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In view of a well-known theorem of Dixmier, its is natural to 
consider primitive quotients of U+

q (g) as quantum analogues 
of Weyl algebras. In this work, we study primitive quotients 
of U+

q (G2) and compute their Lie algebra of derivations. 
In particular, we show that, in some cases, all derivations 
are inner showing that the corresponding primitive quotients 
of U+

q (G2) should be considered as deformations of Weyl 
algebras.

© 2023 The Author(s). Published by Elsevier Masson SAS. 
This is an open access article under the CC BY license 

(http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Weyl algebras have been extensively studied in the last 60 years due to their link to 
Lie theory, differential operators, quantum mechanics, etc. One of the main questions 
remaining is the famous Dixmier Conjecture that asserts that every endomorphism of a 
complex Weyl algebra is an automorphism.
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Let K be a field and q be an element of K∗ := K \ {0} that is not a root of unity. 
The aim of this article is to produce quantum analogues of the second Weyl algebra 
and to compare their properties to those of the second Weyl algebra. There exist in 
the literature various families of “quantum Weyl algebras”, e.g. the so-called quantum 
Weyl algebras and generalized Weyl algebras (GWA for short). Most of the time, they 
are obtained by generators and relations through a deformation of the classical defining 
relation of the first Weyl algebra: xy − yx = 1.

To produce potential quantizations, we take a different approach in this article. Our 
inspiration comes from a Theorem of Dixmier (see, for instance, [7, Théorème 4.7.9]) that 
asserts that primitive quotients of enveloping algebras of complex nilpotent Lie algebras 
are isomorphic to Weyl algebras.

We have at hand a quantum analogue of at least some enveloping algebras of complex 
nilpotent Lie algebras, namely the positive part U+

q (g) of a quantized enveloping algebra 
Uq(g) of a complex simple Lie algebra g. As a consequence, it is natural to consider 
primitive quotients of U+

q (g) as quantum analogues of Weyl algebras. In the A2 and 
B2 cases, primitive ideals of U+

q (g) have been classified and it turns out that in the B2

case, some of the resulting primitive quotients provide ‘nice’ quantum analogues of the 
first Weyl algebra. For instance, they are simple—this is not the case of quantum Weyl 
algebras—and do not possess non-trivial units—this is not the case of a quantum GWA 
over a Laurent polynomial ring (see [13] for details). It is also worth mentioning that 
Lopes [16] has studied the primitive ideals in the 0-stratum of U+

q (An) (n ≥ 2), and in 
particular, describes fully all the primitive spectra in all strata of U+

q (A3). Furthermore, 
he concluded that the primitive quotients of U+

q (An), although they have even Gelfand-
Kirillov dimension, are not isomorphic to quantum Weyl algebras (see [16, Corollary 
3.6]).

The present article is concerned with the G2 case. More precisely, we identify a family 
of primitive ideals of U+

q (G2) and then proceed in proving that the corresponding prim-
itive quotients have (at least for some choices of the parameters) properties similar to 
those of the second Weyl algebra. More precisely, the centre of U+

q (G2) is a polynomial 
algebra K[Ω1, Ω2] in two variables, and we prove that the quotient algebra

Aα,β := U+
q (G2)/〈Ω1 − α,Ω2 − β〉

is simple for all (α, β) �= (0, 0). We then proceed and study these quotient algebras. In 
particular, we show that Aα,β has the same Gelfand-Kirillov dimension as the second 
Weyl algebra A2(K). We also establish that for certain choices of the parameters α and 
β, the algebra Aα,β is a deformation of a quadratic extension of A2(K) at q = 1.

In the final section, we compute the derivations of Aα,β. Our results show that when α
and β are both non-zero, all derivations of Aα,β are inner, a property that is well known 
to hold in A2(K) when the characteristics of K is zero.



S. Launois, I. Oppong / Bull. Sci. math. 184 (2023) 103257 3
In view of the celebrated Dixmier Conjecture, it would be interesting to describe 
automorphisms and endomorphisms of Aα,β when α and β are both non-zero. We intend 
to come back to these questions in the future.

This article is organized as follows. In Section 2, we recall the presentation of U+
q (G2)

as a so-called quantum nilpotent algebra (QNA for short). This allows the use of two 
different tools to study the prime and primitive spectra of U+

q (G2): the H-stratification 
theory of Goodearl and Letzter, and the deleting derivation theory of Cauchon. We 
recall both theories in the context of U+

q (G2) in Section 2. In Section 3, we use these 
two theories to establish that 〈Ω1 − α, Ω2 − β〉 is a maximal ideal of U+

q (G2) when 
(α, β) �= (0, 0).

In Section 4, we focus on comparing Aα,β with the second Weyl algebra A2(K). In 
particular, we show that both have Gelfand-Kirillov dimension equal to 4. Through a 
direct computation, we also establish that A1, 1

9(q6−1)
is a quadratic extension of A2(K)

at q = 1. In this section, we also compute a linear basis for Aα,β.
In the final section, we compute the derivations of Aα,β. Our strategy here is to make 

use of the following tower of algebras arising from the deleting derivations algorithm 
(DDA for short):

R7 = Aα,β ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4 ⊂ R3.

The later algebra R3 is a simple quantum torus whose derivations have been described 
by Osborn and Passman in [19]. We pull back their description to obtain a description 
of the derivations of Aα,β through a step-by-step process consisting in “reverting” the 
DDA. Our results show that when α or β is equal to zero, then the first Hochschild 
cohomology group of Aα,β is a 1-dimensional vector space, whereas when both α and β
are non-zero, all derivations are inner.

2. The quantum nilpotent algebra U+
q (G2) and its primitive ideals

2.1. The quantum nilpotent algebra U+
q (G2)

Let K be a field and q be a non-zero element of K that is not a root of unity.
The algebra of U+

q (G2) is the so-called positive part of the quantum enveloping algebra 
Uq(g) of a Lie algebra g of type G2. It is well known, see for instance [2], that this algebra 
is generated over K by two indeterminates Eα and Eβ subject to the following quantum 
Serre relations:

(S1) E4
αEβ −

[ 4
1

]
q
E3

αEβEα +
[ 4

2

]
q
E2

αEβE
2
α −

[ 4
1

]
q
EαEβE

3
α + EβE

4
α = 0,

(S2) E2
βEα −

[ 2
1

]
q3 EβEαEβ + EαE

2
β = 0,

where 
[ n ] denotes the quantum binomial coefficients (see [2, I.6.1]).
i z
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One can construct a PBW-basis of U+
q (G2) using the so-called Lusztig automorphisms 

of Uq(g), see for instance [2, I.6.8]. In the present case, such a basis was computed by 
De Graaf in [5]. We will use the convention of that paper, but with E1 := Eα, E2 :=
E3α+β , E3 := E2α+β , E4 := E3α+2β , E5 := Eα+β and E6 := Eβ .

