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Abstract
Manually labelling datasets for training violence detection systems is time-consuming, 
expensive, and labor-intensive. Mind wandering, boredom, and short attention span can 
also cause labelling errors. Moreover, collecting and distributing sensitive images contain-
ing violence has ethical implications. Automation is the future for labelling sensitive image 
datasets. Deep labeller is a two-stage Deep Learning (DL) method that uses pre-trained 
DL object detection methods on MS-COCO for automatic labelling. The Deep Labeller 
method labels violent and nonviolent images in WVD and USI. In stage 1, WVD generates 
weak labels using synthetic images. In stage 2, the Deep labeller method is retrained on 
weak labels. USI dataset is used to test our method on real-world violence. Deep labeller 
generated weak and strong labels with an IoU of 0.80036 in stage 1 and 0.95 in stage 2 on 
the WVD. Automatically generated labels. To test our method’s generalisation power, vio-
lent and nonviolent image labels on USI dataset had a mean IoU of 0.7450.
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1  Introduction

Deep Learning has made advancements in computer vision. Especially in object detection 
methods that use large, accurately labelled datasets to train their models, like Pascal-VOC [8] 
and MS-COCO  [14]. Manually labelling images is a time-consuming and labor-intensive 
process. Further, mind wandering, boredom, and attention span affect human labelling 
process  [11]. Therefore, data labelling solutions are expected to reach 4.1 billion by 2024, 
up from 1.7 billion in 2019. Naturally, Google, Amazon, and Baidu offer these expensive 
services  [7]. When labelling sensitive image datasets, like violence, the situation worsens. 
Detecting violence is a high-level task due to the presence of certain visual and audio features 
(e.g. blood, weapon, fire, blast, screams)  [5]. Such sensitive data has ethical implications, 
so traditional labelling processes may not be desired approach for human labelling of vio-
lent images and videos. Further this can have psychological impact on human labellers. Due 
to this, data corpus for violence tends to be based on movie scenes (e.g. Hollywood2 [19], 
Hockey Fight and Movies  [24], and VSD [5]). Nadeem et al.  [21] proposed an alternative 
way to generate violent videos to avoid ethical and psychological issues. Their Weapon Vio-
lence Dataset (WVD) is based on the open world game Grand Theft Auto-V. (GTA-V). This 
is the only known synthetic dataset for violent videos with weapons.

In this work, our aim is to label WVD dataset for violence detection. Specifically, our focus 
here is to produce a method that can automatically label person-to-person fights using off-the-
self object detection methods with zero human interference. It must be noted that WVD does 
not previously contain any bounding box labels. Therefore, just to test our method a small sub-
set of WVD and UNITN Social Interaction (USI) [29] datasets are manually labelled. To this 
end, our experiments generate bounding box labels for person-to-person fights on both syn-
thetic and real world images. It must be emphasised that once the training process is completed 
the manually labelled datasets are used to report the final performance of our method. Such 
a method can greatly benefit the task of violence detection which is increasingly becoming 
important in video surveillance domain [13, 32]. Primary example include: CCTV, handheld/
mounted dashcams, cellphones and drones. If such captured corpus of data can be labelled 
automatically, this can help create methods for Crowd Surveillance [9, 30].

Automatic labelling has been a desired aspect for supervised learning algorithms. Many 
such methods have been proposed for computer vision tasks. Liu et al. [16] proposed auto-
matically labelling, detecting, and tracking football players. Xiang et  al.  [31] developed 
a method to label data for behaviour profiling and abnormality detection. Bah et  al.  [3] 
considered labelling unsupervised UAV weed images. Papadopoulos et  al.  [25] removed 
human labellers but used human verification of machine-generated labels. All such meth-
ods rely either on handcrafted features or require human involvement in labelling. How-
ever, to the best of our knowledge no such method has been proposed for automatic detec-
tion of violence. Similar to Papadopoulos et al. [25] human labelled test set is only utilised 
once for verification to report the final performance of the method.

