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10
11
12 Abstract
12 In allusion to heterogeneous multi-criteria group decision making (MCGDM) problems with incomplete weights and g-
15 rung orthopair fuzzy (¢g-ROF) truth degrees, where many kinds of criteria values, i.e., crisp values, intervals, trapezoidal
16 fuzzy values, hesitant fuzzy values and ¢-ROF values (g-ROFVs), and multiple types of interactions exist, i.e., positive
17 synergetic interactions, negative synergetic interactions and independence, a novel multi-objective g-ROF programming
18 approach is proposed. In particular, in order to globally capture the interactions among criteria, Choquet-based relative
19 closeness degrees are developed based on the technique for order performance by similarity to ideal solution (TOP-
20 SIS) and the Choquet integral. Then, the g-ROF Choquet-based group consistency index (g-ROFCGCI) and the g-ROF
21 Choquet-based group inconsistency index (g-ROFCGII) are defined. Next, to derive optimal 2-additive fuzzy measures
22 on the criteria set and optimal experts’ weights, a new multi-objective g-ROF mathematical programming model is estab-
23 lished by minimizing the ¢-ROFCGII and maximizing the g-ROFCGCI. Subsequently, an algorithm based on the adaptive
24 non-dominated sorting genetic algorithm III (A-NSGA-III) is designed to solve the established model. Afterwards, the
25 Choquet-based overall relative closeness degrees of the alternatives is used to obtain their preferred ordering. Finally, the
26 effectiveness and advantage of the proposed approach is verified using four real cases concerning the evaluation of social
21 commerce.
28
29 Key words: Heterogeneous information; Evolutionary computation; 2-additive fuzzy measure; g-Rung orthopair fuzzy
30 values; Multi-criteria group decision making.
31
32
33 1. Introduction
34
35 Social commerce (s-commerce) refers to the use of social media and Web 2.0 tools to enhance the interactions of
36 individuals on the Internet in order to support consumers’ acquisition of products and services (Doha et al., 2019). In
37 recent years, with the increasing maturity of s-commerce, increasingly more consumers, especially the new generation,
38 5 have taken part in s-commerce (Hu et al., 2019). However, due to the virtual and anonymous nature of s-commerce,
39 consumers cannot see merchants and commodities (Scarle et al., 2012). There is also a time asymmetry between payment
40 and shipment, which makes it possible for merchants to commit fraud during transactions (Chen et al., 2008). For these
41 reasons, consumers may suffer from high credit risks, which would negatively affect their purchase intention. With the
42 help of the s-commerce credit evaluation of merchants, consumers can analyse a merchant’s credit status effectively to
43, select a desirable merchant and reduce credit risks. Therefore, it is necessary and meaningful to evaluate the credit level
33 of merchants. The s-commerce credit evaluation of merchant problem commonly involves several experts and multiple
46 assessment criteria (Yong, 2012), such as product quality, information quality, service quality, delivery time, product
47 price and consumer identity; thus, it is essentially a multi-criteria group decision making (MCGDM) problem (Qiyas
48 etal., 2021) . Because the credit evaluation problem includes both qualitative and quantitative criteria, the assessments of
49 s these criteria might cover various types of information, such as crisp values, intervals, trapezoidal fuzzy values (TrFVs),
50 intuitionistic fuzzy values (IFVs), Pythagorean fuzzy values (PFVs), hesitant fuzzy values (HFVs) and g-rung orthopair
51 fuzzy values (g-ROFVs). Therefore, the MCGDM to address in this context is a heterogeneous MCGDM.
52 There are usually two different methodology approaches to tackle heterogeneous MCGDM problems: accounting
53 for the preference information over pairwise comparisons of alternatives (Wan et al., 2017, 2020; Zhang et al., 2016)
54 2 and not accounting for such preference information (Liang et al., 2020; Tang et al., 2022b). This second methodology
55 approach uses only the multiple kinds of criteria information and omits pairwise comparisons of alternatives, whereas the
56 first one takes advantage of both. Thus, the first methodology approach is now gaining increased attention in the area of
57 heterogeneous decision making, with extensive linear programming technique for multidimensional analysis of preference
58
59
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(LINMAP) approaches being most representative for managing heterogeneous decision-making problems (Chen, 2019;
Herrera-Viedma et al., 2021; Li & Wan, 2013, 2014; Wan & Dong, 2015; Wan & Li, 2013a,b, 2015; Wan et al., 2017,
2020; Wu et al., 2018; Zhang et al., 2016).

LINMAP was proposed by Srinivasan & Shocker (1973), and it is one of the most well-known typical heterogeneous
MCGDM methods present in modern decision theory. Utilizing decision information on the pairwise comparisons of
alternatives and on the criteria values, it can objectively derive the optimal weights and accurately generate the best
compromise alternative. Based on the traditional LINMAP, Zhang et al. (2016) and Li & Wan (2013, 2014) developed
fuzzy mathematical programming approaches to deal with heterogeneous decision-making problems; Wan & Li (2013a,b)
investigated IF programming methods for heterogeneous MCGDM with IF truth degrees; Wan & Dong (2015) and Wan
& Li (2015) explored interval-valued IF (IVIF) programming methods for heterogeneous decision making with IVIF
truth degrees; Wan et al. (2017) presented an HF mathematical programming method for hybrid MCGDM with HF truth
degrees; and Wan et al. (2020) proposed a prospect theory-based approach to handle heterogeneous MCGDM with hybrid
truth degrees of alternative comparisons.

The existing LINMAP approaches, although effective and applicable for solving heterogeneous MCGDM problems,
suffer from the following limitations.

o Although the above referenced studies have extended LINMAP to a variety of fuzzy environments, including IFVs,
IVIFVs, PFVs and HF Vs, they cannot handle some special cases. For instance, a decision maker (DM) assessment
value (0.7, 0.9) is not covered by IFV and PFV because 0.7 + 0.9 = 1.6 > 1 and 0.7> + 0.9? = 1.3 > 1, respectively.
However, this value is covered by g-ROFV when g = 4 since 0.74 + 0.9* = 0.8962 < 1. It is obvious that g-ROFVs
include extra uncertainties that IFVs and PFVs do not, which means that they are able to adapt to higher levels
of uncertainty. Therefore, extending the LINMAP to accommodate g-ROF information is of great significance for
scientific research and practical applications.

e These existing LINMAP approaches assume independence of criteria and, therefore, they cannot capture the in-
teractive characteristics among dependent criteria. There may be a situation where complementary, redundant, or
independent features exist among criteria. For example, when assessing the s-commerce credit of merchants, con-
sumer approval and delivery time can be considered as redundant criteria, while product price and product quality
can be regarded as complementary criteria. Consequently, the existing LINMAP approaches cannot address this
kind of decision-making problem. Fortunately, the Choquet integral (Grabisch, 1996) can capture the complex rela-
tionship among criteria since it is based on the 2-additive fuzzy measure (2AFM) (Grabisch, 1997) or the Banzhaf
index (Marichal, 2000), which is a powerful tool to model the interaction or independence of criteria (Liu et al.,
2021). Therefore, we shall combine the LINMAP with Choquet integral to overcome this issue.

e The following approaches (Chen, 2019; Wan & Dong, 2015; Wan & Li, 2013a; Wan et al., 2017, 2020; Zhang
et al., 2016) are based on the assumption that the weights of experts are neglected, completely unknown or already
known. Due to the complexity and uncertainty of decision-making problems and the inherent subjective nature of
human thinking, It is common that experts’ weights are partially known in real heterogeneous MCGDM (Zhang
et al., 2015). In such a case, the above methods are inconsistent with the real importance of experts because they
do not capture their valuable subjective judgement. Additionally, it is difficult for these methods to provide a clear
illustration of the outcomes (Liu & Hu, 2015). To guarantee the accuracy and interpretability of a decision result, it
is necessary to take advantage of the provided partial information on experts’ weights.

e The following approaches (Chen, 2019; Li & Wan, 2013, 2014; Wan & Dong, 2015; Wan & Li, 2013a,b, 2015;
Wan et al., 2017, 2020) transform multiple objectives into a single objective by dimension reduction methods and
then optimize the single objective. The shortcomings of these approaches are various: the subjectivity involved in
dividing the hierarchy; the assignment of different weights to each objective and the trade-off relationships among
the objectives are neglected, which result in less reliable optimization outcomes (Deb, 2001). In fact, these multi-
objective programming models can be directly solved using an intelligent optimization algorithm to derive the
Pareto set including many non-dominant optimal solutions. Accordingly, DMs select the desirable solution ac-
cording to their preferences. It is worth mentioning that the adaptive non-dominated sorting genetic algorithm III
(A-NSGA-III) (Jain & Deb, 2013) is one of most representative intelligent optimization algorithms. It can simulta-
neously optimize many objectives using optimal search in the objective space (Jain & Deb, 2013). Consequently, to
derive a more reasonable solution, A-NSGA-III (Jain & Deb, 2013) will be used to directly solve the many-objective
programming model.

All of the aforementioned deficiencies limit the application of the extensive LINMAP methods. To address these
issues, based on the above analysis, a novel multi-objective ¢-ROF programming approach is created for heterogeneous
MCGDM with ¢-ROF truth degrees and incomplete weight information. First, g-ROFVs are used to express fuzzy truth
degrees of alternatives comparisons; the g-ROFVs, HFVs, TrFVs, intervals and crisp values are used to describe crite-
ria values. Then, borrowing the ideas of the Choquet integral (Xu et al., 2021) and technique for order performance by
similarity to ideal solution (TOPSIS) (Liu & Zhang, 2013), the Choquet-based relative closeness degree is developed.
Next, the g-ROF Choquet-based group consistency index (g-ROFCGCI) and ¢g-ROF Choquet-based group inconsistency
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index (¢-ROFCGII) are defined. Meanwhile, by minimizing the g-ROFCGII and maximizing the g-ROFCGCI, a new
multi-objective g-ROF mathematical programming model is constructed to accurately derive weights of experts and cri-
teria. Based on the score and accuracy functions of g-ROFVs, the g-ROF programming model is transformed into a
many-objective programming model. Afterwards, the A-NSGA-III (Jain & Deb, 2013) is applied to solve the established
model to derive the Pareto set. Accordingly, the desirable solution, as the weighting result from the last Pareto set, is
selected using TOPSIS (Liu & Zhang, 2013). Furthermore, the preferred ordering of alternatives is derived by computing
the Choquet-based overall relative closeness degrees. In this way, a new multi-objective g-ROF programming method is
put forward for heterogeneous MCGDM problems.
The main contributions and novelty of this study are:

e Formulating the truth degrees of alternatives comparisons using g-ROFVs for the first time, which accurately and
flexibly addresses MCGDM problems that involve a high degree of uncertainty.

e Proposing a Choquet-based relative closeness degree based on the Choquet integral (Grabisch, 1996) and TOPSIS
(Liu & Zhang, 2013), which globally captures the positive synergetic interactive, negative synergetic interactive
and independent characteristics of the criteria.

o Introducing a new multi-objective ¢g-ROF programming model based on the LINMAP (Srinivasan & Shocker, 1973)
and then designing its solution algorithm using the A-NSGA-III (Jain & Deb, 2013), which accurately derives the
optimal weights of criteria and experts.

e Developing a multi-objective g-ROF programming method to handle heterogeneous MCGDM problems concerning
the evaluation of s-commerce that overcomes the weaknesses of previous decision-making approaches (Khan, 2019;
Liu et al., 2020; Peng & Yang, 2016; Wan & Dong, 2015; Wan & Li, 2013a; Wan et al., 2020). Relative to these
previous methods, the main advantages of the developed MCGDM approach are that it flexibly expresses decision
information, globally captures the interactions among criteria, and also objectively determines weighting vectors.

The remainder of this article is presented as follows. Section 2 reviews some concepts regarding the ¢g-ROF set (g-
ROFS), the HF set (HES), TrFVs and the Choquet integral. Section 3 formulates the heterogeneous MCGDM problem
with incomplete and interactive conditions and describes a resolution process for it. In Section 4, according to the resolu-
tion process, a multi-objective ¢g-ROF programming model is constructed, and then its solution is obtained based on the
A-NSGA-III. In Section 5, the applicability and advantages of the proposed method are explained using four application
cases. Section 6 concludes this article.

2. Preliminaries

In this section, we will recall some basic concepts regarding ¢g-ROFSs, HESs, TrFVs and the Choquet integral that
shall be used later in the article.

2.1. q-ROFS
Definition 2.1 (Yager (2016)). A ¢-ROFS Q in a fixed set Y is denoted by

Q= {(, (o), foNly € Y}, (1)

where go(y) and fo(y) represent the membership degree (MD) and the non-membership degree (NMD) of elementy € Y to
the q-ROFS Q, respectively, with the restrictions that go(y) : Y — [0, 1], fo(y) : ¥ — [0, 1], 0 < (g + (fo(y)? < 1
and q > 1. The degree of indeterminacy of element y € Y belonging to the g-ROFS Q is m = (1 — (go(»)? — (fQ(y))‘I)l/‘f.
For convenience, Q = (g, f) is called a g-ROFV.

IFV and PFV (Lin et al., 2021a; Meng et al., 2022) are special cases of g-ROFV, and their space ranges are displayed
in Fig.1.

Definition 2.2 (Liu & Wang (2018)). It is assumed that Q| = {t1, fi) and Q, = {t2, f>) are two g-ROFVs. Their algebraic
operations are

01 ® 02 = ()7 + (82)7 = (€187, fi o), 2)

401 = (1 = (1 = @))%, (f). 3)

To rank g-ROFVs, the score and accuracy functions of g-ROFV Q1 = (g1, fi) were defined as S(Q1) = (g1)? — (f1)? and
A(Q1) = (g1)? + (1), respectively (Liu & Wang, 2018).
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Fig. 1. Comparison of space of IFV, PFV and ¢-ROFV

Definition 2.3 (Liu & Wang (2018)). It is assumed that Q| and Q, are two q-ROFVs. Then,

DIfS(Q1) > S(Q2), then Q) > O;
2)IfS(Q1) = S(Q2), then
a)if A(Q1) > A(Q2), then Q1 > O;
b)ifA(Q1) = A(Q2), then Q1 = Q.

Based on the Euclidean distance of IFVs (Szmidt & Kacprzyk, 2000), the Euclidean distance between g-ROFVs Q; =
(g1, f1) and O, = {g», f>) is defined as

21
401 02) = | 1~ 8P + 11 = £8P + 1 — 4P @

2.2. HFS
Definition 2.4 (Xia & Xu (2011)). An HF'S D in a fixed set Y is denoted by

D = {y, hp)ly € Y}, ®)

where hp(y) represents a set of values in [0, 1], denoting the possible membership degrees of element y € Y to the HF'S D.
For convenience, h = {yy,v2,---,7v.} is called an HFV, where 0 < y; <y, <--- <y, < 1.