With these notations, the defining relations of U+
q (G2) are as follows:

E2E1 = q−3E1E2 E3E1 = q−1E1E3 − (q + q−1 + q−3)E2

E3E2 = q−3E2E3 E4E1 = E1E4 + (1 − q2)E2
3

E4E2 = q−3E2E4 −
q4 − 2q2 + 1
q4 + q2 + 1 E3

3 E4E3 = q−3E3E4

E5E1 = qE1E5 − (1 + q2)E3 E5E2 = E2E5 + (1 − q2)E2
3

E5E3 = q−1E3E5 − (q + q−1 + q−3)E4 E5E4 = q−3E4E5

E6E1 = q3E1E6 − q3E5 E6E2 = q3E2E6 + (q4 + q2 − 1)E4

+ (q2 − q4)E3E5

E6E3 = E3E6 + (1 − q2)E2
5 E6E5 = q−3E5E6

E6E4 = q−3E4E6 −
q4 − 2q2 + 1
q4 + q2 + 1 E3

5 ,

and the monomials Ek1
1 . . . Ek6

6 (k1, . . . , k6 ∈ N) form a basis of U+
q (G2) over K.

Even better, one may write U+
q (G2) as a QNA (short for quantum nilpotent algebra) 

or Cauchon-Goodearl-Letzter (CGL) extension in the sense of [14, Definition 3.1], by 
adjoining the generators Ei in order. This means in particular that U+

q (G2) can be 
presented as an iterated Ore extension:

U+
q (G2) = K[E1][E2;σ2, δ2] · · · [E6;σ6, δ6],

where the σi are automorphisms and the δi are left σi-derivations of the appropriate 
subalgebras. We would not need the precise definition of a QNA for what follows, but it 
is worth reminding the reader of the algebraic torus action involved in writing U+

q (G2)
as a QNA.

The algebraic torus H = (K×)2 acts by automorphisms on U+
q (G2) as follows:

h ·Ei = hiEi for all i ∈ {1, 6} and h = (h1, h6) ∈ H.

Note that the action of the automorphism h on the generators E2, . . . , E5 follows from 
the above defining relations.

By [2, Theorem II.2.7], the action of H on U+
q (G2) is rational in the sense of [2, 

Definition II.2.6].
A consequence of the QNA condition is that important tools such as Cauchon’s delet-

ing derivations procedure and the Goodearl-Letzter stratification theory (this is the 
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origin of the CGL extension terminology, see [14]) are available to study prime and 
primitive ideals. These ideas will be introduced in the following sections. At the mo-
ment, we merely note that it is immediate that U+

q (G2) is a noetherian domain and 
that all prime ideals are completely prime (in the case of U+

q (G2), it was proved in [20, 
Section 5]). We denote by Fq its skew-field of fractions, i.e. Fq := Frac(U+

q (G2)).

2.2. Prime ideals in U+
q (G2) and H-stratification

A two-sided ideal I of U+
q (G2) is said to be H-invariant if h · I = I for all h ∈ H. 

An H-prime ideal of U+
q (G2) is a proper H-invariant ideal J of U+

q (G2) such that if J
contains the product of two H-invariant ideals of U+

q (G2) then J contains at least one of 
them. We denote by H-Spec(U+

q (G2)) the set of all H-prime ideals of U+
q (G2). Observe 

that if P is a prime ideal of U+
q (G2) then

(P : H) :=
⋂
h∈H

h · P (1)

is an H-prime ideal of U+
q (G2). Indeed, let J be an H-prime ideal of U+

q (G2). We denote 
by SpecJ(U+

q (G2)) the H-stratum associated to J ; that is,

SpecJ(U+
q (G2)) = {P ∈ Spec(U+

q (G2)) | (P : H) = J}. (2)

Then the H-strata of Spec(U+
q (G2)) form a partition of Spec(U+

q (G2)) [2, Chapter II.2]; 
that is,

Spec(U+
q (G2)) = �

J∈H-Spec(U+
q (G2))

SpecJ(U+
q (G2)). (3)

This partition is the so-called H-stratification of Spec(U+
q (G2)).

It follows from the work of Goodearl and Letzter [9] that every H-prime ideal of 
U+
q (G2) is completely prime, so H-Spec(U+

q (G2)) coincides with the set of H-invariant 
completely prime ideals of U+

q (G2). Moreover there are precisely |W | H-prime ideals in 
U+
q (G2), where W denotes the Weyl group of type G2 (see [17, Remark 6.2.2]). As a 

consequence, the H-stratification of Spec(U+
q (G2)) is finite and so the full strength of 

the H-stratification theory of Goodearl and Letzter is available to study Spec(U+
q (G2)).

For each H-prime ideal J of U+
q (G2), the space SpecJ(U+

q (G2)) is homeomorphic to 
the prime spectrum Spec(K[z±1

1 , . . . , z±1
d ]) of a commutative Laurent polynomial ring 

whose Krull dimension depends on J , [2, Theorems II.2.13 and II.6.4]. These Krull 
dimensions were computed in [1,22]. Finally, let us mention that the primitive ideals of 
U+
q (G2) are precisely the prime ideals that are maximal in their H-strata [2, Theorem 

II.8.4].
In this article, we will mainly focus on one specific H-stratum. Since U+

q (G2) is a 
domain, 0 (technically, 〈0〉) is clearly an H-invariant completely prime ideal of U+

q (G2), 
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and so an H-prime. We will focus on computing its stratum, the so-called 0-stratum. 
The motivation here is twofold: first, in the B2 case, we obtain “new” quantum defor-
mations of the first Weyl algebra as U+

q (B2)/P , where P is a primitive ideal from the 
0-stratum of Spec(U+

q (B2)) [13]. Next, in the present case, we would like to construct 
algebras of Gelfand-Kirillov dimension 4 as explained in the introduction. Since Tauvel’s 
height formula holds in U+

q (G2) [8], we need to quotient U+
q (G2) by a primitive ideal of 

height 2. Given that the H-spectrum of U+
q (G2) (viewed as a poset under set inclusion) 

is isomorphic as a poset to the Weyl group of type G2 (viewed as a poset under the 
Bruhat order), such primitive ideals can only be found in the 0-stratum and the strata 
associated to one of the two height 1 H-primes. In this article, we mainly present results 
for the 0-stratum, but we will also indicate results obtained for the primitive quotients 
coming from the height 1 H-prime strata.

2.3. Deleting derivations algorithm (DDA) in U+
q (G2)

As U+
q (G2) is a QNA, we can apply Cauchon’s DDA to study its prime spectrum. 

