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Abstract

Farming is one of severals ways of arranging for a group of individuals to perform work simultaneously.
Farming is attractive. It is a simple concept, and yet it allocates work dynamically, balancing the load

automatically. This gives rise to potentially great efficiency; yet the range of applications that can be

farmed efficiently and which implementation strategies are the most effective has not been classified.

This research has investigated the types of application, design and implementation that farm effi-
ciently on computer systems constructed from a network of communicating parallel processors. This
research shows that all applications can be farmed and identifies those concerns that dictate efficiency.

For the first generation of transputer hardware, extensive experiments have been performed using oc-
cam, independent of any specific application. This study identified the boundary conditions that dictate
which design parameters farm efficiently. These boundary conditions are expressed in a general form that
is directly amenable to other architectures. The specific quantitative results are of direct use to others who
wish to implement farms on this architecture.

Because of farming’s simplicity and potential for high efficiency, this work concludes that architects of
parallel hardware should consider binding this paradigm into future systems so as to enable the dynamic
allocation of processes to processors to take place automatically. As well as resulting in high levels of
machine utilisation for all programs, this would also permanently remove the burden of allocation from
the programmer.
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Chapter 1

Introduction

Here we are interested in the technique of farming. This involves distributing the separate parts of a large
task to individuals; these parts being distributed by communication.

Farming out is of interest as it can achieve very high levels of efficiency. Further, the number of work-
ers involved in performing the work can be changed while the task is performed.

Farming is a very simple yet effective method of allocating work to workers. As well as being simple
it has been in existence for some time.

The thesis of this research is that, as farming is highly scalable and has great potential for efficiency
(due to the work load being balanced automatically via dynamic allocation), it should be used more. This
includes adding its mechanism to parallel hardware to alleviate the need to continually reimplementing
it in software.

1.1 Contents

Documented here is a two part study on farming: how to implement it and what can be farmed.

The first part looks at what makes an implementation efficient for both any architecture and the first
generation of INMOS transputer. It also looks at some highly efficient farming harnesses and implemen-
tation practices. '

The second part searches for and finds what domain of applications can be farmed out. This is per-
formed by studying a number of applications (including implementations) and the mechanics of farmings
itself. This has lead to a much clearer understanding of what can be implemented and how.

These studies constitute a scientific and rigorous exploration of the technique of farming, and to the
knowledge of the author is first of such a study. The experimentation is the first known to be performed
where the testing is independent of any one particular application.

1.2 Theories used

This work was conducted in the local environment that exists within the Parallel Processing Group at Kent
and within the community of the World occam and Transputer User Group. Both of whom appreciate the
advantages of a C.S.P. as a paradigm for modelling parallel interaction, the occam parallel programming
language with its algebraic semantics and the INMOS transputers. The part of this work that deals with the
development and testing of farming harnesses is influenced and in some respects may even be restricted
by the particular knowledge, approaches and prejudices in this particular working environment.

Also used here is UNITY [CM87]. This is a foundation theory for programming that attempts to pro-
vide a framework in which to develop programs for all architectures.
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1.2.1 On the use of UNITY

UNITY has only been used here to view the overall development of programs. It has not been used to de-
velop programs formally. Thus, the only aspect of UNITY used here is that programs should be designed
before implementation is attempted.

The results presented here fit into this philosophy and can be used to farm out program designs. This
work is only related to how farm out program designs, not how to develop them in the first place. The
design could have been developed in UNITY, but this is not mandatory.

Thus in essence, what is to be farmed out, should be known before using these results to implement
an efficient farm.

1.3 Thesis structure

The material in this thesis is presented in the order in which it was worked on and thus discovered. Thus,
all experiments are presented in the order they were performed. Similarly, the experimentation on farming
harnesses is presenting before the exploration of farming’s usability, as these two areas of the research
was performed in this order. The work of others is invariably mentioned along side the work to which it
is relevant.

The contents of this thesis’s chapters are as follows.

Chapter 2 contains the background material needed to understand the work in this thesis. A reasonable
knowledge and fluency of occam and transputers is assumed however.

Chapter 3 documents how this study came about.

Chapter 4 documents the experiments performed, the analysis of the results, the developing of under-
standing and the resulting conclusions.

Chapter 5 documents the exploration into how wide a range of applications can farming be used to
execute. A much clearer understanding of farming and a general model of farming are developed.

Chapter 6 discusses some future work. It also looks at how farms will be built on some future gener-
ations of transputers and how these will be programmed in future version of occam.

Chapter 7 discusses the contribution and conclusions of this work.



Chapter 2

Background material

This chapter looks at the background material used in this research. This material consists of two the-
ories. These take greatly different approaches to programming; this being due to their developed being
independent. We will look at these two theories in the order in which they were learnt. The first of these
two areas to be looked at was derived from Hoare’s C.S.P. ([Hoa78] [Hoa85] [HJ89a]). The second is
UNITY, a theory of parallel programming by Chandy, Misra [CM87] and others. UNITY was developed
to be a foundation for programming.

This first area consists of a number of separate parts. These are the various aspects of occam program
design and optimisation. Here we look at the following.

1. The method used to construct programs taught in a course by Welch.

2. Anoverview of the relevant parts of the parallel programming language occam (including its design
principles, its semantics, the essences of its syntax and structure, and its transformation laws).

3. The transputer hardware on which the practical side of this work was performed.

4. The theory used for transforming programs into more efficient forms taught in a course by Roeb-
bers.

5. Lastly, we look in more detail at the processor farm and what the general opinion was of the subject
when this research started.

This work concentrated more on the philosophy behind the work, instead of the practical issues such as
language. Thus, the philosophy behind the method of programming is mentioned before the programming
language itself.

2.1 The process oriented method of programming

In this section the process oriented method of programming is looked at. This methodology is used to
develop communicating parallel programs. In this work all programs are written in occam. The method-
ology introduced in this section is used as the norm both at Kent and in many establishments in both
academia and industry.

The process oriented method of programming promotes the following,

1. aprocess oriented view of the application,
2. programs that are the same shape as the application,
3. one software component per single unit of application’s functionality, and,

4. software reuse.
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This process oriented methodology is presented on the “occam and Transputer Engineering Work-
shop” course [Wel]. The method is aimed at describing parallel systems with clarity. This was the driving
concept in the design of occam and the transputer. As a result the occam language is ideal for describing
parallel systems succinctly. Occam was also designed to be easy to compile. The transputer was designed
to be efficient at executing such programs.

The model of parallelism used is Communicating Sequential Processes (C.S.P.). This model, due to
Hoare [Hoa85], contains communication as a programming primitive. The design of occam and the trans-
puter are based on the C.S.P. model.

As a method of programming the process oriented approach is simple. It consists of the functionality
of the system being modeled as a number of independent communicating processes.

The course [Wel] mentioned three ways of organising work for a number of communicating parallel
computers. Most of the course looks at the major problem of computer programming, the method itself
and how it hopes to go some way towards solving this problem. Where this theory comes from is looked
at here, as it what it contains, what are its advantages and how it is used in practise.

2.1.1 Parallel programming paradigms

It appears there are three elementary methods with which to organise communicating processors. The
three techniques are as follows,

1. geometric distributions,
2. algorithmic distributions, such as pipelines, or,
3. processor farms.

The details of these are discussed below.

Geometric distributions

A geometric distribution can be used where a set of data repeatly needs the same process performed upon
it. Here the domain of data is divided among the processors, all of which perform the same task. The
processors communicate to exchange information across processor boundaries.

Solving the n-body problem (simulating planets or molecular particles) is an example of a geometric
distribution, as is simulating (predicting) the weather. In the latter, all processors are programmed with
the appropriate atmospheric model and are then arranged to look after one part of the atmosphere. Each
processor is given either a strip or a volume of atmosphere. Then each processor starts with the initial
data for its part of the atmosphere. The system is then left to run. In the n-body problem processors are
programmed with the appropriate Newtonian mechanics and a number of bodies are then allocated to each
Processor.

Some method of performing data input or result output is also needed. This is either performed by
having a processor observing the data traversing around, say, a ring, or by all of the processors in the
network communicating results directly to another transputer.

It is believed a geometric distribution should give something like 90% of the maximum performance
of which the hardware is capable [Wel]. The loss can be due to processors waiting for data from neigh-
bouring processors. Losses are also caused by the lockstep nature of this approach, as some processors
may be lying idle while waiting for other processors to finish the more time consuming calculations.

Algorithmic distributions

Algorithmic distributions consist of a functional breakdown of the steps taken to perform a task. One
common example is that of a pipeline. Here data enters at one end of the pipeline and results emerge
from the other. More elaborate algorithmic distributions are possible with data flowing around an intri-
cate network of processes. One domain where this approach has been used is real time systems. Pipelines
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are also not necessarily always one process or one processor wide at any one stage. If a great deal of pro-
cessing is required at one point there could be several processors, each performing some suitable fraction
of the work.

The drawback of algorithmic distributions is the whole system can only work as fast as the slowest
component. To build pipelines that work to a high degree of efficiency involves precise knowledge and
continual consideration of exactly what all of the processors will be doing. This includes knowing very
precisely what the compiler will generate and what the execution characteristics of the processors are.
Thus, to obtain more than 70% efficiency from an algorithmic distribution is believed to be difficult [Wel].

Processor farms

This method consists of having a worker process on each transputer. A farmer process hands out work to
these workers. These items of work are then performed independently of each other. Upon completion
the results are sent either back to the farmer or to a harvester process.

As a job of work is independent of any of the other jobs, the workers work independently of each
other, and only communicating with the farmer and the harvester once for each job. The workers do not
communicate with each other at any time. This gives rise to an important benefit. The different jobs can
take different lengths of time to be executed, without there being any loss of performance. As soon as one
job finishes another can be started immediately. There is no need to wait for any synchronisation with any
of the other workers. Thus, there is no performance lost due to waiting for synchronisations. This is not
the case with either an algorithm or a geometric distribution. With a farm it is in fact the case that it is
better if the workers do finish at different times, as then the demand for work is staggered through time.

As transputers can only communicate directly with four other transputers, processor farms are imple-
mented with the aid of a farming harness. This consists of some additional processes that are executed
along with those already mentioned. These processes provide the logical interconnection indirectly that
is not possible through direct physical means. The interconnection structure used is not relevant to the
execution of the program itself. Nevertheless, different topologies may possess different communication
overheads and thus the performance of the different topologies may vary.

It is believed that a farm can be 99% efficient [Wel].

2.1.2 Program organisation

What has probably been the greatest problem in computer science since its outset is that of how to de-
velop correct and easily mantainable programs that are of a large size and complexity? The method of
programming being discussed here uses a model of reality to aid in the solving of this problem.

This model consists of objects that interact with one another. For example, if an appropriate force is
applied to a book, the book opens. The occam model restricts this C.S.P. model by saying that interac-
tions take place through communication channels and that each channel only has two ends a sender and a
receiver, and that communication is also synchronous. For example, light travels from the page of a book
to the eye of the reader. This is synchronous as this communication can only happen when the book is
prepared to be read, by being open, and the reader is prepared to look at the book.

The C.S.P. model of parallelism is modelled on how real interactions take place. Processes in reality
communicate instead of having global memory. In our occam restriction of C.S.P. we have point-to-point
communication as this has no multiple process contention problems. Communication is also unbuffered
as well as synchronous and point-to-point.

A synchronous communication progresses in the following way. When one process wishes to commu-
nicate with another, the first process waits until the second is also ready to engage in the communication.
Thus a communication is also a rendezvous between two processes.

Our approach to the designing and writing of parallel programs here consists simply of expressing
the computation in terms of the parallel components inherent in what is being built. The behaviours of
these processes are described from their own points of view. The interconnection between these processes
coming from the shape of the system being modelled.
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2.1.3 Advantages

A major advantage of this approach is it models reality directly. All the autonomous objects are modelled
from their own point of view with their own independent behaviour and private data.

This clarity results in the design, implementation, validation and maintenance stages all being much
easier to perform.

The other obvious advantage is that designs can easily be implemented to make use of parallel archi-
tectures. Indeed parallel hardware itself has been designed using this approach.

2.1.4 Design methodology

In this methodology programs are written so there is one logical function per process. This way each
function is programmed from its own point-of-view. To obtain complex functionality such processes are
composed in parallel, typically with these processes living for the whole length of the program’s life. This
method is termed “process-oriented” design.

This methodology is very simple. The first step is to draw a process diagram of the system being
modelled. These processes are then written, each from their own point-of-view, with their own privately
declared and retained internal state. The processes are then connected and run.

If simple changes need to be made to the system, we may only need to change the interconnection
between the objects. If, for example, objects needed to be aware of each others existence, reprogram-
ming would require changing many of these internal references, resulting in a great deal of unnecessary
reprogramming.

Many processes terminate only when the program has completely finished. Some of these processes
may be unable to determine when termination has occurred. For convenience such processes are written
to execute indefinitely. In practise these can then be either terminated by resetting the transputer network
(as was the case here) or by simply reusing the program’s communication network. This network can
allow for a shutdown message to be generated from a process that is able to directly determine when
the program has terminated. The network then propagates these messages until all other processes have
received a message. In farming for example, a shutdown message could be generated by the harvester and
propagated through the harness and workers until the farmer receives a copy. This method of termination
was suggested by Welch [Wel89].

2.1.5 On the transition from sequential to parallel programming

When writing parallel programs as experienced sequential programmers, who have developed a set of
good sequential programming skills, care must be taken not to be set in these skills that are only appro-
priate for sequential programming. There is a natural human tendency to put into parallel programs all
the small simple and local optimisations that are beneficial in sequential programs, but are not appropriate
optimisations to make in parallel programs. Parallel programming is very different to the more conven-
tional sequential programming. There is a different set of efficiency issues in parallel programming. For
example, it is typically easier and more efficient to duplicate work than to communicate results.

2.1.6 Breadth of use

It was mentioned on the course that the process oriented method of programming can be used to write
in any parallel programming language, not just occam. This has been performed on courses in Ada by
Welch. On shared memory systems communication can be emulated.

In [LS90] Lin and Snyder have found that for shared memory architectures, the message-passing
model is more efficient than the shared memory model for programs at an equivalent level of optimi-
sation. The authors found this to be the case for two shared memory architectures for several versions of
two applications. Simulated message-passing was between a few percent and 23 times faster. The rea-
son for this seems to be down to the technique’s exploitation of data locality and the large granularity
of distributed memory programs. Lin and Snyder suggest a broader study with more machine types and
programs. They are not sure whether the improvement is due to basic differences in their programming
or due to actual advantages of the message-passing programming model. That said, the authors noticed
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that the more optimised versions of the shared memory program possessed some of the characteristics of
the message-passing programs.

2.2 The occam programming language

Here is an overview of version 2 of the occam programming language [Inm88]. As a language, occam is
now well known. Thus, here most of the language will be covered quickly, spending more time empha-
sising the parts of the language that are often overlooked, but that are especially important to this work.
For example, the program transformations made possible by the algebraic semantics are used reasonably
extensively in this work.

Occam was designed so,

1. the concepts and constructs of parallelism are as equally central to the language as the sequential
concepts and constructs,

2. programs would be efficient to implement,
3. the elements of the language would have a rigorously defined semantics,

4. the semantics would be algebraic, this giving programs an equivalence and thus allowing for pro-
grams to be transformed into others, and,

5. there would be facilities in the language to describe embedded systems just as easily as parallel
systems.

Being an embedded systems language, occam has some restrictions. It should be easy to reason about
the real time demands and the runtime performance of a program. Thus, the language’s implementation
should be efficient always, in all situations, and, for example, garbage collection cannot be allowed into
the language. Equally the program should always be able to run. Thus there can be no parts that can
fail, such as memory allocation or recursion. Further, with occam there is no memory management and
the memory usage must be a determinable constant at compile-time. In fact in compiling generally, it is
considered a good idea to not put off until run time what can be done at compile time [Gri71].

Being a parallel language, occam possesses the constructs to express several processes happening si-
multaneously. It also has the constructs for communication. The presence of parallelism in the language
has restrictions in some of the sequential areas of the language. Recursion being one example, as growing
an arbitrary number of stacks in parallel is not easy to implement without some form of garbage collec-
tion. The implementation would result in both long and nondeterministic runtimes for recursive calls;
this is not appropriate for an embedded systems language. Similarly, although occam can syntactically
express output guards, having them either exclusively or with input guards prevents an implementation
from guaranteeing efficiency. Nevertheless, the fact that the syntax allows output guards means we can
use them at the design stage.

The advantage of having a rigorous semantics is all programs have an exact meaning. Thus, all con-
structs in all situations and combinations have a defined unambiguous meaning not open to debate. This
is not the case in most other languages.

2.2.1 Variable types

Occam has several integer types: INT, the size of the internal registers of the executing processor, INT16,
INT32 and INT64 which are handled by the implementation appropriately. There is also REAL32 and
REALG64 which fully implement the I.E.E.E. standard for computer floating point arithmetic. BOOL and
BYTE are also implemented, but computation is not permitted on them directly. Arrays can be constructed
of all of the built-in types.
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2.2.2 Communication type

Communication in occam is synchronous, unbuffered and point-to-point. This form of communication
is the simplest to have. Also, all other type of communication can be built from this: asynchronous, one-
to-many, many-to-one, many-to-many.

Synchronous communications are also very easy to work with. Even asynchronous systems often have
to perform synchronisations. As occam’s communication is synchronised and unbuffered, the first process
to arrive at the communication statement has to wait until the other process arrives at the communication.

The point to point communication in occam is where the occam is a semantic restriction of C.S.P.
which may have any number of processes engage in an event.

In occam communications have a type. There is also the facility to group a number of types together
into an ordered list. This is termed a PROTOCOL. These make it easier for the compiler to rigorously
check the communication between two processes.

2.2.3 Processes

Occam programs are made up of processes. In turn these may be made up of constructs consisting of other
processes. There are three basic processes: the assignment process, and two communication processes,
input and output.

Assignment

The assignment process evaluates the expression on the right hand side of the process and checks any
indexes on the left-hand side are valid, the result is then assigned to the left-hand side variable. The result
of the expression and the variable must be of the same type.

total := 0

If the value is not computable, the error (division by zero for example) will cause a halt to occur. Multiple
assignments are also allowed in occam. These consist of a set of assignments (written in list form). These
follow the same rules as in above. The right-hand sides are evaluated, array indexes are computed and
checked to be in range and then the results are assigned. Upon a valid completion, all of the values are
assigned to the ordered list of variables which must also be of the same length.

x, ¥V = ¥, X -- swap

Expressions do not perform any side-effecting on variables and their values. This means assignments and
boolean conditions do not perform side-effects. Thus, only assignment can change the state of a program,
just the evaluation of an expression along can not.

Communication

The communication processes perform the two halfs of the assignment process. The output process per-
forms the evaluation of expressions and if the computations are successful, communicates the values
down the channel named in the process. The input process performs the reading of these values from
the channel into its matched list of variables.

A process

A process in occam is either an assignment process, a communication process or a collection of these
processes combined. Processes are grouped by SEQ, PAR, WHILE, IF and ALT.

The first two of these combine a list of processes into one process. WHILE takes a boolean expression
and a process that it executes while the boolean expression is TRUE. IF takes a list of processes guarded
by boolean expressions and executes the first process in the list whose guard evaluates to TRUE, otherwise
the IF STOPs.
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ALT is similar to IF, its processes are guarded by a communication, an optional boolean condition,
or both. The process executing the ALT is suspended until one or more of the guarded processes become
ready. One ready guards is then selected arbitrarily for execution. An empty ALT is equivalent to STOP.

PRI ALT is a variation of ALT. When more than one guard is ready PRI ALT always selects the
guard with the highest priority for execution, i.e. the guard highest in the list of guarded processes.

For reasons of efficiency the implementation of occam only allows one type of communication process
in an ALT. Only input guards are allowed it being more natural to stop waiting for a message to arrive
than to decided to stop trying to send a message.

Over time there is no guarantee that ALTs are fair. Achieving fairness would require implementations
maintain a state over time. Doing this would increase the time taken to execute this process that already
takes a long time to execute. If such fairness is required it has to be implemented by hand.

Replicating

The method of repeating instructions is much more general in occam than in other languages. This is per-
formed by replication of a process. The replicator in occam takes a process as a parameter. The advantage
of replication is that any construct can take a single process may be replicated. Thus, as occam’s repli-
cator is a construct modifier, instead of a construct in itself, such as the for loop, this means constructs
such as IF can be replicated as well as constructs like SEQ. A replicator consists of an index variable,
this is declared automatically to be of type INT and an expression. This evaluates to a value of type INT
and gives the number of times the process is to be replicated. This expression is evaluated once on entry
to the replicator. One advantage of having replication is that constructs such as IF can be replicated on
their own. For example,

IF
IF 1 = 0 FOR SIZE value
value[i] = entry
found, index := TRUE, i
TRUE
found := FALSE

which is equivalent to,

IF
value[0] = entry
found, index := TRUE, 0
value[l] = entry
found, index := TRUE, 1

value[ (SIZE value) - 1]

= entry
found, index := TRUE, (SIZE value) -1
TRUE
found := FALSE

This alleviates the need for a £or loop, such as in older languages. This is a good example of how, al-
though occam is a smaller language, it is a great deal more expressive than other third generation pro-
gramming languages.

Another common use for replicators, as well as being used to generate for-loops, is to access all of
the elements in an array.
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There is an equivalence between an occam WHILE loop,

INT index:
SEQ
index := expr
WHILE index < expression
SEQ
body
index := index + 1

where index does not appear on the left-hand side in the loop’s body, and a replicated SEQ,

SEQ index := expr FOR expression - expr
body

This is independent of the body of the loop. Here this body is represented by an ellipsis (. . .). This
notation comes from the use of folding editors. Folds can be used to perform textual abstractions on parts
of a program.

2.2.4 Semantics

The semantics of occam have already been mentioned. These are rigorous due to being formally defined.
One method in which this has been achieved is with equivalence laws. These have the advantage of giv-
ing a semantics that is algebraic in nature. This allows for any program to be changed mechanically into
others that perform the same task (have the same semantic meaning), but have different performance char-
acteristics.

In [RH86] Roscoe and Hoare uncover, for all of the occam constructs, both the laws that govern the
constructs and present enough laws to translate finite programs (programs without WHILE loops) into nor-
mal form. These laws cover: declaration, assignment, SEQ, IF, PAR, ALT and L. The last are divergent
processes, these are equivalent to,

WHILE TRUE
SKIP

From these it is also possible to derive other laws.
Of these basic laws, we look at one here, input, as an example, as it shall be used later,

ALT
c?2x = e ? x
SKIP

It is also possible to give an equivalence between assignment, the most fundamental primitive of all
programming, and the fundamental idea behind parallel programming, two parallel processes communi-
cating,

CHAN OF Type channel:
PAR
channel ! expression
channel ? variable

variable := expression =

2.2.5 Compilation error modes

An occam program can be compiled in one of three compilation modes: HALT, STOP and REDUCED.
The first two perform run-time checks such as checking that array indexes are in range. Should an er-
ror occur in HALT mode, a processor HALT instruction is compiled into the program and the processor
that executes the instruction halts. When compiling in STOP mode the compiler inserts extra instruc-
tions throughout the code in order to stop only the process that is in error, instead of stopping the whole
processor. In REDUCED mode no checking is performed.
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2.3 Efficiency considerations

This section looks at the contents of the Advanced Transputer Engineering Workshop [Roe]. This work
and course is due to Roebbers.
The course is about run-time efficiency and optimisation. The five parts it covered are listed below.

1. A study of the method used by the processor to execute instructions and how then next instruction
is selected for execution.

2. The mechanics of how communications are performed across channels and across links.
3. How to write efficient code that process arrays of any size.

4. How to use the post-mortem analyser to explore a network of transputers, look at what code the
compiler produces and several other tips that make debugging easier.

5. How to perform transformations on a piece of code in order to make it execute more efficiently.
This consisted of transformating all the PARs on each processor into SEQs, attempting to minimise
the amount of memory used by arrays, and finally adding buffering to the sequential process to en-
gage the links in parallel. These optimisation transformations also included transformations similar
to those used in sequential programming, such as loop unrolling. Due to the algebraic semantics of
occam the transformations performed here are more reliable than equivalent transformations per-
formed in other programming languages.

The last item has been performed by many others in occam, the essence of the work coming from the
design of occam. But it is Roebbers’s approach to this work of rigorous optimisation that is the most
developed, complete and practical in real programming situations seen here.

The side of the course dealing with arrays involved several ideas. When writing library routines to
manipulate arrays, instead of passing in the size of the array it is easier to use the unary operator SIZE
instead. For example, SIZE A gives the size of the array A and SIZE A [0] gives the size of the second
largest dimension of A. Abbreviations are of great use in cutting down the number of accesses to multidi-
mensional arrays by retyping them to a one dimensional array and in abbreviating frequently used array
elements into single variable constants. The optimum amount of loop unrolling for the transputer is also
looked at on the course. The optimum number of unrolls being sixteen; due the transputer’s instruction
set encoding constants into four bits. It is this rigour and attention to detail, as used by Roebbers, that
has not been seen elsewhere by this author either in the optimisation of programs in other languages or
in other programming disciplines.

The largest part of the course consisted of fine-tuning a Fast Fourier Transform program. Most of the
stages in this process involved performing some transformations on a program. We have already men-
tioned algebraic semantics are useful for reliably and rigorously transforming programs into others. But,
mentioning such techniques in general terms does not show how they should be used. Here, we are inter-
ested in showing the use of these technique in practice, the transformation being towards programs that
possess different and preferably better efficiency characteristics. For example a program that is faster, but
may use just a little more memory.

As well as allowing performance enhancing changes to be made to programs, another beauty of the
algebraic semantics is they are simple to use in practice. Indeed the rigorous transforming of programs
into other more efficient programs can be performed mentally. Due to the simple nature of occam’s se-
mantics, any part of even very large programs can be reasoned about and transformed informally, though
still thoroughly and rigorously. This is akin to transforming a mathematical expression into another, that
is identical, but easier to calculate.

The Fast Fourier Transform program was initially written in the process oriented method. The “but-
terfly” processes of the EF.T. was drawn and then described in occam directly. The calculation was then
inserted into the butterfly process.

If this program is to run on multiple transputers with more than one butterfly on each processor, mul-
tiplexors must be added to multiplex the many channels over the four links of the transputer. As the
transputer is entirely sequential and cannot execute multiple butterflies simultaneously, the program was
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transformed so the internal parallelism and associated overheads were removed. The task is performed by
observing the data flow within the parallel processes on the transputers. Communication is then changed
into assignment and arrays of channels are changed into arrays of variables. This results in a completely
sequential program that will run faster on a single transputer. Also, as is seen in the FE.T. example, once
the program has been sequentialised, some of the arrays are redundant. There is no longer the potential
for any part of the calculation to happen at any time and in any order. Removing this redundancy saved
a large amount of memory in this example.