The number of values in different HFVs may be different. To deal with this case, Xu & Xia (2011) put forward the
following method to normalize HFVs: let 2 be an HFV; it can be normalized by adding values. The added values are
defined as ¥ = ¢y1 + (1 — @)y, where ¢ (0 < ¢ < 1) is a parameter provided by the DM according to his/her risk
preference. Let ¢ = 0.5 in this article. To derive the Euclidean distance between HFVs h; and hy, Xu & Xia (2011)

further propose the expression
|1 X
d(hi. o) = §| - Z; et = el (©6)

where #h; and #h, denote the cardinalities of the sets /; and Ay, respectively, ¢ = max{#h;, #h,}; v, and y,, denote the
k—th values in h; and h,, respectively. It should be noted that HFV's need to be normalized in advance for the computation
of their distance measure.

2.3. TrFV
It is assumed that S = (s, 52, 53, 54) is a TrFV, whose membership function (Delgado et al., 1998) can be written as

O =sD/(s2=s1), ifs;<y<s;

1, ifsh <y<ss

u(y) = . @)
(s4=y)/ (54— 83), ifs3<y<sy
0, ify > ssory < sy

where s; < 55 < 53 < s4. When s; = s, = 53 = 54, the TrFV § becomes a crisp value. When s; = s, and s3 = sy, the
TrFV S becomes an interval value.

It is assumed that S = (s, 82, 83, 84) and ¢ = (g1, $2,63,64) are two TrFVs. Their Euclidean distance (Wan & Li,
2013a) is

21
des,0) = \/6((3'1 =612 +2(52 = 62)% + 2(53 — 63)% + (54 — su)P). (8
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2.4. 2AFM and Choquet integral
Grabisch (1997) proved the following theorem to obtain a 2AFM.

Theorem 2.1 (Grabisch (1997)). Given the set C = {c|,ca,- + -,cn}, nis a 2AFM on C if the following restrictions are
verified:

1) p({c;}) 20,VYc; € C;

2) > ulepeh=m=2) Y peh=1;

{cj.cqlcC {c;lcC

3) Z (ucj, cq)) — pulc;)) = (1Bl = 2u({cyD), VB € C with ¢, € B and |B| > 2.
{¢;ICB\¢,

Although u(B) (B € C) could be regarded as the importance of decision criteria set B, it only models the interactions
between two criteria, which may result in information loss. To overall capture the interaction among criteria, the following
generalized Banzhaf function with 2AFM was provided.

Theorem 2.2 (Marichal (2000)). [z is assumed that p is a 2AFM on the set C. The generalized Banzhaf index with 2AFM
His
1 |C| + |B| - 4
wB = 3 pliepe+ D 5 (ullejcpd) =~ IBlule)) - === )" ulle;). ©)
{cj.cqlCB cj€B,c,eC\B ci€B

where B represents any subset of C, C\B represents the difference set between C and B, and |B| and |C| are the cardinality
of B and C, respectively. If there is only one element c; in the set B, namely, B = {c;}, then (9) becomes the Banzhaf
function with 2AFM:

3- 1
wlleh = —ude+ Y 5 (e e = ule,)). (10)

¢ €C\c;

Definition 2.5 (Grabisch (1996)). Let i be an FM on the set C and y be a function on the set C. The Choquet integral of
yis

Cu(y(cay), y(c@), -+ ¥(cmy) = Zy(c(j))(ﬂ(cm) = u(Cje1y))s (1D
J=1

where the subscript (-) is the permutation of the elements in the set C such that y(c)) < y(cp) < -+ < y(cw), and

Cy = ey cisnys =+ o Cont with ¢y = 0 (j = 1,2, - -, n).

3. Framework for Heterogeneous MCGDM with Incomplete Weights and Interactive Criteria

In this section, we first describe the heterogeneous MCGDM problem with incomplete weight information and inter-
active criteria. Then, we present its resolution framework.

3.1. Description of the Heterogeneous MCGDM Problem

For simplicity, we use the following notations to model the heterogeneous MCGDM problem with incomplete and
interactive conditions:

Z ={z1,22, -, Zm} : the set of m alternatives, where z;(i = 1,2, - - -, m) denotes ith alternative.

C ={cy,c2,+, ¢y} : the set of n criteria, where ¢;(j = 1,2, -+, n) denotes the jth criterion. These criteria are classified
into five types: Cy = {c1,c2,+++,¢j 1, C2 = {cj,41,Cj 42, €}, C3 = {Cjr11,Cjp2, s Cjy b Ca = {Cjyx15 Cjyaas oo+ €l )
and Cs = {¢j,+1,Cjy2, - »Cu}, Where 1 < ji < jp < j3 < jy <n, CeNCp =0, f=12,---,5¢g # f)and
Uf C, = C. The sets Cy, Co, C3, C4 and Cs are criteria sets, where the criteria values are denoted by crisp values,
intervals, TrFVs, HFVs and ¢-ROFVs, respectively. These criteria are classified into two categories: costs and
benefits. It is assumed that C,; and C;, are the sets of cost and benefit criteria, respectively, verifying C, U Cp, = C
and Cy N C), = 0. Here, the criteria are interactive.

W = (u({ci}), u({ca)), -+, u({cn-1,c,})) : the vector of n(n+1)/2 2AFMs on the criteria set, where u({c;H(j = 1,2,
-,n) denotes the importance degree of criterion c;, such that 0 < u({c;}) < 1, and u({c;, c;D(j, g = 1,2, - -,n; j # q)
represents the importance degree of criteria set {c;, ¢}, such that 0 < uf{c;,c,} < 1. Due to the complexities and
uncertainties of the actual MCGDM problem and the DM’s limited experience in the problem, the information on
the weights of criteria is commonly incomplete.

E = {ej,es, -+, e,}: the set of o experts, where e.(t = 1,2, - -, 0) denotes the tth expert.
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w = (wy,wy, -+, W,) : the weighting vector of o experts, where w (7 = 1,2, - - -, 0) denotes the weight of expert e,
verifying w, > 0 and }.?_, w. = 1. In this paper, the information on the weights of experts is partially known.

AT = [AT. : heterogeneous decision matrices, where AT, is the outcome of alternative z; concerning criterion c;
ijlmxn ij i J
provided by expert e;.

QF = {((k, D), 1} MNzx 2 z; with 7 (k,i = 1,2, - -, m)}: experts’ preference relations between alternatives, where (&, i)
denotes an ordered pair of alternatives z; and z; of which expert e, prefers z; to z; (expressed by zx >; z;) with the
g-ROF truth degree 17 ;.

The research question addressed in this article is how to choose the optimal alternative(s) by making full use of three
different types of decision information, namely, the criteria information, pairwise comparisons of alternatives and weight
information, while capturing the interactions among criteria.

3.2. Constructed Framework

Figure 2 depicts the below described four phases of the resolution framework of the the above problem:

Acquiring information phase. In this phase, a committee made up of a set of experts and DMs is formed. The set of
alternatives and set of criteria are determined. Experts provide the information on criteria values and on pairwise
comparisons of alternatives. DMs provide the weight information on criteria and experts.

Calculating Choquet-based relative closeness degree phase. In this phase, crisp, interval, TrFVs, HFVs and ¢-ROFVs
decision data is normalized. Positive and negative ideal solutions are identified. A new formula is provided to
calculate the Choquet-based relative closeness degrees of alternatives based on 2AFMs.

Establishing ¢-ROF programming model phase. In this phase, ¢-ROFCGCI and ¢-ROFCGII are defined. A new multi-
objective g-ROF programming model based on LINMAP is established to derive optimal 2AFMs on the criteria set
and optimal experts’ weights.

Solving the model and ranking alternative phase. In this phase, the established ¢g-ROF programming model is trans-
formed into a many-objective mathematical programming model. Then, the A-NSGA-III-based optimization al-
gorithm is designed to solve the many-objective programming model and to derive the Pareto set. Subsequently,
TOPSIS is used to select the desirable solution from the Pareto set as the weighting result. Accordingly, the
Choquet-based overall relative closeness degrees of alternates are computed. Finally, a preferred ordering of alter-

natives is obtained.

( 1. Acquire information phase )

\____+____/

‘ Form a group of experts and DMs ‘

v

‘ Determine alternative sct and criteria set ‘
[

Provide information on Provide pairwise Provide weight information
criteria of alternatives comparisons of alternatives on criteria and experts

/" 2. Calculate Choquet-based \ ( 3. Establish ¢-ROF ( 4. Solve the model and )\
\!ela_ﬁvec_lﬂs%ﬁ&whys wpEmmninsmodeiphiass «Jank alternative phase

Transform it to many-

Normalize heterogeneous
objective programming model

decision matrices

4>< Define the g-ROFCGCI ‘

i _ v
akteisy (i Define the ¢-ROFCGII Solve it by A-NSGA-III
ideal solution
Identify the negative Establish the g-ROF Pick up the desirable
ideal solution progr ing model solution by TOPSIS

Calculate Choquet-based
individual closeness degree

Compute the overall
relative closeness degree

Rank the alternatives

Calculate Choquet-based
overall closeness degree

Fig. 2. Resolution framework for heterogeneous MCGDM
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4. The Developed ¢g-ROF Programming Method

In this section, a detailed description of the proposed ¢g-ROF programming method will be presented on the basis of
the resolution process depicted in Section 3.

4.1. Information Acquisition

To make a scientific evaluation and decision, a committee composed of a set of experts and DMs is formed. Then, the
set of alternatives Z and set of criteria C are identified. The three types of decision information the committee members
provide are described below.

4.1.1. The information on criteria value _

Expert e;(t = 1,2, - -,0) provides evaluation information AIT].(i =1,2,---,m;j = 1,2,---,n) for the alternative z;
concerning criterion ¢;. It should be noted that if ¢; € Cy, AZ]. should be given in the form of a crisp value, denoted by
AlTj = 'cflTj; if ¢; € Cy, Al.Tj should be given in the form of an interval value, denoted by AiTj = lle, ,BITJ.Z]; if ¢; € Cs, AL.
should be given in the form of a TrFV, denoted by Al.Tj = @,1’ Sij Iﬂ, 1j4); if cj € Cy, Al.Tj should be given in the form
of an HFYV, denoted by AT. = {y [le,’ifﬂ,- . ~,371Tﬂ };if ¢; € Cs, A:}. should be given in the form of a g-ROFYV, denoted by
AT =<7 ”,jf/ >, where 0 < @j, 0 <,8le _/3/2,
0<g <l 0<f’<1and(7)q+(f )‘1<1 where g > 1.

When all the experts give evaluatlon information for the alternatives concerning the criteria, the heterogeneous deci-
sion matrices AT = [AU],,,X,,(T =1,2,---,0) are derived.

0<s., <%, <, <%

. Pyid
1J1—112—1j3—1j4<10<y S’yijLiTjSl’

ijl — 71/2 -

4.1.2. The information on alternatives’ pairwise comparisons

Experts provide truth degrees of alternatives’ pairwise comparisons using g-ROFVs due to their powerful capability
to describe uncertain information. Taking an ordered pair of the alternatives z; and z, as an example, if expert e; prefers
alternative z; to zp with the truth degree (0.9, 0.7), then the preference relation between the alternatives z; and z, provided
by expert e; is represented by ((1,2), t{,z), where t}z = (0.9,0.7). In this way, all the preference relations between

ordered pairs of alternatives provided by the experts are derived, and denoted by Q7 = {{(k, i), tT zx =r z; with ZT (ki =
1,2,---,m)}(r = 1,2,---,0), where I <g,r f,r ) is a g-ROFYV, verifying the restrictions that 0 < g,r < l 0 < f,r < 1 and
(87 ) + (f,r )? < 1, where g > 1. An (A, V) cut set of Q7 is denoted by Q = {(k, l)|g,r > h, f,r <v(k,i=1, 2 -,m)},

whereO < h <1,0< v <landh?+v?<1,whereq > 1. Then, the support of Q7 is Q<01> (k z)|g,r 20, fe < l(k i=
1,2, - -,m)}. The number of alternative pairs in Q o1 is denoted by |Q m |, which is at most m(m — 1)/2. Usually, the
preference relations provided by Q , are of partlal order (Wan & Li, 2013a) In most cases, the experts cannot provide
all preference relations and only spemfy some pairwise comparisons between alternatives, namely, |Q7 0. 1>| <m(m—-1)/2.

4.1.3. The information on weights of criteria and experts

It is assumed that the weight information provided in this article takes the form of intervals. For example, when
assessing the weight of ¢;, DMs may provide different weights, say 0.15, 0.2, 0.2, and 0.25. Then, the value range of
the weight of ¢; is expressed by 0.15 < u({c1}) < 0.25. In this way, the interval weights of all criteria c;(j = 1,2, - -,n)
and criteria sets {c;,c,} (j,g = 1,2,---,n; j # ¢) are derived. For convenience, let A be the set of all interval weights of
¢j(j=12,---n)and {cj,c,} (j,q = 1,2, - -,n; j # q) provided by DMs. Similarly, the set of all interval weights of
experts are derived and denoted by I'.