Recall first that U+
q (G2) is an iterated Ore extension of the form:

U+
q (G2) = K[E1][E2;σ2][E3;σ3, δ3][E4;σ4, δ4][E5;σ5, δ5][E6;σ6, δ6];

where, σ2 denotes the automorphism of K[E1] defined by:

σ2(E1) = q−3E1,

σ3 denotes the automorphism of K[E1][E2; σ2] defined by:

σ3(E1) = q−1E1 σ3(E2) = q−3E2,

δ3 denotes the σ3-derivation of K[E1][E2; σ2] defined by:

δ3(E1) = −(q + q−1 + q−3)E2 δ3(E2) = 0,

σ4 denotes the automorphism of K[E1] · · · [E3; σ3, δ3] defined by:

σ4(E1) = E1 σ4(E2) = q−3E2 σ4(E3) = q−3E3,

δ4 denotes the σ4-derivation of K[E1] · · · [E3; σ3, δ3] defined by:

δ4(E1) = (1 − q2)E2
3 δ4(E2) = −q4 + 2q2 − 1

q4 + q2 + 1 E3
3 δ4(E3) = 0,

σ5 denotes the automorphism of K[E1] · · · [E4; σ4, δ4] defined by:

σ5(E1) = qE1 σ5(E2) = E2 σ5(E3) = q−1E3 σ5(E4) = q−3E4,
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δ5 denotes the σ5-derivation of K[E1] · · · [E4; σ4, δ4] defined by:

δ5(E1) = −(1+q2)E3 δ5(E2) = (1−q2)E2
3 δ5(E3) = −(q+q−1+q−3)E4 δ5(E4) = 0,

σ6 denotes the automorphism of K[E1] · · · [E5; σ5, δ5] defined by:

σ6(E1) = q3E1 σ6(E2) = q3E2 σ6(E3) = E3 σ6(E4) = q−3E4 σ6(E5) = q−3E5,

and δ6 denotes the σ6-derivation of K[E1] · · · [E5; σ5, δ5] defined by:

δ6(E1) = −q3E5 δ6(E2) = (q2 − q4)E3E5 + (q4 + q2 − 1)E4 δ6(E3) = (1 − q2)E2
5

δ6(E4) = −q4 + 2q2 − 1
q4 + q2 + 1 E3

5 δ6(E5) = 0.

The DDA constructs by a decreasing induction a family {E1,j, . . . , E6,j} of elements 
of the division ring of fractions Fq = Fract(U+

q (G2)) of U+
q (G2) for each 2 ≤ j ≤ 7. The 

precise definition of these elements in the general context of QNAs can be found in [4].
In the present case, a direct computation leads to:

E1,6 = E1 + rE5E
−1
6

E2,6 = E2 + tE3E5E
−1
6 + uE4E

−1
6 + nE3

5E
−2
6

E3,6 = E3 + sE2
5E

−1
6

E4,6 = E4 + bE3
5E

−1
6

E1,5 = E1,6 + hE3,6E
−1
5,6 + gE4,6E

−2
5,6

E2,5 = E2,6 + fE2
3,6E

−1
5,6 + pE3,6E4,6E

−2
5,6 + eE2

4,6E
−3
5,6

E3,5 = E3,6 + aE4,6E
−1
5,6

E1,4 = E1,5 + sE2
3,5E

−1
4,5

E2,4 = E2,5 + bE3
3,5E

−1
4,5

E1,3 = E1,4 + aE2,4E
−1
3,4

T1 := E1,2 = E1,3

T2 := E2,2 = E2,3 = E2,4

T3 := E3,2 = E3,3 = E3,4 = E3,5

T4 := E4,2 = E4,3 = E4,4 = E4,5 = E4,6

T5 := E5,2 = E5,3 = E5,4 = E5,5 = E5,6 = E5

T6 := E6,2 = E6,3 = E6,4 = E6,5 = E6,6 = E6,

where the parameters a, b, e, f, g, h, n, p, r, s, t, u are all defined in Appendix A.2.
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In the following, we set A := U+
q (G2) and we denote by A(j) the subalgebra of Fq

generated by E1,j , . . . , E6,j . The following results were proved by Cauchon [4, Théorème 
3.2.1 and Lemme 4.2.1]. For 2 ≤ j ≤ 7, we have:

1. When j = 7, (E1,7, . . . , E6,7) = (E1, . . . , E6), so that A(7) = A = U+
q (G2);

2. A(j) is isomorphic to an iterated Ore extension of the form

K[y1] . . . [yj−1;σj−1, δj−1][yj ; τj ] · · · [y6; τ6]

by an isomorphism that sends Ei,j to yi (1 ≤ i ≤ 6), where τj , . . . , τ6 denote the 
K-linear automorphisms such that τ�(yi) = λ�,iyi (1 ≤ i ≤ � − 1) and the λ�,i are 
defined by σ�(Ei) = λ�,iEi.

3. Assume that j �= 7. The set Σj := {En
j,j+1 | n ∈ N} = {En

j,j | n ∈ N} is a 
multiplicative system of regular elements of A(j) and A(j+1), and satisfies the Ore 
condition in both A(j) and A(j+1). Moreover we have

A(j)Σ−1
j = A(j+1)Σ−1

j .

It follows from these results that A(j) is a noetherian domain, for all 2 ≤ j ≤ 7.
As in [4], we use the following notation.

Notation 2.1. We set A := A(2) and Ti := Ei,2 for all 1 ≤ i ≤ 6.

It follows from [4, Proposition 3.2.1] that A is a quantum affine space in the indeter-
minates T1, . . . , T6 and so can be presented as an iterated Ore extension in the Tis with 
no skew-derivations. It is for this reason that Cauchon used the expression “effacement 
des dérivations”. More precisely, let M = (μi,j) ∈ M6(Z) be a skew-symmetric matrix 
defined as follows:

M :=

⎡⎢⎢⎢⎢⎣
0 3 1 0 −1 −3
−3 0 3 3 0 −3
−1 −3 0 3 1 0
0 −3 −3 0 3 3
1 0 −1 −3 0 3
3 3 0 −3 −3 0

⎤⎥⎥⎥⎥⎦ . (4)

Then, we have:

A = KqM [T1, . . . , T6], (5)

where KqM [T1, . . . , T6] denotes the K-algebra generated by T1, . . . , T6 with relations 
TiTj = qμi,jTjTi for all i, j.
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2.4. Canonical embedding

Since A = U+
q (G2) is a QNA, one can use Cauchon’s DDA to relate the prime spectrum 

of A to the prime spectrum of the associated quantum affine space A. More precisely, 
the DDA allows the construction of embeddings

ψj : Spec(A(j+1)) −→ Spec(A(j)) (2 ≤ j ≤ 6). (6)

Recall from [4, Section 4.3] that these embeddings are defined as follows.
Let P ∈ Spec(A(j+1)). Then

ψj(P ) =
{

PΣ−1
j ∩A(j) if Ej,j+1 = Tj /∈ P

g−1
j (P/〈Ej,j+1〉) if Ej,j+1 ∈ P

where gj denotes the surjective homomorphism

gj : A(j) → A(j+1)/〈Ej,j+1〉

defined by

gj(Ei,j) := Ei,j+1 + 〈Ej,j+1〉

(for more details, see [4, Lemme 4.3.2]). It was proved by Cauchon [4, Proposition 4.3.1]
that ψj induces an increasing homeomorphism from the topological space

{P ∈ Spec(A(j+1)) | Ej,j+1 /∈ P}

onto

{Q ∈ Spec(A(j)) | Ej,j /∈ Q}

whose inverse is also an increasing homeomorphism. Also, ψj induces an increasing home-
omorphism from

{P ∈ Spec(A(j+1)) | Ej,j+1 ∈ P}

onto its image by ψj whose inverse similarly is an increasing homeomorphism. Note 
however that, in general, ψj is not a homeomorphism from Spec(A(j+1)) onto its image.

