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Abstract

Many real-world phenomena are naturally bivariate. This includes blood pressure,

which comprises systolic and diastolic levels. Here, we develop a Bayesian hier-

archical model that estimates these values and their interactions simultaneously,

using sparse data that vary substantially between groups and over time. A key el-

ement of the model is a two-dimensional second-order Intrinsic Gaussian Markov

Random Field (IGMRF), which captures non-linear trends in the variables and

their interactions. The model is fitted using Markov chain Monte Carlo methods,

with a block Metropolis-Hastings algorithm providing efficient updates. Perfor-

mance is demonstrated using simulated and real data. Furthermore, IGMRFs can

be used to induce conditional dependence in Bayesian hierarchical models. IGM-

RFs have both a precision matrix, which defines the neighbourhood structure of

the model, and a precision, or scaling, parameter. Previous studies have shown

the importance of selecting the prior of this scaling parameter appropriately for

different types of IGMRF, as it can have a substantial impact on posterior results.

The focus is on the two-dimensional case, where tuning of the parameter’s prior is

achieved by mapping it to the marginal standard deviation of a two-dimensional

IGMRF. We compare the effects of scaling various classes of IGMRF, to the ap-

plication of blood pressure data.
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Chapter 1

Introduction and background

In this chapter we provide key information on the statistical methodology to be

used. A detailed explanation of the data is provided and a description on the

structure of the application area is shown while the motivation for this project are

presented.

1.1 Bayesian Inference

Bayesian become increasingly common modelling of complex data for various

projects. Bayesian inference introduces randomness/uncertainty and this is quan-

tified by including probability in the description of model parameters. In this

way Bayesian models provide flexibility and generality for tackling complex prob-

lems, Gelman et al. [2013]. Specifically, this uncertainty is explained through a

joint probability density with the assumption that the events are exchangeable

meaning that the joint probability density is invariant to the permutations of the

indices. In contrast to frequentist inference, parameters and hypotheses are not

considered to be fixed and probabilities are assigned. In that way, probabilities of

the parameters express a degree of belief which is based on prior knowledge about

a particular event, i.e., conclusions drawn from previous studies or personal be-

liefs. In other words, the prior knowledge is expressed through prior distributions
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expressing the intuition for a specific dataset, Gelman et al. [2013], McElreath

[2020]. Hence, Bayesian inference combines together the personal belief and the

information of the data for the final result/ output of the project. However, there

are cases that a prior belief or intuition is not available and still Bayesian inference

can be applied. That is the case of a non-informative prior distribution where the

output of the project depends solely on the data and hence the result coincides

with the classical approach.

In summary, there are two types of priors: the informative and non-informative

priors. The non-informative priors are those that provide little or no information

at all relative to the data. In the following sections we will talk about the priors

that we are using for our modelling. The priors that we are using are informative

taking both types of informative and non-informative hyperpriors instead. The

non-informative hyperpriors that we are using provide little information about

the data and the focus is on giving a very wide variance in the hyperprior’s dis-

tribution.

For being able to combine together prior distribution and information of the data

we use the Bayes’ Theorem which is expressed in the following way:

P (θ|x) =
P (x|θ)P (θ)

P (x)
=

P (x|θ)P (θ)∫
θ
P (x|θ)P (θ)dθ

Let us assume that x are data and θ is the parameter of interest. The information

provided by the data, the so-called likelihood is denoted by P (x|θ) where the

prior distribution is expressed by P (θ). P (x) is a probability depended on x and

therefore is interpreted as normalising constant. Furthermore, P (x) can be also

written as a combination of the likelihood and the prior, which is the numerator

while integrating out the θ parameter. Finally, the result of the Bayes’ theorem

expresses the posterior distribution, P (θ|x), the probability of the θ parameter

conditional on the data, x. Hence, posterior distribution combines the information

of the data, x and the prior information, P (θ) which can be a personal opinion or

based on results of previous studies.
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1.2 MCMC Methods

Markov Chain Monte Carlo (MCMC) methods are a broad class of computational

algorithms which through repeated random sampling obtain numerical results,

Robert et al. [1999]. Monte Carlo estimates the properties of a distribution by

generating random samples from the distribution. For example we want to find

the expected value of the h function in equation 1.1.

Eπ[h(x)] =

∫

x

h(x)π(x)dx (1.1)

Therefore, based on Monte Carlo integration we can randomly generate a sample,

(x1, . . . , xm) from the π density and approximate (1.1) by the empirical average

h̄m =
∑m

j=1 h(xi), Metropolis and Ulam [1949]. Because of the Strong Law of

Large numbers h̄m converges almost surely to Eπ[h(x)].

The computational simplicity and ease that the Monte Carlo approach introduces

makes it widely applicable. In more complicated distributions it is computationally

more straightforward to calculate the mean of a large sample of numbers than

calculating the mean directly from the distribution’s equations. However, there

are some limitation in Monte Carlo integration such as the cases that we cannot

generate a sample from a distribution or not being able to compute the normalising

constant.

Furthermore, we have also Markov chains which are stochastic models. Markov

chains consist of a sequence of events and has the property that the probability of

each event depends only on the event that occurred just before, Markov [2006]:

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i+ 0) = P (Xn+1 = j|Xn = i) = p(i, j)

(1.2)

where P is known as the transition matrix. In more detail, Markov chains were

formed from a transition kernel K, a conditional probability density, (1.2), such

that xn+1 ∼ K(xn, xn+1). In addition a Markov chain provide a very strong

stability property that is the stationary probability distribution, π and is a solution
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of the equation:

πT = πTP (1.3)

where P expresses the transition matrix. In that way π allows for free moves

throughout the state space with xn ∼ π and xn+1 ∼ π where this property is

known as irreducibility, i.e. all the states in Markov Chain communicate. Hence,

by constructing a Markov chain with a specified stationary distribution one can

obtain a sample of the desired distribution by recording states from the chain. A

Markov chain can be recurrent which means that the average number of visits to

an arbitrary state i is infinite, Robert et al. [1999]. Finally, by indicating that

a Markov chain is reversible we refer to the symmetry of the transition kernel

explained as:

π(i)p(i, j) = π(j)p(j, i), i 6= j (1.4)

Given the properties of irreducibility, recurrence and reversibility, we can combine

Markov chains with the Monte Carlo approach to comprise Monte Carlo Markov

Chain methods, Robert et al. [1999]. The MCMC algorithms are generally used

for sampling from multi-dimensional distributions, especially when the number of

dimensions is high. MCMC methods that are commonly used are the Metropolis-

Hastings algorithm and Gibbs Sampler.

The intuition behind Metropolis-Hastings estimation is that we use a proportional

density, g(x) that is known and easier to calculate than the one that we actually

want to compute, f(x) due to the difficulties in analysing the latter, Chib and

Greenberg [1995]. Specifically, what is difficult to calculate is the normalising

constant of f(x), Casella and George [1992], Robert et al. [1999].

1.2.1 Metropolis-Hastings algorithm

Let us consider now that θ is an unknown scalar parameter and y expresses the

data. We are interested in computing the posterior distribution P (θ|y) however,

there are cases that an analytic solution may not be available. Another distribu-

tion which has the properties to be similar to the posterior distribution is defined
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which is known as a proposal distribution (or kernel), q(.).

The Metropolis–Hastings algorithm generates a collection of states according to

a desired distribution P (θ|y). To accomplish this, the algorithm uses a Markov

process, which asymptotically reaches a unique stationary distribution π(θ) such

that π(θ) = P (θ|y), Hastings [1970], Casella and George [1992]. A Markov process

is uniquely defined by its transition probabilities P (θ∗|θ), the probability of tran-

sitioning from a state θ to a state θ∗ where it has a unique stationary distribution

π(θ) when there is:

1. existence of stationary distribution. There must exist a stationary distribu-

tion π(θ): a sufficient but not necessary condition is detailed balance, which

requires that each transition θ → θ∗ is reversible; the probability of being

in state θ and transitioning to state θ∗ must be equal to the probability of

being in state θ∗ and transitioning to state θ, therefore:

π(θ)P (θ∗|θ) = π(θ∗)P (θ|θ∗).

2. uniqueness of stationary distribution. The stationary distribution π(θ) must

be unique. This is guaranteed by ergodicity of the Markov process, which

requires that every state must (1) be aperiodic, where the system does not

return to the same state at fixed intervals; and (2) be positive recurrent,

where the expected number of steps for returning to the same state is finite.

Now, the derivation of the algorithm starts with the condition of the detailed

balance:

P (θ|y)q(θ∗|θ) = P (θ∗|y)q(θ|θ∗) (1.5)

P (θ|y)q(θ∗|θ)
P (θ∗|y)q(θ|θ∗) = 1 (1.6)
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Using the condition of the detailed balance we define the condition of accepting

or rejecting samples constructing the posterior distribution, Niemi [2019].

a = min

{
1,

Posterior∗Proposalk−1

Posteriork−1Proposal∗

}
(1.7)

a = min

{
1,

P (θ∗|y)q(θ(k−1)|θ∗)
P (θ(k−1)|y)q(θ∗|θ(k−1))

}
(1.8)

We compare the acceptance ratio a in (1.7) with the u value, randomly generated

value from a uniform distribution, u ∼ U(0, 1). In (1.7) the k term expresses the

current iteration that the model is at. If a is greater than the u value then we

accept θ∗ and θk = θ∗ if not, then we repeat the previous value, θk = θ(k−1).

In addition, we need to calculate the acceptance rate which is the fraction of pro-

posed samples that is accepted in a window of the last K samples, after burn-in.

Therefore, for a number K of iterations we approximately want to have an accep-

tance rate about 50% for a one-dimensional Gaussian distribution which decreases

to 20-30% accepted values for an N-dimensional Gaussian target distribution.The

acceptable values will comprise the sample of the P (θ|y) posterior distribution,

Smith and Roberts [1993], Gelman et al. [1996]. If we have an acceptance rate

more than 50% it indicates that the chain proceeds slowly as values that are close

to each other are proposed due to an existence of a small variance in the proposal

distribution. The problem can be fixed by increasing the variance of the proposal

distribution. On the contrary, a frequency less than 20% accepted values indicate

that the chain proposes values with a large variance from each other and has as a

result to reject the most of them. Again, the problem can be fixed by tuning the

variance in a smaller value.

The acceptance ratio equal to one is beneficial in the case of the Gibbs Sampler

where the target distribution coincides with the proposal distribution and has as

a result also that the acceptance rate is 100%.

There are two important subclasses of Metropolis-Hastings algorithm, Niemi [2019].

The first is known as the independent M-H where the proposal distribution does

not depend on the previous values q(θ∗|θ(k−1)) = q(θ∗) and the acceptance ratio is
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defined as:

a = min



1,

P (θ∗|y)
q(θ∗)

P (θ(k−1)|y)

q(θ(k−1))



 = min

{
1,

K(θ∗)

K(θ(k−1))

}

The second one is known as a random walk M-H where the proposal is a symmet-

rical distribution, where in the acceptance ratio it cancels out,

a = min

{
1,

P (θ∗|y)

P (θ(k−1)|y)

}

Lastly a special case of the Metropolis-Hastings algorithm is the Gibbs Sampler,

Smith and Roberts [1993], Gilks et al. [1995]. This method is applicable when the

proposal distribution is equal to the posterior distribution. Therefore, every value

that is proposed is desirable since it is coming from the posterior distribution and

hence, gives as a result an acceptance ratio and hence, acceptance rate equal to

one. Finally, for the Gibbs sampler we use the full conditional distributions for

each of the parameters.

1.2.2 Gibbs sampler

The Gibbs sampler tackles issues that occur in computing a joint distribution by

creating and calculating conditional distributions of the parameters instead, Ge-

man and Geman [1984]. In more detail, the joint distribution is the posterior distri-

bution, P (θ|y) where θ is a vector of length d. The Gibbs sampler works through

the full conditional distributions which for θ1 is defined as P (θ1|θ2, θ3, . . . , θd, y).

Then the algorithm for Gibbs Sampler can be expressed as follows, Geman and

Geman [1984]:

1. Set arbitrary initial values for θ(1) = (θ
(1)
1 , θ

(1)
2 ,. . . , θ

(1)
d ).

2. For a number of iterations n = 1 : (N − 1) repeat:

(a) draw θ
(n+1)
1 ∼ P (θ

(n)
1 |θ(n)

2 , . . . , θ
(n)
d , y)

(b) . . .
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(c) draw θ
(n+1)
j ∼ P (θ

(n)
j |θ(n+1)

1 , . . . , θ
(n)
d , y)

(d) . . .

(e) draw θ
(n+1)
d ∼ P (θ

(n)
d |θ

(n+1)
1 , . . . , θ

(n+1)
d−1 , y)

However, the Gibbs sampler can only be used when these full conditional distri-

butions are available. Gibbs Sampler is a Markov Chain Monte Carlo (MCMC)

algorithm for obtaining a sequence of observations which are approximated from

a specified multivariate distribution when direct sampling is difficult. The se-

quence of observations can be used to approximate the marginal distribution of

the parameter under study which is the parameter that the conditional or posterior

distribution is referring to. Another way of extracting the marginal distribution

of the parameter under study would be to integrate over the multivariate/joint

distribution. However, using the conditional distributions is simpler to sample

than integrating over the joint distribution.

Later on, in the analysis we also make use of block Metropolis-Hastings. Some

of the full conditional distributions of model’s parameters are known therefore

Gibbs sampler can be easily implemented. However, due to high correlation that

is observed between parameters an alternative must be used. In order to tackle

this issue we apply the block-Metropolis-Hastings which updates the correlated

parameters together. This method is useful and produces less correlation as it

delays the update of the one parameter which then used for the other, Green and

Mira [2001]. Examples of the method is shown in Chapter 3 where a more detailed

description is given.

Nowadays, there is a plethora of methods to be assigned such as BUGS, JAGS,

Plummer et al. [2003], STAN focusing on Hamiltonian Monte Carlo integration,

Carpenter et al. [2017]. These methods are platform-specific executable and they

were first created as a way for non-statisticians to use statistics. STAN specifically,

has been recently created providing a bigger variety of models and analysis than its

predecessors BUGS and JAGS. Specifically, you can define the prior distributions

and all the distributions of the full conditionals of all the parameters and have a
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result of it without needing to write more details. However, due to the complex-

ity of our model and previous success in fitting similar ( albeit less complicated)

models we implemented the MCMC methodology calculating the exact full condi-

tionals using Gibbs and Metropolis-Hastings. Stan can support our model but it

will be more complicated to define all the parameters. Furthermore, there is also

R-INLA, Lindgren and Rue [2015] which stands for Integrated Nested Laplace Ap-

proximation using Laplace approximation and applying Intrinsic Gaussian Markov

Random Fields (IGMRFs) analysed thoroughly in chapter 2. R-INLA as its name

indicates does not use MCMC thus not the exact distributions of the parameters

are founded but approximations. Since we were able to work with MCMC quite

well, we did not resort to it. Of course the interested reader is encouraged to

implement each one of the methods mentioned. Lastly, there is a possibility to use

non-Bayesian modelling such as mixed-effects models which have similar proper-

ties to Bayesian hierarchical models. In more detail mixed-effects model include

both fixed and random effects in the model. In that way, there are parameters

that can be considered constant or fixed and others that follow a specific distri-

bution and therefore are random, Pinheiro and Bates [2000]. However, the scope

of this project was to implement Bayesian methods and take advantage of all the

flexibility that Bayesian methods provide and specifically the hierarchical models

with the missing data.

1.3 Bayesian Hierarchical Modelling

In the past decade, Bayesian hierarchical modelling has become an established

technique in global health research, Bearak et al. [2018]. In essence, Bayesian hi-

erarchical models capture the similarity that exists between parameters. Based on

that, these parameters are drawn from the same prior distribution. The structure

and the connections that hierarchical models create make these models appropri-

ate for complex problems without necessarily using many parameters. In contrast,

non-hierarchical models will need a large number of parameters which increases

the risk of overfitting, Gelman [2006]. In Figure 1.1 we can see an example of
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Figure 1.1: Comparison between pooled, unpooled and hierarchical model,
Widdow Quinn [2006], Florian Wilhelm [2020]

non-hierarchical models which are known as pooled and unpooled models. Pooled

and unpooled models are quite opposite models as the first considers a common

parameter θ for all the observations whereas the latter considers a parameter θi

for each observation yi. In more detail, the prior for the pooled model is expressed

through the parameter θ, and is P (θ) for observations y1, y2, . . . , yk. On the other

hand, the unpooled model provides priors through parameters θ1, θ2, . . . , θk for

each of the k observations. This particular example is used to show that the hi-

erarchical model uses one more level, which are the hyperparameters under the

assumption that all θ’s of the unpooled case are drawn from the same distribution

and hence have the same hyperparameters.

Then hierarchical model is defined as the compromise between pooled and un-

pooled models as it considers a parameter θi for each observation yi but taking

the assumption that the θi parameters are exchangeable all these are drawn from

the same hyperprior distribution with µ and σ2 as the hyperparameters, Widdow

Quinn [2006], Florian Wilhelm [2020]. In other words, hierarchical model is similar

to the unpooled model considering one more level with hyperparameters. In that

way the θ1, θ2, . . . , θk will be extracted from the same distribution with common

parameters, µ and σ2. Finally, Bayesian hierarchical modelling is an asset to our

particular problem as by nature the blood pressure data are hierarchical. More
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details about Bayesian hierarchical modelling and how it relates to our problem

are presented in Section 3.1.

1.4 Non-Communicable Disease Modelling

1.4.1 Introduction

Blood pressure (BP) is the pressure of circulating blood against the walls of blood

vessels, Chobanian et al. [2003]. Most of this pressure is an outcome of the heart

pumping blood through the circulatory system. As a simple explanation blood

pressure refers to the pressure in the large arteries. Blood pressure is usually

expressed in terms of the systolic blood pressure (SBP) which is the maximum

pressure during one heartbeat over diastolic blood pressure (DBP) which is the

minimum pressure between two heartbeats in the cardiac cycle. Therefore, blood

pressure is well summarised as a bivariate measurement consisting of diastolic

and systolic blood pressure. Overall, blood pressure is one of the vital signs that

evaluate a patient’s health, World Health Organization [2021].

Noncommunicable diseases (NCDs), also known as chronic diseases, are of long

duration which result from a combination of genetic, physiological, environmental

and behavioural factors, World Health Organization [2021]. The main types of

NCD are cardiovascular diseases such as heart attacks and stroke, cancers, chronic

respiratory diseases, e.g., chronic obstructive pulmonary disease, asthma and sim-

ilar conditions and diabetes.

On the one hand modifiable behavioural risk factors of NCDs such as tobacco

use, physical inactivity, unhealthy diet, Bentham et al. [2020], Di Cesare et al.

[2019], Vandevijvere et al. [2019] and the excess use of alcohol may result in people

having raised blood pressure, Bentham et al. [2020]. On the other hand, there are

also metabolic risk factors which contribute to four key metabolic changes

that increase the risk of NCDs, Bentham et al. [2020], Di Cesare et al. [2019],

Vandevijvere et al. [2019]:
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� raised blood pressure

� overweight/obesity

� hyperglycemia (high blood glucose levels) and

� hyperlipidemia (high levels of fat in the blood)

Hence, as a result all these increase the risk of developing an NCD. Besides be-

havioural and metabolic risk factors these diseases are driven by forces that include

rapid unplanned urbanization, globalization of unhealthy lifestyles and population

ageing, ncd [2018]. However, in terms of attributable deaths, the leading metabolic

risk factor globally is elevated blood pressure (to which 19% of global deaths are

attributed), followed by overweight and obesity and raised blood glucose, Risk Fac-

tor Collaboration [2016], World Health Organization [2021]. Raised blood pressure

(RBP) is defined as SBP of 140 mmHg or higher, or DBP of 90 mmHg or higher,

and is estimated to affect more than one billion people worldwide (Risk Factor

Collaboration [2017]).

Although NCDs are often associated with older age groups, evidence shows that

more than 15 million of all deaths attributed to NCDs occur between the ages of

30 and 69 years, NCD Countdown 2030 [2018]. Children, adults and the elderly

are all vulnerable to the risk factors contributing to NCDs as behavioural and

metabolic risk factors take their toll in any age group. Furthermore, the access

to the right medication is not available in all the countries, Fletcher et al. [2015]

throughout the world which has as a result deterioration in the conditions of NCD.

1.4.2 Previous estimation on raised blood pressure

RBP is a key risk factor for non-communicable diseases such as cardiovascular

conditions, cancers and diabetes, which are responsible for approximately 70% of

global deaths each year (World Health Organization [2018]). In the early years

of NCD risk factor monitoring publications focused on analysing trends in mean

body-mass index, systolic blood pressure and cholesterol, Finucane et al. [2011],
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Danaei et al. [2011]. Furthermore, other studies focused on modelling associations

between metabolic risk factors and national income, urbanization and Western

diet, Danaei et al. [2013]. Later, a further study showed that the burden of cancer

can be attributed to diabetes and high body mass index worldwide, Pearson-

Stuttard et al. [2018]. Recent studies have shown that rising rural body-mass

index is the main driver of the global obesity epidemic in adults, Risk Factor Col-

laboration [2019] while other research is concentrated on multidimensional char-

acterization of global food supply from 1961 to 2013, Bentham et al. [2020].

Although recent and comprehensive estimates of trends in the mean values of SBP,

DBP and RBP at national level are available (Risk Factor Collaboration [2017,

2016]), there is limited understanding of how the interaction between SBP and

DBP varies over time, between countries, and by age and sex. While influential

(World Obesity Federation [2019], Development Initiatives [2020]), these models

only allow estimation of single variables at a time, e.g., solely on DBP or SBP.

Given that disease risk factors have complex interactions that vary over time and

between countries, the existing models therefore may fail to capture important

information.

We use the term bivariate blood pressure as BP is widely measured using two vari-

ables, diastolic and systolic blood pressure. The bivariate distribution is of interest

because both systolic and diastolic BP levels have particular medical implications,

and it is not clear how medication and diet may affect these relationships, for

example. Here, we extend existing methodology (Danaei et al. [2011], Finucane

et al. [2014]) to the two-dimensional case, specifying a Bayesian hierarchical model

that allows SBP, DBP and their interaction to be estimated simultaneously. A key

development is to extend the random walk (Rue and Held [2005]) used previously

Danaei et al. [2011], Finucane et al. [2014], which explained non-linear trends in

individual variables, to two dimensions. To do so, we use a two-dimensional ran-

dom walk or Intrinsic Gaussian Markov Random Field (IGMRF) (Rue and Held

[2005], Yue and Speckman [2010], Thon et al. [2012]) for the precision matrix

of a prior distribution explaining the non-linear time trends. In particular, an

IGMRF has been used to make estimates at national level of mean values of risk
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factors including elevated blood pressure, excess body-mass index, diabetes, and

sub-optimal lipid Risk Factor Collaboration [2016] profiles (Risk Factor Collabo-

ration [2017], NCD Risk Factor Collaboration [2017], Risk Factor Collaboration

[2016], NCD Risk Factor Collaboration [2020]). The models are sufficiently robust

for the World Health Organization to report resulting estimates in publications

such as the Global Diabetes Report (World Health Organization [2016]).

1.5 Blood Pressure Modelling

Our focus is to make estimates of blood pressure in order to observe whether the

blood pressure has increased or not through the time for each country, for each

age group and for each gender. The trends that are presented for each country

are complex and vary over time. For example in Figure 1.2 we can see the global

trends for single blood pressure variables have changed between the two genders

in 2015, Risk Factor Collaboration [2016]. Moreover, in Figure 1.3 we can also

make a comparison between the DBP, SBP and the RBP between the different

genders and we can notice that differences occur. These data were based on

studies that each country had conducted in the past and these studies can refer

to national, subnational or communities’ population in each country, Danaei et al.

[2011], Finucane et al. [2014].

Data can be separated into individual and aggregated data. Individual data are

those that selected from a specific individual. The aggregated data are coming

from an average of individuals under some same characteristics. For example, in

the Diastolic and Systolic Blood Pressure measurements data, we have a selection

of data from a number of individuals for each ages between 18 to 80 years old.

We separate the ages into 8 groups which are: 18-19, 20-29, 30-39, 40-49, 50-59,

60-69, 70-79 and over 80 and for each group we are taking the summary statistics.

In the whole analysis, we are making use of the aggregated data and therefore,

for a specific age group we will have a mean and variance value of the Diastolic

and Systolic Blood pressure respectively as well as the number of participants
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Figure 1.2: Age-standardised mean SBP, mean DBP, and prevalence of RBP
by sex and country in 2015 in people aged 18 years and older, Risk Factor

Collaboration [2017]

in each age group. Aggregated data are very much convenient to be used than

the individual data as they speed up the calculations however, there are some

drawbacks of using them. Firstly, we are based on the mean values of each age

group as we take the mean value of all the individuals comprising the specific

age group. Therefore, aggregation of data ignores individual variation as if it

were a statistical noise or measurement error. In addition, differences can also
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Figure 1.3: Comparison of age-standardised mean systolic blood pressure,
mean diastolic blood pressure, and prevalence of raised blood pressure in men
and women aged 18 years and older in 2015, Risk Factor Collaboration [2017]

exist between the inference that is used and the results between individual and

aggregated data. In Figure 1.4 time series of DBP and SBP are presented including

all the ages per year over time. What we can observe is that both DBP and SBP

seem overall to get decreasing throughtout time.

Figure 1.4: Time series of DBP and SBP for 1951-2017.
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Although there is a large volume of data, not all the countries under study have

data for each year for all the age groups and for both genders. Therefore, by using

Bayesian hierarchical methodology we can overcome this obstacle, Gelman [2006].

The way of solving this problem is to provide a specific structure in the dataset and

in the model. Specifically, we can combine the countries into categories. These

categories will include countries that are considered similar e.g., due to similar

lifestyle or culture. Then, these categories can also be categorized into larger

groups and so on. Therefore, the first type of categories will separate the globe

into nine groups which are known as super-regions and these are:

� Central and Eastern Europe

� Central Asia, Middle East and North Africa

� East and South East Asia

� High-Income Asia Pacific

� High-Income Western countries

� Latin America and Caribbean

� Oceania

� South Asia

� Sub-Saharan Africa

These super-regions can be divided into smaller groups the so-called regions. There

are 21 regions in total which contain a smaller number of countries expressing

more detail as we pay more attention to the similarities between the countries.

We borrow information between the countries in the same group so we want to

create groups with similar/alike countries. The groupings used in this work are the

same as those used by the Non-Communicable Disease Risk Factor Collaboration,

which were based on expert knowledge and have been used for around a decade.

The groups were defined a priori consulting on previous studies and remain the
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same throughout the research, Danaei et al. [2011], Finucane et al. [2011]. The

grouping is important to set similar countries in the same group as the estimation

of the blood pressure is depending on the group’s form. The groupings used in

this work are the same as those used by the Non-Communicable Disease Risk

Factor Collaboration, which were based on expert knowledge and have been used

for around a decade. In Figure 1.5 a global map is shown divided into regions and

super-regions and we can see clearly the separation between the countries. The

shades of the same colour show the regions that comprise one super-region. For

example, the majority of the African continent is depicted with shades of pink

colour. The four different shades of pink declare the four different regions: 1)

Central Africa, 2) East Africa, 3) West Africa, 4) Southern Africa and all these

four regions together comprise the Sub-Saharan Africa super-region. Lastly, it is

important to highlight that each country is also considered as a category on its

own since there are differences within each country throughout the years that need

to be considered.

Summing up, we have described a nested structure that the hierarchical model

provides, Gelman [2006]. The entire globe can be divided into super-region groups,

region groups and countries groups. By adding countries together we can overcome

the problem of missing information. If one country does not have data for a specific

year in a specific age group we expect a country that belongs to the same region

or super-region and has data to shed light on the missing information since these

two countries are expected to behave similarly. In conclusion, the hierarchical

model gives more accurate predictions than the no-pooling, in which each country

behaves differently and complete-pooling regressions, in which all the countries are

in the same group, especially when predicting group averages, Gelman [2006].

It also needs to be stressed that in terms of borrowing information from neigh-

bouring countries both DBP and SBP variables behave the same since if the DBP

measurement is missing then the SBP measurement is missing as well.

Bayesian hierarchical models borrow strength or shrinkage through the countries

in the same region and super-region but also IGMRFs express shrinkage within

each country, region or super-region over time. Each country has potentially data
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Figure 1.5: World’s map divided into regions and super-regions

for each year and by the same token each region and super-region is described by

data annually.

Therefore, the structure of IGMRFs provides the chance to share information be-

tween the years in this case, since it is possible to have missing data there too. Not

only are IGMRFs borrowing strength over time but they also take into account

the distance between the years. In other words, years closer to the year with no

information will have a bigger weight than those far away.

1.5.1 Challenges

As we have mentioned before there is a large amount of data since we are includ-

ing 200 countries for more than 20 years. However, there is still a problem of lack

of data since not all the years, age groups or both genders have the equivalent

dataset. Although we have interest to explore blood pressure measurements for

200 countries only the 165 of them provide us with data. In more detail, the 38%

of those countries have data only of one year, 78% have data for less that five years

whereas 90.3% have data for less than 10 years. Finally, 7.2% of the countries have

data from 10 to 20 years while only 1.21% of the countries which corresponds to

two countries have data between 20 and 30 years. Therefore, Bayesian hierarchical

modelling is highly useful by allowing us to borrow information between countries

in the same group. Although, the problem of lacking data was solved another issue
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has arisen. The Bayesian hierarchical model will give estimates for each possible

country, age group and year for both genders and thus, makes the model compu-

tationally expensive too. Furthermore, our model presents a different prior which

introduces both DBP and SBP and takes also into account the interaction of these

two. In that way, the structure of the prior distribution considers more years of

blood pressure and therefore more calculations are needed which means more time

is needed. Finally, MCMC techniques are used, which are widely known that are

computationally intensive, Gelman et al. [1996], Hastings [1970], Dellaportas and

Roberts [2003]. By applying adaptive techniques in MCMC and using techniques

used in biostatistics, Roberts and Rosenthal [2009], Gelman et al. [1996] we have

managed to develop more efficient code Gelman and Rubin [1996].

Finally, this research could be considered impossible to apply some years ago

due to lack of computational power. Nowadays computational advances have

made these types of computations feasible. By using high performance computing

and parallel computing we manage to minimize the time needed to produce our

results. In addition techniques such as Cholesky decomposition, Higham [1990]

and canonical parametrization reduced the time was needed for the calculation

between matrices significantly while also techniques which specify the sparsity of

the matrix proved to be highly beneficial.

1.6 Summary

This chapter provides a description of Bayesian inference. We briefly discuss the

differences between frequentist and Bayesian approaches. Furthermore, the reason

behind the use of Bayesian hierarchical model is explained emphasising the useful

properties of Bayesian hierarchical models for the model’s structure. Next, the

intuition behind MCMC methods is presented with a concise definition of Monte

Carlo and Markov chains as well as Metropolis-Hastings and Gibbs sampler al-

gorithms. Following, non-communicable diseases are explained and the literature

behind their modelling is discussed. Finally, the project is explained describing
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further the structure and the modelling of blood pressure data while highlights

the motivations and the challenges that have occurred throughout this research.

1.7 Preview

The remaining chapters of the thesis have the following content:

� Chapter 2 presents the theory underlying Gaussian Markov Random Fields,

the different cases that exist and also all the theory that is needed for the

implementation of our Bayesian hierarchical model.

� Chapter 3 gives a detailed description of the hierarchical models and de-

scribes all the sub-models and the parameters that comprise the final model

comparing them both in one and two dimensions.

� Chapter 4 presents the distribution of the sub-models and the methodology

that was used to fit each of the sub-models. In addition, applications to

simulated and real data are also demonstrated.

� Chapter 5 describes the scaling between the priors that needs to be made.

Comparison between the different two-dimensional IGMRFs as well as be-

tween the one- and two-dimensional IGMRFs have been made. Lastly, ap-

plication to the two-dimensional IGMRFs is shown.

� Finally, Chapter 6 gives a discussion of this research, conclusions are pre-

sented for the outcome of this project and future work is described.



Chapter 2

Gaussian Markov Random Fields

This chapter provides a description of various fields that are relevant to this thesis.

Gaussian Markov Random Fields (GMRFs) and a special case of them, Intrinsic

Gaussian Markov Random Fields (IGMRFs) are reviewed. GMRFs are often used

in prior distributions to provide structure to the inverse of the covariance matrix,

the precision matrix. Both GMRFs and IGMRFs are used to model non-linear

relations through their precision matrix.

2.1 Definition

A GMRF is a random vector that follows a multivariate normal distribution. The

particular feature of GMRFs is the conditional independence that they introduce

[Rue and Held, 2005, chapter 1]. We can explain the conditional independence

term by giving an example as stated by Rue and Held [Rue and Held, 2005,

chapter 1]. Let us say we have a random vector x = (x1, x2, x3)T . Here x1 is

conditionally independent from x2 given x3. Under this condition the joint distri-

bution of x can be written as:

P (x) = P (x1|x2, x3)P (x2|x3)P (x3)

25



26

and since x1 is conditionally independent from x2 it can be written as:

P (x) = P (x1|x3)P (x2|x3)P (x3)

What is beneficial with the GMRF is that the conditional independence can be

expressed through the precision matrix, Q. In more detail, when there is a depen-

dence, non-zero values appear in the precision matrix while zero values declare an

independent condition. It is useful to represent Q with an undirected graph.

Definition 2.1 (Gaussian Markov Random Fields)

A random vector x = (x1, ..., xn)T ∈ Rn is called a GMRF linked to a labelled

graph G = (V,E) with mean µ and precision matrix Q > 0 iff its density has the

form, [Rue and Held, 2005, chapter 2]:

π(x) = (2π)−n/2|Q|1/2 exp

(
1

2
(x− µ)TQ(x− µ)

)
(2.1)

and

Qij 6= 0⇔ {i, j} ∈ E, ∀i 6= j (2.2)

A GMRF can be any Gaussian distribution with a symmetric positive definite

(SPD) covariance matrix and vice versa. The properties of a GMRF are described

by its precision matrix Q, since its structure indicates connections between nodes:

as shown in (2.2), non-zero values in Q correspond to an edge in G. When Q is

dense, the graph is fully connected.

A connection between GMRFs and Gaussian Process (GP) can exist when we

consider a finite collection of random variables for a GP. Hence, a GMRF can be

considered as a discretised and sparse version of GP, Jadaliha et al. [2018], when

there are zero values in the precision matrix to account for sparsity.
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2.2 Intrinsic Gaussian Markov Random Fields

IGMRFs are a special case of GMRFs that we saw in Section 2.1. It is consid-

ered that the IGMRFs are GMRFs with linear constraints, [Rue and Held, 2005,

chapter 3]. IGMRFs are improper GMRFs, as they have a precision matrix that

is not of full rank, and since the precision matrix is not of full rank, its inverse

does not exist [Rue and Held, 2005, chapter 3]. This implies that IGMRFs do

not have well-defined mean or covariance matrices. However, they do have the

property that the mean of an IGMRF of order T is defined up to the addition of

a polynomial of order T − 1.

Definition 2.2 (Improper Gaussian Markov Random Fields)

Let Q be an n × n symmetric positive semidefinite (SPSD) matrix with rank

n − k > 0. Then x = (x1, x2, ..., xn)T is an improper GMRF of rank n − k with

parameters (µ,Q), if its density is

π(x) = (2π)
−(n−k)

2 (|Q|∗)1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
(2.3)

Again, x is an improper GMRF which is represented by a graph G = (V,E), where

Qij 6= 0⇔ {i, j} ∈ E, ∀i 6= j (2.4)

It needs to be stressed that the parameters (µ,Q) do not represent mean and

precision as these terms do not formally exist. However, in the following chapters

we will refer to them as mean and precision for the sake of convenience [Rue and

Held, 2005, chapter 2].

2.3 Circulant Matrices

There is a large variety of matrices that can be used as precision matrices, Q in

IGMRFs [Rue and Held, 2005, chapter 2]. Therefore, it is interesting to observe
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Figure 2.1: Nearest neighbours on a circle and a line

the definitions of circulant matrices since they are used as precision matrices too.

Within the precision matrices, we can see dependences that exist between nodes

which explain the structures of the graphs. The dependences between the nodes

express sometimes a close distance between the nodes of a graph. However, this

close distance can be interpreted in a different way. For example, we define differ-

ently the distance in time (temporal data), than the distance in spatial data. On a

torus graph which explains spatial correlation, the nodes that are considered close

are those which exhibit a circular behaviour. However, the circular behaviour of

those nodes can be expressed differently in a matrix form. In Figure 2.1 we can see

four nodes, c0, c1, c2 and c3 which are equidistant. What we can observe in the cir-

cle is that the closest neighbours of the c0 node are the c1 and c3 nodes. However,

when we unfold the circle in a line, only the c1 neighbour of c0 is close by and the

c3 seems the most distant node. In a circulant matrix the closest neighbours of a

node can be on the first and last position even though they appear quite distant.