4.2. Calculation of Choquet-based Relative Closeness Degree

4.2.1. Normalization of the decision-making information
It may be necessary to normalize criteria values to guarantee their compatibility since criteria are often classed into
benefit criteria and cost criteria, and different criteria have different dimensions and measurements. This is the case in this
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study, and therefore the following is applied to normalise criteria values Xf] into Al

n= ‘i—; ifc;€ C,NCp
ay=1-2, ife; e CiNCy

By B )
,,]1[3,!0 _]l ﬂ/jz], lfchCQQCb

/”77 ; .
Bl =11 - —’v B" 1, ifc;e C2NCy

L
T _ _ S S S S .
Ai_,‘ = (S,jlv ij2° 3,137 114) (j’js i ﬁ)v _ _ lfc] € C3 ﬁ Cb (12)

s G S .
(8715 S0 81730 ST) = (1 = _;jj,l— ;’j I-=01- 7’:) ifc;e C3NCy
Wi Y7 = O Vi Vi b ifc; e C4NCy
Wi Vi) = =T L =T 1= T ifc; € C4NCy
(&7 15 = & ), ifc; € G5 Gy
(i fip) = 5. 80 ifc;e Cs(Cy

where @; = max{afj} Bj = max{,BTA }and 5; = m’ax{ 114} {71‘3‘1’7;,'2" . "ViTij} is derived using Xu & Xia (2011)’s

-

normalization method where ¢; = max{ it

4.2.2. Identification of positive and negative ideal solutions
Based on the central value of TrFV (Delgado et al., 1998), the score function of HFV (Xia & Xu, 201 1) and score

and accuracy functions of g-ROFV (Liu & Wang, 2018) we derive the optimal ideal solution A= (AI,AZ, A,) and
negative ideal solution A = (A4,,A,,- -+, A,) as below:

Ej, iij e C
81,82 ifc; € Gy
A;=3(51,502,5/3,5)  ifc;€C3 (13)
Yo v ifc;jeCy
<§j,]_‘j >, ifc; € Cs
and
@ ifc; e Cy
[B’ﬁ] iijECz
éj: (sjl’ 22 j3’£j4) iij€C3 (14)
{Zjl’__jz’ . .’Zﬂ,}’ lij € Cy
< Ej,fj >, lij S C5
where @; = max{olej} Bj = max{ﬁl?jk k = 1,2), 5 = max{sUK}(K = 1,2,3,4), ¥, = max{yUK}(K = 1L,2,-- 1)),

gj = max g”} f = mln{f”} @; = mln{ ]} Ej = mlnLB,/K}(K =1,2), S = mln{aw}(/( =1,2,3,4), ij = niliTn{yZ/K}(K =

1,2, -,Lj), 5_; = nl]}n{gij } and fj = rrlyﬁx f,j .
4.2.3. Calculation of Choquet-based overall relative closeness degree

From (4), (6) and (8), the squares of Euclidean distances dz(A,.Tj, A ;) and d*(zi, A ].) between AITJ. and A ;j and between AITJ.
and A j are derived, respectively. '

(@], - @), ifc; e Cy
3BT =B + B, =B ifc; € Cy
d*(AT.A)) = 6((s,,1 50 425, = 5p)7 + 2575 = 5p)0 + (5T =50, ifcj € Cs (15)
2 Vi =73 ifc; € Cy
2<K<Egi D= @Y+ (T = (£ )1 + ()T = @), ifc; € Cs
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where JT[T/ = 41— (gl.Tj)‘l - (f;.;)‘f is the hesitant degree of g-ROFV A[T/ and7; = ¢f1 - §‘JI - f;f, is the hesitant degree of Zj.

(a; = g/')2’ ifc;eCy
3BT, =B, + B =B ), ifc; € Cy
dz(AlTj,éj) = é((l‘jiTj] - E_/l)z + 2057, = Ejz)2 + 20575~ 5_13)2 + (87 = §j4)2)’ ifcj e Cs (16)
g ZOh=y, ) ifc; € Cy
%(((gfj)q - (gj)q)2 +((fT = (F D> + (i) = (Ej)q)z), ifcj € Cs

where 77, = 1= g[]’. - 7{/' is the hesitant degree of A ..

Based on TOPSIS (Liu & Zhang, 2013), the relative closeness degree cd;; of A7, with respect to A jand A is derived:

PATA)
edfy= ———— 0 17
dp(A,,a A/) + d;](A”, Aj)

Under the assumption independence of the criteria set C, and its weighting vector being W = (wy, wy, -+, w,,), the relative
closeness degree cd] of the alternative z; concerning expert e; is derived:

n
cd = Z wjcd;;. (18)
j=1

As mentioned before, in practice, the criteria may be dependent (Liu et al., 2021), making (18) unsuitable for this kind
of decision-making problem. Nevertheless, the 2AFM is a powerful tool to describe the interaction among criteria (Gra-
bisch, 1997), and the Choquet integral (Grabisch, 1996) concerning 2AFM can effectively aggregate decision information
with complex relationship. Thus, the following Choquet-based individual relative closeness degree cd] of the alternative
z; concerning expert e; is proposed

ed” = Z(/l(c(j)) — u(Cjrn)edy ), )

J=1

where cdif(j) represents the j-th smallest value in the set {cd]}, cdy,, - - -, cd] }, c(j) represents the criterion corresponding to
cdijy, C(jy = {cj, Cjst,* + - e} With Ci1y = 0, and u denotes a 2AFM on the criteria set C.

Note that (19) only captures the interaction between adjacent combinations of criteria, C(;) and Cj1). In fact, other
combinations of criteria should also be reflected, which means that (19) may not always be suitable. In the following, to
globally reflect the various combinations of criteria, we extend the generalized Banzhaf index to (19) and then derive the

below improved Choquet-based individual relative closeness degree cd] concerning expert e-

cdf = > W(Cy) = W(Ciin)edy,, (20)

J=1

where y¥/(C(;)) denotes the generalized Banzhaf index with 2AFM on the criteria set C(j,. Since Y(Cj) — Y(Cjr1)) =
Y({cj}) (Tang et al., 2020a), (20) can be equivalently transformed into the following form:

cdf = > wlleeds, @1

J=1

where Y({c;})(j = 1,2, - -,n) denotes the Banzhaf function with 2AFM on the criterion c;. It is apparent that the larger
the value of cd; is, the better the alternative z; for expert e, is. Thus, the improved Choquet-based individual relative
closeness degree cd] could be regarded a type of objective criteria for identifying the preferred order of alternatives.

Finally, by integrating all individual relative closeness degrees cdl.l, cdl.z, -+, and cd, we derive the Choquet-based
overall relative closeness degree cd; of the alternative z;

[ n

cd; = i weed] = Z Z thﬁ({cj})cd;j, (22)
=1

=1 j=1

where w. represents the weight of expert e;.
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4.3. Multi-Objective g-ROF Mathematical Programming Model

4.3.1. Definitions of q-ROF Choquet-based consistency and inconsistency indices

As mentioned above, the preference relations Q7 provided by experts are pairwise comparisons of alternatives with
no criteria involved, which captures experts’ subjective views on ordered pairs of alternatives. Thus, it could be consid-
ered as a type of subjective information for identifying the preferred order of alternatives. Additionally, the improved
Choquet-based individual relative closeness degree cd] could be regarded a type of objective information for identify-
ing the preferred order of alternatives. To make a fit decision, the subjective and the objective information should be as
consistent as possible.

It is assumed that the criteria weighting vector W is provided in advance. For the ordered pair of alternatives (k, i)
and expert e;, we can compute the improved Choquet-based individual relative closeness degree cd; and cd] using (21).
Assuming that expert e, prefers z; to z;, (k, i) € Qf |, if cdi > cd], then the improved Choquet-based individual relative
closeness degree of alternative z; is larger than that of alternative z; for expert e;. Thus, the objective preferred order
of alternatives z; and z; obtained by cd; and cd] based on criteria weighting vector W' is consistent with the subjective
preference relation provided by the expert e;. Conversely, if cd; < cd;, then the objective ranking order based on criteria
weighting vector is inconsistent with the subjective preference relation, and the criteria weighting vector W is not chosen
properly.

To measure the degree of consistency between the ranking order of alternatives z; and z; obtained by cd] and cd;, and
the preference provided by expert e, (who prefers zx to z;), the following ¢g-ROF Choquet-based consistency for the expert
e, 1s provided:

(cdf = cdf)t,:,i, cd] > cd]

23
0, 1), cdp < cdf 23)

(cdf, — cd})* ={

It is obvious that the objective preferred order of alternatives z; and z; obtained by Choquet-based individual relative
closeness degrees cd; and cd is consistent with the subjective preference provided by the expert e; if cd; > cd}. In such a
case, (cd; — Caf[.r)+ is defined to be (cd] — cd] )iy ;. On the other hand, the preferred order of alternatives z; and z; obtained by
cd; and cd; is inconsistent with the subject preference provided by the expert e if c¢d] < cd}. In such a case, (cd] — cd])*
is defined to be (0, 1). The consistency index can be rewritten as:

(cdf — cd?)* = max{0, cdf — Cdf}z‘,:,l.. (24)
The collective consistency index for the expert e, is defined as:

G'= > (edi-cd) = > max{0,cd] - cdf},. (25)

(k,i)eﬂzo. " (k,i)eﬂza "

Definition 4.1. The q-ROFCGCI is the weighted average of the set of collective consistency indices {G',G*, . ..,G°):

o0

G= 2 w:G" = 2 wWr Z (cdf —cd})* = Z Z w, max{0, cdy — cd} )ty ;. (26)
=1

=1 (kDEQY =1 (k)eQy,

Analogously, the g-ROF Choquet-based inconsistency for the expert e; is:

d’ —cd)t ., cd] <cdf
(edy = cdry = |~ el edi < cd; @7)
0, 1), cdp > cdf
This can be expressed as:
(cdy = cdi)™ = max{0, cd] — cdi}ty ;. (28)
The collective inconsistency index for the expert e; is defined as:
B = Y (cdi—cd) = ) max{0,cdf - cdi)if, (29)

(ki)

o (ki)

(0,1)

Definition 4.2. The g-ROFCGII is the weighted average of the set of collective inconsistency indices {B', B>, ..., B°}:

o

B= Z w.B" = Z we Y (edi—cd)y =) Y wemax(0,cd] - ed)i, (30)
=1

=1 (kDEQY =1 (ki)eQ,

Remark 4.1. Notably, G and B are g-ROFVs since truth degrees are expressed by g-ROFVs. Despite many studies having
extended consistency and inconsistency indices to a variety of fuzzy settings (Chen, 2019; Li & Wan, 2013, 2014; Wan
& Dong, 2015; Wan & Li, 2013a,b, 2015; Wan et al., 2017, 2020; Zhang et al., 2016), no attempt has been made to use

10



25 q-ROFVs to describe fuzzy truth degrees. This is the main distinction between our method and the previous methods.

4.3.2. Establishment of the multi-objective q-ROF programming model
Both g-ROFCGCI G and g-ROFCGII B capture the total consistency and inconsistency between the objective preferred
order and the subjective preference relations provided by the group of experts, the greater the value of G and the smaller
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the value of B are, the more the weight information is reasonably derived by the model. Based on this and Theorems 2.1
and 2.2, the following multi-objective g-ROF programming model is established to identify the optimal weighting vectors
of criteria W* and experts w*.

max<{G = Z Z w, max{0, cd; - cd}]t,z‘i
=1 (ki)eQY],

(0.1)

min{ B = Z Z wrmax{0, cd] — cdi}t;
=1 (ki)eQ

(0,1)

gleh) = Fuleh + 3 Fulc) cgh) = plleg), e, € C
c,€C\c; (3])
2 plcjeh=m=2) ¥ pleh) =1,
{cjcqtcC {c;}cC
( IZS\ (ucj, cgh) = ulleh) = (S = 2)ulc,h), ¥S € C with ¢, € S and |S| = 2;
ci}CS \c
R AN
M ulen 2 0.v¢; € ¢
u({eh, ulcj, cgh) € A, Vet {cj, cq} € C;
0w <l(r=12,---,0); Y w- =1;
=1
wel(r=1,2,---,0).
Denoting &; = max{0, cd; — cd;'} and A}, = max{0, c¢d] — cd;}, model (31) can be rewritten as:
max {G = Z Z wrglfit,ii}
=1 (ki)eQ,
o
min< B = Z Z WAL,
=1 (ke ,,
& = max{0, cd; — cd}}, (ki) € Q«) l>(T =1,2,---,0);
Ay = max{O cdf = cd}, (k, 1) € Q(o 1>(‘r =1,2,---,0);
Yicjh) = Frulle;h) + % 5(u(iej cgh) = pllegh, Ve, € C (32)
LqE (‘I
{ Z} ucjcg) —(n=2) Z /t({C, )=1
CjCq cC C, S

S.1.

Z (u{cj,cqh) — pllc;h)) = (|S| 2)u({cg)), VS € C withe, € S and |S] > 2;
CS\¢q

{c,}) >0,Vc; € C;
u({e;h, ulcj, cqb) € A Vich{ej gl € C

0<w, <l(r=12,---,0); Y w-=1;
=1

w,el(r=1,2,--+,0).

The detailed discussion on the boundedness and monotonicity of the ¢g-ROF programming in (32) is provided in

Appendix I.

Remark 4.2. Model (32) is a g-ROF programming model because its objective functions involve q-ROFVs, while Zhang
270 et al. (2016)’s method is an ordinary programming model, Wan et al. (2017)’s method is an HF programming model, Wan
et al. (2020)’s method is a hybrid programming model, Wan & Li (2013b)’s method and Wan & Li (2013a)’s method are
IF programming models, Li & Wan (2013)’s method and Li & Wan (2014)’s method are TrF programming models, Wan &
Dong (2015)’s method and Wan & Li (2015)’s method are IVIF programming models and Chen (2019)’s method is a PF

programming model. This is another prominent difference between tour model and he existing models.

11
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Remark 4.3. Since model (32) is based on 2AFMs, it considers the interactions among the criteria, which is a new and
key contribution that the existing models (Chen, 2019; Li & Wan, 2013, 2014; Wan & Dong, 2015; Wan & Li, 2013a,b,
2015; Wan et al., 2017, 2020; Zhang et al., 2016) are unable to offer.

4.4. A Solving Method for the Multi-Objective qg-ROF Programming Model

In what follows, a novel approach is proposed to solve model (32). According to (2) and (3), the objective functions
of model (32) are both the following g-ROFVs:

i 3wt = < 41—]1[ [T a-@gnes, H [1 (ﬁ;,,.)‘"ffii> (33)

=1 (ki)eQy, |, =1 (ki)eQy, =1 (ki)eQy,

and

Sy w,a;,,t,;,,:< dl—ﬁ [T a-eooa]] [] (f,;,WZf>. (34)

=1 (k)eQf, =1 (k)eQ] =1 (ki)eQf

Using the score and accuracy functions of g-ROFVs, model (32) can be transformed into the following many-objective
mathematical programming model:

min{zl =-1 +ﬁ [ (1—(g,;_,.)q)“fflf+(|i[ [ (f,;,,.)”ff@)‘f}

=1 (k, l>€Q<OI> =1 (k, z)EQm”
4 o
miniZ =1+ [ ] [] a-@gos-] [] o
=1 (ki)eQ, s =1 (ki)eQ, s
0 o
minizs=1-[] [] a-e)n=%-] [] ¢y
=1 (ki)eQy, =1 (keQy, |,
0 0
min{zy=1-[] [| a-@o %+ [] &)
=1 (ke =1 (ke

(35)
&= max{0, ch —cd}, (k,Q) € Q«) 1>(T =1,2,---,0);
Ay = max{0, c¢df — cdp}, (k,i0) € Q<0 1>('1' =1,2,---0);
e = Suteh+ 3 Sullejcgh) - ulleg). Ve, € C;

c,€C\c;
o Z}Ccﬂ({c,, q})—(n—Z) Z #({c,})—l

s.t. Z\ (ucj, cqd) — u(c;) )) 2 (|S| - 2Du({c ), VS € C with ¢, € S and |S] = 2;

F

u(fe;) = 0.Vc; € C;
u(e;h, ulc;, cqh) € A, Ve, {st ¢} € C;
< w

0 <1(T=l,2,~~~,0);2w7=1;
=1

w,el(r=1,2,--+,0).