A completely sequential program had now been achieved. This is suitable for running on any sequen-
tial processor. However, the transputer can also perform link communications in parallel with computa-
tion. Thus, the program can be further transformed. The transformation here being to turn code from its
sequential form,

PROC process.seq (CHAN OF Type in, out)
variables
WHILE TRUE
SEQ
in ? data
procedure (data, packet)
out ! packet

into a parallel form,

PROC process.par (CHAN OF Type in, out)
variables
SEQ
in ? data0l
PAR
in ? datal
procedure (data0, packetO)
WHILE TRUE
SEQ
PAR
in ? data0
out ! packetO
procedure (datal, packetl)
PAR
in ? datal
out ! packetl
procedure (dataO, packetO)

Even the most elaborate array indexing optimisations have only as many as 3 or 4 PAR constructs in the
WHILE loop once parallelised.

Notice all communications are set up before any computation is started. This works on the current
compilers as these processes are executed in the order they are listed in the program. Nevertheless, in
general one should write,

PRI PAR
PAR
in ? datal
out ! packetl
process (datal, packetO)

though this may result in a slightly larger program.
Another example used more in this work is the parallelisation of code that also involve some subtle
changes to the program’s behaviour. If both the channels in the following process were across links and
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it was desired for this process to obtain maximum parallelism, the process could be transformed from the

following,

PROC buffer.seqg (CHAN OF PACKET in,
variables
WHILE TRUE
SEQ
in ? packet
out ! packet

into a parallel form,

PROC buffer.par (CHAN OF PACKET in,
variables
SEQ
in ? packetO
WHILE TRUE
SEQ
PAR
out ! packetO
in ? packetl
PAR
out ! packetl
in ? packetO

As another example, this result collecting process from a farming harness,

out)

out)

PROC collect.results (CHAN OF PACKET local, in, out)

variables
WHILE TRUE
PRI ALT
local ? packet
out ! packet
in ? packet
out ! packet

could be parallelised into,
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PROC collect.results.par (CHAN OF PACKET local, in, out)
variables
SEQ
{{{ get packetO
PRI ALT
local ? packetO
SKIP
in ? packetO
SKIP
11}
WHILE TRUE
SEQ
PAR
out ! packetO
get packetl
PAR
out ! packetl
get packet0

The parallel implementations here have similar, but not identical behaviour. In the parallel version there
is the potential to perform a second input before the first output. In some situations this second process
would prevent deadlocking behaviour the first process would not.

As mentioned earlier, this method of optimisation not only contained rigorous theory, but is also the
most usable, methodical and practical for every day use. This usability and practicality reveals itself in
the following two ways,

1. which particular transformation is appropriate in the particular situation at hand always seems ob-
vious, and,

2. all of the transformations are very simple to perform.

Thus in general, it is simple to see where to apply the theory in any situation.

2.4 The processor farm

In this section what was considered to be good farming practice is looked at in more detail.

To recap, farming out consists of a farmer handing out work to a number of workers, these items of
work are independent of one another and results are either passed to a harvester or are passed back to
the farmer. The length of time it takes to process each job can vary without a loss of performance being
incurred. The topology used to interconnect the processors is largely irrelevant, though it can affect the
performance of the farm. Further to this, the processor farm possesses a number of other clear advantages.

As the jobs of work are completely independent of one another, and are performed on separate proces-
sors the work load is balanced out completely automatically by the nature of the design. On algorithmic
and geometric distributions this balancing is achieved by hand. In essence the processor farm has a very
simple design and is very effective at performing tasks. Further, it is also very easily scalable. The scal-
ability of a processor farm is bound by the amount of parallelism in the decomposition of the application
and the amount of bandwidth in the implementation. This again contrasts with the other two distributions
where the number of processors used is likely to be very much tied into the shape of the application.

It is generally agreed in transputer folklore that only compute bound applications will farm well, and
those that are communication bound will not. However, there appears to be no method that will determine
whether an application is compute bound or communication bound. It is believed that application’s are
communication bound because of a communication bottleneck at the farmer and the harvester.
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2.5 Naming conventions

In this thesis, processes are called after the real domain from which they come. Thus, in the processor
farm, these names are taken from agriculture, giving us a farmer, some workers and a harvester. This
agricultural analogy is used deliberately, not only for labelling, but also for thinking purposes. This reuse
of nomenclature is done in the hope that with it we will also obtain all of the tried and tested efficient
methods that have been developed in this field of work.

One of the reasons for not using the other names that are used in transputing community is these other
types of thinking and labelling schemes are often hierarchical in nature (master slave etc.), and here an
attempt is made to depart from hierarchical models and a move towards models in which the components
are equals.

On a similar note, it is prefered to call the tasks in the farming harness “job distribution” and “result
collecting” instead of demultiplexing and multiplexing as some others have. The sources of the result
packets are not retained by the processes of the harness, as would be the case in multiplexing.

2.5.1 Diagrammatic conventions

A few diagrammatic conventions are used in this thesis. In simple diagrams no variation of line thickness
is necessary. In more complex diagrams the following conventions are used. Communication channels
are drawn using thin lines and low priority processes are drawn with boxes constructed from thin lines.
Links and high priority processes are drawn with lines of medium thickness. Processors are drawn with
boxes constructed from thick lines. See figure 1.

.|

I

Figure 1: Drawing style used in this thesis

2.6 Hardware: Kent’s transputer system

The transputer was designed as a communicating computer on a single silicon chip. Thus, transputers
have a central processor, some memory (making it a very good embedded system processor) and a number
of communication links. The name transputer comes from transistor computer. The transputers used for
this research are Inmos T800s. In addition to the four kilobytes of on-chip memory, about half have four
megabytes of external memory, a third have 256 kilobytes and the remainder possessing either one or two
megabytes. The instruction set of the T800 was designed to execute occam efficiently.

So all of the later communication bound results can be put into context, it is worth looking in detail
at what is known of the internal architecture of the system used here.

In Kent’s MEiKO system the transputers are connected together using MEiKO’s own general purpose
message routing devices, commonly termed switch-chips. We use wiring files to connect our transputers
into the topology of our choice. There are four switch-chips per board. These boards are in turn, con-
nected to a forty-slot backplane. There being two rows of twenty boards on one backplane. The way
these boards are connected is by both vertical and horizontal connection. The horizontal connections are
between alternate boards, not adjacent boards.

Due to the synchronous method of communications used by the transputers’ link engines, the sending
of packets and acknowledgements is delayed, thus introducing latency into the formula for communica-
tions and thus the switch-chips reduce the bandwidth of communications. For every switch-chip through
which a message passes there is a loss of bandwidth incurred. It’s believed this loss of bandwidth is 5%
per switch-chip [W189].
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2.7 UNITY

So far we have looked at the background theory behind occam and the transputer. These have been the
standard theoretical areas have been looked at and used for several transputer research projects, especially
at Kent. However, in this work programs have also used the UNITY theory of programming.

Despite the wide range of differences to be found in applications and more recently in architectures
too, the UNITY philosophy is that there are more similarities to the task of programming than there are
differences. Thus programming should be viewed as a single discipline. In UNITY, all programs are
developed in a similar manner. Program designs are then mapped onto any architecture for execution.

Program development in UNITY is based on a small theoretical foundation. This foundation consists
of a small computation model and an associated proof system. The UNITY proof system is rich and ex-
pressive and yet also flexible and abstract enough to enable the development of programs for all forms
of parallel architecture. Thus the standpoint taken by UNITY is very much the complete opposite to the
current general mainstream view of programming. One example is the existence of a foundation, opposed
to many closely related fragmented disciplines. Here these differences are looked at as are the reasoning
behind the choices made.

2.7.1 How UNITY is used here?

In this work UNITY’s execution model and program notation is used. Using the execution model one
can consider how programs are executed. Using the program notation one can construct and examine
the logical structures found in programs. The execution of programs on the following architectures is
considered: the UNITY execution model, a conventional Von-Neuman machine and a processor farm.
As program development is not performed in this thesis the proof system is not mentioned in detail.

In this section the choices made by the theory are looked at, the notation it uses (in the situations
when it has to have a program notation), the UNITY execution model and how programs are mapped
onto architectures.

2.7.2 Philosophy

In [CM87] the goal is to show how programs can be developed systematically for a variety of architectures
and applications.

As we are aware of the semantic preserving program transformations in occam, it is easier to envis-
age two computers could be performing the same application, even though they are running completely
different programs. This is something not thought possible until UNITY was learnt. Why this was not
considered before is interesting. This could be due to architectures shaping our programming decisions
and even our bugs, i.e. the different architectures could influence the decisions we make when trying to
implement the same application, thus resulting in different types of error on different systems.

The previous paragraph started discussing the application, progressed to discussing programs and fi-
nally discussed architectures. It is this order we consider things in UNITY. The application first, the pro-
gram second and the architecture last. The application is our primary focus and goal.

2.7.3 Choices
Foundation over taxonomy

Language shapes our thoughts, and in science we have the choice of language and of paradigm. In Physics
and Chemistry there are fundamental laws. However, in terms of plant life, so much exists, Botanists clas-
sify what exists through observation. In computing there are an increasingly large number of categories
of both application programs (databases, word processors, operating systems), languages to write them
in (procedural, object oriented, functional, parallel) and architectures to run them on (message-passing
MIMD, shared memory MIMD, SISD and SIMD). Although the taxonomy approach has its merits and
its uses, UNITY has many advantages in providing a theory with which to develop any program for any
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architecture. The task of programming being identical for all the applications and architectures, not dif-
ferent in different situations. Thus UNITY attempts to be a small foundation theory for computing that
transcends taxonomy.

Choice of foundation

In Physics the fundamental laws are those from which all others are derived. Here we are not just in-
terested in studying computation and programming, for which a model such as the Turing machine is
sufficient. Here we are interested in program development and desire a foundation theory that aids us in
this.

Here Chandy and Misra have proposed a small rich and expressive theory that can develop any ap-
plication program for any architecture. An alternative is to have a theory for each part of our taxonomy,
a methodology ideal for building databases and for message-passing computer systems. Such specific
theories might yield elegant solutions for their particular domain, but for those particular domains only.
Such specific theories would not easily be applicable to other areas. At the risk of paying this price we
give ourselves the advantage of having a single unified framework in which to build anything.

Design versus coding

The choice here is between proving programs correct or developing programs correct. The first consists of
writing a program and then verifying that it meets its specification. The second is interested in developing
a program from a specification.

The first is interested in programming and proofs of program texts. The second is interested in the
stepwise development of designs for programs that are then implemented. As ultimately we are interested
in performing some action in reality with the aid of our application, we choose the latter.

Formal and informal descriptions of programs

Informal reasoning is useful in helping us to reason about programs, for example philosophers sitting
around a dining table. With such analogies there is no formal notation that one needs to learn and then
learn to see beyond. Nevertheless, such reasoning cannot be checked in a rigorous way and there are
several decades of evidence to show that programmers are fallible. In complete contrast to this, a mathe-
matical notation is checkable. The small simple unifying framework of UNITY limits and thus restricts
what and how much notation can be used. As both forms of reasoning have their uses, both forms are
used when useful and appropriate.

Operational and non-operational reasoning about programs

It is possible to reason about programs in two ways. The first is reasoning about the computation as it
unfolds. The second is reasoning about the static properties of a program, the things that are always true.
In UNITY the static view is used. It is easier for us to deal with constants. Operational based reason-
ing has its value and provides insight in algorithm development. It often being based on operational and
even anthropomorphicreasoning. Dijkstra is strongly against the use of such anthropomorphism [Di}89a].
Yet his work is full of anthropomorphic inspiration: railway analogies (semaphores [Gen65] and others
[Dij89b]), Elephants built from Mosquitos humming in harmony [Dij89c] and a parallel partition (see
quicksort [Hoa61]) inspired by the Dutch National Flag [Dij82]. Nevertheless, when using operational
reasoning to prove programs correct,

1. we make many more mistakes, often by overlooking certain sequences,
2. the reasoning argument is much longer,
3. itis often harder to convince others of the correctness of an algorithm using operational reasoning.

Two other concerns that perhaps should be separate in programming are inspiration and perspiration. The
inspiration of an idea for a design and the perspiration from constructing that design.
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Separating proofs from program text

An early advocate of using assertions for proving that a program is correct was Alan Turing. At a con-
ference in Cambridge (24 June 1950) Turing gave a short talk on “Checking a Large Routine” [Hoa80,
HJI89b].

How can one check a large routine in the sense of making sure that it’s right? In order that the
man who checks may not have too difficult a task, the programmer should make a number
of definite assertions which can be checked individually, and from which the correctness of
the whole program easily follows.

Although this statement is based on sequential and operational thinking, performing checking with alge-
braic assertions does work. It has now been realised it is much quicker to work with the properties of the
algorithm. Partly as these deal with all aspects of the algorithm, rather than just particular states at par-
ticular points. In UNITY we are also interested in abstracting away from the program text and proving
the design of our program correct, not the actual text of a programming language itself.

Separating correctness from complexity

UNITY is interested in separating a program from its implementation. One program may be implemented
on a number of different architectures. The correctness of a program is independent of its implementation.
A program design is implemented via a mapping. Discussing complexity measures is only valid of a
program and a mapping. UNITY has a logical proof system for discussing a program’s correctness and
the concept of mapping for implementing programs.

States, assignments and state-transition systems

State transition systems are used in many areas related to computing. State transition systems have a good
methodology and thus are useful. Nevertheless, the semantics of the problem is lost once represented in
terms of state transitions. Thus, in UNITY we choose to use the clean expressive form of assignment to
represent the state changes of our programs.

We are not interested in architectures during program development. Thus, although the von-Neuman
one-word-at-a-time bottleneck probably exists in all present computer architectures, it is not of interest
here. UNITY allows us to perform complex assignments. Such an assignment could be performed as a
sequence of assignments or possibly by several processors in unison.

Control flow and Determinism

Two concepts UNITY does not consider fundamental to programming are control flow and determinism.

Consider a program that consists of two operations working on a stream of data. The program could
be fashioned in one of two ways: either as loop containing the two operations, or two co-routines both of
which have a loop containing one operation. The execution of these co-routines may be interleaved in any
arbitrary fashion. What is important is the flow of data, not the flow of control of execution. Control flow
is not an concept essential to programming. Further as programs may be expressed much more elegantly
without control flow it is not included in UNITY.

The same is true of determinism. A program executed twice on the same machine may consume dif-
ferent resources and may even produce different results. Some systems are inherently nondeterministic
and we wish to be able to design such systems in our formalism. Thus, nondeterminism is included in
UNITY. Nondeterminism is also useful as it allows us to not restrict ourselves by specifying excess de-
tail.

With UNITY it has been found that a programming model based on assignment, but not control flow,
possesses good properties.
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Synchrony and asynchrony

Some computer systems are synchronous, for example a systolic array has a common clock. At the other
extreme, computer networks spanning the globe are asynchronous. A complete theory of computing
should be able to discuss both, and without bias. In trying to be a unified theory UNITY has both.

2.7.4 The name UNITY

The name UNITY stems from the way in which Chandy and Misra choose to view programs, that of
Unbounded Nondeterministic Iterative Transformations.

2.7.5 Execution model

The UNITY execution model consists of selecting a statement in the program and executing it. This pro-
cess is repeated indefinitely. The statements are selected for execution completely nondeterministically,
though the selection process is fair over time — in the sense that every statement is selected infinitely
often. Thus, after one assignment statement has been executed, another assignment statement is selected
for execution. This second statement may be the same statement, it may not be, this is not relevant. What
is important is that the execution is fair, if only over an infinite period of time.

Although our UNITY programs, once run, continue to execute indefinitely, they may reach a point
from which no further change occurs, this is termed a fixed point.

This execution model is designed for program development and is clearly not practical as an efficient
method for executing programs. The model is interesting as all programs only consist of statements that
make progress to some degree or at worst keep the program in the same state. Any program containing a
statement that undoes the progress made so far will prevent, potentially, the program from ever reaching
a fixed point. It is precisely because the execution model is not restricted by implementation issues in
anyway that UNITY and its execution model is an unrestrictive and thus powerful program development
tool.

If R represents one of the possible execution sequences of a program and Ry.state is the initial state.
Variables that are not initialised in the initially-section (see subsection 2.7.6, page 22) may take on differ-
ent initial arbitrary values on different runs of the program. R;.label is the ¢’ th statement to be selected for
execution. Thus, given any statement, R;.label, and a state, R;.state, to execute it in, R;;.state is the
uniquely defined state after execution of that statement. All assignments are deterministic and terminate
in a finite amount of time.

2.7.6 Notation

In order to give examples of the fact that it is possible for all applications to be developed uniformly for
all architectures, UNITY possesses a notation for programs. Nevertheless, UNITY is not about a pro-
gramming language and this notation pays no attention to abstraction mechanisms or data structures.
The notation is based on the syntax for Pascal. UNITY programs have the concept of a logical block,
variable declarations, even a name for the program, a “program” keyword and a list of sections.

Program structure
A UNITY program may consist of up to four sections. These are laid out as follows,

Program name
declare declarations
always equations
initially equations
assign assignments

end

The last three sections consist of the same type of constructs.
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Assignment statement
UNITY programs are only about assignment. Thus UNITY naturally has the basic assignment statement,
X = expr

The type of the expression and the variable must be identical.
UNITY also has multiple assignment. UNITY has two forms for multiple assignment. The traditional
syntax with a list of variables and expressions with the elements of the lists being separated by commas,

XY=y X

and a new notation consisting of composing other assignment statements with the lexical symbol for par-
allelism,

i:=1
|| total := 0

The new syntax greatly increases the readability of assignments involving components which are unre-
lated logically, but where nothing prevents the different components from being executed at the same
time. Where the components are related logically, as in the case of swapping, the traditional syntax is
invariably the more readable.

A variable may appear more than once on the left side, however the value assigned must always be
the same.

As UNITY is based solely around assignment there are no constructs for performing selection. That
said, within the right-hand side of an assignment UNITY permits selection through the use of boolean
expressions. This is often known as case analysis. The ~ symbol is used in the syntax as a token to
separate the alternative expressions from one another.

x=-1 if y<0 ~
0 if y=0 ~
1 ify>0

This formatting is arbitrary, this expression could equally have been written on one line.

So that assignments are deterministic, if more than one boolean expression is true, the appropriate
expressions should all have the same value (this must be must guaranteed by the programmer). If none
of the boolean expressions are true, the value is not changed.

Care should be taken when combining ifs with parallel assignment as the ifs binds tighter than a par-
allel composition of assignment-components, but bind looser than in a multiple assignment.

Composition

Composition of separate assignment statements into a block or list of assignments is denoted by a [] sym-
bol.

Note that although the infix symbols [J and || are visually similar and they both perform statement
composition, the operations performed are different. A [] is used to join statements together that are to
be regarded as entirely separate. A | joins the two component statements into one statement that is to
be performed as a single operation (although the statement is best read as two separate statements). The
operation performed by || is synchronous, the operation performed by [] is asynchronous.

Quantification

UNITY possesses a powerful construct named quantification. As it is even more expressive and useful
than replication in occam, quantification is used for generating an even wider range of objects. We intro-
duce it here through its use in generating assignments.
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Quantified assignment

A quantified-assignment consists of an assignment, prefixed by a quantification. This consisting of a list
of variables and a boolean expression.

150<1i <Nz

These bound or quantified variables are local and thus are only in scope within the quantification. The
scope is delimited with a pair of obtusely angled brackets.

(J]i:0<i<N:A[l]:=0)

This allows quantified-assignments to be used among and within other constructs.

The instance of a quantification is defined by Chandy and Misra as a set of values of the bound vari-
ables that satisfies the boolean expression in the quantification. An instance of a quantification must al-
ways be finite and may be empty. One reason for this finiteness is the fairness of execution rule. The
execution model can not fairly execute an infinite number of statements infinitely often. For the same
reason the number of statements must also constant throughout the running of a program.

Thus a quantified-assignment denotes zero or more assignment-components. These are obtained by
replacing the bound variables in the assignment by their instances. Thus the above quantified-assignment
is equivalent to,

A[0]:=0 A[1]:=0]|... || AIN-1]:=0

As can be seen here the use of a boolean expression gives greater flexibility over the usual contiguous
range of values obtained with a replicator or a for loop. For example,

(Ii,j:0<i,j<N:Id[ijl:=0 if in=j ~
1 ifi=j
)

can be also written as,

(li:0<i<N::Idfi,i]:=1
“ (”JOSJ<N Al —\:j;: Id[l,_]]:O)

The symbol on the far left in a quantification dictates the style of assignment produced. If the parallel
assignment symbol, ||, is used one multiple assignment statement is formed. If the composed assignment
symbol, [, is used several separate assignment statements are formed.

Any undefined variables are considered to be free. For convenience we omit boolean expressions that
would only re-state array bounds.

The other uses of quantification

In UNITY s programming notation the other uses of quantification include quantified expressions. These
use binary, associative and commutative operators and functions that combine two elements of the same
type. Thus, quantification can apply any operator or funcation to a whole array.

Quantified expressions are formed by supplying an operator or a function instead of a statement com-
posing symbol. Thus, quantifications can be used in the following way to perform both expression evalu-
ation and to denote specific values. Most operators can be used. Here are some examples, the first is our
UNITY programming notation equivalent for,

<. Z

Il |

= -
}
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total := (+i1: 0 <i<N: A[i]) { Sum of array. }

biggest := (max i :: A[i]) { Largest value in A. }

is.sorted := (Ai:0<i<N: A[li] <A[i+1])  {Issorted? }

count:=(+i: 0 <i<N AA[[]>A[]: 1) { Number of elements larger than A[j]. }

(0i: Ali]:=0) { Initialise array. }

Functions must have unit elements (min()’s is co0), operators must be binary, associative and commutative,
i.e. the order of application of operators must be irrelevant.

Quantification is also used within the UNITY logic to specify properties of a program by quantifying
Hoare logics (see [Hoa69] and [HI89c]) over the program’s statements. This is how UNITY obtains the
nonoperationality of program properties from an execution model that obeys a fairness rule defined in
terms of the execution of statements.

The assign-section

The assign-section of a UNITY program consists of a non-zero, static and finite set of assignment state-
ments. A requirement of the UNITY logic is that a program contains a minimum of one statement. As
has been said, UNITY only deals with static programs, as programs with a dynamic number of statements
would complicate the fairness of the execution model.

The initially-section

The initially-section specifies the initial conditions, the strongest predicate that holds prior to execution.
This consists of a list of equations that for our convenience are written with all the expressive facilities
available to us in the assign-section. Equations are written with an equals sign opposed to an assignment
symbol. In the initially-section a [] denotes a sequential ordering of the equations. In this author’s opinion
a semi-colon should be used here.

Some initial values are expressed in terms of other initial values that must be already defined. Thus
the set of equations must be proper. This constraint consists of three parts.

1. All variables acquire unique values.

2. The equations are compilable. Namely that all quantification variables are either bound or are ini-
tialised earlier on.

3. The equations are well-defined, i.e. after quantification expansion, any variable appearing on the
right-hand side or in a subscript, appears on the left-hand side earlier on.

The always-section

The always-section consists of a set of equations that always hold (invariants). This section is useful
for defining program variables in terms of others. The variables on the left-hand side of the equations
are transparent variables, the name coming from them being referentially transparent. Transparent vari-
ables are functions of nontransparent variables. They are “read only”, i.e. they may not be assigned to or
initialised, though they may appear on the right hand side of any expression. Thus allowing transparent
variables to be used as macros. Transparent variables must be proper and conform to the same constraints
as the variables in the initially-section.

The always-section is not needed for writing programs, however it is advantageous in having a set of
invariant equations that are easy to reason about.
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2.7.7 Mapping

Once a UNITY program is developed, it is then mapped onto the particular architecture, or architectures,
one is interested in running the program on. This is the second of the two stage process of program de-
velopment in UNITY. It is this mapping stage that includes all the architecture specific aspects of imple-
mentation. Optimisation being an example. Developing a mapping should be a mechanical process, all
the creative design work being performed in the development of the program design.

In [CM87] Chandy and Misra give some hints and ideas for the mapping of UNITY programs on to
real architectures, including electronic circuits. For distributed systems they recommend that a variable
be mapped either onto the local memory of one processor or onto a channel. The channel naming two
processors. It is also assumed that all channels possess some buffering. Synchronous communication is
not considered.

2.7.8 UNITY summary

UNITY is the work of Chandy and Misra. They suggest the act of programming is identical for all ap-
plications and architectures. With the proliferation of isolated studies in the different areas of research
and applications: database programming, vision systems, object oriented, neural networks and operating
systems; and especially with the different programming metaphors of the different parallel architectures
it appears various programming methodologies have popped up. The thesis of their work is there is a
fundamental common task to programming which is a foundation for all programming work; and that all
applications can be developed for all architectures in a uniform manner from this foundation.
Comparing UNITY with other theoretical computer science theories, there have been several for-
mal theories developed that try to develop large correct programs, a failing of intuitive methods. Where
UNITY is unique is that it addresses the fact that programs out live the architectures they are run on.

2.8 Summary

Six areas have been looked at in this chapter.

1. There are at present three methods in which to organise parallel programs. In UNITY these methods
are termed execution strategies or mappings.

2. The Process Oriented approach to programming consists of describing all the aspects of a program
directly in separate communicating processes and running these in parallel. It is this directness of
description that leads to all of the method’s advantages of clarity and elegance.

3. Occam is a parallel programming language with an algebraic semantics designed to describe par-
allel and embedded systems succinctly and with precision.

4. The transputer is a communicating processor designed to execute occam efficiently. In the work
here the transputers are connected via flexible, though slightly slow, electronic switches. It is un-
derstood through local folklore that the method in which these switch-chips are used to configure
the machine could be greatly improved.

5. The algebraic semantics of occam can be used in a rigorous and practical discipline to transform
occam programs into others. This being performed with a view to optimising performance.

6. UNITY is a theory that provides a foundation for programming. It contains an execution model and
a proof system. In UNITY, applications are designed and then implemented, with formality aiding
the first of these stages.

In the next chapter where these two theories agree and conflict is looked at, this is done respect to
farming in particular.




Chapter 3

Origins of this study of farming

This chapter looks at programming from the perspective of UNITY’s framework and considers how this
impacts upon the purely process oriented approach used with occam. How to map UNITY programs onto
transputer’s execution strategies is also looked at. The additional insight provided by the first of these is
used to look at farming. This includes looking at some of the work already performed in this area. The
chapter closes with two questions to which there are no immediate answers.

3.1 The UNITY perspective and the process oriented model

This research was started by spending some time learning the various aspects of occam programming,
transputer implementation and program optimisation. Then UNITY was discovered. This was then learnt
over the period of the next few months. After having been engrossed in this theory for some time, attention
returned to the programming of transputers, a discipline not practised while UNITY had been learnt. It
was realised the UNITY approach had clarified understanding in a number of ways, and thus had brought
to light a number of issues with respect to the way one should program transputers. Thus, the mapping
of UNITY programs onto transputers execution strategies is looked at here.