In the following section we will explore further the structure and the properties of

the circular matrices.

2.3.1 Circulant and Block-Circulant Matrices

In Definition 2.3 and 2.4 we can see how the circular matrices have similar features

and we can explore further the structure of each matrix, [Rue and Held, 2005,
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chapter 2].

Definition 2.3 (Circulant Matrix) An n×n matrix C is circulant iff for some

vector c = (c0, c1, c2, ..., cn−1)T it has the form:

C =




c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

cn−2 cn−1 c0 . . . cn−3

...
...

...
...

c1 c2 c3 . . . c0




Here c is the base of C .

Definition 2.4 (Block-Circulant Matrix) An Nn × Nn matrix C is block

circulant with N ×N blocks, iff it can be written as:

C =




C0 C1 C2 . . . CN−1

CN−1 C0 C1 . . . CN−2

CN−2 CN−1 C0 . . . CN−3

...
...

...
...

C1 C2 C3 . . . C0




whereCi is a circulant n×n matrix with base ci. The base ofC is the n×N matrix

c =
(

c0 c1 c2 . . . cN−1

)T

Each column has n values specifying the base of each of the block matrices, and

so we can write:

c =




c0,0 c0,1 c0,2 . . . c0,N−1

c1,0 c1,1 c1,2 . . . c1,N−1

c2,0 c2,1 c2,2 . . . c2,N−1

...
...

...
...

cn−1,0 cn−1,1 cn−1,2 . . . cn−1,N−1



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In definitions 2.3 and 2.4 we can observe the circulant behaviour inside the matri-

ces. The first row has a sequence from c0 to cn−1 and the second row starts from

the last node of the first row which is cn−1 and then it continues the sequence from

c0 to cn−2 this time. This continues until the first node of the first row will appear

in the final position of the last row. Overall, in circulant matrices the last nodes

of a row are the first nodes in the next row highlighting a circular behaviour. The

difference between the circulant and block circulant matrices is that instead of

having a simple node c0 we will have a whole matrix, C0. In block matrices we do

not have nodes but matrices appearing as nodes. Block circulant matrices will be

used as precision matrices in Section 2.6.2 and 2.6.3.

2.4 Canonical Parametrisation and Cholesky Fac-

torisation

In the Bayesian framework, in order to identify the posterior distribution we need

to define its parameters. If we assume that the posterior distribution is a mul-

tivariate normal distribution then we want to define its mean and its covariance

matrix. Although it is easy in general to distinguish the covariance matrix, there

are some difficulties to find the mean parameter. For example let us assume that

x ∼ N (µ,Q−1) and if we analyse it further we have, [Rue and Held, 2005, chap-

ter 2]:

log p(x|µ,Q) ∝ (x− µ)TQ(x− µ)

∝ xTQx− µTQx− xTQµ+ µTQµ

∝ xTQx− 2xTQµ+ µTQµ

∝ xTQx− 2xTQµ

(2.5)

In (2.5), we can identify the µ and Q parameters from two terms. The first term

of (2.5) has solely the Q parameter but the second term has not solely the µ

parameter and that imposes some difficulties to extract only the value of the µ

parameter.
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Canonical parametrisation introduces the mean as the product of the mean and the

covariance matrix, µQ as it exists in the second term of (2.5). If x ∼ N (µ,Q−1)

then with the canonical parametrisation it will be x ∼ Nc(b,Q) = x ∼ Nc(Qµ,Q).

The advantage of using canonical parametrisation is that we can have updates

without explicitly knowing the mean of the canonical parametrization until it

becomes needed. In order to compute the mean of the canonical form we have to

find the solution of Qµ = b and that is computed with the Cholesky factorization.

The canonical parametrization will be used extensively for the updates of some

model parameters later in the thesis. Its useful properties make the computations

easier and faster.

Since Q is an IGMRF it expresses the relations between the nodes and as it

describes the conditional dependences we expect a sparse Q matrix. Another

way of writing the precision matrix, Q is by using the product of two triangular

matrices which are by definition sparse and also inherit the sparsity of the initial

matrix, Q. Hence, the so-called Cholesky factorization can be described as, [Rue

and Held, 2005, chapter 2] :

Q = LLT (2.6)

where L is a lower triangular matrix. It is a strong advantage to be able to write

the Q matrix using a triangular sub-matrix as it gives us very fast calculations.

Canonical parametrisation in combination with Cholesky factorization can give all

the information that we need to define the µ parameter of a normal distribution.

The steps that we follow for the definition of the µ parameter are presented below:

1. Canonical parametrization: Qµ = b

2. Implementing Cholesky factorization: LLTµ = b

3. Forward solve: Lv = b

4. Backward solve: LTµ = v

By reaching the 4th step L and v are known values which are used to compute µ.
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2.5 One-Dimensional Random Walk

In this section we will explore different types of IGMRFs in one dimension. Their

differences are observed through their precision matrices. The precision matrices

will differ based on the conditional dependence that we require each time. Finally,

the precision matrix in each type consists of a scalar precision parameter, λ and

a structure matrix, P. We will use the term order of the matrix which indicates

the number of nodes that can be dependent. Following we will define the forward

differences that are depending on the order. The first-order difference is defined

as:

∆u[i] = u[i+1] − u[i] (2.7)

whereas the second order difference can be defined as:

∆2u[i] = ∆(∆u[i]) = ∆(u[i+1] − u[i])

= ∆u[i+1] −∆u[i]

= u[i+2] − 2u[i+1] + u[i]

(2.8)

The higher the order the more nodes we are including. Finally, a k order difference

can be defined as:

∆ku[i] = ∆k−1(∆u[i]) (2.9)

2.5.1 First-Order Random Walk for Regular Locations

We will firstly describe the first-order random walk making use of the IGMRFs,

[Rue and Held, 2005, chapter 3.3]. We want to take into account the closest neigh-

bours of a parameter, u = (u[1], ..., u[n])
T . So instead of examining the individual

values inside the u vector we will construct possible pairs of values that can exist

inside the u vector. For example, we want to compute the distance between u[i]

and u[j] values of a total of n values in the u vector. Since we are in the case of

first order it means that we will take one closest neighbour each time, hence the

u[j] node needs to be one of the closest values to the u[i] node. In other words, we
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consider pairs of values inside a vector and make calculations for pairs which can

be expressed as differences instead of calculating the individual u[i] or u[j]. The

way we construct the difference between the values is stated in (2.10):

u[i] − u[j] ∼ N (0, λ−1)

∆u[i] ∼ N (0, λ−1)
(2.10)

The density can be written as:

π(u|λ) ∝ λ(T−1)/2 exp

(
−λ

2

T−1∑

i=2

(∆u[i])
2

)

∝ λ(T−1)/2 exp

(
−λ

2

T−1∑

i=2

(u[i+1] − u[i])
2

)

∝ λ(T−1)/2 exp

(
−λ

2
(Du)TDu

)

∝ λ(T−1)/2 exp

(
−1

2
uTλPu

)

∝ λ(T−1)/2 exp

(
−1

2
uTQu

)

(2.11)

Based on the above we know that Q can be written using the structure matrix, P

and the scalar precision parameter, λ:

Q = λDTD = λP (2.12)

λDTD = λ




1

−1 1

−1 1

−1 1

−1







1 −1

1 −1

1 −1

1 −1



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Q = λP = λ




1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 1




(2.13)

Hence the vector u ∼ N (0, λP) = {u[1], u[2], ..., u[n]} ∼ N (0, λP)

In the D matrix we can see the different pairs that can exist inside the u vector

when we have n = 5 values inside it and therefore, n− 1 = 4 possible pairs. The

reason that we construct the pairs is that we want to introduce correlation between

the values of a vector that are the closest. Hence, we will use three nodes in total

in the central rows of the P matrix.

The P matrix is expressed as the squared matrix of the D matrix. Hence, we

expect more values to be included, the so-called neighbours. The interpretation of

the first line of the P matrix in (2.13) is that when we are at the u[1] time we will

borrow information from the u[1+1] time since we do not have other time events

before. In the second row and until the second last we can borrow information

from the time before, u[i−1] and the time after, u[i+1]. In the first row we can only

borrow information from the node ahead and in the last row from the node before

since we have specific start and end points. Figure 2.2 gives an illustration of the

first two rows of the structure sparse matrix P.

A sparse matrix or sparse array is a matrix in which most of the elements are

zero. In our analysis, we use a sparse matrix to describe the precision matrix

which is the inverse covariance matrix. Specifically, by using the term sparse

matrix we are referring to the conditional independence through the nodes of the

precision matrix. Nodes that are conditionally dependent have non-zero values

whereas nodes that are conditionally independent are expressed with zero values.

Therefore, sparsity explains mostly the independence between nodes which thus

produce zeros.

The increments of this model are defined as : ∆u[i] = u[i+1] − u[i] which comprise

the D matrix. Apart from corrections at the boundary, which are the first and

last row, the P matrix consists of −∆2u[i] terms which are shown in (2.8). We
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Figure 2.2: Nearest neighbours on a line for a first-order random walk

may interpret (−u[i−1] + 2u[i] − u[i+1]) as an estimate of an underlying continuous

function u[i] at i = 1 making use of the observations at {i − 1, i, i + 1} positions.

Due to the boundary corrections we have T −1 restrictions in the model. In (2.11)

we can see clearly that we used T − 1 as a linear constraint. In summary, since we

have the pairs of T terms then we expect to have T − 1 different pairs. In order

to produce a proper density we impose the constraint of
∑
u[i] = 0 which has as a

result a finite marginal standard deviation. Summing up, the first order declares

the number of steps we can go in order to reach neighbours. The intuition is that

we can choose up to one step in every possible direction, backwards and forward

if there are available nodes. So, we can possibly have in total two neighbours plus

one, the node under study.

2.5.2 Second-Order Random Walk for Regular Locations

In this case the distances that we want to take into account have the form shown

in (2.14). The difference of the results in this subsection from the previous one

is that we want to include more neighbours, [Rue and Held, 2005, chapter 3.4].

Therefore, the structure of the pairs between the values in the vector u will be

different. Instead of having the difference between two values we will take the

differences between three values each time. By using the term second order we

declare how many neighbours we want to include each time, two closest neighbours

and the value under study which gives us in total three values in each row of the
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D matrix.

u[i+2] − 2u[i+1] + u[i] = ∆2u[i] ∼ N(0, λ−1) (2.14)

The density can be written as:

π(u|λ) ∝ λ(T−2)/2 exp

(
−λ

2

T−2∑

i=1

(∆2u[i])
2

)

∝ λ(T−2)/2 exp

(
−λ

2

T−2∑

i=1

(u[i+2] − 2u[i+1] + u[i])
2

)

= λ(T−2)/2 exp

(
−λ

2
(Du)T (Du)

)

= λ(T−2)/2 exp

(
−λ

2
uTDTDu

)

= λ(T−2)/2 exp

(
−1

2
uTλDTDu

)

= λ(T−2)/2 exp

(
−1

2
uTλPu

)

= λ(T−2)/2 exp

(
−1

2
uTQu

)

(2.15)

Based on (2.15) we know that Q can be written using the P matrix and the λ

constant:

Q = λDTD = λP (2.16)

λ




1

−2 1

1 −2 1

1 −2 1

1 −2

1







1 −2 1

1 −2 1

1 −2 1

1 −2 1




Q = λ




1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1




(2.17)



37

Figure 2.3: Nearest neighbours on a line for a second-order random walk

Hence the vector u = (u[1], u[2], .., u[T ])
T ∼ N (0, λP) for all the T nodes.

The interpretation of the first line of the P matrix in (2.17) is that when we are at

the u[1] node we will borrow information from the u[2] and the u[3] nodes since we

do not have other nodes before. In the second row we will be at the u[2] node, we

will borrow information from the node before, u[1] and two nodes forward, u[3] and

u[4]. From the third to fifth row the behaviour between the nodes is the same. If

we are at the u[i] node and we will borrow information from the two nodes before

u[i−1] and u[i−2] and two nodes afterwards, u[i+1] and u[i+2]. We can notice that

we have a standard behaviour in the central rows and two different behaviours

in the first and the second row. The behaviours in the first two rows are known

as corrections at the boundary. We need again to impose restrictions which this

time will be
∑

i u[i] = 0 and
∑

i iu[i] = 0. The linear constraints give us a proper

joint density and a finite marginal standard deviation. Therefore, now the linear

restrictions are T −2 which we can also observe in (2.15). In Figure 2.3 is depicted

an illustration of the first three rows in the structure matrix P. In these three

plots we can observe the different behaviour that exists in the P matrix. The two
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first plots are those with the boundary constraints and the third one follows the

behaviour of the central rows.

The increments of the D matrix will be ∆2u[i] = u[i+2] − 2u[i+1] + u[i] whereas P

consists of -∆4u[i] terms apart from corrections at the boundaries as expressed in

(2.9). We may interpret u[i−2] − 4u[i−1] + 6u[i] − 4u[i+1] + u[i+2] as an estimate of

an underlying continuous function u[i] at i = 1 making use of the observations at

[i − 2, i − 1, i, i + 1, i + 2] positions. The middle row of the precision matrix is:

u[i−2]− 4u[i−1] + 6u[i]− 4u[i+1] + u[i+2] and finally the linear restrictions are: T − 2,

where T expresses the total number of nodes.

In summary, the second order declares the number of steps we can go in order to

reach neighbours. The intuition is that we can choose up to two steps in every

possible direction, backwards and forward so we can possibly have in total four

neighbours plus the node under study.

2.6 Second-Order Two-dimensional Random Walk

We will now explore different types of IGMRFs in two dimensions, [Rue and Held,

2005, chapter 3.4.2]. The differences between the types are observed through

their precision matrices and it is the conditional dependence inside the precision

matrices that changes in each case. As previously, the precision matrix in each

type consists of a scalar precision parameter, λ and a structure matrix, P.

In the two-dimensional IGMRF we will account for the distances of two variables.

Given that we use the second order term we indicate that we need the two closest

neighbours to be included for each of the two variables this time. Hence, the

distances are defined in the following way:

∆2
(1,0)u[i,j] + ∆2

(0,1)u[i,j] ∼ N (0, λ−1) (2.18)

where ∆(1,0) and ∆(0,1) are the forward difference operators in the vertical and

horizontal directions respectively, [Rue and Held, 2005, chapter 3.4.2]. We have

again the precision parameter λ which represents again scalar precision parameter
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as we have seen in the one-dimensional case ( see Section 2.5). The first-order

forward differences can be written as:

∆(1,0)u[i,j] = u[i+1,j] − u[i,j]

∆(0,1)u[i,j] = u[i,j+1] − u[i,j]

(2.19)

and the second-order forward difference for each variable is defined as:

∆2
(1,0)u[i,j] = ∆(1,0)(∆(1,0)u[i,j]) = u[i+2,j] − 2u[i+1,j] + u[i,j]

∆2
(0,1)u[i,j] = ∆(0,1)(∆(0,1)u[i,j]) = u[i,j+2] − 2u[i,j+1] + u[i,j]

(2.20)

By using the definitions in (2.20) we can write (2.18) as:

u[i+2,j] − 2u[i+1,j] + 2u[i,j] + u[i,j+2] − 2u[i,j+1] ∼ N(0, λ−1) (2.21)

However, by changing the notation we have the equivalent:

u[i−1,j] − 2u[i,j] + u[i+1,j] + u[i,j−1] − 2u[i,j] + u[i,j+1] =

u[i−1,j] − 4u[i,j] + u[i+1,j] + u[i,j−1] + u[i,j+1] ∼ N(0, λ−1)
(2.22)

Summing up, equations (2.21) and (2.22) are expressing exactly the same result but

the difference is that they include different neighbours and give different weights

to their neighbours. In (2.21) the central nodes are u[i+1,j] and u[i,j+1] whereas in

(2.22) the central node is u[i,j] and these central nodes have the largest weights.

In both (2.21) and (2.22) we can see that the summation of the weights is equal

to zero. An illustration of (2.21) and (2.22) is presented in Figure 2.4.

2.6.1 Illustration of the problem

We need to find the closest neighbours for the combination of the two variables.

The two variables are indicated with the indices i, j in the u[i,j] term. We assume

that both variables have five nodes each. Hence, we want to account for all the

possible combinations between the nodes of the first and the second variable. With

the number of nodes for each variable being five the possible combinations will be
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Figure 2.4: Nearest neighbours for a 2D second-order random walk with dif-
ferent centres

52 = 25. Although every combination is possible, not all of them will be used as

neighbours in a specific pair and thus there will be combinations having a zero

value in the precision matrix. More details can be seen by observing Figures 2.5,

2.6 and 2.7. These plots illustrate the procedure of choosing neighbours for a

specific pair. We can see how the IGMRF works having as a starting point the

[2003,2003] pair. In the D matrix of Figure 2.6 we include the two closest neighbours

in the vertical and the two closest neighbours in the horizontal direction. The

neighbours that are chosen are those one step away from the pair under study. In

Figure 2.7 we can see that we take more neighbours into account. We started with

two neighbours in each vertical and horizontal direction in the D matrix and we

conclude with four neighbours in each direction in the P matrix. In the matrix P,

we choose neighbours that are one and two steps away from the pair under study.

Also, in the P matrix we can see that besides the vertical and horizontal direction

we can also move diagonally. The pairs from the diagonal direction are [2002,2004],

[2004,2004], [2004,2002], [2002,2002]. Finally, what is also interesting in these figures is

that the closest neighbours of the central pair are one pair forward and one pair

backwards. Not only can we go horizontally, vertically and diagonally but also we

have forward and backwards steps.

uD,S(t) =




u[1]

...

u[T 2]


 ∼ N (0, (λP)−1) (2.23)
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Figure 2.5: Possible combinations between the years of X and Y variable

Figure 2.6: The 5 nearest neighbours for the years of X and Y variable,
starting from the (2003, 2003) combination (D matrix)

Figure 2.7: The 13 nearest neighbours for the X and Y years (P = DTD
Precision matrix)
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In (2.23) we state that the updated version of u’s prior distribution has mean 0

of length T 2 and P which is a matrix of T 2 × T 2 dimensions where T expresses

the number of nodes for each variable. In conclusion, some of the combinations

express the changes only in the first variable when the second variable remains

constant, some others the changes only in the second variable when the first re-

mains constant and the rest express the interaction of these two variables when

both variables are changing, either both decreasing or increasing or one is increas-

ing and the other is decreasing. The possible combinations for both variables can

be written as: u[D,S] = (u[1,1],u[1,2], . . . ,u[2,3], . . . ,u[5,5])

However, an alternative interpretation using coding from 1 to T 2, as the total num-

ber of combinations, also used in (2.23), is: u[D,S] = (u[1],u[2], . . . ,u[15], . . . ,u[25]).

In the following chapters we will explore different types of precision matrices that

can be used in the case of two dimensional second order IGMRFs. More details

describing what each pair of combinations between the first and second variable’s

nodes expresses will be shown.

2.6.2 Precision matrix on a torus

Based on the bibliography Rue and Held [2005], the most common use of IGMRF

is through the use of a torus. As we show in Section 2.6.1 the increments of the

D matrix will be:

u[i+1,j] + u[i−1,j] + u[i,j+1] + u[i,j−1] − 4u[i,j] (2.24)

The summation of the coefficients that are used in (2.24) is equal to zero, [Rue

and Held, 2005, chapter 3.4.2].

Bearing in mind that we have two variables as we are in a two dimensional case

we need to construct accordingly the precision matrix. Defining the two variables

with the indices i and j, we want to examine how these two variables will interact

together. What is more, we want in every event to include information for both

of these variables.
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The precision matrix of the prior distribution will be defined again as Q = λ×DTD

where D is a block-circulant matrix, there is a scalar precision parameter, λ and

by P = DTD we define the structure matrix. The definition of the precision

matrix is the same as in the one-dimensional case but the structure matrix will

be constructed differently in order to include two variables. The base of the D

matrix is presented below:




−4 1 0 0 1

1

0

0

1




Analytically, the base model consists of sub-matrices. The sub-matrices that we

use for the construction of the D matrix are presented below:

A1 =




−4 1 1

1 −4 1

1 −4 1

1 −4 1

1 1 −4




A2 =




1

1

1

1

1




so D will be: 


A1 A2 0 0 A2

A2 A1 A2 0 0

0 A2 A1 A2 0

0 0 A2 A1 A2

A2 0 0 A2 A1




(2.25)

The 0 is presented in bold form as it stands for a 5× 5 matrix full of zeros.

Equation (2.25) shows the relationship of the nodes in the central rows without

taking into account the corrections at the boundaries which are referring to the

first and last rows. As we have seen in the first and in the second order random

walk the behaviour at the boundaries is different. Observing the rows in (2.25) we



44

Figure 2.8: Graph of torus, from browser StackExchange [2021]

can see that the last node of the first row is becoming the first node of the next row

and so on. The circular behaviour expresses the torus plot shown in Figure 2.8.

In Figure 2.9 we can see the D matrix and every row shows the neighbours that

are included for a specific node. In Figure 2.10 we apply the P = DTD equation

and we can see which neighbours are present in the structure matrix. Based on

Figure 2.10 we can see that the middle row of the structure matrix, P multiplied

with the u vector can give the non-zero values of the middle row of the precision

matrix:

u[i−2,j] + 2u[i−1,j−1] − 8u[i−1,j] + 2u[i−1,j+1] + u[i,j−2] − 8u[i,j−1]+

20u[i,j] − 8u[i,j+1] + u[i,j+2] + 2u[i+1,j−1] − 8u[i+1,j] + 2u[i+1,j+1] + u[i+2,j]

(2.26)

As is stated by Thon and Rue Thon et al. [2012] the structure matrix in Figure

2.9 has a torus form and therefore, does not have a special treatment at the

boundaries. It includes as neighbouring nodes those that exist on opposing edges

which in a torus are considered the closest neighbours. Furthermore, in the Q

matrix we are taking into account the interactions by including the terms that

exist in the diagonal direction.

It is necessary in this case too, to impose linear constraints. The linear constraints

will be greater in number as we consider more variables. They will refer to the

first variable
∑
iu[i,j] = 0, to the second variable,

∑
ju[i,j] = 0 and for both of

them
∑∑

u[i,j] = 0. Therefore, the linear restriction is defined as T 2 − 3 where

T is referring to the number of nodes that each variable has and T 2 the possible

combinations between the two variables. The linear restrictions are needed in
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Figure 2.9: D matrix for 5 years of SBP and DBP combinations

Figure 2.10: Structure matrix for 5 years of SBP and DBP combinations,
P = DTD

order to give a proper joint density. The rank deficiency is T 2− 1. Finally, we can

express the precision matrix, Q by using forward differences as:

−(∆2
(1,0) + ∆2

(0,1))
2u[i,j] = (−∆4

(1,0) −∆4
(0,1) + 2∆2

(1,0)∆
2
(0,1))u[i,j] (2.27)

In (2.27) the last term indicates the interaction between the two variables.

However, the D and the Q matrices based on Figures 2.9, 2.10 do not take into

account the boundary effects, and we observe the same behaviour in each combi-

nation.
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2.6.3 Isotropic Precision Matrix on a Torus

Since the precision matrix in Section 2.6.2 had some drawbacks, Rue and Held [Rue

and Held, 2005, chapter 3.4.2] tried to overcome these obstacles by introducing

an isotropic precision matrix on a torus. In (2.25) the structure matrix does not

include the corners u[1,1], u[1,n], u[n,1], u[n,n] which is incomplete if we want to have

information from each node. Therefore, a new suggestion which is an isotropic

precision matrix includes every node.

In (2.11) we can observe that every row has the same number of elements following

a cyclic behaviour moving from one row to the other. In (2.12) we can see that

the structure matrix is not sparse but this is happening only because we used the

minimum number of nodes equal to five. When the nodes are increased (above

five) the matrix is sparse as with the rest of the suggestions. The sub-matrices

that are used for the construction of the structure matrix, P are presented below:

A1 =




−20 4 4

4 −20 4

4 −20 4

4 −20 4

4 4 −20




A2 =




4 1 1

1 4 1

1 4 1

1 4 1

1 1 4




so D will be: 


A1 A2 0 0 A2

A2 A1 A2 0 0

0 A2 A1 A2 0

0 0 A2 A1 A2

A2 0 0 A2 A1




(2.28)

As stated by Rue and Held Rue and Held [2005] and Thon and Rue Thon et al.

[2012] the structure matrix in Figure 2.12 also has a torus form. However, the

boundaries still do not exhibit a different behaviour to the central rows and since

a torus behaviour is followed the closest nodes are not included. This matrix
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Figure 2.11: D matrix for 5 years of SBP and DBP combinations

Figure 2.12: Structure matrix for 5 years of SBP and DBP combinations,
P = DTD

does not seem desirable for problems which do not have a circular behaviour

or specifically when we want to compute relations in temporal behaviour. The

increments that are used are: (∆2
(1,0)u[i,j] + ∆2

(0,1)u[i,j]) and the precision matrix

consists of: −(∆2
(1,0)u[i,j] +∆2

(0,1)u[i,j])
2 = −∆4

(1,0)u[i,j]−∆4
(0,1)u[i,j]−∆2

(0,1)∆
2
(1,0)u[i,j]

Finally, the middle row of the precision matrix P is:

u[i−2,j−2] + 8u[i−2,j−1] + 18u[i−2,j] + 8u[i−2,j+1] + u[i−2,j+2] + 8u[i−1,j−2] − 8u[i−1,j−1]

− 144u[i−1,j] − 8u[i−1,j+1] + 8u[i−1,j+2] + 18u[i,j−2] − 144u[i,j−1] + 468u[i,j]

− 144u[i,j+1] + 18u[i,j+2] + 8u[i+1,j−2] − 8u[i+1,j−1] − 144u[i+1,j] − 8u[i+1,j+1]

+ 8u[i+1,j+2] + u[i+2,j−2] + 8u[i+2,j−1] + 18u[i+2,j] + 8u[i+2,j+1] + u[i+2,j+2]

(2.29)



48

In this type of matrix the linear restriction will be the same as in Section 2.6.2,

T 2 − 3 having also the same rank deficiency: T 2 − 1.

2.6.4 Precision Matrix with boundary constraints, part 1

The third suggestion of a structure matrix is presented without having a precision

matrix on a torus by Terzopoulos, Terzopoulos [1988]. With torus structures we

can capture spatial dependences whereas the suggestion with boundary constraints

captures temporal dependencies. We compute the block matrices in order to satisfy

the condition of summing-to-zero in every row and every column of the precision

matrix, λP, and taking into account the closest neighbouring nodes every time.

Having said that though, the rows and columns of each of the block matrices

does not sum to zero. The rows and columns of the precision matrix sum to zero

instead. In the first five rows we will use the sub-matrices A1,A2,A3 :

A1 =




4 −4 1

−4 10 −6 1

1 −6 11 −6 1

1 −6 10 −4

1 −4 4




A2 =




−4 2

2 −6 2

2 −6 2

2 −6 2

2 −4




A3 =




1

1

1

1

1



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In the sixth to tenth rows we will use the sub-matrices A4, A5 and the A2, A3

sub-matrices will be used again:

A4 =




10 −6 1

−6 18 −8 1

1 −8 19 −8 1

1 −8 18 −6

1 −6 10




A5 =




−6 2

2 −8 2

2 −8 2

2 −8 2

2 −6




A6 =




11 −6 1

−6 19 −8 1

1 −8 20 −8 1

1 −8 19 −6

1 −6 11




This time the sub-matrices express the structure matrix P

P = λ




A1 A2 A3 0 0

A2 A4 A5 A3 0

A3 A5 A6 A5 A3

0 A3 A5 A4 A2

0 0 A3 A2 A1




(2.30)

Specifically, observing the matrices A4 and A6 we can see that the restrictions are

in the first two (and the last two) rows giving the impression of being a second-

order IGMRF. Similarly, the matrix A5 has a different behaviour in the first (and

last) row giving the impression of being a first-order IGMRF. However, since the

rows and the columns do not sum to zero they cannot be considered as IGMRFs.

Finally, we can see that the structure of the matrix in (2.30) looks similar to the

second-order IGMRF, presented in Section 2.5.2. The constraints are based on the

two rows at the boundary but now the two rows consist of sub-matrices. Each row

and column sums to zero therefore, λP can be the precision matrix of an IGMRF.

Furthermore, we can see that the block matrix A6 in (2.30) is in the diagonal
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Figure 2.13: Structure matrix for 5 years of SBP and DBP combinations,
P = DTD

only in the third row whereas in the structure matrix in (2.31), Section 2.6.5 the

central block matrix A4 is used as the diagonal in the second, third and fourth

rows. That is an indication of why the rank in Section 2.6.5 is T 2 − 1 while the

rank in Section 2.6.4 is T 2 − 3.

Summing up, the increments for the two-dimensional scenario are: (∆2
(1,0)u[i,j] +

∆2
(0,1)u[i,j]) and hence, the P’s central row consists of: −(∆2

(1,0)u[i,j] +∆2
(0,1)u[i,j])

2 =

−∆4
(1,0)u[i,j] −∆4

(0,1)u[i,j] −∆2
(0,1)∆

2
(1,0)u[i,j].

Therefore, the middle row of the precision matrix is: u[i−2,j]+2u[i−1,j−1]−8u[i−1,j]+

2u[i−1,j+1] + u[i,j−2] − 8u[i,j−1] + 20u[i,j] − 8u[i,j+1] + u[i,j+2] + 2u[i+1,j−1] − 8u[i+1,j] +

2u[i+1,j+1] + u[i+2,j].

Again, the linear restriction is: T 2 − 3 as in the previous two cases whereas the

rank deficiency is T 2 − 3 which is the first time that coincides with the linear

restrictions.

2.6.5 Precision Matrix with boundary constraints, part 2

A fourth suggestion of a structure matrix and a second without being on a torus

is presented by Yue and Speckman Yue and Speckman [2010]. The structure of

the precision matrix is similar to the one in Section 2.6.4 but with different block

matrices which means different weights for the neighbours which we will see affects
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the rank deficiency. The intuition behind the choice of the matrices with boundary

constraints is that we can choose how to define the matrix’s boundaries. Depending

on the weight that we give to the central rows of each of the block matrices we

will have a different effect at the boundaries we consider. The matrix presented in

Section 2.6.4 gives only to one of the nodes in the diagonal the maximum weight

resulting in more boundary constraints whereas the structure matrix in Section

2.6.5 gives to more nodes the maximum, and thus same, weight which results in

fewer boundary constraints. Hence, the rank deficiency of the matrices is affected

by the weights we give to the nodes in the diagonal and that is why we have

different rank deficiency between these two matrices.

In the first five rows we will use the sub-matrices A1,A2,A3:

A1 =




6 −5 1

−5 12 −6 1

1 −6 12 −6 1

1 −6 12 −5

1 −5 6




A2 =




−5 2

2 −7 2

2 −7 2

2 −7 2

2 −5




A3 =




1

1

1

1

1




In the sixth to tenth rows we will use the sub-matrices A4, A5 and the A2, A3

sub-matrices will be used again:

A4 =




12 −7 1

−7 20 −8 1

1 −8 20 −8 1

1 −8 20 −7

1 −7 12




A5 =




−6 2

2 −8 2

2 −8 2

2 −8 2

2 −6



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In the next rows these four sub-matrices will be used again. Having constructed

the block matrices we can see the structure of the precision matrix, Q:

λ




A1 A2 A3

A2 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A2

A3 A2 A1




(2.31)

Observing the precision matrix in (2.31) we can see that the two first rows are

those with the different behaviour. So, one could possibly say that we have T 2−2

constraints. However, each row contains block matrices which means that each of

the block matrices present a conditional dependence and hence gives zero values

to the combination going further away from the under study combination. The

linear constraints are T 2 − 3 as in the previous cases. Furthermore, we can also

observe the structure of the block matrices. The A2 and A5 matrices are similar

to those for the first order random walk (2.5.1) since only the first row is changing.

The A1 and A4 matrices are similar to those for the second order random walk

(2.5.2) since only the first two rows are changing. However, none of the A1, A2,

A4 and A5 are structure matrices of IGMRF since their rows and their columns

do not sum to zero.

In the first order random walk (Section 2.5.1) we could see that we set the first

(and the last) row of the matrix to have the restriction that matches the T − 1

constraints. In the second order random walk (Section 2.5.2) we set the two first

rows (and the last two) to have a different behaviour, so we had T −2 constraints.

In the second order two-dimensional model the behaviour is slightly different. The

precision matrix is now a block-circulant matrix hence, the restrictions will not be

in two rows but in three block matrices. The following is an intuitive explanation

of the T 2−3 constraints. Let us assume that the years we have are T = 5 therefore,

we will construct a precision matrix with 52 × 52 dimensions. We compute the

block matrices in order to satisfy the condition of summing-to-zero in every row

and every column of the precision matrix which is the first of the linear restrictions
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that are applied in all of the scenarios. The precision matrix P is defined as, Yue

and Speckman [2010]:

T−1∑

i=2

T−1∑

j=2

{∆2
0u[i,j]}2 + {∆1u[1,1]}2 + {∆2u[T,1]}2 + {∆3u[1,T ]}2 + {∆4u[T,T ]}2

+
T∑

i=2

({∆5u[i,1]}2 + {∆6u[i,T ]}2) +
T∑

j=2

({∆7u[1,j])}2 + {∆8u[T,j]}2)

(2.32)

In more detail each of the forward differences can be written as:

∆2
0u[i,j] = (∆2

(1,0) + ∆2
(0,1))u[i+1,j+1] = ∆2

(1,0)u[i+1,j+1] + ∆2
(0,1)u[i+1,j+1]

(∆2
0u[i,j])

2 = (∆2
(1,0) + ∆2

(0,1))
2u[i+3,j+3] = (∆4

(1,0) + ∆4
(0,1) + 2∆2

(1,0)∆
2
(0,1))u[i+4,j+4]

(2.33)

{∆1u[1,1]}2 = (∆(1,0) + ∆(0,1))
2u[3,3]

{∆2u[T,1]}2 = (∆(1,0) + ∆(0,1))
2u[T,3]

{∆3u[1,T ]}2 = (∆(1,0) + ∆(0,1))
2u[3,T ]

{∆4u[T,T ]}2 = (∆(1,0) + ∆(0,1))
2u[T,T ]

{∆5u[i,1]}2 = (∆2
(1,0) + ∆(0,1))

2u[i+3,3]

{∆6u[i,T ]}2 = (∆2
(1,0) + ∆(0,1))

2u[i+3,T ]

{∆7u[1,j]}2 = (∆(1,0) + ∆2
(0,1))

2u[3,j+3]

{∆8u[T,j]}2 = (∆(1,0) + ∆2
(0,1))

2u[T,j+3]

(2.34)

The signs (+,−) used in Yue and Speckman [2010] to refer to the direction of

the nodes in the forward differences are omitted. Having this density we account

for all the 25 different combinations. The first summation is responsible for the

central values of the precision matrix: (T − 1− 1) ∗ (T − 1− 1) = 9.

The nodes at the boundary in analytical form are:

� Four corners: ([1,1],[1,5] ,[5,1] ,[5,5] ).

� Boundaries on the left and right sides: 3 ∗ 2 = 6

� Boundaries at the top and bottom sides: 3 ∗ 2 = 6
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Figure 2.14: Precision matrix for 5 years of SBP and DBP combinations

Hence, the nodes are separated as: a) (5− 2)2 = 9 central nodes and b) 4+6+6 =

16 nodes in the boundary. So, for a number of nodes T = 5 in each variable we

have: (5− 2)2 + 4 + (5− 2) ∗ 2 + (5− 2) ∗ 2 = 25

In general, what are considered as central or boundary nodes can be summarised

as the following: (n1 − 2) ∗ (n2 − 2) + 4 + (n1 − 2) ∗ 2 + (n2 − 2) ∗ 2,

In the special case when n1 = n2 = T : (T − 2)2 + 4 + (T − 2) ∗ 2 + (T − 2) ∗ 2.

The middle row of the precision matrix P is equal to:

u[i−2,j] + 2u[i−1,j−1] − 8u[i−1,j] + 2u[i−1,j+1] + u[i,j−2] − 8u[i,j−1] + 20u[i,j]

− 8u[i,j+1] + u[i,j+2] + 2u[i+1,j−1] − 8u[i+1,j] + 2u[i+1,j+1] + u[i+2,j]

(2.35)

In Figure 2.14 we can see that we need three rows with block matrices in order

to reach the 13th line which has the maximum number of neighbours. The central

row which is the one that is invariable to the boundary effects has 13 non-zero

elements. In Figure 2.14 we can see the 25 × 25 precision matrix. The diagonal

elements in λP represent the conditional precision of DBP and SBP in the same

year i given the rest of the years, while the off-diagonal elements with proper

scaling show the conditional correlation between DBP and SBP in years i and j

respectively given the rest of the years, Rue and Held [2005]. In Figure 2.14 the

total number of nodes for each variable is five.