To conclude, we propose a new approach that generates labels for person-to-person vio-
lent scenes without any human intervention during training. Human-generated WVD and 
USI test sets are only used once for verification/evaluation. The experimentation process 
use FRCNN [27], Yolo, Tiny-Yolo [26], RFCN [4], SSD [18], and RetinaNet [15] trained 
on MS-COCO [14]. It must be noted that these methods are primarily designed for object 
detection and not for labelling violence. However, in this paper learned low-level feature 
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representations are used to label violence (a high level task). Instead of the bottom-up 
approach training DL from labelled data, our approach is top-down. The approach is two-
staged. Stage 1 uses pre-trained object detection models and an aggregation function to 
generate weak labels for WVD dataset. The models performance is evaluated on a human-
labeled set. Stage 2 retrains the existing models using the weak labels generated in stage 
1 as input data. Strong labels are generated by directing the loss function to focus more 
on high IoU labels, then performance is again measured against the same human-labeled 
WVD test set. After training, the same models label a real-world dataset (USI).

The paper’s contributions are: 

1.	 Proposed a two-stage method using weak and strong learners to label virtual violence.
2.	 Generated human labelled test sets for WVD and USI datasets.
3.	 Demonstrated that DL learned feature representation (MS-COCO) can be hierarchically 

combined and applied directly to synthetic virtual images without retraining or transfer 
learning for violent scenarios (stage 1).

4.	 Training on weak labels (produced in stage 1) improved labelling performance, produc-
ing a strong learner that labels synthetic virtual (WVD) and real world (USI) images 
with high IoU scores without using temporal and spatial features (stage 2).

The remaining of the paper is organised as follows. Section 2 describes related automatic 
labelling approaches. Section 3 describes the virtual (WVD) and real-world (USI) datasets 
used in the experiments. Section 4 explains the challenges of human labelling. Section 5 
describes how we generate bounding boxes for WVD and USI datasets. In Section 6, we 
analyse our method’s WVD and USI performance. In Section  7, proposes solutions and 
future directions. Our findings are summarised in Section 9.

2 � Related work

The concept of automatic labelling of raw data is one of the most desired aspects of super-
vised learning. In order to develop generic feature representation, the first step is to pro-
vide a learning algorithm with accurately labelled data. Especially for DL algorithms, 
these aspects hold critical value. To this end, many unsupervised and semi-supervised 
approaches have been developed for automatic labelling of data. Specifically, for computer 
vision tasks some methods have been devised for person tracking, face detection, object 
detection and semantic labelling, caption generation, behaviour profiling and anomaly 
detection. Unfortunately, not many recent attempts could be found for automatically label-
ling of violence, that exists in literature. This section would elaborate on the methods cre-
ated to label images for vision tasks.

Xiang et  al.  [31] developed a method which automatically labels data for behaviour 
profiling and abnormality detection. Instead of object tracking, they utilised discrete scene 
event features which are modelled by Dynamic Bayesian Network to calculate the affinity 
matrix for the behaviours. Then, a Multi-Observation Hidden Markov model was used to 
model each behaviour and spectral clustering was performed to generate the labels. The 
approach is simple; however, parameter tuning for the threshold value is challenging.

Liu et al. [16] proposed a method for automatic detection, labelling and tracking of play-
ers on a football pitch. Detection is done by combining dominant color-based background 
subtraction and boosting detection based on Haar features. Player labelling in teams is 
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carried out by subtracting the background from the image and converting the pixel values 
to the CIE-Luv color space. These pixel values are then clustered and a bag of feature 
representation is generated. However, when occlusion of players with indistinct appear-
ance occurs, it results in poor performance. Nevertheless, the method is computationally 
inexpensive.

Recently, Bah et  al.  [3] considered labelling unsupervised UAV images of weed in 
precision agriculture. They utilise the concepts of inter-row weeds to first discriminate 
between the planted crops and weeds. Thus, they generated a dataset containing images 
for both crops and weeds. Their methodology has three basic components: 1) Line detec-
tion, 2) Inter-line weed detection, 3) Database creation and training deep network. Another 
unsupervised method proposed by Niebles et al.  [22] used Probabilistic Latent Semantic 
Analysis (PLSA) and Latent Dirichlet Allocation (LDA) to categorise and localise actions 
on an unseen video sequence.

Le et al.  [12] trained a face detector without using labelled images. They argued that 
high level features can be learned from unlabelled data. Frameworks for low level feature 
detection are abundantly present in the literature. Similar to this, our focus in this paper is 
to label a high level task of violence utilising low level features. Similarly, Dong et al. [6] 
use face detector to label facial age of people. They trained two deep networks, the first net-
works is trained to detect face. The goal is to extract all the possible discriminative facial 
features necessary for face detection. Once this is done, transfer learning is applied to esti-
mate age ranges for the faces.