Composing these embeddings, we get an embedding

ψ := ψ2 ◦ · · · ◦ ψ6 : Spec(A) −→ Spec(A), (7)

which is called the canonical embedding from Spec(A) into Spec(A).
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The canonical embedding ψ is H-equivariant so that ϕ(H−Spec(A)) ⊆ H−Spec(A). 
Interestingly, the set H−Spec(A) has been described by Cauchon as follows. For any 
subset C of {1, . . . , 6}, let KC denote the H-prime ideal of A generated by the Ti with 
i ∈ C, that is

KC = 〈Ti | i ∈ C〉.

It follows from [4, Proposition 5.5.1] that

H−Spec(A) = {KC | C ⊆ {1, . . . , 6}},

so that

ψ(H−Spec(A)) ⊆ {KC | C ⊆ {1, . . . , 6}}.

3. Primitive ideals of U+
q (G2) in the 0-stratum

The aim of this section is to give explicit generating sets for the primitive ideals 
of U+

q (G2) that belong to the 0-stratum. They are intimately related to the centre of 
U+
q (G2) and so we start this section by making explicit the centre of U+

q (G2) and of 
related algebras.

Throughout the rest of this paper, the notation q• will mean any arbitrary integer 
power of q. We will often use this notation whenever the exponent of q is of no interest.

3.1. Centre of U+
q (G2)

Recall that A = A(2) = KΛ[T1, . . . , T6] is a quantum affine space. Set Ω1 := T1T3T5
and Ω2 := T2T4T6. One can easily verify that Ω1 and Ω2 are central elements of A by 
checking they commute with all the Tis.

We now want to successively pull Ω1 and Ω2 from the quantum affine space A into 
the algebra A using the data of the DDA of A discussed above. A direct computation 
shows that

Ω1 := T1T3T5

= E1,4E3,4E5,4 + aE2,4E5,4

= E1,5E3,5E5,5 + aE2,5E5,5

= E1,6E3,6E5,6 + aE1,6E4,6 + aE2,6E5,6 + a′E2
3,6

= E1E3E5 + aE1E4 + aE2E5 + a′E2
3 ,

and
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Ω2 := T2T4T6

= E2,5E4,5E6,5 + bE3
3,5E6,5

= E2,6E4,6E6,6 + bE3
3,6E6,6

= E2E4E6 + bE2E
3
5 + bE3

3E6 + b′E2
3E

2
5 + c′E3E4E5 + d′E2

4 ,

where the parameters a, b, a′, b′, c′, d′ can be found in Appendix A.2. Note that Ω1 and 
Ω2 are central elements of A(j) for each 2 ≤ j ≤ 7, since Ωi ∈ A(7) ⊆ A(j) ⊆ A.

We now want to show that the centre Z(A) of A and of other related algebras is a 
polynomial ring generated by Ω1 and Ω2 over K. The following discussions will lead us 
to the proof.

Set Sj := {λT ij
j T

ij+1
j+1 . . . T i6

6 | ij , . . . , i6 ∈ N and λ ∈ K∗} for each 2 ≤ j ≤ 6. One 
can observe that Sj is a multiplicative system of non-zero divisors of A(j) = K〈Ei,j |
for all i = 1, . . . , 6〉. Furthermore, the elements Tj, . . . , T6 are all normal in A(j). Hence, 
Sj is an Ore set in A(j). We can therefore localize A(j) at Sj as follows:

Rj := A(j)S−1
j .

Recall that Σj := {Tn
j | n ∈ N} is an Ore set in both A(j) and A(j+1) for each 2 ≤ j ≤ 6, 

and that

A(j)Σ−1
j = A(j+1)Σ−1

j .

For all 2 ≤ j ≤ 6, we have that:

Rj = A(j)S−1
j = (A(j)Σ−1

j )S−1
1+j = (A(j+1)Σ−1

j )S−1
1+j

= (A(j+1)S−1
j+1)Σ

−1
j = Rj+1Σ−1

j . (8)

Note that R7 := A.
Again, one can also observe that T1 is normal in R2. As a result, we can form the 

localization R1 := R2[T−1
1 ]. The algebra R1 is the quantum torus associated to the 

quantum affine space A. As a result, R1 = KqM [T±1
1 , . . . , T±1

6 ], where TiTj = qμijTjTi

for all 1 ≤ i, j ≤ 6 and μij are the entries of M . Similarly to [15, Section 3.1], we 
construct the following tower of algebras:

A = R7 ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4

⊂ R3 = R4Σ−1
3 ⊂ R2 = R3Σ−1

2 ⊂ R1. (9)

Note that the family (Ek1
1,j . . . E

k6
6,j), where ki ∈ N if i < j and ki ∈ Z otherwise is a 

PBW-basis of Rj for all 1 ≤ j ≤ 7. In particular, the family (T k1
1 . . . T k6

6 )k1,...,k6∈Z is a 
PBW-basis of R1.
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Lemma 3.1.

1. Z(R1) = K[Ω±1
1 , Ω±1

2 ].
2. Z(R3) = K[Ω1, Ω2].
3. Z(A) = K[Ω1, Ω2].
4. Z(A) = K[Ω1, Ω2].

Proof. 1. It follows from [9, 1.3] that Z(R1) is a commutative Laurent polynomial ring 
generated by certain monomials in the Tis. A direct computation proves the result.

2. Clearly, K[Ω1, Ω2] ⊆ Z(R3). For the reverse inclusion, let y ∈ Z(R3). Then, y can be 
written in terms of the basis of R3 (recall that Ti = Ei,3) as:

y =
∑

(i,...,n)∈N2×Z4

a(i,...,n)T
i
1T

j
2T

k
3 T

l
4T

m
5 Tn

6 .

Using the fact that T1, . . . , T6 are all normal elements in R3 and yTi = Tiy for 
all i, one easily concludes that i = k = m and j = l = n for all monomials ap-
pearing in y. Since i, j ≥ 0, we have that y =

∑
(i,j)∈N2 q•a(i,j)T

i
1T

i
3T

i
5T

j
2T

j
4T

j
6 =∑

(i,j)∈N2 q•a(i,j)Ωi
1Ω

j
2. This implies that y ∈ K[Ω1, Ω2] as expected.