It would also be useful to see which and how many neighbours there are at the

boundaries. Figures 2.15 and 2.16 show us the behaviour at the boundaries and
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Figure 2.15: The neighbouring years at the boundaries for 5 years of DBP
and SBP

Figure 2.16: The neighbouring years in the centre for 5 years of DBP and
SBP

in the centre. Depending on the combination of nodes the number of neighbours

changes. The diagonal direction is considered as a two step distance as it is a

combination of one step vertically and then one step horizontally. In general, the

numbers of possible neighbours are either 6, 8, 9, 11 or 12 at the boundaries and 13

in the central years. To summarise, we have that the structure matrix P consists
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of: −(∆2
(1,0)u[i,j] + ∆2

(0,1)u[i,j])
2 = −∆4

(1,0)u[i,j] −∆4
(0,1)u[i,j] −∆2

(0,1)∆
2
(1,0)u[i,j]

Again, the middle row of the precision matrix is:

x[i,j−2] + 2x[i−1,j−1] +x[i−2,j]−8x[i,j−1]−8x[i−1,j] + 2x[i+1,j−1] + 20x[i,j] + 2x[i−1,j+1]−
8x[i+1,j] − 8x[i,j+1] + x[i+2,j] + 2x[i+1,j+1] + x[i,j+2]

Finally the linear restrictions are T 2 − 3 with rank deficiency T 2 − 1.

The P matrix shows all the combinations between the two variables. In the P

matrix when the row is [3,3] it means that both variables are in position 3. There

are 25 possible combinations but only the nearest to the [3,3] pair in this case will

be non-zero including the [3,3] pair. In this case the combinations [2,3], [3,2], [3,3],

[3,4], [4,3] have non-zero values. If we observe closely these values we can see that

the [2,3] pair is a backward step for the first variable while the second variable

remains at the same node. By the same token the [3,2] pair is a backward step for

the second variable while the first variable remains at the same node. The [3,4], [4,3]

pairs express a forward step for the second variable while the first remains at the

same node and accordingly a forward step for the first variable while the second

variable remains at the same node.

In the precision matrix in Figure 2.14 we can see that in the [3,3] pair we have

the maximum number of neighbours. The [3,3] pair, the pair under study, takes

the highest weight, 20. The [2,3], [3,2], [4,3], [3,4] pairs are the closest neighbours,

one step distance, therefore, will get a weight of -8. The [2,2], [2,4], [4,2], [4,4] com-

binations are referring to the interactions of the two variables and correspond to

u[i−1,j−1], u[i−1,j+1], u[i+1,j−1], u[i+1,j+1] values. These four interaction terms have the

number 2 as weight. Lastly, the final four pairs, [1,3], [3,1], [3,5], [5,3], correspond to the

neighbours that are 2 steps away from the [3,3] pair. These values are more distant

than the rest of the neighbours so they take the smaller weight which is equal to

one. At this point we would like to highlight that the signs in front of the weights

are used for satisfying the linear constraints. The absolute value of the weights

shows which of the combinations are closer to the pair under study. In summary,

based on (2.35), we can notice that considering the ui,j the central point, the points

that are closer to it have a bigger weight, 8ui,j−1, 8ui−1,j, 8ui+1,j, 8ui,j+1 , later the

interaction terms follow 2ui−1,j−1, 2ui+1,j−1, 2ui−1,j+1, 2ui+1,j+1 and finally the most
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distanced are the neighbours with a distance of 2 nodes: ui,j−2, ui−2,j, ui+2,j, ui,j+2.

Yue and Speckman Yue and Speckman [2010] also highlighted the need for deleting

the first row in order to make the matrix full rank which later helps in a non-

stationary matrix. Here, we will use the initial matrix (2.31) taking advantage of

the stationary matrix and its non-full rank form.

2.6.5.1 More than 5 years for the second order 2D IGMRF

In the following three matrices we can see how the structure matrix, P changes

depending on the number of years for each variable. These will help us understand

how the linear constraints apply in the two dimensional case.

λP = λ




A1 A2 A3

A2 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A2

A3 A2 A1




(2.36)

λP = λ




A1 A2 A3

A2 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A2

A3 A2 A1




(2.37)
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λP = λ




A1 A2 A3

A2 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A2

A3 A2 A1




(2.38)

Taking into account five nodes for each variable, xi,j we have a precision matrix of

25×25 dimensions and we can see that the central row is the one indicated with red

colour. In (2.36) we have presented only the block matrices. When we have data

for six nodes for each variable we have a precision matrix of 36 × 36 dimensions.

In (2.37) we can see only the block matrices which can help us to notice that the

central rows are the two in the middle now. Finally, having data for seven years

for each variable will give us a precision matrix of 49 × 49 dimensions. In (2.38)

we can see that the central rows are three in the middle which are denoted with

red colour too. The dimensions of the block matrices are changing too. We will

have 5× 5, 6× 6 and 7× 7 respectively increasing each time the central row once,

twice for the six years and three for the seven years respectively for each one of

the block matrices. In conclusion, in the three cases that are shown above the

boundary constraints are in the first two and last two rows. However, these rows

are not numbers but block-matrices.

2.7 Summary

This chapter provides an overview of all the methods that this thesis will make use

of. In Section 2.1 we see the definition of GMRFs while in Section 2.2 we analyse

a case of GMRFs with linear constraints, the IGMRFs. GMRFs and IGMRFs are

commonly used as prior distributions to explain dependence through the prior’s
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Table 2.1: Constraints for the one-dimensional 1st and 2nd order and for the
two-dimensional 2nd order IGMRF.

1RW 2RW RW2D
Nodes T T T 2

Constraints 1 2 3
Total T − 1 T − 2 T 2 − 3

Table 2.2: Constraints for the four different types of a two-dimensional 2nd

order IGMRF.

Torus1 Torus2 Bounds1 Bounds2

Nodes T 2 T 2 T 2 T 2

Rank Deficiency T 2 − 1 T 2 − 1 T 2 − 1 T 2 − 3
Linear Restrictions T 2 − 3 T 2 − 3 T 2 − 3 T 2 − 3

precision matrices. Throughout this thesis we will focus on the IGMRFs properties

which are very useful for conducting the research. In Section 2.3 we examine differ-

ent types of precision matrices which can be used as prior distributions satisfying

the IGMRFs conditions. With the aid of canonical parametrization, Section 2.4,

we are able to overcome computational difficulties of not finding the exact form

of the mean parameter introducing an alternative way of using the normal distri-

bution. Using Cholesky decomposition we manage to achieve fast calculations for

the posterior distributions tackling memory issues by storing large matrices. Fur-

thermore, in Section 2.5 we see the one-dimensional random walk which expresses

the dependences between nodes. Depending on the order of the random walk,

first or second order, we change the number of neighbours that we want to be

dependent each time, as shown in Sections 2.5.1 and 2.5.2 whereas a comparison

between these two is shown in Table 2.1. Finally, in Section 2.6 we can see the

extended case of the random walk in two dimensions. Through this chapter we

are able to see different types of two-dimensional random walk where each one

of them captures a different relation through the nodes. Analytically, for captur-

ing the spatial dependence between two variables, precision matrices on a torus

appear more suitable, as seen in Sections 2.6.2 and 2.6.3. On the other hand,

for capturing temporal dependence we have dependences on a line and we also

want to include different behaviour in each node as we might not have the same
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information in every node under study. Suitable precision matrices are those with

boundary constraints which are presented in Section 2.6.4 and 2.6.5. A comparison

between the four different two-dimensional precision matrices is shown in Table

2.2. Finally, in the following chapters we will explain in detail one-dimensional and

two-dimensional models making use of the one-dimensional and two-dimensional

IGMRF as prior distributions.



Chapter 3

Flexible Two-Dimensional

Bayesian Hierarchical Models

3.1 Introduction

Many statistical applications involve multiple parameters that can be considered

as related or connected in some way by the structure of the problem Gelman et al.

[2013]. Therefore, a joint probability model for these parameters can be considered

appropriate in order to account for their dependence. This is achieved in a natural

way if we use a prior distribution in which the group of parameters in the joint

distribution is viewed as a sample from a common population distribution as ex-

plained thoroughly by Gelman Gelman et al. [2013]. Moreover, hierarchical models

can even have more parameters than data points without causing overfitting by

the fact that they use a population distribution to structure some dependence into

the parameters.

As for Bayesian hierarchical models we need a joint probability model, it is impor-

tant to comply with the requirements of exchangeability Damien et al. [2013], Gel-

man et al. [2013], Griffin and Brown [2017]. Exchangeability is present when the

probability of a joint distribution is equal to the probability of a joint distribution

having changed the order of the parameters that exist in the joint distribution,
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Figure 3.1: Structure of the hierarchical model

i.e., having permuted the parameters Damien et al. [2013]. Therefore, we have

P (Xπ(1), Xπ(2), . . . , Xπ(n)) = P (X1, X2, . . . , Xn). However, as long as we have no

information that contradicts the assumption of exchangeability, this is a logical

assumption Gelman et al. [2013].

By assuming exchangeability we imply dependence between the parameters which

form the joint distribution. Hence, hierarchical models provide a dependence

between the parameters by expressing them in terms of the likelihood and the

priors Gelman et al. [2013].

Hierarchical models can be separated into three stages. The first stage declares

the distribution of the data and likelihood. The second stage accounts for the

prior distribution of the parameters and in the third stage the distributions of the

hyperpriors appear Damien et al. [2013]. These stages are illustrated in Figure

3.1. We present an example in (3.1) of how each of the stages could be written

using distributions which is also presented in Figure 3.2.

First stage: [data—process, parameters]⇒ Y |X,θ ∼ N (Xθ,Σθ)

Second stage: [process—parameters]⇒ θ|Z,η ∼ N (Zη,Σθ)

Third stage: [(hyper)parameters]⇒ η ∼ N (η0,Ση) (3.1)
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Figure 3.2: Example of the hierarchical model’s structure

It is assumed that we have exchangeable θi. If η is fixed then we have i differen-

t/separate models. However, more often that is not the case and with unknown

η we observe the phenomenon of shrinkage or borrowing strength across the i’s.

By using this term we imply that the parameter under study, θi will not be based

solely on the data’s information, Yi but also from the prior that we set on η. That

being said, we expect that the posterior will shrink from the data’s distribution

which is a sample estimate towards the prior’s distribution which is the population

distribution, the so-called shrinkage effect, as expressed in Gelman et al. [2013] and

Damien et al. [2013].

In this chapter we describe two Bayesian hierarchical models, a one-dimensional

and a two-dimensional model of blood pressure. The dependent variable for the

one-dimensional model is SBP whereas for the two-dimensional equivalent the de-

pendent variables are DBP and SBP taking into account the interaction(INT)

between DBP and SBP as well. Both of the models have the same parameters

to define the likelihood but have changes in the dimensions. In the following sec-

tions we will describe the sub-models that comprise the one- and two-dimensional

models.
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3.2 Models

3.2.1 The one-dimensional Model

The variable that we are interested in exploring is SBP, y. The model has been

previously defined and used by Danaei et al and Finucane et al in Danaei et al.

[2011] and Finucane et al. [2011]. The likelihood for an observation of SBP in age

group h from study i conducted in country j is, Danaei et al. [2011], Finucane

et al. [2011]:

yh,i = aj[i] + bj[i]ti + uj[i],ti + Xiβ + γi(zh) + ei + εh,i (3.2)

yh,i ∼ N (aj[i] + bj[i]ti + uj[i],ti + Xiβ + γi(zh) + ei, SD
2
h,i/nh,i + τ 2

i ) (3.3)

The general model of blood pressure can be separated into five different sub-

models, Danaei et al. [2011], Finucane et al. [2011]:

� Linear change over time with intercept and trend, aj, bj

� Non-linear change over time, uj

� Covariate effects, β

� Age model, γi(zh)

� Study-specific effects, ei:

measure the difference between the average blood pressure measurement in

study i and the average blood pressure measurement in the entire dataset.

An intercept that changes from study to study which also has its own prior

distribution.

� Error term/study-age specific random effects, εh,i:

follow a Gaussian distribution with zero mean and variance SD2
h,i/nh,i. SD

2
h,i

is the standard deviation of blood pressure values observed in the h age

group in study i while nh,i expresses the sample size of individuals that each
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Figure 3.3: Interprentation of the variances in study i

h age group has in the study i. The yh,i terms express the mean values of

a specific h age group and study i and that is why we have SD2
h,i/nh,i and

not solely SD2
h,i. Each study has several age groups and each age group

consists of a number of individuals. Here, SD2
h,i/nh,i is the variance between

the individuals in the same h age group of the same study i. In other

words, the variance within a particular h age group in a specific study i.

Also through the residuals we account for the study-specific deviation which

is the deviation of blood pressure measurements of the h age group from

the average in the study i. Hence, the second component of the likelihood

variance, τ 2
i expresses the variance that exists within a study i, the variance

that exists between all the age groups of the same study i. In Figure 3.3 we

can observe in detail the two variances that exist in the likelihood.

3.2.2 The two-dimensional model

A key contribution of this thesis is to extend the one-dimensional model to two

dimensions. The one-dimensional model is presented in (3.2.1) and analytically ex-

plained in Danaei et al. [2011], Finucane et al. [2011]. The new dependent variables

are the DBP, SBP and the interaction(INT) of these two variables. Changes in the

construction of the model are necessary. We are expressing the two-dimensional

model as having three dependent variables and not two considering the interaction
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of DBP and SBP as the third dependent variable. By introducing three dependent

variables we achieve a diagonal covariance matrix whereas otherwise we would have

a dense covariance matrix. A diagonal covariance matrix provides computational

efficiency which is useful for our analysis. We have a model




yh,i,D

yh,i,S

yh,i,I


 =




aj[i],D

aj[i],S

aj[i],I


+




bj[i],Dti

bj[i],Sti

bj[i],Iti


+

[
uj[i],(D,S),ti

]
+




Xi,Dβ

Xi,Sβ

Xi,Iβ




+




γi,D(zh)

γi,S(zh)

γi,I(zh)


+




ei,D

ei,S

ei,I


+




wh,i,D

wh,i,S

wh,i,I


+




εh,i,D

εh,i,S

εh,i,I




(3.4)

where

yh,i,I = yh,i,D × yh,i,S

Therefore y follows a normal distribution:

yh,i ∼ N(aj[i] + bj[i]ti + uj[i]ti +Xiβ + γ(zh) + ei,SD2
h,t/nh,i + τ 2

i ) (3.5)

where

SD2
h,i/nh,i =




SD2
h,i,D/nh,i

SD2
h,i,S/nh,i

SD2
h,i,I/nh,i


 (3.6)

τ 2
i =




τ 2
i,D

τ 2
i,S

τ 2
i,I


 (3.7)

Now, the y vector will provide three blood pressure measurements for a study i in

the age group h in a country j corresponding to DBP, SBP and INT denoted by

D,S, I. The y will still be a vector but the length of it will be three times longer

than before. Although each of the parameters in (3.4) and (3.5) is repeated three

times, it can be seen that there is a single non-linear sub-model uj[i],ti . That is
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because uj[i],ti provides simultaneous estimates of non-linear trends in SBP, DBP

and INT which are provided implicitly by using an IGMRF as described in Section

2.2. In the following sections we will explore analytically the behaviour of all the

sub-models in one and two dimensions.

3.3 Linear sub-model

3.3.1 One-dimensional Linear sub-model

In the linear model, there are two formulas that are used. One describes the

intercept of the linear model and the second is referring to the trend of the linear

model. These are expressed in (3.8) and (3.9) respectively Danaei et al. [2011],

Finucane et al. [2011].

aj = acj + ark[j] + asl[k] + ag (3.8)

bj = bcj + brk[j] + bsl[k] + bg (3.9)

Both the intercept and the slope of the linear model follow a hierarchical struc-

ture Danaei et al. [2011], Finucane et al. [2011]. Our dataset has information on

countries which are categorised into regions and super-regions Danaei et al. [2011],

Finucane et al. [2011]. Finally, all the super-regions comprise the globe Danaei

et al. [2011], Finucane et al. [2011]. The hierarchical structure shows a nested form

of our data which can be explained as subsections:

c: countries ⊂ r: regions ⊂ s: super-regions ⊂ g: global

Equation (3.8) describes that the intercept of a specific country is defined as the

summation of the country’s intercept, the region’s intercept that the country be-

longs to, the intercept of the country’s super-region and the globe’s intercept. The

hierarchical structure applies to each of the terms, acj, a
r
k[j] and asl[k]. The acj is part

of the joint distribution of the intercept for all the J countries, the ark[j] term is
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part of the joint distribution of the intercepts for all the K regions and asl[k] is part

of the joint distribution of the intercepts for all the L super-regions.

In the same way Equation (3.9) expresses the summation of the slope of a particular

country, the slope of the country’s region, the slope of the country’s super-region

and the globe’s slope. Again, each of the terms expresses a hierarchical structure.

The bcj parameter is part of the joint distribution of the slopes for all the J coun-

tries, the brk[j] parameter is part of the joint distribution of the slopes for all the

K regions whereas the bsl[k] parameter is part of the joint distribution of the slopes

for all the L super-regions. The ag and bg do not express a hierarchical structure

since they account solely for one group, the globe. The hierarchical structure of

the intercept and the slope can also be seen in (3.10) which expresses prior distri-

butions.

The countries, regions, super-regions and the globe levels are in a nested form.

Therefore there is an impact between the levels as well. As the notation of the

terms in (3.8), (3.9) indicate the country’s coefficient affects the region’s coefficient

that this particular country belongs to and in the same way the region’s coefficient

affects the super-region’s coefficient that this particular region belongs to.

It should be stressed that the shrinkage or borrowing strength applies between

the J countries, between the K regions and between L super-regions for each of

the intercept and the slope respectively by setting the same prior for all the J

countries, the same prior for all the K regions and the same prior for all the L

super-regions. Each one of the equations’ terms of (3.8), (3.9) has its own priors

presented in (3.10). Equation (3.10) shows us the prior distribution for each of the

terms which is the same distribution across countries, regions and super-regions

defined differently for intercept and slope. The hierarchical structure of the linear

sub-model is also presented in Figures 3.4 and 3.5 for the case of the linear’s

sub-model intercept and slope between countries. In the same way regions and
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Figure 3.4: Structure of the hierarchical model for the intercept of countries
in the linear sub-model
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Figure 3.5: Structure of the hierarchical model for the slope of countries in
the linear sub-model

super-regions can be described.

acj ∼ N (0, κca), b
c
j ∼ N (0, κcb)

ark ∼ N (0, κra), b
r
k ∼ N (0, κrb)

asl ∼ N (0, κsa), b
s
l ∼ N (0, κsb)

(3.10)

ag, bg ∼ (5, 0.01)

κca, κ
r
a, κ

s
a, κ

c
b, κ

r
b, κ

s
b ∼ (5, 0.01)

(3.11)

The κ terms follow a non-informative hyperprior whereas ag and bg a non-informative

prior.

3.3.2 Two-dimensional Linear sub-model

Since we are interested in the variables DBP, SBP and their interaction, INT we

need to construct the linear sub-model accordingly. We introduce the terms of

intercept and slope for each of DBP and SBP and INT for the two-dimensional
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linear sub-model. We will therefore have three different intercepts and three dif-

ferent slopes depending on the i study and j country. Therefore, we use the same

modelling of SBP for DBP and INT as well. As in the one-dimensional model we

also have a nested structure but this time for each of the three variables. The

hierarchical form indicates that countries are nested in regions, regions are nested

in super-regions and all these comprise the globe.

aj,V = acj,V + ark[j],V + asl[k],V + agV (3.12)

bj,V = bcj,V + brk[j],V + bsl[k],V + bgV , where V = D,S, I (3.13)

As in the one-dimensional case described in Section 3.2.1, for each of the a and

b terms a prior distribution will be assigned without including any dependence

between the a’s and between the b’s.

acj,V ∼ N
(
0, κc(a,V )

)
, bcj,V ∼ N

(
0, κc(b,V )

)
, ark,V ∼ N

(
0, κr(a,V )

)

brk,V ∼ N
(
0, κr(b,V )

)
, asl,V ∼ N

(
0, κs(a,V )

)

bsl,V ∼ N
(
0, κs(b,V )

)
, where V = D,S, I

(3.14)

It should be noted that in the two-dimensional case the hierarchical structure will

exist for each of the variables, DBP, SBP and INT. More specifically, the term

αc(j,D) refers to the intercepts of all the J countries solely for the DBP variable.

The same will apply for αc(j,S) and αc(j,I) which refer to the intercepts of all the

J countries solely for the SBP and INT variables respectively. Therefore, for the

intercepts in the two-dimensional linear sub-model we will have three different

joint distributions each referring to the joint distribution of countries, regions and

super-regions for each of the three variables, DBP, SBP and INT as is depicted

for the intercept and slope of the countries level in Figures 3.6 and 3.7. Hence, in

total we will have nine different joint distributions.

Finally, we set a non-informative hyperprior for the κ terms and a non-informative

prior for the ag and bg parameters.
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Figure 3.6: Structure of the hierarchical model for the DBP’s intercept of
countries in the linear sub-model
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Figure 3.7: Structure of the hierarchical model for the DBP’s slope of countries
in the linear sub-model

3.4 Non-Linear sub-model

3.4.1 One-dimensional Non-Linear sub-model

The non-linear sub-model is used to capture non-linear changes over time. In

this model again a hierarchical structure is present where countries are regions’

subdivisions, regions are super-regions’ subdivisions and all these are subdivisions

of the globe. In equation (3.15) the non-linearity of a specific country is expressed

as a summation of the country’s non-linearity, the non-linearity that exists in the

region that the country belongs to, the non-linearity of the country’s super-region

and finally, by the non-linearity that exists in globe Danaei et al. [2011], Finucane

et al. [2011]. As in the linear sub-model, presented in Section 3.3.1, the non-linear

sub-model exhibits a hierarchical structure. In more detail, the ucj parameter is

part of the joint distribution of all the J countries, the urk[j] parameter is part of

the joint distribution of all the K regions whereas the usl[k] parameter is part of

the joint distribution of all the L super-regions.

uj = ucj + urk[j] + usl[k] + ug (3.15)
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In matrix form, the non-linear model for all country-year combinations can be

written as Danaei et al. [2011], Finucane et al. [2011]:

Mu = Mcuc + Mrur + Msus + Mgug (3.16)

Here, Mc is a translation matrix of I×JT dimensionality that assigns the elements

of uc to I studies observed in particular country-year combinations, J × T . Since

we do not have studies for every year and for every country the Mc will be a sparse

matrix. The Mr, Ms and Mg matrices correspond to region-year, super-region-

year and globe-year combinations and the dimensions of those are I×KT , I×LT ,

I × T respectively. For each of the u parameters in Equation (3.15) we introduce

prior distributions Danaei et al. [2011], Finucane et al. [2011]. From Equation

(3.15) we can identify the phenomenon of shrinkage between the J countries since

all the J countries will have the same distribution. In a similar way, shrinkage will

exist between the K regions and between the L super-regions as all the regions will

have the same distribution and also all the super-regions will be assigned to the

same distribution. Lastly, we have a distribution for the non-linearity in the globe

but since it is not a joint distribution we do not expect to observe the phenomenon

of shrinkage between the countries. In Figure 3.9 we can observe the hierarchical

structure between the countries and between the regions. It is necessary to stress

that each ucj, urj , usj and ugj terma are vectors of T values.

ucj ∼ N (0, λcP), urk[j] ∼ N (0, λrP), (3.17)

usl[k] ∼ N (0, λsP), ug ∼ N (0, λgP)

In addition, the hyperprior for each of the scalar parameters λ’s is defined in (3.18).

λc ∼ N (a5, b5)λr ∼ N (a6, b6)λs ∼ N (a7, b7)λg ∼ N (a8, b8) (3.18)

In order to allow the model to differentiate among the degrees of non-linearity

that exist in country, region, super-region and global levels, we assign each of u’s

components a second order IGMRF, as explained in Section 2.5.2. In particular,
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Figure 3.9: Structure of the hierarchical model for the non-linear parameters
in regions

the T -vectors ucj(j = 1, ..J), urk(k = 1, ..K), usl (l = 1, ..L) and ug each has as a

prior a Gaussian distribution. Specifically, it should be noted that T expresses the

years of observations and therefore the ucj will be a vector of length T for each

country.

3.4.1.1 Interpretation of the Non-Linear Model

The intercept and the slope of the non-linear model express the same functions

as the intercept and the slope of the linear model. However, when the intercept

of one of the models, linear and non-linear, changes in time, the other should be

equal to zero. In other words, we cannot have intercepts of linear and non-linear

change in time at the same time. Only one of these relations should be applied.

These are known as identifiability constraints Danaei et al. [2011], Finucane et al.

[2011].
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3.4.1.2 Identifiability connection with the Linear Model

The definition of identifiability is equivalent to saying that different values of

the parameters must generate different probability distributions of the observable

variables Lehmann and Casella [2006]. In other words, it means that distinct

values of φ should correspond to distinct probability distributions. Therefore, a

model is identifiable if the parameter values, (φ0,φ) ∈ Φ uniquely determine the

probability distribution of the data, y ∈ Sy and the probability distribution of the

data uniquely determines the parameter values:

F (y;φ0) = F (y;φ) iff φ0 = φ, (3.19)

where Φ denotes the set of all possible parameter values and Sy is the set of all

possible values of data Huang [2005]. Identifiability constraints need to be applied

between the linear and non-linear parameters which are a, b and u Danaei et al.

[2011], Finucane et al. [2011]. The restriction we will apply here is to restrict

the last group, the non-linear sub-model to zero. For that reason the mean of the

intercept and slope for each uc, ur, us and ug is equal to zero. This is equivalent to

saying that between two groups in order to have identifiability we need to set the

second group equal to zero, expressed in Lehmann and Casella [2006]. A different

identifiability constraint would be the sum of the linear and non-linear intercepts

being equal to zero and by the same token the sum of the linear and non-linear

slopes being equal to zero as well. More details can be found in Lehmann and

Casella [2006].

Many times Bayesian models present identifiability problems that are caused due

to collinearity or overparameterization etc. One solution to identifiability problems

of this nature is the proposal of weakly informative priors. However, references

given in the bibliography have stated that a formal definition of Bayesian non-

identifiability is equivalent to a lack of identifiability in the likelihood. Therefore,

this equivalence also implies that identifiability does not depend on the nature of

the prior specification. Of course, priors that are too informative i.e. too precise,
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strong, will limit Bayesian learning from the data. With regard to prior specifi-

cation in nonidentifiable models, the middle ground between too informative and

insufficiently informative is the solution, Gelfand and Sahu [1999].

3.4.2 Two-dimensional non-linear sub-model

The two-dimensional non-linear model has a different behaviour from the rest of

the sub-models. The interaction of DBP and SBP, INT is already integrated in the

model. Precisely, by having the DBP and SBP we account implicitly for the inter-

action of these two variables. By considering every possible combination between

DBP and SBP, we actually account for changes in DBP, for changes in SBP and

every simultaneous change for both DBP and SBP which is the interaction of these

two variables. By using in the prior the P matrix that was presented in Section

2.6.5 we are able to take into account the already implicit variable of interaction.

Throughout this section we will use the precision matrix of Section 2.6.5 which

describes the second-order polynomial IGMRF in two dimensions. The non-linear

term uj[i] for country j and study i, present in the likelihood in (3.4) and (3.5)

can be represented as:

uj,(D,S) = ucj,(D,S) + urk[j],(D,S) + usl[k],(D,S) + ug(D,S) (3.20)

In matrix form, the non-linear model for all country-year combinations can be

written as:

Mu(D,S) = Mcuc(D,S) + Mrur(D,S) + Msus(D,S) + Mgug(D,S) (3.21)

Here, Mc is a translation matrix of I×JT 2 dimensionality that assigns the elements

of uc(D,S) to studies observed in particular country-year combinations. The Mr,

Ms and Mg matrices correspond to region-year, super-region-year and globe-year

combinations with I×KT 2, I×LT 2 and I×T 2 dimensions respectively. For each
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of the u variables we have a prior distribution

ucj,(D,S) ∼ N (0, λcP),urk,(D,S) ∼ N (0, λrP)

usl,(D,S) ∼ N (0, λsP),ug(D,S) ∼ N (0, λgP)
(3.22)

where P is a precision matrix defined in Section 2.6.5. By the structure of the priors

in (3.22) we assume dependence between DBP, SBP and INT which is expressed

through the precision matrix P as also explained in Yue and Speckman [2010]. We

can notice that given the structure of the priors in (3.22) we have the same number

of hierarchical structures as in the one dimensional case, Section 3.4.1. In more

detail, the ucj,(D,S) term expresses the non-linearity in a two dimensional model of

DBP and SBP for each of the J countries having as a result that all the J countries

follow the same distribution. This actually means that there will be shrinkage of

all the j values. The same will appear in each of the urk,(D,S) and usl,(D,S) where

shrinkage will exist between the k and l values respectively. Since, the ug(D,S) is

related to only one group we are not referring to a joint distribution and therefore

the shrinkage phenomenon cannot be applied. The hierarchical structure of the

two-dimensional non-linear sub-model is presented in Figures 3.10 and 3.11 for the

country and regional level respectively. It should be noted that uj(D,S) will be a

vector of size T 2. Lastly, hyperpriors for the scalar parameters λ’s are introduced

λc ∼ N (a5, b5), λr ∼ N (a6, b6), λs ∼ N (a7, b7), λg ∼ N (a8, b8) (3.23)

In equation (3.22) 0 is a vector of length T 2, P is a T 2 × T 2 matrix, the detailed

form of which is shown in Section 2.6.5, and each of the non-linear terms is a

vector that comprises all possible combinations of years for DBP and SBP. For

instance, for the country-level non-linear term, we have a vector of length T 2, ucj =

(u[1,1], u[1,2], . . . , u[3,2], u[3,4], u[3,5], . . . , u[T,T ]) for a specific country. The precision

parameters, λc, λr, λs, λg, are each scalars. Each will follow a Normal distribution

as shown in (3.23) with each of the λ parameters having a larger variance as in

the one-dimensional equivalent in (3.18) .
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Figure 3.10: Structure of the hierarchical model for DBP, SBP and INT of
countries in the non-linear sub-model
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Figure 3.11: Structure of the hierarchical model for DBP, SBP and INT of
regions in the non-linear sub-model

While the model allows estimation for T 2 combinations, we can only add infor-

mation to the likelihood when data are present, and this is only the case when

both DBP and SBP are in the same year because the measurements are taken

for individuals simultaneously. Here, we describe the ucj parameter at the country

level of the hierarchy, but the u parameter for the other levels is analogous.

3.4.2.1 Explicit use of INT in non-linear sub-model

The non-linear model will be an extension of the one dimensional non-linear model

that we presented in Section 3.4.1. For each of the DBP, SBP and INT variables

the model will be the same, a second order random walk for the precision of the

prior without considering dependence among the three variables, DBP, SBP and
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INT.

u(j,V ) = uc(j,V ) + ur(k[j],V ) + us(l[j],V ) + ugV (3.24)

MuV = Mcu(c,V ) + Mru(r,V ) + Msu(s,V ) + Mgu(g,V ), where V = D,S, I

(3.25)

In that way each of the DBP, SBP and INT will have its own prior distributions.

For each of the u we have the prior distributions that are presented in Section

2.5.2.The prior distributions is defined as follow:

ucj,V ∼ N (0, λcP),uck,V ∼ N (0, λrP),ucl,V ∼ N (0, λsP),

ucV ∼ N (0, λgP), where V = D,S, I
(3.26)

Finally, following this modelling we will have four precision parameters for each of

the DBP, SBP, INT variables whereas before we had four precision parameters for

all the three variables together. Hence, the hyperpriors for the scalar parameters

λ’s solely for the DBP variable is presented in equation (3.27).

λc ∼ N (a5, b5), λr ∼ N (a6, b6), λs ∼ N (a7, b7), λg ∼ N (a8, b8) (3.27)

3.5 Covariate effects sub-model

3.5.1 One-dimensional covariate effects sub-model

The covariate effects sub-model includes two types of effects, the country and

study level effects as defined by Danaei et al and Finucane et al in Danaei et al.

[2011], Finucane et al. [2011].

At the country level we include two time-varying covariates Danaei et al. [2011],

Finucane et al. [2011]. The first is country-level urbanization, defined as the pro-

portion of a country’s population that lived in urban areas. The second one is
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national availability of multiple food types (Xfood). A principal component anal-

ysis (PCA) was used to summarize food availability data from which we used

the first four components: Xfood = (Xfood1 ,Xfood2 ,Xfood3 ,Xfood4) Bentham et al.

[2020]. The purpose of PCA is to capture what are the food types of consumption

for each country.

At the study level we include two covariates Danaei et al. [2011], Finucane et al.

[2011]. The first is coverage, Xcvrg, a three-level factor variable indicating whether

the data were national, subnational or were from individual communities. The

second is study-level urbanization, Xs.urb, a three level factor indicating whether

the study population was rural, urban or in between and expressed as rural-and-

urban.

In equation (3.28) we represent the country-level urbanization having an inter-

cept and a term depending on time whereas the food types are solely depending

on time. Study-level covariates exist to tackle possible biases that exist in the

data. Previous studies have shown the need to consider possible differences from

national studies as subnational or community’s studies may exhibit different be-

haviour than the national studies. Therefore, we have terms for the subnational

and community coverage both having an intercept and terms depending on time,

Danaei et al. [2011], Finucane et al. [2011]. Furthermore, we want to compare

both country’s and study’s urbanization when these two terms have an antithetic

behaviour. Moreover, we have terms in (3.28) that combine a country’s urban-

ization with rural study’s urbanization and on the other hand terms that shows

country’s lack of urbanization with a study in an urban area, as was explained in

Danaei et al. [2011] and Finucane et al. [2011].
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Xiβ = β1X
c.urb
j[i],t[i] + β2X

c.urb
j[i],t[i]ti+

β3X
food1
j[i],t[i]ti + β4X

food2
j[i],t[i]ti + β5X

food3
j[i],t[i]ti + β6X

food4
j[i],t[i]ti+

β7I{Xcvrg
j[i],t[i] = subnational}+ β8I{Xcvrg

j[i],t[i] = subnational}ti+

β9I{Xcvrg
j[i],t[i] = community}+ β10I{Xcvrg

j[i],t[i] = community}ti+

β11X
c.urb
j[i],t[i]I{Xs.urb

j[i],t[i] = rural}+ β12X
c.urb
j[i],t[i]I{Xs.urb

j[i],t[i] = rural}ti+

β13(1−Xc.urb
j[i],t[i])I{Xs.urb

j[i],t[i] = urban}+ β14(1−Xc.urb
j[i],t[i])I{Xs.urb

j[i],t[i] = urban}ti
(3.28)

Observing countries with urbanization under an urban study means that Xi will

have a zero value. Likewise, countries not being characterized with urbanization

under a rural study means that Xi will have a zero value.

3.5.2 Two-dimensional covariate effects sub-model

As before, the covariate effects sub-model includes two types of effects, the country

and study level effects as defined by Finucane et al. [2011] and Danaei et al. [2011].

The countries and the studies are the same for both one- and two- dimensional

models, therefore we expect the X matrix to contain the same information for all

the three dependent variables. However, we will set different β terms for each of

our variables. In (3.29) we define the β1 but the same applies for the rest of the

βk terms where k = 1, . . . , 14.

β1 =




β1D

β1S

β1I


 (3.29)

The X matrix for each of the covariate effects will be a matrix of three columns

from now on, each column of which will contain the same information for DBP,

SBP, INT, so the columns will be identical multiplying with the parameters in

(3.29).
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3.6 Age sub-model

3.6.1 One-dimensional Age sub-model

The mean of SBP may be non-linearly associated with age. Therefore, a choice

of a non-parametric model is more appropriate. B-splines then were used for the

age sub-model. In the work of Danaei et al and Finucane et al cubic splines were

used to fit the age sub-model Danaei et al. [2011], Finucane et al. [2011]. The use

of B-splines instead is because of their greater flexibility. The cubic spline that

was used in Danaei et al. [2011], Finucane et al. [2011] has the form explained in

(3.30):

γi(zh) = γ1izh + γ2iz
2
h + γ3iz

3
h + γ4i(zh − 45)3

+ + γ5i(zh − 60)3
+

(3.30)

In contrast, the equation for a B-spline curve of degree k is defined by

S(t) =
n∑

i=0

Ni,k(t)Pi (3.31)

where (P0, P1, . . . , Pn) are control points andNi,k(t) are the basis functions which

are defined using the Cox-de Boor recursion formula shown in (3.32).