Niemeyer et al. [23] generates semantic labels by breaking the image into perceptually 
coherent regions called the superpixels. These superpixels are then clustered together by 
Simple Linear Iterative Clustering (SLIC). Afterwards using SIFT and Hue histogram, fea-
ture representations are calculated and clustered together forming a visual bag of word dic-
tionary. This is followed by Hierarchical Dirichlet Process (HDP) and labels are generated.

Aljundi et  al.  [2] proposed a method to automatically label human actor by extract-
ing their facial features from images taken from Internet Movie Database (IMBD) with-
out the use of subtitles or transcripts. The facial detection and description is done using 
Deformable Parts Model (DPM), and Deep Face Model (DFM). Afterwards face tracking 
is performed which results in multiple facial snaps taken from the video. This is passed to 
the Hungarian graph matching algorithm for clustering. Based on this the track are then 
assigned a label.

labelling data through man-in-the-loop is another technique utilised by Meng et al. [33] 
in their multi-stage weakly supervised data annotation method for 3D point cloud object 
detection. They predict the view angle by bin based regression method. In stage 1 they 
learn cylindrical 3D region proposal, stage 2 gives cascaded cuboids encircling the object.

Many such automatic labelling techniques have been designed to solve the problem of 
labelling huge amounts of visual data. Most of these techniques either are based on some 
rule based unsupervised methods where groups and labels are generated using some com-
mon patterns/features or exploit some underlining domain specific key understanding of 
features through which labelling is done for many vision tasks. Other techniques involve 
human observers to access/verify the labelling quality in the labelling process [25]. Moreo-
ver, loosely/partially labelled data or a combination of different conventional or DL based 
techniques are joined together to perform the labelling tasks.

However, to the best of our knowledge no such method exists for automatic labelling of 
violence. Mainly due to the reason, that violence related data is sensitive and is subjected 
to ethical implications. Furthermore, prolonged exposure to such content is discouraged. 
Moreover, mostly violence datasets are movie based and transcripts aid in the labelling 
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process. Keeping these factors in mind, in this paper, a novel technique for labelling and 
tracking violence has been proposed using pretrained DL object detection methods. A high 
level tasks has been labelled by combining low-level features together in this work.

3 � Datasets

The discovery of violence is frequently fraught with ethical and moral issues. Furthermore, 
using an open source labelling service to classify data related to violence is problematic. 
WVD dataset [21] was chosen for training, validation, and testing in stage 1 due to these 
factors. The final testing was done on the USI dataset in stage 2 to test the generalisation of 
our method on a real-world dataset.

The WVD dataset was created using the open world game GTA-V to create a synthetic 
dataset for weapon-based fights. The dataset is public and can be found on Kaggle1. WVD 
contains fights with a range of Hot (pistols, shotguns or automatic rifles) and Cold (bat, 
knife or broken bottles etc.) weapons. Specifically, it contains 10 hot and 9 cold weapon 
types. Each fight sequence is shot in a variety of lighting situations, including Dusk, 
Morning, Midday, Afternoon, Sunset, and Midnight. WVD has a stringent policy of 
only allowing two non-playable characters (NPCs) each fight. Only one of the two NPCs 
holds a weapon, illustrating an aggressor and victim scenario; yet, both NPCs battle with 
what they have. It should be emphasised, however, that both NPCs battle until one of them 
dies or is knocked out. However, due to the game’s fight mechanics, the NPC carrying the 
weapon usually survives, which is typically the case in real life. Blood, gunfire flash, fall-
ing/knockout motion, varied combat stances (aggressive, regressive, and defensive), and 
customisable weapon usage motion are all visible visual characteristics of WVD. As a con-
trol class, there are nine different nonviolent actions between two NPCs. Yoga, gardening, 
dancing, exercising, talking, argumentation, construction, vehicle maintenance, and being 
arrested are all examples of this.

On the other hand, USI 2 dataset [29] is essentially a social interaction dataset that con-
tains four human interactions: Talking, Shaking, Hugging, and Fighting. Three of these 
interactions are nonviolent, whereas only cold hand-to-hand violence is included in the 
fighting group. It should be emphasised that the USI dataset contains no hot fights. How-
ever, similar to WVD, this dataset covers interactions between up to two people, with a 
total of 16 variable-length movies per interaction. Videos from the USI dataset are also 
collected in a frontal or dash-cam view, similar to WVD. It should be mentioned that the 
embracing and fighting classes are the most difficult to distinguish.