Of the two approachs, UNITY is preferred. It focusing on application design before implementation
issues. In contrast, the process oriented method focuses on constructing an implementation straight away.

In the remainder of this section looks at the insight the UNITY framework shed on four transputer
programming issues.

3.1.1 Program efficiency

One aspect of the UNITY approach that looked appealing was its potential for arriving at implementations
of a greater efficiency than the process oriented method. This being due to UNITY dealing with efficiency
as an explicit part of the development process.

This contrasts with the process oriented method of programming where an application being built from
a number of communicating processes. It is possible to use this method in a bottom up fashion, which
may cause efficiency problems. If a program is constructed from components already in existence, there
is a potential for inefficiency, as not all of these components would be designed with the requirements of
the current application in mind. While the final program may have the correct emergent behaviour (i.e.
it works correctly), it is not likely to be as efficient as a mechanism specifically derived for the purpose.

3.1.2 Execution strategies

The second stage of program development in UNITY is to map the program design onto an architecture.
This is achieved by replacing UNITY ’s abstract execution model with a more concrete execution model or
strategy. In the case of transputers these strategies would be: a processor farm, an algorithmic distribution,
a geometric distribution or perhaps a combination of these strategies. From this a number of realisations
were arrived at.
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From this it became clear that what are called parallelisation techniques in the process oriented ap-
proach to programming are called execution strategies in UNITY terminology.

As in UNITY the execution strategy is chosen in the mapping stage, a single application may result in
very different implementations on different architectures. Thus, it is possible for two very different pro-
grams to perform exactly the same task. Their differences being due to the programs running on different
architectures.

Using UNITY s specification refinement approach one should build an application, then decide which
paradigm will execute the application the most efficiently. What is obviously needed is a method by which
to make this last decision. At present there does not appear to be a method to aid in the making of this
decision.

Probably the most important realisation made in this work is that applications and execution strategies
are independent of one another. As this is important, it is also worth restating this from both angles. An
application is independent of the execution strategy used and an execution strategy is independent of any
application that it may run. To a certain extent it seems both this author and the community in general
were already aware of this, however using UNITY to study program execution has clarified this fact.

This independence implies that execution strategies may not be restricted to any particular range of
applications.

3.1.3 Producer consumer model

One specific issue directly related to farming is that of how jobs should be distributed. Farming applica-
tions consist of supplying different data values to the same procedure. The best method of expressing a
set of regular statements such as this in UNITY would use a quantification. Such a UNITY program could
then be mapped onto any architecture. If it was mapped onto a conventional single processor machine,
this repetition would probably be expressed with something like a for loop, the mechanics of which are
simple: index values are generated by the top of the loop, one at a time, and are consumed by the body
of the loop, one at a time. This is just the producer-consumer model. If the same application were to be
mapped onto a processor farm, this should also be able to use the producer-consumer model. The work
is generated by the farmer and executed by the workers. The regulation of the work is automatic. The
farmer cannot give out any more work if there are no workers free to perform it and similarly the workers
cannot perform work if it has not been given out.

That said, two farm designs seen in this work contain a mechanism to control the flow of work, instead
of allowing the work to flow naturally as it is now realised we should. The first of these was the original
harness used in the application that will be discussed in subsection 3.2.1 (page 30). This had a farmer
that was aware of which workers had been given work and had not yet returned results and gave out work
accordingly. This method was found to suffer from a bottleneck when the farm was large, the workers
would sit dormant while waiting for their next job to be delivered by the harness. In the occam 2 reference
manual [Inm88] a regulator process is also discussed. Some buffering systems have also been seen that
hinder the efficiency, and are thus not suitable, for farms.

This is one example that shows, as the UNITY approach suggests, that one should build a farm from
the point of view of getting the execution performed as efficiently as possible, as discussed in subsection
3.1.1, not from the point of view of just building up an implementation from a number of communicating
processes that, when joined together, just happen to perform what is required.

The farming execution method of work distribution uses the client-server model of interaction. It is
easy to analyse such a system to check that it is both deadlock and live-lock free. This is achieved by
checking there are no client-server cycles and thus that a partial ordering of the processes exist (further
details are in [WIJW93]). For efficiency purposes we also use some link buffering in implementations of
farms. These also use the client server model of interaction. Thus such buffering will not change the fact
that a system is both free of deadlock and live-lock.

In summary, a farm automatically performs any work that exists in a balanced way. The only thing
one needs to arrange in an implementation is for work to be passed out simply and efficiently.




CHAPTER 3. ORIGINS OF THIS STUDY OF FARMING 26

3.1.4 Mapping work

The example in [CM87] where architectural considerations are discussed talks about synchronous proces-
sor arrays and shared memory systems. The decompositions suggested for these architectures involving
N2, N3 and even N* processors, where IV is the size of the problem.

This approach suffers from being inflexible; the amount of resources required being directly propor-
tional to the size of the application. This may result in either not enough processors being available, or
conversely, too many processors being available and a portion of the machine lying idle.

Distributed systems consist of processors that have memory and channels. In [CM87] Chandy and
Misra suggest that each variable should be mapped onto either of these. While this is of course possible,
and we know communications are equivalent to assignment, see subsection 2.2.4 (page 10), this gives us
little information as to how a program might be mapped and organised onto this architecture.

We can get more information from looking at the architecture of transputers itself. It is known the
transputer has at least three execution strategies. Applications can be mapped onto these. Our job as
programmer is just to decide which execution strategy is the most appropriate.

It was from looking at the subject of implementation from this point of view, that it was realised one
can decide what execution strategy is the most efficient to use. Previously this author would use the ex-
ecution strategy suggested by the internal structure of the algorithm application’s main algorithm.

The processor farm is the most efficient execution strategy at best. It is also the most flexible, the num-
ber of processors used is unrestricted by the size of the application or other such details. This allows us
to use however many processors are available. Thus it seems sensible, when highly efficient and flexible
implementations are required, to try mapping applications onto a farm before other execution strategies.

3.1.5 A mapping example

At the time this research started no mapping work had been seen. Here is given a full example of the
mapping of a UNITY program onto both a single processor implementation and a transputer farm. This
second program is then optimised for efficiency.

Here is the design of the UNITY program. This colours the area surrounding the Mandelbrot set of,

zs—)22+c

for complex z and ¢. This colouring is performed according to the distance each point on the complex
plane is from the attractor infinity, or at least a suitable approximation to it. The Mandelbrot set itself,
termed M, contains all of the other attractors and for simplicity all of these are traditionally just coloured
black [Man82, PR86].

The program fills the array, screen, with the natural numbers up to /max (the number of iterations we
are prepared to do) or Imax + I (the set). Normally black appears as zero in palettes, however using zero
here would cause this design to loop infinitely, due to UNITY’s non-terminating execution model.

A translation is required between the area of the complex plane one is interested in viewing and the
screen. The program needs to perform this translation from screen coordinates to a complex number. This
is performed by the function map().

Program Mandelbrot
declare screen : array[0..WIDTH-1, 0..HEIGHT-1] of integer;
z : array[0..WIDTH-1, 0.. HEIGHT-1] of complex;
initially (|| x,y : 0 < x < WIDTH A 0 <y < HEIGHT :: screen[x,y], z[x,y] = 0, 0+0i )
assign (|| x,y =
screen[x,y], z[x,y] := screen[x,y] + 1, z[x,y]?® + map(x,y)
if |z[z,y]| < A A screen[x,y] < Imax
|| screen[x,y] := Imax + 1 if |z[z,y]| < A A screen[x,y] = Imax

)

Note that at the program’s fixed point all the instances of the “if” conditions are false, preventing the
assignment statement from making further progress.
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To map this program design directly onto a single computer, for loops could be used to execute the
program instead of the UNITY execution model. Here is such a program. This has been written in occam
for a transputer using replicated PARallels. Adapting this program for a conventional processor simply
consists of changing the four replicated PARSs to replicated SEQs or the for loop of the language used.

Traditionally screen memory maps the pixels along the screen’s rows into adjacent memory locations.
Due to modern caching, varying this dimension quicker than the other results in better performance. Thus
here the WIDTH dimension of the array is declared second dimension.

PROC mandelbrot ()

VAL Imax IS 4000:
VAL A IS 10.0(REAL32):
[HEIGHT] [WIDTH] INT screen:
[HEIGHT] [WIDTH]REAL32 zr, zi:
PAR v = 0 FOR HEIGHT

PAR x = 0 FOR WIDTH

screen(y] [x], zrly]l[x], zil[yl[x] := 0, 0.0(REAL32), 0.0(REAL32)

PAR y = 0 FOR HEIGHT

PAR x = 0 FOR WIDTH

SEQ
WHILE (modulus (zr, zi) < A) AND (screen|y][x] < Imax)
SEQ
screen(y] [x], zr, zi := screen[y][x] + 1,
complex.sq (zr, zi)
REAL32 cr, ci:
SEQ
cr, ci := map (x, Vy)
Zr, zi := zr + cr, zi + ci
IF
modulus (zxr, zi) < A
screen := Imax + 1
TRUE
SKIP

This program terminates when all pixels in the plane have had their distance from the attractor calculated.
The UNITY program design can also be mapped onto a network of transputers. Again this is done by
replacing the UNITY execution model by the architecture’s model of execution. In this case this is the
message passing method of execution, with which there are a number of execution strategies to choice
from. Farming being the strategy of execution chosen here.
With this program design the instances of the quantified assignment can be farmed out. If again, a
direct mapping is performed, the following set of processes are obtained,

PROC farmer ([]CHAN OF BOOL req, [JCHAN OF JOB job)
SEQ y = 0 FOR HEIGHT
SEQ x = 0 FOR WIDTH
ALT 1 = 0 FOR SIZE reg
BOOL any:
req[i] ? any
jobl[i] ! x; ¥
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PROC worker (CHAN OF BOOL req, CHAN OF JOB job,
CHAN OF PRODUCE result)
VAL Imax IS 4000:
VAL A IS 10.0(REAL32):
INT x, y, screen:
REAL32 zr, zi:
WHILE TRUE

SEQ
req ! TRUE
job ? x; vy
screen := 0
WHILE (modulus (zr, zi) < A) AND (screen < Imax)
SEQ
screen, zr, zli := screen + 1, complex.sq (zr, zi)
REAL32 cr, ci:
SEQ
cr, ci := map (x, V)
zr, zi := zr + cr, zi + ci
IF
modulus (zr, zi) < A
screen := Imax + 1
TRUE
SKIP

result ! X; y; screen

PROC harvester ([]JCHAN OF PRODUCE result)
[HEIGHT] [WIDTH] INT screen:
INT %, ¥, C:
SEQ t = 0 FOR WIDTH * HEIGHT
ALT i = 0 FOR result
resultfi] ? xp vy ©
screen(y] [x] := c

These processes are then configured together in order to perform the work. The below configuration,
for the sake of simplicity, ignores the need for a harness due to the transputers limited fanout problem,

VAL workers IS 2:

[workers]CHAN OF JOB job:
[workers]CHAN OF PRODUCE result:
PLACED PAR
farmer (job)
PLACED PAR w = 0 FOR workers
worker (job[w], result([w])
harvester (result)

By increasing the number of worker processors used, the time taken to execute the task should decrease.
Another method of speeding this program up is optimisation. In the case of this program the code for
the worker can be optimised by quite a large amount.
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PROC worker (CHAN OF BOOL reqg, CHAN OF JOB job,
CHAN OF PRODUCE result)
VAL Imax IS 4000:
VAL A IS 10.0(REAL32):
INT x, y, Screen:
REAL32 z¥, Zi, zr2, zi2, cr, ci:
WHILE TRUE

SEQ
req ! TRUE
job ? x; ¥
screen := 0
cr, ci := map (x, Vy)
zr, zi := 0.0(REAL32), 0.0(REAL32)
zr2, 2i2 : = Z¢ * Z¥, Zi * zZi
WHILE ((zr2 + zi2) < (A * A)) AND (screen < Imax)
SEQ
screen, zr, zi := screen + 1,
(zxr2 - zi2) + cr, (MULBY2(zr * zi)) + zi
z¥2, Zi2 % = 2r * zr, Zzi * zi
TH
(zx2 + zi2) < (A * A)
screen := Imax + 1
TRUE

SKIP
result ! x; y; screen

Discussion

This mapping has been performed by translating the UNITY program directly into an occam program.
Initially this contained all the parallelism inherent in the original design. This was then optimised using
Roebbers’s techniques as discussed in section 2.3. This included the use of some parts of the program
being implemented using equivalent but faster sequences of instructions. Also, some parts of the program
that were previously coupled in parallel were altered to be executed into sequence, leaving just the amount
of parallelism that is available in the implementation.

It is interesting to note that occam can cope with almost all of the parallelism present in the UNITY
design.

This mapping was performed by choosing of execution strategy. In this case mapping the elements of
a quantification onto a processor farm. This mapping was performed, easily, and as suggested by Chandy
and Misra, directly in one stage (i.e. without the use of any intermediate language).

In [Bro94] Brown introduces UNITY Communication Language, UCL, which is just such an interme-
diate language. With this two mapping stages are required; the first being from UNITY to UCL, the second
being from UCL to the implementation language. Brown’s reason for proposing UCL is that it possesses
a more concrete parallelism and communication. However, the direct mapping performed here, from the
more general form of parallelism in UNITY to the executable form of parallelism in occam was found
to be very easy. Further, occam was designed so programs would be very easy to read and reason about,
however, the occam in [Bro94] is very obscure and difficult to understand.

Finally, it is worth noting once more there is no application design performed during the mapping. The
process is mechanical and should only be performed after the application has been designed completed.
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3.2 Other current work within the transputer community

At this point in time another research project at Kent was just coming to completion. This was presented at
a conference that this author also attended, the 14th World occam and Transputer User Group conference
in Loughborough, England. As a number of implementations of interest were discussed at this conference
this work will be discussed in context to the rest of the conference.

A number of applications were of interest, falling into three categories. The first consisted of the suc-
cessfully farmed application from Kent just mentioned. The second was a method of implementation
similar to farming that wasn’t performing as efficiently as the application in the first category. The third
consisted of some applications that had not been farmed out, but might benefit through being implemented
using this execution strategy.

3.2.1 An application successfully farmed

The project at Kent had implemented a computationally intensive biological protein searching and match-
ing application [SS91, Stu91]). The program was farmed and the final version included a very efficient
farming harness. This harness was designed by Welch and developed within the process oriented phi-
losophy [Wel88] and was designed to be as efficient as possible; making full use of all the parallelism
available within the hardware of the transputer. The links were engaged in parallel by separate buffer
processes. The job distribution mechanism consisted of just a simple ALT, no attempt to make any deci-
sion in software was made.

This harness was implemented by Sturrock who found that there were also some parts of the harness’s
design that could be fine-tuned to improve performance further.

3.2.2 Inappropriate topology

Phillips and Capon have developed a system to load balance an arbitrary collection of processes on a
network of transputers [PC91]. This system involves the use of a communication harness similar to that
used in farming. Further to the work in the paper, where the transputers were arranged as a pipeline, the
work presented at the conference had the processors arranged in a torus.

It was realised that constructing an efficient farm using a toroidal topology would be difficult. This is
due to the number of job sources varying from worker to worker depending upon the worker’s location in
the torus relative to the farmer, see figure 2, Here workers 1 and 2 receive work down one link, however

Figure 2: Message routes through a torus

worker 3 can receive work down two links. This processor would need a process that used an ALT just
to obtain work, however the other two workers would not. Either the harness would need to consist of a
number of similar processes or have one general process that in same cases would ALT over one channel.
The first of these could be efficient, but would result in a large harness. The second would be less efficient
but would require a smaller number of processes.

Thus it became clear a toroidally shaped farm is unlikely to work well. And ultimately that the shape
of the topology and the complexity of the harness code ultimately influence the efficiency of the imple-
mentation.

In the case of toroidal topologies, the problems discussed above came about through using a topology
not appropriate for the task in hand. Thus, toroidal topologies appeared to be inappropriate for farming.
A toroidal topology has a completely uniform and symmetric shape. Nevertheless, the communication
structure of a farm is not completely uniform and symmetric. It consisting of one to many to one com-
munication structure, a shape a torus does not have.
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So the problems encountered came about through using a topology not appropriate for the communi-
cation structure being implemented. This inspired an exploration of what topologies are appropriate for
a farm.

It was realised there was a need for this clear understanding of what made topologies appropriate for
farming, along with the other work performed here to be known about more widely.

3.2.3 Potentially farmable applications not farmed

There were a number of papers documenting applications that hadn’t been farmed. From the nature of the
applications, it occurred to me during the conference, they could have been implemented using a processor
farm. From the figures mentioned in subsection 2.1.1 (pages 4-5) it appears farming has the potential
to be more efficient in many situation than either algorithmic or geometric distributions. Thus farming
out these applications, in a sensible way with a sensible granularity, might well result in a more efficient
implementation for some of these applications.

This brought me to the conclusion that when one is implementing applications on transputers, farming
should be the first execution strategy attempted out of the three when an efficient solution is desired.

3.2.4 Distant workers have priority

Jones and Goldsmith ran a workshop at the conference on the formal methods, developed at Oxford, that
can be used with occam [JG91]. At this the subject of farming came up and whether the ALTSs in the
job distribution mechanism should give highest priority to the the on-chip worker or other workers. This
issue generally seems to be considered important. At this workshop Jones said that when both the on-chip
worker and other workers wanted more work at the same time, giving the work to the distant workers leads
to a greater amount of overall parallelism.

3.2.5 Summary

From the work presented at the conference it was realised the process oriented approach needed to be
disseminated further and also there were clarifications learnt through the use of UNITY that still needed
to be clarified further.

By viewing farming as an execution strategy for UNITY programs, it should be possible to develop a
coherent model of what makes a farm implementation efficient. This would allow quantitative predictions
to be made about the performance of a particular application.

3.3 Questions

Looking at this other work raised two questions that were not immediately answerable. These two ques-
tions are looked at here.

3.3.1 What farming harness is the best?

A number of farming harnesses had been seen, all of which were designed to be good. With the harness
designed by Welch being the more efficient so far. The argument for how it was the most efficient were
based on how the transputer worked internally. Experimentation with an application had backed this up,
finding only a few improvements that could be made. This led to a few questions:

1. Could this harness be improved upon further?

2. Was there an even more efficient harness that could be used? For example by using Roebbers’s
approach.

3. Could other applications be executed with the same level of efficiency as the protein sequence ap-
plication?
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So far Welch’s harness had only been tested with one application. Before it could be reliably regarded as
a highly efficient harness, it is natural that it should be used to farm out many more applications.

From studying the literature it was noticed all the papers documenting research on farming only used
one application. This was true for both the majority of papers (these documented an implementation) and
the most in-depth study of farming implementation details (based around a ray tracing program [PZ90]).
Even though ray tracing and some other applications are flexible, and some are flexible enough to cover
quite a wide range of both possible job run times and message sizes and even can allow for the grouping
of jobs, any genuine application is not likely to be as flexible as we may well desire when exhaustively
testing farming harnesses.

As execution strategies are independent of the applications they execute, it also follows that farming,
and also farming harnesses, can be studied independently of any particular application. Thus such a study
can be performed on a number of farming harnesses for any range of applications, simply by abstracting
down to and focusing on the aspects of an application that the farming harness sees. Further, as a farm is
independent of any application it executes, there should be an optimum way of implementing a processor
farm and harness that should work as efficiently as possible. A good farming harness should be good
at farming out any application that is of the type that farms out well. Whether this was true or not was
something else to test for.

A farming harness is only aware of three aspects of an application,

1. the size of the job message,
2. the size of the result message, and,
3. the length of time it takes to process a job.

This last item can also be viewed as the length of time the harness sees in between each of the commu-
nications for each worker. Both sides of the harness see: communication, delay, communication, delay,
communication and so on.

As these three sizes are the only aspects of the application of which a harness is aware, testing a num-
ber of farming harnesses with a suitable set of values for these parameters, it should be possible to discover
which harness was the most efficient for any application.

Studying farming in this way will make it easier to arrive at a coherent model of farming, from which
it is possible to decide if farming is a suitable execution strategy for an application and, if so, how to then
implement it with a very high degree of efficiency.

From a coding point of view it was clearly possible to have a generalised worker process that accepted
a message of any size, worked for a completely arbitrary length of time, as specified directly by the mes-
sage and output a result the size of which was also specified in the original packet received.

As the farming harness is an execution strategy and not a part of the application, it has been realised
here applications can be abstracted away from completely. Thus, a study of farming harnesses and their
efficiencies can be performed without any restrictions being imposed by any particular application.

3.3.2 How much is farmable?

As has been said, all the applications that had been seen farmed out involved performing the same task for
different values. The way such a structure would be expressed in UNITY would be with quantification.

If such UNITY programs of these application were mapped onto a conventional architecture, the quan-
tification would be replaced by something like a for loop. In the case of transputers, these programs
could be implemented on a farm. This begged the question: Is everything that is expressed with quan-
tification farmable? This also led to the question: What other UNITY constructs are farmable? Or more
generally: What other applications can be farmed out?
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3.3.3 Summary

The fact that farming and the application are independent of one another provides two interesting results.
Firstly, farming can be studied independent of any specific application (the performance of a farming
harness being independent of the application). Secondly, farming might be able to execute a much wider
range of applications than it has been currently. Both of these conclusions appeared to be original.

It was realised a model of farming could be put together, and it was decided to do this here. One of
the harnesses at hand was initially highly efficient and some improvements had been made to this original
design. Further, all of the previous work on farming had been performed in context to only one applica-
tion. With the use of the UNITY execution model it had also been realised what applications could be
sensibly mapped on a processor farm could be explored.

It was decided to look at the two areas in the order they have been mentioned here. First, finding
the most efficient harness for the applications already known to be farmable. And second, looking at
what range of applications is also farmable. It seemed sensible to perform the two studies in this order as
the other applications that may be farmable may require a different type of implementation. And it may
take some time before it’s realised what type of harnesses (say) is the most appropriate for these types of
application.

Thus these two issues are studied in the next two chapters. Chapter 4 evaluates a large number of farm
implementations for their efficiency. Chapter 5 explores the range of applications that can be farmed out
efficiently.




Chapter 4

Efficient farm implementation

This chapter documents the study to discover how to implement very efficient processor farms for the first
series of INMOS transputers.

4.1 Overview

This chapter documents the development and performing of a number of experiments. This started out
as a search to find the most efficient of six farming harnesses.
The following experiments were performed.

1. Measuring the throughput of the links.
2. Measuring the throughput of the six harnesses.

3. A study of the breakdown in efficiency of the six harnesses for the wide range of demands that
applications can require.

4. A study of farm shut down.
5. A comparision of different topologies.
6. A look at the priority issues that arise in the coding of a harness.

Before looking at the experiments themselves we look at the harnesses to be tested and how this study
was planned.

4.2 Which harness is the most efficient?

As discussed in subsection 3.1.2 (page 24) it has been realised that applications and farming are inde-
pendent, and thus farming harnesses can be tested independently of an application. The fact a farming
harness is independent of the application it executes implies that if a harness is efficient, it should be effi-
cient for any compute bound implementation. As there is invariably a desire to want all applications to be
as efficient as possible, here a search has been attempted to find the harness that is as efficient as possible
for as many applications as possible.

4.2.1 Efficiency context

Processors have a set of instructions they can carry out. Each instruction taking the processor a known
length of time to perform. In programming we are interested in getting processors to perform tasks that
are not in this immediate vocabulary (instruction set). We are interested in more complex and intricate op-
erations. We are used to building up these more complex tasks indirectly from a combination of the tasks
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that can be performed directly. There are always many different ways of getting the processor to perform
a given task, i.e. there are many different combinations of the processor’s basic operations that result in
it performing the desired task. We are interested, if not sometimes obsessed, in finding the combinations
of operations that are the quickest for the processor to produce that result in the behaviour desired.

As farming is just a mechanism for execution, here we are interested in the harness performing a cer-
tain set of tasks in the minimum amount of time (overhead). Thus a good farming harness should be ef-
ficient and execute as quickly as possible, allowing the application to have the most access to the C.P.U.
One way of looking at programming is to say it is about obtaining the desired emergent behaviour, with
ideally the sum of the instruction run times being as small as possible. However, this obviously doesn’t
just mean using only the quickest instructions when writing a program. It may take many of the smallest
instructions to perform the task in question. Where as using a few slow instructions, ALT for example,
may perform the task quicker. Also, this is not the way in which applications are written, from the instruc-
tion timing sheet towards the application, but the other way round, from application towards the instruc-
tions. Although the run time of an implementation may be a parameter of the specification, unfortunately
there is no apparent methodology to refine a specification into an implementation that has any particular
run time or the quickest run time. The run time of an implementation is not a controllable parameter of
the refinement process.

4.2.2 The breakdown of harness efficiency

As has been said, the area of interest here was finding the harness that was the most efficient for as many
applications as possible. The question initially asked here being: is there a harness that farms out ap-
plications more efficiently than harness B? This question eventually became a more general one: which
harness efficiently farms out the widest range of application mappings?

Having abstracted back to a parameterised view of applications, the approach to take, in order to find
the most efficient harness, was to wind up or down the values of the parameters that are the only factors to
affect farming harnesses. By studying the points at which the harnesses break down, the harness to break
down the last will be the most efficient.

A harness’s breakdown point is the point at which the farmer and the harness can no longer supply
jobs at the rate needed to keep the workers constantly supplied with work. Clearly the more large jobs a
harness can supply, the larger the number of mappings that harness will able to farm out efficiently due
to it being compute bound rather than communication bound.

The breakdown of farming harness efficiency is the most important aspect of farming harness be-
haviour to study. It is easy to get caught into studying non-fundamental aspects of farming harness im-
plementation. For example by just studying the code of the farming harness and considering simple al-
ternatives, such as whether it should be the local or the distant worker that should have priority in a job
distribution process. These issues are just fine tuning issues and should be dealt with last, once a good
farming harness has been found. Thus this research set out to study the breakdowns of some well designed
farming harnesses, before researching any other aspects that may constitute an efficient farm.

4.3 Harnesses

This section introduces the design details of the six harnesses studied. Two had already been used in
applications and had shown to be efficient. The other four stem from ideas put forward by Roebbers and
Welch that should improve these existing farming harnesses. For convenience throughout this thesis these
will be referred to as harnesses A, B, C, D, E and F.

4.3.1 Harness A: this author’s harness

The first harness was designed and written by this author for one particular application in which speed of
execution was an issue. Being by the author, the design criteria and the ideas for why this harness was
thought to be good are known.

This harness was designed with a minimalist approach. It was believed this would result in an appli-
cation that executed the quickest. The harness should have as little communication buffering as possible
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and contain as little code as possible. It was believed buffering would prevent a quick execution, jobs that
filled up buffers far down the farm could not be performed by idle workers closer to the farmer. Being
minimally buffered would prevent this. In order to have as little buffering as possible the harness would
have to have as few processes as possible.
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Figure 3: Structure of harness A

In terms of the higher level organisation of the farm results should come out of a different end to that
of the jobs so as to keep the amount of communications performed by each processor balanced to a greater
degree.