Ni,0(t) =





1 if ti 6 t < ti+1

0 otherwise

Ni,j(t) =
t− ti
ti+j − ti

Ni,j−1(t) +
ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t)

(3.32)

The values of ti are taken from a sequence called a knot vector

T = (t0, t1, . . . , tm)

The number of knots in T , m + 1 is related to the degree k and the number of

control points n+ 1 by

m = k + n+ 1
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For example, in our analysis we will use a cubic B-spline, k = 3 with number of

control points n+ 1 = 4 + 1 therefore m = k+ n+ 1 = 3 + 4 + 1 = 8 knots with a

knot vector

T = (t0, t1, . . . , t8)

Therefore, B-splines can be expressed as:

S(t) =
4∑

i=0

Ni,3(t)Pi (3.33)

Hence, in equation (3.34) we express the age sub-model with cubic B-splines

S(t) = γi(N(t)) =
5∑

j=1

Nj−1,3(t)γji

= γ1iN0,3(t) + γ2iN1,3(t) + γ3iN2,3(t) + γ4iN3,3(t) + γ5iN4,3(t)

(3.34)

where each i expresses a particular study.

In order to reduce dependence among model parameters we use a middle-aged

group, specifically 50-year-old as the baseline age, centring the age variable by

subtracting 50 from all values. Each of the γ1i, γ2i, . . . , γ5i values are defined in

(3.35) and also stated in Danaei et al. [2011], Finucane et al. [2011]:

γki = ψk + φkµi + ckj[i] where k = 1, 2, . . . , 5 (3.35)

Generally, blood pressure can increase more steeply with age where blood pressure

in a baseline age group is higher. In order to allow the shape of the age curve to

vary with level, the spline coefficients for study i (γ1i, . . . , γ5,i) are permitted to

depend on µi, the estimated 50-year-old SBP value for i study Danaei et al. [2011],

Finucane et al. [2011]:

µi = acj[i] + bcj[i]t+ Xiβ + uj[i]ti + ei

Age association not only can vary due to the differences in country means but

also due to random effects. Therefore, we include country-specific random spline
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Figure 3.12: Structure of the hierarchical model for the random effects of the
age sub-model for the σ2

1 case

coefficients in our specification of the γ’s as stated in Danaei et al. [2011], Finucane

et al. [2011]:

ckj ∼ N (0, σ2
k), where k = 1, 2, . . . , 5 (3.36)

with a flat improper prior placed on each of the five σ2’s. It should be noted that we

have a hierarchical structure here too. For example, c1j for all the J countries will

follow the same distribution with zero mean and variance σ2
1. An example of how

the hierarchical model is structured is presented in Figure 3.12 for the c11, . . . , c1J .

The same will apply for each of the other c2j, . . . , c5j terms where each is a term

of a joint distribution for all the J countries. Finally, the ψ1, . . . , ψ5 parameters

describe the age pattern for an “average” country so, c1j = · · · = c5j = 0 at an

average SBP level corresponding to µi = 0.

It is necessary to stress that in this sub-model we express the age as a continuous

variable although the blood pressure measurements are reported for age-groups,

Danaei et al. [2011], Finucane et al. [2011]. For the simplicity of the calcula-

tions, we used the midpoint of each age-group as a temporary replacement for the

unobserved continuous age value.

3.6.2 Two-dimensional Age sub-model

There might be non-linearity between age and each of the variables, DBP, SBP and

INT. Therefore, for each of the relations we use B-splines. In (3.37) we construct

three age sub-models each expressing the association between dependent variable
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and age.

S(t) = γi,V (N(t)) =
5∑

j=1

γji,VNj−1,3(t)

= γ1i,VN0,3(t) + γ2i,VN1,3(t) + γ3i,VN2,3(t) + γ4i,VN3,3(t) + γ5i,VN4,3(t),

where V = D,S, I

(3.37)

The γ’s are given by:

γ1i =




γ1i,D(zh)

γ1i,S(zh)

γ1i,I(zh)


 =




ψ1

ψ2

ψ3


+




φ1

φ2

φ3


µi +




c1j[i]

c2j[i]

c3j[i]




. . .

γ5i =




γ5i,D(zh)

γ5i,S(zh)

γ5i,I(zh)


 =




ψ13

ψ14

ψ15


+




φ13

φ14

φ15


µi +




c13j[i]

c14j[i]

c15j[i]




(3.38)

Again as we want the shape of the age curve to vary with level, the spline coeffi-

cients for study i, (γ1i, . . . ,γ5i) are allowed to depend on µi, the estimated value

of SBP, DBP and their interaction for 50 years old for that study:

µi = acj[i] + bcj[i]t+ Xiβ + uj[i]t+ ei (3.39)

Also a and b express the intercept and the slope of the linear model for each of

the three variable, DBP, SBP and their interaction. We also include the random

spline coefficients for the j country in our specification of the γ’s as well:

ckj ∼ N(0, σ2
k) where k = 1, 2, . . . , 15 (3.40)
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3.7 Age-related random effects

3.7.1 One-dimensional σ2’s sub-model

In this section we are allowing for the variance of the random effects of the age

sub-model. We introduce the hyperparameter of the age sub-model, σ2
k, where

k = 1, . . . , 5. Following we define the prior and hyperprior distributions that were

used for the parameters and the hyperparameters of the age sub-model. More

specifically, we will account for the variance parameter of the age sub-model’s

random effects Danaei et al. [2011], Finucane et al. [2011]. Defining the random

effects as ck and the variance of those, σ2
k, hence the hyperprior for σ2

1 can be

written as presented in 3.41. An analogous procedure is followed for k = 2, . . . , 5.

These two variables can be defined as:

c1|σ2
1 ∼ N (0, σ2

1IJ)

σ2
1 ∼ Beta(c, d)

(3.41)

In 3.41, c1 represents a vector of J values and IJ a J × J diagonal matrix. In the

same way, σ2
2, . . . , σ

2
5 are defined.

3.7.2 Two-dimensional σ2’s sub-model

In the two-dimensional case the age model has 15 sub-models and hence, 15 random

effects of the age model, c terms will exist. This occurs because there will be five

sub-models for each of the three variables represented in (3.38). In this section we

describe the hyperparameters of the c random effects. The σ2 term is related to

the random variable c of a specific country j as shown in (3.42).




c1j

c2j

...

c15j



∼ N




0, diag




σ2
1

σ2
2

...

σ2
15







(3.42)
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Figure 3.13: Structure of the hierarchical model for the DBP’s random effects
of the age sub-model between countries

For all the countries the distribution in matrix form can be expressed as:

ck ∼ N (0, σ2
kIJ) for k = 1, 2, . . . , 15 (3.43)

In a joint Gaussian distribution without accounting for correlation between the ck

terms we can write:




c1

c2

...

c15



∼ N




0, diag




σ2
1IJ

σ2
2IJ

...

σ2
15IJ







(3.44)

where Ij is a diagonal matrix of J × J dimensions. Once again, each of the ck

terms expresses a hierarchical structure in which shrinkage is observed between

the J countries. The difference with the one-dimensional case is that we will have

a hierarchical structure for each of the 15 ck terms whereas before there were only

5 different ck terms.

The distribution for each σ2
k hyperparameter, where k = 1, 2, . . . , 15, is expressed

as:

σ2
k ∼ Beta(c, d) (3.45)

Concluding, each of the σ2
k’s hyperparameters is independent of one another.



87

3.8 Study-specific random effects, e2
i

3.8.1 One-dimensional e2
i

In each study there are effects from study to study the so-called ei Danaei et al.

[2011], Finucane et al. [2011]. Therefore, for each study and for all the age groups

within the study there is the same ei effect which means that the study-specific ei

term does not allow differences between the age groups of the i study which has as

a result that all age groups can have an unusually high or an unusually low mean

after accounting for other terms in the model. Moreover, we introduce a prior on

the ei terms which depends on the national, subnational or community coverage

of the i study. In this section we are interested in estimating the variance of ei’s

prior, the hyperparameter νi Danaei et al. [2011], Finucane et al. [2011]. Each ei

is assigned a Gaussian prior with variance depending on the coverage of study i

Danaei et al. [2011], Finucane et al. [2011]:

νi = var(ei) =





νnat if study i is national

νsubn if study i is subnational

νcom if study i is community level

ei ∼ N (0, νi)

νi ∼ Beta(c, d)
(3.46)

The νnat term expresses the fact that even after accounting for sampling variability,

national studies may still not represent the country’s mean SBP level with perfect

accuracy. Random effects from national studies are constrained to have smaller

variance than random effects from subnational studies and so forth (νnat < νsubn <

νcom) as explained in Danaei et al. [2011], Finucane et al. [2011].
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3.8.2 Two-dimensional e2
i

In this section we describe the distribution of the hyperparameter for the study-

specific random effect ei. Each ν is the hyperparameter under study which ex-

presses the variance of the ei terms. Each of the νD, νS, νI terms can take the

value of νnat, νsubn and νcom if the study i is national, subnational or community

respectively. Since D, S, I are expressing the measurements of the same object

all the three variables will have the same coverage in a specific study i. By denot-

ing in bold the national, subnational and community categories (such as ν2
nat) we

have a vector of three values, one for each of the variables. In equation (3.47) we

observe how the national coverage is defined. The procedure is analogous for the

subnational and community coverage.

νnat =




νnat,D

νnat,S

νnat,I


 (3.47)

νi =




νi,D

νi,S

νi,I


 =





ν2
nat if study i is national

ν2
subn if study i is subnational

ν2
com if study i is community level

Since, we no longer have only SBP but also DBP and their interaction we will

have a vector of three variables expressing the study-specific random effect ei.

ei,V ∼ N (0, νi,V ) , where V = D,S, I (3.48)

Therefore, we will have two more variances for the study-specific random effect ei

which will not be correlated with each other.

νi,D, νi,S, νi,I ∼ Beta(c, d) (3.49)

For each of the hyperparameters a hyperprior distribution is assigned. Finally, we

assume there is less variability in national studies than in subnational studies and
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again less than in the community studies.

3.9 Residual age-by-study variability, τ 2

3.9.1 One-dimensional τ 2

Not taking into account the effect of baseline-age SBP, the age patterns within a

given study may differ and not be consistent with their country’s age pattern. For

each yh,i measurement there is a standard deviation for the sample of individuals

in a specific age group and study (SD2
h,i/nh,i). We want to account for the variance

of residuals that exists between the age groups within a study denoted as τ 2
i . It

should be stressed that this cannot be captured by the e’s, which are equal across

all age groups in any given study, so we include an additional variance component

for each study. As in the case of the e’s, τ 2
i depends on the study’s coverage. A

prior distribution is defined for εh,i which depends on the study’s coverage and is

defined as is explained in Danaei et al. [2011], Finucane et al. [2011]:

τ 2
i =





τ 2
nat if study i is national

τ 2
subn if study i is subnational

τ 2
com if study i is community level

εh,i ∼ N (0, τ 2
i )

τ 2
i ∼ Beta(c, d)

(3.50)

We again assume that there is less residual variability in national studies than in

subnational studies and so forth, with τ 2
nat < τ 2

subn < τ 2
com.
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3.9.2 Two-dimensional τ 2

The τ 2 term expresses the variance of the age-by-study residuals, εh,i. The residuals

express the deviation of the blood pressure measurement from the average in study

i. In the two-dimensional model the blood pressure measurement is represented

by three values, DBP, SBP and their interaction so we do not expect each of these

variables to have the same deviation from the average in study i. The coverage of

the i study is the same for each of the three variables, DBP, SBP and INT but since

the yh,i has a different range of values in each of the variables we expect to have

a different variance as well. By denoting with bold the national, subnational and

community categories (such as τ 2
nat) we express a vector of three values, one for

each of the variables. In equation (3.51) we observe how the national coverage is

defined. The procedure is analogous for the subnational and community coverage.

τ 2
nat =




τ 2
nat,D

τ 2
nat,S

τ 2
nat,I


 (3.51)

τ 2
i =




τ 2
i,D

τ 2
i,S

τ 2
i,I


 =





τ 2
nat if study i is national

τ 2
subn if study i is subnational

τ 2
com if study i is community

We define different εh,i for each of the three variables and hence, three different

values for τi. Since, we have three variables the τi will be a vector of three values.

εh,(i,V ) ∼ N
(
0, τ 2

i,V

)
, where V = D,S, I (3.52)

Next we present the hyperprior distributions for the parameter τ i. Each of the τ i

hyperparameters are independent of one another and each of them follows a Beta

distribution:

τ 2
i,D, τ

2
i,S, τ

2
i,I ∼ Beta(c, d) (3.53)
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We again assume there is less variability in national studies than in subnational

studies and so forth. In summary, residuals, εh,i have two types of variance, and

in this section we describe the variance between the age groups in each study.

3.10 Summary

This chapter provides a detailed description of each of the sub-models that com-

prise the one-dimensional and two-dimensional model of blood pressure shown in

equations (3.2) and (3.4) respectively. In Sections 3.2.1 and 3.2.2 we can see how

the one-dimensional and two-dimensional models are formed, respectively. In Sec-

tion 3.2.1 we present the parameters that the likelihood consists of, having the

SBP as the dependent variable and then we present analytically each of the likeli-

hood’s parameters whereas in Section 3.2.2 we add two more variables, DBP and

INT. Sections 3.3.2 and 3.3.1 present the structure of the linear sub-models in

the one- and two-dimensional models showing the priors and hyperpriors of their

parameters. Following, in Sections 3.4.1 and 3.4.2 the non-linear sub-models in

both the one- and two-dimensional models are explained by describing prior and

hyperprior distributions as well as the constraints that are applied for manag-

ing identifiability. Moreover, additional constraints for the non-linear sub-model

which vary depending on the data/likelihood are presented. Next, we have the

description of the covariate effects in Sections 3.5.1 and 3.5.2 and the analysis of

the age sub-model described in Sections 3.6.1 and 3.6.2. In sections 3.7.1 and

3.7.2 the priors and hyperpriors of the σ2 hyperparameter are shown in one and

two dimensions. In Sections 3.8.1 and 3.8.2 the hyperparameter ν is presented

whereas in Sections 3.9.1, 3.9.2 the hyperparameter τ 2 is presented in one and two

dimensions. We can observe the analysis that was used for the hyperparameters

of the sub-models. In summary, this chapter is a detailed guide to the hierarchi-

cal structure and specifications of the one- and two-dimensional models of blood

pressure.



Chapter 4

Implementation of a

Two-Dimensional Blood Pressure

Model

4.1 Introduction

This chapter describes the details of the implementation of the model discussed in

chapter 3. It provides the prior, posterior and proposal distributions that are used

for each of the sub-models in the one- and two-dimensional models. We explain in

detail the posterior distributions and we describe the techniques that are used for

updating each of the parameters. Although the dimensionality in the one- and two-

dimensional models for each of the parameters has changed, the posterior, proposal

and the prior distributions are defined in the same way. Important differences

are presented in the two dimensional non-linear model which is described in the

following section. Each of the models use either Metropolis-Hastings (M-H) or

Gibbs Sampler algorithms. We carry out block updating using the M-H algorithm

in the linear and the non-linear sub-models which is highly important for our final

results [Rue and Held, 2005, chapter 4]. Finally, we present the application of the

two-dimensional model using simulated and real data.
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4.1.1 Reparameterisation

In order to simplify the MCMC implementation we re-write the likelihood, com-

bining terms as follows, Danaei et al. [2011], Finucane et al. [2011]:

yh,i ∼ N (Fiθ + uj[i],ti + γi(zh),Σ) (4.1)

where the vector θ contains the aj’s, bj’s, β’s and ei’s. We use I and J to indicate

the number of studies and the number of countries respectively. In that way, F

is a mapping matrix with I rows that contains the covariates X and that assigns

each aj, bj, β, ei to the appropriate studies. Analytically, F assigns the countries

that comprise a specific study each time. We use Σ to denote the I × I diagonal

matrix of SD2/n + τ 2 values which expresses the residuals’ variance within and

between the age groups in a specific study i. For ease of notation, we denote,

Danaei et al. [2011], Finucane et al. [2011]:

1) ψ = (ψ1, . . . , ψ5)T , 2) φ = (φ1, . . . , φ5)T

3) c = [c1, . . . , c5] 4) Z = [N0,3(t), N1,3(t), N2,3(t), N3,3(t), N4,3(t)]

The dimensions of ψ and φ are 5×1, c is of dimension J×5 and Z is of dimension

I × 5. In addition, we define two more mapping matrices: C (of dimension I × J)

and M (of dimension I × JT ) that assign the elements of c and of u respectively

to the appropriate studies, Danaei et al. [2011], Finucane et al. [2011]. The sparse

matrices, C and M assign the countries to a specific study that comprise each

time. Letting ”∗” indicate component-wise matrix with vector multiplication, the

modified version of the likelihood mean will be, Danaei et al. [2011], Finucane
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et al. [2011]:

E[y|.] = Fθ + Mu + ψ1N0,3(t) + · · ·+ ψ5N4,3(t) + (Fθ + Mu) ∗ φ1N0,3(t)

+ · · ·+ ((Fθ + Mu) ∗ φ5N4,3(t) + (Cc1) ∗N0,3(t) + · · ·+ (Cc5) ∗N4,3(t)

E[y|.] = Fθ + Mu + Zψ + (Fθ + Mu) ∗ (Zφ) + ((Cc) ∗ Z)15

= Fθ ∗ (Zφ+ 1) + (Mu) ∗ (Zφ+ 1) + Zψ + ((Cc) ∗ Z)15

E[y|.] = (F ∗ (Zφ+ 1))θ + (M ∗ (Zφ+ 1))u + Zψ + ((Cc) ∗ Z)15

(4.2)

where y and u are vectors.

Having written the mean in a more intuitive form in (4.2), the distribution of the

blood pressure model or of the likelihood can be expressed as:

logP (y|θ,u,γ, .) ∝ (y− E[y|.])T Σ−1 (y− E[y|.])

logP (y|.) ∝ (y− F ∗ (Zφ+ 1)θ −M ∗ (Zφ+ 1)u− Zψ − ((Cc) ∗ Z)15)T

Σ−1 (y − F ∗ (Zφ+ 1)θ −M ∗ (Zφ+ 1)u− Zψ − ((Cc) ∗ Z)15)

(4.3)

4.2 Linear sub-model: posterior distribution

4.2.1 1D Linear sub-model: posterior distribution

For the posterior distribution of the linear sub-model we will take the joint distri-

bution of the parameter θ and its hyperparameter κ as was explained by Danaei

et al and Finucane et al Danaei et al. [2011], Finucane et al. [2011]. Following

Bayes’ Theorem we have:

Posterior =
Likelihood× Prior ×Hyperprior

Likelihood

P (θ,κ|y) =
P (y|.)P (θ|Vθ)

∏
P (
√
κ)

P (y|.) (4.4)
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The likelihood is defined by (4.1) while the prior is the joint distribution of the

linear sub-model’s priors, explained in (3.10) equation and both are defined in

Danaei et al. [2011], Finucane et al. [2011]. Vθ is a diagonal matrix with the κ

variances in the diagonal for each ac, ar, as, bc, br, bs parameters repeated three

times for DBP, SBP and INT. Finally, we define a non-informative hyperprior

for the standard deviation parameters,
√

(κ). For simplicity, we apply the log

function to each of our distributions, Danaei et al. [2011], Finucane et al. [2011].

The detailed computation of the posterior is presented in (4.5).

log(posterior) ∝ log(likelihood) + log(prior) + log (hyper-prior)

logP (θ,κ|y) ∝ logP (y|θ,u,γ, .) + logP (θ|Vθ) +
∑

logP (
√
κ)

logP (θ,κ|y) ∝ (y− F(Zφ+ 1)θ −M(Zφ+ 1)u− Zψ − (CcZ)15)T

Σ−1(y− F(Zφ+ 1)θ −M(Zφ+ 1)u− Zψ − (CcZ)15)

+ logP (θ|Vθ) +
∑

logP (
√
κ)

(4.5)

Keeping only the values that depend on θ and κ the posterior distribution is as

shown in equation (4.6).

logP (θ,κ|y) ∝ (F(Zφ+ 1)θ)TΣ−1(F(Zφ+ 1)θ)

− (F(Zφ+ 1)θ)TΣ−1y + (F(Zφ+ 1)θ)TΣ−1M(Zφ+ 1)u

+ (F(Zφ+ 1)θ)TΣ−1(Zψ + ((Cc)Z)15)

− yTΣ−1F(Zφ+ 1)θ + (M ∗ (Zφ+ 1)u)TΣ−1F(Zφ+ 1)θ

+ (Zψ + ((Cc)Z)15)TΣ−1(F(Zφ+ 1)θ)

+ θTV−1
θ θ +

∑
logP (

√
κ)

(4.6)

Let us consider now that we want to find the posterior distribution solely of the

θ parameter. We rewrite in (4.7) the equation (4.6) in a way that is focusing only
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on the θ parameter.

logP (θ|y) ∝ θT (F(Zφ+ 1))TΣ−1F(Zφ+ 1)θ

− θT (F(Zφ+ 1))TΣ−1[y−M(Zφ+ 1)u− Zψ − ((Cc)Z)15]

− yTΣ−1F(Zφ+ 1)θ + (M ∗ (Zφ+ 1)u)TΣ−1F(Zφ+ 1)θ

+ (Zψ + ((Cc)Z)15)TΣ−1(F(Zφ+ 1)θ) + θTV−1
θ θ

+
∑

logP (
√
κ)

(4.7)

Let us assume that in (4.7) we need to find the posterior distribution of θ. By

showing an example of a summation of two bivariate normal distributions we can

easily identify the posterior distribution in (4.8).

log(f(x|µ,Σ1,Σ2)) ∝ (µ− x)TΣ−1
1 (µ− x) + (x− 0)TΣ−1

2 (x− 0)

∝ xTΣ−1
1 x− xTΣ−1

1 µ− µTΣ−1
1 x + µTΣ−1

1 µ+

xTΣ−1
2 x

log(f(x|µ,Σ1,Σ2)) ∝ xT (Σ−1
1 + Σ−1

2 )x− xTΣ−1
1 µ− µTΣ−1

1 x+

µTΣ−1
1 µ

(4.8)

The underlined terms in (4.7) and (4.8) help to identify the mean vector and the

precision matrix of the distribution. As our parameter is θ we will have:

θ|µθ,Qθµθ ∼ Nc(Qθµθ,Qθ)

Qθ = (F(Zφ+ 1))TΣ−1F(Zφ+ 1) + V−1
θ

Qθµθ = (F(Zφ+ 1))TΣ−1[y−M(Zφ+ 1)u− Zψ − ((Cc)Z)15]

(4.9)

We use the canonical parametrization defined in Section 2.4 and also by Rue and

Held [Rue and Held, 2005, chapter 2]. Thus, the mean and the precision matrix

for the posterior distribution are as in (4.9). All this information comes from

the likelihood, P (y|θ,u,γ) and the prior, P (θ|Vθ). We can see that the term

Qθµθ does not include the prior’s variance, Vθ as the prior’s mean is zero and

therefore it cancels out. Finally, we can observe that the precision matrix of the

prior distribution, V−1
θ contributes only to the precision matrix of the posterior
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and for the Qθµθ term only the likelihood’s precision matrix is present.

In the whole analysis we use the theory of canonical parametrisation and Cholesky

factorisation, which was presented in Section 2.4. Therefore, instead of estimating

the mean, µ and the precision matrix, Q of the θ parameter we will estimate

the product, Qµ as the mean and Q as the precision matrix for the canonical

parametrisation of θ. The reason for using canonical parametrisation is that often

it is cumbersome to compute a distribution’s mean by itself. However, we can

easily find it as a product with the precision matrix in the analytical form of the

distribution.

4.2.1.1 Acceptance Ratio

In this linear sub-model we could simply use a Gibbs sampler since we could

sample from the distributions of P (θ|κ,y) and P (κ|θ,y), which is known as a

two-block Gibbs sampler. However, it is observed that the θ parameter and the

hyper-parameter κ are strongly dependent which has as a result slow mixing and

convergence, [Rue and Held, 2005, chapter 4]. The two-block Gibbs sampler only

moves either horizontally or vertically, [Rue and Held, 2005, chapter 4]. Therefore,

a joint update of both θ and κ seems more appropriate [Rue and Held, 2005,

chapter 4], Danaei et al. [2011], Finucane et al. [2011]. Hence, the posterior is

the joint distribution of θ and κ which can be expressed as the product of the

likelihood, θ’s prior and the hyperprior of κ. The priors of the intercept and slope

(3.10) are expressed as a vector and hence a vector of six values will be shown for

the κ hyperparameter. The proposal distribution of θ is presented in Section 4.2

whereas the proposal distribution of the κ parameter is a symmetrical distribution

which is explained below. Since κ is six-variate we can use a simple scheme for

updating all κ’s if we delay the accept/reject step until θ is updated. The joint

proposal distribution for each of the hyper-parameters and the parameter θ is
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generated as follows, [Rue and Held, 2005, chapter 4] :

κc∗a ∼ q(κc∗a |κca), κc∗b ∼ q(κc∗b |κcb)

κr∗a ∼ q(κr∗a |κra), κr∗b ∼ q(κr∗b |κrb)

κs∗a ∼ q(κs∗a |κsa), κs∗b ∼ q(κs∗b |κsb)

θ∗ ∼ P (θ|κ∗, y)

(4.10)

Here q can be a simple random walk proposal or other suitable proposal distribu-

tion. A proposal from κ to κ∗ may take κ∗ out of the diagonal, while sampling θ∗

from P (θ∗|κ,y) will take it back into the diagonal again. Therefore, we have more

options for the κ parameter keeping also its dependence since we are going back

to the diagonal again, [Rue and Held, 2005, chapter 4]. Thus, the mixing and the

convergence can be substantially improved, [Rue and Held, 2005, chapter 4].

The Metropolis-Hastings algorithm needs a target and a proposal distribution.

Hence we will use the likelihood, prior and hyperprior presented in (4.5) which

comprise the target distribution and (4.10) as a proposal distribution. We will

need two functions for the proposal density; as stated in (4.10), one will account

for the parameter, θ and the other one will account for the hyperparameter κ. If

we consider that the q proposal is a symmetric distribution that accounts only for

the hyperparameters then it will be cancelled out in the r ratio shown in (4.11).

Hence, we will have as a proposal the density solely for the θ parameter which is

the distribution in (4.9).

r =
Posterior∗ × Proposal
Posterior × Proposal∗

r =
(P (θ∗,κ∗|y))(P (θ|κ,y)q(κ|κ∗))
(P (θ,κ|y))(P (θ∗|κ∗,y)q(κ∗|κ))

r =
P (θ∗,κ∗|y)P (θ|κ,y)

P (θ,κ|y)P (θ∗|κ∗,y)

r =
P (θ∗,κ∗|y)

P (θ∗|κ∗,y)

P (θ|κ,y)

P (θ,κ|y)

r = P (κ∗|y)
1

P (κ|y)

(4.11)

In equation (4.11) we notice that only the density of κ is needed. Since we sample θ
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from its full conditional, we effectively integrate θ out of the joint density P (θ,κ),

[Rue and Held, 2005, chapter 4]. The minor modification to delay the accept/reject

step until θ is updated as well can give a large improvement to convergence [Rue

and Held, 2005, chapter 4].

Finally, we accept θ∗ and the κ∗’s with probability r, Finucane et al. [2011], Danaei

et al. [2011]:

r =
P (θ∗,κ∗|y)P (θ|κ,y)

P (θ,κ|y)P (θ∗|κ∗,y)

r =
P (y|θ∗, .)P (θ∗|V∗θ)

∏
P (
√
κ∗)P (θi−1|Vi−1

θ ,y, .)

P (y|θi−1, .)P (θi−1|Vi−1
θ )

∏
P (
√
κi−1)P (θ∗|V∗θ,y, .)

(4.12)

� Likelihood, target: logP (y|θ, .) ∝ 1
2
(
∑

log diag(Σ−1) − (y − Fθ −Mu −
Rγ)TΣ−1(y− Fθ −Mu−Rγ))

� Prior, target: logP (θ|Vθ) ∝ 1
2
(
∑

log diag(V−1
θ )− θTV−1

θ θ)

� Hyper-prior, target: logP (
√
κ) ∝ 1,

� Proposal: logP (θ|Vθ,y, .) ∝
1

2
(
∑

log diag(Qθ)− (θ − µθ)TQθ(θ − µθ))

In conclusion, we use a joint distribution of (θ,κ) as a target distribution to tackle

the dependence problem between the hyper-parameter and parameter of the linear

model. However, the proposal distribution will solely depend on the parameter θ

and the reason is that the hyperparameter κ has a symmetric distribution which is

cancelled out in the r ratio. This algorithm is known as a block update Metropolis

Hastings, [Rue and Held, 2005, chapter 4].

The two-dimensional equivalent linear sub-model, defined in (3.12) will still have

the F mapping matrix and the θ parameter. However, in this case we need to have

linear changes in time for all three variables. Therefore, we will have intercepts

and slopes for the globe, all the super-regions, regions and countries for each of the

variables under study, DBP, SBP, INT. The F matrix also includes the covariate

effects presented in Section 3.5.2 which are tripled because of the three variables

under study. Therefore, the F matrix and the θ parameter will be defined with

three times more dimensions than for the one-dimensional linear sub-model.
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4.3 Non-linear: Posterior Distribution

4.3.1 1D Non-linear: posterior distribution

The case of the non-linear model is similar to the linear model. We analyse again

the likelihood and we keep the terms that are related to Mu and λ this time. For

convenience we will only see the procedure about Mc and λc which are the terms

for the country’s level. The same applies to region, super-region and globe level.

In (4.13) we present the posterior distribution using the log function in likelihood,

prior and hyperprior distribution.

log(posterior) ∝ log(likelihood) + log(prior) + log (hyper-prior)

logP (uc, λc|y) ∝ logP (y|uc, λc) + logP (uc|λc) +
∑

logP (λc)

logP (uc, λc|y) ∝ (y− F(Zφ+ 1)θ −Mc(Zφ+ 1)uc − Zψ − (CcZ)15)T

Σ−1(y− F(Zφ+ 1)θ −Mc(Zφ+ 1)uc − Zψ − (CcZ)15)

+ logP (uc|λc) +
∑

logP (λc)

(4.13)

Having the joint posterior distribution of uc, λc|y in (4.13) we also want to find the

posterior distribution of the uc|y parameter. Equation (4.14) presents a detailed
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version of (4.13) emphasizing to the uc parameter.

logP (uc|y) ∝ yTΣ−1y− yTΣ−1F(Zφ+ 1)θ − yTΣ−1M(Zφ+ 1)uc − yTΣ−1

(Zψ + ((Cc)Z)15)− (F(Zφ+ 1)θ)TΣ−1y + (F(Zφ+ 1)θ)TΣ−1

(F(Zφ+ 1)θ) + (F(Zφ+ 1)θ)TΣ−1Mc(Zφ+ 1)uc+

(F(Zφ+ 1)θ)TΣ−1(Zψ + ((Cc)Z)15)− (uc)T (Mc(Zφ+ 1))TΣ−1y

+ (uc)T (Mc(Zφ+ 1))TΣ−1F(Zφ+ 1)θ+

(uc)T (Mc ∗ (Zφ+ 1))TΣ−1Mc(Zφ+ 1)uc + (uc)T (Mc(Zφ+ 1))TΣ−1

(Zψ + ((Cc)Z)15)− (Zψ + ((Cc)Z)15)TΣ−1y+

(Zψ + ((Cc)Z)15)TΣ−1(F(Zφ+ 1)θ)+

(Zψ + ((Cc)Z)15)TΣ−1(Mc(Zφ+ 1)u)+

(Zψ + ((Cc)Z)15)TΣ−1(Zψ + ((Cc)Z)15) + (uc)T Ij ⊗ λcPuc +
∑

logP (λc)

(4.14)

Bearing in mind the bivariate normal distribution in (4.8) and that our parameter

now is uc, from (4.14) we can derive the following:

logP (uc|λc,y,θ,γ) ∝ (uc)T (Mc ∗ (Zφ+ 1))TΣ−1(Mc ∗ (Zφ+ 1))uc + (uc)T Ij ⊗ λcPuc

− (uc)T (Mc ∗ (Zφ+ 1))TΣ−1[y− F(Zφ+ 1)θ − (Zψ − ((Cc)Z)15)]

− yTΣ−1Mc(Zφ+ 1)uc + (F(Zφ+ 1)θ)TΣ−1Mc(Zφ+ 1)uc

+ (Zψ + ((Cc)Z)15)TΣ−1(Mc ∗ (Zφ+ 1)uc)

(4.15)

Therefore, we can see the distribution of uc|. :

uc|µuc ,Qucµuc ∼ Nc(Qucµuc ,Quc)

Quc = Mc ∗ (Zφ+ 1))TΣ−1(Mc ∗ (Zφ+ 1)) + Ij ⊗ λcP

Qucµuc = (Mc ∗ (Zφ+ 1))TΣ−1[y− F(Zφ+ 1)θ − (Zψ − ((Cc)Z)15)]

(4.16)



102

The first part of the precision in (4.16) is the likelihood’s variance including only

the variables related to uc and the second part is the hyper-prior’s variance which is

dependent on λc. The mean and the precision matrix of the non-linear sub-model

are also stated in Danaei et al. [2011], Finucane et al. [2011].

4.3.1.1 Proposal distribution

i) Identifiability constraints
∑

i u[i] = 0

We need the linear and the non-linear terms to be identifiable. To do so, we

introduce a dependence between the intercept and the linear trend of the linear

sub-model and the intercept and slope of the non-linear sub-model Danaei et al.

[2011], Finucane et al. [2011]. In order to achieve that we will implement a re-

striction; the summation of the intercept of the non-linear model should be equal

to zero,
∑

i u[i] = 0 and also the summation of the linear trend should be equal

to zero,
∑

i iu[i] = 0 where i express the years. A way to apply this restriction is

by using the linear constraints of a GMRF. One approach is to compute the mean

and the covariance from the joint distribution of u (variable) and Au (linear con-

straint). We condition on Au = e which leads to the conditional moments where

E(u|Au), Cov(u|Au) are

E(u|Au) = µ∗uc
j

= µ−Q−1AT (AQ−1AT )−1(Aµ− e) (4.17)

Cov(u|Au) = V∗uc
j

= Q−1 −Q−1AT (AQ−1AT )−1AQ−1 (4.18)

ii) Linear constraints in IGMRFs

The linear constraint ensures that the conditional distribution is normal but sin-

gular as the rank of the constrained covariance matrix is T − 2. As the rank is

T − 2 this indicates that for the second-order IGMRF we will have two linear con-

straints. In order to produce a proper joint distribution we impose the constraints
∑

i u[i] = 0 and
∑

i iu[i] = 0 which also give a finite marginal standard deviation.

In the same way, for the first-order IGMRF the rank is T − 1 and there is only

one restriction that we impose,
∑

i u[i] = 0. In general, depending on the type of
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IGMRF that we use we need to impose the corresponding constraints, Lehmann

and Casella [2006].

In this section we explore further the proposal distribution, P (uc(i−1)|Au
c(i−1)
j =

0∀j, λi−1
c ,y) stressing the linear restrictions, Au

c(i−1)
j = 0. The difference between

the posterior/target distribution and the proposal is that the first is referring to

a joint distribution of (uc, λc) whereas the latter refers to the marginal of the uc

parameter imposing restrictions on it. In the Quc matrix we can see that for each

country we add all the studies that have been conducted for a specific year. Quc is

the precision matrix which is a quadratic and a block diagonal matrix. Each block

accounts for a specific country and thus, in total we have J blocks, one for each

country in the diagonal. In Qucµuc is presented again the number of the studies in

each country and year but not in a quadratic form. The procedure that we follow

divides the countries (also regions, super-regions) into three scenarios: 1) when we

have no data 2) data for 1 year and 3) data for more years for a specific country.

For each of these scenarios the proposal distribution will have some differences.

Firstly, we start with the λ’s proposal which is a symmetric one and therefore it

cancels out in the r ratio. Propose λc from:

λ∗c ∼ N (a5, b5)

Then, we need to explore the analysis that each scenario needs:

1. No Data were observed in country j

There are no data so the likelihood will not contribute and Quc depends solely

on the prior. We will take into account only the second part of the precision,

Equation (4.16), Ij ⊗ λP which means dependence through the P matrix.