4 � Human labels generation: WVD and USI dataset

The development of human labels to evaluate the labels created for the WVD and USI was 
an important component of our technique and an essential aspect of our testing procedure. 
To this end, we randomly selected 10% of photos from the WVD for human labelling as 
the test set for evaluation purposes. The validation set comprised 20% of the total dataset. 

1  https://​www.​kaggle.​com/​thela​rka/​weapon-​viole​nce-​datas​et-​wvd.
2  http://​loki.​disi.​unitn.​it/​USID/.

https://www.kaggle.com/thelarka/weapon-violence-dataset-wvd
http://loki.disi.unitn.it/USID/
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From a total of 40,845 photos, this yielded 4,085 frames for the test set and 8,169 frames 
for validation. After that, 15 people were randomly assigned to the test set for human label-
ling. Our basic rule was to just look for fights, and each participant was instructed to create 
bounding boxes around the Region of Interest (RoI). Human labellers were in charge of all 
other aspects.

A few intriguing insights about the participants’ labelling behaviour have been discov-
ered. For the same set, each participant came up with radically different bounding boxes. 
As a result, the bounding box test set coordinates differed. This raises the question of which 
test set should be taken into account and why. Furthermore, what significance would the 
results provided on each test set have? To tackle this problem and account for human label-
ling variances, the test set was divided into 6 (WVD) and 5 (USI) equal halves. By inte-
grating tagged chunks from the labelled test sets, a single test set was created. The inclu-
sion of splattered blood, shadows, and clothing items (such as hats or glasses) as part of 
the RoI, while others ignored these visual characteristics entirely, is the basis for labelling 
variations. Furthermore, human labellers found it particularly challenging to correctly label 
violent sequences in low-light situations, which exacerbated labelling mistakes. These find-
ings imply that humans’ understanding of a violent scenario and the production of bound-
ing box coordinates are highly subjective.

The variations in human labelling of the WVD are shown in Fig. 1 for clarity, just a 
sample of three bounding boxes out of the total of six for WVD is shown. Each different 
coloured bounding box depicts a human-drawn bounding box on what they regarded as 
violence.

5 � Proposed approach

The identification of violence is a difficult process since it necessitates the presence 
of specific visible and audible elements such as blood, fire, weapons, screaming, or 
explosions. Furthermore, motion and temporal features are frequently used. The goal 

Fig. 1   Bounding Boxes generated by different human labellers for the same images of WVD and USI data-
sets
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of this project is to construct bounding boxes for a (high level) violence detection prob-
lem using simple (low level) object detection algorithms. We suggest that a high-level 
knowledge of events necessitates the hierarchical organisation of low-level features. 
With this in mind, an automatic approach is designed that generates weak and strong 
labels, reducing human interaction in the labelling process to a minimum. There are two 
stages to the proposed technique. 

1.	 Stage 1: In this stage, we use object detection algorithms that have been pre-trained 
to generate weak labels by identifying and aggregating (Virtual NPCs) people in the 
frames. After the bounding boxes have been aggregated, the labelling quality is deter-
mined by comparing the IoU of the bounding boxes to human-labeled WVD frames.

2.	 Stage 2: State-of-the-art object detection techniques are retrained to produce strong 
labels using the weak labels generated in stage 1. WVD [21] and USI human labelled 
test sets are used to evaluate the strong labels.

The labels created are explained in detail below; it should be emphasised that these labels 
are generated without human interaction; only a subset of the datasets is labelled by 
humans for final evaluation of the approach.

Weak labels. are built automatically by combining the boundaries generated by object 
detection algorithms trained on MS-COCO with the aggregation function. These are labels 
with both high and low IoU values.

Strong labels. are generated by retraining the object detectors on weak labels by direct-
ing the loss function to focus on only labels with high IoU values.