This harness had the distant workers with the highest priority in the PRI ALT of the job distributor
process (splitter). It was believed this would be more efficient as the only time both workers would
want work is upon initialisation. In this situation if the first job was passed to the local worker, the worker
process upon receiving the job would be instantly context switched out so that the high priority job distrib-
utor could obtain the next job. Thus it was generally considered better to give out the first jobs to the most
remote corners of the farm where they can be started immediately and the rest of the farm is initialised in
a wavefront which propagates back towards the farmer.

PROC distribute (CHAN OF REQ req, CHAN OF JOB work,
CHAN OF REQ local.req, CHAN OF JOB local.job,
CHAN OF REQ distant.reqg, CHAN OF JOB distant.job)
variables
WHILE TRUE
SEQ
req ! TRUE
work ? job
PRI ALT
distant.reqg ? any
distant.job ! job
local.req ? any
local.job ! job

This approach was considered a good idea as in the application this harness was developed for, jobs were
smaller than results and the harvester was placed at the opposite end of the line of workers to the farmer.
Thus it seemed sensible to make the smallest type of message travel the furthest distance, and the jobs
were smaller than the results for this particular application. The order of the guarded processes above
has been reversed for these experiments. This argument doesn’t take into account that the overhead for
communicating a job is just the set up times for the communication instructions, the length of the message,
or more importantly the length of time to perform the transfer, is performed in parallel and may not be
relevant. However, Roebbers’s course had not yet been attended at when harness was designed. This
illustrates nicely that by not knowing the rules they can be easily broken.

The code for the result collector was equally simple and minimalistic.
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PROC collector (CHAN OF PACKET local.result, distant.result,
results)
variables
WHILE TRUE
PRI ALT
local.result ? result
results ! result
distant.result ? result
results ! result

The collector process gives the local worker priority, thus allowing the worker to get on with the next
job. As all combiners in the whole farm do this, all workers have some form of buffer to output to and
don’t have to spend long periods of time driving the slow links. Here it is preferred to call this operation
collecting, instead of multiplexing as others do. This is because in this case we are collecting the results
from a farm and giving them to a harvester. The task of multiplexing is about sending a number of separate
communications through one physical channel.

These two processes are run at high priority with the worker process at low priority,

PROC worker (CHAN OF REQ reqg, CHAN OF JOB job,
CHAN OF REQ distant.req, CHAN OF JOB distant.job,
CHAN OF PACKET distant.result, results)
CHAN OF REQ local.req:
CHAN OF JOB local.job:
CHAN OF PACKET local.result:
PRI PAR
PAR
distribute (req, job, local.req, local.job, distant.req,
distant.job)
collector (local.result, distant.result, results)
application (local.req, local.job, local.result)

When a worker finishes a job it passes its result on to the on-chip collector process. The worker then gets
its next job of work from the on-chip splitter process, there is no need for a special buffer process to hold
this job for the worker, every process acts as a buffer for the information it holds. All that is needed is for
the next job to be on-chip.

4.3.2 Harness B: Welch’s harness

The second harness used here had been used very successful in an application mentioned in subsection
3.2.1 (page 30).

This harness was designed by Welch as a farming harness that exploited all of the internal parallelism
of the transputer. This was designed using the process oriented model mentioned in section 2.1 (page 3)
and thus consists of one process per function.

This harness had already been proved to give good performance and good linear speed up for one
application. It also resulted in a quicker execution than harness A for the application that harness had
been designed for.

The original design consisted of the workers arranged as a pipeline, see figure 4 (top of next page),
with the results being returned back up towards the farmer. Thus, by expanding the number of adjacent
workers, the farm’s topology can be changed from a pipeline (an unary tree), to a binary or ternary tree,
see figure 5 (also on next page for ease of comparison).

The harness was coded, tested and tuned in [SS91, Stu91]. For the protein sequencing application that
this harness was use for, Sturrock found the harness performed better when the results were passed along
to the last processor which is connected directly to the farmer chip. Here this is termed configuring the
workers in a ring, see figure 6 (bottom of previous page), opposed to as a pipeline.
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Transformation

The original design for this harness had the potential to perform an amount of buffering that was decided
by the programmer. Sturrock found that the optimum amount of buffering to have was one item. For
simplicity it has been presumed here this result carries over to all application mappings and for the rest
of this work just a single buffer space is used in the other harnesses.

As only one item was needed Welch and Sturrock transformed the code of the process that performed
this variable amount of buffering into a process that just buffered a single job. Unfortunately this code
had an inefficiency in it.

SEQ
work := FALSE
WHILE TRUE
PRI ALT
('work) & in ? job
work := TRUE
work & reql ? any
SEQ
outl ! job
work := FALSE
work & reqg2 ? any
SEQ
out2 ! job

work := FALSE

By following the code through, we can see that when work is FALSE, the loop only engages the in
channel of the ALT. Then after setting work to TRUE and going around the loop again, the other two
channels are engaged and one of the output channels is given the job. This two stage process repeats
continually.

We can express this inputting and outputting more clearly as the two separate processes they are. Us-
ing the techniques learnt from Roebbers’s course the code was quickly transformed into,

WHILE TRUE

SEQ
in ? job
PRI ALT
reql ? any
outl ! job
reqg2 ? any
out2 ! job

This piece of code is much more obvious, natural, readable and also more efficient as it engages only half
as many ALTSs.

This transformation can be performed explicitly in four stages: expansion, substitution and two stages
of minimisation.

The first stage consists of writing out the loop with two copies of the body, one in sequence after the
other,
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SEQ
work := FALSE
WHILE TRUE
SEQ
PRI ALT
('work) & in ? job
work := TRUE
work & reqgl ? any
SEQ
outl ! job
work := FALSE
work & reqg2 ? any
SEQ
out2 ! job
work := FALSE
PRI ALT
('work) & in ? job
work := TRUE
work & reql ? any
SEQ
outl ! job
work := FALSE
work & reqg2 ? any
SEQ
out2 ! job
work := FALSE

Then replacing the value of work directly into the code at every place where work is used,

WHILE TRUE

SEQ
PRI ALT
IFALSE & in ? job
SKIP
FALSE & reqgl ? any
outl ! job
FALSE & reg2 ? any
out2 ! job
PRI ALT
ITRUE & in ? job
SKIP
TRUE & reql ? any
outl ! job
TRUE & reg2 ? any
out2 ! job

40

Here we can clearly see that the pre-conditioned guards are either constantly TRUE or constantly FALSE.
For those that are TRUE the pre-condition can be removed. For those that are FALSE the entire guard and

corresponding process can be omitted,
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WHILE TRUE
SEQ
PRI ALT
in ? job
SKIP
PRI ALT
reql ? any
outl ! job
reqg2 ? any
out2 ! job

This first ALT only has one channel to engage, clearly there is no alternative here and this can be written
as a single communication,

WHILE TRUE
SEQ
in ? job
PRI ALT
reqgl ? any
outl ! job
reg2 ? any
out2 ! job

This last transformation is using the equivalence law input we mentioned in subsection 2.2.4 (page 10).

Code for harness B
The code used for harness B here was as follows,

PROC distribute (CHAN OF JOB work,

CHAN OF REQ local.req, CHAN OF JOB local.job,

CHAN OF REQ distant.reqg, CHAN OF JOB distant.job)
variables

WHILE TRUE
SEQ
work ? job
PRI ALT
distant.reqg ? any
distant.job ! job
local.req ? any
local.job ! job

PROC job.buffer (CHAN OF JOB in,
CHAN OF REQ reqg, CHAN OF JOB out)
variables
WHILE TRUE
SEQ
in ? job
out ! job
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PROC sacrificial.buffer (CHAN OF REQ req,
CHAN OF JOB in, out)
variables
WHILE TRUE
SEQ
req ! TRUE
in ? job
out ! job

PROC collector (CHAN OF PACKET local.result, distant.result,

results)
variables
WHILE TRUE
PRI ALT
local.result ? result
results ! result

distant.result ? result
results ! result

PROC result.buffer (CHAN OF PACKET in, out)
variables
WHILE TRUE
SEQ
in ? result
out ! result

42

These processes were then connected together. The end worker needing two buffer processes instead of

a full harness. The pipeline topology is used here.

PROC worker (CHAN OF JOB job.from.link, job.to.link,
CHAN OF PACKET link.in, link.out,
VAL INT id.number, worker)
CHAN OF REQ local.req, distant.req:
CHAN OF JOB local.job, distant.job:
CHAN OF PACKET channel, local.result:

PRI PAR
IF
id.number < worker
PAR
distribute (job.from.link, local.req, local.job,
distant.req, distant.job)
sacrificial.buffer (distant.req,
distant.job, job.to.link)
result.buffer (link.in, channel)
collector (local.result, channel, link.out)
TRUE
PAR

job.buffer (job.from.link, local.reqg, local.job)
result.buffer (local.result, link.out)
application (local.req, local.job, local.result)
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4.3.3 Harness C: a harness developed using Roebbers’s transformations

Roebbers’s course encouraged the use of single processes that, for the purpose of engaging links in paral-
lel, repeatedly perform a sequence of PARs, each of which contain a small number of small processes. A
third harness was developed from harness A that utilised these techniques. The job distribution process
is as follows,

PROC distribute (CHAN OF REQ req, CHAN OF JOB work,
CHAN OF REQ local.req, CHAN OF JOB local.job,
CHAN OF REQ distant.req, CHAN OF JOB distant.job)
variables
SEQ
req ! TRUE
work ? job0
WHILE TRUE
SEQ
PAR
SEQ
req ! TRUE
work ? jobl
PRI ALT
distant.req ? any
distant.job ! job0
local.req ? any
local.job ! job0
PAR
SEQ
req ! TRUE
work ? job0
PRI ALT
distant.req ? any
distant.job ! jobl
local.req ? any
local.job ! jobl

The behaviour of this job distribution mechanism is very different to that of harness B. This harness gets
in work from the link and in parallel decides which worker should get the job. This is considered advan-
tageous over the approach taken by harness B as if the on-chip worker is busy, harness B passes incoming
jobs on to the sacrificial buffer automatically. If the on-chip worker then finishes its current task there is
a job within the transputer’s memory that the worker can not process.

The result collection mechanism is,
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PROC merge (CHAN OF PACKET local.result, distant.result,

results)
variables
SEQ
PRI ALT
local.result ? resultO
SKIP
distant.result ? resultO
SKIP
WHILE TRUE
SEQ
PAR
results ! resultO
PRI ALT
local.result ? resultl
SKIP
distant.result ? resultl
SKIP
PAR
results ! resultl
PRI ALT
local.result ? resultO
SKIP
distant.result ? resultO
SKIP

These two processes are tied together in the same way as harness A.

4.3.4 Harness D: pointer passing harness

This harness came out of an attempt to save passing large messages between the various processes of
a harness and thus around the memory of the transputers. Welch believed it would be better to have a
harness that exchanged indexes into an array of messages than to continually set up and shutdown several
local PARs.

The strategy employed in this harness consists of declaring an array of message buffers and passing
indexes to these between the different processes of the harness as pointers. This method still consists of
having a number of separate processes, but doesn’t consist of long messages being passed between them,
just INTs.

Further, this method does not involve the continual setting up and shutting down of the expensive
PAR construct used in harness C. The disadvantage of that strategy being each component of the parallel
statement must terminate before the whole PAR can terminate and execution continue. Thus, if the mes-
sage read on the output link is say much shorter than the message being read on the input link, the output
link will sit idle until the longer communication has finished. This holds the harness back from progress-
ing. Similarly, harness C can prevent work from being done by preventing results generated on-chip from
being output to the harness as soon as possible. In this case, if a communication on the input link starts
up just before a job finishes, the worker process is preventing from outputting the result to the harness
until the incoming result is output. By having the links driven by separate processes, after a process has
completed a short task, that process can continue on to its next task.

The main disadvantage of this pointer passing method is that the compiler’s alias checking flag must
be turned off in order for the code to compile. The checking that the different parts of the array are not
accessed in parallel is removed from compilation and is given to the programmer to check or to prove.

This idea originates from a process that had two buffers, and a manager process, see figure 7 (next
page). This manager is also a buffer process to decouple the other three processes from working in com-
plete synchronisation, i.e. to introduce an extra process to create some parallel slackness.




CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 45

manager

buffer  application buffer

Figure 7: A pipeline with manager process

For a farming harness Welch realised a manager process was not required. The worker and the pro-
cesses of the harness would always communicating in pairs. Thus, these processes just needed to ex-
change pointers, see figure 8 (next page).
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Figure 8: Structure of harness D

Naturally if the jobs and the results to be available to any process that required them, the buffer slots
must be declared globally like so,

[3]1INT len, n:
[3] [max.job.msg]BYTE job.msg:
[3] [max.result.msg]BYTE result.msg:

The harness processes Welch supplied were as follows,

PROC farm.out (CHAN OF JOB jobs, CHAN OF PTR local.req, local.job,
workmate.req, workmate.job, VAL INT pointer)
INT p, D2:
SEQ
p := pointer
WHILE TRUE
SEQ
jobs ? len[pl::job.msg(p]
PRI ALT
local.req ? p2
local.job ! p
workmate.req ? p2
workmate.job ! p
p := p2
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PROC prompt (CHAN OF PTR req, in, CHAN OF JOB out, VAL INT pointer)
INT p:
SEQ
p := pointer
WHILE TRUE
SEQ
reg ! p
in ? p
out ! len[p]::job.msglp]

PROC result.buffer (CHAN OF PACKET in, CHAN OF PTR out, new,
VAL INT pointer)
INT p:
SEQ
p := pointer
WHILE TRUE
SEQ
in ? n[p]::result.msg(p]
out ! p
new ? p

PROC merge (CHAN OF PTR local.result, local,
workmate.result, workmate,
CHAN OF PACKET results, VAL INT pointer)
INT p: P23
SEQ
p := pointer
WHILE TRUE
SEQ
PRI ALT
local.result ? p2
local ! p
workmate.result ? p2
workmate ! p
results ! n([p2]::result.msg(p2]

p := p2

PROC application (CHAN OF PTR req, in, out, new,
VAL INT pointer)
INT ptr.j, ptr.r:

SEQ
ptr.j, ptr.r := pointer, pointer
WHILE TRUE

SEQ
req ! ptr.j
in ? ptr.j

work from job.msg[ptr.j] to result.msglptr.r]

out ! ptr.r
new ? ptr.r
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These four processes were tied together in the same way as harness B.

PROC worker (CHAN OF JOB jobs, distant.job,
CHAN OF PACKET results, distant.result)
[3]INT len, n:
[3] [max.job.msg] BYTE job.msg:
[3] [max.result.msg]BYTE result.msg:
CHAN OF PTR onchip.req, onchip.job, onchip.result,
onchip, req, job, result, new:

PRI PAR
PAR
farm.out (jobs, req, job, onchip.req, onchip.job, 1)
prompt (onchip.req, onchip.job, distant.job, 2)
result.buffer (distant.result, onchip.result, onchip, 2)
merge (result, new, onchip.result, onchip, results, 1)
application (req, job, result, new, 0)

Again the worker at the end of the pipeline will need buffer processes to decouple the application process
from the slow link communications. Thus, the configuration code used for harness D has the same overall
structure of the worker process at the bottom of page 42.

Since this harness was designed and tested, it has been realised the message buffers are accessed here
as global variables. This being due to the processes of the harness using the names of the buffers directly,
without these variables being defined within the scope of the individual processes. By passing the buffers
into the processes as parameters they would be accessed as local variables. This approach to writing code
is not only more sound engineering practice, it is also faster to execute. The variables being accessed more
directly by the transputer, there being no need to use an indirect addressing mode. Here we show how the
prompt process would be written using this technique,

PROC prompt (CHAN OF PTR req, in, CHAN OF JOB out,
[1INT n, [][]BYTE job,
VAL INT pointer)
INT p:
SEQ
p := pointer
WHILE TRUE
SEQ
req ! p
in ? p
out ! n[p]::joblp]

This network of processes would be set up with the following,
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PROC worker (CHAN OF JOB jobs, distant.job,
CHAN OF PACKET results, distant.result)
[3]INT len, n:
[3] [max.job.msg]BYTE job.msg:
[3] [max.result.msg]BYTE result.msg:
CHAN OF PTR onchip.req, onchip.job, onchip.result,
onchip, req, job, result, new:
PRI PAR
PAR
farm.out (jobs, req, job, onchip.req, onchip.job,
len, job.msg, 1)
prompt (onchip.req, onchip.job, distant.job,
len, job.msg, 2)
result.buffer (distant.result, onchip.result, onchip,
n, result.msg, 2)
merge (result, new, onchip.result, onchip, results,
n, result.msg, 1)
application (req, job, result, new, 0)

Changing to this approach results in accesses to the messages being a cycle quicker to execute. However,
this improvement is not likely to be large compared with the differences in performance obtained by the
other harnesses in this study.

4.3.5 Harnesses E and F: bidirectional harnesses

Another idea Welch had was that harnesses like his, that only passed messages in one direction over the
links, could be used to run messages over the links in both directions and thus could supply jobs to another
worker process running in parallel with the first. The transputer has a very low context switch time so
switching between the two workers evenly would not be a large overhead. This would increase the amount
of bandwidth to the workers and the extra workers should also result in greater parallel slackness. Thus,
should one of the workers on a processor be waiting for a job, the processor has another worker process
to execute, instead of lying idle.

Using the links in both directions simultaneously doesn’t give double the bandwidth, due to the trans-
puters sending acknowledgement packets, but, Welch estimated, should give another fifty per cent. As
the amount of computation performable hasn’t increased it is possible to deliver more work in the same
time to the same amount of computing power. This should prevent some implementations being commu-
nication bound.

The other harness that uses the links in one direction like this is harness B. For the sake of complete-
ness it was decided to also double up harness B so there was a doubled up harness design that could be
compiled with usage checking switched on. This might prove useful in performing comparisions between
the different aspects of harness design, and not just individual implementations.

4.3.6 General note

As a general note on harnesses. The way chosen to implement the harnesses here is with a fixed amount
of fan out and fan in. The reason for this is although the code for harnesses can be generalised to farm out
work for an arbitrary number of channels and links, this generally requires replicators that take longer
to set up than a normal ALT. As finding the best harness possible is what is of interest here, there was
no interest in then making such a harness flexible and potentially slower, in order to allow the harness to
be be configured for a poorer performance. Thus, when a harness for a ternary tree instead of a line of
workers is needed, an appropriate harness will be developed for that situation.
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4.4 Planning the study

We have established this study is interested in finding the most efficient harness. Also, we have looked
at the harnesses around at the start of the experiments. Here we look at how the experimentation was
planned.

4.4.1 The approach to testing

Most importantly, what was of interest was testing the design strategies that gave rise to these farming
harnesses, not just the code itself. This approach was acquired from UNITY, where one is interested in
the design of programs as opposed to the program itself.

The reason for this interest is the way in which a good program is written is much more important than
the program itself, since a technique can be used in other situations. Thus, once this experimentation has
arrived at a strategy that results in the most efficient harness known, we may be able to use that design
philosophy to construct a strategy for dealing with other situations with similarly optimal efficiency.

4.4.2 This study’s limited parameter space

In addition to the realisation that an application and an execution model are independent of one another, it
was also realised there are three main aspects of an application that a farming harness is aware of. These
are,

1. the average length of the job messages farmed out,
2. the average length of time to compute these jobs, and,
3. the average length of the result messages.

In UNITY terms, the actual values of these parameters would come from the way the application was
mapped onto the hardware. For any application, many different mappings are possible. What was of
interest here was finding which range of parameters are compute bound and thus efficient.

The natural scientific approach is to test a number of harnesses for a range of applications and then
display these results on a graph. These graphs would not only need to display these three parameters on
an axis each, but also another axis would be required for the purposes of comparision. This results in
graphs containing four dimensions. Unfortunately, only three dimensional graphs can be display easily.
This applying to the printed page especially. This led to a need for just having two parameters to vary.

Thus, the approach adopted here is tie together the two message related variables into one and evaluate
the harnesses performance with both job and result message being the same size. Doing this gives the
following variables,

1. the average length of job compute time, j, and,
2. the average length of message communicated, m.

This leaves us with a third axis free for comparisions as required. The method of comparision here being
efficiency.

This reduces the scope of the experimentation by a small degree, but without invalidating the results
obtained, as the two variables tied together are similar in nature. So the range of experimentation per-
formed here has been restricted to a certain extent by our limitation to display results.

4.4.3 Varying the parameters

So this study was performed with two application parameters, j and m, to vary. There is also another
parameter, that of the number of workers in the farm, w.

So, in order to find the breakdown of the harnesses, all that was needed was to wind up or down these
three parameters. This generates a succession of mappings that are gradually more or less demanding
depending on the particular influence of the parameter. Each parameter just needs to be wound up or
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down far enough until all of the harnesses have broken down completely. The harness that can cope with
the most demanding parameters will be the most efficient. Now a position had been reached where what
should be tested was known.

It was also easy to see and predict what affect increasing each parameter would have on performance.

Increasing w, the number of workers, would result in more work being performed and also more com-
munications in any time period due to more workers claiming work. This would increase the load on the
farmer and would eventually result in the application becoming communication bound.

Increasing j, the average time it takes to process one job, would result in less jobs being processed
in any particular time frame. This would result in the demand for jobs being less frequent. In turn this
would decrease the load on the farmer and the application would become more compute bound, the same
number of jobs taking more time to be processed.

Increasing m, the average length of the messages, would increase the communication load on the
implementation and the farm will become communication bound.

An increase in B, the bandwidth of traffic coming out of the farmer, would results in more jobs going
into the farm at any one time. This would make the farm become more compute bound.

4.5 Mathematical modelling

It was suggested there were two things one might wish to predict in advance about an implementation.
The first is what a farm’s efficiency would be,

efficiency = eff(j, m, w)

The second is, for a given application mapping j and m, what is the maximum number of workers a farm
could have and still be efficient,

W = Wmaz (J,m)

The possibility of these were looked at.

4.5.1 Compute bound or communication bound

From thinking about what a programmer would want to use, it was realised one would be interested in
knowing in rough terms whether an implementation is likely to be compute bound or communication
bound. The actual efficiency may also be of use, though this is not as important.

It was realised that if a network of transputers was being utilised fully, both the links and the C.P.U.s
would be in use all the time. In terms of farming this would mean all the links’s bandwidth was required
to keep all of the workers in work all of the time. This could be expressed as “the throughput of the links”
would be the same as “the amount of work performed by the workers”, i.e.,

number of jobs through a link per second = number of jobs performed per second

The number of jobs one can get through a link, in a second say, is simply the bandwidth of the link, B,
divided by the sum of the number of bytes in the message, m, and the overhead of setting up the commu-
nication. Here this is expressed as the number of bytes that could be transferred in the time it would take
to set up the communication, s,

B
m+s

The number of jobs performed in a second can be calculated similarly. This is the number of workers in
the farm, w, divided by the number of seconds it takes to perform each job, j,

w

J
Putting these two together gives us a model in the form of a simple equation. This equation gives us an
expression for a farm in which both the computational and communication parts of the implementation
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are working to the full.
B w

m+s j
This equation indicates that, in a farm, the maximum number of jobs a farmer can output in any time period
is inversely proportional to the length of those jobs, as well as being directly proportional to the amount
of bandwidth there is available both out of the farmer and around the harness. Similarly, the maximum
number of jobs that can be processed per second is proportional to the number of workers, and is inversely
proportional to the time it takes for one worker to process a job.

In terms of farm mechanics, an implementation is compute bound and runs efficiently when the work-
ers demand jobs at a rate lower than the supply. Or more simply, when the number of jobs that can be
processed per second is less than the number of jobs that can be communicated per second. We can ex-
press this property of compute bound farms in terms of a model based on the equation developed above.
In this model the relation between supply and demand for a compute bound farm is simply,

B w
2 ==
m+s~ )

Similarly, an implementation is communication bound and not very efficient when the throughput is not
enough to deliver the amount of work needed to keep all of the workers busy all of the time. Here, the
above relation would containa < .

The bandwidth, B, is likely to be constant for any particular piece of hardware, with there being
slightly different values for each harness design, depending on its efficiency. On architectures like the
transputer system used here, measures can be taken to increase B by reducing the number of switch chips
used.

Communication setup time

In the above discussion, communication setup was measured in bytes, not time, as this hardware charac-
teristic is usually measured. Here the communication’s start up cost was expressed in how many bytes
could the channel communicate in the time it takes to setup a communication. As we invariably know the
number of bytes to be transferred in a communication, but not how long it will take, measuring the setup
cost in this way is useful as it displays the start up overhead in the same metric that the length of the com-
munication is measured in. This helps to provide some insight into the minimum size of a communication
that will be effective and how efficiently the communication channel is being utilised.
The value of s is easily calculated with the equation,

s = B x set up time

Thus, as the setup time for the T800 transputer is 3 microseconds, and 1.51 Megabytes per second has
been obtained through a link here, s has the value of 4.75 bytes, for a standard communication and 13.5
bytes for a counted array that uses an INT for the count.

Presented here, for the first generation transputer is the raw bandwidth, B; the communication setup
time expressed in microseconds; the communication setup time expressed as the number of bytes that can
be transferred in that time, s; and the size of the communications needed to obtain 60%, 70%, 90% and
95% efficiency through the communication channel.

B set up time S m to get 60% | to get 70% | 90% | 95%
‘ Mb/s | microseconds | bytes bytes bytes bytes | bytes

T800 1.5 3 4.75 7 11 42 90
T800 counted array . 1.5 ‘ 8.6 } 13.5 ’ 20 ‘ 32 ‘ 116 l 232

Table 1: Communication set up time’s influence on performance of transputer

For large s, very large messages will need to be communicated if the channel is to be used reasonably
effectively. As implementations should be driven by what will make an application efficient, a large s will



CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 52

be detrimental to the performance obtainable for a fine grain mapping. Thus preventing such mappings
from being an option. If s is very large, communication can ceases to be useful if parallel implementations
are to be efficient. An example of this is in [JR92]. Here Jenson and Reed noticed that the communication
set up time from their host to their Intel iPSC/2 hypercube was 720 microseconds (this included the oper-
ating system calls). As the bandwidth was 2.8 Megabytes per second, s is 2114 bytes here and messages
need to be of 3 to 5 kilobytes before 60-70% of the bandwidth is used and 19 or 40 kilobytes if 90-95%
of the bandwidth is to be used effectively. Thus, having such a large value of s for an architecture does
not encourage the communicating of small messages, such as just a single integer.

As the value of s is small for the first generation of transputer links, it is ideal for performing fine grain
communication and thus fine grain work.

When m is significantly greater than s, a situation we prefer to be in when implementing a farm, it
should be possible to omit s in calculations for simplicity and the results still be highly accurate.