3. Observe that K[Ω1, Ω2] ⊆ Z(A) ⊆ Z(R3) = K[Ω1, Ω2]. Hence, Z(A) = K[Ω1, Ω2].
4. Since Ri is a localization of Ri+1, it follows that Z(Ri+1) ⊆ Z(Ri). From (9), we 

have that Z(A) ⊆ Z(R3). Observe that K[Ω1, Ω2] ⊆ Z(A) ⊆ Z(R3) = K[Ω1, Ω2]. 
Hence, Z(A) = K[Ω1, Ω2]. �

Remark 3.2. Since Z(A) = Z(R3) = K[Ω1, Ω2] and Z(Ri+1) ⊆ Z(Ri), it follows from (9)
that Z(A) = Z(R6) = Z(R5) = Z(R4) = Z(R3) = K[Ω1, Ω2]. One can also deduce from 
the proof of Lemma 3.1 that Z(R2) = K[Ω1, Ω±1

2 ].

Remark 3.3. The centre of the positive part of a quantized enveloping algebra of a simple 
Lie algebra has been described by Caldero in [3] but we will need Remark 3.2 later on.

3.2. Ω1 and Ω2 generate completely prime ideals of U+
q (G2)

The aim of this subsection is to show that 〈Ω1〉 and 〈Ω2〉 are (completely) prime. We 
will make use of the DDA to establish these facts. Note that we could also have used the 
results of [10] to obtain these results. However, we will need some of the intermediate 
steps obtained here to compute the derivations of certain primitive quotients of U+

q (G2)
in the final section.

From Subsection 2.4 we know that there is a bijection between {P ∈ Spec(A(j+1)) |
P ∩ Σj = ∅} and {Q ∈ Spec(A(j)) | Q ∩ Σj = ∅} via P = QΣ−1

j ∩ A(j+1). Note that 
〈T1〉 and 〈T2〉 are prime ideals of the quantum affine space A, since each of the factor 
algebras A/〈T1〉 and A/〈T2〉 is isomorphic to a quantum affine space of rank 5 which is 
well known to be a domain.



S. Launois, I. Oppong / Bull. Sci. math. 184 (2023) 103257 13
The following result and its proof show that 〈T1〉 belongs to the image Im(ψ) of 
the canonical embedding ψ and that 〈Ω1〉 is the completely prime ideal of A such that 
ψ(〈Ω1〉) = 〈T1〉.

Lemma 3.4. 〈Ω1〉 ∈ Spec(A).

Proof. We will prove this result in several steps by showing that:

1. 〈T1〉A(3) ∈ Spec(A(3)).
2. 〈E1,4T3 + aT2〉 = 〈T1〉A(3) [T−1

3 ] ∩A(4), hence Q1 := 〈E1,4T3 + aT2〉 ∈ Spec(A(4)).
3. 〈E1,5T3 + aE2,5〉 = Q1[T−1

4 ] ∩A(5), hence Q2 := 〈E1,5T3 + aE2,5〉 ∈ Spec(A(5)).
4. 〈Ω1〉A(6) = Q2[T−1

5 ] ∩A(6), hence 〈Ω1〉A(6) ∈ Spec(A(6)).
5. 〈Ω1〉A = 〈Ω1〉A(6) [T−1

6 ] ∩A, hence 〈Ω1〉A ∈ Spec(A).

We now proceed to prove the above claims.
1. One can easily verify that A(3)/〈T1〉 is isomorphic to a quantum affine space of rank 

5, which is a domain, hence 〈T1〉 is a prime ideal in A(3).
2. Note that T1 = E1,4 + aT2T

−1
3 . We want to show that 〈E1,4T3 + aT2〉 =

〈T1〉A(3) [T−1
3 ] ∩ A(4). Observe that 〈E1,4T3 + aT2〉 ⊆ 〈T1〉A(3) [T−1

3 ] ∩ A(4). We estab-
lished the reverse inclusion. Let y ∈ 〈T1〉A(3) [T−1

3 ] ∩ A(4). Then, y ∈ 〈T1〉A(3) [T−1
3 ]. 

Therefore, there exists i ∈ N such that yT i
3 ∈ 〈T1〉A(3) . This implies that yT i

3 = T1v, 
for some v ∈ A(3). Since A(3)[T−1

3 ] = A(4)[T−1
3 ], there exists j ∈ N such that vT j

3 = v′, 
for some v′ ∈ A(4). It follows that yT i+j

3 = T1vT
j
3 = T1v

′ = (E1,4 + aT2T
−1
3 )v′ =

(E1,4T3 + aT2)T−1
3 v′. The multiplicative system generated by T3 satisfies the Ore con-

dition in A(4), hence, there exists k ∈ N and v′′ ∈ A(4) such that T−1
3 v′ = v′′T−k

3 . One 
can therefore write yT i+j

3 = (E1,4T3 + aT2)v′′T−k
3 . This implies that yT δ

3 = Ω′
1v

′′, where 
Ω′

1 := E1,4T3 + aT2 and δ = i + j + k. Set S := {s ∈ N | ∃v′′ ∈ A(4) : yT s
3 = Ω′

1v
′′}. 

Note that S �= ∅, since δ ∈ S. Let s = s0 be the minimum element of S such that 
yT s0

3 = Ω′
1v

′′. We want to show that s0 = 0. Remember: Ω′
1T5 = Ω1 in A(4). Since Ω1

is central in A(4), and T5 is normal in A(4), we must have Ω′
1 to be a normal element in 

A(4), otherwise, there will be a contradiction. Therefore, there exists w ∈ A(4) such that 
yT s0

3 = Ω′
1v

′′ = wΩ′
1. Now, A(4) can be viewed as a free left K〈E1,4, T2, T4, T5, T6〉-module 

with basis 
(
T ξ

3

)
ξ∈N

. One can therefore write y =
∑n

ξ=0 αξT
ξ
3 and w =

∑n
ξ=0 βξT

ξ
3 , where 

αξ, βξ ∈ K〈E1,4, T2, T4, T5, T6〉. This implies that 
∑n

ξ=0 αξT
ξ+s0
3 =

∑n
ξ=0 βξT

ξ
3 Ω′

1 =∑n
ξ=0 q

•βξΩ′
1T

ξ
3 (note that T3Ω′

1 = q−1Ω′
1T3). Given that Ω′

1 = E1,4T3 + aT2, we have 

that 
∑n

ξ=0 αξT
ξ+s0
3 =

∑n
ξ=0 q

•βξE1,4T
1+ξ
3 +

∑n
ξ=0 q

•aβξT2T
ξ
3 . Suppose that s0 > 0. 