The two-stage technique for creating labels is shown in Fig.  2. In step 1, the images 
depict the process of creating weak labels in detail. Persons are first discovered using pre-
existing object detection methods. As described in equation 2, the created bounding boxes 
are then supplied to the aggregate function. The aggregate function’s objective is to build 
a broader bounding box that encompasses the entire area of violence. The bounding box 

Fig. 2   Flow chart of the proposed two-stage automatic label generation method
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values are saved if the generation is successful. In the absence of this, a mean bounding 
box value is calculated, generated and saved. It must be noted that

Meanwhile, stage 2 shows strong labels generated through training a strong learner. It 
must be noted that in stage 1 all the learning of DL methods has been carried out using the 
WVD dataset. Here the most commonly known state-of-the-art pre-trained object detection 
methods are used to detect persons in the frames. It is worth mentioning that the DL meth-
ods used in stage 1 are trained on real world images of persons. However, in this stage, we 
apply the learned features representation of MS-COCO directly to virtual persons in WVD. 
Once the bounding boxes are generated, they are passed through the aggregation function.

The produced labels are then checked which we refer to as weak labels. This process is 
error prone due to false positives, and misclassifications due to occlusion and deformation. 
In case of misclassifcation we replace the bounding box with a mean bounding box value 
taken from the previous three bounding boxes. However, this process just replaces missing 
bounding boxes and actually has a negative impact on IoU performance of stage 1. Due to 
this performance degradation in stage 1, weak labels are produced. Once this process is 
complete, the weak labels are evaluated against a human labelled test set.

In order to balance this negative impact of misclassification and false positive in stage 
1. In stage 2 the weak labels are then fed to the object detection methods, the DL methods 
are retrained and networks are directed to focus more on labels which produce good IoU 
scores. The goal here is to make the DL methods focus more on the good labels rather than 
the labels produced due to inherent weaknesses in stage 1. Through this process strong 
labels are generated. These labels are then evaluated against the WVD test set. Once the 
training, validation and testing phases are completed, a final pass is performed on the USI 
dataset.

5.1 � Evaluation criterion

The localization and classification evaluation of the item can be divided into performance 
analysis of object detection methods. The most often utilised evaluation matrices for these 
purpose are Mean Average Precision (mAP) [17] and IoU. However, we are just interested 
in evaluating the localization of violence in this study. IoU is the de facto evaluation metric 
for evaluating the model’s localisation performance  [28]. As demonstrated in Eq 1, IoU 
(also known as Jaccard Index) divides the area of intersection by the area of union for the 
overlapping bounding boxes. The IoU metric produces a normalised value between ’0’ and 
’1,’ with ’0’ indicating no overlap and ’1’ indicating total overlap. For photos with both 
human and automatic machine labelling, IoU values are calculated. This procedure is car-
ried out for each of the pre-trained object detection algorithms used in this study.

5.2 � Implementation details

We employ the Tensorflow Object Detection API  [10] and ImageAI  [20] libraries to 
construct the machine labels for violence detection because our approach uses pre-
trained object detection algorithms. Only the implementations with the highest 

(1)IoU =
|A ∩ B|
|A ∪ B|
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detection rates were chosen from each library. Because the purpose is to develop labels 
for violence, only the most effective models were chosen. It should be highlighted that 
this paper does not present a novel model for detecting violence. Our approach, on the 
other hand, is able to create high IoU values (i.e. localization refer back to Section 5.1) 
through automatic labelling, resulting in high detection scores.

Tiny-Yolo and Yolo [26], Faster-RCNN (FRCNN) [27], RFCN [4], SSD [18] and 
RetinaNet  [15] were among the deep networks employed in this study. All of these 
algorithms have been pre-trained on the MS-COCO dataset [14], a large-scale dataset 
with 80 different types of objects. The “Person” class is the sole object utilised in this 
method. Table 1 shows the hyper parameter values set in the experiments. The people 
in the WVD are detected using these pre-trained networks. As previously stated, eve-
ryone in the WVD are essentially NPCs from the photo-realistic game GTA-V. Con-
sequently, despite the fact that these networks were trained to detect humans using 
photos of real-world people, they are used unchanged in our technique.

When a person involved in a conflict is identified, their bounding boxes are used 
as anchors to create broader bounding boxes for violence. Four values (x, y,w, h) are 
returned for each successful detection, where x and y are the coordinates of a point on 
the image, and w and h are the width and height (respectively) of the bounding box 
with respect to the point (x, y) being the top-left corner of the bounding box.