4.5.2 Estimating the maximum number of workers

As well as having a general model of efficiency, a method to work out the maximum number of workers
a farm could cope with was also worked out.

Here we would like something that is calculated from the average time it would take to perform a job
and the average length of a work packet (or the average length of time it would take to communication
one). Thus we would like a function of the form,

W = Wmaz (4, M)

From the model of efficiency we already have,

B
>
m+s~ )

| &

obviously the maximum number of workers possible in any situation is going to be related to the values
of 7 and m used, )
w= L

m

This would seem to imply the way to proceed with an implementation, is to first measure the average job
processing time and the average message length and the bandwidth out of the farmer. Then an estimate
of the maximum number of workers such an implementation can have and it still be compute bound is,

__JB
T m+s

More generally, any farm with this or a smaller number of workers,

jB
m+s

w<

will be compute bound. Any farm with a larger number of workers will be communication bound.

4.5.3 Rationale for models’s simplicity

The models here are deliberately small and very simple. Initially, when considering potential mappings,
all we would like to know is either if a mapping will be compute bound or not, or how many workers a
mapping will allow. This second figure we only need to know to the nearest integer. It would be desirable
to know either of these as quickly as possible. A small model will be quick to work with. A good small
model will capture the essence of what is relevant, by giving all that is required, an estimate. A more
precise and thus detailed model would give more precise values. There are two problems with this.
Firstly, performing the calculation for a more precise model will take longer due to the larger number
of parameters involved in more complex models. All of these extra parameters have values that would
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need to be found out. Some of these could obtained from data sheets. Others will have to be found by
measuring an implementation which is very time consuming. If finding out the values to many parameters
is time consuming, programmers will not bother to use the model.

Secondly, in order to be more accurate, a more detailed model would require much more complexity
and would need to take into account the performance characteristics of the topology and harness being
used. Modelling the harness would include issues such as the code’s latency. Modelling the topology
would include looking at the decrease in throughput from worker to worker. For example, if the through-
put out of a farmer is, .

m+ s

Then if k is the amount of throughput lost through the execution of the harness on one transputer, the
throughput out of the first worker is,

B
-k
m+s
the throughput out the second worker is,
B
— 2k
m+s

and so on.

One of the major problem with constructing modelling to this degree of accuracy is that if the topology
or the harness is changed, the model needs to be changed appropriately too. Detailed models do have their
use, but here they are not considered appropriate for use in the initial stages of implementation.

There may be the requirement for models that possess greater accuracy and thus are slightly more
detailed in the appropriate ways. More detailed models exist in the literature, such as [TD90] by Tregidgo
and Downton. However, the emphasis here is on smaller models that are both needed and useful.

The largest model here still has five parameters. Two of these, B and s can be looked up here or found
by experimentation. One, w is selected by the programmer. The remaining two, m and j are a result of
the mapping strategy selected by the programmer. The first of these can be counted in bytes directly from
the code, the second is the only one that needs to be found by testing.

One problem with constructing models that attempt to obtain a certain degree of accuracy is that of
knowing what issues make appropriately large differences and are thus worth including in the model.

4.5.4 Summary

A model has been developed here that can be used to study a farm. It can find out whether an imple-
mentation is compute bound or communication bound. By rearranging the equation it can also be used
to estimate the maximum number of workers an implementation may have and still be compute bound.

The first is more useful in studying an existing implementation. The second is more useful in devel-
oping an implementation.

4.6 Raw link bandwidth

It was suggested that in the main experiments, the lengths of messages should be measured by the length
of time it takes to communicate them, instead of the bytes as is usual. The advantage of this being that
communication time and computation time can then be compared directly. This would provide insight
into how the two variables affect one another more directly. For example, it would not be obvious that
say, 1049 bytes of data would take 15.6 low resolution clock ticks to communicate. More importantly
an application is likely to become communication bound, not when the job communication time is equal
to the job process time, but when the job communication time is proportional to the product of the job
process time and the number of workers. Such a relationship would be much easier to spot if all of the
measurements being measured using the same metric.

The quickest way to turn a message length into a time is to measure how long it takes to be com-
municated. This conversion needs to be something that will be constant. It was decided to look at the
bandwidth of both the links and the harnesses. Link bandwidth will be constant and thus it is looked at
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in this section. The throughput of harnesses is going to be different from harness to harness, this is also
of interest, and will be looked at in the next section.

Thus, this experiment was performed in order to discover the speed of communication through a trans-
puter link.

This experiment is naturally all about a communication. The basis of the whole experiment is to dis-
cover how long it takes to perform the communication,

PLACED PAR
link ! message
link ? message

between two transputers.
Normally we are interested in communicating a counted array,

PLACED PAR
link ! n::packet
link ? n::packet

Thus, this experiment is very much about the amount of throughput obtainable for different lengths of
message.

There is also the issue of how far apart these two transputers are. So in each test we are also interested
in the number of switch-chips through which the communication takes place.

4.6.1 Developing the test program

In order to perform the timing of this communication it was decided to use the transputer’s in-built high
priority timer, as this gives a higher resolution of measurement.

That said, the length of time to communicate an individual byte or message is still very small so each
message was sent a fixed number of times, 128. An average was then taken.

For the experiment to be informative, communications from one byte up to several kilobyte messages
needed to be timed. Both extremes of this range being common in transputer implementations. It was de-
cided to test packet lengths that are powers of two, starting at one byte and continuing up to 16 kilobytes.
A message of this size should be more than enough to overshadow the communication’s setup time. Six-
teen kilobytes is also some way above the largest message size seen by this author in a genuine application
(4 kilobytes in Sturrock’s protein sequencer).

The timings were performed in the following way: an empty packet was sent across the link to act as
a synchronisation, the receiving end then noted the start time, the packets would be sent through the link
and the time difference was noted. The communication would actually get under way at the sending end
while the start time is being read. However, the first byte of the message will not be acknowledged and
thus the rest of the message not sent, until the receiving transputer executes the input statement.

The code used was,

[max.packet.len] BYTE packet:
SEQ size = 0 FOR 15
SEQ
n := 1 << size
link ! 0::packet
SEQ i = 0 FOR 128
link ! 1l<<n :: packet

on the sending transputer and,
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INT len:
[max.packet.len]BYTE packet:
TIMER clock:
INT start, stop:
SEQ size = 0 FOR 15
SEQ
link ? len::packet
clock ? start
SEQ i = 0 FOR 128
link ? len: :packet
clock ? stop
performance ! stop - start

on the receiving end.
A bidirectional version of the code was also developed. Here the unidirectional communication, of
the following basic form,

PLACED PAR
SEQ 1 = 0 FOR 128
link ! len::packet

SEQ i = 0 FOR 128
link ? len: :packet

was replaced by a pair of parallel communications sent across the one link bidirectionally,

PLACED PAR
PAR
SEQ 1 = 0 FOR 64
linkl ! size::packet
SEQ i = 0 FOR 64
link2 ? len::packet2
PAR
SEQ 1 = 0 FOR 64
linkl ? len::packet
SEQ i = 0 FOR 64
link2 ! size::packet2

The both of the variables named size were initialised to the same value.
The two tests were performed by commenting folds in and out and toggling between the two tests.
The output from the per formance channel was sent to a third transputer. Thus giving the final
program, as shown in figure 9.

]
results

run.tests get

put

Figure 9: Test rig for link bandwidth experiment

The third processor handled the acquisition of the filenames, the conversion of the results into various
units (bytes per second, seconds per byte etc.) and the filing of these values. This was done in order to
keep the test code away from any external interferences. By having a separate processor perform these
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tasks it prevents the setting up of the tests and storing of the results interfering with the running of the
test.

This also meant more of the code was held in on-chip memory, not on the slower off-chip external
memory. This would definitely not be the case if the outputting of the results to a file was performed by
a processor involved with the testing. This is as the system’s libraries involved for this system are large.

Having the test code in on-chip memory is ideal for this test. The bandwidth values arrived at is the
maximum performance of the transputer and is also applicable to all transputers, regardless of the make
of board being used. Thus these results are generic to all transputers.

The test program was compiled with all the usual occam flags switched on.

4.6.2 The testing performed

With the test program developed, there was then the issue of in which environment to perform the exper-
iment. It seemed best to try and explore the extremes and the structure of the machine in use. Thus, the
test program was run four times with the communication under test being between transputers of varying
distances for each run of the program. The four positions used were between transputers on,

1. the same board (the smallest distance involving just one switch-chip),
2. adjacent boards within the machine (not directly connected on the machine’s backplane),

3. alternate boards, namely board 4 and board 2 (alternate boards are directly connected on the ma-
chine’s backplane via two switch-chips), and,

4. two boards that were as near to opposite ends of the machine as possible, namely boards 3 and 44,
(the worst case, involving approximately 15 switch-chips).

There was one very minor restriction with allocating boards for this test. This arose when the two trans-
puters performing the timed communication were on different boards. In this situation the two transputers
had to be assigned to different board types (for example boards with different amounts of memory). This
restriction was imposed by the genrout program through which the physical placement was performed.
This limited the locations with which some tests could be performed within the machine.

The results were collected and analysed. There are three results: how long it takes to communicate
a byte, how long it takes to communicate the packets of the various sizes and the bandwidth that we can
obtain across a link.

4.6.3 Time to send a byte

The first thing discovered was how long it took to communicate a single byte down a link for each message
size. This is shown in figure 10 (top of next page).

As expected for counted arrays, when the size of the message goes up, the higher is the throughput
obtained. The overheads shrink and the graph’s curve asymptotes down to an optimal value.

Reading off the most important figure from the graph, the time taken to transfer one byte from one
transputer to another on the same board is 0.663 microseconds. Giving a bandwidth of 1.51 Megabytes
per second. This level of performance is sustained for all packet sizes down to 512 bytes. Also a message
travelling from one end of the machine to the other only travels at a speed 2.1 slower.

For bidirectional communication it appears that each byte is taking 0.456 microseconds to be com-
municated (2.19 Megabytes per second). In practice this consists of two bytes being communicated in
opposite directions in 0.912 microseconds. A bandwidth of 1.1 Megabytes per second. This being due
to the overheads of the acknowledgement packets used by the links, each byte actually takes longer to
communicate when bidirectional communication is used, than with unidirectional communication.

4.6.4 Time to send a packet

It was also interesting to compare the time it took to communicate one packet against its size, see figure
11 (bottom of next page). The values on the y-axis of the graph are the actual timings for messages be-
tween two transputers on a single board in our machine. One thing to notice is that all of the figures are
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reasonably close to the one byte per microsecond line. This figure is a nice average that is convenient to
work with.

As can be seen, the graph consists of a near straight line that curves off towards the horizontal at the
lower end. This curve is due to the set up time of the communication being of a large proportion for small
messages. With large packet sizes the graph appears to be a straight line, the line only starting to curve
at around 64 byte packets. At 32 bytes per packet the graph is clearly curved. This figure would appear
to be a good minimum packet size whenever we have enough control over job and result packet sizes to
be able to choose.

The shape of curve is due to the constant overhead of setting up a counted array communication (in-
cluding communicating the count). Whenever possible we would like to avoid being at the top end of the
curve. Itis possible for an application to be just slightly communication bound and consisting of jobs that
are smaller than 64 bytes each. In this case it would be worth ensuring that message sizes are larger than
this. Larger messages would take less time on average to communicate per byte, due to the reduced set
up time and could result in an implementation that is just compute bound.

4.6.5 Single component messages

These results show that an application is not inherently compute bound or communication bound neces-
sarily. This matter also depends on both the way an application is decomposed into jobs and the size and
the structure of the messages that are communicated around the farm. In short, the way an application is
implemented affects the performance as well as the basic structure of the application itself.

The fact the curves are asymptotic in nature suggests a message will be communicated much more ef-
ficiently if communicated as a single contiguous sequence. On the transputer a sequential protocol of val-
ues is communicated as a sequence of separate messages and will take more time than a single large mes-
sage. For example, the sequence, 8: : [JBYTE; 8::[]BYTE; 8::[]BYTE; 8::[]BYTE would
take longer to communicate than just the single communication 32 : : [ ] BYTE. This difference in perfor-
mance could be enough to make an implementation compute bound instead of communication bound. In
practice this can be achieved by packing all of the values for a job or a result into one array. The best way
to achieve this in occam is to declare an array and then RETYPE segments of the array into the variables
needed.

PROTOCOL Work IS INT::[]BYTE:
CHAN OF Work to.farm:
INT T
[2* (SIZE INT)]BYTE packet:
VAL x.pos IS 0:
VAL y.pos IS SIZE INT:
SEQ
INT x RETYPES [packet FROM x.pos FOR SIZE INT]:
INT y RETYPES [packet FROM y.pos FOR SIZE INT]:
SEQ
X, y := generate ()
to.farm ! n::packet

RETYPEing parts of an array is still checkable by the compiler as before.

Packing a variant protocol into an array can be performed by declaring an array long enough for the
longest message needed and then implementing the case tagging by hand.

Implementing variant protocol tags by hand also allows for as many tags as one desires. The version
of occam used here currently only allows for a total 256 tags in a program [Wil91].

It is true that writing such code can be more prone to error. More code is being written so naturally
there is more potential for error. In occam however, if one writes what one wants in an obvious way, then
the original can be transformed into a more efficient approach, alleviating such error.

As well as communications being faster, another advantage that arises from only communicating a
counted array is that all processes that use this protocol only need to know how to pass on counted arrays.
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Thus, they are trivially easy to write compared with the amount of work needed to pass on a variant pro-
tocol. The body of the harness’s code doesn’t grow and become cluttered with all of the details of variant
protocols. This saves memory and more importantly programmer time. Thus harnesses not only remain
efficient and small, but can also be used for many more applications.

One disadvantage is that the processes at the other ends (the farmer and the worker) are more compli-
cated to write. There is the issue of whether the extra code in the farmer (a bottleneck) results in a slower
program. This would very much depend on how much preparation each job needed.

4.6.6 Bytes per second bandwidth

Finally here we look at the bandwidth obtained through a link.
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Figure 12: Throughput for a counted array through a link

If we look at these same figures in terms of the amount of data transferred per second, see figure 12, we
can see that the time to communicate small messages is much longer than it should be due to the overhead
of an INT length count.

One thing we would like to know is what is a sensible value for a smallest size of packet that is worth
using. As communicating through alternate boards gives a maximum throughput of about one megabyte
per second, we can use this graph as a “percentage of maximum throughput against message size” graph.
So for instance, between 16 and 32 bytes we obtain between 60-70% of the maximum obtainable link
bandwidth, very close to the maximum bandwidth obtainable, as predicted in table 1 (page 51).

4.6.7 Automatic processor allocation

Just to see how well the automatic domain allocation program allocated processors the test program was
rerun on four domains. This was arranged by allocating a first domain. While this domain was still al-
located a second domain was set up, and so on with a third and a fourth. Each domain was allocated by
the automatic transputer allocation program. The program was run on each of these, one at a time. The
throughput of all four domains is shown in figure 13 (top of next page).

It appears the automatic domain allocation program allocates transputers that will obtain a reasonable
performance when compared with the optimum performance of the machine.
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Figure 13: Throughput of counted arrays around automatically allocated domains of processors

Thus the systems software does quite a good job of allocating domains with the highest bandwidth
possible to user programs.

4.6.8 Summary

The time to communicate each byte of a packet between two transputers on the same board is 0.665 mi-
croseconds. This is a bandwidth of 1.51 Megabytes per second. Communicating from one end of the
Kent machine to the other (a route involving approximately 15 MEiKO switch-chips) a byte can take
about twice as long to be communicated, here 1.2 microseconds. This is a factor of two difference in per-
formance. When links are used bidirectionally, it takes 0.456 microseconds to communicate a byte. This
is 2.19 Megabytes per second. Here both links are operating at 1.1 Megabytes per second.

From these graphs it can be concluded that when one has the choice of how large a counted array one
can communicate, a sensible minimum message size is around 16 or 32 bytes. This will give between
about 60% and 70% of the maximum bandwidth available. By the time we get to 512 byte packets there
is not much more performance to obtain and much larger messages will start to eat up memory.

4.7 Results throughput obtained by harnesses

Having looked at the raw bandwidth of the transputer’s links, the next thing to study was the throughput
of the harnesses.

For this it was decided to use the same strategy as before, surrounding the object under test with a
test rig that drives the object with a variety of messages. This experiment was then run in isolation, with
again the addition of another separate processor to collect and store the results.

The collection of results involved obtaining the packets from the workers and then communicating
them to the harvester. We are interested in finding out how quickly the six harnesses perform this. Thus
the testing consisted of finding out how much data the merger processes could pass from the upstream link
to the downstream link. This experiment set out to look at the “as much data as possible” or throughput
aspect of this.
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4.7.1 Test Rig Design and Implementation

The structure of this program is shown in figure 14.

go

results

run. tests

retrieve merger feed

Figure 14: Test rig for harness throughput experiment

Here the third transputer holds the merge process under test. This process passed on to retrieve the
result packets it obtained from feed.

The way this test program works is similar to the program used in the previous test. The retrieve pro-
cess sent a start message along the go channel and would then start a timer. In this test rig this communi-
cation was sent through a separate channel. By directly connecting these two processes we can guarantee
this communication is synchronous. On receiving the start message feed would send five groups of one
hundred packets of the current size to the merger and these would eventually be received by retrieve.
Once all the packets have been received the time was noted and was passed on to the fourth processor for
computing an average and storing. As before the sizes tested were packet lengths that are the powers of
two.

In these experiments a hundred packets were used, which again is adequate for obtaining timings of
a detailed enough resolution with the high resolution clock.

The actual code used to implement the testing algorithm as discussed above was as follows,

SEQ 1 = 0 FOR sizes
SEQ
go ! TRUE
clock ? start
SEQ j = 0 FOR 5
SEQ any = 0 FOR 100
from.merger ? len::packet2

clock ? stop
figures ! stop - start

In the bidirectional version for harnesses E and F the PAR was set up after the timer was read.

SEQ 1 = 0 FOR sizes

SEQ
size := 1 << 1
go ! TRUE
clock ? start
PAR

SEQ j = 0 FOR 5
SEQ any = 0 FOR 100
from.merger ? len::packet?2
SEQ § = 0 FOR 5
SEQ any = 0 FOR 100
to.merger ! size::packet
clock ? stop
figures ! (stop - start) / 2

This sends 1000 packets, 500 in each direction.
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4.7.2 Settling

The test rig in this program is distributed across three processors, more than just the pair of transputers
used in the first experiment. Because of this, there was a concern some parts of the program could be
loaded and running onto a transputer before others parts that they communicated with had had a chance
to initialise. This could be especially true for the code under test. The £eed processor would have to be
initialised as the timer on the receive processor would not be started until the go message had been
acknowledged. If this was possible the first timing value would be incorrect as it would include the time
it would take for one part of the program to initialise.

Thus, there was an obvious desire to make sure these timings would be correct and the whole domain
was working. For this to happen would mean all three processors were loaded, initialised and running
the test code at the same time. To achieve this it was decided to make sure all three important pieces of
code should be allowed to settle. Thus, at the start of testing it would be known that all parts of the test
rig would be in the correct state. To guarantee this the program performed some communication through
the route under test just before the experiment got under way. For this communication to happen all three
of the test rig processors must be loaded and initialised.

The whole application booted through the processor that dealt with the screen and filing, as everything
was going through this, it was known this processor would be loaded correctly without any problem.

4.7.3 Compilation Flags

The test program was compiled with all the usual occam flags switched on except usage checking which
was switched off. This was done as harnesses D and E, due to their design, only compile with usage
checking turned off. For both convenience and fairness all the harnesses were compiled using the same
set of compilation flags. Obviously if one is interested in performance all flags can be switched off for
all the harnesses. What was of interest here was seeing how much of an improvement was made by mov-
ing between the different designs of the different harnesses alone, and not by giving some harnesses a
performance advantage due to different compilation options.

4.7.4 Testing

The program was run with the three important transputers all on one board to obtain the near optimal
performance. The program was run with all six harnesses.

4.7.5 Harness throughput

In figure 15 (top of next page) is the throughput of the harnesses. For reference the basic link bandwidths
obtainable for both types of communication are also shown. Here we discuss the relative performance of
the harnesses as shown.

The top line of the graph is the raw link bandwidth for bidirectional communication. Obtaining very
nearly this raw performance is harness E, which clearly is the best harness here for any message of a
reasonable size. The other bidirectional harness, harness F, is not as efficient, it’s performance exhibiting
some form of slightly erratic behaviour, even though the figures here are an average of five runs. The
performance of harness F also rolls off for messages larger than 4 kilobytes. One possible cause of both
of this is that block-copy instructions are not interruptable. This would interfere with other parts of the
harness by delaying them from engaging in other communications. This situation is likely to get worse
in a real farm as job distribution processes would be running as well as the result collecting processes, as
these are likely to be using the same style of on-chip communication, they are also likely to suffer from
the same problems, thus further adding to the poor performance.

Harness C’s curve is very smooth and the best out of the unidirectional harnesses. Harness C also
follows very closely the maximum possible unidirectional bandwidth performance across the whole range
of packet sizes. This suggests that there is not much link bandwidth left to obtain and that there is always
going to be a small performance cost for using a harness, which ever method of engaging both link engines
in parallel is thought of.
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Figure 15: Throughput of result collecting processes

For the smaller message lengths harness C is the most efficient for all lengths up to about 17 bytes, fol-
lowed by harness F, at about which point harness E becomes the most efficient. With the largest message
lengths studied here, harness D also obtains the same level of performance as harness C, most notably at
about 1 kilobytes and above.

Harness B does not perform as well as these last two unidirectional harness designs. Further, the per-
formance of harness B, like its bidirectional equivalent harness F, tails off at just over 2 kilobytes. The
most likely reason for this is the length of time it takes to perform the on-chip communication between
the two processes of harness B for arrays of this size.

Harness A clearly produces the poorest performance here, giving just over half the performance of
harness C. This is due to harness A only engaging one link at a time. The fact the performance is just
over the half way mark is likely to be due to harness C needing to set up and close down PARs.

Harness E, which consists of two copies of harness D running in opposing directions through the links,
possesses a much higher rate of throughput for all convenient sizes of packet than all of the other har-
nesses. It was thought by Welch, who designed harness E that it would probably only obtain about another
33% more throughput than harness D. In fact harness E obtains another 50% more throughput. Harness
E also only provides less throughput than any other harness for packet sizes of just over 16 bytes. Below
that harness E’s performance deteriorates down to that of all of the other harnesses except for harness C.

4.7.6 Comparing harnesses against raw link performance

General conclusions to notice with respect to the previous test are that the raw link bandwidth can com-
municate smaller counted arrays at a higher speed than the harnesses. This is presumably due to the extra
overheads incurred by the harness processes. Further to this, although 16-32 bytes is a good minimum
message size to send between two transputers, if the message is to be routed through other processes,
32-64 bytes a slightly larger message size is recommended in order to keep the percentage throughput
obtained between about 60 and 70%.

Comparing the performance of these harnesses with the raw link bandwidth results might be consid-
ered unfair. The current test does not just consist of messages travelling through a link, but messages
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travelling through two links and a piece of code. Nevertheless, what is encouraging from this compari-
sion is that the amount of bandwidth obtainable through a harness can still be very close to the maximum
possible through a link.

4.7.7 Harness D versus harness C

As we have already seen, harness D is not as good as harness C for packet sizes up to 512 bytes. Fur-
ther, harness D is even poorer in performance compared with harness B below about 40 bytes. This is
interesting as harness D was supposed to be more efficient than harness C, it not involving the setting up
and closing down of many PAR processes. As we have also seen, the only range of packet sizes where
harness D is of comparable efficiency is for the largest packet sizes. Whereas for the most suitable sizes
of packet, 64 bytes to 1K, harness D always obtains noticeably smaller throughput than harness C.

To review, harness C only uses on-chip communication for messages going to and from the local
worker. There is no on-chip communication for messages passing through. Thus, the harness sets up
and closes down two PARs per message. In contrast harness D performs two small on-chip communica-
tions and thus four or six context switches for messages that are passed on to the next worker, the same
approach used for messages going to and from the local worker. As this is the case, there is the question
of which harness of the two will be the most efficient in a real farm where actual work will be performed.
This question comes down to the issue of what is the most important in terms of efficiency: the commu-
nication bandwidth obtainable by harness C, or harness D’s potential to both, interleave differently sized
messages and to utilise the transputer’s computational resources better. This second point being due to
harness D communicating pointers between the harness and the worker, not the actual messages them-
selves.

What is ultimately more efficient in a farm is an interesting question. Harness D provides less through-
put here as the loss in bandwidth due to overheads happens for every message communicated on and off
a transputer. In harness C, the bandwidth lost due to on-chip communication happens only for jobs that
are performed by that worker.

So far we have only experimented and discussed the fact that harness D provides a lower throughput
than harness C for a stream of messages that are all equally sized. When the length of message varies con-
tinuously harness D should be able to provide a much higher throughput. This is advantageous, as Cramp
and Upstill reported in [CU90] that interweaving jobs of different sizes had load balancing advantages for
their application. Harness D would probably be the better harness to use in such a situation.

This issue is looked at further in the next section.

4.7.8 Conclusions

Harness E is the best bidirectional harness here. Further, both bidirectional harnesses are better than the
best unidirectional harness here, this being harness C. In decreasing order the best harnesses are: E, F, C,
D, B and A. That said the choice of packet size can also reduce the performance of the best harnesses.

One general property these results show is that not using the in-built parallelism of the transputer re-
sults in poor performance. Using it in any shape or form reasonably sensibly results in a good perfor-
mance. The more of it is used the better and better is the performance obtained.

In these results the harnesses form themselves into three very noticeable groups of similar levels of
performance,

e group 1: harness A,
e group 2: harnesses B, C and D,
e group 3: harnesses E and F.

From looking at the design of the harnesses this is very much due to the three very noticeable levels of
parallelism in these harnesses.

A minimum counted array message should be between about 32 and 64 bytes. A sequence of such
messages obtains about 60-70% of the maximum link bandwidth available.
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4.8 Harnesses D versus C for variable message sizes interlaced

In the previous section it was discovered that harness C provides a higher throughput of messages com-
pared with harness D. This was a surprise as Welch believed harness D would have a higher throughput,
it being designed so the actions of the processes were decoupled and if one communication completed
before another, nothing was stopping the process re-engaging the link so another message could be read
in.

That said, the previous experiment only used messages of all the same size, thus the above situation
was not tested. Thus, it was decided to study these two harness designs further, to see if harness D was
more efficient when alternate messages were of different sizes and if one communication could finish
before the other, a situation Welch had realised harness C could not respond to.

4.8.1 The test program

The test program worked by communicating a sequence of messages through a harness. The messages
were of two lengths interleaved, see figure 16.

=l ) [ 1§l ] I3 ]
a b a b a b a b

Figure 16: A sequence of interleaved messages

The lengths used were the powers of two, thus giving message lengths from 1 byte up to 16 kilobytes.
For each test a thousand pairs of messages were passed through the harness.