Hence, the rank of P stays constant, T − 2 corresponding to infinite prior

variance on the mean (intercept) and the linear trend of ucj. We constrain

these two linear combinations of ucj to zero by taking the generalized inverse

of P, settings P’s last two eigenvalues to infinity. Only one type of the

constraints is applicable, the two restrictions that the second order IGMRF
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imposes, [Rue and Held, 2005, chapter 2], Damien et al. [2013], Finucane

et al. [2011]. The steps to follow are presented below:

(a) uc∗j ∼ N (0, (λcP)−1)

(b) Two restrictions of using the second order IGMRF (RW2). The restric-

tions apply by eigendecomposing the P matrix. Therefore, we will use

the P matrix through the eigenvalues and eigenvectors. P = ΓΛΓT or

P−1 = ΓΛ−1ΓT such that Λ−1
ii = 1

Λii
for i = 1, . . . , T − 2 and Λ−1

ii = 0

for i = T − 1, T . Again, these two restrictions occur because of the

undefined intercept and linear trend.

(c) Generate ucj.

uc∗j ∼ N (0, (λcP)−1), where λcP is the precision matrix. Therefore,

instead of dividing elements we multiply them.

uc∗j ∼ 1

λ
1/2
c

N (0,ΓΛ−1ΓT )⇒ uc∗j ∼ 1

λ
1/2
c

N (0,ΓΛ−1/2Λ−1/2ΓT )

uc∗j ∼ ΓΛ−1/2

λ
1/2
c

N (0, 1)

So, we generate the ucj parameter from: ΓΛ−1/2

λ
1/2
c

z where z ∼ N (0, 1)

(d) Calculate:

logP (uc∗j |λ∗c ,y,Auc∗j = 0, ∀j.) = −T − 2

2
log 2π +

T − 2

2
log(det(λ∗cP ))

− λ∗c
2

uc∗Tj Puc∗j

∝ T − 2

2
log λ∗c −

1

2
uc∗Tj λ∗cPuc∗j

Summing up, with no information from the data the estimation is solely

based on the prior. The prior is a second order IGMRF and thus the con-

straints will be k = 2 based on the linear constraints of the IGMRF as a

prior, T − 2. Again, ucj ∼ N (0, (λcP)−1), where λcP is the precision matrix.

2. Data for one year were observed in country j

Quc has rank T − 1 because the mean (intercept) but not the linear trend of

ucj is defined by the data. Hence, we constrain the linear trend ucj to zero by

taking the generalized inverse of Quc , setting Quc ’s last eigenvalue to ∞. It

is necessary to apply the restriction of an infinite slope that the second order
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IGMRF imposes, Danaei et al. [2011], Finucane et al. [2011]. In addition,

we will use the identifiability constraint on the summation of the intercept

which is defined by the data. To do that, we use the “Rue corrections”, [Rue

and Held, 2005, chapter 2] to constrain the mean of ucj’s intercept to zero.

Note that we apply two different constraints in this case. Steps:

(a) Eigendecompose Qucj
= ΓΛΓT

(b) Calculate the generalized inverse of Qucj
: Q−1

ucj
= ΓΛ−1ΓT such that

Λ−1
ii = 1/Λii for i = 1, ..., T − 1 and Λ−1

ii = 0 for i = T .

The restriction is referring only to the undefined linear trend.

(c) Calculate:

V∗ucj = Q−1
ucj
−Q−1

ucj
1T (1Q−1

ucj
1T )−11Q−1

ucj

µ∗ucj = Q−1
ucj

Qucj
µucj −Q−1

ucj
1T (1Q−1

ucj
1T )−11Q−1

ucj
Qucj

µucj

A new variance and mean are calculated. Since only the intercept can

be identifiable from the data there is one identifiability restriction and

it can be adjusted as: A = 1T and e = 0. The restriction is defined as:

1Tucj = 0⇒ ucj[1] + · · ·+ ucj[T ] = 0.

(d) Eigendecompose V∗ucj = ΓΛ−ΓT such that:

Λ−1
ii = 1/Λii for i = 1, . . . , T − 2 and Λ−ii = 0 for i = T − 1, T .

The two restrictions of the RW2 have been added to the new variance.

(e) Generate uc∗j = µ∗ucj + ΓΛ−1/2z with z ∼ N (0, 1)

(f) Calculate:

logP (uc∗j |λ∗c ,Auc∗j = 0,y) = −T − 2

2
log 2π − 1

2

∑T−2

i=1
log Λ−1

ii

− 1

2
(uc∗j − µuc∗j )TV∗−1

ucj
(uc∗j − µuc∗j )

∝ −1

2

∑T−2

i=1
log Λ−1

ii −
1

2
(uc∗j − µuc∗j )TV∗−1

ucj
(uc∗j − µuc∗j )

3. Data for multiple years were observed in country j

Quc has rank T because the mean (intercept) and the linear trend of ucj

are identified by the data. However, we use the “Rue corrections” to con-

strain the mean of ucj’s intercept and ucj’s linear trend to zero (identifiability
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constraints) [Rue and Held, 2005, chapter 2]. Afterwards, to the modified

precision matrix we apply the restrictions of the second order IGMRF. In

this case only one constraint is applied. Steps:

(a) Calculate Vucj
= Q−1

ucj

(b) Calculate µ∗ucj = Vucj
Qucj

µucj −Vucj
AT (AVucj

AT )−1AVucj
Qucj

µucj

Calculate V∗ucj = Vucj
−Vucj

AT (AVucj
AT )−1AVucj

A new variance and mean are calculated. Since both intercept and slope

are identifiable, A will be a 2×T matrix which will include
∑

i u[i] = 0,

the summation of intercepts and also
∑

i iu[i] = 0, the summation of

slopes, which are referring to the identifiability constraints.

(c) Eigendecompose V∗ucj = ΓΛ−1ΓT such that:

Λ−1
ii = 1/Λii for i = 1, . . . , T − 2 and Λ−1

ii = 0 for i = T − 1, T

The two restrictions of the RW2 have been added to the new variance.

(d) Generate ucj = µucj + ΓΛ−1/2z with z ∼ N (0, 1)

(e) Defining V∗ucj as above, calculate:

logP (uc∗j |λ∗c ,Auc∗j = 0,y) = −T − 2

2
log 2π − 1

2

T−2∑

i=1

log Λ−1
ii

− 1

2
(uc∗j − µ∗ucj)

TV∗−1
ucj

(uc∗j − µ∗ucj)

∝ −1

2

T−2∑

i=1

log Λ−1
ii −

1

2
(uc∗j − µ∗ucj)

TV∗−1
ucj

(uc∗j − µ∗ucj)

In summary, we need to highlight that by using the second order or any other

IGMRF there are restrictions to be considered. In the case of the second-order

IGMRF there are two restrictions to apply. However, the restrictions that the

IGMRF imposes vary depending on the dataset we have for our parameter.

Moreover, due to the construction of the model between the linear sub-model and

the non-linear sub-model we need to apply also identifiability constraints which

are based on the intercept and slope of the non-linear model. These are known as

linear constraints or “Rue constraints”, [Rue and Held, 2005, chapter2].
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Finally, after considering all the aforementioned we need to impose for the last

time the two restrictions of the second order IGMRF to the new structure matrix.

4.3.1.2 Acceptance Ratio

Again, in the non-linear model we could use a Gibbs sampler since we could

sample from the distributions of P (uc|λc,y), P (ur|λr,y), P (us|λs,y), P (ug|λg,y)

and P (λc|uc,y), P (λr|ur,y), P (λs|us,y), P (λg|ug,y) respectively. However, due

to the high dependence of the u parameter and the hyper-parameter λ, in each

of the four cases, this results in slow mixing in the chain, Danaei et al. [2011],

Finucane et al. [2011]. Therefore, instead of using a two-block Gibbs sampler we

will update the (u, λ) jointly as we first saw in Section 4.2.1.1 .

Since λ is univariate for each of the country’s, region’s, super-region’s and globe’s

hyper-parameter, we can use a simple scheme for updating all the λ’s as long as

we delay the accept/reject step until u is updated. The joint proposal is generated

as follows, [Rue and Held, 2005, chapter 4]:

λ∗c ∼ q(λ∗c |λc), uc∗ ∼ P (uc|λ∗c ,y)

λ∗r ∼ q(λ∗r|λr), ur∗ ∼ P (ur|λ∗r,y)

λ∗s ∼ q(λ∗s|λs), us∗ ∼ P (us|λ∗s,y)

λ∗g ∼ q(λ∗g|λg), ug∗ ∼ P (ug|λ∗g,y)

(4.19)

Note that in equations (4.19) each line is updated separately. Specifically, we will

update the following four pairs: (uc, λc), (ur, λr), (us, λs) and (ug, λg). We will de-

scribe the acceptance ratio for the group (uc, λc). However, the same methodology

is used for the other three pairs as well. We have

r =
Posterior∗ × Proposal

Posterior× Proposal∗

r =
Posterior∗ × Proposal(1)× Proposal(2)

Posterior× Proposal(1)∗ × Proposal(2)∗

r =
P (u∗c , λ

∗
c |y)P (uc|λc)q(λc|λ∗c)

P (uc, λc|y)P (u∗c |λ∗c)q(λ∗c |λc)

(4.20)
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and if we consider that the q proposal in (4.19) is a symmetric distribution then

it will be cancelled out in the r ratio.

r =
P (u∗c , λ

∗
c |y)P (uc|λc, y)

P (uc, λc|y)P (u∗c |λ∗c , y)

r =
P (u∗c , λ

∗
c |y)

P (u∗c |λ∗c , y)

P (uc|λc, y)

P (uc, λc|y)

r = P (λ∗c |y)
1

P (λc|y)

(4.21)

Note that only the density of λc is needed in (4.21), [Rue and Held, 2005, chapter 4].

Since we sample uc from its full conditional, we effectively integrate uc out of

the joint density P (uc, λc|.). The minor modification to delay the accept/reject

step until uc is updated as well can improve substantially the time needed for

convergence and the dependence between the parameter and the hyperparameter,

[Rue and Held, 2005, chapter 4]. In other words, we update the λc hyperparameter

first which practically affects the update of uc which gives time for appropriate

updating.

We accept u∗c and λ∗c ’s with probability r:

r =
P (y|u∗c)P (u∗c |λ∗c)P (log λ∗c)P (u

(i−1)
c |Au

(i−1)
jc = 0∀j, λi−1

c ,y)

P (y|u(i−1)
c )P (u

(i−1)
c |λi−1

c )P (log λi−1
c )P (u∗c |Auc∗j = 0∀j, λ∗c ,y)

(4.22)

� Likelihood, target: logP (y|u∗c) ∝ 1
2
(
∑

log diag(Σ−1) − (y − Fθ −Mu −
Rγ)TΣ−1(y− Fθ −Mu−Rγ))

� Prior, target: logP (u∗c |λ∗c) ∝ 1
2
(
∑

log diag(λ∗c)− (u∗c)
T (λ∗c)

−1u∗c)

� Hyper-prior, target: P (log λ∗c) ∝ 1

� Proposal: P (u
(i−1)
c |Au

(i−1)
c[j] = 0∀j, λi−1

c ,y) ∝ 1

2
(
∑

log diag(Quc
) − (uc −

µuc
)TQuc

(uc − µuc
))

The proposal distribution depends each time on the data of each country (whether

there is no data, 1 year’s data or more years’ data). Since the q density of (4.19)

is a symmetric distribution we have as a proposal solely the uc density.
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4.3.2 2D: Non-linear sub-model

In this section we present the two-dimensional non-linear sub-model which has

been a key part of our methodological development. The variables of interest are

DBP, SBP and their interaction, INT. In the same way as for the one-dimensional

non-linear sub-model in Section 4.3.1, for the posterior distribution of the non-

linear model we use a block Metropolis-Hastings algorithm which is a joint distri-

bution of the parameter ui(D,S) and its hyper-parameter λi where i ∈ {c, r, s, g}.
The reason for using a joint distribution is to speed up convergence and because of

the high correlation between the parameter and the hyper-parameter. By having

the likelihood and taking only the terms that are related to ui(D,S), λi we specify

the full conditional normal distribution for each component of ui separately. Here,

we describe the posterior at the country level of the hierarchy, but the posteriors

for the other levels are analogous. For uc(D,S), we have:

logP (uc(D,S), λc|y) ∝ logP (y|(uc(D,S), λc, .) + log(uc(D,S)|λc) + logP (λc)

logP (uc(D,S), λc|y) ∝ (y− F(Zφ+ 1)θ −Mc(Zφ+ 1)uc(D,S) − Zψ

− (CcZ)15)TΣ−1(y− F(Zφ+ 1)θ −Mc(Zφ+ 1)uc(D,S)

− Zψ − (CcZ)15) + log(P (uc(D,S)|λc)) + logP (λc)

(4.23)

For convenience, instead of writing uc(D,S) we will write uc instead throughout this

section. For the posterior of the non-linear model, we will keep only the uc and

Mc terms that comprise the non-linear model, and we can state the posterior dis-

tribution using canonical parameterisation, uc, λuc |µuc ,Quc ∼ Nc(Qucµuc ,Quc),

which we have seen in (4.15) in Section 4.3.1. Therefore, the distribution of uc is:

Quc = (Mc ∗ (Zφ+ 1))TΣ−1(Mc ∗ (Zφ+ 1)) + Ij ⊗ λcP

Qucµuc = (Mc ∗ (Zφ+ 1))TΣ−1[y− F(Zφ+ 1)θ − (Zψ − ((Cc)Z)15)]
(4.24)

where Z expresses the age data, ψ expresses the constant term, φ is the mean

term and C are country-specific random effects in the age model.
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Table 4.1: Mapping matrix which assigns each country × year to the appro-
priate studies

A′01 A′02 A′03 A′04 A′05
study1 1
study2 1
study3 1

At this stage it is important to stress the differences from the one-dimensional

non-linear sub-model, 4.3.1. Since we have three variables, DBP, SBP and their

interaction, the precision matrix λcP will be the one presented in (2.31). The

dimensionality of uc and the P matrix will be changed. The uc will be a vector of

T 2 values and P a T 2 × T 2 matrix whereas in the one-dimensional equivalent we

have a vector of size T and a T × T matrix respectively.

4.3.2.1 Matrix intuition

Each of the M matrices are large matrices but a useful property of them is that

they are sparse matrices which means that is not necessary to store the whole

matrix. We can take only the part required for our computations. In the following

example, we show that Quc and Qucµuc can be computed in a way that does not

involve manipulation of these large matrices Danaei et al. [2011], Finucane et al.

[2011].

Let us assume that we have studies in 5 years for one country as depicted in Table

4.1, Danaei et al. [2011], Finucane et al. [2011]. We compute Quc separately for

DBP, SBP and INT. First we set the 3-vector (Zφ+ 1)T = (v1, v2, v3) and we can

compute first component of Quc as:

Mc ∗ (Zφ+ 1))TΣ−1(Mc ∗ (Zφ+ 1)) =




v1Σ−1
11 + v2Σ−1

22

v3Σ−1
33



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The above result shows that all the information we need appears in the diagonal

and only to the years with data. Following, the above can be easily generalised

using DBP, SBP and INT variables since all these three measurements are referring

to the same study, year and country. Therefore, for a specific year a specific blood

pressure measurement will give us all these three values. Hence, we could sum the

information that the variables gives us for each year for a specific country which

is the information we elicit through the data (likelihood).

Finally, taking into account all the three variables DBP, SBP and INT together in

a matrix form we can define the matrix multiplication of Mc∗(Zφ+1))TΣ−1(Mc∗
(Zφ+ 1)) as expressed below:

=




v2
1Σ−1

1D + v2
2Σ−1

2D + v2
1Σ−1

1S + v2
2Σ−1

2S + v2
1Σ−1

1I + v2
2Σ−1

2I

. . .

v2
3Σ−1

3D + v2
3Σ−1

3S + v2
3Σ−1

3I




In the posterior distribution we want to estimate the information for 25 possible

combinations of years. However, the maximum number of year combinations with

information per country will be the square root of 25, 5. The number is referring to

the pair of years that are exactly the same, the year that is repeated twice. By hav-

ing the prior defined in Section 2.6.5, as a precision matrix we will include all the

possible combination of years each time in the diagonal. The possible combinations

of years are presented below: diag(01.01, 01.02, 01.03, . . . , 02.02, . . . , 03.05, . . . , 05.05).

Hence, if we say that country 1 has information in the first and the second year

it means that in the diagonal the first and the seventh element will have val-

ues. In summary, although the precision matrix, Quc has values for the years

diag([1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 2], . . . ) only the matching years will have

information from the data (likelihood) which are [1, 1] and [2, 2] in our example.

Five values out of 25 possible combinations of years in the diagonal of the precision

matrix Quc are non-zero and a prior with a matrix of 25×25 giving information to

those combinations of years× country which do not have adequate information.

The 25 possible combinations of years are going to be used in the posterior distribu-

tion but for the predictive probability density we will solely need these five values
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when both DBP and SBP have the same year. For the non-linear model we need

to find the posterior distribution separately for the country, region, super-region

and globe.

4.3.2.2 Defining the constraints

For the two-dimensional non-linear sub-model we will use a two-dimensional sec-

ond order IGMRF as a prior, Yue and Speckman [2010]. Strictly speaking the

precision matrices that Rue & Held (Rue and Held [2005]) and Yue (Yue and

Speckman [2010]) define are of order one since the rank of the precision matrices

is one whereas in Terzopoulos Terzopoulos [1988] the precision matrix is of order

3. However locally, they can retain their desirable properties.

As we have seen in Section 4.3.1.1 we need again to impose the identifiability

constraints. Those constraints express the need for the summation of the inter-

cept and the linear trend of the non-linear sub-model to be equal to zero, the

so-called identifiability constraints. Also, restrictions exist because of the use of

the two-dimensional IGMRF. The two-dimensional IGMRF imposes the restric-

tion of three terms being equal to zero. These are referring to the intercept, the

linear trend of the first variable and the linear trend of the second variable and

are expressed as
∑

i

∑
j u[i,j] =

∑
i iu[i,j] =

∑
j ju[i,j] = 0. Since, the constraints

are referring to three variables we have the T 2− 3 term in the distribution. In our

analysis it means that we need one more year of data than the one-dimensional

model in Section 3.1 in order to define all the parameters. Hence, the possible

scenarios for the two dimensional non-linear sub-model will be four whereas in the

one-dimensional equivalent we had three (see Section 4.3.1.1). The four possible

scenarios are: 1) no data were observed 2) data of one year observed 3) data of two

years observed and 4) data of three or more years observed in a specific country.

For each of these scenarios the proposal distribution changes. Firstly, we start

with the λ’s proposal which is a symmetric one and therefore it cancels out in the
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r ratio. We propose λc from:

λ∗c ∼ N (a5, b5)

Then, we need to explore the analysis that each scenario needs:

1. No data were observed in country j

There are no data so the likelihood will not contribute and Quc depends

solely on the prior. We will take into account only the second part of the

precision, equation (4.24), Ij ⊗ λP which means dependence through the

P matrix. Hence, the rank of P stays as it is, T 2 − 3 corresponding to

infinite prior variance on the mean (intercept) and the two linear trends of

ucj. We constrain these three linear combinations of ucj to zero by taking

the generalized inverse of P, settings P’s last three eigenvalues to ∞. We

will apply the restriction that the two-dimensional second order IGMRF

(RW2D) imposes, (see Section 2.6.5). In this scenario only one type of the

two constraints is used; the identifiability constraint does not apply as we

do not have defined mean and linear trends. The steps we follow are:

(a) uc∗j ∼ N (0, (λcP)−1)

(b) Restrictions of using the RW2D by eigendecomposing the P to eigen-

values and eigenvectors. So, P = ΓΛΓT or P−1 = ΓΛ−1ΓT such that

Λ−1
ii = 1

Λii
for i = 1, . . . , T 2 − 3 and Λ−1

ii = 0 for i = T 2 − 2, T 2 − 1, T 2.

(c) Generate ucj.

uc∗j ∼ N (0, (λcP)−1), where λcP is the precision matrix. Therefore,

instead of dividing elements we multiply them.

uc∗j ∼ 1

λ
1/2
c

N (0,ΓΛ−1ΓT ) uc∗j ∼ 1

λ
1/2
c

N (0,ΓΛ−1/2Λ−1/2ΓT )

uc∗j ∼ ΓΛ−1/2

λ
1/2
c

N (0, 1)

So, we generate a ucj value from: ΓΛ−1/2

λ
1/2
c

z where z ∼ N (0, 1)
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(d) Calculate:

logP (uc∗j |λ∗c ,y,Auc∗j = 0,∀j.) = −T
2 − 3

2
log 2π +

T 2 − 3

2
logλ∗c

− λ∗c
2

uc∗Tj Puc∗j

∝ T 2 − 3

2
log λ∗c −

1

2
uc∗Tj λ∗cPuc∗j

2. Data for one year were observed in country j

Quc has rank T 2 − 2 because the mean (intercept) but neither of the linear

trends of uj are defined by the data. Hence, we constrain the linear trends uj

to zero by taking the generalized inverse of Quc , setting Quc ’s last two eigen-

values to∞. Thus, we apply the restriction of the infinite linear trends that

the two-dimensional second order IGMRFs imposes. In addition, we need to

restrict the summation of the intercept in order to have identifiability with

the linear sub-model. To do that, we use the “Rue corrections” to constrain

the mean of ucj’s intercept to zero. Two different types of constraints are

applied. Steps:

(a) Eigendecompose Qucj
= ΓΛΓT

(b) Calculate the generalised inverse of Qucj
: Q−1

ucj
= ΓΛ−1ΓT such that

Λ−1
ii = 1

Λii
for i = 1, . . . , T 2 − 2 and Λ−1

ii = 0 for i = T 2 − 1, T 2.

The restriction is referring to the two undefined linear trends.

(c) Calculate:

V∗ucj = Q−1
ucj
−Q−1

ucj
1T (1Q−1

ucj
1T )−11Q−1

ucj

µ∗ucj = Q−1
ucj

Qucj
µucj −Q−1

ucj
1T (1Q−1

ucj
1T )−11Q−1

ucj
Qucj

µucj

We calculate a new variance and mean. Since only the intercept can

be identifiable from the data there is one identifiability restriction for

it and it can be adjusted as: A = 1T and e = 0. The restriction is

defined as: 1Tucj = 0⇒ ucj[1] + · · ·+ ucj[T 2] = 0

(d) Eigendecompose V∗ucj = ΓΛΓT such that Λ−1
ii = 1/Λii for i =

1, . . . ,
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T 2 − 3 and Λ−1
ii = 0 for i = T 2 − 2, T 2 − 1, T 2.

In the new variance we apply the three restrictions of the RW2D.

(e) Generate uc∗j = µ∗ucj + ΓΛ−1/2z, with z ∼ N (0, 1)

(f) Calculate:

logP (uc∗j |λ∗c ,Auc∗j = 0,y) = −T
2 − 3

2
log 2π − 1

2

∑T 2−3

i=1
log Λ−1

ii

− 1

2
(uc∗j − µuc∗j )TV∗−1

ucj
(uc∗j − µuc∗j )

∝ −1

2

T 2−3∑

i=1

log Λ−1
ii −

1

2
(uc∗j − µuc∗j )TV∗−1

ucj

(uc∗j − µuc∗j )

3. Data for two years were observed in country j

Quc has rank T 2− 1 because the mean and one of the linear trends of uj are

defined by the data. Hence, we constrain the second linear trend uj to zero

by taking the generalized inverse of Quc , setting Quc ’s last eigenvalue to ∞
which means that we apply the restriction for the infinite linear trend that

the two-dimensional second order IGMRF imposes. In addition, we need to

restrict the summation of the intercept and the first variable’s slope to zero

in order to have identifiability with the linear sub-model. To do that we use

the “Rue corrections” to constrain the mean of ucj’s intercept and the mean

of one of the ucj’s linear trends to zero. In summary we apply two different

types of constraints. The steps we follow are:

(a) Eigendecompose Qucj
= ΓΛΓT

(b) Calculate the generalised inverse of Qucj
: Q−1

ucj
= ΓΛ−1ΓT such thatΛ−1

ii =

1
Λii

for i = 1, . . . , T 2 − 1 and Λ−1
ii = 0 for i = T 2.

The constraint is referring to the one undefined linear trend.

(c) Calculate:

V∗ucj = Q−1
ucj
−Q−1

ucj
A[1 : 2, ]T (A[1 : 2, ]Q−1

ucj
A[1 : 2, ]T )−1A[1 : 2, ]Q−1

ucj

µ∗ucj = Q−1
ucj

Qucj
µucj − Q−1

ucj
A[1 : 2, ]T (A[1 : 2, ]Q−1

ucj
A[1 : 2, ]T )−1A[1 :

2, ]Q−1
ucj

Qucj
µucj .
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We calculate a new variance and mean. Since the intercept and the

first variable’s slope are identifiable, A will be a 2 × T 2 matrix which

will restrict the summation of intercepts and the summation of slopes

to be equal to zero, the identifiability constraint.

(d) Eigendecompose V∗ucj = ΓΛΓT such that Λ−ii = 1/Λii for i = 1, . . . ,

T 2 − 3 and Λ−1
ii = 0 for i = T 2 − 2, T 2 − 1, T 2.

In the new variance we apply the three restrictions of the RW2D.

(e) Generate uc∗j = µ∗ucj + ΓΛ−1/2z where z ∼ N(0, 1)

(f) Calculate:

logP (uc∗j |λ∗c ,Auc∗j = 0,y) = −T
2 − 3

2
log 2π − 1

2

T 2−3∑

i=1

log Λ−1
ii

− 1

2
(uc∗j − µ∗ucj)

′
V∗uc

j
(uc∗j − µ∗uc

j
)

∝ −1

2

T 2−3∑

i=1

log Λ−1
ii −

1

2
(uc∗j − µuc∗j )TV∗−1

ucj

(uc∗j − µuc∗j )

4. Data for multiple years were observed in country j

Quc has rank T 2 because the mean and both of the linear trends of ucj are

identified by the data. Since all the three parameters are identified by the

data, we use the “Rue corrections” to constrain the mean of ucj’s intercept

and ucj’s linear trends to zero (identifiability constraints). Afterwards, to the

modified precision matrix we apply the restrictions of the two-dimensional

second order IGMRF. Steps:

(a) Calculate Vucj
= Q−1

ucj

(b) Calculate:

µ∗ucj = Vucj
Qucj

µucj −Vucj
AT (AVucj

AT )−1AVucj
Qucj

µucj

V∗ucj = Vucj
−Vucj

AT (AVucj
AT )−1AVucj

We calculate a new variance and mean. Since the intercept and both

variables’ linear trends are identifiable, A will be a 3×T 2 matrix which
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will restrict the summation of the intercept and of the linear trends to

be equal to zero.

(c) Eigendecompose V∗ucj = ΓΛ−ΓT such that Λ−1
ii = 1/Λii for i = 1, ..., T 2−

3 and Λ−1
ii = 0 for i = T 2 − 2, T 2 − 1, T 2.

In the new variance we apply the three restrictions of the RW2D.

(d) Generate ucj = µucj + ΓΛ−1/2z with z ∼ N (0, 1)

(e) Defining V∗ucj as above, calculate:

logP (uc∗j |λ∗c ,y,Auc∗j = 0, .) = −T
2 − 3

2
log 2π − 1

2

T 2−3∑

i=1

log Λ−ii

− 1

2
(uc∗j − µ∗ucj)

TV∗−ucj (uc∗j − µ∗ucj)

∝ −1

2

T 2−3∑

i=1

log Λ−ii −
1

2
(uc∗j − µ∗ucj)

TV∗−ucj

(uc∗j − µ∗ucj)

A is a 3× T 2 constraint matrix whose first row is a vector of 1’s, the second

row is a vector of centred time values for the DBP variable and the third

row is a vector of centred time values for the SBP variable. Since, we have

information for the intercept and the linear trend for both variables, we take

the summation of each of the three rows to be restricted to zero.

In summary, we need to stress that by using any type of IGMRF there are restric-

tions to be considered. In the case of the two-dimensional second order random

walk there are three restrictions to apply,
∑

i

∑
j u[ij] = 0,

∑
i iu[ij] = 0 and

∑
j ju[ij] = 0.

Finally, after accounting for the aforementioned restrictions we need to impose for

the last time the three restrictions of the two-dimensional second order IGMRFs

to the new (modified) final precision matrix.
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4.3.3 Age sub-model: posterior distribution

Having found the distributions of the parameters θ and u of the linear and the

non-linear sub-model respectively we can write the mean of the likelihood in a

simplified way, Danaei et al. [2011], Finucane et al. [2011]:

E[y|θ,u,γ] = Fθ + Mu + Rγ (4.25)

R is a mapping matrix with I rows which contain the age matrix using the B-

splines Z = (N0,3(t), N1,3(t), N2,3(t), N3,3(t), N4,3(t)) and the µ = Fθ + Mu term

and assigns each c to the appropriate studies. The columns of the R matrix are

defined below

Rh,i = [N0,3(t) N1,3(t) N2,3(t) N3,3(t) N4,3(t)

µiN0,3(t) µiN1,3(t) µiN2,3(t) µiN3,3(t) µiN4,3(t)

Ci ∗N0,3(t) Ci ∗N1,3(t) Ci ∗N2,3(t) Ci ∗N3,3(t) Ci ∗N4,3(t)]

(4.26)

A more compressed way of writing the R matrix is:

R = [Z diag(Fθ + Mu)Z diag(N0,3(t))C diag(N1,3(t))C . . . diag(N4,3(t))C]

(4.27)

Using the simplified version of the likelihood of (4.25) we present in (4.28) the

posterior distribution of the age sub-model

logP (γ|y) ∝ logP (y|γ) + logP (γ)

logP (γ|y) ∝ (y− Fθ −Mu−Rγ)TΣ−1(y− Fθ −Mu−Rγ) + γTV −1
γ γ

log(P (γ|y) ∝ −yTΣ−1Rγ + (Fθ)TΣ−1Rγ + (Mu)TΣ−1Rγ

− (Rγ)TΣ−1(y− Fθ −Mu) + (Rγ)TΣ−1Rγ + γTV −1
γ γ

log(P (γ|y) ∝ γTRTΣ−1Rγ − γTRTΣ−1(y− Fθ −Mu) + γTV −1
γ γ

− yTΣ−1Rγ + (Fθ)TΣ−1Rγ + (Mu)TΣ−1Rγ

(4.28)
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Again, bearing in mind the equations in (4.8), and by using the underlined terms

in (4.28) the γ parameter can have a Normal distribution shown in (4.29):

γ|y ∼ N(Qµγ,Qγ)

Qµγ = RTΣ−1(y− Fθ −Mu)

Qγ = RTΣ−1R + V−1
γ

(4.29)

In equation (4.29) we can see the parameters of the conditional distribution for

each Gibbs sampler’s step. Gibbs sampler algorithm is going to be implemented

instead of M-H used in Sections 4.2 and 4.3. The reason that we used M-H in

the two previous sub-models is the high dependence between the parameters and

hyperparameters in each model and therefore, we updated parameters and hyper-

parameters in a joint distribution. In the age sub-model we do not observe any

strong dependence therefore, we can use the Gibbs sampler.

For the two-dimensional equivalent we will have the same terms but with different

dimensionality for each one of them. Considering that we have the two-dimensional

linear and non-linear sub-model, the R matrix will be expressed as follows:

R = [Z Z Z diag(Fθ + Mu)Z diag(Fθ + Mu)Z diag(Fθ + Mu)Z

diag(N0,3(t))C diag(N1,3(t))C . . . diag(N4,3(t))C

diag(N0,3(t))C diag(N1,3(t))C . . . diag(N4,3(t))C

diag(N0,3(t))C diag(N1,3(t))C . . . diag(N4,3(t))C]

(4.30)

In (4.30) we can see that in the R matrix the Z matrix of the B-splines is re-

peated three times as well as µZ and the random effects, C since we have three

variables under consideration, DBP, SBP, INT. Therefore, the γ parameter will

have information for three variables and its dimensionality will coincide with the

columns of the R matrix. It needs to be stressed that the C matrix is referring to

all the J countries multiplied each time with one of the terms from the B-splines.

Therefore, due to the random effects we generate 5× J columns for each variable.
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4.3.4 Age sub-model’s hyperparameter: posterior distri-

bution

We introduce the hyperprior for the age sub-model. The σ2 parameter is the vari-

ance of the random effect, ci. In equation (4.32) we define the posterior distribution

of the γ parameter from which we extract information for σ2.

P (σ2
1|c1) ∝ P (c1|σ2

1)P (σ2
1) (4.31)

P (γ|y) ∝ P (y|γ,σ2)P (γ|σ2)

P (σ2|y) ∝ P (y|c,σ2)P (c|σ2)
(4.32)

We need to highlight that what we want to calculate is not the distribution of the

random effects, c1j , c2j , c3j , c4j , c5j but the distribution of their variances, σ2
1, σ2

2,

σ2
3, σ2

4, σ2
5. We know that the random effects, ci follow a Normal distribution. We

give an example for c1j in (4.33) but the remaining terms, c2j , . . . , c5j are defined

analogously.

c1j ∼ N (0, σ2
1) (4.33)

Since we use c1j (c2j , . . . , c5j) for all the J countries we can write it in a matrix

form.

c1 ∼ N (0, σ2
1IJ) (4.34)
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In (4.34) c1 is a vector of J values with a diagonal covariance matrix with the σ2
1

value in the diagonal. We will make use of log σ2
1 for computational convenience.

logP (σ2
1|c1, γ,y.) ∝ logP (c1|σ2

1) + logP (σ2
1)

logP (log σ2
1|c1, γ,y.) ∝ log(2πσ2

1)−J/2 − 1

2
cT1 (σ2

1IJ)−1c1 + log(σ2
1)/2

logP (log σ2
1|c1, γ,y.) ∝ −

1

2
J log(σ2

1)− 1

2
cT1 (σ2

1IJ)−1c1 + log(σ2
1)/2

logP (log σ2
1|c1, γ,y.) ∝ −

1

2
(J log(σ2

1) + cT1 (σ2
1IJ)−1c1) + log(σ2

1)/2

logP (log σ2
1|c1, γ,y.) ∝ −

1

2
(J log(σ2

1) +
1

σ2
1

cT1 c1) + log(σ2
1)/2

(4.35)

Each of the σ2
x values are random effects in each of the countries which means we

will use each one of the σ2 terms J times. In (4.35) the first term is coming from

the likelihood and the underlined one expresses the prior of σ2
1.

We use the M-H algorithm for the update of σ2
i . The difference from the updating

of the previous sub-models is that each σ2
i will be updated separately. However,

the posterior distribution for each of the σ2
i terms is a joint distribution since it

includes J values from J countries.

We will update the log σ2
1 instead of σ2

1 and hence accept log σ2
1 with probability

r:

r =
Posterior∗ × Proposal
Posterior × Proposal∗

r =
P (σ2∗

1 |c1, γ,y.)× q(σ2
1|σ2∗

1 )

P (σ2
1|c1, γ,y.)× q(σ2∗

1 |σ2
1)

r =
P (log σ2∗

1 |c1, γ, .)

P (log σ
2(i−1)
1 |c1, γ, .)

r = exp

(
log

(
P (log σ2∗

1 |c1, γ, .)

P (log σ
2(i−1)
1 |c1, γ, .)

))

r = exp
(

logP (log σ2∗
1 |c1, γ, .)− logP (log σ

2(i−1)
1 |c1, γ, .)

)

(4.36)

As we have seen in the linear and the non-linear sub-models in Sections 4.2 and

4.3, we use M-H and not the Gibbs Sampler to tackle the dependence that exists

between parameters and hyper-parameters. Here, the dependence exists between

the random effects of the J countries using the σ2
x parameter. Therefore, we want
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to include joint distributions for each of the σ2
x parameters for all the J countries

where x ∈ [1, 5]. Equation (4.36) is used in the same way for the rest of the σ2
x

terms.

For the two-dimensional sub-model the whole analysis is exactly the same, except

for the change in dimensionality. The c parameter will no longer be a vector of

length 5 but of 15 since we will have 5 random effects for each of the variables,

DBP, SBP, INT. In other words, we will have 15 parameters of σ2
x that is used for

each of the J countries and again there are 5 for each of the DBP, SBP and INT

variables.

