Einstein it is said that mass curves space-time and in this way 

gravitation takes on the aspect of a geometrical entity. In special relativity, however, mass 

and spin have in common that they are two conserved quantities connected to space-time. 

It would therefore be nice if spin also had a dynamical manifestation; this would be a 

generalisation of GR and the idea of torsion. Theories of torsion have a long history, but 

the attempts to verify it experimentally on the cosmological scale have not yet been 

successful. The extension of the above exercise using the theory of torsion might suggest a 

possible test for it in the quantum domain.

Another possibility of extending this study is to carry out the above calculations 

up to higher order that would enable one to describe situations where the mass or the 

angular velocity of the gravitating source is more substantial than in case of the Earth, such 

as in rotating black holes, or at the Big Bang.
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