The experiment here was performed using the test rig used previously, with a thousand pairs of mes-
sages of two different sizes being communicated through the four harnesses. The messages being received
by the following,

SEQ 1 = 0 FOR sizes
SEQ range = 0 FOR sizes
SEQ
sync ! TRUE
clock ? start
SEQ i = 0 FOR packets
SEQ
in ? nz:p
in ? Asp
clock ? stop
figures ! stop - start

and sent by,

SEQ 1 = 0 FOR sizes
SEQ j = 0 FOR sizes
SEQ
x =1 << 1
y :=1 << 3j
sync ? any
SEQ 1 = 0 FOR packets
SEQ
out. ! x::p
out ! yi:p

4.8.2 Testing and results

This experiment was performed in a number of stages. Three versions of harness D were developed. Here
we discuss these different versions. How each version of harness D was tested against harness C, and how
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each new version was developed from the previous one.

Once the test program was written, the original versions of harnesses C and D were compared.

Looking at the results, unexpectedly harness D obtained a very similar level of performance to that
of harness C, and for all of the combinations of message length tested. The results are so much the same
that they appear directly on top of one another when plotted, and this graph is of no real use; there being
no real 3D cues that helped in visualising the data.

It was only once a version of harness D had been developed that did produce different levels of per-
formance to harness C that a way was found to plot a graph showing clearly that the first results of the
first test were nearly identical.

The reason for no large overall improvement in the first test was due to harness D not having any
spare buffer space. To illustrate, after a first message had been read, there was nowhere to read a second
message into, unless the writing of the first message had been performed. Thus the two separate processes
were still locked together synchronously due to the communications they engaged in.

This realised, a second version of harness D was developed. This had two extra buffers. These sat on
the channels between the two main processes. Each buffer buffered one pointer.

PROC buffer (CHAN OF INT in, out)
INT p:
WHILE TRUE
SEQ
in ? p
out ! p

CHAN OF INT result.a, result.b, return.a, return.b,
local, return:
PAR
result.buffer (in.link, result.a, return.b, 0)
buffer (result.a, result.b)
buffer (return.a, return.b)
merge (local, return, result.b, return.a, out.link, 1)

This second version works in the following way. As soon as the result buffer finishes reading in a result, it
can pass this on to the buffer and start immediately reading in the next packet from the link. Similarly, as
soon as the merge process finishes outputting a message it can pass on the pointer to the buffer and start
reading in the next packet from the link immediately. Now neither of the main processes are blocked
immediately for output and the two main processes do not have to communicate in lockstep. The reason
that was causing the hindrance in performance.

The test program was rerun with these two additional buffers. The performance of this harness was
not better, but worse. This was due to a lack of buffer space. Although now the two link processes had
had their communication behaviour decoupled, there were no extra buffer slots in which to place any extra
messages.

This last version of harness D was modified so that three buffer slots were declared instead of just the
two.

PAR
result.buffer (in.link, result.a, return.b, 0)
buffer (result.a, result.Db)
SEQ
return.b ! 2
buffer (return.a, return.b)
merge (local, return, result.b, return.a, out.link, 1)

This extra buffer slot is initially given to the buffer that passes pointers from the merger back to the link
buffer. This is so that as soon as the link buffer had a message, not only can it pass this on to a pointer
buffer, but there is also a spare message slot into which another message can be read. This way the two
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processes that sit on the links are decoupled both in terms of communication behaviour and in terms of
buffer space allocation. This third version of harness D was much more efficient than harness C when
adjacent messages were of different sizes.

All the results with first message size were plotted against second message size, see figure 17. How-
ever, it was only really for this last test was there any major difference in performance between the two
types of harness, except for when both packet sizes were very small, an aspect of transputer behaviour
not of interest due to the overhead of setting up a small communication.
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Figure 17: Time to interleave messages of different sizes

The definite result that comes through from this graph is there is a marked difference in performance
for the two harnesses when alternate messages are of different sizes.

As we are only interested in the case when adjacent message sizes are either the same or different,
it makes senses to take one message sizes as a constant and plot a 2-D graph. Indeed the behaviour is
best seen from taking one particular message (here 256 bytes, which is a suitable size for messages) and
comparing the performance of each version of harness D to the performance of harness C, see figure 18
(top of next page).

Here for completeness the results for the first two versions of harness D are plotted here. As can be
seen the performance of both is worse than harness C throughout the range of message sizes.

4.8.3 Conclusion

Clearly adding three buffer slots to the design of harness D largely increases the throughput when mes-
sages vary in length by any large degree. Just having two processes that pass pointers between themselves
is not enough. As was expected, having two extra pointer buffer processes results in a less efficient ex-
ecution compared with not having them. Ultimately it is the use of additional buffer slots that gives the
required parallel slackness, the buffer processes are only needed in order to pass these extra buffer pro-
cesses around.
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Figure 18: Speed-up of harnesses C and D for messages of 256 bytes interleaved with other sizes

4.8.4 Discussion

It has been established that harness D works well in this situation when two message sizes are interleaved.
However, in real farms if message lengths vary they are likely to do so over a range. With a large range
of message sizes, it is possible a large message may be followed by a number of shorter messages that
altogether are smaller than the first. In this situation a number of buffer slots would be required so all the
shorter messages could be buffered and thus the stream of messages kept moving. Two solutions to this
are presented.

One approach would be to have enough buffer slots and enough single place buffer processes, one
process for each extra message that needs to be held. There are two disadvantages to this. Firstly, the
number of buffer slots and processes required must be known in advance. Secondly, all messages will be
passed through these processes continually, resulting in dramatically increased amounts of on-chip com-
munication and context switching, thus adding a constant additional execution overhead to the harness.

Another solution is to use a process that can buffer a variable number of messages. The disadvan-
tage of this approach is that it needs to perform an ALT in order to discover whether it is to perform an
input next or an output. This instruction is time consuming to execute and thus the level of performance
obtainable would be impaired. In this case the ALT would need to be executed twice for each message
communicated, once when buffered and once when output (also see 4.3.2 on page 39). The process wish-
ing to receive a message from this buffer would have to issue a prompt.

If the range of message sizes varies greatly, the first method may be the most beneficial. If very large
messages are only transmitted occasionally there will not be an advantage in streamlining the harness any
further. It is more important that a harness is efficient most of the time, not in occasional situations. If
faced with this situation we, as implementors, need to find the right balance.

4.9 Studying the breakdown of harness efficiency

As the length of time taken to communicate messages was now known, job compute times could now be
compared with message communication times. Thus the point at which the efficiency of the harnesses
broke down could be found.
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The experimentation here was performed with a worker that could simulate the worker of any appli-
cation and a farmer and a harvester that could simulate the farming out of any application. With this set up
each harness could be studied completely independently from any application. This is performed through
the use of a range of job compute times and messages lengths. All that now needs to be observed is which
harness is the most efficient for all possible applications.

4.9.1 Processor Farm Test Rig Design

This experiment required a new program that would perform tests on full farms.
There are nine aspects to the development of this program. These are,

—

. the construction of the artificial worker,

the variable distribution of job times,

how the job time and result message length were encoded into the job message,
the farmer and the harvester,

the test rig,

the measurement of the bandwidth to the end worker,

the overall shape of the program,

how multiple runs were performed, and,

b= U

the compilation configuration was used.

Worker simulation

It was important the worker process can accurately simulate all applications. As discussed in chapter 3
the simulation needs to be identical to that of a real worker from an external point of view. This means
the length of time taken to execute a job and the length of a job message must be totally variable and also
completely independent of one other.

As such a study naturally focuses around what length of time it takes to process a job, it was initial
thought that using the transputer’s in-built timer would be possible. The most simple and obvious method
of waiting on a timer is,

SEQ
timer ? now
timer ? AFTER now PLUS run.time

It was obvious this approach is not appropriate as the timer ? AFTER construct is descheduled until
the time is reached. Thus, if this algorithm was used the worker process would be descheduled from the
C.P.U. throughout the length of the job. This approach would be far from being an accurate simulation
of a real application worker.

The method considered for some time was to continually look at a timer in a WHILE loop,

SEQ
receive work
timer ? now -- get start time immediately
decode job execution time and result size
finish.time := now PLUS job.length
timer ? now -- we’ve done something, get the time

WHILE finish.time AFTER now
timer ? now

send result
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This piece of code would not be automatically descheduled and so the worker would be continually ex-
ecuting within the C.P.U. whenever possible. However, if in order to execute a part of the harness, the
worker was descheduled for a short space of time, when the worker was rescheduled the timer would
still have been advancing throughout the time the worker was descheduled. So it would appear that the
worker had still been executing and effectively the harness had been executing for free. Further, it is pos-
sible that the worker could be rescheduled to find that the finish time had passed, thus not making the
execution of the harness transparent all of the time. This approach of using the timer to simulate a real
worker is unsuitable.

Thus, it seemed that the only way to accurately simulate “real work” was to actually perform some. By
using an actual process, work would be performed when the process was executing within the C.P.U. and
work would be stopped when the process was descheduled. This approach also has all the advantages of
areal worker. It would take up memory, and, as with most real applications, it would contain instructions
that take quite some time to execute and can not be immediately interrupted to switch contexts. This
would delay the handing over of execution to the harness. Invariably the transputer can only switch from
alow to a high priority process after the current instruction has finished executing. If this instruction takes
a long time, such as in an integer or remainder division (the longest two) this can slow down the time it
takes a transputer to respond to external events, such as link communications. Thus, this increases the
time it can take before a context switch is performed. In terms of long calculations it is more common
to use floating point numbers. The F.P.U. on the T800 also can stop the longer instructions at a number
of suitable places. In this study the worker used a small floating point calculation, as many applications
involve real numbers. Thus finally the following sequence of code was developed.

REAL32 p, x, X2:

SEQ
p := -1.0(REAL32)
x, x2 := 0.0(REAL32), 0.0(REAL32)
SEQ k = 0 FOR 3
SEQ
X 1= X2 + p
X2 = X * x
X 1= X + X
X := 0.0(REAL32)
x := 0.0 (REAL32)
x := 0.0(REAL32)
x := 0.0 (REAL32)
X := 0.0(REAL32)
x := 0.0(REAL32)

This takes ten ticks of the transputer’s high resolution clock to execute. This was executed in a loop to
achieve any desired length of job run time.

The distribution of job times

The other issue to sort out was what jobs should be farmed out. It was decided to use a hundred jobs per
worker; with this being scaled for the number of workers being used in any one test. This was done so
that results for the different sized farms could be compared directly and linear speed up figures can be
computed.

In order to make the results of the study as valid as possible, the times it took to process the jobs have
been varied according to a distribution found in real applications. One advantage of using a distribution of
job run times, instead of having all jobs take the same length of time to execute, is this can also reduce the
number of times that more than one worker will want a job from a job distribution process simultaneously.
This collision can reduce efficiency as workers will be starved of work for short periods of time.

The first distribution considered to be appropriate was the normal distribution. This being the most
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common in statistics. However, three real farmed applications were looked at in order to see which dis-
tribution were found. All three applications had job distributions that were Poisson in nature. These ap-
plications are discussed below.

The corners of a picture of the Mandelbrot set take the least time to compute. The rest of the picture
takes progressively more time the further into the centre of the picture one gets. Near the centre of the
picture fewer and fewer points take more time.

In ray tracing, the sky parts of a scene (some times quite large) involve no reflections at all. Most of
the scene invariably involves at least one reflected light ray. There being progressively less and less areas
of the picture that involve a larger and larger number of reflections.

With the protein sequence database there is more of a lead in and a steeper trailing edge than in the
Poisson distribution. There are a fair number of short sequences, but most are in the 200-300 residue
region. There are a few sequences longer than 2000 residues.

From this it was decided to use a Poisson distribution. This was implementing in the following way.
A sequence of 100 numbers was generated. The constant,

VAL njob IS 100:

is used throughout these tests. These numbers were produced from a routine in the NAG library [Gro] that
produces numbers that fit into a Poisson distribution. The distribution used had a mean of one hundred.
Thus for any particular average of job run time required for any application under test, this sequence of
values could be scaled to produce an application with the appropriate Poisson distribution of job run times.

As what is of interest here is how balanced the farms are, all of the jobs needed to take roughly the
same length of time to be processed. Thus the deviation of the distribution should be reasonably small.
There should be just enough to add some realism in terms of different jobs taking different lengths of time
to be processed. Thus the longest job run time was only a factor of one and a half longer from the shortest
job run time (127 compared with 77). So, as this range of values is reasonably small, the average number
of jobs performed by each worker should be at least reasonably equal numerically when a farm is well
balanced.

We have already mentioned that jobs of different lengths can help prevent simultaneous requests for
jobs from the same job distribution process. So as to reduce this collision further, an attempt was made
to reorder the sequence of values so any two adjacent values were not close to each other numerically.

On the related note of message length, it was decided to have all messages the same length, i.e. no
distribution of message length, and to just vary the length of time it took to process the jobs. This was to
keep the test program easier to write. _

Adding the Poisson distribution to the program generated a small problem. When 100 jobs were being
farmed out to a single worker via a double harness, 50 jobs should be farmed out using both channels for
job delivery. So the Poisson distribution would be used correctly in this situation, the code was modified
for these runs. The first 50 jobs being sent into the farm from one end, the second 50 being sent from
the other. No check was made to see if the length of time to process the first 50 jobs was the same as the
second 50.

The contents of jobs and results

There are two parameters to encode,
1. m, the length of the average message, and,
2. j, the time to process an average job.

The length of the message is the length of both the job sent out and the result produced. This length
is known by the farmer and can be used directly to indicate the length of the job being sent out,

INT msg.len:
[max.msg.len] BYTE job:
SEQ

jobs ! msg.len::job
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Getting a result message to be the same length as the job message is simply achieved in the worker by
reusing the value received for the length of the job message. For instance,

SEQ
job ? msg.len::job
process job
result ! msg.len::job

The job run time was encoded into the first INT of the job message. This restricts our minimum mes-
sage length to four bytes (the number of bytes in an INT on 32 bit processors). Again the farmer knows
the value of this parameter and can place this value into each job message. The relevant part of the farmer
is,

VAL njob IS 100:
VAL bytes.per.int IS 4:
VAL jobs IS workers * njob: -- 100 workers per job
VAL job.lens IS [ 98, 105, 93, 97, 107, 90, 97, 115, 98, 109,
119, 101, 112, 98, 110, 120, 89, 114, 100, 88,
113, 106, 108, 91, 87, 93, 86, 102, 91, 93,
102, 106, 88, 127, 104, 108, 106, 101, 109, 77,
90, 100, 99, 95, 93, 90, 101, 106, 89, 109,
86, 105, 89, 100, 106, 117, 105, 101, 98, 123,
101, 88, 95, 116, 88, 103, 92, 90, 98, 97,
94, 109, 85, 90, 88, 103, 88, 106, 93, 89,
114, 101, 115, 97, 89, 92, 115, 104, 80, 89,
98, 104, 90, 97, 105, 98, 104, 90, 102, 111 1]:
[njob]INT job.times:
INT msg.len:
[max.msg.len] BYTE job:
SEQ
from.testrig ? msg.len; run.time.scale
SEQ i = 0 FOR njob
job.times[i] := (job.lens[i] * run.time.scale) / 100
to.harv ! jobs -- number of jobs to read in, also
-- prompts harvester to read timer
SEQ j = 0 FOR workers
SEQ i = 0 FOR njob

SEQ
INT count RETYPES [job FROM 0 FOR bytes.per.int ]:
count := job.times[i]

jobs ! msg.len::job

It was also decided to keep a tally of how many jobs were performed by each worker. This was done
by having each result message contain the identification number of the worker that generated it. This
number was created by the PLACED PAR replicator. The harvester then created a count for the number
of results produced by each worker.

The storage of the identification number in the result message was performed in a similar manner to
the above method of storing job run times, using the first INT in the array. Here the same abbreviation
was used to gain access to the job run time value in order to perform some work and in order to store the
worker’s identification number into the result message,
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PROC worker (CHAN OF REQ req, CHAN OF JOB job,
CHAN OF PACKET result, VAL INT id.number)
variables
WHILE TRUE
SEQ
req ! TRUE
job ? msg.len::job

INT job.time RETYPES [job FROM 0 FOR bytes.per.int]:
SEQ
SEQ i = 0 FOR job.time
do something for 10 ticks

job.time := id.number

result ! msg.len::job

The tally itself was performed by the harvester using these values as an index,

SEQ
results ? msg.len::result
INT id RETYPES [ result FROM 0 FOR bytes.per.int ]:
work.done.by[id] := work.done.by[id] + 1

The contents of this tally array was cleared before each simulated application was run.

Designing the farmer and harvester

The structure of the two double harnesses E and F had a number of implications for the design of the front
end of the farm. In total at least five links are needed in this situation. Two for giving out jobs, a further
two for collecting results and one for communicating with the terminal and filing system. Obviously more
than one transputer was going to be needed to provide this amount of interconnection. It was decided to
organise the front end by having two processors, one for running the farmer and another for running the
harvester. The farmer would use two links to give jobs to the workers. Similarly the harvester would
use two links to collect results. These leaves two links each on both transputers. One pair can be used
for communication between the farmer and the harvester. The link remaining on each processor can be

connected to the test rig transputer.

It was decided to use this configuration for the testing of all six harnesses so that fair comparisions

could be performed between both the single and the doubled up harnesses.

The method used by the farmer and harvester to drive these doubled up harnesses was simple, split
the number of jobs in half and give each half to each end of the pipeline. The code from this version of

the farmer looked as follows,
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SEQ
SEQ 1 = 0 FOR njob
SEQ
job.timesl[i] := (job.lens[i] * run.time.scale) / 100
job.times2[1i] := job.timesl[i]
PAR

SEQ jl1 = 0 FOR workers
SEQ i1l = 0 FOR jobs >> 1

SEQ
INT count RETYPES [jobl FROM 0 FOR bytes.per.int]:
count := job.timesl[il]

jobsl ! msg.lenl::jobl
SEQ j2 = 0 FOR workers
SEQ 12 = 0 FOR jobs >> 1

SEQ
INT count RETYPES [job2 FROM 0 FOR bytes.per.int]:
count := job.times2[i2]

jobs2 ! msg.len2::job2

This will still produce a balanced implementation as both of these two sets of jobs are going to the same
workers. Also both ends of the farm are identical in all major respects. One end will be connected through
more switch chips than the other end, but this should only affect the bandwidth of communication but not
the actual demand for work.

The above code will run much faster than an equivalent system that uses an ALT to distribute the work
as needed. Consider,

SEQ 1 = 0 FOR jobs
PRI ALT
reqgl ? any
to.link.bufferl ! msg.len::job
reg2 ? any
to.link.buffer2 ! msg.len::job

As well as involving an ALT, this approach also requires two buffer processes to perform the appropriate
requesting.

The fact the farmer and harvester are not only configured as separate processes, but are also on com-
pletely separate processors leads to a problem with performing timings accurately. It is only the farmer
that knows when it gave out the first job and it is only the harvester that knows when the last result is
received. Thus, only one can perform the timings, as being on different processors these processes do not
share a common clock. In fact either process can perform the timing, as long as both the farmer and the
harvester can be connected without intermediate buffering.

In this implementation the harvester performed the timings. The farmer sent a message to the harvester
synchronously just before it started the replicated SEQ (equivalent to two assignments) to give out the
jobs. The harvester made a note of the time twice, once directly after receiving this message and again
after receiving the last result.
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SEQ
bandwidth calculation
WHILE TRUE

SEQ
SEQ i = 0 FOR workers -- clear work.done.by
work.done.by[i] := 0
PRI PAR
SEQ
from. farmer ? njobs
clock ? start
SEQ 1 = 0 FOR njobs
SEQ
results ? msg.len::result
INT id RETYPES [result FROM 0 FOR bytes.per.int]:
work.done.by[id] := work.done.by([id] + 1
clock ? stop
to.farmer ! stop MINUS start; workers::work.done.by
SKIP

When doubled up harnesses were used, some additional setting up within the harvester was needed to
read in the two results streams in parallel.

SEQ
from.farmer ? njobs
clock ? start
work.done.byl IS [work.done.by FROM 0 FOR workers]:
work.done.by2 IS [work.done.by FROM workers FOR workers]:
PAR
{{{ harvester 1
SEQ il = 0 FOR njobs >> 1
SEQ
resultsl ? msg.lenl::resultl
INT id RETYPES [resultl FROM 0 FOR bytes.per.int]:
work.done.byl[id] := work.done.byl[id] + 1
Y}
harvester 2
clock ? stop
to.farmer ! stop MINUS start; (workers << 1)::work.done.by

The separate test rig

As with all the programs built previously, the first processor dealt with the filing of results, and in this
case, the generation of the application parameters that are to be farmed as well. Again this code was
placed on a separate processor so as to prevent the execution of this code interfering with the running of
the experimentation. Also as before the system library code were on a separate processor so all parts of
the code under test were in on-chip memory.

Measuring the throughput from the end worker

So far it was known the raw throughput of both a transputer’s link and also the raw throughput of the
harnesses when they were just passing traffic on. Here we could also obtain some measurements from
a real farm. It seemed a good idea to find out what is the throughput to the harvester from the worker
furthest away from it. This could easily be done as soon as the program was loaded and just before the
application experiments were run.
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Timing this accurately was easy to achieve. As the line of workers was set up so it could run the
doubled up harnesses E and F, the harvester processor was connected to both ends of the line. Thus as
well as the end workers at each end being the furthest away from the harvester, they are also directly
connected to it via the link that deals with results travelling in the other direction. So after the harvester
reads the clock, it then sends start messages to the end workers to start a transfer, the messages get there
without any form of buffering to slow them down and corrupt the accuracy of the timings.

As before, it was considered important to make sure all parts of the program were initialised. The
most effective and simplest method to achieve this is to send messages through the whole of the program.
Only when all of the code was loaded and had started running the harness would the message get through
to the other end. The code was written so when the program loaded only the end worker would be running
special code, the rest of the farm would execute the harness immediately the program was loaded. Before
the worse case throughput measurements were performed a synchronisation was sent from the end worker
to its harvester. Thus this message would travel through the entire farm. The worse case throughput mea-
surement was then performed as follows. The harvester would send a message to the worker processor
next to it, then read the time. This message would be received by a process on the end worker that per-
formed this test before becoming a normal harness buffer process. The throughput measurement transfer
would be started and a hundred messages would be sent. The harvester would read the time immediately
after these messages had been transferred.

This throughput measuring code in the harvester was,

PRI PAR
SEQ size = 0 FOR sizes
SEQ
results ? n::message -- settle synchronisation
go ! 0::message -- start message

clock ? start
SEQ i = 0 FOR 100
results ? n::message
clock ? stop
bandwidth.out ! stop - start
SKIP

The code in the end worker that this communicated with was,

SEQ size = 0 FOR sizes

SEQ
results ! 0::message -- settle synchronisation
workmate.results ? n::message
n := 1 << size

SEQ test = 0 FOR 100
results ! n::message

For the doubled up harnesses the above piece of code was run on both end workers with a transfer size of
50 instead of 100. The code in the harvester used to communicate with both end workers was,
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PRI PAR
SEQ size = 0 FOR sizes
SEQ
PAR
SEQ
resultsl ? n::messagel -- settle
startl ! 0::messagel -- start transfer
SEQ
results2 ? m::messagel
start2 ! 0::message?2
clock ? start
PAR

SEQ i = 0 FOR 50
resultsl ? n::messagel
SEQ i = 0 FOR 50
results2 ? m::message2
clock ? stop
bandwidth.out ! stop - start
SKIP

Overall program shape

Putting this altogether gave the overall structure of a processor farm hanging off a single processor that
contained a test rig,

ree | |LF

Figure 19: Full processor farm test rig

How multiple runs were performed

Multiple runs of each simulated application were performed and an average taken. The programming
for this was in the test rig. Each set of application parameters were passed to the farmer five times. The
results were collected and stored and an average overall run time was calculated.

Compilation

As had been said, all of the harnesses were compiled with usage checking switched off, in order to com-
pare the true performance of the different approaches to harness design. Here this also provided conve-
nience when recompiling the different harnesses, as there was no need to turn compilation flags on or off
something that could also easily be forgotten invalidating the results.

In any implementation all of the flags can be turned off to add a speed up advantage.

4.9.2 The experimentation performed

Once the program was written the range over which to perform the study had to be decided upon.
Before the Poisson job run time distribution was developed some testing had been performed. This
being in factors of two across a wide range of application parameters. From this it was found that the area
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of interest lay in the area from 32 bytes to 4 kilobytes and from 0.06 milliseconds to 250 milliseconds (or
60 microseconds to a quarter of a second). Once the Poisson distribution had been developed the program
was set to test across this range. The relevant part of the test rig is,

INT bytes, delay.loop, time, run, total.run, len:
SEQ b = 5 FOR 8

SEQ
SEQ t = 6 FOR 13
SEQ

bytes, delay.loop := 1 << b, 100000 >> (20 - t)
time := 10 * delay.loop

total.runs := 0

SEQ i = 0 FOR 5

SEQ

to.farmer ! bytes; delay.loop

from.farmer ? run; len:: work.done.by
output results

calculate and output averages

This program was then run for the six harnesses under test and for each application mapping under
test. The sizes of farm were also selected as powers of two: 1, 2, 4, 8, 16 and 32. The tests for each farm
size were all done in one session so both the same transputers and the same wiring set up were used for
each size of farm.

Thus the study set out to look at the breakdown in efficiency of the different harnesses across the range
of different applications and farm sizes.

4.9.3 Results
When looking at the results obtained, the following questions were considered.
1. What is the efficiency of the harnesses for the varying application’s parameters?
2. What are the causes of this behaviour?
3. What is the behaviour for different farm sizes?
4. How well balanced is the work load?

5. How good is the model of efficiency developed earlier?

Comparing harnesses A, B and C

Looked at first was the basic issue of which harness is the most efficient. Here, for simplicity of viewing,
graphs are plotted containing three harnesses each. Efficiency is plotted against job computation time, 7,
and message length, m.

The first graph plotted, see figure 20 (top of next page), is of harnesses A, B and C running on a farm
of 8 workers. Here we are interested in which harness breaks down last. The easiest way to examine the
relative breakdowns of these harnesses is to look at the efficiency curves at the back of the surfaces where
the 4 kilobyte jobs are. Also notice the slopes’s different direction for smaller message sizes, this is due
to the cost of starting up communications.

Harnesses B and C are very close in terms of performance, they both breakdown when jobs are 4
kilobytes long and take 31.3 milliseconds to process. Nevertheless, it can be seen that harness C is slightly
more resilient to communication bound applications.

To a certain extent these results were expected. However, what was unexpected was that while harness
A has the poorest performance in terms of being the first harness to breakdown, it is the most efficient of
the three for comfortably compute bound mappings. This is of great significance as we are ultimately
interested in our farms performing efficiently as well as being able to deal with demanding applications.
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Comparing harnesses A, C and D

Here we compare the two harnesses that so far are more appropriate in one situation or another, harnesses
A and C, against the performance of a third, harness D.