The bounding boxes created by the pre-trained object detection network (for person 
detection) are first aggregated to localise the RoI for the entire conflict. Eq 2 describes 
the aggregation function that was used. These bounding boxes are then stored, and a 
record is kept for each violent WVD scenario. When the object detectors fail to detect 
the person, these records are used to replace bounding boxes. As the WVD battle 
sequences feature violence, they were captured with a variety of lighting settings, as 
well as NPC occlusion, deformation, and size modifications (see Figs. 1, 6,  7, and 8). 
Furthermore, because object detectors are dependent on real-world data, using them 
in a virtual environment can result in a high number of false positives and misclas-
sifications. Previous bounding boxes are recorded and used instead of a mean bound-
ing box value to address detection misses. In order to achieve this, the previous three 
saved bounding boxes are used to produce a mean bounding box value, which is then 
replaced when the object detector fails (  cf Fig.  2). The (semi accurate) weak labels 
and the IoU value for individual photos and the dataset as a whole are saved after the 
process is complete. The first stage has come to a conclusion.

The models were retrained using the weak labels created in stage 2 using the Google object 
detection API. The 0.0001 learning rate and early stopping method resulted in superior IoU 
values at this stage. The early halting compels the network to only learn the good labels 
because they are the majority, as shown in Fig. 3, while disregarding the negative labels 
that resulted from the false positive in stage 1, as shown in Fig.  3. As a result, getting 
high IoU scores at the end of stage 2 requires a modest learning rate and an early halting 
approach.

(2)

fagg = (min
(
x1, x2

)
,

min
(
y1, y2

)
,

max
(
x1 + w1, x2 + w2

)
,

max
(
y1 + h1, y2 + h2

)
)
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6 � Results

Machine labels were created for all of the item detection methods stated in Section 5.2 once 
the human labeling process was done. The performance of each object detection algorithm 
against each weapon type in the WVD is shown in Figs. 4 and 5. Object detection algo-
rithms FRCNN, SSD, Yolo, and Tiny-Yolo fought for the “Golf Club and Knife” weapon 
categories in the cold weapon category. Overall, RetinaNet functioned admirably. For SSD 
and Tiny-Yolo, however, the most difficult weapon category was “MGCombat,” whereas 
FRCNN only struggled with the “RifleCarbine” category. The performance of RetinaNet 
and RFCN appears to be somewhat similar (Fig. 5). Because each scenario in the WVD 
has distinct scale variations (such as NPC occlusion and distortion), each weapon’s IoU 
value varies depending on the time setting.

Figure 3 illustrates the frequency distribution of the labels produced for violence to have 
a better idea of the performance of object detectors. Both graphs for hot and cold fights are 
clearly skewed, indicating that the majority of the labels generated have a higher IoU value. 
Hot labels, on the other hand, have a better probability of receiving a higher IoU value in 
our method. RetinaNet and RFCN have proved their supremacy in virtual settings for cold 
and hot conflicts, respectively, in Fig. 3.

The total performance of each object detection for the whole WVD is shown in Table 2. 
RFCN had an overall IoU value of 0.8256 for hot fights, while RetinaNet had an IoU 
value of 0.7882 for hot fights. Overall, RetinaNet had the highest IoU value of 0.8036 for 
the entire dataset. This demonstrates that our technology is capable of automatically label-
ling synthetic data like the WVD dataset. This would allow for the creation of large-scale 

Fig. 3   Comparison of frequency density against IoU values for each object detection method

Table 1   The set of hyper 
parameters utilised in the 
experimentation process

Hyper Parameters Values

Learning Rate 1�
−2 - 1�−6

Gradient Descent Optimiser ADAM
Training Epochs 10 - 100
Training set WVD 72286
Validation set WVD 10326
Test set WVD 20654
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Fig. 4   Overview of the achieved IoU values for each object detection methods with respect to cold weapon 
type fight sequence in the WVD dataset

Fig. 5   Overview of the achieved IoU values for each object detection methods with respect to hot weapon 
type fight sequence in the WVD dataset

Table 2   Summary of achieved 
IoU values for each object 
detection method on WVD

FRCNN RetinaNet RFCN SSD Yolo Tiny-Yolo

Hot 0.7864 0.8190 0.8256 0.7939 0.7925 0.7513
Cold 0.7440 0.7882 0.7607 0.7605 0.7596 0.7310
Total 0.7652 0.8036 0.7932 0.7772 0.7761 0.7412
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databases for sensitive sectors like violence, lowering human exposure and ethical consid-
erations while labelling.