Remark 4.4. Model (35) involves 4 objective functions, ZIQ >| + (n? + n)/2 + o unknown variables, n + 2 + 2|Q

equalities and n x 2"~ + o inequalities (excluding the consnamts in A and T'). In general, the greater the |€2],
more fit the derived weighting vectors are.

<01>|

0. l>| is, the

Since model (35) has four nonlinear objective functions and many constraints, it is hard to solve using classical exact
algorithms, and a considerable amount of computational time is needed. To solve this model, evolutionary many-objective
optimization algorithms are used. A very competitive method to solving constrained many-objective optimization prob-
lems with acceptable computational requirements is the NSGA-III (Jain & Deb, 2013). NSGA-III uses reference points
and niche technology to select the novel parent population, which greatly improve the diversity of the population and the
ability to solve many-objective optimization problems. However, NSGA-III may not end up distributing all population
members uniformly over the entire Pareto-optimal front because not every extended reference line may intersect with the
Pareto-optimal front. To address this issue, the NSGA-III is made adaptive (A-NSGA-III) (Jain & Deb, 2013) in deleting
and including new reference points on the fly. Therefore, the A-NSGA-III-based optimization algorithm is proposed here

12
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to solve model (35) and further determine the optimal weighting vectors of criteria W* and experts w*. Its procedure
comprises an initialization process, the creation of offspring population (Deb & Agrawal, 1995; Deb & Goyal, 1996), the
non-dominated sorting, the selection mechanism (Das & Dennis, 1998; Yuan et al., 2015) and the adaption of reference
points. The detailed procedure description is given in Appendix I, while its algorithm flowchart is depicted in Fig. 3.
It yields a set of Pareto non-dominant solutions that denote different weighting results. Any objective of these solutions
cannot be improved without degrading other objectives. However, under the weighting context, a desirable solution from
the non-dominant solution set should be selected to denote the weighting result. In this paper, TOPSIS (Liu & Zhang,
2013) is employed to select the desirable solution from the last Pareto non-dominant set as the weighting result. Based
on (22) and the optimal weighting vectors W* and w*, the Choquet-based overall relative closeness degree cd; of each
alternative z; (i = 1,2, - - -, m) can be computed to derive the ranking order of alternatives.

‘ Specify the parameters: N, Pusluaxs PosTles PrsTln

‘ Initialize the parent population P° of size N ‘
L

Compute the objective value vector and
constraint violation value of each individual P/

¥

Generate offspring Q' of size N by the simulated
binary crossover and polynomial mutation

¥

Make infeasible offspring verify box constraints, (¢ - _4 ;le;m:negmgm_ - )
and derive a modified offspring populatonQ” | ~ ~— — — — — — — — —

( 3. Non-dominated sorting ) "‘ P =S'/F, ‘
—— = — = ¢

‘ Derive the mixed population R’ = P' UQ’ ‘ Generate /{ = C{, , reference points using

the simplex lattice design approach

Derive non-dominated levels F/,F,.,--- F/
according to the constraint domination principle

‘ Normalize each objective value of S’ ‘

P
‘ §' =F UF, U---UF] ‘ Associate S' with points using

% No the minimum perpendicular distance
Select N— | P"*" [members in F; to construct
P*"' using the niche-preserving operation

Find crowded reference points, for which pj = 2,
and add a simplex of 4 points

v

‘ Delete added reference points having p! =0 ‘

‘ Output Pareto set ‘

Fig. 3. Flowchart of A-NSGA-III-based optimization algorithm to solve (35)

Remark 4.5. We first apply evolutionary many-objective optimization to solve the multi-objective q-ROF programming
model. It can simultaneously optimize many objectives using optimal search in the objective space without predefined
weighting coefficients (Konak et al., 2006). However, the existing methods (Chen, 2019; Li & Wan, 2013, 2014; Wan &
Dong, 2015; Wan & Li, 2013a,b, 2015; Wan et al., 2017, 2020) need to subjectively divide the hierarchy or assign different
weights to each objective and neglect the trade-off relationships among the objectives, which may result in less reliable
optimization outcomes (Deb, 2001). This is the remarkable distinction between our method and the existing methods.

Remark 4.6. Our proposed multi-objective q-ROF programming method can simultaneously determine the weights of
criteria and experts. However, the existing methods (Chen, 2019; Wan & Dong, 2015; Wan & Li, 2013a; Wan et al., 2017,
2020; Zhang et al., 2016) can determine the weights of criteria but fail to identify the weights of the experts directly. This
is a sharp difference between our model and the existing models.

4.5. Decision-making process of the proposed multi-objective q-ROF programming approach

Based on the aforesaid analyses, the procedure of the proposed g-ROF programming approach is outlined as follows.
Phase 1. Information Acquisition

13
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Step 1: Form a committee composed of a set of experts E = {e}, ez, - -, €,} and DMs.

Step 2: Determine the alternative set Z = {zy, z2, - - -, 2»} and criteria set C = {cy, c2, - -, ¢}

Step 3: The experts e.(t = 1,2, -, 0) construct the heterogeneous decision matrices A7 = [Azj],,,,x,,(i =1,2,--,m; j=
1,2,---,n).

Step 4: The experts e-(t = 1,2, - -, 0) provide truth degrees of alternatives’ pairwise comparisons using g-ROFVs,
represented by Q.

Step 5: The DMs provide the incomplete weight information on criteria and experts, expressed by A and I', respec-

tively.
Phase 2. Calculation of Choquet-based Relative Closeness Degree
Step 6: Normalize the heterogeneous decision matrices A7 = (A an( = 1,2, omy j= 1,2, o7 = 1,2, -+, 0)

into AT = [A,TJ.],”X,, using (12).

Step 7: Identify the positive ideal solution A= (ZI,ZZ, . -,Zn) and negative ideal solution A = (A, A,,--+,A,) using
(13) and (14), respectively.

Step 8: Calculate the improved Choquet-based individual relative closeness degree cd (i = 1,2,---,m;7 =1,2,---,0)
and Choquet-based overall relative closeness degree cd; of each alternative z; using (21) and (22), respectively.

Phase 3. Multi-Objective g-ROF Programming Model

Step 9: Compute the g-ROFCGCI and ¢-ROFCGII using (26) and (30), respectively.

Step 10: Establish the multi-objective ¢-ROF programming model using (32).

Phase 4. A Solving Method for the Multi-Objective g-ROF Programming Model

Step 11: Transform the multi-objective ¢g-ROF programming model into the many-objective programming model
using (35).

Step 12: Solve the many-objective programming model using the A-NSGA-III-based optimization algorithm to derive
Pareto non-dominant solutions.

Step 13: Select the desirable solution from the last Pareto non-dominant set as the optimal 2AFMs on criteria set W*
and optimal weights of experts w* using the TOPSIS.

Step 14: Compute the Banzhaf index on each criterion using (10).

Step 15: Compute the Choquet-based overall relative closeness degree cd; of each alternative z;(i = 1,2, - - -, m) using
(22) and optimal weight information.
Step 16: Rank the alternatives z;, 22, - - -, and z,,, and select the best alternative based on cd, cdy, - - -, and c¢d,,.

5. Application Examples

This section provides four examples to explain the proposed multi-objective g-ROF programming approach. A com-
parative analysis is also performed to illustrate the superiority of the proposed approach.

5.1. Decision-Making Steps

Example 1. [z is assumed five well-known s-commerce merchants, anonymously denoted as z,, 22, 73, 24 and zs, and three
experts ey, e, and e3 assessing their credit status to help the s-commerce consumer select proper transaction partners
based on six criteria: cj—product price, co—delivery time, c3—product quality, ca—service quality, cs—information quality
and ce—consumer approval.

o The two criteria c| and c, are cost and quantitative criteria, respectively, while criteria c3, cs, c5 and cg are benefit
and qualitative criteria.

o The evaluation for product price c, is denoted by crisp real numbers.

e Because of the uncertainty of the time required to complete delivery, it is better to use intervals to denote the
criterion c;.
o The evaluation for product quality c3 is denoted by TrFVs because the experts prefer to provide upper, lower limits

and the most intervals for cs.

o The evaluation for service quality c4 involves multiple parts, such as service attitude, complaint rate and refund
rate. HF Vs can represent different degrees of satisfaction by several MDs, which are fit for evaluating criterion cy.

e The evaluations for information quality c¢s and consumer approval cg are divided into two parts, namely, dissatis-
faction and satisfaction, which correspond to the NMD and MD of q-ROFVs, respectively. Thus, g-ROFVs are used
to evaluate criteria cs and cg.

e [t is assumed that the criteria are independent, and their importance given by experts is A = {0.1 < u({c1}) <
0.15,0.05 < p({ca}) <0.1,0.15 < u({es}) £ 0.25,0.25 < u({eq}) £0.3,0.2 < ufes)) <0.3,0 < u({ee}) < 0.1}
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o [t is assumed that the uncertain weight information of the experts is given by I' = {0.1 < w; £ 0.2,04 < w; <
0.7,0.3 < w3 < 0.5},

o The heterogeneous decision matrices At = [A,.T,.]5><6(T = 1,2,3) are established according to experts’ views, which
are listed in Table 1. ‘

o With experts’ comprehension and judgements, they offer q-ROF preference relations between merchants, which are:

Q' = (((1,2),11,),4(2,3), 13 3), (4, 3), 1 3), (4, 5), 1, $), ((5,3), 15},

O = (1.2, £2,),((1,5). 2 (3. 20 £2,), (4,30, 20, (4, 5).22 ),

Q% = {((1,3),1] 3),4(2,3), 533, {(3,4), 15 1), (4, 2), 1), (5. 4), 12 )},

where the corresponding q-ROF truth degrees are:

tiz =(0.6,0.4), ti3 =(0.5,0.4), t}k3 =(0.6,0.3), t}LS =(0.7,0.3), téﬁ =(0.5,0.4),

tiz =(0.7,0.2), tis =(0.5,0.4), ’%,2 =(0.6,0.4), ti3 =(0.6,0.3), tis =0.5,0.3);

ti3 =(0.4,0.5), t§,3 =(0.4,0.6), t;4 =(0.4,0.6), tiz =(0.7,0.1), 12’4 =(0.3,0.5).

o The supports of Q', Q% and Q3 are:
Q) = 1(1,2),(2,3),(4,3),(4,5),(5,3)},
Q. = ((1,2),(1,5),(3,2), (4,3), (4, 5)),
Q?O,D =1{(1,3),(2,3),(3,4),(4,2),(5,4)}.
It is apparent that some of preferences relations of merchants provided by expert e contrast with those provided by
expert e;. For instance, e prefers z, to z3, whereas e prefers z3 to z5.

Table 1
Decision Making Matrices for Example 1
Expert ~ Merchants Criteria
(5] 2 c3 Cq4 Cs5 Co
21 5 [3,5] (5,6,7,9) {0.5,0.7} 0.6,0.3) (0.5,0.2)
2 5.5 [2,4] (2,5,6,9) {0.6,0.9} (0.4,0.5) (0.6,0.3)
e z3 7 [4,7] (3,5,7,8) {0.3,0.5,0.6} (0.7,0.1) (0.4,0.5)
24 6.5 [2,3] (4,6,8,9) {0.3,0.4,0.8} (0.8,0.1) (0.7,0.3)
zs5 8 [1,3] (5,7.8,9) {0.5,0.7,0.9} (0.4,0.5) (0.3,0.5)
21 6 [2,4] (4,5.7,8) {0.3,0.5,0.6} (0.5,0.3) (0.7,0.3)
2 6 [4,6] (3,4,7,8) {0.5,0.7,0.8} (0.5,0.4) (0.6,0.2)
e 23 7.5 [5,7] (4,5,6,7) {0.4,0.5,0.7} (0.8,0.2) (0.5,0.4)
2 7 [2,4] (5,6,7,9) {0.6,0.8} 0.6,0.3) (0.8,0.2)
z5 8 [3,5] (5,7,8,9) {0.4,0.6} (0.6,0.4) (0.5,0.4)
21 55 [5,7] (3,5.6,8) {0.4,0.5,0.7} (0.5,0.3) (0.6,0.3)
2 8 [5,6] (2,3,4,6) {0.4,0.8} (0.7,0.3) (0.3,0.4)
e3 23 6.5 [3,4] 4,6,7,9) {0.3,0.4,0.5) (0.4,0.6) (0.6,0.3)
24 6 [4,5] 6,7.8,9) {0.4,0.5,0.7} (0.5,0.3) (0.8,0.2)
<] 7 [2,4] (3,6,7,8) {0.2,0.3,0.5} (0.6,0.4) (0.7,0.2)

To select the optimal merchant, the proposed multi-objective g-ROF programming method is used (see Appendix II
for detailed process), and the final ranking of merchants obtained is: z4 > z; > 22 > z5 > z3, which makes merchant z4 the
best.

To explain the effectiveness of the proposed multi-objective g-ROF programming method, the validity verification
approach introduced by Wang & Triantaphyllou (2008) is utilized, which consists of the following three test criteria.

Test criterion 1. An effective MCGDM method should not change the optimal alternative when substituting a non-
optimal alternative for another non-optimal alternative without changing the criteria weights.

Using test criterion 1, the worse alternative Z; (see Table 2) is substituted for the non-optimal alternative z; in the initial
decision matrix. The criteria weights obtained by the initial decision matrix are also utilized in this changed MCGDM
problem to maintain the relative importance of criteria unchanged. By using the proposed method (or the developed
model in equation 31), the following aggregated results of alternatives are obtained: cd; = 0.5500, cd, = 0.5038, cd; =
0.4181,cds = 0.7019, cds = 0.4302,. Thus, the ranking ordering is z4 > Z; > 22 > zs > z3, i.e., the best s-commerce
merchant is still z4. For other non-optimal s-commerce merchants, such as z,, z3 and zs, the same conclusion holds.
Therefore, the proposed method (or the developed model in equation 31) meets test criterion 1.

Test criterion 2. An effective MCGDM method needs to meet transitive property.