4.3.5 ν, ei sub-model’s hyperparameter: posterior distri-

bution

Since we have a hierarchical model, we introduce priors for the parameters of the

sub-models and hyperpriors for the priors’ parameters. The ν parameter is the

variance of the random effects, ei. In the previous subsections we compute the

posterior distribution of θ which as we indicate in Section 3.2.1, equation (4.1)

includes also the e parameter:

P (θ|y) ∝ P (y|θ, e, ν)P (θ|e, ν)P (e|ν) (4.37)

The variance of e, ν depends on the coverage so we need each time to update it

as well:

P (ν|e) ∝ P (e|ν)P (ν) (4.38)
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We already have defined a Normal distribution for e|ν and we define a Beta dis-

tribution for the prior of ν.

e|ν ∼ N (0, ν)

log ν ∼ Beta(3/2, 1)
(4.39)

It is necessary to highlight that we do not want to compute the distribution of

the random effect, ei but the distribution of the variance of the random effect,

νnat, νsubn, νcom, the so-called hyperprior of the random effect ei. The distribution

of enat, esubn, ecom is inside the θ variable and we know that the random variable

follows a Gaussian distribution for each of the national, subnational and commu-

nity coverage. Taking as an example the national coverage, but with the same

application to subnational and community coverage, we have the following:

enat|νnat ∼ N (0, νnatINnat) (4.40)

where INnat is a diagonal matrix of Nnat×Nnat dimensions and Nnat is the number

of national studies. Lastly, instead of calculating the distribution of νnat we will

compute the distribution of log(νnat), Danaei et al. [2011], Finucane et al. [2011].

logP (νnat|y) ∝ logP (enat|νnat) + logP (νnat)

logP (νnat|y) ∝ log(2πνnat)
−Nnat/2 − 1

2
eTnatν

−1
natenat + log(ν

1/2
nat)

logP (νnat|y) ∝ −Nnat

2
log(νnat)−

1

2
eTnatν

−1
natenat + log(νnat)/2

logP (log νnat|y) ∝ −1

2
(Nnat(log(νnat) + eTnatν

−1
natenat) + log(νnat)/2

(4.41)

In equation (4.41) the first term indicates the terms in the likelihood related to enat

and νnat whereas the underlined one indicates the prior of νnat. In the distribution

of P (enat|νnat) we have the term Nnat as we take from all the studies the national

studies together in a joint Gaussian distribution with zero correlation between

them.

Instead of using a Gibbs step to sample from the inverse Gamma full conditional

distribution for each ν we will use a random walk M-H update for all the three
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types of coverage (νnat, νsubn, νcom) jointly to tackle issues of strong dependence,

Danaei et al. [2011], Finucane et al. [2011]. We now propose a new configuration

(νnat, νsubn, νcom) using one-block update in (4.42), Danaei et al. [2011], Finucane

et al. [2011].

P (νnat, νsubn, νcom|y) ∝ P (en|νnat)P (νnat)P (en|νsubn)P (νsubn)

P (en|νcom)P (νcom)

logP (νnat, νsubn, νcom|y) ∝ −1

2
(Nnat(log(νnat) + eTnν

−1
naten) + log(νnat)/2

− 1

2
(Nsubn(log(νsubn) + eTnν

−1
subnen) + log(νsubn)/2

− 1

2
(Ncom(log(νcom) + eTnν

−1
comen) + log(νcom)/2

(4.42)

Since we use a random walk M-H the proposal distribution is a symmetric dis-

tribution. The proposal distribution will refer to the marginal distributions of

each νnat, νsubn and νcom. Therefore, in the fraction of the r acceptance ratio the

proposals will be cancelled out.

r =
Posterior∗ × Proposal
Posterior × Proposal∗

r =
P (ν∗nat, ν

∗
subn, ν

∗
com|y)q(νnat|ν∗nat)q(νsubn|ν∗subn)q(νcom|ν∗com)

P (νnat, νsubn, νcom|y)q(ν∗nat|νnat)q(ν∗subn|νsubn)q(ν∗com|νcom)

r =
P (ν∗nat, ν

∗
subn, ν

∗
com|y)

P (νnat, νsubn, νcom|y)

= logP (ν∗nat, ν
∗
subn, ν

∗
com|y)− logP (νnat, νsubn, νcom|y)

(4.43)

For the r acceptance rate we propose the three log ν∗’s from normal proposal

distributions centred at the previous log ν values, each with their own proposal

variance. If log ν∗nat > log ν∗subn or log ν∗subn > log ν∗com we reject all three proposals.

Otherwise, we accept all the three proposals. The posterior distribution that is

used in (4.43) is the one presented in (4.42).

For the two-dimensional equivalent we need to repeat the procedure three times

for the three variables, DBP, SBP and INT.
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4.3.6 τ 2, likelihood’s variance’s hyperparameter: posterior

distribution

What comes next is to find the posterior of τ 2 variable is inside the Σ parameter.

Therefore, all the information that we want to extract from the likelihood is within

the Σ term. We apply the appropriate methodology for τ 2
nat which is analogous

for τ 2
subn and τ 2

com.

logP (τ 2
nat|y) ∝ logP (y|τ 2

nat) + logP (τ 2
nat)

logP (τ 2
nat|y) ∝ −1

2
(log |Σ|+ (y− Fθ −Mu−Rγ)TΣ−1(y− Fθ −Mu−Rγ))

+ log(τ 2
nat)/2

logP (τ 2
nat|y) ∝ −1

2
(log |Σ|+ diag(Σ−1) ∗ (y− Fθ −Mu−Rγ)2) + log(τ 2

nat)/2

logP (log τ 2
nat|y) ∝ 1

2
1T (log(diag(Σ−1))− diag(Σ−1) ∗ (y− Fθ −Mu−Rγ)2)

+ log(τ 2
nat)/2

(4.44)

In equation (4.44) is presented the posterior distribution of the τ 2 parameter solely

for the national studies. In the following we are interested in presenting the pos-

terior distribution for τ 2
nat, τ

2
subn, τ 2

com jointly. The terms are independent of each

other.

P (τ 2
nat, τ

2
subn, τ

2
com|y) ∝ P (Σ|τnat)P (τnat)P (Σ|τsubn)P (τsubn)

P (Σ|τcom)P (τcom)

logP (τ 2
nat, τ

2
subn, τ

2
com|y) ∝ 1

2
1T (log(diag(Σ−1))

− diag(Σ−1) ∗ (y− Fθ −Mu−Rγ)2) + log(τ 2
nat)/2

1

2
1T (log(diag(Σ−1))

− diag(Σ−1) ∗ (y− Fθ −Mu−Rγ)2) + log(τ 2
subn)/2

1

2
1T (log(diag(Σ−1))

− diag(Σ−1) ∗ (y− Fθ −Mu−Rγ)2) + log(τ 2
com)/2

(4.45)
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As the covariance matrix is a diagonal matrix we can multiply the diagonal el-

ements which we can see in the two last lines of (4.45), and were also applied

previously Danaei et al. [2011], Finucane et al. [2011].

Again, we use random walk M-H for the joint update of τ 2
nat, τ

2
subn, τ 2

com. Due to

symmetry of the proposal density it is cancelled out in the r ratio. Finally, we use

only the posterior distribution in the r probability and we accept τ 2
nat, τ

2
subn, τ

2
com

with probability r shown in (4.46).

r =
Posterior∗ × Proposal
Posterior × Proposal∗

r =
P (τ 2∗

nat, τ
2∗
subn, τ

2∗
com|y)q(τ 2

nat|τ 2∗
nat)q(τ

2
subn|τ 2∗

subn)q(τ 2
com|τ 2∗

com)

P (τ 2
nat, τ

2
subn, τ

2
com|y)q(τ 2∗

nat|τ 2
nat)q(τ

2∗
subn|τ 2

subn)q(τ 2∗
com|τ 2

com)

r =
P (τ 2∗

nat, τ
2∗
subn, τ

2∗
com|y)

P (τ 2
nat, τ

2
subn, τ

2
com|y)

log r = logP (τ 2∗
nat, τ

2∗
subn, τ

2∗
com|y)− logP (τ 2

nat, τ
2
subn, τ

2
com|y)

(4.46)

For the two-dimensional equivalent we need to repeat the procedure three times

for the three variables, DBP, SBP and INT.

4.4 Application of two-dimensional model: sim-

ulated data

To test the model and its implementation, we simulated data from 61 countries us-

ing the NCD Risk Factor Collaboration regional classification for blood pressure,

Risk Factor Collaboration [2017]. We randomly generated data from a Normal

distribution for each year in each country to cover each of the eight different

age groups. We set as mean, values close to the average DBP and SBP respec-

tively changing every time the value of variance for each country, year and gender.

Moreover, we randomly chose some of the studies to have increased blood pressure

measurements in the older age groups. For the INT variable we used the product

of DBP and SBP.

We assume we have one study per year. This study contains eight mean values of
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blood pressure measurements. These eight mean values are for the eight different

age groups which are 18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79 and > 80

years. The years we study are 2003-2007 which are five years in total, therefore,

we have five different studies in five years for each country.

We separate the globe into 21 regions. Among the 21 regions is the region of

high-income Asia Pacific which contains only one country, Japan, in the simulated

data. The rest of the regions all include more than three countries. Therefore, we

generated data from three countries in each of the 20 regions and one country for

one of the regions hence, we have 61 countries with data in total. In summary,

every country has information for five years and each year has information for the

eight age groups.

Overall, the simulated data present ideal conditions since we have covered most of

the uncertainty. That is because all the regions have three countries with data. All

these countries have data for five years and each year contains data for each of the

eight different age groups. Since, we simulated SBP and DBP data for five years

for each country this is the fourth scenario in Section 4.3.2.2 of the restrictions

that apply. Nonetheless, there is still some uncertainty that has not been covered.

We still have substantial sparsity in our dataset since we do not have data for all

the year combinations. We split the data into training and test sets, such that

most countries would be represented in the training set. As Japan was the only

country in its region, it was included in each training set.

We carried out five folds of cross-validation, with the average coverage and errors

shown for super-regions in Table 4.2. The coverage of actual uncertainty by esti-

mated credible intervals is generally more than 95% (i.e. conservative), although

with cases where the coverage is somewhat less (i.e., anti-conservative). As shown

in Table 4.2, the relative errors are small for both DBP, SBP and the interaction.

This can also be seen in Figure 4.1, which provides an example of model fitting

for 50-year-old females in Belgium, where the patterns observed in the data are

complex. The x-axis has values from 1 to 5 that encode the five years that are the

same for both DBP and SBP. As explained before we have data for five years out
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Table 4.2: Coverage and error in cross-validation

Coverage Relative Error
Regions DBP SBP Int DBP SBP Int
Total 0.984 0.986 0.948 -0.002 -0.002 -0.045
Central and Eastern Europe 0.994 1 0.952 -0.003 -0.001 -0.017
C. Asia, Middle East & N. Africa 0.990 0.987 0.865 -0.002 -0.005 0.031
East and South East Asia 0.955 0.997 0.897 -0.003 -0.001 -0.03
High-income Western countries 0.998 0.994 0.996 0 -0.001 0.046
Latin America and Caribbean 0.978 0.982 1 -0.001 0 -0.151
Oceania 0.970 1 0.955 -0.002 -0.002 -0.05
South Asia 0.990 0.983 0.830 -0.004 -0.003 0.05
Sub-Saharan Africa 0.990 0.982 0.954 -0.002 -0.002 -0.095

Figure 4.1: Fit plots for 50-year-old females in Belgium from the second set
of cross validation. The solid line represents the posterior mean and the shaded

area the 95% credible interval.
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of the 25 possible combinations. These years are when both DBP and SBP have

blood pressure measurements in the same year, i.e. (2003, 2003), . . . (2007, 2007).

Although the simulated data are for five of these combinations, as described above,

this allows us to make estimates for the other possible combinations. More specif-

ically in Figure 4.1 the plots of DBP, SBP and interaction show that their data-

points for each variable are inside the credible interval. On the other hand, DBP’s

datapoints are inside the estimation’s credible interval and quite close to the re-

gression line; however, the datapoints for SBP appear to be somewhat further

away. Finally, the third plot of Figure 4.1 depicts the estimations of DBP’s and

SBP’s interaction. We can observe that the estimations are not as good a fit as the

DBP and SBP since one of the datapoints is not in the credible interval. However,

overall, the majority of the datapoints in the three variables DBP, SBP, INT are

included in the credible intervals that our calculations provide.

4.5 Application of the two-dimensional blood pres-

sure model: real data

Performance of the model using real blood pressure data was tested using the

STEPwise Approach to NCD Risk Factor Surveillance (STEPS) studies, whose

results are made publicly available by WHO

(https://www.who.int/teams/noncommunicablediseases/ surveillance/data). We

downloaded data from 38 countries for the period 2004 to 2014 that comprised 478

country-year-sex-age combinations. Data were available from each year but were

unevenly spread over time, with particularly large numbers of data points in 2007

and 2014. While a large proportion of the data comprised national-level estimates,

3% of the data points were at subnational level, and 6% were from rural-only or

urban-only samples. Data were available for ages from 15 to 74 years, with the

largest samples being for age groups in the range from 25 to 64 years. Sample sizes

ranged from 46 to 3,036, while the ranges for DBP and SBP were 59.4-96.7 mmHg
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and 93.5-155.2 mmHg, respectively. The data were from low-income and middle-

income countries in central, south, southeast and east Asia, eastern Europe, Latin

America and the Caribbean, the Middle East and north Africa, Oceania and sub-

Saharan Africa. Although we had data for 38 countries, we made estimates for 48

countries in total from those regions, with cases where countries had data for zero,

one, two or three or more years, i.e., each of the cases described in Section 4.3.2.2.

The precision matrix analysed here included 11 years, therefore was 121 Ö 121

dimensional, and while this increased the time required for the MCMC algorithm

to converge and mix, it was still tractable using a high-performance computing

system. Figures 4.2, 4.3, 4.4 and 4.5 show examples of model fit for Myanmar,

Nepal, North Korea and Kuwait respectively which exhibit realistically smooth

but non-linear trends in the three blood pressure variables simultaneously. These

effects, and others seen for different countries, would not have been captured fully

by the models used in previous estimation of blood pressure, Finucane et al. [2014],

Danaei et al. [2011].

Analytically, Figure 4.2 shows that the interaction, INT between SBP and DBP

is greatest where SBP and DBP have the lowest and greatest value respectively.

In more detail, for Myanmar, Figure 4.2, there is an increase in the INT through

the years. We can observe there is a decrease in the values of SBP through the

years while DBP does not change significantly, it is as if remains the same. On

the contrary in Figure 4.3 and 4.5 we observe that Nepal and Kuwait exhibit a

different behaviour. Specifically, for Nepal INT increases through time while DBP

increases and SBP remains relatively the same. Same on Kuwait INT increases too.

Although both DBP and SBP have increased values the change that is observed

is not big. Both for Nepal and Kuwait the interaction between DBP and SBP is

greatest where these values are both greatest in both figures. Lastly, in Figure

4.4 we observe North Korea which presents similar behaviour to Myanmar (Figure

4.2). For North Korea however, a decrease in interaction is noticed as there is

a significant change between DBP and SBP values. DBP values increase a lot

whereas SBP values decrease through the years. We can see that variability exists

between countries for example, Myanmar and Nepal ( Figures 4.2 and 4.3) which
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is not concerning as each country can follow a different lifestyle. On the other

hand, we can also observe that there are countries with similar behaviour such as

Nepal and Kuwait, Figures 4.3 and 4.5. Figures 4.2-4.5 illustrate the differences

and the similarities that can exist between countries. That is a result of similar

or different lifestyle, culture or urbanization. A priori a specific grouping among

countries has been used and that can be reflected in the a posteriori results of the

model.

Figure 4.2: Estimates for 50-year old males in Myanmar from 2004 to 2014.

Figure 4.3: Estimates for 50-year old males in Nepal from 2004 to 2014.
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Figure 4.4: Estimates for 50-year old males in North Korea from 2004 to 2014.

Figure 4.5: Estimates for 50-year old males in Kuwait from 2004 to 2014.

Overall, it is highlighted that the interaction is not the same for all the countries.

Specifically, in Figures 4.2, 4.3 and 4.5 the interaction increases with time whereas

in Figure 4.4 it diminishes through time.

In conclusion, interaction, INT expresses the relation between DBP and SBP. If

both DBP and SBP increase or decrease then INT will increase as well whereas

if they have a big difference of negative change, i.e. one increases and the other



133

Figure 4.6: Posterior Distribution for DBP variable for all the countries
together for each year.

decreases then INT will decrease through time. Moreover, in the Figures 4.6, 4.7

and 4.8 we can see the posterior distributions for each of DBP, SBP and INT

taking all the countries together for the years 2004-2014. Posterior plots for all

the countries together for each of the 11 years are added. Analytically, in Figure

4.6 we can observe that DBP overall has increased from year 1 to year 11. In years

1-6 the peak of DBP was around 80 mmHg, in years 7-8 was to 85 mmHg whereas

in years 9-11 the peak of DBP was around 85 mmHg. A similar pattern is observed

in SBP, Figure 4.7. In more detail, in the years 1-6 the peak of SBP is observed at

the 130 value, in the 7-9 years is increased to 140mmHg whereas for the last two

years, 10-11 the value has increased to 145-150 mmHg. Finally, for the interaction
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Figure 4.7: Posterior Distribution for SBP variable for all the countries
together for each year.

plots, Figure 4.8 we can observe that interaction has increased as well throughout

the years. Precisely, for the first five years the peak was observed at the value

of 10000, for the years 6-9 the peak was at the 10200 value whereas at the final

two years the value was at the 11000 value. Also, it is important to mention that

the range of the values has increased as well in DBP, SBP and INT through time.

Summing up, the contribution of this model is the ability to capture interaction

effects that are present but cannot be captured using the existing one-dimensional

model.
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Figure 4.8: Posterior Distribution for INT variable for all the countries to-
gether for each year.

4.5.1 Diagnostics

In this section we present the verification of our results by applying suitable diag-

nostics for our analysis, Gelman et al. [1997]. Through these diagnostics we provide

an indication that the MCMC chains have converged and they have mixed well.

For the validity of the model we also implement cross-validation for the simulated

data and calculate the deviance in each iteration for simulated and real data, Gel-

man et al. [2014]. For the real dataset we ran 10 different chains of which we

keep three since, these three have converged and mixed much better than the rest

and therefore are considered to be appropriate for our analysis. We present plots
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and diagnostic tests to observe the behaviour for each of the parameters that we

estimated for the results of the real data. The diagnostics are presented below:

Table 4.3: Potential scale reduction factors for the model’s parameters

Parameter Point est. Upper C.I
Deviance 1.02 1.06
θInterc,DBP 1 1
θInterc,SBP 1 1
θInterc,INT 1 1
θslope,DBP 1.01 1.01
θslope,SBP 1.03 1.03
θslope,INT 1 1
γ1,DBP 1 1.01
u[1] 1.01 1.01
v[1] 1.015 1.015
sv[1] 1.02 1.02
w[1] 1.11 1.12

1. Gelman-Rubin Diagnostic

The first is the Gelman-Rubin diagnostic, Gelman and Rubin [1992], Gelman

et al. [2013]. It is known as the scale reduction factor diagnostic. In more

detail, the Gelman-Rubin diagnostic makes a comparison of within-chain and

between-chain variance, where a large deviation between these two variances

indicates non-convergence. Therefore, desirable values are considered from

1 to 1.1 which indicate convergence. In Table 4.3 and 4.4 we can see the

potential scale reduction in the model’s parameters and hyper-parameters

respectively. In Table 4.3 most of the parameters have a point estimate

less than 1.1 except the non-linear parameter for the globe of the first year

under study, w[1] which has a value slightly more than 1.1 which is 1.12.

In Table 4.4 the hyper-parameters are observed to have less close to ideal

behaviour than the parameters since the hyper-parameter of the slope in the

linear sub-model, κb for DBP has a large value. However, values of these

hyperparameters do not influence pearameters of interest strongly.
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Table 4.4: Potential scale reduction factors for the model’s hyperparameters

Hyperparameter Point est. Upper C.I
κa,DBP 1.11 1.33
κb,DBP 3.83 17.1
λc 1 1
λr 1 1.01
λs 1 1
λg 1 1
σ2

1,DBP 1.22 1.72
τ 2
DBP 1 1.01
τ 2
SBP 1 1
τ 2
INT 1 1.05

Table 4.5:
Neff

N in total and for each of the three chains

Parameter
Neff

N
:Total Chain1 Chain2 Chain3

Deviance 0.46 0.64 0.64 0.1
θ 0.78 1 1 0.34
γ1,DBP 0.41 0.47 0.42 0.34
u[1] 1.08 0.92 1.1 1.23
v[1] 1.08 0.92 1.1 1.23
sv[1] 1.13 1.61 1 0.79
w[1] 0.53 0.57 0.53 0.49

Table 4.6:
Neff

N in total and for each of the three chains

Hyperparameter
Neff

N
:Total chain1 chain2 chain3

κa,DBP 0.02 0.01 0.006 0.04
κb,DBP 0.002 0.003 0.0005 0.002
λc 0.2 0.22 0.23 0.16
λr 0.23 0.26 0.24 0.19
λs 0.27 0.3 0.29 0.21
λg 0.37 0.41 0.39 0.32
τ 2
DBP 0.51 0.49 0.48 0.54
τ 2
SBP 0.36 0.34 0.36 0.36
τ 2
INT 0.57 0.71 0.7 0.31

2. Effective Sample Size (ESS)

We can use the fraction ESS which is the count of effective sample size di-

vided by the total number of iterations,
Neff

N
, Vehtari [2021]. The effective

sample size expresses which of the iterations’ values are considered not cor-

related out of the total number of the values. Values with a proportion close
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to 0.5 and above are considered desirable since it means that more than half

of the values are uncorrelated. In Table 4.5 we can observe the ESS for each

of the three chains. Overall it appears that three chains give an appropriate

sample size for each of the parameters but those that perform better are the

first and the second chains. For example the Deviance for the first chain has

a 0.64 value which means the 64% of its sample is uncorrelated. In Table

4.6 we observe the ESS for the hyperparameters of the model. Similarly to

the Gelman-Rubin Diagnostic we can observe that there is a smaller effec-

tive sample size in the hyperparameters than in parameters. The smaller

effective sample size is observed in κ hyperparameter.

3. Traceplots

Traceplots are used to identify whether the chains have mixed well together

and have converged to a stationary distribution. In Figure 4.9 we can see

how the deviance, the intercepts and the slope for each of DBP, SBP and

INT in linear sub-model behave keeping 3000 iterations with thinning. In

Figures 4.9, 4.10, 4.11 we can see that the three chains have mixed well

together and converged.

4. Autocorrelation

With the help of the autocorrelation plot we can see how correlated is the

sample for each of the parameters. In Figure 4.12 we observe the autocorre-

lation plots for the deviance and the parameters of the intercept and slope

for the three variables in the linear sub-model. We can observe that there is

not a strong correlation within the sample in each of the parameters. Fur-

thermore, Figure 4.13 shows the autocorrelation plots of the parameters λc,

λr, λs and λg which are the precision parameters of the non-linear sub-model.

We can notice a stronger autocorrelation in Figure 4.13 than in Figure 4.12.

However, in both plots the autocorrelation does not remain high for long

and it diminishes after the tenth lag.
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4.6 Summary

This chapter provides a detailed description of the distributions for each of the

sub-models of our Bayesian hierarchical model of blood pressure in two dimen-

sions. In Section 4.2 the construction of the posterior and proposal distribution of

the one-dimensional linear sub-model is implemented and the way in which they

are included in the acceptance ratio of the M-H algorithm is described. Follow-

ing, Section 4.3 presents the analytical calculations of the posterior, the proposal

distribution and the acceptance ratio of the M-H algorithm for both, one- and

two-dimensional non-linear sub-models. Moreover, Section 4.3.3 highlights the

full conditional distribution of the age sub-model using a Gibbs sampler algorithm

at this point. Next, Sections 4.3.4, 4.3.5 and 4.3.6 present the posterior and pro-

posal distribution of the hyperparameters σ2, ν and τ 2 respectively using the M-H

algorithm. Lastly, Section 4.4 describes the application of the model to simulated

data whereas Section 4.5 illustrates the application to real data showing also the

diagnostics for each of the parameters. Overall, this chapter is a guide to the com-

putational methods that were used for each sub-model in the MCMC algorithms,

as well as showing that the model fits appropriately to the more complex case of

two-dimensional data.
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Figure 4.9: Traceplots for deviance, intercept and slope of the linear model
for each of DBP, SBP, INT.
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Figure 4.10: Traceplots for the first value of the vectors for the τ2,γ, u, v
and w parameters.
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Figure 4.11: Traceplots for the scalar hyperparameters of the non-linear
model, λc, λr, λs,λg and the first value of the vector for σ2 parameter
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Figure 4.12: Autocorrelation plots for theta and deviance parameter.

Figure 4.13: Autocorrelation plots for the scalar hyperparameter of the non-
linear model, λc, λr, λs, λg.



Chapter 5

Defining priors for IGMRFs

5.1 Introduction

In the previous chapters we have seen how each of the sub-models which comprise

the model are defined. Specifically, substantial attention has been given to the non-

linear sub-model (see Sections 2.6.5, 3.4.1, 4.3). Through these sections we have

discussed the one-dimensional first and second order IGMRF (or random walk)

and a variety of types for a two-dimensional second order IGMRF (or random

walk) for the non-linear sub-model (see Sections 2.5, 2.6). We have seen that

given the number of years (i.e., nodes) included in the analysis, the size of the

precision matrix changes accordingly. Therefore, as is stated in Sørbye and Rue

[2014] the priors that we use should also be changed depending on the precision

matrix that is used. In other words, since there are substantial differences from

one structure matrix to the other it makes sense for the priors between these

two precision matrices to be different. Additionally, these changes can be even

larger when we change from a one- to two-dimensional IGMRF. In conclusion,

as is highlighted in Sørbye and Rue [2014] and as we will observe later in this

chapter the prior can vary depending on the number of nodes we include each

time both in one- and two-dimensional IGMRFs. Therefore, we will discuss the

priors that are referring to the precision (scaling) parameters which are used in

144
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the precision matrices of the non-linear sub-model and how they change from one

to two dimensions, Spyropoulou and Bentham [2022a].

5.2 Scaling Hyper-priors

As we have mentioned previously, when the precision matrices change, the hyper-

priors set for the precision parameters need to change as well. Let us say we have

two different precision matrices and we are interested in constructing the hyper-

prior distributions of the two precision parameters. In order to apply the same

degree of (hyper-)prior information we need to implement a proper scaling. In

other words, we need to apply a scaling to the hyper-prior of the first precision

parameter in order to be used best for the new second precision parameter. In

that way, there is a difference between the hyper-priors but without losing the

properties that we desire them to follow.

5.2.1 Reference standard deviation for one-dimensional IGMRF

A prior distribution for an IGMRF can be described using the following definition:

u ∼ N (0, (λP)−1)→ σ2
λ(ui) = λ−1Σ2∗

ii
(5.1)

where P is the structure matrix of the precision matrix and Σii is the diagonal

element of the covariance matrix in position i such that P = Σ−1. For the stan-

dardized normal distribution, we have

u
√
λ ∼ N (0,P−1), λσ2

λ(ui) = Σ∗ii (5.2)

Let us say that λ = 1 in (5.2) then we have:

σ2
{λ=1}(ui) = Σ∗ii (5.3)
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Combining the results in (5.1) and (5.3) we have:

σ2
λ(ui) = λ−1Σ∗ii, σ2

λ(ui) = λ−1σ2
{λ=1}(ui) (5.4)

This means that for any fixed precision parameter λ, the marginal standard devi-

ation of the components of a Gaussian vector u can be expressed, as a function of

λ, (Sørbye and Rue [2014]) by

σλ(ui) =
σ{λ=1}(ui)√

λ
, i = 1, ..., n (5.5)

For a given IGMRF u with random precision λ, we can calculate a reference

standard deviation for fixed λ = 1 and then approximate the marginal standard

deviation for each component of u (Sørbye and Rue [2014]) by

σλ(ui) ≈
σref (u)√

λ
, i = 1, ..., n (5.6)

A suggestion for a reference standard deviation given by Sørbye and Rue [2014] is to

calculate the geometric mean, which is an appropriate measure for a set of positive

numbers. Hence, the reference standard deviation for u in the one-dimensional

case is presented as

σref (u) = exp

(
1

n

n∑

i=1

log σ{λ=1}(ui)

)
= exp

(
1

n

n∑

i=1

1

2
log Σ∗ii

)
(5.7)

where the values Σ∗ii denote the diagonal elements of the inverse matrix Σ∗ = Q−1

calculated for λ = 1. In particular, Σ∗ii express the diagonal elements of the

inverse of the precision matrix and this is calculated as Q− = ΓTΛ−Γ in which

Γ expresses the eigenvectors and Λ the eigenvalues of the Q matrix when λ = 1.

Since Q and similarly Σ∗ are n×n dimensional in the first and second order of the

one-dimensional IGMRFs we will have n diagonal values to calculate the geometric

mean from. A further consideration is that for any IGMRF, we must take into

account linear restrictions when calculating reference standard deviations so that

the latter are finite. Specifically, in the one-dimensional case for the first-order
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IGMRF we need to set the last eigenvalue to infinity and for the second-order

IGMRF we set the last two eigenvalues to infinity or we set to zero the last and

the last two inverse of eigenvalues respectively.

5.2.2 Reference standard deviation for two-dimensional IGM-

RFs

For two-dimensional second-order IGMRFs, there is an extension for σref (u) that

is presented in (5.7). The precision matrix is (n1 × n2) × (n1 × n2) dimensional,

where n1 and n2 are the total number of nodes for the first and second variables

respectively. Therefore, the scaling will no longer be for n1 or n2 values, but their

product n1 × n2 and we have

σref (u) = exp

(
1

n1 × n2

n1×n2∑

i=1

log σ{λ=1}(ui)

)
= exp

(
1

n1 × n2

n1×n2∑

i=1

log Σ∗ii

)

(5.8)

with a special case when n = n1 = n2

σref (u) = exp

(
1

n2

n2∑

i=1

log σ{λ=1}(ui)

)
= exp

(
1

n2

n2∑

i=1

log Σ∗ii

)
(5.9)

Again, Σ∗ii denotes the diagonal elements of the inverse matrix (Σ∗)1/2 = (Q−1)1/2

whereas Σ∗ is calculated as Σ∗ = Q−1 = ΓTΛ−1Γ for λ = 1. The precision matrix,

Q and therefore, Σ∗ is n2 × n2 dimensional hence we will have n2 elements in the

diagonal.

Again we have linear restriction to take into account. For the two-dimensional

second-order IGMRF we set the three last eigenvalues to infinity Rue and Held

[2005] or another way of implementing the linear restrictions is setting to zero the

inverse of the eigenvalues.
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Figure 5.1: The marginal standard deviation of a one-dimensional first- and
second-order IGMRFs, calculated using fixed precision λ=1.

Figure 5.2: The marginal standard deviation of a two-dimensional second-
order IGMRF random walk, calculated using fixed precision λ=1.

5.2.3 Interpretation of reference standard deviation

In this section we compare the behaviour of each of the IGMRF types. Figure

5.1 illustrates the diagonal values of the marginal standard deviations using fixed

precision of λ = 1 for all the components of the one-dimensional first- and second-

order IGMRFs on a line represented in Section 2.5.1 and 2.5.2. In Figure 5.2

we see four different types of a two-dimensional second-order IGMRF. These four

types are known as Torus 1, Torus 2, Bound 1 and Bound 2 which are explained in
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Section 2.6.2, 2.6.3, 2.6.5 and 2.6.4 respectively. Again, in Figure 5.2 the diagonal

values of the marginal standard deviations using fixed precision λ = 1 are presented

as nodes. By observing both Figures 5.1 and 5.2 we can conclude that each type

of IGMRF has different behaviour and interpretation and thus we need different

priors for each case to properly capture the IGMRFs’ behaviour.

Both one-dimensional types of IGMRF are defined with n = 50 equidistant nodes

in Figure 5.1. In the two-dimensional second-order IGMRF, that is equivalent

to defining 50 nodes for each variable which means n = n1 = n2 = 50 equidis-

tant nodes. Therefore, the precision matrix will be n2 × n2 giving a (502 × 502)-

dimensional precision matrix. In Figure 5.2 we can see that the number of nodes

is 2500 since we account for every possible combination between the nodes of the

first variable and the nodes of the second variable.

Given the different structure of these six types, the shape and the level of these

curves are quite different. As has been stated previously Sørbye and Rue [2014],

the reference standard deviations for the one-dimensional types are equal to σref

(urw1 = 2.75) and σref (urw2 = 14.64) for the first-order and the second-order re-

spectively using 50 nodes. Applying our suggestion of (5.9) for the two-dimensional

second-order IGMRF the reference standard deviation for each of the four types

is: for Torus 1, (Section 2.6.2) σref (urw2D1 = 2.51), for Torus 2 (Section 2.6.3)

σref (urw2D2 = 0.41), for Bound 1 (Section 2.6.5 ) σref (urw2Dterz = 4.83) and for

Bound 2 (Section 2.6.4) σref (urw2D = 3.63). In each of the two-dimensional cases

the number of nodes is still 50 for each of the two dimensions, i.e. 502 = 2500.

Therefore, if we choose the same hyperprior for each case, it allows larger variance

in the one-dimensional second-order IGMRF than the two-dimensional equivalent,

for each of the four types, and more still than the one-dimensional first-order case.

These results are in agreement with other results of Lindgren and Rue [2008],

Lindgren et al. [2011] which show that for a one-dimensional first-order IGMRF

model, the precision using the new nodes is (kλ)−1, for a one-dimensional second-

order IGMRF model, the precision using the new nodes is (k3λ)−1 and for the

two-dimensional second-order IGMRF model, the precision using the new nodes is

(k2λ)−1. Here, k is the number of equally sized subintervals between the original
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nodes x1 and x2 giving us as a result new equidistant nodes: x
′
1, x

′
2, ..., x

′

k+1. In

Figure 5.3 the standard deviation for the second-order two-dimensional IGMRFs

with bounds, sRW2D and sRW2Dterz are always between those for the first and the

second order one-dimensional IGMRFs, sRW1 and sRW2 while the number of nodes

is increasing. In contrast, the two-dimensional IGMRFs defined on torus have a

completely different behaviour. Finally, we can observe that depending on the

number of nodes that we have, the standard deviation increases and varies by

first-order, second-order and two-dimensional second order IGMRF. As shown in

Figure 5.3, as the number of nodes increases, the effect of these differences becomes

more pronounced where each line represents the (reference) standard deviation of

IGMRF(or random walk) in the one-dimensional first and second order and in the

two-dimensional second order for four different cases. Lastly, the procedure that

Figure 5.3: Change in marginal standard deviations depending on the number
of nodes

we follow for creating the plot is summarised in the following steps:

1. Select the number of years under study

2. Compute the precision matrix for each type of IGMRF
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3. Compute the reference standard deviation as indicated in (5.7), (5.9) for

the first- and second- order one-dimensional IGMRFs and the four different

choices of second-order two-dimensional IGMRFs.

We repeat these steps for a different number of years for each type of IGMRF.

5.2.4 Applying scaling using Gaussian hyperpriors

In order to account for the large differences that are seen in the calculated reference

standard deviations as shown in the previous section and allow the same variance

we need to impose an upper limit on the marginal standard deviation Sørbye and

Rue [2014]. A priori, this indicates how large we allow the local deviation or the

influence of the different random effects in a regression model to be. We denote

the upper limit by U and define it as

P (σ(ui) > U) ≈ P

(
λ

σ2
ref (u)

<
1

U2

)
= α (5.10)

where α is a small probability Sørbye and Rue [2014]. By assigning a hyperprior

to λ
(
σ2
ref (u)

)−1
the interpretation of the hyperprior remains the same for different

models. Having again the prior:

u ∼ N (0, (λP)−1) (5.11)

Let us assume that the hyperprior of λ follows a Gaussian distribution

λ ∼ N (µ, b2) (5.12)
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then the upper limit in (5.10) using a probabilistic form can be written as

P

(
σ2
ref (u)

λ
> U2

)
= α⇒ P

(
λ <

σ2
ref (u)

U2

)
= α

Fλ

(
σ2
ref (u)

U2

)
= α⇒

σ2
ref (u)

U2
= F−1

λ (α)

U2 =
σ2
ref (u)

F−1
λ (α, µ, b)

=
σ2
ref (u)

(1/b)F−1
λ (α, µ, 1)

U =

(
bσ2

ref (u)

F−1
λ (α, µ, 1)

)1/2

(5.13)

where F−1() denotes the quantiles of a normal distribution. For a given value of

α, we can then interpret the mean and standard deviation parameters µ and b in

terms of this upper limit. This is also useful to gain an intuition of which values

of U seem reasonable for a specific application.

To recalculate hyperpriors for different IGMRFs, we can use the same mean pa-

rameter, µ, for each model and calculate a new standard deviation parameter, b.

By using the upper limit provided in (5.13) the new standard deviation parameter

denoted as bnew is expressed as:

bnew =
U2F−1(α, µ, 1)

σ2
ref (urw2)

(5.14)

We see now that the new value of the standard deviation in (5.14) depends on

the σ2
ref terms which capture the precision matrix for a specific type of IGMRF.