Then, identifying the constant coefficients, we have q•aβ0T2 = 0. As a result, β0 = 0, 
since q•aT2 �= 0. Hence, w can be written as w =

∑n
ξ=1 βξT

ξ
3 . Returning to yT s0

3 =
wΩ′

1, we have that yT s0
3 =

∑n
ξ=1 βξT

ξ
3 Ω′

1 =
∑n

ξ=1 q
•βξΩ′

1T
ξ
3 = Ω′

1
∑n

ξ=1 q
•β′

ξT
ξ
3 . 

This implies that yT s0−1
3 = Ω′

1w
′, where w′ =

∑n
ξ=1 q

•β′
ξT

ξ−1
3 ∈ A(4), with β′

ξ ∈
K〈E1,4, T2, T4, T5, T6〉. Consequently, s0 − 1 ∈ S, a contradiction! Therefore, s0 = 0
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and y = Ω′
1v

′′ ∈ 〈Ω′
1〉 = 〈E1,4T3 + aT2〉. Hence, 〈T1〉A(3) [T−1

3 ] ∩A(4) ⊆ 〈E1,4T3 + aT2〉 as 
desired.

The following steps are proved in a similar manner to Step 2. They are left to the 
reader who might want to check details in [18, Section 2.3]. �

Using similar techniques, one can prove that 〈T2〉 ∈ Im(ψ) and that 〈Ω2〉 is the 
completely prime ideal of A such that ψ(〈Ω2〉) = 〈T2〉. Again, we refer the interested 
reader to [18, Section 2.3] for details. We record these facts in the following lemma.

Lemma 3.5. 〈Ω2〉 is a completely prime ideal of A and ψ(〈Ω2〉) = 〈T2〉.

Since H-Spec(U+
q (G2)) is isomorphic as a poset to the Weyl group W of type G2 by 

[21], there are only 2 H-primes in U+
q (G2) of height 1. Since Ω1 and Ω2 are central, the 

prime ideals that they generate have height less than or equal to 1, and so equal to 1. 
As an immediate consequence, we get the following result.

Lemma 3.6.

1. 〈Ω1〉 and 〈Ω2〉 are the only height one H-invariant prime ideals of A.
2. Every non-zero H-invariant prime ideal of A contains either 〈Ω1〉 or 〈Ω2〉.

Remark 3.7. The first part of Lemma 3.6 can be deduced from [10, Theorem 4.3]. How-
ever, we needed the argument to establish the second part of the lemma.

3.3. Description of the 0-stratum and beyond

In this subsection, we will often assume that our base field K is algebraically closed. 
This assumption is actually not necessary for the main result of this subsection, Theo-
rem 3.12, but makes the description of the 0-stratum easier to present.

This subsection focuses on finding the height two maximal ideals of A = U+
q (G2). 

Note first that such ideals can only belong to the H-stratum of an H-prime of height 
less than or equal to 1 (since H-Spec(A) is isomorphic as a poset to W ). It follows from 
the previous subsections that we need to compute the H-strata of 3 H-primes: 0, 〈Ω1〉
and 〈Ω2〉. We start with the 0-stratum.

The strategy is similar to [13, Propositions 2.3 and 2.4]. Note that in this subsection, 
all ideals in A will simply be written as 〈Θ〉, where Θ ∈ A. However, if we want to refer 
to an ideal in any other algebra, say R, then that ideal will be written as 〈Θ〉R, where 
in this case, Θ ∈ R.

Proposition 3.8. Assume K is algebraically closed. Let P be the set of those monic irre-
ducible polynomials P (Ω1, Ω2) ∈ K[Ω1, Ω2] with P (Ω1, Ω2) �= Ω1 and P (Ω1, Ω2) �= Ω2. 
Then, Spec〈0〉(A) = {〈0〉} ∪ {〈P (Ω1, Ω2)〉 | P (Ω1, Ω2) ∈ P} ∪ {〈Ω1 − α, Ω2 − β〉 | α, β ∈
K∗}.
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Proof. We claim that Spec〈0〉(A) = {Q ∈ Spec(A) | Ω1, Ω2 /∈ Q}. To establish this claim, 
let us assume that this is not the case. Suppose that there exists Q ∈ Spec〈0〉(A) such 
that Ω1 or Ω2 belongs to Q; then the product Ω1Ω2 which is an H-eigenvector belongs to 
Q. Consequently, Ω1Ω2 ∈

⋂
h∈H h ·Q = 〈0〉, a contradiction. Hence, Spec〈0〉(A) ⊆ {Q ∈

Spec(A) | Ω1, Ω2 /∈ Q}. Conversely, suppose that Q ∈ Spec(A) such that Ω1, Ω2 /∈ Q, 
then 

⋂
h∈H h · Q is an H-invariant prime ideal of A, which contains neither Ω1 nor Ω2. 

Obviously, the only possibility for 
⋂

h∈H h · Q is 〈0〉 since every non-zero H-invariant 
prime ideal contains at least Ω1 or Ω2. Thus, 

⋂
h∈H h ·Q = 〈0〉. Hence, Q ∈ Spec〈0〉(A). 

Therefore, {Q ∈ Spec(A) | Ω1, Ω2 /∈ Q} ⊆ Spec〈0〉(A). This confirms our claim.
Since Ω1, Ω2 ∈ Z(A), we have that the set {Ωi

1Ω
j
2 | i, j ∈ N} is a right denominator 

set in the noetherian domain A. One can now localize A as R := A[Ω−1
1 , Ω−1

2 ]. Let Q ∈
Spec〈0〉(A), the map φ : Q �→ Q[Ω−1

1 , Ω−1
2 ] is an increasing bijection from Spec〈0〉(A)

onto Spec(R).
Since Ω1 and Ω2 are H-eigenvectors, and H acts on A, we have that H also acts on 

R. Since every non-zero H-prime ideal of A contains Ω1 or Ω2, one can easily check that 
R is H-simple (in the sense that the only H-invariant proper ideal of R is the 0 ideal).

We proceed to describe Spec(R) and Spec〈0〉(A). We deduce from [2, Exercise II.3.A]
that the action of H on R is rational. This rational action coupled with R being H-simple 
implies that the extension and contraction maps provide mutually inverse bijections be-
tween Spec(R) and Spec(Z(R)) [2, Corollary II.3.9]. From Lemma 3.1, Z(A) = K[Ω1, Ω2], 
and so Z(R) = K[Ω±1

1 , Ω±1
2 ]. Since K is algebraically closed, we have that Spec(Z(R)) =

{〈0〉Z(R)} ∪{〈P (Ω1, Ω2)〉Z(R) | P (Ω1, Ω2) ∈ P} ∪{〈Ω1−α, Ω2−β〉Z(R) | α, β ∈ K∗}. Since 
there is an inverse bijection between Spec(R) and Spec(Z(R)), and also R is H-simple, 
one can recover Spec(R) from Spec(Z(R)) as follows: Spec(R) = {〈0〉R} ∪{〈P (Ω1, Ω2)〉R |
P (Ω1, Ω2) ∈ P} ∪ {〈Ω1 − α, Ω2 − β〉R | α, β ∈ K∗}. It follows that Spec〈0〉(A) =
{〈0〉R ∩A} ∪{〈P (Ω1, Ω2)〉R ∩A | P (Ω1, Ω2) ∈ P} ∪{〈Ω1 −α, Ω2 − β〉R ∩A | α, β ∈ K∗}.