Test criterion 3. When a MCGDM problem is decomposed into several sub-problems, and the same method is utilized
to solve these sub-problems to derive the ranking of the alternatives, the combined ranking of the alternatives should be
the same as the initial MCGDM problem.

Using test criteria 2 and 3, we decompose the original MCGDM problem into two smaller MCGDM problems
{z1,22,23, 25} and {z;, 22, 24, 25}. According to the procedure of the proposed method (the developed model in equation
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Table 2
Evaluation values of s-commerce merchant 7; for different DMs.

cy &) c3 cq Cs C6
el 5 (3,4] (5.6,7,9) 0.5,0.7 <0.6,03 > <0.5,02>
e 6 [2,4] 4,5.7,8) 0.3,0.5,0.6 <0.5,03 > <0.7,03 >
& 5.5 (5,71 (3,5.6,8) 0.4,0.5,0.7 <0.4,03> <0.6,03 >

31), we obtain preferred orders z; > z5 > zo > z3 and z4 > 71 > z5 > z; for the two sub-problems, respectively. If the
orderings of the sub-problems are combined together, we derive the integrated preferred order as z4 > z; > z5 > 22 > 23,
which is the same as the ranking in the initial MCGDM problem and consistent with the transitive property. If the initial
MCGDM problem is decomposed into other sub-problems, the same conclusion holds. Hence, the proposed method (or
the developed model in equation 31) verifies test criteria 2 and 3. Therefore, for equation 31, the aggregated result is
effective and valid.

5.2. Comparative Analysis

5.2.1. Verifying the effectiveness of the proposed method

To justify the effectiveness of our proposed ¢g-ROF programming method, experimental results of our method are
compared with methods by Wan & Li (2013a), Wan & Dong (2015) and Wan et al. (2020). It is noteworthy that there are
some minor errors in the definition and models in Wan & Li (2013a). According to (Chen & Tan, 1994; He et al., 2014),
the score function and accuracy function of IFV A = (4, v4) on [page 301] S(A) = s +v4 and H(A) = py4 — v4 should be
revised to S(A) = pua — v4 and H(A) = pu + vy, respectively. Accordingly, the objective functions on [page 305, models
(21)-(23)] are revised to the below ones:

. g A0 g Pl

minda =1-[] [[ a-pgup®-]] [] 0gap™
=Lk, jes"> P=1 (k,je;"

. ¢ A7 ¢ A7

minyo = 1= [] G-ugep®+[] [] 0gup®
p=1 (k,j)Eﬁf,O'b p=1 (k,j)Eﬁ;O'b

where the meanings of notations are the same as those in Wan & Li (2013a). In addition, the methods by Wan & Li (2013a)
and Wan & Dong (2015) do not admit HFVs, but IFVs. Thus, before applying these methods to solve Example 1, it is
necessary to transform ¢4 HFVs into IFVs using envelopes of HF Vs (Torra, 2010). Furthermore, in our proposed method,
positive and negative ideal solutions are provided in advance according to (13) - (14). Again, to obtain a fair comparison,
for the method by Wan & Li (2013a) and Wan & Dong (2015), the positive and negative ideal solutions are also derived
according to (13) - (14); for the method by Wan et al. (2020), it is assumed that the positive ideal solution is derived
according to (13). Moreover, as suggested in (Wan & Li, 2013a), their threshold /& = {uz, vi) is set to be (0.001,0.9). As
suggested in (Wan & Dong, 2015), their proportion parameter 7 is set to be 0.9; the preemptive priorities P;, P,, P3 and
P4 are set to be P; = Py = P3 = P4. As recommended by Tversky & Kahneman (1979), for the method by Wan & Dong
(2015), the risk-seeking coeflicient «, risk-averse coefficient 8 and loss-averse coefficient p are set to be 0.88, 0.88 and
2.25, respectively; while the risk attitude parameter ¢ and threshold & are set to be 0.5 and 0.01, respectively, as suggested
in (Wan et al., 2020). The preferred orderings of merchants in Example 1 for the different methods are given in Table 3.

As one can see from Table 3, the methods by Wan & Dong (2015) and Wan et al. (2020) and our proposed method
result in the same merchants preferred ordering (z4 > 71 > 72 > z5 > z3), While a slightly merchants preferred ordering
(z4 > 71 > z5 > 22 > z3) is obtained with the method by Wan & Li (2013a). However, all methods rank the same merchant
z4) the best. One reason for these methods to obtain different preferred orderings of merchants is that the methods by
Wan & Dong (2015) and Wan et al. (2020) and our proposed method all consider inconsistency and consistency relative
to the positive and negative ideal solutions, while the method by Wan & Li (2013a) only captures inconsistency relative
to the positive ideal solution and ignores the consistency and negative ideal solution. In fact, consistency is as important
as inconsistency in group decision (Wan et al., 2017). Furthermore, according to (Liu & Zhang, 2013), the positive
and negative ideal solutions are of equal importance during the procedure of decision making. Thus, both minimizing the
inconsistency relative to positive and negative ideal solutions and maximizing consistency relative to positive and negative
ideal solutions should be considered. Therefore, compared with the method by Wan & Li (2013a), the preferred ordering
derived with the methods by Wan & Dong (2015) and Wan et al. (2020) and our proposed method is more comprehensive
and reasonable. This finding verifies that our method is effective and can overcome the limitation of the method by Wan
& Li (2013a).

In the above part, we have verified the effectiveness of our proposed method. However, because Example 1 assumes
that the criteria are independent, it is hard to illustrate the validity and effectiveness of our method for handling the
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Table 3

Ranking Results from Different Methods for Example 1

Method

Outcome

Preferred order

Wan & Li (2013a)’s approach

Wan & Dong (2015)’s approach

Wan et al. (2020)’s approach

Our proposed method

St =0.0302,5) =0.0669, 5 % =0.0675,
S, = 0.0251,sé =0.0651; 5% = 0.0548,
§5=0.0649,575 = 0.0678, 5% = 0.0254,
52 = 00612:5% = 0.0774.5% = 0.1019,
s§ =0.1082, Si =0.0458, s§ =0.0765.
Dy =0.7416, D% = 0.5535,1)31 =0.4875,
D, = 0.7975,8 5 = 0.5468: Dy = 0.5196,
D? = 05333, D3 = 0.5429, D? = 0.7669,
D} = 04711:D} = 05179, D = 0.4044,

DS =0.3539, Di = 0.6689, Dy = 0.4069.

24>21>25>22>23

U>01>202>75>23

Vi = —0.1226, V5 = —0.1460, V3 = —0.1954,

Vi = 0.0057, Vs = —0.1661.
edy = 0.5539, cd> = 0.5068, cds = 0.4200,
cds = 0.7048, cds = 0.4301.

4>21>22>25>23

U>0>2>3>23

*Note: S’.T(i =1,2,3,4,5;7 = 1,2, 3) is the square of the distance of the merchant z; from the ideal solution for the expert e;; D’.T is the comprehensive

relative closeness degree of the merchant z; for the expert e.; V; is the collective overall prospect value of the merchant z;.

MCGDM problem with interactive criteria. Thereby, a different example with an interactive condition is provided below
to further justify the validity and effectiveness of our proposed method.

Example 2. Like in Example 1, assume five well-known s-commerce websites, anonymously denoted as zi, 22, 23, za
and zs, and three experts e, e; and es assessing their service quality to facilitate and support customers’ choices of the
optimal s-commerce website based on five criteria: ci—visual aesthetics, c,— customization, c3—security, cs—entertainment,
cs—community drivenness and cg—user friendliness.

o [t is assumed that the criteria have an inherent complex relationship, and their importance given by experts is

A ={0.1 < u({c1) < 0.2,0.1 < p(fea)) < 0.2,0.05 < u({ezd) < 0.15,0.05 < pu({eq)) < 0.1,0.2 < u({cs))

0.3,0.25 < u({cs)) £0.35,0.1 < u({cr, c2}) £0.2,0.4 < pu({cs, cs}) < 0.5).

o [t is assumed that the uncertain weight information of the experts is given by I' = {0.3 < w; < 04,03 < w;

0.35,0.3 < w3 <0.35}.

IA

e [t is assumed that the assessment of the s-commerce website z;(i = 1,2,3,4,5) concerning the criterion c;(j =
1,2,3,4,5,6) given by the expert e.(t = 1,2,3) is a g-ROFV A;j' The decision matrices AT = [Af}.]5x6(‘r =1,2,3)

are tabulated in Table 4.

e In addition, experts offer the following q-ROF preference relations between websites: Q' = {((1,2), t{’2>, ((5,2), t51’2>}

Q2 = {((1,3), ti3>, (4,5), 1421,5»’ Q3 = {2, 1), t;l), {(5,3), tgﬁ)}, where the corresponding q-ROF truth degrees are:
t}’z =(0.5,0.3), t;z =(0.7,0.4); tfﬁ =(0.5,0.3), lis =(0.8,0.3); t;,l =(0.4,0.7), t2,3 = (0.6,0.5). Thus, the sup-

ports of Ql, Q% and O3 are Q

by = (L2, 5.2} Q) = ((1,3).(4,5))

and Q3. . ={(2,1),(5,3)}, respectively.

0,1)

Table 4
Decision Making Matrices for Example 2

S-commerce Criteria

Expert
website cl c 3 c4 cs Ce
Z1 (0.5,0.4) <0.6,0.4) (0.3,0.6) (0.4,0.5) (0.9,0.1) (0.7,0.1)
2 (0.7,0.3) (0.5,0.5) (0.4,0.5) (0.6,0.2) (0.5,0.4) (0.6,0.2)

131 3 (0.5,0.4) <0.7,0.2) (0.4,0.6) (0.6,0.2) (0.4,0.6) (0.8,0.3)
u (0.7,0.4) (0.7,0.3) (0.7,0.1) (0.6,0.3) (0.8,0.1) (0.9,0.2)
Z5 (0.8,0.2) <0.5,0.3) (0.6,0.5) (0.4,0.6) (0.3,0.6) (0.7,0.3)
21 (0.5,0.4) <0.5,0.2) (0.6,0.3) (0.7,0.3) (0.7,0.1) (0.6,0.4)
2 (0.7,0.3) <0.4,0.7) (0.5,0.5) (0.4,0.5) (0.4,0.5) (0.7,0.2)

e 23 (0.3,0.4) <0.7,0.1) (0.6,0.5) (0.5,0.5) (0.7,0.2) (0.7,0.1)
4 (0.6,0.3) (0.6,0.2) (0.4,0.6) (0.7,0.2) (0.9,0.1) (0.8,0.1)
zs (0.5,0.4) (0.5,0.4) (0.6,0.2) (0.5,0.4) (0.8,0.3) (0.8,0.2)
4| (0.3,0.6) (0.7,0.1) (0.5,0.3) (0.6,0.3) (0.4,0.4) (0.7,0.2)
2 (0.5,0.3) (0.3,0.5) (0.4,0.5) (0.7,0.2) (0.5,0.4) (0.6,0.2)

e3 3 (0.4,0.4) (0.5,0.4) (0.8,0.1) (0.5,0.4) (0.3,0.7) (0.4,0.5)
u (0.8,0.1) (0.5,0.5) (0.8,0.3) (0.6,0.4) (0.7,0.2) (0.6,0.2)
zs (0.6,0.1) <0.6,0.4) (0.4,0.5) (0.4,0.4) (0.9,0.1) (0.7,0.3)
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To further illustrate the effectiveness of our proposed method to solve the MCGDM problem with the interactive
condition, the ranking orders of our proposed method for Example 2 is compared with those of the following state-
of-the-art methods: Liu et al. (2020)’s approach based on the ¢g-ROF power weighed Maclaurin symmetric mean (g-
ROFPWMSM) operator; Peng & Yang (2016)’s approach based on the PF Choquet integral average (PFCIA) operator; and
Khan (2019)’s approach based on the PF Einstein Choquet integral averaging (PFECIA) operator. The prominent feature
of these three methods (Khan, 2019; Liu et al., 2020; Peng & Yang, 2016) is that they can effectively solve MCGDM
problems with complex relationship because the g-ROFPWMSM operator, PFCIA operator and PFECIA operator all
capture complex relationship among the criteria. It should be noted that Wan & Li (2013a)’s approach, Wan & Dong
(2015)’s approach and Wan et al. (2020)’s approach all assume that the criteria are independent and fail to deal with
q-ROFVs, where g > 1, so they are not chosen for this comparison. Because Liu et al. (2020)’s approach, Peng & Yang
(2016)’s approach, and Khan (2019)’s approach assume that the weights of criteria and experts are known, they cannot
directly cope with MCGDM problems with incomplete weights. To apply Liu et al. (2020)’s approach to solve Example
2, we first determine experts’ weights using the extended TOPSIS method (Wan et al., 2018) and then identify weights of
criteria using the multi-objective parametric comprehensive deviation programming model (Wan et al., 2018). To apply
Peng & Yang (2016)’s approach and Khan (2019)’s approach to solve Example 2, we first determine experts’ weights
using the extended TOPSIS method (Wan et al., 2018) and then identify optimal fuzzy measures on the criteria set using
the entropy-based method (Liang et al., 2019). Moreover, a minor error is discovered in the definition of the entropy-based
method (Liang et al., 2019). According to (Xia & Xu, 2012), the formula of cross-entropy CE(«, @) of two g-ROFVs
a1 = {uy,vy) and @y = (up,v2) on [page 3282, formula (9)] is wrong, and it should be revised to the below:

CE(G’[,(ZZ) — . _]Zl_p (MI)PII -;— (I/lz)/’q B (M])q -; (uz)‘/ by (V[)pq _;_ (V2)17q
(N VR AR LA )

where the meanings of notations are the same as those in (Liang et al., 2019). Furthermore, according to the characteristic
of Example 2, the parameters g and k of Liu et al. (2020)’s approach are both set to be 2; for the multi-objective parametric
comprehensive deviation programming model (Wan et al., 2018), the parameter A is set to be 0.5, and the weighting vector
Jissettobe ¢ =(0.2,0.2,0.2,0.2,0.2); the parameter p of the entropy-based method (Liang et al., 2019) is set to be 1.5;
and for our proposed method, the parameter g is set to be 2, with the other parameters being the same used in Example 1.
The preferred orderings of merchants in Example 2 for the different methods are given in Table 5.

Table 5
Ranking Results from Different Methods for Example 2

Method Outcome Preferred order

S1=0.2144,5, = 0.0844,53 = 0.1519,
§4=0.4310,55 = 0.2563.