In conclusion, it is then only necessary to recalculate the standard deviation pa-

rameter, b, to account for the different shapes and sizes of the graph for a specific

IGMRF (Sørbye and Rue [2014]).

This can be done for the three types of IGMRF considered using

brw2

brw1

=
U2F−1(α, µ, 1)

σ2
ref (urw2)

/
U2F−1(α, µ, 1)

σ2
ref (urw1)

brw2 = brw1

σ2
ref (xrw1)

σ2
ref (xrw2)

(5.15)
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and for the two-dimensional type

brw2D = brw2

σ2
ref (xrw2)

σ2
ref (xrw2D)

or brw2D = brw1

σ2
ref (xrw1)

σ2
ref (xrw2D)

(5.16)

Here rw1 is referring to the first-order IGMRF, rw2 to the second-order IGMRF

and rw2D is referring to the two-dimensional second-order IGMRF.

5.2.4.1 Types of two-dimensional second order IGMRFs

We can also compare IGMRFs with fixed order and dimensionality, but different

numbers of nodes and boundary conditions. We do so for two-dimensional second

order IGMRFs with four different structure matrices: Torus 1 and Torus 2 Rue

and Held [2005], Thon et al. [2012] (see Section 2.6.2 and 2.6.3), Bound 1 Yue and

Speckman [2010] and Bound 2 Terzopoulos [1988] (see Sections 2.6.5 and 2.6.4).

Torus 1 has a structure matrix defined on a torus, while Torus 2 has a similar

structure matrix but with boundaries at its four corners, u1,1, un1,1, u1,n2, un1,n2.

Bound 1 and Bound 2 have boundary effects and induce the same neighbours in the

structure matrix for each node, but give different weightings to these neighbours.

In Table 5.1 we see that Torus 2 consistently has the lowest reference standard

deviation, with the changes in each IGMRF being similar proportionally when the

number of nodes is increased. The torus models are simpler as they do not con-

sider different behaviour at the boundaries which explains the results. Comparing

the Bound 1 and 2 precision matrices we expect Bound 2 to have a longer time

of computing as it has a bigger order deficiency. Bound 2 has the largest refer-

ence standard deviation followed by Bound 1 which is used in our two-dimensional

model of blood pressure Spyropoulou and Bentham [2022b,a]. Overall, the changes

in each of the types are similar when the number of nodes increases. These find-

ings show that it is clearly necessary to scale the hyperparameter each time the

precision matrix or number of nodes is changed, especially when boundary con-

ditions are introduced. Specifically, comparing the reference standard deviation

horizontally we can notice differences from the type of the two-dimensional second

order IGMRF we chose.
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Table 5.1: Reference standard deviations σref for second-order two-
dimensional IGMRFs.

Nodes Torus 1 Torus 2 Bound 1 Bound 2
5 0.30 0.05 0.41 0.53
6 0.35 0.06 0.48 0.63
8 0.44 0.08 0.62 0.81

10 0.54 0.09 0.76 1.00
11 0.58 0.10 0.83 1.10
12 0.63 0.11 0.90 1.19
14 0.73 0.12 1.04 1.39
16 0.82 0.14 1.19 1.58
18 0.93 0.16 1.33 1.77
20 1.02 0.17 1.47 1.96
25 1.25 0.21 1.83 2.44
30 1.51 0.25 2.19 2.92
40 2.00 0.33 2.91 3.88
50 2.50 0.42 3.63 4.84

100 5.00 0.83 7.24 9.64

5.2.5 Blood pressure data application

In this section we compare hyperprior scaling for one- and two-dimensional second

order IGMRFs using blood pressure data Spyropoulou and Bentham [2022b,a]. In

more detail, for the one-dimensional case, Section 3.1, we use a published model

Finucane et al. [2014], Danaei et al. [2011] that employs a one-dimensional second

order IGMRF as the prior for the non-linear sub-model for the SBP variable. For

the two-dimensional case, Section 4, we use the model that we developed and is

presented in Spyropoulou and Bentham [2022a,b] that employs a two-dimensional

second order IGMRF as the prior for the non-linear sub-model for both SBP and

DBP variables (and implicitly, their interaction).

Although the models are of different dimensionality, we can compare the hyper-

prior scaling for the precision parameter of the non-linear trends. This varies both

by dimensionality and number of nodes, which in our data correspond to the num-

ber of years considered. The hyperpriors must be set for each of the precision

parameters, λc, λr, λs and λg that are used at different levels of the hierarchi-

cal model: countries nested in regions, super-regions and globe both in one and
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two dimensions. In conclusion, we want to observe which variance suggestion is

optimal for a specific number of years (nodes) to set for the hyperprior’s distribu-

tion. Knowing the number of years we can easily find the σref for both one- and

two-dimensional second order IGMRFs.

5.2.5.1 Scaling using 5 years

Having the total number of years as 5 we can find the σref using the formula on

(5.9) as shown below:

σref (urw2) = 0.52, σref (urw2D) = 0.41 (5.17)

The distribution under consideration for a country’s precision parameter is λc ∼
N (µ, b) with µ and b parameters that will be assigned as:

µ = 7, b = 2, α = 0.001 (5.18)

Subsequently, the upper levels for both the one-dimensional and two-dimensional

second-order IGMRF are:

U =

(
bσ2

ref (u)

F−1(α, µ, 1)

)1/2

Urw2 =

(
bσ2

ref (urw2)

F−1(α, µ, 1)

)1/2

= 0.377

Urw2D =

(
bσ2

ref (urw2D)

F−1(α, µ, 1)

)1/2

= 0.293

(5.19)

By taking the median of these two upper levels we have:

U = median(Urw2, Urw2D) = 0.335
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Hence, by using the aforementioned we can calculate the scaled new standard

deviation, b, for the one- and two-dimensional second order IGMRF respectively.

brw2 =
U2F−1(α, µ, 1)

σ2
ref (urw2)

= 1.58

brw2D =
U2F−1(α, µ, 1)

σ2
ref (urw2D)

= 2.61

(5.20)

An alternative method is to set directly brw2 = 1.58 and use it for the calculation

of brw2D:

brw2 = 1.58

brw2D = brw2

σ2
ref (urw2)

σ2
ref (urw2D)

= 2.61
(5.21)

In our problem the variables of interest are the precision parameters for each

of country, region, super-region and globe. However, we are not expecting all

these four parameters to have the same prior distribution. If the prior’s standard

deviation in λg is equal to 3 this does not mean that λc, λr and λs will have the

same value in the standard deviation.

Setting different values for the brw2 we can see how the brw2D changes as well:

brw2 = 2

brw2D = brw2

σ2
ref (urw2)

σ2
ref (urw2D)

= 3.3
(5.22)

brw2 = 1.5

brw2D = brw2

σ2
ref (urw2)

σ2
ref (urw2D)

= 2.47
(5.23)

Given that we use the reference standard deviation we can make the two methods

comparable even when we decide to change the number of nodes.

Attention is needed because if we increase the number of nodes the suggestion for

the prior’s variances changes as well. In the next subsection we observe how the

standard deviations of the priors change when the years are equal to 10.
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5.2.5.2 Scaling using 10 years

Considering that we have 10 years under study we first need to calculate the ref-

erence standard deviation for the one- and two-dimensional second order IGMRF:

σref (urw2) = 1.35, σref (urw2D) = 1.76 (5.24)

Following this, we find the upper levels for the one- and two-dimensional second

order IGMRF:

U =

(
bσ2

ref (u)

F−1(α, µ, 1)

)1/2

Urw2 =

(
bσ2

ref (urw2)

F−1(α, µ, 1)

)1/2

= 0.96

Urw2D =

(
bσ2

ref (urw2D)

F−1(α, µ, 1)

)1/2

= 0.54

(5.25)

By taking the median of these two upper levels we have:

U = median(Urw2, Urw2D) = 0.754

brw2 =
U2F−1(α, µ, 1)

σ2
ref (urw2)

= 1.22

brw2D =
U2F−1(α, µ, 1)

σ2
ref (urw2D)

= 3.84

(5.26)

An alternative method is setting directly the standard deviation of the two dimen-

sional second order random walk equal to 3.

brw2D = 3

brw2 = brw2D

σ2
ref (urw2D)

σ2
ref (urw2)

= 0.95
(5.27)

In conclusion observing the above results we can notice that the reference stan-

dard deviation in a total of five years presented in (5.17) is greater for the one-

dimensional second order IGMRF but when the number of years is changing to 10

presented in (5.24) the reference standard deviation of the two-dimensional second



158

order IGMRF becomes greater which states the variability of standard deviations

for different types of IGMRFs when the number of years change.

5.2.5.3 Scaling using 20 years

Lastly, we present the results with a number of years equal to 20.

σref (urw2) = 3.72, σref (urw2D) = 1.47 (5.28)

Following, we find the upper levels for both of them:

U =

(
bσ2

ref (u)

F−1(α, µ, 1)

)1/2

Urw2 =

(
bσ2

ref (urw2)

F−1(α, µ, 1)

)1/2

= 2.66

Urw2D =

(
bσ2

ref (urw2D)

F−1(α, µ, 1)

)1/2

= 1.05

(5.29)

By taking the median of these two upper levels we have:

U = median(Urw2, Urw2D) = 1.859

brw2 =
U2F−1(α, µ, 1)

σ2
ref (urw2)

= 0.97

brw2D =
U2F−1(α, µ, 1)

σ2
ref (urw2D)

= 6.24

(5.30)

Again, setting directly the standard deviation of the two dimensional second order

IGMRF equal to 4, we have:

brw2D = 4

brw2 = brw2D

σ2
ref (urw2D)

σ2
ref (urw2)

= 0.624
(5.31)

In the work presented previously Danaei et al. [2011], a prior is set for the precision

parameter of the one-dimensional second-order IGMRF, λg with a value of 2 as
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the standard deviation. With the suggested scaling a suitable standard deviation

for the two-dimensional second-order IGMRF equivalent is 3.30 for 5 years shown

also in Table 5.3. However, if the number of years under consideration changes

the scaling needs to change again.

In Table 5.2, we can observe the differences in the reference standard deviations

when the number of years is 11 and 20. We compare the reference standard

deviations between the first-order and the second-order IGMRFs and the two-

dimensional second-order IGMRFs. We can see that the one-dimensional second-

order IGMRF has the biggest changes as we can also observe in Figure 5.3. The

more years the bigger the differences in the one-dimensional second-order IGMRF.

Table 5.2: Reference standard deviations, σref , for models with multiple
nodes.

Nodes σref (urw1) σref (urw2) σref (urw2D)
5 0.85 0.53 0.41
6 0.94 0.65 0.48
8 1.09 0.96 0.62

10 1.22 1.35 0.76
11 1.28 1.54 0.83
12 1.34 1.75 0.90
14 1.45 2.20 1.04
16 1.55 2.68 1.19
18 1.65 3.19 1.33
20 1.74 3.73 1.47
25 1.94 5.20 1.83
30 2.13 6.82 2.19
40 2.46 10.49 2.91
50 2.75 14.65 3.63

100 3.89 41.39 7.24

Lastly, in Table 5.3 we gather all the information for the standard deviation for

each type of IGMRF to make the comparison more straightforward and to see how

the standard deviation of the hyperprior, brw1, brw2 and brw2D is tuned when the

number of years is increased.
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Table 5.3: Scaling the standard deviation parameters (hyperparameters), brw1,
brw2 and brw2D as the adjusted parameter b and number of nodes are varied.

Nodes b=1 b=2 b=3
brw1 brw2 brw2D brw1 brw2 brw2D brw1 brw2 brw2D

5 0.39 1.00 1.67 0.78 2.00 3.34 1.17 3.00 5.01
6 0.48 1.00 1.84 0.96 2.00 3.67 1.43 3.00 5.49
8 0.78 1.00 2.40 1.55 2.00 4.80 2.33 3.00 7.19

10 1.00 0.82 2.58 2.00 1.63 5.16 3.00 2.45 7.74
11 1.00 0.69 2.39 2.00 1.39 4.78 3.00 2.08 7.17
12 1.00 0.59 2.22 2.00 1.17 4.43 3.00 1.76 6.65
14 1.00 0.43 1.94 2.00 0.87 3.89 3.00 1.30 5.83
16 1.00 0.33 1.70 2.00 0.67 3.40 3.00 1.00 5.09
18 1.00 0.27 1.54 2.00 0.53 3.08 3.00 0.80 4.62
20 1.00 0.22 1.40 2.00 0.43 2.80 3.00 0.65 4.20
25 1.00 0.14 1.12 2.00 0.28 2.25 3.00 0.42 3.37
30 1.06 0.10 1.00 2.11 0.21 2.00 3.17 0.31 3.00
40 1.40 0.08 1.00 2.80 0.15 2.00 4.20 0.23 3.00
50 1.74 0.06 1.00 3.48 0.12 2.00 5.23 0.18 3.00

100 3.46 0.03 1.00 6.93 0.06 2.00 10.39 0.09 3.00

In Table 5.3 we notice that the adjusted parameter, b = 1, b = 2 or b = 3

can be set as a final suggestion for one of the cases depending on the number

of nodes selected each time. For example when the number of years are 5, 6, 8

and the adjusted standard deviation parameter is b = 1 then the scaled standard

deviation parameter brw1 is equal to 1 as well. However, when the number of

nodes is increased to 10, 11 or 12 the brw2 coincides with the adjusted scaled

parameter b = 1 and so on. A similar behaviour can be observed when b =

2 or b = 3. In summary, the scaling is necessary when moving from the one-

dimensional second-order IGMRFs to the two-dimensional second-order IGMRFs,

Martino et al. [2011], Sørbye and Rue [2011] as we can see that there are cases

where the scaled standard deviation parameters have values further away from

the adjusted parameter. For instance, when the adjusted parameter is b = 3 for

10 nodes (or years) the scaled standard deviation for the one-dimensional second

order is brw2 = 2.45 whereas for the two-dimensional equivalent is brw2D = 7.74

which shows the big differences.

Table 5.4 shows the scaling that was applied to the standard deviation of λc,
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Table 5.4: Scaling the standard deviation parameters (hyperparameters) brw2

and brw2D for one and two dimensional IGMRFs for four different precision
parameters λc, λr, λs and λg respectively having a different fixed value of the

adjusted parameter b in each case with number of nodes equal to 11.

λ b brw2 brw2D

λc 0.9 0.53 1.83
λr 1.2 0.71 2.44
λs 1.59 0.94 3.24
λg 3.55 2.10 7.23

λr, λs and λg, the precision parameters of the non-linear sub-model in the one-

dimensional second order (rw2) and the two-dimensional second order (rw2D)

IGMRF models. Specifically, for the λc parameter having computed the upper

levels of rw2 and rw2D using as adjusted parameter b = 0.9 the scaling for the

standard deviation of λc parameter will be 0.53 in the rw2 model whereas in the

rw2D model it will be 1.83. In that way we achieve the desirable acceptance ratio

to be around 0.44 in MCMC as Gelman and Rubin [1992], Gelman et al. [1996]

state for the one-dimensional parameters.

Analytically, in Table 5.4 we can see the values that we set for the standard

deviations for each of the precision parameters of the second order two-dimensional

model. We have analysed the one-dimensional second-order case having the brw2

as standard deviation values for each of λc, λr, λs and λg. In order to apply

the same degree of smoothness in the two-dimensional second-order case we know

that the adjusted parameters b needs to be scaled properly for fitting best the

two-dimensional equivalent. Therefore, brw2D values represent the scaled standard

deviations that will be used for the modelling of the two-dimensional second order

IGMRF.

5.2.6 Summary

This chapter explains analytically the use of scaling in prior distributions. In Sec-

tions 5.2.1 and 5.2.2 the use of the reference standard deviation is described in one

and two dimensions respectively. Following, Section 5.2.3 compares the reference
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standard deviations between the different types of IGMRF in one dimension and

the different types of IGMRF in two dimensions making also a comparison be-

tween the one and two dimensional cases using a number of different nodes. The

next section, Section 5.2.4 defines the upper limit that is used in the scaling in

order to apply the same degree of prior information to the models. Finally, Sec-

tion 5.2.5 describes an application to blood pressure data both having one- and

two- dimensional variables. Each step of the process is explained showing cases

of using different number of years comparing each time the one-dimensional first

and second order IGMRF and the two-dimensional second order IGMRF.
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Conclusions and Future work

6.1 Discussion

We have shown that it is possible to fit a model to mean blood pressure data in

two dimensions, and in particular that it is possible to fit a non-linear surface that

implicitly estimates the interaction between DBP and SBP variables. Our practical

implementation will be of interest to any researchers with sparse bivariate data,

but particularly to those with health-related data that vary by age and sex, over

time and between countries, and where interactions are of substantial scientific

importance.

This section presents the conclusions of this project as well as the challenges that

we faced. It discusses the future work that can be applied and it ends with some

final comments.

6.2 Conclusions

The variables of our problem are DBP, SBP and the interaction of these two.

Based on the results we can notice that the interaction differs from country to

country. We can observe that for some countries the interaction increases or de-

creases through time based on how large the variation is for each of the variables,

163
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DBP, SBP, through time. The key challenge of the modelling is the choice of

the prior distribution that will be used for the non-linear sub-model which if the

modelling is successful, it provides us with useful information.

The non-linear sub-model accounts for non-linear trends over time. The time is ex-

pressed with the years under study hence, the starting and the final year are known

for our study. Our prior is able to capture the relation between the years and this

is important because although it is easy to have a specific pattern of relations in

the central years the pattern is not the same in the boundary years. In other

words, being in the first year we only have neighbours from the years ahead while

being in the final year we only have information from the years before. Hence,

the prior that we choose takes all these into consideration and provides a different

behaviour depending on the year’s position which gives a better fit for the model.

Another difficulty is the volume of the data that we handle. The more years we

take into consideration the more data we consider and thus, the more time we need

to produce the final results. Furthermore, the two-dimensional model introduces a

larger number of variables to be estimated. Moreover, the two-dimensional second

order IGMRF used for one of the priors is itself computationally expensive as it

accounts for every relation between the nodes of the first and the second dimen-

sion and it needs estimations for the squared number of the years under study.

Furthermore, using MCMC techniques can slow down the procedure and the more

data are included the more iterations will be needed to reach convergence of the

algorithm.

The code that has been developed can be accessible online through the published

papers as well as in the Github page in Spyropoulou [2022]. The interested user

can adopt the methodology provided using any two-dimensional dataset where

there is an interest in interaction.

The computation time of using the code to fit the model described in the thesis

was three days and by using techniques such as Cholesky decomposition and sparse

matrices memory issues were tackled. Moreover, by using parallel computing we
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were able to have results of 20 chains (or more, depending on the server is used and

the user’s choice) in three days as well focusing on the validation of the results.

6.3 Future Work

Future work could include systematic data collation and publication of estimates,

as carried out previously for SBP and DBP as single variables. Additionally, there

are also some interesting statistical challenges that are of note and are presented

below:

1. The mean of an IGMRF

The reason for using IGMRFs is that we wish to model the structure of the

nodes in a specific random variable which is described through the precision

matrix. Since IGMRFs can represent a graph we want to see which are the

nodes that are connected hence dependent and which not. Therefore, all

the analysis is focused on the precision matrix. However, there is not much

presented in the literature about the mean of the IGMRFs. A question that

might arise is what would be the case if the mean vector of an IGMRFs is

different than zero. In other words, does the mean represent solely a shift

(move) or there is a deeper meaning? Therefore, it would be interesting to

explore the intuition and the properties of the mean as well in an IGMRF.

2. More than two dimensions

After interacting with data which use IGMRFs in two dimensions it is normal

to consider what is the extension of it. A question that may arise is what will

be the procedure and methodology if we had three variables to work with. A

possible suggestion is to have again all the possible combinations and those

combinations will construct the precision matrix. So, for the case of three

variables and each of them having five nodes then the possible combinations

will be 53 = 125, hence, the precision matrix will be 125× 125 dimensional.

Since, we have three variables there will be two kinds of interactions in the
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125 combinations. A drawback that may arise is how convenient and fast

will be this suggestion therefore, a limitation of this technique must be the

increased dimensions of a two-dimensional matrix.

The aforementioned suggestion implies that we can express a problem of n

dimensions to a problem of two dimensions. On the contrary, in machine

learning techniques in order to have a solution to a problem we increase

more and more the dimensions of the problem. For example, in Neural

Networks or Support Vector Machines in order to achieve linearly separable

groups you project your groups to higher dimensions. Furthermore, the

illustration of the problem having more than two variables and more than

one interaction is difficult to be applied and interpreted. It is cumbersome

to extract any conclusion for more than three variables and it is confusing

to get the intuition or the meaning for the relation of each variable.

3. Investigating R-INLA

Other interesting research could explore alternatives to MCMC that would

allow data for long time periods to be modelled in a tractable manner. There-

fore, we are interested to see how this model can be fitted using integrated

nested Laplace approximation in R (R-INLA) instead of MCMC methodol-

ogy. R-INLA is an alternative and approximation of MCMC and it is used

mainly in the IGMRF methods therefore, many issues theoretically could be

applied more easily in the R-INLA than in the MCMC methodology.

4. Exploring the realm of PC priors

As we have seen in Chapter 5 the prior distribution of the non-linear terms’

hyperparameters need to be rescaled every time we change the number of

nodes or the type of the IGMRF that we take into account. Therefore, it

would be of interest to explore priors that are invariant to these changes. In

Simpson et al. [2017] are proposed priors that are invariant to the change of

the structure matrix which occurs when a different number of nodes is used.

These are known as penalised complexity priors and their useful property is

that they are unchanged with respect to the reparameterisation. Further-

more, one of the advantages of PC priors is the importance that they give to
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the base model, which is, the absence of random effects. It means that the

new prior takes into account that there is a possibility the random effect is

zero as well, i.e., there is a probability that the base model fits better. By

referring to the base model we imply that the random effects are equal to

zero, Simpson et al. [2017].

5. Different options of reference standard deviation

Finally, in Chapter 5 we introduce and describe the procedure of scaling

between models that can differ in dimensionality and the types of IGMRFs

that are used. A possible suggestion would be to use a different function as a

reference function, σref . In Section 5.2 the reference standard deviation, σref

is calculated using a geometric mean which is considered suitable for positive

numbers and hence we can explore more functions that are appropriate for

positive numbers. Afterwards, it would be interesting to see the differences

and the challenges that arise from using the new functions.

6.3.1 Final Comments

In conclusion, our fundamental problem is the structure of the prior for capturing

the non-linear change over time. There are many factors that play a significant

role in the solution of the problem. Specifically, the structure of the precision

matrix depends on: 1) The number of years being dependent. In other words that

is referring to the order of the random walk (IGMRF) where first or second order

means that one or two years depend on the under-study year. 2) The number of

dimensions. It answers the question for how many variables we want to observe

the non-linear behaviour over time. After answering this question the next step is

to define the number of years being dependent in each variable explained in 1. 3)

The nature of dependence. That is referring to temporal or spatial dependence.

It corresponds to the type of precision matrix which best explains the dependence

that we want to capture and lastly, 4) The scaling of the precision parameters.

After we have decided which precision matrix is suitable, care needs to be taken

in defining the hyperprior. The hyperprior refers to the precision parameter and
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it is also susceptible to different dimensionality. Therefore, proper scaling needs

to be applied tothe precision parameter going from one to two dimensions.
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Many phenomena are naturally bivariate, including blood pressure,
which has systolic and diastolic levels. Here, we develop and fit a Bayesian
hierarchical model that estimates trends in these values and their interac-
tion simultaneously, using sparse data that vary substantially between coun-
tries, over time and by age and sex. A key element of the model is a two-
dimensional second-order intrinsic Gaussian Markov random field, which
captures non-linear trends in the variables and their interaction. The model
is fitted using Markov chain Monte Carlo methods, with a block Metropolis-
Hastings algorithm providing efficient updates. Performance is demonstrated
using simulated and real data.

1. Introduction. Blood pressure is bivariate: systolic blood pressure (SBP) is a mea-
surement of the force exerted by the heart when it beats, and diastolic blood pressure (DBP)
is a measurement of resistance to flow in the blood vessels. Raised blood pressure (RBP),
defined as SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, is estimated to affect more than one
billion people worldwide (NCD Risk Factor Collaboration (2017a)), and is a key risk factor
for cardiovascular diseases, cancers and diabetes, which are responsible for approximately
70% of global deaths each year (World Health Organization (2018)).

In the past decade, Bayesian hierarchical modelling has become an established method
in global health research, and has been used to make national-level estimates for variables
including blood pressure, body-mass index, and diabetes (NCD Risk Factor Collaboration
(2017a), NCD Risk Factor Collaboration (2017b), NCD Risk Factor Collaboration (2016)).
The models are sufficiently robust for the World Health Organization (WHO) to report these
estimates in the Global Diabetes Report (World Health Organization (2016)), and for the
results to be included in the Global Atlas on Childhood Obesity (World Obesity Federation
(2019)) and the Global Nutrition Report (Development Initiatives (2020)). However, while
influential, this work has allowed estimation only of single variables at a time. Given that
interactions between disease risk factors are complex and vary over time, by age and sex, and
between countries, these models have not been able to capture important information.

In particular, although estimates of national-level trends in SBP, DBP and RBP are avail-
able (NCD Risk Factor Collaboration (2017a)), there is no detailed understanding of how
the interaction between SBP and DBP varies over time, and by country, age and sex. Here,
we extend existing methodology (Danaei and others (2011), Finucane and others (2014))
to the two-dimensional case, specifying and fitting a Bayesian hierarchical model that al-
lows SBP, DBP and their interaction to be estimated simultaneously. A key development is
to extend the random walk (Rue and Held (2005)), which modelled non-linear trends in in-
dividual variables, to two dimensions, using an intrinsic Gaussian Markov random field or
IGMRF (Rue and Held (2005), Yue and Speckman (2010), Thon and others (2012)) as the
prior distribution for the precision matrix of a two-dimensional random walk.

Keywords and phrases: Bayesian hierarchical modelling, block Metropolis-Hastings sampling, canonical
parametrisation, health data, intrinsic Gaussian Markov random fields, Markov chain Monte Carlo methods.
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The paper is organised as follows: Section 2 introduces the model, Section 3 describes the
two-dimensional IGMRF, and Section 4 presents model implementation. Section 5 provides
results from a simulation study, Section 6 describes an application to real data, and Section 7
summarises our findings and proposes future work.

2. Model and Assumptions. Data for mean DBP, mean SBP, and their interaction, the
mean of the product of the DBP and SBP measurements, are available from study i carried out
in country j for age group h. The model has a hierarchy with four levels, where countries are
nested in regions, super-regions and the world as a whole. We model these data, y, as shown
in (1), where the D, S and I subscripts refer to DBP, SBP and their interaction, respectively,
and j[i] refers to the country j in which study i was carried out.



yh,i,D
yh,i,S
yh,i,I


∼N

(

aj[i],D
aj[i],S
aj[i],I


+



bj[i],Dti
bj[i],Sti
bj[i],Iti


+

[
uj[i],(D,S),ti

]
+



Xi,D.β
Xi,S .β
Xi,I .β




+



γi,D(zh)
γi,S(zh)
γi,I(zh)


+



ei,D
ei,S
ei,I


 , diag



SD2

D,h,i/nh,i + τ2i,D
SD2

S,h,i/nh,i + τ2i,S
SD2

I,h,i/nh,i + τ2i,I



)

(1)

This model has the same components as the earlier one-dimensional model, which fitted the
complex patterns observed in SBP and DBP data well (Danaei and others (2011), Finucane
and others (2014), NCD Risk Factor Collaboration (2017a)), but extends them to the two-
dimensional case. It includes linear intercepts and slopes, aj[i] and bj[i], non-linear terms that
vary over time, uj[i], covariate effects, β, terms in age, γi(zh), study-specific random effects,
ei, and noise, ϵh,i, assumed to be iid Gaussian. More succinctly, the model can be expressed
as

yh,i ∼N (aj[i] + bj[i]ti + uj[i],ti + Xiβ+ γi(zh) + ei,SD2
h,i/nh,i + τ

2
i )(2)

and to simplify the MCMC implementation, we rewrite the likelihood as shown in (3) (Danaei
and others (2011), Finucane and others (2014)):

y ∼N (Fθ+ Mu + γ(zh),Σ)(3)

The vector θ contains the aj , bj , β and ei terms, F is a mapping matrix that contains
the covariates X and that assigns each aj , bj , β and ei to their corresponding studies, and Σ
denotes the diagonal matrix of SD2/n+τ 2 values which express the residual variance within
and between age groups respectively in each study i.

It can be seen in (1) and (2) that there is a single non-linear sub-model uj[i],ti , which
provides simultaneous estimates of non-linear trends in SBP and DBP, and implicit estimates
of trends in their interaction, using an IGMRF as described below. The non-linear term for
country j, uj[i], can be represented as

uj = u
c
j +u

r
k[j] +u

s
l[j] +u

g

and in matrix form, the non-linear sub-model for all country-year combinations is

Mu= Mcuc + Mrur + Msus + Mgug

Here, M c is a translation matrix of dimensionality I × J × T 2 that assigns the elements of
uc to I studies observed in J × T 2 country-year combinations, while the Mr , Ms and Mg

matrices correspond to region-year and super-region-year combinations, and years for the
globe.
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The age sub-model is defined as

γ(zh) = Zψ+ (Fθ+ Mu)⊙ (Zϕ) + (Cc ⊙ Z)15

where Z = (N0,3(t),N1,3(t), . . . ,N4,3(t))
′

expresses the age data using cubic B-splines,ψ =
(ψ1, . . . ,ψ5)

′
are constant terms, and ϕ = (ϕ1, . . . , ϕ5)

′
are mean terms. The C term is an

I × J translation matrix assigning each of the I studies to the J countries, while c is a J × 5
matrix expressing country-specific random effects for each of the five terms in the cubic
B-splines. The ⊙ symbol denotes component-wise matrix-vector multiplication.

3. Intrinsic Gaussian Markov Random Fields. A random vector x= (x1, ..., xn)
T ∈

Rn is called a Gaussian Markov random field (GMRF) linked to a labelled graph G= (V,E)
with mean µ and precision matrix Q> 0 iff its density has the form

π(x) = (2π)−n/2|Q|1/2 exp
(
1

2
(x −µ)TQ(x −µ)

)

and

(4) Qij ̸= 0⇔{i, j} ∈E, ∀i ̸= j

A GMRF is any Gaussian distribution with a symmetric positive definite covariance matrix
and vice versa (Rue and Held (2005)). The properties of a GMRF are described by its pre-
cision matrix Q since its structure indicates connections between nodes; as shown in (4),
non-zero values in Q correspond to an edge in G. Where Q is dense, the graph is fully con-
nected, while sparsity implies conditional independence.

IGMRFs are improper GMRFs, as they have a precision matrix that is not of full rank,
and since the precision matrix is not of full rank, its inverse does not exist. This implies that
IGMRFs do not have well-defined mean or covariance matrices. However, they do have the
property that the mean of an IGMRF of order T is defined up to the addition of a polynomial
of order T − 1 (Rue and Held (2005)).

3.1. One-dimensional IGMRFs. One-dimensional IGMRFs are described in detail else-
where (Rue and Held (2005)). For a first-order random walk, the rank of the precision matrix
is T − 1, and the behaviour in the first and last rows is different from the rest of the matrix,
as shown in (5). These are the boundary constraints, and in this case, imposing the constraint∑

i xi = 0 on the mean of the intercepts gives a proper joint density (Sørbye and Rue (2014)).
For a second-order IGMRF, the rank of the precision matrix is T −2, and the behaviour in the
first two and last two rows is different from the rest of the matrix, as shown in (6). There are
now two constraints,

∑
i xi = 0 and

∑
i ixi = 0, corresponding to the means of the intercepts

and slopes.

QT = λ




1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1




(5)

QT = λ




1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 5 −2
1 −2 1




(6)
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3.2. Two-dimensional IGMRFs. To estimate non-linear trends in DBP, SBP and their
interaction simultaneously, we use a two-dimensional IGMRF with precision matrix Qi as
a prior distribution at each level of the hierarchy. If the values ui, i : {c, r, s, g}, represent
non-linearity at country, region, super-region and global level, respectively, we have

π(uc)∝ exp

(
−1

2
uT
c Qcuc

)

and similar results for ur , us and ug . The posterior density of uc is:
log(posterior)∝ log(likelihood) + log(prior) + log(hyperprior)

logP (uc|y,θ,γ)∝ logP (y|uc, λc,θ,γ) + logP (uc|λc,θ,γ) + logP (logλc)(7)

logP (uc|y,θ,γ)∝ logP (y|uc,θ,γ) + logP (uc|λc) + logP (logλc)

The ur , us and ug terms display the same behaviour as (7), with precision parameters λr , λs,
and λg in analogous form. In two dimensions, the behaviour of Q is more complex than in the
one-dimensional case, as its entries are now block-circulant matrices rather than single num-
bers (Thon and others (2012)). Moreover, although the order of an IGMRF can be expressed
as the rank deficiency of its precision matrix (Rue and Held (2005)), we now have two vari-
ables and so we need to impose three constraints,

∑
xij = 0,

∑
ixij = 0 and

∑
jxij = 0,

to give a proper joint distribution and a finite marginal distribution. These constraints cor-
respond to the mean of the intercepts and the two means of the linear trends. Each block
matrix inside the precision matrix is T ×T dimensional and therefore the precision matrix is
T 2 × T 2 dimensional.

3.2.1. Constructing the Precision Matrix. The precision matrix Q = λ×CTC, where
C is a block-circulant matrix, λ is a precision parameter and we have a so-called structure
matrix, P=CTC. We consider the case of variables i and j, and set T = 5 as an example to
illustrate general behaviour. The sub-matrices used to construct C are:

A1 =




−4 1 1
1 −4 1

1 −4 1
1 −4 1

1 1 −4



, A2 =




1
1
1
1
1




with

C=




A1 A2 0 0 A2

A2 A1 A2 0 0
0 A2 A1 A2 0
0 0 A2 A1 A2

A2 0 0 A2 A1




Here 0 represents T ×T zeroes, with the full matrices shown in Figures 1 and 2 respectively.

The construction of C is based on forward differences for each variable, with increments:

∆2
(1,0)f(Di, Sj) +∆2

(0,1)f(Di, Sj)

Here ∆(1,0) and ∆(0,1) are the first-order forward difference operators, which can be written
as:

∆(1,0)f(Di, Sj) = f(Di, Sj)− f(Di−1, Sj)

∆(0,1)f(Di, Sj) = f(Di, Sj)− f(Di, Sj−1)
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FIG 1. Matrix C for 5 years of SBP and DBP combinations

FIG 2. Structure matrix P=CTC for 5 years of SBP and DBP combinations

Similarly, the second-order forward differences for each variable are defined as:

∆2
(1,0)f(Di, Sj) =∆(1,0)(∆(1,0)f(Di, Sj)) = f(Di, Sj)− 2f(Di−1, Sj) + f(Di−2, Sj)

∆2
(0,1)f(Di, Sj) =∆(0,1)(∆(0,1)f(Di, Sj)) = f(Di, Sj)− 2f(Di, Sj−1) + f(Di, Sj−2)

To construct the structure matrix, we require the square of these differences since P = CTC,
and so each row of P will have increments:

−(∆2
(1,0)f(Di, Sj) +∆2

(0,1)f(Di, Sj))
2 =

− (∆4
(1,0)f(Di, Sj) +∆4

(0,1)f(Di, Sj) +∆2
(0,1)∆

2
(1,0)f(Di, Sj))

Applying these forward differences, we have the following entries for each row:

f(Di−2, Sj) + 2f(Di−1, Sj−1)− 8f(Di−1, Sj) + 2f(Di−1, Sj+1) + f(Di, Sj−2)

− 8f(Di, Sj−1) + 20f(Di, Sj)− 8f(Di, Sj+1) + f(Di, Sj+2)

+ 2f(Di+1, Sj−1)− 8f(Di+1, Sj) + 2f(Di+1, Sj+1) + f(Di+2, Sj)
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This leads to a structure matrix with a torus form (Thon and others (2012)). This is not
appropriate for our analyses given that time is linear, and so we apply boundary constraints.