As we can see in figure 21 (bottom of previous page) harness D breaks down slightly later than harness
C. What is interesting is that harness D performs better than harness C here even though all messages are
the same length. Thus, on a real farm it is more efficient to pass pointers to messages between processes
than to set up and shut down PARs in one process. Itis assumed that even harnesses A and C would benefit
from this approach.

Harness D is still only as efficient as B and C. Harness A is still the most efficient overall, at least for
this part of the farm size application parameters looked at here.

The fact that harnesses B, C and D can all farm out more communication bound applications than
harness A, again proves that having something in the way of a parallel strategy, makes better use of the
parallelism of the transputer.

Comparing harnesses D, E and F

Here we compare harness D, the most resilient to breakdown so far, against the two doubled up harnesses,
harnesses E and F.
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Figure 22: Breakdown of harnesses D, E and F on 8 workers

Looking at figure 22 harness E breaks down much later than harness D, as we might expect from the
throughput results. The increased throughput results in more supply and consequently more resilience to
breakdown. There are more jobs out of the farmer in any given period of time.

Harness F does not perform as well as harness E, although the harness is doubled up, the harness itself
stems from a more primitive design strategy and as a result rolls off both earlier and more gradually. For
example, examine the far trailing edge, in this case 4 kilobyte jobs break down when they take between
a quarter of a second down to an eighth of a second to process. Harness F again ultimately can be more
efficient than the unidirectional harnesses for compute bound applications, but breaks down before the
best unidirectional harnesses. This is probably due to the overheads of communicating large arrays around
on-chip memory.
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From the results looked at so far, harness D is the unidirectional harness that is the most resilient to
breakdown, and a doubled up version of harness D, harness E, is the bidirectional harness that is the most
resilient to breakdown.

Summary — harnesses A, D and E
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Figure 23: Breakdown of harnesses A, D and E on 8 workers

Summarising what we have so far, see figure 23. Harness A is the most efficient harness for compute
bound applications. This seems sensible as when an application is compute bound only a small amount
of bandwidth is needed from a harness, and thus it is perfectly adequate to use a harness that provides
a small amount of bandwidth, but is efficient due to being small and quick to execute. Harness A has a
very small amount of code. It also has a short message latency. After receiving a message, harness A can
output it immediately, there is no ALT or PAR to close down.

Harness E breaks down last out of all of the harnesses studied here. Out of the unidirectional har-
nesses, harness D farms out the most demanding application with the greatest efficiency.

Farming is about supply and demand

When comparing these surfaces against one another two properties were noticed.

The first was the way in which the performance tails off in these efficiency breakdown graphs is the
same no matter which parameter is being varied. This would indicate it is always the same type of be-
haviour that leads to harnesses breaking down. By looking at what happens when both of the parameters
are changed we can see this is indeed the case. Increasing the length of messages results in it taking longer
time to communicate each message, this in turn results in fewer messages travelling around the farm and
thus in an implementation that is more communication bound. Similarly, reducing the time it takes to
process a job results in more jobs being needed in a given time period thus requiring more bandwidth,
this may not be available. Again this results in an implementation that is more communication bound.

The second point noticed was that when looking along one axis, the curves rolled off in a similar shape
and in the same order as in the harness throughput test.

From these two points it was decided to plot a graph of increasing job compute time against efficiency
for all six harness. This was done for farms of eight workers with all messages being 1 kilobyte in length.
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Harness C has been omitted from this graph as it exhibits exactly the same performance of harness D and
can not be seen on this scale.
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Figure 24: Breakdown of harnesses for 1K jobs on 8 workers

In figure 24 (top of next page) the shape of the curves we can see is the order in which the harnesses rise
up and start to provide a high degree of efficiency. The shape of these curves and the order in which they
rise up is also the same as in the graph of the harnesses throughput, see figure 15 (page 63). Thus it can
be said the throughput of a harness and its general capacity to deliver jobs, and thus how the efficiency
of that harness breaks down, is directly related. This seems logical. The higher the bandwidth there is
through a harness, the greater the job supply rate will be and in turn the larger the number of demanding
application mappings that harness can farm out efficiently. This leads to an important conclusion, efficient
farm implementation comes down to supply and demand. Thus, if a farm is to be compute bound, the
farmer and the communications system must be able to supply jobs at least at a quicker rate than they can
be processed. This is also captured by the equation,

B w
Zl==
m+s— )

developed earlier in this chapter.

As the farmer only has a certain amount of supply, the amount of work a harness can only approach
this maximum bandwidth. Thus, in conclusion, if we want a harness that can farm out demanding appli-
cations, we need a harness that has a high throughput. The unidirectional harness that is the last to break
down here is harness D. The bidirectional harness whose efficiency breaks down last is harness E. These
harnesses also have a very high throughput.

From looking at the top of the slope, see figure 25 (top of next page), we see again that where the im-
plementation is compute bound, harness A is the most efficient harness, even more efficient than harness
E which has the most parallel design.

Plotting efficiency logarithmically

Another point observed was that the breakdown of these harnesses are curves that roll off over a period
of about eight doublings of either application parameter. This is about an order of magnitude and so it
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Figure 25: Top of breakdown of harnesses for 1K jobs on 8 workers
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was decided to see whether these breakdowns were logarithmic. This seemed sensible as both of the ap-
plication parameters were plotted logarithmically.

From looking at figure 26 (bottom of previous page) we can see this is indeed the case after the harness
has broken down, the slight curve on this graph, it tails off in a straight line down, as we have reached
the point where we are communication bound. Here the application is being performed as soon as it ar-
rives, what we are timing here is the work being communicated, not the work being performed and the
communications happening transparently.

Other sizes of farm

So far all of the results looked at have been for farms of 8 workers. Here we look at all the other farm sizes
tested. To aid comparison, these five other figures have been grouped together on the next few pages. For
clarity just the performance of harnesses A, D and E are shown, the other harnesses may be mentioned in
discussion.
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Figure 27: Breakdown of harnesses A, D and E on 1 workers

For farms with 1 worker, see figure 27, harness D is the best harness for all compute bound mappings,
both those that are highly compute bound and those that are highly demanding. It is the most resilient to
breakdown, even more so than harness E that here is only just as efficient as the other harnesses B, C
and F. Harness D, and in fact all the harnesses, are also just as efficient as harness A for compute bound
applications. This is presumably due to the fact that only link buffers are in use here as there is no fanning
out to perform. It might be expected for harness D to be slightly more efficient as it is only communicating
pointers not the actual messages themselves.

For farms with 2 workers, see figure 28 (top of next page), the harness most resilient to a breakdown
of efficiency is harness D. For compute bound applications harness E is just slightly more efficient than
harness A. This could be due to jobs being sent in directly to both workers. A virtue that comes from the
design of harness E sending jobs to both ends of a pipeline. Also, although it is not of any real relevance,
due to the slower roll-off characteristic of the breakdown curve of the doubled up harnesses, harness E is
also the most efficient harness for some communication bound mappings here.

The results get more interesting for 4 and more workers, see figures 29 (bottom of next page), 30 (top
of page 86) and 31 (bottom of page 86), as job distribution processes are placed on workers.
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Figure 31: Breakdown of harnesses A, D and E on 32 workers
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More of a gap opens out between harness E and the unidirectional harnesses. For 4 workers harnesses
A and E are equally the most efficient then harness A takes over for larger sizes of farm. This is the case
for a farm of up to 32 workers. Thus the performance of these harnesses is highly consistent for a wide
range of farm sizes.

Even for a line of 32 workers harness A is still more efficient for compute bound applications than
having a double harness that delivers jobs to both ends of the line. This would all seem to indicate that if
a harness is good at providing throughput, it can farm out more demanding applications.

How well the harnesses speed up
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Figure 32: Breakdown of harness E on farms of 1, 2, 4, 8, 16 and 32 workers

So far the performance looked at has been of the harnesses relative to one another. Another aspect obvious
from the graphs here is that from the point of view of the number of workers used, the more workers there
are the smaller the number of mappings can be farmed out efficiently. This can also be looked at from the
point of view of the application mapping. In figure 32 we are looking along the plane of the slopes. As can
just be seen here, the more workers in the farm, the earlier the implementation breaks down and the lower
the slope on the right-hand side of the graph. Thus, the harnesses cope less well with each application
mapping as the number of workers increases. This is caused by there being an increase in demand but
only a constant amount of supply. This results in a decreasing in number of application mappings being
farmed efficiently when the number of workers is large.

Plotting ; versus w

Here we plot the parameter 7, the job run time against w, the number of workers in the farm.

In figure 33 (top of next page), as with figure 32, it can be seen very clearly that the breakdown of the
larger farms is due to the supply being proportionally less per worker.

In subsection 4.9.3 (page 81) it was noticed the way the efficiency broke down was the same whether
m had been increased or j had been decreased. The curves in figure 33 also break down in this same
fashion. Thus increasing w, the number of workers, also results in exactly the same style of breakdown
behaviour as if either of the two application parameters had been altered. Again this is due to demand
being increased but the supply of work being constant.
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Figure 33: Breakdown of harnesses A and E for 1K jobs for increasing w
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Figure 34: Breakdown of harnesses A and E for 1K 0.25 second jobs for increase w
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From looking at the back edge of this surface, see figure 34 (bottom of previous page), we can see
harness A is the most efficient for the compute bound farms with a large number of workers, despite all
of the extra throughput engineering in harness E.

Execution imbalance

Here we look at how balanced the execution of the compute bound farms are. There is done by having a
notion of maximum efficiency. This being a theoretical notion of efficiency, not a practical one. A farmed
application consists of a number of items of work. The minimum possible time it would take to perform
this work across a number of processors is, the time it would take one conventional processor to execute
each item of work in turn divided by the number of processors used.

This does not take things like communication and distance into account, but as we are already aware
transputers can perform communications in parallel at very low cost (there is the cost of executing the
communication instruction and the links accessing memory during a communication slightly reduces the
processor’s bandwidth to memory). Thus the efficiency figures we present here are our observed values
compared with a notion of maximum efficiency that is purely calculated, i.e. based purely on the maxi-
mum speed up we should be able to achieve if we could perform only work on all transputers all the time
and no communications at all.

It should also be noted the values presented here are just for the efficiency of the workers. The exe-
cution overhead of the farmer and the harvester are not included. These processes are only being run on
separate processors for the simplicity of running these experiments. In a real farm implementation it is
best to run worker processes on all transputers including these. Thus, figures for efficiency that included
the performance of the farmer and harvester processes would be slightly smaller than the figures presented
here. However, this point is not of great concern. A generally impression of the efficiency of the workers
due to harness overheads, via reasonably accurate figures was all that was needed here. Obtaining truly
accurate figures is also not possible. Although the farmer and harvester can be run on the worker pro-
cessors, there will always be the overhead of executing the statistics gathering code used here, and this
would also affect the results obtained.

From looking at the figures on the graphs presented here it can be seen none of the farms obtain 100%
efficiency. There are two reasons for this. The first is because of the overheads of running a harness. The
second can be found by looking at the number of jobs performed by each worker. The distribution of the
work is never completely balanced. This is due to the use of a Poisson distribute to vary the run times for
the jobs. To illustrate this, here are the number of jobs performed by each of 16 workers. This was for
an application that was just compute bound and harness A was used. The messages were 4096 bytes in
length and they took 0.25 of a second to be processed, see figure 30 (page 86). The figures shown here
are for the fastest, and thus the most efficient, of the five runs performed.

98 98 99 100 97 101 101 100 98 98 102 100 100 103 102 103

Whenever there is some variation in the amount of work performed by each worker, it is not possible
to obtain an efficiency of 100%. Nevertheless, nearly 100% can be obtained, this indicates that imple-
menting applications as farms using the highly efficient harnesses used here is highly effective, and any
applications that can be implemented in this way should be.

How good is the performance model?

Here the model of efficiency developed early is compared with the results that have been obtained in this
section.

If we look at a farm with 8 workers. This has a bandwidth to the end worker of 1.177 megabytes
per second, presumably more to closer workers. If this farm is communicating 4 kilobyte jobs through
harness D, see figure 23 (page 81),

w=38

m = 4096 bytes

B = 1.177 Megabytes
s = 12.9 bytes
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then the rate of supply is,

B 1.177Mbrs
m+s 4096 + 12.9

= 300.4 jobs per second

If s were to be ignored here we would get 308 jobs per second, instead of the 300.4 jobs per second as
calculated above. This is about a 2% difference. This goes to show as was suggested on page 52, that for
large m, s can be ignored.

Looking at some values of ¢ found close to the breakdown of this mapping. For jobs that took 62.5
milliseconds to execute, the rate of demand is,

w 8 .
7 SEEE = 128 jobs per second

This is clearly much less than the amount of supply available and indeed this mapping ran at 92.9% effi-
cient.

For 31.25 millisecond jobs the rate of demand is,

w

t 003125

= 256 jobs per second

This is starting to approach what was measured to be the level of supply to the end worker, 287.473 mes-
sages per second. And indeed in these experiments this mapping only runs at 88.9% efficient here.
For t = 15.62 milliseconds the rate of demand is,

w

t ~ 0.01526

= 524.3 jobs per second

This is clearly much greater than the rate of supply here and indeed this mapping ran at only 63.2% effi-
cient. This is some way from maximum efficiency, although compared with an algorithmic mapping this
still might be considered reasonably efficient.

What is interesting here is that this simple theoretical model predicts the performance and the maxi-
mum number of compute bound workers obtained in practice with quite a high degree of accuracy.

This model can also be used to calculate the largest number of workers an implementation can have
and still be compute bound can be computed directly from the mapping and hardware parameters,

jB
m+s

Wmaz =

It would appear the overheads of farming out work on a processor farm are highly minimal, on this ar-

chitecture at least; the value of wmq. is directly related to the value of the expression, and is not some

fraction as it was thought it might be. Thus we really do get access to all of the transputer’s potential.
In subsection 4.5.3 (page 52) it was considered if the throughput out of a farmer is,

B

m -+ S

and if k is the amount of throughput lost through the execution of the harness on one transputer, the

throughput out of the first worker is,
B

m+ S

and so on.

The value of B used in the calculations above is the bandwidth to the end worker, not the raw band-
width out of the farmer, unfortunately this has not been measured. However, if we had this value, the
value of k could be calculated. As,

Btarmer — Bendworker — apk
m+s m+s
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the value of k is simply,

Bfarmer _ Bendworker
k: m-+s - m+s

4.9.4 Theory

So far we have a coherentidea that job compute times and message length are inversely proportional to one
another. As has been discussed it is better to use acommon metric, namely time, to view both computation
and communication. Here this has been of use in realising the relationship between the parameters.

It was thought at the start of this research that the time to communicate a job must be much less in a
compute bound farm than the time it takes to compute a job. There being many workers to communicate
jobs to. This was not considered any further until the results had been looked at. Doing so made the
breakthrough needed by considering what would happen when there was only 1 worker.

When w = 1, the time to communicate a message can be equal to the time it takes to process a job, so
the next job has finished arriving on the worker as soon as the current job has finished being processed.

This we can express as,
m+s

< i
B = J
For 2 workers, w = 2 the communication time must be at most half the compute time,

m+s
B

< =7

|~

as 2 jobs must be performed in the time it takes to perfo

2

one job. Therefore generally,

m+s<l
B T w

By looking at values of j, w, m, s and B, one could find out how close to the optimum performance
of the transputer these harnesses are, this should be high if in practice we are obtaining 90-99% of the
theoretical maximum efficiency.

The main conclusion to draw here is that ultimately the maximum performance is equal to the maxi-
mum amount of supply one can generate. Therefore, when mapping an application onto a farm, once j,
m, s and B have been found, the maximum value of w is dictated by,

jB
m—+ s

or just,
jB
m
If we wish our applications to be farmed out onto as large a farm as possible, then, from what has been
discovered here, j should be as large as is sensibly possible (see next section) and m should be made as
small as possible, with as few components as possible, as was discussed in subsection 4.6.5 (page 58).

4.9.5 Conclusions

Here we go over the four major conclusions arrived at in this section.

Most efficient harness

This experiment set out to find the harness that was the most efficient for as many applications as possible.

In general it transpires that no one harness is the most efficient. The harnesses that are the most ef-
ficient are so in one of two situations, never both. The first situation is when application mappings are
reasonably compute bound. Here a harness is needed that has a very small execution overhead. Harness
A is like that, but it is not the last to break down. The second situation is for the mappings that are the
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most demanding. Here the implementation is compute bound and approaching the threshold where a farm
becomes communication bound. The harnesses that are efficient here, harnesses D and E are generally
slightly less efficient than the previous type.

When an application mapping needs a supply that is less than half of the maximum performance ob-
tainable with the first generation of links, harness A is the most efficient harness for any number of workers
(apart from two). What harness to use for mappings that are the most demanding is less simple. If one
can construct a bidirectional harness and turn usage checking off, harness E is the most efficient, if usage
checking must be kept on, harness F should be used instead. If only a unidirectional harness can be used,
then harness D should be used if usage checking can be turned off, harness C should be used if it can’t.
This is summarised in the table 2.

number of most efficient most efficient
workers | for compute bound | at breakdown
1 all D,C
2 E D,C
4 AandE E,ED,C
8 A E,ED,C
16 A E,FD,C
32 A E,ED,C

Table 2: Most efficient harnesses for farm sizes tested

Thus we can conclude so far that if an application mapping is highly compute bound then a simple
harness is the most efficient and that only demanding implementations require sophisticated harness de-
signs.

The farming execution strategy is independent of any application it may execute. That said, this does
not imply that one harness that is the most efficient in one situation will necessarily be the most efficient
for all applications.

Supply and demand

Farming comes down to supply and demand. The supply is how many jobs one can supply to or results one
can retrieve from the farm, and thus how much communication bandwidth is available. So for example
the larger the messages get, the fewer can be supplied in any given period of time.

It is always possible to create more demand, just simply by adding more workers. However, it is more
difficult to provide a higher rate of supply, this can only be done by developing a better harness or a better
farmer. For example, by reducing the use of ALTs.

Prediction theory

The maximum number of workers that will produce a compute bound application can be estimated for
any application mapping. This is performed with the equation,

jB
m+ s

Perhaps this should not be too surprising as this equation is just,

B w

m+s 7
rearranged. If s is small, it can be ignored.
All that is needed is to measure the values of j and m from the mapping we intend to use, the value
of B, the bandwidth of the implementation and s the cost of setting up a communication. These are rea-

sonably easy to measure and the values of the last two figures can be obtained from the results presented
here.
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The normal procedure would be to write the code and then to run it. Here it is advocated that once
the code is written it is tested to see if the mapping of the implementation results in a compute bound
implementation. If not a better mapping and implementation can then be developed.

This results in only a small, but highly effective modification to the implementation development dis-
cipline used by many already. It is also one that informs the implementor as to the effectiveness of the
implementation, without having to work out the efficiency or the speed-up of the implementation. A mea-
surement that would involve the developing of a single processor implementation.

Model accuracy

It appears that this model captures the performance of a processor farm very accurately. This is probably
helped by the minimal performance overheads of implementing a processor farm on the first generation
of transputers. It also shows we are getting full access to the performance a transputer is capable of.

4.10 Influence of job compute time on finishing

So far this chapter has studied the general running of farms. This section looks at how well a farm finishes.

4.10.1 Introduction

Due to the nature of some applications, there is an extra decision that can be made when the design is being
mapped onto the farming architecture. This extra decision involves how much work each individual job
message is to contain, and thus how long an individual job will take to perform. In order for this decision
to be well made the following farm mechanics must be considered. When a farm is finishing, the last
few jobs will be in the buffers furthest from the farmer. At this point in the running of the program there
will be an increasing number of idle workers. These are near the farmer and are unable to perform these
buffered jobs as work can only flow away from the farmer. For jobs that take a long time to execute this
slowing down will be noticeable by the user. With jobs that are quick to execute this is less noticeable.
On the other hand, having lots of jobs will involve a larger number of communications overall, and thus
again the farm could run potentially slower that it might. Somewhere between these two extremes there
is balance to be struck.

The ideal situation is when the most time consuming jobs are the first to be performed (this also helps
in the initialisation of the farm as we shall see in the next section) and the jobs that take the shortest time
to execute are the last to be farmed out. Generally however, the jobs farmed out are in no particular order
of compute length, as they haven’t been here. Thus, normally how cleanly a farm finishes will depend on
the average length of the jobs being farmed out.

A smooth finish is desired, with most workers completing their last job about the same time.

This experiment sets out to discover how much the job compute time influences an implementation’s
performance in practical situations. This is achieved through looking at one example application.

Here we are interested in how much of a difference this issue can make to the overall run time. This
issue is likely to become of increasing interest as it is now being realised some applications can be imple-
mented on a farm by farming out jobs not as one continual stream of jobs, but as a series of job sequences,
where the beginning of a burst may not available until all of the previous set of results have been received
and processed. Thus being aware of how much of difference this issue can make and also being aware of
how to find the right balance is an important issue.

Here it was decided to take an application of a static amount of work and farm it out using different
lengths of job, both in terms of the length of the job packet and the length of time it took to process each
job.

Thus, here it was decided to study one application to see how much of a difference in run time this
parameter could be responsible for.
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4.10.2 Test Design

Studied here is an application consisting of jobs of data that can be easily varied in size. Here the length of
the messages used would be scaled, as well as the length of time it would take to process them. Thus the
amount of data communicated overall is always the same as the amount of work performed. In implemen-
tations of this nature changing the amount of work in a job changes both the number of communications
performed and the amount communicated.

It was decided to study an application whose total run time in microseconds was exactly divisible by
a wide range of numbers. Further the work was of a very fine grain, thus allowing for a great deal of
scalability.

An application was wanted that would run on a farm of 32 workers, thus for convenience the amount
of time the application should take was to be a multiple of 32 seconds.

The Poisson distribution was still going to be used to provide a suitable amount of variation in job
computation time. Thus all runs of the farm would need to consist of a complete number of cycles through
the Poisson distribution of job times. This was achieved by having a minimum of 100 jobs for each
worker. As there were 32 workers this gives a minimum of 3200 jobs in any mapping. Each of these
Jjobs would take a second to process.

SEQ w = 0 FOR 32
SEQ i = 0 FOR 100
-- give out 1 second jobs, varied by the Poisson distribution

Following on from this, if jobs took half a second to process there would 200 per worker and so on.

SEQ j = 0 FOR ?
SEQ w = 0 FOR 32
SEQ i = 0 FOR 100 * (273)
-- set length of job to 1 second / (273)
-- give out jobs varied by Poisson distribution

As mentioned before, a 1 second job is simulated by 100,000 iterations of the workers’ time consum-
ing loop. Unfortunately 100,000 doesn’t divide perfectly by powers of two. As these results were going
to be compared directly, it was important the amount of work performed was exactly the same. Thus the
number of iterations done were powers of two. The range of iteration values arrived at were from 1024
to 131072. This latter value being around 1.3 seconds. Thus each time the application was farmed out
the work would be grouped into different sized jobs, starting at jobs taking around 0.01 of a second and
doubling all the way up to 1.3 of a second.

The only parameter left to decide upon was message size. It was desired that all the different mappings
were to be compute bound. From the results obtained earlier we know if a job takes one second to process,
a 32 worker farm could easily cope with 4 kilobyte messages, see figure 31 (page 86). Thus I set the test
generator to scale this figure down linearly for jobs that took less time to perform, jobs taking 0.655 of a
second to process having 2 kilobytes of data in the messages and so on. Thus the final test consisted of
jobs ranged from 32 bytes taking 0.01 of a second to process up to 4 kilobytes taking 1.3 of a second to
process. This test was run for a farm of 32 workers for all six harnesses.

4.10.3 Test Program

The essence of the test program was copied from the previous test program farml. The worker and the
harvester processes were the same. There was a similar farmer and a similar driving program.

In this test the driving program just generated a sequence of job processing times. The number of
jobs to be used was then deduced from the processing time. Again each time was generated five times
and again these five run times were averaged.
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INT delay, time, run, total.run, len, njobs:

SEQ t = 10 FOR 8 -- 8 experiments
SEQ
delay := 1 << t -- job len in 10s of u-seconds
time := 10 * delay -- job len in u-seconds

-- the larger the size of the jobs - t
-- the fewer jobs there should be

njobs := workers * (njob << (17 - t))
len := delay >> 5 -- calc message length
total.runs := 0
SEQ i = 0 FOR 5 -- reruns
SEQ

to.farmer ! njobs; delay
receive and output results from farmer
calculate and output averages

The farmer received a number of jobs and a processing time. From the processing time the farmer
deduced the message length. For every 1024 iterations of the ten microsecond loop of the worker, the
work packet had 32 bytes. This gives us the following job times and message sizes.

variable | runtime | message length
£ (seconds) (bytes)
10 0.0102 32
11 0.0205 64
12 0.41 128
13 0.0819 256
14 0.164 512
15 0.328 1K
16 0.655 2K
17 1.31 4K

Table 3: Job processing times and their message lengths

The application was farmed out and the performances analysed.

4.10.4 Results and Conclusions

Figure 35 (top of next page) shows the run times of the six harnesses for each job compute time.

According to this graph the optimal length of time to be computing a job is at the curve’s minimum,
this is just above 0.164 of a second. This is with messages of 512 bytes.

The most important conclusion to draw from these results is that it is worth finding the best length of
the average job. In this situation being an order of magnitude out, which in naivity is possible, reduces
the farm’s efficiency from the maximum efficiency possible here 98.5%, which is near perfect, down to
93%, see figure 36 (bottom of next page). In terms of run time this is a difference between 133 and 141
seconds, a saving of 8 seconds. Which in context to the size of the whole application is an extra 6% longer
execution time. Thus finding the optimum job length is clearly worth doing in order to decrease the run
time of the application. .

What is also of interest is that the optimum length of job appears to be independent of the harness
used, all of the curves change direction at the same point.

Here harness A is the most efficient. This is not too surprising as we deliberately arranged for this
application to be highly compute bound. What is also interesting is to note is that the order of which
harness is the most efficient, changes for different job compute times. For very small job compute times
the order is: A, C, E, D, B and F. For the largest job compute times used here the order is: A, E, D, C, F
and B.
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Figure 35: Run times for varying job lengths for all 6 harnesses on 32 workers
145 ;

144

143

142

141

140
139

138

total run time (s)

137

136
135

134

133

132

0.0102 0.0205 0.0410 0.0819 0.164 0.328  0.655 1.31
average job length (s)

Figure 36: Efficiency for varying job lengths for all 6 harnesses on 32 workers
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At the optimal job length, harness A is 0.65 of a second faster here than the next fastest harness, har-
ness C. This is an extra %% more efficient. In this case, this is not very much and thus in this situation is
not worth being concerned about. However, for farms that run for a long time period this degree of tuning
may save minutes.