Undoubtedly, 〈0〉R ∩ A = 〈0〉. We now have to show that 〈P (Ω1, Ω2)〉R ∩ A =
〈P (Ω1, Ω2)〉, ∀P (Ω1, Ω2) ∈ P, and 〈Ω1 −α, Ω2 −β〉R ∩A = 〈Ω1 −α, Ω2 −β〉, ∀α, β ∈ K∗

to complete the proof.
Fix P (Ω1, Ω2) ∈ P. Observe that 〈P (Ω1, Ω2)〉 ⊆ 〈P (Ω1, Ω2)〉R ∩ A. To show the re-

verse inclusion, let y ∈ 〈P (Ω1, Ω2)〉R ∩ A. This implies that y = dP (Ω1, Ω2), where 
d ∈ R, since y ∈ 〈P (Ω1, Ω2)〉R. Also, d ∈ R implies that there exist i, j ∈ N such 
that d = aΩ−i

1 Ω−j
2 , where a ∈ A. Therefore, y = aΩ−i

1 Ω−j
2 P (Ω1, Ω2), which implies that 

yΩi
1Ω

j
2 = aP (Ω1, Ω2). Choose (i, j) ∈ N2 minimal (in the lexicographic order on N2) such 

that the equality holds. Without loss of generality, suppose that i > 0, then aP (Ω1, Ω2) ∈
〈Ω1〉. Given that 〈Ω1〉 is a completely prime ideal, this implies that a ∈ 〈Ω1〉 or 
P (Ω1, Ω2) ∈ 〈Ω1〉. Since P (Ω1, Ω2) ∈ P, it follows that P (Ω1, Ω2) /∈ 〈Ω1〉, hence a ∈ 〈Ω1〉. 
This further implies that a = tΩ1, where t ∈ A. Returning to yΩi

1Ω
j
2 = aP (Ω1, Ω2), we 

have that yΩi
1Ω

j
2 = tΩ1P (Ω1, Ω2). Therefore, yΩi−1

1 Ωj
2 = tP (Ω1, Ω2). This clearly con-

tradicts the minimality of (i, j), hence (i, j) = (0, 0), and y = aP (Ω1, Ω2) ∈ 〈P (Ω1, Ω2)〉. 
Consequently, 〈P (Ω1, Ω2)〉R ∩A = 〈P (Ω1, Ω2)〉 for all P (Ω1, Ω2) ∈ P as desired.
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Similarly, one can also verify that 〈Ω1 − α, Ω2 − β〉R ∩A = 〈Ω1 − α, Ω2 − β〉; ∀α, β ∈
K∗. �

Using similar techniques, we obtain the following description for the H-strata of 〈Ω1〉
and 〈Ω2〉.

Proposition 3.9. Assume K is algebraically closed.

1. Spec〈Ω1〉(A) = {〈Ω1〉} ∪ {〈Ω1, Ω2 − β〉 | β ∈ K∗}.
2. Spec〈Ω2〉(A) = {〈Ω2〉} ∪ {〈Ω1 − α, Ω2〉 | α ∈ K∗}.

Since maximal ideals in their strata are primitive for a QNA, we obtain the following 
result.

Corollary 3.10. Assume K is algebraically closed and let (α, β) ∈ K2 \ {(0, 0)}. The ideal 
〈Ω1 − α, Ω2 − β〉 of A is primitive.

Remark 3.11. The statement of the above corollary is still valid without the assumption 
that K is algebraically closed. The proof is actually similar as we only use this assumption 
to get a full description of the strata we were interested in.

We can actually prove a stronger result.

Theorem 3.12. Let (α, β) ∈ K2 \ {(0, 0)}. The prime ideal 〈Ω1 − α, Ω2 − β〉 of A is 
maximal.

Proof. Let (α, β) ∈ K2 \ {(0, 0)}. Suppose that there exists a maximal ideal I of A such 
that 〈Ω1 − α, Ω2 − β〉 � I � A. Let J be the H-invariant prime ideal in A such that 
I ∈ SpecJ(A).

We claim that J cannot be 〈0〉, 〈Ω1〉 or 〈Ω2〉. For instance, if α, β �= 0, then J cannot 
be equal to 〈0〉 since in this case 〈Ω1−α, Ω2−β〉 is maximal in the 0-stratum. Moreover, 
J �= 〈Ω1〉 as otherwise I would contain α = Ω1 − (Ω1 − α), a contradiction. The other 
cases are similar and left to the reader.

This means that J is an H-prime of height at least equal to 2. As the poset of H-primes 
is isomorphic to W , this forces J to contain both Ω1 and Ω2. Moreover, since J ⊆ I, it 
follows that Ω1, Ω2 ∈ I. Given that 〈Ω1−α, Ω2−β〉 ⊂ I, we have that Ω1−α, Ω2−β ∈ I. 
It follows that α, β ∈ I, hence I = A, a contradiction! This confirms that 〈Ω1−α, Ω2−β〉
is a maximal ideal in A. �
4. Simple quotients of U+

q (G2) and their relation to the second Weyl algebra

We refer the reader to [12] for background on the Gelfand-Kirillov dimension. We 
denote by GKdim(R) the Gelfand-Kirillov dimension of an algebra R.
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Now that we have found maximal ideals of A = U+
q (G2), we are going to study 

their corresponding simple quotient algebras. In view of Dixmier’s theorem, we consider 
these simple quotients as deformations of a Weyl algebra (of appropriate Gelfand-Kirillov 
dimension), and so we compare their properties with some known properties of the Weyl 
algebras. In this section, we prove that the Gelfand-Kirillov dimension of Aα,β is 4 and 
consequently prove that the height of the maximal ideal 〈Ω1−α, Ω2−β〉 is 2 as expected. 
Then we focus on describing a linear basis of Aα,β; we use this basis in the following 
section to study the derivations of Aα,β . Finally, we show that with appropriate choices 
of α and β, the algebra Aα,β is a quadratic extension of the second Weyl algebra A2(K)
at q = 1.