1 =0.1658,52 = 0.0419,53 = 0.0711,
S4=0.3752,55 = 0.1882.
S1=0.2453,5, = 0.0788,53 = 0.1513,
S4=0.4479,55 = 0.2798.

cdy = 04742, cdr = 0.2893, cd3 = 0.4390,
cdy = 0.7524, cds = 0.5458.

Liu et al. (2020)’s approach 4>35>2>3>20

Peng & Yang (2016)’s approach 4>75>201>23 >0
Khan (2019)’s approach 24 >235>21 >33 > 22

Our proposed method 4 >35> >23> 2

*Note: S;(i = 1,2,3,4,5) is the score value of the merchant z;.

As one can see from Table 5, Liu et al. (2020)’s approach, Peng & Yang (2016)’s approach, Khan (2019)’s approach,
and our proposed method obtain the same preferred ordering (z4 > z5 > 71 > z3 > z2), wWhich verifies that our method is
effective and can validly solve MCGDM problems with interactive criteria.

5.2.2. Verifying the superiority of the proposed method

It can be easily concluded that Examples 1 and 2 are evidence of the effectiveness and validity of our proposed method.
Nevertheless, our method derives the same ranking order than previous approaches (Wan & Dong, 2015; Wan et al., 2020)
and (Khan, 2019; Liu et al., 2020; Peng & Yang, 2016) in Examples 1 and Example 2, respectively, which makes it hard
to explain the superiority of our proposed approach well. Therefore, two illustrative cases are given below to further
compare our method with the existing approaches (Khan, 2019; Liu et al., 2020; Peng & Yang, 2016; Wan & Dong, 2015;
Wan et al., 2020) regarding the merits of our proposed approach.

Example 3. In Example 1, independence of criteria is assumed independent. However, in a real situation, the considered
criteria exhibit heterogeneous relationship, ranging from a negative synergetic interaction to a positive synergetic inter-
action. For instance, generally speaking, the longer the delivery time c; is, the lower the consumer approval degree cg
is; the better the product quality cs is, the higher the product price c; is. As a consequence, it is nor realistic to assume
independence of criteria. Therefore, criteria interaction is added to Example 1 by assuming the following incomplete

18



O Jo U wNE

OO UTOTUTUTOTOTOTE BB DSBS DWWWWWWWWWwWRORRORONNNNNNN R PP
GRWNRFRPOWVWOAdNTE WNFRFOW®O®-JdANUBEWNHROO®JdNUTRAWNRLOW®O-JOUAWNROWOO-JO U & WN KR O WO

475

480

485

490

495

500

505

weight information:

0.1 < u({ci}) £0.15,0.05 < u({ca}) < 0.1,0.15 < u({es3)) <0.25,0.25 < u({es)) < 0.3,
0.2 < u({esh) <0.3,0 < p(feed) <0.1,0.5 < p{er, eah) < 1,0.05 < p({cz, c6}) < 0.15,
04 < /1({6‘3,C5}) < 1,0.4 < }1({65,6‘6}) <l
The results obtained with the compared different methods is given in Table 6 with the parameter q of g-ROFVs set to be 1,

and the rest of parameters for the different methods are those used in the previous examples.

Table 6
Ranking Results from Different Methods for Example 3

Method Outcome Preferred order

§1=0.0302,5) =0.0669,5! =0.0675,
si =0.0251, s% = 0.0651;S% =0.0548,

Wan & Li (2013a)’s approach S2 =0.0649, 5% = 0.0678, Si =0.0254, 4>721>35>0>233
s3o 0.0612;5g = 0.0774,s§ =0.1019,

s§ =0.1082, s% =0.0458,53 = 0.0765.

D! =0.7416,D! = 0.5535,1)5 = 0.4875,

pl = 0.7975, D = 0.5468; D* = 0.5196,

Wan & Dong (2015)’s approach Di = 0.5333,Dg = 0.5429,D,i =0.7669, 4 >3 > >35> 33
D% =04711, Dg =0.5179, Dg =0.4044,

D§ =0.3539, D;l’1 =0.6689, D§ =0.4069.

Vi =-0.1226,V, = -0.1460, V3 = —-0.1954,

Wan et al. (2020)’s approach Vi = 0.0057. Vs = —0.1661.

U>U>2>35>23

Liu et al. (2020)’s approach Cannot be computed Cannot be derived
Peng & Yang (2016)’s approach Cannot be computed Cannot be derived
Khan (2019)’s approach Cannot be computed Cannot be derived
Our proposed method cdy = 0.6037,cdy = 0.5107, cdz = 0.3977, WS> >0 > 2s

cdy = 0.6922, cds = 0.3807.

*Note: The meanings ofo.T(i =1,2,3,4,5;7=1,2,3), Dl.’ and V; are the same as those in Table 3.

From Table 6, one can notice that when independent criteria of the heterogeneous MCGDM problem is modified to
interactive criteria, Wan & Li (2013a)’s approach still retains the same ranking order (z4 > z; > zs5 > 2 > 73) because
it fails to capture interactions among criteria. Example 3 exhibits a complex relationship. For instance, delivery time
c; and consumer approval c¢ exhibit a negative synergetic interaction. In other words, the comprehensive weight of
these two criteria considered together is lower than the sum of the weight of the two criteria when considered separately.
Therefore, the ranking order obtained by Wan & Li (2013a)’s approach is not reasonable for this purpose because it omits
the interaction among criteria. Additionally, one can notice that when independent criteria of the heterogeneous MCGDM
problem is modified to interactive criteria, Wan & Dong (2015)’s approach and Wan et al. (2020)’s approach also obtain the
same ranking because they are based on the following equalities: u({c;, c;}) = u({c;}) +ullc,)) (g = 1,2,3,4,5,6; j # q),
which are invalid in Example 3. Therefore, the ranking results obtained by Wan & Dong (2015)’s approach and Wan et al.
(2020)’s approach are also not reasonable for this purpose. One can further notice that Liu et al. (2020)’s approach, Peng
& Yang (2016)’s approach and Peng & Yang (2016)’s approach fail to handle this example and a ranking result is not
obtained. This is because Example 3 is a type of heterogeneous MCGDM problem, whereas these methods can only solve
homogeneous MCGDM problems. Moreover, one can notice that when the independent criteria of the heterogeneous
MCGDM problem is modified into dependent criteria, the preferred order obtained by our approach changes from z4 >
21 > 2 > 25 > 23024 > 2 > 20 > 23 > Z5, although the optimal merchant remains the same. It is apparent that the ranking
result of merchants obtained by our proposed method fits the new dependence assumption because it is based on the
following inequalities: u({cy, c3}) = 0.4128 > u({c1})+u({cs}) = 0.3395, u({cz, c6}) = 0.0927 < u({ca}) +u({ce}) = 0.1228,
u({cs,ea}) = 0.3927 < u({es}) + u({cs}) = 0.4578. That is, our approach captures the positive synergetic interaction
among the criteria ¢; and c3, the negative synergetic interaction among the criteria ¢, and ¢, and the negative synergetic
interaction among the criteria c¢3 and ¢4. Therefore, our approach derives a realistic and convincing ranking result, which
is not the case with the existing approaches it was compared with.

Example 4. In Example 3, all g-ROFVs AZI, (i=12,3,4,5j=567=123)and 1, (k,i=1,2,3,4,57 =1,2,3)
verify the restriction that the sum of MD and NMD is [0, 1]. In reality, specially for high ambiguous decision-making
problems, experts may provide data with sum of MD and NMD greater than 1. For instance, when the expert e3 assesses
consumer approval ¢ of merchant 7, according to information sharing behaviour and information collection status, he/she
may believe the consumer approval is very good all in all and provides an assessment value of 0.95 as its MD. However,
sometimes he/she may believe the consumer is unwilling to share information to some extent due to some influencing
Sactors, such as environmental factors, technical factors and personal factors and provides an assessment value of 0.4 as
its NMD. Accordingly, the criterion value Ag6 would be (0.95,0.4). Analogously, expert ez may believe the value ti3 is
(0.95,0.6). Assuming that the other decision information remains identical to that of Example 3, the ranking results of

19



O Jo U wNE

OO UTOTOTUTOTOTOTE BB BS DD DDSDWWWWWWWWwWwWRORRORNONNNNNNN R PP
GORWNRFRPOWVWOAdNTE WNFRFOW®®-JdANUBEWNHROO®JdANTRWNR,OW®O-JOUAWNROWO®-JO U & WN KR O WO

510

515

520

525

530

535

540

545

the merchants obtained by all compared methods are provided in Table 7, with the parameter q of g-ROFVs set to be 4,

and the rest of parameters for the different methods are those used in the previous examples.

Table 7
Ranking Results from Different Methods for Example 4

Method

Outcome

Preferred order

Wan & Li (2013a)’s approach
Wan & Dong (2015)’s approach
Wan et al. (2020)’s approach
Liu et al. (2020)’s approach
Peng & Yang (2016)’s approach
Khan (2019)’s approach

Cannot be computed
Cannot be computed
Cannot be computed
Cannot be computed
Cannot be computed
Cannot be computed

Cannot be derived
Cannot be derived
Cannot be derived
Cannot be derived
Cannot be derived
Cannot be derived

cdy = 0.4831, cd> = 0.4836, cdz = 0.3527,

Our proposed method cds = 0.5868, cds = 0.3459.

U>2>0>3>73

From Table 7, one can observe that Wan & Li (2013a)’s approach, Wan & Dong (2015)’s approach, Wan et al.
(2020)’s approach, Liu et al. (2020)’s approach, Peng & Yang (2016)’s approach, and Khan (2019)’s approach fail to
solve the above revised example, whereas our proposed method is able to obtain a preferred ordering of the five merchants
(za > 22 > 71 > 73 > 7z5). Wan & Li (2013a)’s approach, Wan & Dong (2015)’s approach, and Wan et al. (2020)’s
approach are based on IFVs, whose MD g and NMD f need to verify the restriction g + f < 1. However, the revised
values A% =0.95,0.4) and tgg = (0.95,0.6) are not IFVs because 0.95 + 0.4 > 1 and 0.95 + 0.6 > 1. Thus, they are
unable to derive a decision result. As mention before, Liu et al. (2020)’s approach, Peng & Yang (2016)’s approach are
not able to cope this example since it is a type of heterogeneous MCGDM problem. Thus, they are also unable to derive
a decision result. Our proposed method can effectively cope with the heterogeneous MCGDM problem with ¢g-ROFVs.
The prominent feature of ¢g-ROFVs is that their MD g and NMD f verify the restriction that (g)? + (f)? < 1, where
q = 1. The revised values A3, = (0.95,0.4) and 3 ; = (0.95,0.6) are g-ROFVs for g > 4 because 0.95* + 0.4* < 1
and 0.95* + 0.6* < 1. Tt is apparent that ¢-ROFVs are more general and flexible than IFVs as the value of parameter
q can be adjusted dynamically to control the scope of the fuzzy information expression. This finding implies that our
proposed method can overcome the shortcoming of existing methods. Therefore, our proposed method is more practical
and feasible to address real complex decision-making problems.

5.2.3. Sensitivity analysis

To explore the influence of distinct values of parameter g on the results of Example 4, we set the parameter ¢ to be 4,
5,6,7,8,9, 10 and 20 in our proposed method, to assess the derived ranking of the merchants. The decision results are
depicted in Fig. 4, from which the following conclusions are drawn.

o Slightly different preferred orderings of merchants are derived for distinct values of ¢, though the optimal and worst
merchants remain consistent. This observation implies that the decision results are sensitive to the values of g to a
certain extent.

o The relative closeness degrees (for the same merchant) derived by our proposed method on the whole decrease as
the parameter g increases.

113

e The parameter ¢ can be regarded as the DM’s “attitude”: the larger the value of parameter ¢ becomes, the more
optimistic the DM is; the smaller the value of ¢ becomes, the more pessimistic the DM is.

There are two ways to determine the value of ¢g. One way is to determine the most desirable value for a particular
problem based on the DM’s preferences and/or specific requirements (Tang et al., 2020b). The other way is to choose the
minimum integer g verifying the restriction (£)? + ()¢ < 1 (Liu et al., 2020). For example, if we assume the assessment
value (0.95, 0.6), then since 0.95% + 0.6> > 1 and 0.95* + 0.6* < 1 the parameter g could be set to be 4.

5.2.4. Summary of the proposed method

From the above analysis, features of all compared methods are summarized in Table 8. It can be concluded that our
proposed method is a strong alternative to the state-of-the-art approaches to MCGDM problems, and its unique features
make it highly attractive for heterogeneous MCGDM problems with incomplete weights and interactive criteria.

6. Conclusion

This study proposed a multi-objective ¢g-ROF programming method for heterogeneous MCGDM with incomplete
weights and g-ROF truth degrees based on 2AFMs, the LINMAP and the A-NSGA-III. Four parts were involved: an
information acquisition process, the calculation of the Choquet-based relative closeness degree, the establishment of the
g-ROF programming model process, and the resolution of the established model and determination of the ranking of
alternatives.
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Fig. 4. Radar plot showing the effect of parameter ¢ on the decision results

Table 8
Comparisons of Different Approaches

Features Can depict Can consider Can express
the heterogeneous the interaction a wilder range
Methods information among the criteria of information

Wan & Li (2013a)’s approach Yes No No
Wan & Dong (2015)’s approach Yes No No
Wan et al. (2020)’s approach Yes No No
Liu et al. (2020)’s approach No Yes Yes
Peng & Yang (2016)’s approach No Yes No
Khan (2019)’s approach No Yes No
Our proposed method Yes Yes Yes
Features Can simultaneously optimize many Can objectively
objectives without any determine the
Methods predefined weighting coefficients weight information
Wan & Li (2013a)’s approach No Yes
Wan & Dong (2015)’s approach No Yes
Wan et al. (2020)’s approach No Yes
Liu et al. (2020)’s approach No No
Peng & Yang (2016)’s approach No No
Khan (2019)’s approach No No
Our proposed method Yes Yes

o In the first part, ¢-ROFVs were introduced to model and represent criteria values and pairwise comparisons of
alternatives. The outstanding characteristic of g-ROFVs is its parameter g > 1, so that they can describe the range
of fuzzy information in a more flexible manner.

e In the second part, a formulation of the Choquet-based relative closeness degree based on 2AFMs, which can
capture the interaction among criteria, was obtained.

o In the third part, to objectively determine weighting vectors of criteria and experts, a multi-objective ¢g-ROF pro-
gramming model minimizing the ¢-ROFCGII and maximizing the ¢-ROFCGCI was established.

o In the fourth part, an algorithm was designed based on the A-NSGA-III to solve the established model. Then,
TOPSIS was employed to select the desirable solution as the weighting result from the last Pareto set. Finally, the
collective ranking order of alternatives was generated.