Here we have just looked at finding the balance for one particular application. This subject needs to
be looked at in greater detail before a general theory can be developed.

This application only has a reasonably small amount of work to perform. For a larger amount of work
the optimum size of job would be slightly larger. The smaller number of communications this would result
in would absorb the extra time it would take for the farm to finish.

In this application the amount of work to be performed has deliberately been chosen to be small, this
is so that this experiment would gain insight on implementations that farm out the series of job bursts
discussed earlier. In such farms there would a considerable number of farm shutdowns throughout the
running of the application. Thus, it has been shown here that if the sizes of jobs can be selected to any
degree, it is even more important the optimum size of job be found.

4.11 Farm start up

Having looked at how much the average job length affects the efficiency and finishing time of a farm,
there is also the question of how a farm starts up and becomes filled with jobs.

Initially it was thought it would be necessary to study this behaviour. However, after realising that
farm start up just involved the harness becoming filled with spare jobs it was realised no experimentation
would be necessary. Start up being something that just happens and in any good implementation it will
happen quickly. We now look at why this is the case.

4.11.1 Opening discussion: what starting up a processor farm consists of

When a farm starts the harness and the workers are empty. The farmer outputs the first job into the farm,
then the second and so on. In a compute bound implementation a point will be reached when all the work-
ers are working on jobs and all the buffer spaces are filled with spare jobs. At this point we say that the
processor farm is filled with work or initialised. If the farmer attempts to output a further job it is desched-
uled until the farm finishes a job and can receive more work. However, this is only likely to be the case
for highly compute bound implementations. If an implementation was not highly compute bound the first
job, or even the first few jobs, could finish before all of the farm was filled. Thus the farm would take a
longer time to fill up with work and so would not be running at maximum efficiency for a short period of
time, due to workers waiting for jobs to arrive down links. As was discussed in the previous section, it is
desirable to have all of the long jobs farmed out at the beginning of a run.

Communication bound farms do not fill up with work. The same is also true of farms where the de-
mand is equal to the supply. In such farms the farmer will be able to supply jobs to the workers, but these
jobs are consumed at exactly the same rate. As a result the workers are likely to be idle after finishing an
item of work as they wait for the next job to arrive down the link from the farmer. Also the buffers will
never really be in a state where they are behaving as buffers, in possession of a job and descheduled until
another process makes a claim for its job. The workers will be making a constant claim for work. Thus
only compute bound farms actually use the buffering capacity in the harness.

In conclusion all that can be said so far is, if a farming harness does fill up with work, it will do so
after some period of time.

4.11.2 Theory

An attempt to understand how a farm initialises via operational means was not successful. It could be
seen that if an application was only just compute bound, the whole farm wouldn’t be filled with work
before the first job (or perhaps the first few jobs) finished. This approach led to problems when trying to
crystalise this. The breakthrough came when an attempt was made to calculate the number of jobs that
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would be output into the farm, in the time it took a worker to perform the first job. With this it was realised
the speed of initialisation comes down to how much greater the rate of supply is than the rate of demand.

As a simple example lets say the harness we are using has w buffer slots, one for each worker. Then
in this example we need an excess of 2w jobs to be supplied to the farm before it is filled. If the rate of
supply is 6 jobs per second and the rate of demand is 4 jobs per second, that is an excess supply of 2 jobs
per second, 6 — 4. If w = 8 there are 16 slots to be filled, then initialisation will take the number of slots
need to be filled divided by the excessive amount of supply. Here this is 16 slots, divided by a 2 extra
jobs per second, giving 8 seconds. In general this is,

buffer slots
supply - demand met

where demand met is always less than or equal to the supply. If the demand is greater than the supply,
the demand met will be equal to the supply. In this situation the implementation is communication bound
and the buffers of the farm will never be filled.
From this model it is easy to see that the more compute bound a farm is, the quicker it will initialise.
This model can also be used to look at what was a problem to look at before: how many jobs are
delivered to a farm before the first job is completed. As w is the basic number of jobs needed in the farm,

and,
m+ S

B
is how much time it takes to deliver a job. This multipled by w,

m+ s
w
B

is how long it should take to fill up the farm with jobs. If this figure is less than the time it takes to perform
a job,
+ s
B

all the workers will obtain a job before the first job finishes. Further, if A is the number of buffer slots in
the harness, and,

w <

m+ s
B

then all the workers and harness buffer slots will obtain a job before the first job finishes. Now, if the
length of time to compute a job is less than this,

(h+w)

<Jj

m+ s

Jj < (h+w)

but larger than the time take to fill up all the workers,

m;S <j<(h+w)m+s

w

the farm will not be filled immediately, and thus will not be running at maximum efficiency for some time,
as it will take a while for the empty buffer slots to be filled.

If part of the lack of supply is due to overheads within the farmer, several jobs could be prepared and
farmed out in quick succession. Initially the farm sits empty for longer, but once the farm has been filled
with work, the farmer only needs to top up the harness buffers with work, the workers always have work
available on-chip and do not have to wait for work from the farmer. Thus, overall the farm should run
slightly more efficiently. As this is not likely to be practical in most situations, it has not been looked at
this here.
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4.11.3 Priority

Which buffers are filled first depends upon, amongst other things, the design of the harness. This begs
the question, should we then design a harness to fill up with work quickly? Here the answer is believed
to be no. A harness should be designed to be as efficient as possible throughout the whole running of the
farm. This being what a harness will be doing most of the time.

During initialisation the job distribution processes will simultaneously receive requests from all pro-
cesses they are connected to. Changing which channel is given priority will change the way the farm
comes filled. That said, it is unlikely that a farm will be able to fill up with work more rapidly.

4.12 A comparision of topologies

So far this chapter has looked at what approach to coding a harness for a line of workers is the most ef-
ficient. Looked at next are which topologies are suitable for farming and which of these are the most
efficient.

4.12.1 What makes a topology appropriate for farming

The choice of topology is an important aspect of farm implementation. Both directly, as this choice affects
the bandwidth around the farm, and indirectly, as different topologies will need different harnesses. Here
it was decided to look in general at all the properties that would be appropriate for a farm and thus what
topologies match these.

In subsection 3.2.2 (page 30) it was shown how a toroidal topology is not a very appropriate topology
for farming. What is of interest here is why, so this can also be applied to find out which topologies are
appropriate and inappropriate for farming.

Looked at here are what properties are desirable in a farm generally if it is to be efficient, and which
of these affect the choice of topology and how.

Ideally all processors in the farm should be working continually. No processor should be starved of
work. The properties considered important for this are listed here and discussed below.

1. Keep communications to a minimum.

2. Use all the communications bandwidth available.

3. Keep the harness’s use of the C.P.U. to a minimum.

4. Any buffering within the harness should only aid performance, not hinder it in anyway.
5. Use a communication harness that is easy to write.

Keeping communications to a minimum can be achieved by not performing any unnecessary com-
munications, for example by not passing messages back and forth continuously. Here we have used job
distribution strategies that only give out work from the farmer to the workers in a client-server arrange-
ment. Keeping communications to a minimum can also be achieved using a topology that possesses some
degree of fanout.

Using the full communications bandwidth available is achievable by careful utilisation of the under-
lying hardware through the use of as many links as possible and link buffers.

Keeping the harness’s use of the C.P.U. to a minimum is in fact reasonably easy. As we came to re-
alise in subsection 3.1.3 (page 25), only work needs to be given out. Therefore the harness should just
perform communications, inputs and outputs. Which direction work should be sent in should be decided
by communication, via requests, rather than by some form of computation as these will require the C.P.U.
Thus the code of the harness should consist of communications and as little of anything else as possible.

Any buffering within the harness should only aid performance and not hinder it in anyway is easily
obtained through the use of any sensible buffering mechanism, as shown here in subsection 4.9 (page 68).
As a general principle parallel system run at less than full speed if important parts of the mechanism are
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prevented from proceeding if waiting for resources. It should be noted any variables in the harness that
hold data in transit act as a level of buffering.

The mechanics of a topology that fans out needs to be discussed in detail. This is looked at next and
leads naturally into a discussion on the last point of how to keep the harness easy to write.

Tree topologies

The performance of a compute bound implementation is limited by the rate at which work can be carried
out. One method of enabling the workers to make the greatest progress with the application is to use a
harness that uses as little of the C.P.U.’s resources as is possible. Another is to reduce the total number of
communications performed. This can be done by reducing the number of jobs, as looked at in the previous
section, and also by reducing the number of communications each message has to take to its destination.
Naturally, the smallest number of hops possible is one, the farmer and workers being directly connected.
In fact a logical model for a processor farm would also have this direct interconnection, see figure 37.

worker

harvester B

worker

Figure 37: Logical structure of a processor farm

One method of getting close to this optimum is to fan out the work as much as is possible with the
valency of the hardware. Doing this results in every job and result message passing through fewer proces-
sors than would be the case with a line of workers. Thus the total number of communications performed
in the farm is reduced, as is the amount of time, on average, the harness is executed.

This additional fanout results in larger ALT constructs within the code of the harness. These take
longer to set up and to shut down. They may also result in less work being performed by the workers
close to the farmer, as these are executing expensive parts of the harness for a very large number of com-
munications.

Looking at the reduction in communication in more detail. As a pipeline grows in length, the commu-
nication overheads grow in direct proportion, as can be seen in figure 34 (page 88). If there are n messages
and w workers, each message is passed along an average of about

w

2
workers. So the total number of communications performed is proportional to

nw

2

If the number of workers is doubled, so does the overhead. With a tree the amount of communication is
proportional to n[log w]. Where f is the degree of fan out in the tree.

As a transputer possesses four links, the highest degree of fan out that can be obtained is three, giving
the largest number of hops from the farmer to any worker is the base 3 log of the number of workers,
greatly reducing the average number of links that need to be traversed between the farmer and the workers,
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as can be seen in table 4 (top of next page). Also the amount of traffic at any stage is a third of what it

tree | number of | average distance to
depth | workers ‘ farmer from worker
1 3 1.0

2 12 1.75

3 39 2.615

Table 4: Average farmer-to-worker distances around a ternary tree

was at each previous stage.

This area has already been well looked at before [PZ90, TD90]. Both of these authors say ternary
trees provide better performance than a single line of workers. The former also shows by how much.

Thus it is possible for an application that is not quite compute bound when run on a linear topology
to be just compute bound when run on a more efficient topology such as a tree.

A ternary tree have one limitation. With a tree topology the farmer and the harvester must reside on
the same C.P.U. This is unfortunate as the amount of work a farm can perform is related to the bandwidth
available out of the farmer and more bandwidth can be obtained from a link that is only used unidirection-
ally rather than bidirectionally, and with a ternary tree results will be travelling along links in the opposite
direction to jobs. Itis therefore advantagous from a bandwidth point of view to consider having the farmer
and harvester on separate processors. This could be possible by arranging two ternary trees together at
the leaves forming a diamond, with the farmer and harvester at opposite ends.

For many sizes of farm a tree may not have every layer or level completely full of workers, as in
figure 38 (top of next page). In order to obtain an evenly distributed communication load the best way to
arrange for only the last level or layer of the tree to be partially empty, as in figure 39 (next page). There
is a temptation to think that unbalanced trees must be placed as in figure 40 (bottom of next page). So, the
communication load is distributed evenly over the first three workers. In fact it does not actually matter
if the communication load is distributed evenly, the overall communication load on the whole farm will
always be the same.

Unfortunately, trees that do not have all levels full are difficult to describe in occam. Slightly different
versions of the harness may be needed on different workers depending on how many others workers each
processor connects to. Thus, a different number of buffer processes may be required, especially in the
case of harnesses like B or D.

Pipes and rings are very easy to scale linearly. However, a large linear topology will suffer from more
communications problems than an equivalently sized tree.

In summary, on ternary trees, the average distance between farmer and worker is less, the average
amount of traffic on a link is also less. The second of these two points has a further advantage as link
communications consume memory bandwidth which slows the C.P.U. down and thus allows more pro-
cessor resources for executing the application.

Keeping the harness to a minimum

With some topologies keeping the harness to a minimum is the most difficult property to achieve. Any
topology is going to involve some processes being closer to the farmer or harvester than others. In order
to remain true to this property, topologies should have the same harness code running on all of the workers
in that topology, regardless of their position within it. Thus, what is ideally needed is a communications
structure where one set of simple processes can be used through-out the network. For this to be achieved
the same method of distribution should be performed at all places in the network, regardless of the position
relative to the farmer. Thus, the whole topology should fan out from all of the nodes of the structure.
All nodes should fan out by the same amount at all points. Also, no two communication paths should
reconnect, thus each worker has only one communication path from the farmer and to the harvester. Pipes,
rings, trees and combinations thereof possess this property. However, this property does not apply to all
even structures. For example arrays, tori, hypercubes etc. have a very uneven structure when viewed from
the farmer, because the separate branches reconnect. Although it should be possible to develop a metho&
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Figure 38: Fully populated three layer ternary tree
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of distribution that does supply jobs to all parts of the farm evenly when needed, as far as we are aware,
this can not be done simply with one or two simple processes.

It is important to keep in mind that the topology should be self-similar from the point of view of the
controller process or processes, the farmer and any harvester. If a topology doesn’t adhere to this property
any one single piece of code harness will not perform effectively or efficiently.

As hinted at above there are some variations on the basic suitable topologies. If a great deal of data is
needed to pass in and out of the farm during run time then two pipes, rings or ternary trees could be used
leaving two links to be used to link the farm to the outside world. A single binary tree could also achieve
the same effect. Similarly, three pipes or rings could be hung off the farmer.

4.12.2 What was tested

As it was hoped ternary trees would be the most efficient topology possible, here the performance of
ternary trees is compared against the line of workers used so far.

Why fully populated trees

As mentioned above this author is not aware of any method in occam of constructing mechanically fully
balanced ternary trees of arbitrary size. Thus, for the purposes of these experiments it was decided to
limit the testing to trees with a fully populated last layer. This is not a problem as a line of workers can be
configured to be any length. Because of this restriction in testing the results here will not be totally general.
Nevertheless, this was considered to be only a minor drawback, the results obtainable for unbalanced
farms should be very close to figures extrapolated from the results here. The only problem being how to
allocate the different versions of the harness required in different places in the topology.

Here trees consisting of 1, 2 and 3 layers are looked at. This gives farm sizes of 3, 12 and 39 work-
ers. Each size of tree is compared against the same number of workers configured as a line. With three
comparisions to perform there were three experiments.

For simplicity no worker was placed on the farmer and harvester processor.

Testing other topologies

Welch was of the opinion that trees have too much of an overhead to be more efficient than a line of
workers. This was believed to be due to the number of communications the ALTs in the harness would
have, each communication requiring to be set up and shut down every time the construct is executed.
Further, from some experiments performed earlier (during a first attempt at this research) it appeared a
three layer tree did not perform more efficiently than an equivalently sized line of workers. Although one
and two layer trees were more efficient than the equivalent line of workers.

From this it was decided to also compare some topologies that were conglomerations of lines and
trees. For example, as from the previous experiments, small trees could be more efficient than a line of
workers and yet a three layer tree wasn’t, perhaps it would be more efficient to arrange for such a large
number of workers as a small tree that opens out into a number of pipelines.

We now talk through the three experiments and which topologies were compared in each.

Experiment 1: 1 layer tree, 3 workers

The first experiment consisted of comparing four topologies. There is only a small number of sensible
topologies into which three workers can be arranged. The first three topologies are the three that are com-
pared in all three experiments.

The first topology was the one layer tree itself. Here all three workers are connected to the farmer
directly. The ternary tree was driven by a farmer that gave out jobs and received results on three links.

The second topology was a line of three workers connected together with the bidirectional harness E.
The third topology was also a line of three workers, these were connected together with the most efficient
harness we have so far for compute bound application mappings, harness A.

As these topologies consisted of a single line of workers with the links driven bidirectionally, it was
decided to see what the performance would be if there were two independent and shorter lines of workers.




CHAPTER 4. EFFICIENT FARM IMPLEMENTATION 104

The placement code for this topology was written so that the two lines could be of different lengths. Thus,
this topology was tested in all three experiments.
There was no point in building three lines of workers for three workers as this is just a one layer tree.

Experiment 2: 12 workers, 2 layer tree

The first four topologies tested here were the same as in the previous experiment: a two layer ternary tree,
two lines of 6 workers, a line of 12 workers connected with harness E and a line of 12 workers connected
with harness A.

A fifth topology was also built. This was a conglomerate of the tree and line topologies. This topology
consisted of 3 lines of workers, four workers for each line. This was easily achieved by using the farmer
used to drive a ternary tree. This topology might perform slightly more efficiently because of the reduced
harness overheads for the workers within the lines of the topology.

Experiment 3: 39 workers, 3 layer tree

This experiment consisted of the four topologies tested in all of the previous experiments: a three layer
ternary tree, two lines of workers, a line of 39 workers connected with harness E and a line of 39 workers
connected with harness A.

Here it was also decided to look at reducing the farming overhead at various stages either by having
3 lines of 13 workers, still long but very much shorter than a line of 39 workers, or by having 3 workers
fan out to 9 lines of 4 workers. This latter topology was achieved by having 3 workers that used a tree
harness to feed 9 lines of workers.

4.12.3 Test program modifications

These experiments were performed on the same program as was used for the efficiency breakdown com-
parisions, farml. Before the tests could be run additions and some changes were made to the program
in its original form.

The workers of each topology required a slightly different variation of the harness code from any other.
As we have said when introducing the harnesses, see subsection 4.3.6 (page 48), making a good harness
more flexible is not of interest here as generalisations may result in a less efficient performance.

A different type of farmer was required for line, double line and tree topologies. The farmer for tree
topologies was also used for the three line and nine line conglomeration topologies. A different farmer
was also required for each harness used.

Most of the new topologies tested had no separate harvester processor, the harvester being on the same
processor as the farmer. Only the topology consisting of two lines required a new harvester.

The farmer, harvester and the worker compilation modules contained many different versions for dif-
ferent types of farms. At any one time only one was compiled, the rest were commented out using com-
ment folds.

With the bidirectional line of workers topology the worker furthest away from the harvester was also
only one link away in the other direction. With the newer topologies here this was not the case and indeed
in the case of trees there was no single worker further away from the harvester than any other. Thus none
of the new topologies could practically perform any end worker throughput measurements. This was also
one of the reasons why different versions of farmers and workers were created for each topology.

All of the new topologies required placement code to be added to the program, especially as most of
the new topologies had no separate harvester processor.

There are three other detailed points to make about how the topologies were placed.

On the three and nine line topologies, in order to use as many of the links as possible, the body of the
lines were connected up using two links: one for the jobs and one for the results. Doing this made the
first worker in the line a slightly special case as it was connected to the rest of the line via two links and
to the rest of the tree via just one link used bidirectionally. Thus this first worker needed to be PLACEd
separately, see figure 41 (top of next page). Note this worker did not need to be a separately compiled
module, but it did need its channels placed onto links in a different manner to that of the workers in the
pipeline.
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Figure 41: Detail of link usage for conglomerate topology

It was decided to place two, three and nine line topologies so that all of the lines were grown together
in parallel, see figure 42 (next page). Thus the first worker of each line were all placed directly after

/) 5
1 3 6
4 7

Figure 42: Order in which processors were placed

the farmer or tree element to which they were directly connected. This was done so that hopefully these
processors would then all be equally close to the farmer and thus have a high bandwidth.

The nine lines topology needed an extra separately compiled module. As well as having workers that
needed a line style harness this topology also had workers that needed a tree style harness.

4.12.4 Results

The above farms were run. Here we look at the results obtained. There are really two questions to ask
here.

1. Do ternary trees breakdown later than a line of workers being run by bidirectional harness E? And
thus, are they more efficient?

2. Are ternary trees more efficient than a line of workers being run by unidirectional harness A?

These questions are answered below for each of the three layers.

One layer tree versus equivalent topologies

Looking at these questions in order, we can see from figure 43 (top of next page) that for the three worker
farms, the ternary tree is much more efficient than a line of doubled up workers (harness E). The tree also
changes slope direction more slowly and at smaller message sizes, indicating lower communication start
up costs. For larger message sizes (1K and above here) a doubled up line rolls off slightly slower and is
around only 85% efficient for a small range of the most demanding mappings. The two lines of workers
is the least efficient of the three topologies here.

Looking at the question of efficiency for when a farm is compute bound, see figure 44 (bottom of next
page), we can see a ternary tree is also much more efficient than a single line of workers (harness A) on a
line of workers, again, especially for more compute bound mappings when the messages are small. Thus,
fanning out is worth it. The difference is only slight, however, we had found this before with small farms
in the earlier experiments.
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Two layer tree and equivalent topologies

The results for 12 workers are more revealing due to the farm being larger, see figure 45 (top of previous
page). As before a tree is the most efficient for compute bound mappings, for smallish messages (only
128 bytes here). Again a line of doubled up workers is the least efficient, however the roll off is much
later for this larger farm and so is almost at its most efficient for highly demanding applications with large
messages. The two and three line topologies to not exhibit anything of interest.

For all compute bound application mappings here, see figure 46 (bottom of previous page), a ternary
tree is more efficient than a single line of workers. This is also much more clearly visible, this presumably
because we have a two level farm and thus we are actually obtaining much more of the benefits of setting
up a tree topology.

For all the application mappings here three lines of workers is less efficient than the full ternary tree,
but is more efficient than two lines of workers; which for compute bound mappings is only as efficient as
a single line of workers.

Another point to notice is that less mappings are compute bound here. This is to be expected. There
are four times as many workers than a one layer farm and thus there is four times the amount of demand
for work. The maximum amount of supply, however, is still the same as for the smaller farms.

Three layer tree and equivalent topologies

Figure 47 (top of next page) contains the three basic topologies that were compared against each other
when three workers were looked at: a ternary tree, a single line of workers and two lines of workers. As
the number of workers is even larger again here, there is even more of a spread in performance resulting
in the differences between the different topologies being even clearer to see. As before the full ternary
tree is the most efficient topology for highly compute bound mappings and also for highly demanding
mappings with smallish messages (128 bytes). Again, a line of doubled up workers is still very efficient
when a farm is on the verge of breaking down for non-small messages. Otherwise it is the least efficient
topology. It is even just slightly less efficient than two shorter lines of workers. The reason for this is
discussed next.

In figure 48 (bottom of next page) we compare the full ternary tree against the topologies that consist
of many lines of workers radiating from the leafs of a small tree. This was done in the previous experiment
with 3 lines of workers, but here there is also much more of a conglomeration of topologies as the 9 lines
of workers required more code. In this comparision of three topologies we find the full tree is the most
efficient topology of the three here for compute bound mappings. With nine lines of workers being very
close, much closer than three lines of workers is. This reason for this topology being so efficient is because
it is conglomerate topology that is most like a tree.

As can be seen from figure 49 (top of page 110) a ternary tree is much more efficient than a single
line of workers. There being much more of a difference in efficiency. Also the nine lines of workers
topology is also more efficient than the most efficient way of arranging workers into a single line. Again
this is because nine lines of workers is so similar to a tree in structure. The single line of workers is more
efficient than three lines of workers. For clarity the three lines of workers is only shown on figure 48 here.

Discussion

One thing that is clear from these graphs is that not only does the single line topology breakdown last, but
that all the other harnesses, the two lines, the three lines and the ternary tree, all break down at more or
less exactly the same time; the performance of these harnesses being practically identical after they have
broken down. The reason for this must be to do with one aspect that is the same for all the topologies
except the line of workers. Knowing that ALTs are expensive to execute I decided to look there and found
the answer in the farmers used.

In the line of workers driven from both ends, to deliberately avoid the use of ALTs I had decided to
give the work out evenly to both ends. As all of the work was given to the same workers, this would not
cause a load balance problem. Nevertheless, with the farmers of the other topologies, I had used a number
of sacrificial buffers, one on each link, these requested jobs from the farmer. Thus, the farmer executed
an ALT for every job given out. Thus, it was this ALT that was the major bottleneck in the supply of jobs
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Figure 49: Efficiency for 1 and 9 lines and a tree of 39 workers

to the farm, not the number of links being used. This is interesting as although there is more potential
bandwidth in the more elaborate topologies where a number of links is used, the major bottleneck is the
total setup time for the job to be sent from the farmer.

4.12.5 Conclusions

In conclusion we can see that a ternary tree is the most efficient topology in which to arrange workers.
More generally, fanning out over all available links is effective. That said, trees and related topologies
break down just before the best linear topologies, due to the expensive ALTs and requesting buffers that
are needed in the harness code and in the farmer especially to obtain the tree topology. Thus, it is also
important that the highest rate of supply is used. This is especially the case when farming out over a
number of links. Thus, when trying to implement a farm, it is advisable to avoid ALTS in the farmer
process or near it.

This experiment has changed the theory of farm implementation developed so far. If an efficient map-
ping for an application can be arrived at, use a tree with harness D, instead of using harness A on a line
of workers. If an efficient mapping can not be arrived at use a bidirectional line of workers using harness
E. As trees perform fewer communications, smaller messages sizes are also more efficient.

4.13 Priority

When developing the code that distributes jobs, one realises it is possible for both the local and the distant
worker to request a job simultaneously. Thus there is a decision to be made as to which worker should be
given a job first. It is often though this decision can greatly affect farm performance and thus efficiency.

This issue is one where there are many different and often conflicting strategies. There appears to be
no experimentation to back up any of these approaches.
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4.13.1 Job requesting strategies

Both Welch and the work performed here with UNITY recommend the use a produce and consume strat-
egy for distributing jobs, see subsection 3.1.3 (page 25). From UNITY it has also been reinforced that
getting the work done is ultimately what is important. Spending time executing code to decide in which
direction the next job should go depending on certain criteria can ultimately only slow a program down,
not speed it up. Any attempt to make such a decision via algorithmic means at run time would require the
C.P.U. for a period of time. This can only result in a longer execution time overall. The C.P.U.s executing
decision making code as well as the application. It is also unlikely that the use of decisions would result
in a smoother execution than is possible by just requesting. Here, not only is our method of evaluating
which process the current job should be sent to simple, a single communication, but it also requires a very
small amount of code, run time, memory and very little C.P.U. resources.

In this work it has been shown that some harnesses are highly effective. It is interesting to note that
the processes of these harnesses possess some common properties,

1. if a process requires some information (in this case), it requests it when it is required,

2. if a process has some information to give away, it listens to the processes it is connected to that may
require it.

As we want to execute the application as quickly as possible, it seems natural to concentrate program-
ming effects on always executing the application when ever possible. This involves doing what we are
here, trying to find out which worker process is requesting the current job that the distributor has.

This work has come across four different strategies to resolve this conflict,

1. always give priority to the local worker,

2. always give priority to the distant worker,

3. be fair over time to all whom you communicate with, and,

4. do what is appropriate for the deciding process’s position in the farm’s topology.

Here we only test the first three against each other, the fourth will always be specific to a topology.

4.13.2 Code used

Here are listed the distribution processes that were compared against one another.
The first process gave either the local worker or the distan