6.1 � The Good, The Bad, and The Ugly labels

After reaching a high IoU score using our automatic labelling approach, the achieved per-
formance is analysed, and the labels are classified into three categories based on the IoU 
scores: “The Good”, “The Bad,” and “The Ugly.” Images having an IoU value more than 
0.8 are referred to as “The Good”, while images with an IoU value between 0.5 and 0.8 
are referred to as “The Bad”, and images with an IoU value less than 0.5 are referred to as 
“The Ugly”. However, it must be noted that in object detection IoU values greater than 0.5 
are considered good.

Our technique produces “The Good” labels, which are compared to human labels (Sec-
tion 4) in Fig. 6. The latter is represented by the blue bounding boxes, whereas the for-
mer is represented by the green bounding boxes. Human and machine-generated labels are 
nearly similar and entirely overlapping, as seen in the diagram. Furthermore, the WVD’s 
performance has been stable across all time settings.

“The Bad” designations are shown in Fig. 7. In most cases, an IoU value greater than 
0.5 is considered good in object detection. In the instance of violence detection, however, 
IoU values of approximately 0.5, in our opinion, cannot be considered good. The reason for 
this is that in violent situations, the chance of death is higher. The figure shows how human 

Fig. 6   Examples of “The Good” labels: the green bounding boxes represent machine labels while blue rep-
resents the human labels for violence detection
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and machine labels partially overlap; while there is some violence here, the machine labels 
are covering extra ground in the majority of cases. In the case of the “The Ugly” labels, as 
illustrated in Fig. 8, there is essentially no or very little overlap.

Poor performance can be attributable to three variables after a closer examination of the 
photos. First, the false positive ratio has an effect on the aggregation function (Eq 2). The 
object detection algorithms were trained to recognise humans from real-world data (MS-
COCO), but we tested them on synthetic data captured in virtual environments with no pre-
processing. This explains why object detectors misclassified certain things as person due 
to differences in learning feature representation. Figures 7 and 8 illustrate that some false 
positives were found, as seen by the expanded machine produced bounding boxes.

Second, after a successful construction of the violence bounding box, the coordinates 
are retained in order to anticipate the individual in the event of a failed detection. The 
irregularities are caused by the misleading positive violent bounding boxes. It’s also worth 
noting that smaller records in the past result in poor forecasts for the first frames in the 
series. This suggests that rather than relying on previously recorded bounding boxes, an 
intelligent approach is needed to forecast the current violent bounding box.

Third, the object detectors completely miss one of the fight participants due to NPC 
occlusion and deformation in consecutive frames. Object detectors are almost certain to 
fail on NPCs that have fallen to the ground, are out of the capture frame, or are occlud-
ing, as shown in Fig.  8. Images of RetinaNet and YOLO, specifically for hot fights, are 
an excellent example of this trend. Cold fight labels for Tiny-Yolo, SSD, and RetinaNet 

Fig. 7   Examples of “The Bad” labels: the green bounding boxes represent machine labels while blue repre-
sent the human labels for violence detection
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are also affected by poor lighting and NPC occlusion. The fact that a fallen NPC is fre-
quently missed by object detection methods can be seen here. Performance is also affected 
by occlusion with the background and deformation issues.

These characteristics have an impact on the repository of previously recorded bounding 
boxes, making it difficult to anticipate the location of a missing individual and thus prone 
to mistake propagation. Despite these difficulties, our system provided high-quality labels 
and overall performance.

6.2 � Performance on USI test set

After completing stage 1, all of the labels were mixed at random and the object identifica-
tion techniques were retrained to produce strong labels. Early stopping approach was used 
during the retraining process so that the system focuses more on the good labels rather than 
the bad or ugly ones. With a value of 0.95, the FRCNN gave the highest IoU score for the 
WVD validation set after retraining. Once strong labels and learners are created, their per-
formance is evaluated on a real-world dataset in the end. For this purpose the USI human-
labeled test set was run via the procedure that produced the most IoU. (i.e. FRCNN). 
Table 3 lists the performance that was recorded. On the USI dataset, the final IoU score 
was 0.7450. Figure 9 shows “The Good”, “The Bad”, and “The Ugly” labels for the USI 
datasets. As with WVD, the labels generated here cover the majority of the ROI for vio-
lence. Even the Bad labels cover the majority of the region where individual exchanges 

Fig. 8   Examples of “The Ugly” labels: the green bounding boxes represent machine labels while blue rep-
resents the human labels for violence detection
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take place. This demonstrates the method’s robustness, demonstrating that it can function 
for both virtual synthetic and real-world photos with minimal human interaction. It’s worth 
noting that all of the training took place on the virtual WVD dataset.