To illustrate the effectiveness and superiority of our proposed method, four application cases were used to conduct a
comparative analysis between our proposed method and existing MCGDM methods (Khan, 2019; Liu et al., 2020; Peng
& Yang, 2016; Wan & Dong, 2015; Wan & Li, 2013a; Wan et al., 2020). The experimental results provided evidence of
our proposed method outperforming the existing MCGDM methods. In future, we will focus our research efforts on the
identification of some parameters involved in our proposed method using machine learning. Furthermore, we shall apply
the proposed approach to solve some real decision making problems, such as investment evaluation (Huang et al., 2020;
Tang et al., 2022a), medical diagnosis (Lin et al., 2021b) and selection of cloud service productions(Lin et al., 2020).
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Appendix I

(1) We first explain the monotonicity of objective functions as follows:
The first objective function is:

S ek < (=TT TT a-eomea]] T] (ﬁ;l.)“”f@>.

=1 (k, 1)6920” =1 (k, I)EQ.([(”) =1 (k, I)GQZ[”)

705

In the following, its monotonicity is proved. If g = 1, we can derive (/ =TT, Mpear, (1= (gt;l_)q)wrfli =0.

(0.1)
Suppose that g # 1 and let h(g; ) = [T, [Tiuieay, , (1 = (g7 ))“"<F, then we derive

0.1)

4 0

m(nge))=mf[ | [] a-@0%|=weg > >0 n(1-()).

=1 (kDeQy, |, =1 (ki)eQy, |,
In addition, the partial derivative of /n (h(gt;),)) with respect to g, where w,, & and g are constant, is:

din h(g,r
((9 = T@,Z Z T @)™
81 =1 (ki)eQ),,
710

Oln|h(gr )
Since 0 < g¢ < 1, ¢ > 1 and &; > 0, we derive 1 — (g )? > 0 and —q(gy, y=! < 0. Thus, M <0. In

Iu

other words, h(gr ) is non-monotonic increasing with respect to g, . Therefore, \/ =TT T ,)ng(l - (gtz’)q)wfe’[, is

non-monotonic decreasing with respect to g .

Similarly, we can derive that [17_; [Tx.seqr ( fi )“rék is non-monotonic increasing with respect to S

(0.1)

715 The second objective function is:
0 0 4
Z Z wT/lZit/ii = < g1 — l_[ I—[ (1 - (glz‘[)q)wfﬁ‘ I—[ l_[ (ﬁz‘[)wﬂlk[>.
=1 (k)eQ =1 (ki)e, =1 (ki)eQ,

©.1) 0,1y 0,1)

Similar to the proof of the first objective function, we can derive that (/ =119, T t)eﬂ«m(] - (g )q)wf i is non-

monotonic decreasing with respect to 8, and [17_, [Ty E%n( fr, )@t is non-monotonic increasing with respect to S

(2) The boundedness of objective functlons is explained as follows
720 Since 0 < 8, < 1,g> 1,0 <w; < 1,wecanderive 0 < 1— (gtr )2 <1land0 < \/1 =192 Hppeor (1= (g,r Y)W <

0,1y

Then, since 0 < f,r <1,¢>1,0 <w, <1, wecan easily derive 0 < [12_; [1q. l)eﬂ<l)1>(ﬁ;f)wffli <1.

In addition, we derlve

o

=11 11 (1—(gt;,,)")“f<‘%+ﬁ [] Wpmes

=1 (k)eQp, |, =1 (k)eQp, s
4 0

<i-[1 T[] @i+ T] Wh)hos =1.
=1 (k,i)eQ, =1 (k,i)eQ],

0,1y 0,1y

Thus, >.7_; Y. ey, w- &ty is a g-ROFV. Therefore, the first objective function meets the boundedness.
Similarly, we can derive that the second objective function meets the boundedness.
725 (3) The boundedness and monotonicity solution of the g-ROF programming is explained as follows:
By solving the established g-ROF programming in (32), we can identify the optimal fuzzy measures on criteria set
W™ and the optimal experts’ weights w*. Because the experts’ weights meet the condition 2(1):1 w, = 1. Thus, experts’
weights do not verify monotonicity. Meanwhile, because the optimal fuzzy measures on criteria set meet the condition

2 p(cj,cg)—(=2) ¥ wu({c;}) = 1. Obviously, the optimal fuzzy measures on criteria set also do not verify mono-
{cjicqlcC {c;)cC

70 tonicity. Therefore, the solutions of the g-ROF programming do not satisfy the monotonicity. As for the boundedness of
solution, because the fuzzy measures on criteria set satisfy boundedness and experts’ weights also verify boundedness, the
solutions of the g-ROF programming composed of fuzzy measures on criteria set and experts” weights meet boundedness.
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Appendix IT

The detailed procedure description of the A-NSGA-III-based optimization algorithm is described as follows.

Stage 1. Initialization Process

Step 1: Specify population size N, reference point divisions p,;, maximum iteration number #,,,, simulated binary
crossover (SBX) possibility p., SBX recombination parameter index 7., polynomial mutation (PM) possibility p,, and
PM recombination parameter index 7,,.

Step 2: Initialize the population P°, which comprises of N individuals P° = [P?, on,- e P18]' The «th individual
RO(L = 1,2,---,N) is denoted by a vector (VVLO,wLO)T, where VVP = (ﬂ?({c] }),p?({q}); . ',,uf)({cn_l,cn}))T and wf) =
(w?l, wf)z,- . -,wﬁ,)T, where ,uf)({cj})(j =1,2,---,n), y?({cj, cg)g=1,2,---,n;j# q) and w?,(‘r = 1,2, -,0) are randomly
generated, and they verify the following box constraints: 0 < z2({c;}) < 1,0 < ©2(fcj, ¢} < 1,0 < w2 < 1, 12({c;}) € A,
,u?({cj, ¢} € A and w? e T'. Additionally, u?({cn,cn_l}) is determined by ,uf’({c”,c,,_l}) =m-2) X /,L?({Cj}) -1-

N e
“({cj,cph), and w0 is determined by wl, = 1 —w? — ... — w?o_l.
{cjcp)SC\enscn1)

After the initialization process, set the number of iterations ife to 0. Repeatedly create offspring population, perform
non-dominated sorting, conduct selection mechanism and make it adaptive in the reference points, and then increase the
number of iterations ite by 1 for each iteration, until the number of iterations ite reaches the maximum iteration number
tmax- Let us consider the rth generation of the A-NSGA-III-based optimization algorithm.

Stage 2. Creation of Offspring Population

Step 3: Calculate the objective value vector Z! = (Z,(P!), Z,(P)), Z3(P!), Z4(P")) and constraint violation value
CV! of each individual P/, where Z' and CV/ are derived by objective functions and constraints in (35), respectively.
According to the formula of constraint violation measure (Jain & Deb, 2013), one can observe that CV/ > 0. For
individual P/, when CV! > 0, it is deemed as an infeasible solution; otherwise, it is a feasible solution.

Stage 4: Select two members P/ and P! from P’ at random, and then, if D! = D!, = 0, randomly choose a solution
13; between them; otherwise, choose a better solution 13; with a smaller constraint violation value. In this way, the second
solution 135’ is selected. Next, the SBX (Deb & Agrawal, 1995) and PM (Deb & Goyal, 1996) are applied on 13; and
P! to generate two offspring solutions Q; and Q’E This process is continued until N offspring are generated to form the
population Q".

Stage 5: Because (35) involves many box constraints, some offspring (let their number be N, where 0 < N < N)
produced after crossover and mutation no longer meet box constraints. This situation increases the difficulty for the algo-
rithm to converge. To improve the evolution efficiency, a correction mechanism is applied to handle this issue: randomly
generate N individuals that meet box constraints to replace the above offspring, so a modified offspring population Q' of
N individuals is derived.

Stage 3. Non-dominated Sorting

Step 6: Merge P' and Q' to obtain a mixed population R' = P' U Q".

Step 7: Sort the population R’ according to the constraint domination principle. Let R! and R/ be two individuals
from the population R'. Then,

¢ If R; and R), are feasible and infeasible, respectively, then R! dominates RY,.
o If R} and R! are both infeasible, then the solution with a smaller constraint violation value dominates the other one.

e If R! and R, are feasible, the following domination principle is used: if Yi(i = 1,2,3,4), Z(R!) < Z;(R!), and 3,
Z(R)) < Z(R!), then R! dominates R/,

The individuals that are not dominated by others in the population are classified into the non-dominated level F}. These
individuals are then removed to find the novel level F;. Repeatedly perform this procedure until individuals in R’ are
classified into / non-dominated levels FY, F;,- - -, F/, where |F{| + |[Fj| +--- +|F/ || < N and |[F{| + |[Fj| +--- +|F/| > N.

Stage 4. Selection Mechanism

Step 8: All population members from non-dominated level Fy to F are involved in §'. If |S*| = N, the next generation
is started with P*! = S*; if |S?| > N, then P™*! = Ull_lFl.’ , and the remaining N — | P™*!| population members are selected
from the last front F} according to the reference points-based individual selection mechanism. This mechanism is of
paramount importance to many-objective optimization problems because it effectively maintains the diversity of solutions.
It includes the following four steps.

Step 9: Generate uniformly distributed reference points on the hyperplane using the simplex lattice design approach
Das & Dennis (1998). For a 4-dimensional objective space, when p divisions are selected for each objective axis, this
approach produces H = C g’ . reference points, where C is combination.

Step 10: Normalize each objective value of S’ using Z(S) = Zi(S) - Zl!"i“(S)(i = 1,2,3,4), where Z;(S) is the ith
objective value of solution S € S, Z;““‘(S) is the ith dimension of the ideal point that is determined by the minimum

value of each objective function in Uj S¢. Then, Zi(S) is further normalized using Z;(S) = #_SZ)(S) where Zi"“d"’(S)

is the ith dimension of the nadir point, which is derived using the approach of (Yuan et al., 2015).
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Step 11: Associate each population member of S with one of these H reference points using the minimum perpen-
dicular distance (Jain & Deb, 2013).

Step 12: Select N — | P'*!| members in F} using the following niche-preserving operation. Select the reference point
with the least number of associated individuals from P**!. Then, there are three cases:

e If this reference point has no associated individual in FY, it is removed.

o If this reference point has associated individuals in F; and no associated individual in previous levels, select the
nearest individual associated with this reference point and add it into population P!,

o If this reference point both has associated individuals in Fl’ and previous levels, select one of the associated indi-
viduals in F} at random and add it into population P'*!.

This process is continued until N — |P™*!| members in F} are selected.

Stage 5. Adaptation of Reference Points

Step 13: For the addition of reference points, we first find crowded reference points for which p, > 2, where p; is
the number of population members that are associated with j-th reference point. Then, for each of these reference points,
we simply introduce a simplex of 4 points having a distance between them that is the same as the distance between two
consecutive reference points on the original simplex.

Step 14: After the addition operation is conducted, the niche counts of all reference points are updated. Next, all
added reference points (excluding the original reference points) having p; = 0 are deleted. Thus, the original reference
points are always kept, as are all those added reference points that have a niche count of exactly one.

Appendix III

To select the optimal merchant, the proposed ¢g-ROF programming method is used and the process is summarized
below:

Steps 1-5: See the detailed description of Example 1.

Step 6: (12) is used to normalize the heterogeneous decision matrices A = [A;j]SXﬁ(T = 1,2, 3) into the normalized
decision matrices A™ = [AlTj] s%6, as shown in Table 1a.

Table 1a
Normalized Heterogeneous Decision Making Matrices for Example 1
Expert Merchants Criteria
(4] c2 Cc3 Cq Cs Ce
z1 0.375  [0.2857,0.5714] (0.5556,0.6667,0.7778, 1) {0.5,0.6,0.7} (0.6,0.3) 0.5,0.2)
2 0.3125 [0.4286,0.7143] (0.2222,0.5556,0.6667, 1) {0.6,0.75,0.9}(0.4,0.5) ¢0.6,0.3)
ey 23 0.125  [0,0.4286] (0.3333,0.5556,0.7778, 0.8889) {0.3,0.5,0.6} (0.7,0.1) (0.4,0.5)
74 0.1875 [0.5714,0.7143] (0.4444,0.6667,0.8889, 1) {0.3,0.4,0.8} (0.8,0.1) ¢0.7,0.3)
Z5 0 [0.5714,0.8571] (0.5556,0.7778,0.8889, 1) {0.5,0.7,0.9} (0.4,0.5) (0.3,0.5)
21 0.25 [0.4286,0.7143] (0.4444,0.5556,0.7778,0.8889) {0.3,0.5,0.6} (0.5,0.3) (0.7,0.3)
2 0.25 [0.1429,0.4286] (0.3333,0.4444,0.7778,0.8889) {0.5,0.7,0.8} (0.5,0.4) (0.6,0.2)
ey 23 0.0625 [0,0.2857] (0.4444,0.5556,0.6667,0.7778) {0.4,0.5,0.7} (0.8,0.2) (0.5,0.4)
Z4 0.125  [0.4286,0.7143] (0.5556,0.6667,0.7778, 1) {0.6,0.7,0.8} (0.6,0.3) <0.8,0.2)
z5 0 [0.2857,0.5714] (0.5556,0.7778,0.8889, 1) {0.4,0.5,0.6} (0.6,0.4) <0.5,0.4)
21 0.3125 [0,0.2857] (0.3333,0.5556,0.6667,0.8889) {0.4,0.5,0.7} (0.5,0.3) (0.6,0.3)
2 0 [0.1429,0.2857] (0.2222,0.3333,0.4444,0.6667) {0.4,0.6,0.8} (0.7,0.3) (0.3,0.4)
e3 23 0.1875 [0.4286,0.5714] (0.4444,0.6667,0.7778, 1) {0.3,0.4,0.5} (0.4,0.6) (0.6,0.3)
24 0.25 [0.2857,0.4286] (0.6667,0.7778,0.8889, 1) {0.4,0.5,0.7} (0.5,0.3) 0.8,0.2)
z5 0.125  [0.4286,0.7143] (0.3333,0.6667,0.7778,0.8889) {0.2,0.3,0.5} (0.6,0.4) (0.7,0.2)

Step 7: (13) - (14) are used to identify the optimal ideal solution A and negative ideal solution A, respectively:

‘A =(0.375,[0.5714,0.8571], (0.6667,0.7778,0.8889, 1), {0.6, 0.75, 0.9}, (0.8, 0.1), (0.8, 0.2));
A =(0,[0,0.2857], (0.2222, 0.3333, 0.4444, 0.6667), {0.2, 0.3, 0.5}, (0.4, 0.6, (0.3, 0.5)).