3.2.2. Applying Boundary Constraints. A structure matrix P with boundary constraints
is available (Yue and Speckman (2010)), and this specification has been used in our two-
dimensional blood pressure model. Here, we define the block matrices of P such that each
row and column sums to zero, taking into account only data in neighbouring years. We use
sub-matrices:

A1 =




6 −5 1
−5 12 −6 1
1 −6 12 −6 1

1 −6 12 −5
1 −5 6



, A2 =




−5 2
2 −7 2

2 −7 2
2 −7 2

2 −5




A3 = diag(1,1,1,1,1)

A4 =




12 −7 1
−7 20 −8 1
1 −8 20 −8 1

1 −8 20 −7
1 −7 12



, A5 =




−6 2
2 −8 2

2 −8 2
2 −8 2

2 −6




They are used to construct a precision matrix:

λP= λ




A1 A2 A3

A2 A4 A5 A3

A3 A5 A4 A5 A3

A3 A5 A4 A2

A3 A2 A1




(8)

This matrix has both overall boundary constraints and constraints within the block matri-
ces, with ranks of T 2 − 3 as described above, and so Q has three eigenvalues with values of
zero (Paciorek (2009)). The matrix is shown in detail in Figure 3, where for the case T = 5,
only the 13th row has no boundary constraints. The diagonal elements represent the condi-
tional precision of DBP and SBP in a particular year i, while scaled off-diagonal elements
describe the conditional correlation between DBP and SBP in years i and j (Rue and Held
(2005)). These relationships are shown in detail in Figure 4, where the number of neigh-
bours depends on the combinations of years for which DBP and SBP are being estimated;
for example, when the DBP and SBP variables are at (i, j) = (1,1), only information from
the years ahead is available. For a two-dimensional second-order IGMRF, neighbours are up
to two steps in each direction (i.e., forward or backward either vertically or horizontally in
Figure 4), where moving one step diagonally comprises two steps, one vertical and one hor-
izontal, and the numbers of possible neighbours are 6, 8, 9, 11 or 12 at the boundaries and
13 elsewhere. The differences calculated taking into account this behaviour at the boundaries
are (Yue and Speckman (2010)):
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FIG 3. Structure matrix for 5 years of SBP and DBP combinations, P = CT C

FIG 4. Neighbouring years for DBP and SBP for the case T = 5

T−1∑

i=2

T−1∑

j=2

{∆2
0f(Di, Sj)}2 + {∆1f(D1, S1)}2 + {∆2f(DT , S1)}2

+ {∆3f(D1, ST )}2 + {∆4f(DT , ST )}2 +
T∑

i=2

({∆5f(Di, S1)}2 + {∆6f(Di, ST )}2)

+

T∑

j=2

({∆7f(D1, Sj)}2 + {∆8f(DT , Sj)}2)
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Here, each of the forward differences can be written as:

∆2
0f(Di, Sj) = (∆2

(1,0) +∆2
(0,1))f(Di, Sj) =∆2

(1,0)f(Di, Sj) +∆2
(0,1)f(Di, Sj)

{∆2
0f(Di, Sj)}2 = (∆2

(1,0) +∆2
(0,1))

2f(Di, Sj) = (∆4
(1,0) +∆4

(0,1) + 2∆2
(1,0)∆

2
(0,1))f(Di, Sj)

and we have:

{∆1f(D1, S1)}2 = (∆(1,0) +∆(0,1))
2f(D1, S1)

{∆2f(DT , S1)}2 = (∆(1,0) +∆(0,1))
2f(DT , S1)

{∆3f(D1, ST )}2 = (∆(1,0) +∆(0,1))
2f(D1, ST )

{∆4f(DT , ST )}2 = (∆(1,0) +∆(0,1))
2f(DT , ST )

{∆5f(Di, S1)}2 = (∆2
(1,0) +∆(0,1))

2f(Di, S1)

{∆6f(Di, ST )}2 = (∆2
(1,0) +∆(0,1))

2f(Di, ST )

{∆7f(D1, Sj)}2 = (∆(1,0) +∆2
(0,1))

2f(D1, Sj)

{∆8f(DT , Sj)}2 = (∆(1,0) +∆2
(0,1))

2f(DT , Sj)

When T = 5, we have 25 combinations of differences, each of which has different be-
haviour depending on its position. For example, in (8), the middle row of the precision matrix
is:

f(Di−2, Sj) + 2f(Di−1, Sj−1)− 8f(Di−1, Sj) + 2f(Di−1, Sj+1) + f(Di, Sj−2)

− 8f(Di, Sj−1) + 20f(Di, Sj)− 8f(Di, Sj+1) + f(Di, Sj+2)

+ 2f(Di+1, Sj−1)− 8f(Di+1, Sj) + 2f(Di+1, Sj+1) + f(Di+2, Sj)

4. Implementation using Metropolis-within-Gibbs Sampling.

4.1. Block-sampling Metropolis-Hastings algorithm. For complex Bayesian hierarchical
models, block updating can be used to avoid slow convergence and poor mixing caused by
strong dependence between parameters and hyperparameters (Rue and Held (2005)). For our
model, there is particularly large dependence between the parameters and hyperparameters
of the non-linear model and so block updating is used in those updates.

The prior distributions of the non-linear parameters are:

uc
j ∼N (0, λcP), ur

k[j] ∼N (0, λrP), us
l[j] ∼N (0, λsP), ug ∼N (0, λgP)

Here, 0 is a vector of length T 2, P is a T 2 × T 2 matrix, and each of the non-linear
terms is a vector that comprises all possible combinations of years for DBP and SBP;
for instance, for the country-level non-linear term, we have a vector of length T 2, uc

j =
(u11, u12, . . . , u32, u34, u35, . . . , uTT ), for each country. However, while the non-linear model
allows estimation for T 2 combinations, information that informs the likelihood is only avail-
able when data are present, and this is only the case when both DBP and SBP are in the same
year since measurements are taken for individuals simultaneously.

Here, we describe the proposal and posterior distributions at the country level of the hier-
archy, but the distributions for the other levels are analogous. The posterior distribution is the
joint distribution of the parameter and hyperparameter and is defined as:

log(P (uc, λc|y, λc,θ, γ))∝ (y − F(Zϕ+ 1)θ− Mc(Zϕ+ 1)uc − Zψ− (CcZ)15)TΣ−1

(y − F(Zϕ+ 1)θ− Mc(Zϕ+ 1)uc − Zψ− (CcZ)15)

+ log(P (uc|λc)) + logP (logλc)
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The proposal distribution depends solely on uc, hence we derive the proposal distribution for
uc using the canonical parametrisation:

uc|µuc ,Quc ∼N (Qucµuc ,Quc)

where:

Quc = (Mc ∗ (Zϕ+ 1))TΣ−1(Mc ∗ (Zϕ+ 1)) + Ij ⊗ λcP

Qucµuc = (Mc ∗ (Zϕ+ 1))TΣ−1[y − F(Zϕ+ 1)θ− (Zψ− ((Cc)Z)15)]

4.2. Defining constraints. To construct the proposal and define the parameters, we
need to apply appropriate constraints. For the hyperprior, we propose logλ∗c from the
N (logλi−1

c , ω2
logλc

) distribution, while Quc is a block diagonal matrix describing full con-
ditional within-country correlations. Each block corresponds to a country and describes the
correlations that exist between data at different time points. Therefore, we have J blocks
corresponding to the countries, each containing T 2 year combinations. For the block corre-
sponding to a country j, there are four possible scenarios, where the country has:

1. No data: The likelihood makes no contribution, hence Quc depends solely on the prior, so
we propose uc∗

j ∼N (0, (λcP)−1). The rank of P is T 2− 3, corresponding to infinite prior
variance on the intercept and the two linear trends of uc

j . We constrain these three linear
combinations of uc

j to zero by taking the generalised inverse of P, setting the last three
eigenvalues of P to infinity.

2. One year of data: Quc has rank T 2− 2 because the intercept is defined by the data but the
linear trends are not. We constrain the linear trends of uc

j to zero by taking the generalised
inverse of Quc , setting the last two eigenvalues to infinity. For identifiability, we constrain
the mean of the intercept to zero.

3. Two years of data: Quc has rank T 2 − 1 because the mean and one linear trend of uc
j

are defined by the data. We constrain the other linear trend of uc
j to zero by taking the

generalised inverse of Quc , setting the last eigenvalue to infinity. For identifiability, we
constrain the mean of the intercept and the mean of the first linear trend to zero.

4. Three or more years of data: Quc has rank T 2 because the mean and both of the linear
trends are identified by the data. For identifiability, we constrain the means of the intercept
and both linear trends to zero.

We accept uc∗ and λ∗c with probability r:

r =
P (y|uc∗, .)P (uc∗|λ∗c)P (logλ∗c)P (uc(i−1)|Auc(i−1)

j = 0∀j,λi−1
c ,y, .)

P (y|uc(i−1), .)P (uc(i−1)|λ(i−1)
c )P (logλ

(i−1)
c )P (uc∗|Auc∗

j = 0∀j,λi−1
c ,y, .)

(9)

Here, A is a 3× T 2 constraint matrix, where the first row is a vector 1, the second row is a
vector of centred time values for the DBP variable, and the third row is a vector of centred
time values for the SBP variable.

5. Simulation study. To validate model fit and to establish that the complex MCMC
sampler did not require excessive computational time, we simulated a dataset for a large
number of countries. Specifically, we used the NCD Risk Factor Collaboration regional clas-
sification for blood pressure (NCD Risk Factor Collaboration (2017a)). We simulated data
for three countries from 20 regions, and data for Japan, the only country simulated from its
region. The simulated data were therefore similar in structure to earlier real data for which
estimates were made separately for SBP and DBP (NCD Risk Factor Collaboration (2017a)).
We simulated data for eight age groups and five years, with values based on published es-
timates by country. Different changes in mean blood pressure by age were simulated, both
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with values that increased monotonically with age, and others with more complex patterns to
reflect the effects of interventions such as anti-hypertensive medication. These simulations
produced substantial sparsity in the data, which tested the models ability to borrow strength
appropriately.

We carried out five folds of cross-validation, with the average coverage and relative errors
shown for super-regions in Table 1. The coverage of actual uncertainty by the estimated
credible intervals was generally more than 95% (i.e. conservative), although with some cases
where the coverage was less for the interactions (i.e., anti-conservative). As shown in Table
1, the relative errors were small, demonstrating that the model fits well. This can also be seen
in Figure 5, which provides an example of model fitting for 50-year-old females in Belgium,
where the patterns observed in the data are complex.

TABLE 1
Coverage and relative errors in cross-validation

Coverage Relative Errors
Regions DBP SBP Int DBP SBP Int
Total 0.984 0.986 0.948 -0.002 -0.002 -0.045
Central and Eastern Europe 0.994 1 0.952 -0.003 -0.001 -0.017
C. Asia, Middle East & N. Africa 0.990 0.987 0.865 -0.002 -0.005 0.031
East and South East Asia 0.955 0.997 0.897 -0.003 -0.001 -0.030
High-income Western countries 0.998 0.994 0.996 0.000 -0.001 0.046
Latin America and Caribbean 0.978 0.982 1 -0.001 0.000 -0.151
Oceania 0.970 1 0.955 -0.002 -0.002 -0.050
South Asia 0.990 0.983 0.830 -0.004 -0.003 0.050
Sub-Saharan Africa 0.990 0.982 0.954 -0.002 -0.002 -0.095

FIG 5. Fit plots for 50-year-old females in Belgium from cross validation. The solid line represents the posterior
mean and the shaded area the 95% credible interval.
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6. Application to real data. Performance of the model using real blood pressure data
was tested using the STEPwise Approach to NCD Risk Factor Surveillance (STEPS) studies,
whose results are made publicly available by WHO (https://www.who.int/teams/noncommunicable-
diseases/surveillance/data). We downloaded data from 38 countries for the period 2004 to
2014 that comprised 478 country-year-sex-age combinations. Data were available from each
year but were unevenly spread over time, with particularly large numbers of data points in
2007 and 2014. While a large proportion of the data comprised national-level estimates, 3%
of the data points were at subnational level, and 6% were from rural-only or urban-only sam-
ples. Data were available for ages from 15 to 74 years, with the largest samples being for age
groups in the range from 25 to 64 years. Sample sizes ranged from 46 to 3,036, while the
ranges for DBP and SBP were 59.4-96.7 mmHg and 93.5-155.2 mmHg, respectively.

The data were from low-income and middle-income countries in central, south, southeast
and east Asia, eastern Europe, Latin America and the Caribbean, the Middle East and north
Africa, Oceania and sub-Saharan Africa. Although we had data for 38 countries, we made
estimates for 48 countries in total from those regions, with cases where countries had data
for zero, one, two or three or more years, i.e., each of the cases described in Section 4.2.
The precision matrix described in (8) was 112 × 112 dimensional, and while this increased
the time required for the MCMC algorithm to converge and mix, it was still tractable using
a high-performance computing system. Figure 6 shows an example model fit for Myanmar,
which exhibits realistically smooth but non-linear trends in the three blood pressure variables
simultaneously. These effects, and others seen for different countries, would not have been
captured fully by the models used in previous estimation of blood pressure trends.

FIG 6. Blood pressure estimates for 50-year old males in Myanmar from 2004 to 2014.

7. Summary and future work. We have shown that it is possible to fit a model to mean
blood pressure data in two dimensions, and in particular that it is possible to fit a non-linear
surface that implicitly estimates the interaction between these variables. Our practical imple-
mentation will be of interest to any researchers with sparse bivariate data, but particularly to
those with health-related data that vary by age and sex, over time and between countries, and
where interactions are of substantial scientific importance.

Future work could include systematic data collation and publication of estimates, as car-
ried out previously for SBP and DBP as single variables, and there are also interesting statis-
tical challenges. For example, given that the hyperparameters need to be parametrised each
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time the number of time points or the order of the IGMRF is changed, it would be of interest
to explore the use of penalised complexity priors. Other interesting research could explore al-
ternatives to MCMC that would allow data for long time periods to be modelled in a tractable
manner, or modelling to be carried out in more than two dimensions.

8. Software. R code, simulated data, and documentation are available from the corre-
sponding author.
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Intrinsic Gaussian Markov Random Fields (IGMRFs) can be
used to induce conditional dependence in Bayesian hierar-
chical models. IGMRFs have both a precision matrix, which
defines the neighbourhood structure of the model, and a
precision, or scaling, parameter.

Previous studies have shown the importance of select-
ing the prior of this scaling parameter appropriately for dif-
ferent types of IGMRF, as it can have a substantial impact
on posterior estimates. Here, we focus on cases in one and
two dimensions, where tuning of the prior is achieved by
mapping it to the marginal standard deviation of an IGMRF
of corresponding dimensionality. We compare the effects
of scaling various IGMRFs, including applications to simu-
lated and real blood pressure data using MCMC methods.
Key words: Hyperpriors, Intrinsic Gaussian Markov Ran-
domFields,MCMC, Precision, Scaling, Two-dimensional data.

1 | INTRODUCTION

Intrinsic Gaussian Markov Random Fields (IGMRFs) are used widely as prior distributions in Bayesian hierarchical
models, particularly for modelling spatial or temporal data, as they capture conditional dependence through their
precision matrices (Rue and Held, 2005). We examine one- and two-dimensional IGMRFs; the latter can capture
dependence between a pair of variables at multiple time points. IGMRFs are of various types, and can be specified to
induce particular neighbourhood structures for the precisions, either by varyingweights, introducing certain behaviour
at boundaries or within the precision matrix, or by considering different sets of neighbours (Terzopoulos, 1988).

We present results for the two-dimensional case that generalise previous work on scaling different types of field
in one dimension. In that case, an IGMRF was used as the prior for capturing non-linear trends, with a hyperprior for

1
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the precision parameter (Sørbye and Rue, 2014); we select precision parameters so that the same degree of scaling
is applied to bivariate data as in the one-dimensional case. We have shown previously that appropriate model fitting
to simulated and real two-dimensional blood pressure data can be achieved when applying MCMC methodology
(Spyropoulou and Bentham, Under review (preprint: https://arxiv.org/abs/2111.07848). In this paper, we show that
scaling requires particular care in two dimensions, where differences in behaviour between IGMRFs may be larger
than in a single dimension.

The paper is structured as follows. Section 2 describes the behaviour of IGMRFs in one and two dimensions,
while Section 3 describes the mapping between the precision parameter and the marginal standard deviation for
two-dimensional IGMRFs. Analyses using simulated and real blood pressure data are presented in Section 4, with a
discussion of our findings and suggestions for future work in Section 5.

2 | USE OF IGMRFS AS PRIORS

2.1 | Motivation

Blood pressure is bivariate, with measurements comprising systolic and diastolic values (SBP and DBP, respectively).
While a realistic one-dimensional model of trends in mean SBP or DBP at national level has been developed (Danaei
et al., 2011; Finucane et al., 2014), it cannot make estimates for both variables simultaneously, and no information
is captured on interactions between them. We have developed a two-dimensional extension, including analogous
terms to the original model (Spyropoulou and Bentham, Under review (preprint: https://arxiv.org/abs/2111.07848).
Specifically, a vector yh,i of the means of SBP, DBP, and their interactions, indexed by age group h and study i in
country j , is assumed to be distributed

yh,i ∼ N(aj [i ] + bj [i ] t i + uj [i ],t i + Xiβ + γi (zh ) + ei , SD2
h,i /nh,i + τ 2

i ) (1)
Themodel includes country-level linear intercepts and slopes, aj [i ] and bj [i ] , time-varying non-linear terms, uj [i ],t i ,covariate effects β, terms in age γi , study-specific random effects ei , age-varying study-specific random effects wh,i

corresponding to τ 2
i
, and noise ϵh,i , assumed iid Gaussian. In the earlier work, a one-dimensional second-order IGMRF

was used as a prior for the uj [i ] terms, which we have extended to the two-dimensional case, including changes in
the degree of scaling applied.

2.2 | IGMRFs of one and two dimensions

Webegin by comparing the behaviour of one-dimensional first-order and second-order IGMRFswith the two-dimensional
second-order case (Rue and Held, 2005). An IGMRF can be defined as

π (x) = (2π)−(n−k )/2 ( |Q∗ |) exp
(
−1

2
(x −µ)TQ(x −µ)

)
(2)

where k denotes the order of the IGMRF, n is the total number of nodes and the rank is defined as n − k . As described
previously (Rue and Held, 2005), for a vector of observations u of length n , the one-dimensional first-order model
assumes independent increments

∆us = us+1 − us ∼ N(0, λ−1), s = 1, ..., n − 1 (3)
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with joint density

π (u |λ) ∝ λ (n−1)/2 exp
(
−λ

2

n−1∑
s=1

(us+1 − us )2
)

(4)

The second-order model assumes independent increments
∆2us = us+2 − 2us+1 + us ∼ N(0, λ−1), s = 1, ..., n − 2 (5)

with joint density

π (u |λ) ∝ λ (n−2)/2 exp
(
−λ

2

n−2∑
s=1

(us+2 − 2us+1 + us )2
)

(6)

In two dimensions, a second-ordermodel constructed on a torus assumes independent two-dimensional second-order
increments (Rue and Held, 2005), and for variables indexed d and s we have

∆2
0ud ,s = (∆2

(1,0) + ∆2
(0,1) )ud ,s

= ud+2,s − 2ud+1,s + 2ud ,s − 2ud ,s+1 + ud ,s+2

= ud+1,s − 4ud ,s + ud−1,s + ud ,s+1 + ud ,s−1 ∼ N(0, λ−1)

(7)

with joint density

π (u |λ) ∝ λ (n1×n2−3)/2 exp ©­«−λ

2

n1−1∑
d=2

n2−1∑
s=2

(∆2
(1,0)ud ,s + ∆2

(0,1)ud ,s )
2ª®¬ (8)

where n1 and n2 represent the total number of nodes for each variable.
Ourmodels are time-varying, so the assumption of an IGMRFon a torus is not appropriate, and the two-dimensional

second-order density in this case (Yue and Speckman, 2010) has the more complex form

π (u |λ) ∝ λ (n1×n2−3)/2 exp
(
−λ

2

n1−1∑
d=2

n2−1∑
s=2

{∆2
0ud ,s }

2 + {∆1u1,1 }2 + {∆2un1,1 }
2

+ {∆3u1,n2 }
2 + {∆4un1,n2 }

2 +
n1∑
d=2

( {∆5ud ,1 }2 + {∆6ud ,n2 }
2) +

n2∑
s=2

( {∆7u1,s }2 + {∆8un1,s }
2)

) (9)

A special case of (9) arises when the variables have the same number of nodes, i.e., n = n1 = n2

π (u |λ) ∝ λ (n2−3)/2 exp
(
−λ

2

n−1∑
d=2

n−1∑
s=2

{∆2
0ud ,s }

2 + {∆1u1,1 }2 + {∆2un,1 }2

+ {∆3u1,n }2 + {∆4un,n }2 +
n∑

d=2

( {∆5ud ,1 }2 + {∆6ud ,n }2) +
n∑

s=2

( {∆7u1,s }2 + {∆8un,s }2)
) (10)

In each case, we have time-varying non-linear effects u ∼ N(0, (λP)−1) . They follow an IGMRF with structure matrix,
P, and precision parameter, λ, which is always a scalar (Yue and Speckman, 2010).
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3 | SPECIFYING HYPERPRIORS FOR TWO-DIMENSIONAL IGMRFS

IGMRFs have structure matrices and marginal variances that change depending on their type. Hyperpriors need to
be chosen and assigned appropriate ranges for particular models based on their structure, particularly their dimen-
sionality and numbers of nodes (Sørbye and Rue, 2014). For our model, we need to scale λ appropriately for a two-
dimensional second-order IGMRFwith boundaries and up to 40 nodes. Here, we derive reference standard deviations
and use them to select appropriate values for specific hyperpriors.

3.1 | Reference standard deviation

We can describe an IGMRF using an alternative definition where

σ2
λ (ui ) = λ−1Σ∗

i i
(11)

Here, Σi i is the diagonal element of the covariance matrix in position i . For the standard normal distribution, we have

u
√
λ ∼ N

(
0,P−1

)
, λσ2

λ (ui ) = Σ∗
i i (12)

Therefore for λ = 1, we have
σ2
{λ=1} (ui ) = Σ∗

i i (13)
Combining the results in (11) and (13), we have

σ2
λ (ui ) = λ−1Σ∗

i i = λ−1σ2
{λ=1} (ui ) (14)

This implies that for any fixed precision λ, the marginal standard deviation of the components of a Gaussian vector u
can be expressed as a function of λ by (Sørbye and Rue, 2014)

σλ (ui ) = λ−1/2σ{λ=1} (ui ), i = 1, ..., n (15)
For a given IGMRF u with random precision λ, we can calculate a reference standard deviation for fixed λ = 1, and
then approximate the marginal standard deviation for each component of u by (Sørbye and Rue, 2014)

σλ (ui ) ≈ λ−1/2σr ef (u), i = 1, ..., n (16)
The reference standard deviation is calculated using the geometric mean, an appropriate measure for a set of positive
numbers (Sørbye and Rue, 2014). The reference standard deviation for u in the one-dimensional case is then

σr ef (u) = exp
(
1

n

n∑
i=1

logσ{λ=1} (ui )
)
= exp

(
1

n

n∑
i=1

1

2
log Σ∗

i i

)
(17)
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where the values Σ∗
i i
denote the diagonal elements of the inverse matrix Σ∗ = Q−1 calculated when λ = 1. Specifically,

this is calculated asQ−1 = ΓT Λ−1Γ, where Γ are the eigenvectors and Λ the eigenvalues ofQwhen λ = 1. SinceQ and
Σ∗ are both n × n dimensional for one-dimensional IGMRFs, the n diagonal values are used to calculate the geometric
mean.

We extend the calculation of σr ef (u) to two-dimensional second-order IGMRFs. The precision matrix is now
(n1 × n2) × (n1 × n2) dimensional, where n1 and n2 are the total number of nodes for the first and second variables
respectively. The scaling is no longer for n1 or n2 values, but their product n1×n2, with a special case when n = n1 = n2

σr ef (u) = exp ©­« 1

n2

n2∑
i=1

logσ{λ=1} (ui )ª®¬ = exp ©­« 1

n2

n2∑
i=1

1

2
logΣ∗

i i
ª®¬ (18)

Again, Σ∗
i i denotes the diagonal elements of the inverse matrix (Σ∗)1/2 = (Q−1)1/2, while Σ∗ = Q−1 = ΓT Λ−1Γ for

λ = 1. The precision matrix Q, and therefore Σ∗, is n2 × n2 dimensional, hence there are n2 elements in the diagonal.
It has been shown previously (Sørbye and Rue, 2014) that using 100 nodes, the reference standard deviations

in one dimension are σr ef (u) = 3.89 and σr ef (u) = 41.39 for the first-order and second-order cases, respectively;
applying the result in (18), we find that σr ef (u) = 7.24 for the two-dimensional second-order case for 100 nodes
in each dimension. As shown in Figure 1, the behaviour by node of the marginal standard deviations also varies
substantially between the three IGMRFs. For a particular hyperprior, larger variances would be allowed for the one-
dimensional second-order IGMRF than its two-dimensional equivalent, and both would have larger variances than the
one-dimensional first-order case. Equivalently, to allow the same variance we need to impose an upper limit on the
marginal standard deviation

P r (σ (ui ) > U ) ≈ P r

(
λ

σ2
r ef

(u)
<

1

U 2

)
= α (19)

where α is a fixed small probability (Sørbye and Rue, 2014). By assigning a hyperprior to λ (σ2
r ef

(u))−1, the interpreta-
tion of the hyperprior remains the same for the different models.

These results complement others (Lindgren and Rue, 2008; Lindgren et al., 2011), where k equally sized subin-
tervals are created between original nodes u1,u2, . . ., to give equidistant nodes u′

1,u
′
2, ...,u

′
k+1. In the first-order one-

dimensional case, the precision using the new nodes is (kλ)−1, for the second-order equivalent, the precision using the
new nodes is (k 3λ)−1, and finally, for the second-order two-dimensional IGMRF, the precision using the new nodes
is (k 2λ)−1.

3.2 | Specifications using Gaussian hyperpriors

Applying a Gaussian hyperprior, the upper limit expressed in probabilistic form in (19) is

U =

(
bσ2

r ef
(u)

F −1 (α , µ, 1)

)1/2
(20)

where F −1 ( ·) denotes the quantiles of the Gaussian distribution (Sørbye and Rue, 2014). For a given value of α , we
can then interpret the mean and standard deviation parameters, µ and b , in terms of this upper limit.

To recalculate hyperpriors for different IGMRFs, we can use the same mean parameter µ for each model and
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F IGURE 1 Marginal standard deviations of one-dimensional first-order and second-order (Sørbye and Rue,
2014), and two-dimensional second-order IGMRFs, calculated using fixed precision λ = 1.
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calculate a new standard deviation parameter. By using the upper limit provided in (20), the new standard deviation
parameter is expressed as

bnew =
U 2F −1 (α , µ, 1)

σ2
r ef

(u)
(21)

We see that the new value of the standard deviation in (21) depends on σ2
r ef

, which captures the precision matrix for
a specific type of IGMRF. It is then only necessary to recalculate the standard deviation parameter, b , to account for
the different shapes and sizes of the graph for a specific IGMRF (Sørbye and Rue, 2014). This can be done for the
three types of IGMRF considered using

brw2 = brw1 ×
σ2
r ef

(urw1)
σ2
r ef

(urw2)
, brw2D = brw2 ×

σ2
r ef

(urw2)
σ2
r ef

(urw2D )
, brw2D = brw1 ×

σ2
r ef

(urw1)
σ2
r ef

(urw2D )
(22)

Here, rw1 and rw2 refer to the one- and two-dimensional first-order IGMRFs (Sørbye and Rue, 2014), and rw2D to
the two-dimensional second-order IGMRF.

3.3 | Types of two-dimensional second-order IGMRFs

To provide a guide for researchers applying models to real data, we compare IGMRFs with fixed order but differ-
ent numbers of nodes and boundary conditions, and IGMRFs of varying order and dimensionality. We do so firstly
for two-dimensional second-order IGMRFs with four structure matrices: Torus 1 and Torus 2 (Rue and Held, 2005;
Thon et al., 2012), and Bound 1 (Yue and Speckman, 2010) and Bound 2 (Terzopoulos, 1988). Torus 1 has a struc-
ture matrix defined on a torus, while Torus 2 has a similar structure matrix but with boundaries at its four corners,
u1,1,un1,1,u1,n2 ,un1,n2 . Bound 1 and Bound 2 have boundary effects and induce the same neighbours in the structure
matrix for each node, but give different weightings to these neighbours. For our application to time-varying mean
blood pressure data and for similar applications, the bounded IGMRFs are appropriate and should be used.

In Table 1, we see that Torus 2 consistently has the lowest reference standard deviation, with the changes in each
IGMRF being similar proportionally when the number of nodes is increased. Bound 2 has the largest reference stan-
dard deviation, followed by Bound 1, which we used in our two-dimensional model of blood pressure (Spyropoulou
and Bentham, Under review (preprint: https://arxiv.org/abs/2111.07848). These findings show that it is clearly nec-
essary to scale the hyperparameter each time the precision matrix or number of nodes is changed, especially when
boundary conditions are introduced.

Table 2 shows the effect of changing the order or dimensionality of the IGMRFs. For small numbers of nodes,
the one-dimensional first-order random walk has the largest reference standard deviation. However, this increases
slowly with the number of nodes, and for 10 nodes or more there is a consistent pattern with the one-dimensional
second-order randomwalk having the largest reference standard deviations, while the two-dimensional second-order
random walk behaves more similarly to the one-dimensional first-order random walk. These results emphasise the
importance of scaling the hyperparameter when dimensionality or order is changed.
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TABLE 1 Reference standard deviations σr ef for second-order two-dimensional IGMRFs.
Nodes Torus 1 Torus 2 Bound 1 Bound 2

5 0.30 0.05 0.41 0.53
6 0.35 0.06 0.48 0.63
8 0.44 0.08 0.62 0.81

10 0.54 0.09 0.76 1.00
12 0.63 0.11 0.90 1.19
14 0.73 0.12 1.04 1.39
16 0.82 0.14 1.19 1.58
18 0.93 0.16 1.33 1.77
20 1.02 0.17 1.47 1.96
25 1.25 0.21 1.83 2.44
30 1.51 0.25 2.19 2.92
40 2.00 0.33 2.91 3.88
50 2.50 0.42 3.63 4.84

100 5.00 0.83 7.24 9.64

TABLE 2 Reference standard deviations, σr ef , for one-dimensional first-order and second-order IGMRFs, and
two-dimensional second-order IGMRFs.

Nodes σr ef (urw1) σr ef (urw2) σr ef (urw2D )

5 0.85 0.53 0.41
6 0.94 0.65 0.48
8 1.09 0.96 0.62

10 1.22 1.35 0.76
12 1.34 1.75 0.90
14 1.45 2.20 1.04
16 1.55 2.68 1.19
18 1.65 3.19 1.33
20 1.74 3.73 1.47
25 1.94 5.20 1.83
30 2.13 6.82 2.19
40 2.46 10.49 2.91
50 2.75 14.65 3.63

100 3.89 41.39 7.24
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4 | APPLICATION TO BLOOD PRESSURE DATA

4.1 | Simulation study

4.2 | Application using real data

We compare hyperprior scaling for one- and two-dimensional second-order IGMRFs using real blood pressure data
(Spyropoulou and Bentham, Under review (preprint: https://arxiv.org/abs/2111.07848). The scaling varies both by
dimensionality and number of nodes, which in our data corresponds to the number of years considered. The hyper-
priors must be set for each of the four precision parameters, λc , λr , λs and λg , that are used at different levels of a
Bayesian hierarchical model, with countries nested in regions, super-regions and the globe.

When using 40 years of data, we can calculate the following values
σr ef (urw2) = 10.49 σr ef (urw2D ) = 2.91 (23)

The distribution under consideration for the country-level precision parameter is λc ∼ N(µ, b) , with µ and b parame-
ters that are assigned the values

µ = 7, b = 2, α = 0.001 (24)
Here, b is the adjusted parameter to which we must apply the correct scaling. From (23) and (24), the upper bounds
for the one-dimensional and two-dimensional second-order IGMRFs are

Urw2 =

(
bσ2

r ef
(urw2)

F −1 (α , µ, 1)

)1/2
= 7.5

Urw2D =

(
bσ2

r ef
(urw2D )

F −1 (α , µ, 1)

)1/2
= 2.08

(25)

There are no negative values in Gaussian quantiles, so to reproduce earlier results (Sørbye and Rue, 2011) using a
Gaussian rather than a Gamma distribution, we need to proceed as if we have truncation below at zero. By taking the
median, we have

median(Urw2,Urw2D ) = U = 4.79 (26)
The new standard deviation parameters for the hyperpriors are:

brw2 =
U 2F −1 (α , µ, 1)
σ2
r ef

(urw2)
= 0.81

brw2D =
U 2F −1 (α , µ, 1)
σ2
r ef

(urw2D )
= 10.59

(27)

Alternatively, knowing brw2 = 0.81,

brw2D = brw2

σ2
r ef

(urw2)
σ2
r ef

(urw2D )
= 10.59
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We also observe clear patterns as the adjusted parameter, b , is varied. In earlier work on blood pressure modelling
(Danaei et al., 2011), the standard deviation of a one-dimensional second-order IGMRF, brw2, was set to 3. In the case
of five nodes, scaling makes this equivalent to 5.01 for the two-dimensional case, brw2D , while the adjusted parameter,
b , is also equal to 3, as shown in Table 3. We can see variations in the tuning of brw1, brw2 and brw2D as the number of
nodes changes, and in particular cases, they each coincide with the adjusted parameter b . For example, we see that
the adjusted parameter, b is equal to brw1 when the number of nodes is 10; for five nodes, the adjusted parameter is
equal to brw2; for 30 nodes, the adjusted parameter is equal to brw2D . Table 4 shows the scaling applied to standard
deviations for a model with 11 nodes. With an adjusted parameter b = 0.90, scaling λc gives 0.53 and 1.84 for the one-
and two-dimensional second-order models, respectively, for example. Together, these results allowed us to apply the
same degree of smoothness in the two-dimensional second-order case as in the earlier work, scaling brw2D correctly
given the variation in the blood pressure data.
TABLE 3 Scaling standard deviation parameters as the adjusted parameter b and number of nodes are varied.

Nodes b=1 b=2 b=3
brw1 brw2 brw2D brw1 brw2 brw2D brw1 brw2 brw2D

5 0.39 1.00 1.67 0.78 2.00 3.34 1.17 3.00 5.01
6 0.48 1.00 1.84 0.96 2.00 3.67 1.43 3.00 5.49
8 0.78 1.00 2.40 1.55 2.00 4.80 2.33 3.00 7.19

10 1.00 0.82 2.58 2.00 1.63 5.16 3.00 2.45 7.74
12 1.00 0.59 2.22 2.00 1.17 4.43 3.00 1.76 6.65
14 1.00 0.43 1.94 2.00 0.87 3.89 3.00 1.30 5.83
16 1.00 0.33 1.70 2.00 0.67 3.40 3.00 1.00 5.09
18 1.00 0.27 1.54 2.00 0.53 3.08 3.00 0.80 4.62
20 1.00 0.22 1.40 2.00 0.43 2.80 3.00 0.65 4.20
25 1.00 0.14 1.12 2.00 0.28 2.25 3.00 0.42 3.37
30 1.06 0.10 1.00 2.11 0.21 2.00 3.17 0.31 3.00
40 1.40 0.08 1.00 2.80 0.15 2.00 4.20 0.23 3.00
50 1.74 0.06 1.00 3.48 0.12 2.00 5.23 0.18 3.00

100 3.46 0.03 1.00 6.93 0.06 2.00 10.39 0.09 3.00

5 | SUMMARY AND FUTURE WORK

We have shown the importance of correct scaling of hyperpriors for precision parameters in IGMRFs. This scaling
varies with the dimensionality, order, and size of the IGMRFs, and also depends strongly on the structure of the
precision matrices. We have presented general results in two dimensions, and specific applications to one- and two-
dimensional models of blood pressure using simulated and real data.
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TABLE 4 Scaling standard deviation parameters for one- and two-dimensional IGMRFs with 11 nodes.
λ b brw1 brw2 brw2D

λc 0.90 0.77 0.53 1.84
λr 1.20 1.03 0.71 2.45
λs 1.59 1.36 0.94 3.24
λg 3.55 3.04 2.10 7.24

Future work could include applying penalised complexity (PC) priors as precision parameters for two-dimensional
random effects (Simpson et al., 2017). The precision parameter corresponds to a second-order IGMRF, with u ∼
N(0, λ−1P−1) . However, a model can have two types of random effects, constructed and unconstructed. They have
dependent precision parameters, and so a joint bivariate or multivariate distribution should express this dependence.
For the two-dimensional second-order IGMRF, the precision parameter is univariate but we could investigate the use
of PC priors, which have the property that no further scaling is required as the number of nodes is varied.
Acknowledgements Specialist and High Performance Computing systems were provided by Information Services at
the University of Kent.
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