7 � Future work

Our approach to label creation is applicable to one-on-one fights; however, expanding this 
strategy to crowd fights might be a fascinating path to pursue. Another potential avenue 
is the detection of person-to-person fighting in a virtual crowd scenario by training object 
detectors on the generated labels. Human labelling suffers from human psychological 
concerns such as mind wandering or boredom, as demonstrated in our experimentation 

Fig. 9   In the figure green bounding boxes represent machine labels while blue represent the human labels 
on the USI dataset

Table 3   The table shows the 
overall performance achieved on 
WVD (stage 1 and 2) and USI 
dataset

IoU Score

Stage 1 (WVD) (RetinaNet) 0.8036
Stage 2 (WVD) (FRCNN) 0.9500
USI dataset (FRCNN) 0.7450
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approach. These human characteristics can introduce inaccuracies and differences, result-
ing in distinct bounding box coordinates. Deep labellers would tackle this problem by 
generating a large amount of labelled data in a short amount of time, all with the same 
bounding box co-ordinates. Low-level features could be used to create hierarchical rep-
resentations for labelling high-level tasks in other computer vision applications as well. 
However, such technologies might be tailored to specific areas, and automatic data label-
ling with an acceptable error rate can still save time and effort.

Labels with high IoU values were made using the proposed method. However, depend-
ing on the mean bounding box value determined from previously created bounding boxes is 
not a robust/smart method in the case of poor detection from the pre-trained networks. Fur-
thermore, inaccuracies and the quality of poor labelling have a significant impact on per-
formance. One alternative option is to use combat motion data to estimate where the NPCs 
will appear. Additionally, recurrent networks have been shown to boost performance ([1]).

8 � Limitations of our approach

Despite the fact that our method yields high IoU labels for WVD and USI datasets, it is not 
without flaws. We must clarify that the approach used in this study is intended for simple 
person-to-person battles. This is done on purpose to test our hypothesis of using DL object 
detection technologies to categorise violent videos from the top down. This research dem-
onstrates that synthetic movies for violence can be labelled with high-quality labels with-
out the need for human intervention. This strategy, however, cannot be immediately applied 
to situations involving crowd violence. Furthermore, the performance of the off-self object 
identification methods used in our methodology can have an impact on overall labelling 
performance. As a result, we tested a variety of cutting-edge object detection techniques.

9 � Conclusion

Using object detection models pre-trained on the MS-COCO dataset, we developed a 
method for automatically constructing bounding boxes for violence detection in a virtual 
environment. A subset of the Weapon Violence Dataset (WVD) and the UNITN Social 
Interaction (USI) datasets were labelled by 15 human volunteers as part of our experimen-
tal procedure. These test sets will be used in our research and are publically available on 
Kaggle.

Our method for automatic labelling demonstrated that low-level information extracted 
and combined from simple object detectors may be utilised to label high-level tasks like 
violence detection. As a result, it was discovered that Deep Learning-based object detec-
tion methods might be used as a deep labeller to label a huge number of photos with bet-
ter IoU performance. The method can be used to classify sensitive photos with little or no 
human intervention and exposure. Furthermore, our research revealed that Deep Learning 
algorithms trained on real-world photographs may be applied to data gathered in a virtual 
environment with success.

In stage 1, RetinaNet was able to produce overall high quality weak labels with an IoU 
value of 0.8036 on the WVD, while RFCN and RetinaNet produced the highest IoU values 
of 0.8256 and 0.7882 for hot and cold fights, respectively. For all of the DL approaches 
utilised in our study, the overall trend for bounding box generation was positively skewed 
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towards larger IoU values. This performance was improved to 0.95 in stage 2 by passing 
the weak labels learned in stage 1. Finally, a single pass of the USI test set was completed, 
yielding a 0.745 IoU score. This demonstrates that our method can accurately label images 
for violence detection with minimal human intervention.
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