Step 8: (21) is used to calculate the Choquet-based relative closeness degree cd[ (i = 1,2,3,4,5;7 = 1,2, 3) of each
merchant z; concerning expert e; (let g = 1):
cd) = 1g({er)) + 0.5¢({ca}) + 0.9153u({c3)) + 0.7521({ca}) + 0.6364u({cs)) + 0.4375¢({(cs)),
cdé =0.9615¢({c1}) + 0.9%({c2}) + 0.4386y({c3}) + 1y({ca}) + 0.0588y({cs}) + 0. 7¥({ce}),
cd§ = 0.2¢({c1}) + 0.0385¢({c2}) + 0.6078y({c3}) + 0.1983y({ca}) + 0.95¢({cs}) + 0.0714¢({cs}),
cd}1 = 0.5¢({c1}) + 0.9615¢({c2}) + 0.913¢({c3}) + 0.3308y({ca}) + 1¥({cs)) + 0.9231y({ce)),
cd} = 0y(fer)) + Tu({ea}) + 0.988u(fc3)) + 0.9704y({cs}) + 0.0588w({es)) + Oy(fce));
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cd% = 0.8y ({c1}) + 0.9¢({c2}) + 0.6939%({c3}) + 0.1983y({csa}) + 0.5¢({cs}) + 0.9231y({ce)),
cd% = 0.8¢({c1}) + 0.1¢({c2}) + 0.4545¢({c3}) + 0.9379% ({ca}) + 0.25¢({cs}) + 0.6923({ce}),
cd% = 0.0385¢({c1}) + Oy({c2}) + 0.4667y({c3)) + 0.4571y({ca}) + 0.9412¢({c5)) + 0.3 ({ce}),
cd; = 0.2¢(fer}) + 0.9%(lca)) + 0.9153%({e3}) + 0.9704u({cq)) + 0.6364u(fesh) + 1y({cs)),
cdg = 0({c1}) + 0.5¢({c2}) + 0.988y({c3}) + 0.3186y({ca)) + 0.3636y({cs}) + 0.3¥({cs));
cd‘f =0.9615¢({c1}) + Oy({c2}) + 0.4468y({c3}) + 0.457 1y ({ca}) + 0.5¢({cs)) + 0.7y ({ce)),

= 0y({c1}) + 0.0385¢(fc2}) + 0p({c3)) + 0.7521¢(fea}) + 0.75¢({es)) + 0.05¢({ce ).
cd§ = 0.5¢({c1)) + 0.7222¢({c2}) + 0.8596y({c3}) + 0.0510¥({c4}) + Oy({cs}) + 0.7y ({ce)),
cd = 0.8y(le1}) +0.2778¢({ea)) + 19({c3)) + 0.457 1 ((ca}) + 0.5¢(fes)) + 1y({ce)),
cd; = 0.2¢({c1}) + 0.9¢({c2}) + 0.7455¢({c3}) + Or({ca)) + 0.3636y({cs}) + 0.9286y({ce)).

Then, (22) is used to calculate the Choquet-based overall relative closeness degree cd; of each merchant z;:

cd; = u)lcd} + wgcd[z + a)3cd,-3.

(36)

Steps 9-10: (26) and (30) are used to compute the g-ROFCGCI and g-ROFCGCC, respectively. Then, (32) is used to

establish the following ¢g-ROF programming model:

max {G = wié},1] (0.6,0.4)+ w11 (0.5, 0.4) + w1454 5(0.6,0.3) + w15t 50.7,0.3)
+ w1413 5(0.5,0.4) + w15 1(0.7,0.2) + w5t 5€0.5,0.4) + 23,15 ,(0.6,0.4)
+ €15 5(0.6,0.3) + wréist; €0.5,0.3) + wad 1] 5(0.4,0.5) + w3éRs 13 1(0.4,0.6)
+ w3E3413 40.4,0.6) + w3€413,(0.7,0.1) + w3€d,13 ,(0.3,0.5))

min {B = w1 A1,115(0.6,0.4) + w; 3513 3(0.5,0.4) + w; Ay315 5¢0.6,0.3) + w; 515 5(0.7,0.3)
+ w1431 5(0.5,0.4) + wr ATy 1(0.7,0.2) + wrAfst; (0.5,0.4) + wr3,15,(0.6,0.4)
+ wa 3313 5(0.6,0.3) + wrAfs1; 5(0.5,0.3) + w3 A}y 1 5(0.4,0.5) + w3 3,13 5(0.4,0.6)
+ w3A3153,4(0.4,0.6) + w3431 (0.7, 0.1) + w3313 (0.3,0.5))

f%,z = max{0, cd] - cd)}, 523 = max{0, cd} — cd}}, 543 = max{0, cd} — cd}},
&5 = max{0, cd] - cd}}, €l 5 = max{0, cd' - cdy), €, = max{0, cd2 - cd3),
(ffj = max{0, cd2 - cdz} 532 = max{0, cd2 cd7} 643 = max{0, cd2 - cdz},
ﬁ,s = max{0, cd} g} = max{0, cd3 cd3} §23 = max{0, cd3 — cd3},
§§4 = max{0, cd3 Z} §42 = max{0, cd3 cd3} 554 = max{0, cd3 cdg},
/l{ = max{0, cd) — cd}}, A5y = max{0, cd; — cd)}, A}, = max{0, cd‘l - cd}},
/ll = max{0, Cd ca’)l} = max{0, cd; - cd'} = max{0, cd% - cdlz},
/I% = max{0, cd - cdl} = max{0, cd% - cd 1, A5, = max{0, cd§ - cdﬁ},
/li = max{0, cd2 - cd2}, 15 = max{0, cdi - cd3} = max{0, cdj — cd3},
ST 43, = max{0, cdi cd3}, 43, = max{0, cd3 — cd3}, 34 = max{0, ed} — cd3);

0.1 < u({cr}) £0.15,0.05 < u({cz}) £0.1,0.15 < u({cs}) <0.25,

0.25 < u({es}) £0.3,0.2 < u({es)) <0.3,0 < u({cs)) < 0.1;

ulej gt = ulejt + ulegd(jog = 1,2,3,4,5,6; j # g);

01<w; £02,04<w;<07,03<w3<0.5;

Ye;h) = —=1.5u(c;}) + Z 7(.“({0/”011}) - uegh(j =1,2,3,4,5,6);

o Z}C /J({Cj’cq})_(n 2) Z /J({C/})—l
{ }ng \ (u(fcj, cgh) — u({c,})) > (|S| 2)ulfe,)),¥S € C withc, € S and S| > 2.
28
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Step 11: (35) is used to transform (37) into the following many-objective programming model:

min {Z;

= 1+ (1 - 0.6)412(1 = 0.5)“"423(1 — 0.6)“%5(1 — 0.7)'%4s (1 — 0.5)“53(1 — 0.7)“2%7
(1 —0.5)“415(1 — 0.6)52(1 = 0.6)“i3 (1 — 0.5)“4is(1 — 0.4)“¢15(1 — 0.4)*53
(1 = 0.4)2E4(1 = 0.7)*42(1 = 0.3)51 + (1 — 0.4 4121 = 0.4)1E3(1 — 0.3)“é4s
(1= 0.3)“s(1 = 0.4)“53(1 — 0.2)“412(1 = 0.4)“475(1 — 0.4)*52(1 — 0.3)2%0s
(1= 0.3)*6s(1 = 0.5)¢15(1 = 0.6)% (1 = 0.6) (1 = 0.1)*¥i2(1 - 0.5)7%s}

min {Z, = =1 + (1 = 0.6)“412(1 = 0.5)'23(1 — 0.6)“*%i5 (1 — 0.7)“"%s(1 — 0.5)“153(1 — 0.7)2%12

(1= 0.5)“405(1 = 0.6)”52(1 = 0.6)*%3(1 — 0.5)“%5(1 — 0.4)*15(1 = 0.4)“3
(1= 0.4)E4(1 = 0.7)*42(1 = 0.3)5s — (1 — 0.4)“1612(1 = 0.4)1E3(1 — 0.3)“is
(1= 0.3)“s(1 = 0.4)”53(1 = 0.2)%2(1 — 0.4)55(1 = 0.4)*82(1 = 0.3)“44s
(1= 03)“4is(1 = 0.5)15(1 = 0.6)*5 (1 = 0.6)*5(1 = 0.1)ha(1 - 0.5)34 )

min {Zs = 1 — (1 — 0.6)"12(1 — 0.5)“%3(1 — 0.6)“1 %3 (1 — 0.7)“"3(1 — 0.5)%a(1 — 0.7)“42

(1= 0.5)“41s(1 = 0.6)82(1 = 0.6)*>a(1 = 0.5)“>5(1 = 0.4)*4a(1 = 0.4)
(1= 0.4)54(1 = 0.7)*H2(1 = 0.3)%54 — (1 — 0.4)i2(1 — 0.4)*183(1 = 0.3)“ s
(1= 0.3)“s(1 — 0.4)“1%53(1 — 0.2)>42(1 — 0.4)*45(1 — 0.4)*B2(1 — 0.3)“ s
(1= 0.3)55(1 = 0.5)15(1 = 0.6)>55 (1 = 0.6) 841 = 0.1)* (1 = 0.5)%+)

min {Zy = 1 = (1 — 0.6)*"2(1 — 0.5)23(1 — 0.6)“ %3 (1 — 0.7)“s(1 — 0.5)“45a(1 — 0.7)“>1

s.t.

(1 =0.5)4s(1 = 0.6)52(1 — 0.6)43(1 — 0.5)“ s (1 — 0.4) (1 — 0.4)“>s
(1= 0.4)8s(1 = 0.7)*42(1 = 0.3)54 + (1 — 0.4)2(1 — 0.4)“a3(1 — 0.3)“1 4
(1= 0.3)Ns(1 = 0.4)“ 453 (1 — 0.2)242(1 = 0.4)*4is(1 — 0.4 B2(1 - 0.3)“> s
(1= 03)%s(1 = 0.5)15(1 = 0.6)2 (1 = 0.6)54(1 = 0.1)* (1 — 0.5)4 )

fl , = max{0, cd} — cdé},leg3 = max({0, cd) — cdé},.fi,3 = max{0, cd} — cd}},

&y5 = max{0, cd} — cdi}, €] 5 = max{0, cdy — ed}}, &, = max{0, cd} — cd3),

fl 5 = max{0, cd] - cd3), &, = max{0, cd; — cd3}, &} 5 = max{0, cdj — cd3),

§4 s = max{0, cdﬁ - cdg}, i3 = max{0, cdf - ca’g},f;3 = max{0, cdg - cdg},

f = max{0, cdg - Cd?;}’fi,z = max{0, cdi - cdg},g—‘gA = max{0, cd3 - cd3}'

/1}2 = max{0, cdl - cdl} /ll = max{0, cdl cdl} = max{0, cd - cdl},
/l}hs = max{0, cd} — cd}}, A} 53 = max{0, cd} — cdl}, 12 = max{0, cd3 — cd?},
’1%,5 = max{0, cd2 - cdz} = de{O,Cd2 cdz} = max{0, cd2 - cdz},
/lfH = max{0, cd2 - cdz}, 3= maX{O,cd cd3}, 23 = max{0, cd3 - cd3},
A3, = max{0, cdi cd3}, A3, = max{0,cd; — cd3), A3 14 = max{0, cd; — cd3);

o1 < u(fer}) £ 0.15,0.05 < p({c2}) < 0.1,0.15 < p({cs)) < 0.25,

0.25 < p({ca}) <0.3,0.2 < pu(fes)) < 0.3,0 < p(fee)) < 0.1

uej, gt = ulejt + ulegdog = 1,2,3,4,5,6; j # @);

0.1 <w; <0.2,04 < wy <0.7,03 <w; <0.5;

Y = =1.5u({c;h) + Z 2(/1({01-, cqh) = ufegh(i = 1,2,3,4,5,6);

N Z}C M({C,,Cq})-(n—2) Z #({C, D=1

{ v]CZS\ (ucj, cqh) —,u({cj})) > (|S| = 2u({c ), ¥S € Cwithc, €S and S| > 2.

Step 12: 1t is assumed the parameters involving the A-NSGA-III-based optimization algorithm are set as follows:
population size N = 300, maximum iteration number ite = 1000, reference point divisions p = 10, SBX possibility
pe = 20, SBX recombination parameter index 1, = 20, PM possibility p,, = 1 and PM recombination parameter index
nm = 20. Then, after applying the optimization algorithm with MATLAB R2017b to solve above model, the final Pareto
set is derived and depicted on a value path plot in Fig. 1a.
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Fig. 1a. Pareto set using 4-objective value path format for Example 1

Step 13: The TOPSIS [26] is used to select a desirable solution from the Pareto set as the weighting result:

u({er}) = 0.1450, u({c2}) = 0.0574, u({c3}) = 0.2386, u({cq}) = 0.2964, u({cs}) = 0.2372,
ul{ce)) = 0.0254, u({c1, ca}) = 0.2024, u({c1, c3}) = 0.3836, u({c1, ca}) = 0.4414,

u(cr, es}) = 0.3822, u({cy, c6}) = 0.1704, u({c2, c3}) = 0.2960, u({cz, c4}) = 0.3538,
u({ca, esh) = 0.2946, u({ca, c6}) = 0.0828, u({cs, c4}) = 0.5350, u({c3, cs}) = 0.4758,
u({cs, cg}) = 0.2640, u({cq, c5}) = 0.5336, u({cs, c4}) = 0.3218, u({cs, cg}) = 0.2626;

w; =0.1119, w, = 0.4308, w3 = 0.4573.

Step 14: (10) is used to compute Banzhaf value y({c;})(j = 1,2,3,4,5, 6) on each criterion c;:

Y({c1}) = 0.1450, y({c2}) = 0.0574, y({c3}) = 0.2386, ¥ ({ca}) = 0.2964,
Y({esh) = 0.2372, ¥ ({ce}) = 0.0254.

Step 15: Based on y({c;})(j = 1,2,3,4,5,6) and w.(t = 1,2,3), (36) is used to compute Choquet-based overall
relative closeness degree cd;(i = 1,2, 3,4,5) of each merchant z;:

cdy = 0.5539, cd, = 0.5068, cds = 0.4209, cdy = 0.7048, cds = 0.4301.

820 Step 16: Because cdy > cd; > cdy > cds > cds, the final ranking of merchants is: z4 > z; > 20 > z5 > 23.
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