Recall from Theorem 3.12 that Ω1 − α and Ω2 − β, where (α, β) ∈ K2 \ {(0, 0)}, 
generate a maximal ideal of A. As a result, the corresponding quotient

Aα,β := A

〈Ω1 − α,Ω2 − β〉

is a simple noetherian domain. Denote the canonical images of Ei in Aα,β by ei :=
Ei + 〈Ω1 −α, Ω2 −β〉 for all 1 ≤ i ≤ 6. The algebra Aα,β satisfies the following relations:

e2e1 = q−3e1e2 e3e1 = q−1e1e3 − (q + q−1 + q−3)e2

e3e2 = q−3e2e3 e4e1 = e1e4 + (1 − q2)e2
3

e4e2 = q−3e2e4 −
q4 − 2q2 + 1
q4 + q2 + 1 e3

3 e4e3 = q−3e3e4

e5e1 = qe1e5 − (1 + q2)e3 e5e2 = e2e5 + (1 − q2)e2
3

e5e3 = q−1e3e5 − (q + q−1 + q−3)e4 e5e4 = q−3e4e5

e6e1 = q3e1e6 − q3e5 e6e2 = q3e2e6 + (q4 + q2 − 1)e4 + (q2 − q4)e3e5

e6e3 = e3e6 + (1 − q2)e2
5 e6e4 = q−3e4e6 −

q4 − 2q2 + 1
q4 + q2 + 1 e3

5

e6e5 = q−3e5e6,

and

e1e3e5 + ae1e4 + ae2e5 + a′e2
3 = α, (10)

e2e4e6 + be2e
3
5 + be3

3e6 + b′e2
3e

2
5 + c′e3e4e5 + d′e2

4 = β. (11)

Note that the constants a, b, a′ and b′ are defined in Appendix A.2.

4.1. Gelfand-Kirillov dimension (GKdim) of Aα,β

Assume first that α, β �= 0. Recall from Section 3.1 that R1 = KqM [T±1
1 , . . . , T±1

6 ] is 
the quantum torus associated to the quantum affine space A = A(2). Also, Ω1 = T1T3T5



18 S. Launois, I. Oppong / Bull. Sci. math. 184 (2023) 103257
and Ω2 = T2T4T6 in A. It follows from [4, Theorem 5.4.1] that there exists an Ore set 
Sα,β in Aα,β such that Aα,βS

−1
α,β

∼= R1/〈T1T3T5 − α, T2T4T6 − β〉.
Now, set

Aα,β := R1

〈T1T3T5 − α, T2T4T6 − β〉 .

Let ti := Ti + 〈T1T3T5 − α, T2T4T6 − β〉 denote the canonical images of the generators 
Ti of R1 in Aα,β . The algebra Aα,β is generated by t±1

1 , . . . , t±1
6 subject to the following 

relations:

titj = qμij tjti t1 = αt−1
5 t−1

3 t2 = βt−1
6 t−1

4 ,

for all 1 ≤ i, j ≤ 6; and μij are the entries of the skew-symmetric matrix M (see (4)). 
Observe that Aα,β

∼= KqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ], where the skew-symmetric matrix N can 
easily be deduced from M (by deleting the first two rows and columns) as follows:

N :=

⎡⎢⎣ 0 3 1 0
−3 0 3 3
−1 −3 0 3
0 −3 −3 0

⎤⎥⎦ .

Secondly, suppose that α = 0 and β �= 0.
Then, A0,βS

−1
0,β

∼= A0,β = KqM′ [T±1
2 , . . . , T±1

6 ]/〈T2T4T6 − β〉, where M ′ is the skew-
symmetric matrix obtained by deleting the first row and column of M . The algebra A0,β
is generated by t±1

2 , . . . , t±1
6 subject to the relations

titj = qμij tjti and t2 = βt−1
6 t−1

4 ,

for all 1 ≤ i, j ≤ 6 and μij ∈ M . We also have that A0,β ∼= KqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ].
Finally, when α �= 0 and β = 0, one can also verify that Aα,0 ∼= KqN [t±1

3 , t±1
4 , t±1

5 , t±1
6 ].

From the above discussion, in all cases, we have that Aα,βS
−1
α,β

∼= Aα,β
∼=

KqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]. With a slight abuse of notation, we write Aα,βS
−1
α,β = Aα,β =

KqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ] for all (α, β) ∈ K2 \ {(0, 0)}. It follows from [8, Theorem 6.3] that 
GKdim(Aα,β) = GKdim(Aα,βS

−1
α,β) = GKdim(Aα,β) = 4. Since Tauvel’s height formula 

holds in A = U+
q (G2) [8], we have that GKdim(A) = ht(〈Ω1−α, Ω2−β〉) +GKdim(Aα,β). 

Since GKdim(A) = 6, we conclude that ht(〈Ω1 − α, Ω2 − β〉) = 2 for all (α, β) ∈
K2 \ {(0, 0)}.

Proposition 4.1. GKdim(Aα,β) = 4 for all (α, β) �= (0, 0).

4.2. Linear basis for Aα,β

Set Aβ := A/〈Ω2 − β〉, where β ∈ K. Now, denote the canonical images of Ei by 
êi := Ei + 〈Ω2 − β〉 in Aβ . Clearly, Aα,β

∼= Aβ/〈Ω̂1 − α〉. As a result, one can identify 
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Aα,β with Aβ/〈Ω̂1 − α〉. Moreover, the algebra Aβ satisfies the relations of A = U+
q (G2)

and

ê2ê4ê6 + bê2ê5
3 + bê3

3ê6 + b′ê3
2ê5

2 + c′ê3ê4ê5 + d′ê4
2 = β. (12)

From Propositions 3.8 and 3.9, one can conclude that 〈Ω2 − β〉 is a completely prime 
ideal (since it is a prime ideal) of A for all β ∈ K. Hence, the algebra Aβ is a noetherian 
domain.

We are now going to find a linear basis for Aα,β, where (α, β) ∈ K2 \ {(0, 0)}. Since 
Aα,β is identified with Aβ/〈Ω̂1 − α〉, we will first and foremost find a basis for Aβ, and 
then proceed to find a basis for Aα,β. Note that the relations in Lemma A.1 are also 
valid in Aβ and Aα,β , and are going to be very useful in this section.

Proposition 4.2. The set S = {ê1
iê2

j ê3
kê4

ξ ê5
lê6

m | i, j, k, l, m ∈ N and ξ = 0, 1} is a 
K-basis of Aβ.

Proof. Since the family (Π6
s=1E

is
s )is∈N is a PBW-basis of A over K, it follows that the 

family (Π6
s=1ês

is)is∈N is a spanning set of Aβ over K. We want to show that S spans 
Aβ . We do this by showing that Π6

s=1ês
is can be written as a finite linear combination 

of the elements of S for all i1, . . . , i6 ∈ N by an induction on i4. The result is obvious 
when i4 = 0 or 1. For i4 ≥ 1, assume that

6∏
s=1

ês
is =

∑
(ξ,v)∈I

a(ξ,v)ê1
iê2

j ê3
kê4

ξ ê5
lê6

m,

where v := (i, j, k, l, m) ∈ N5 and the a(ξ,v) are all scalars. Note that I is a finite subset 
of {0, 1} ×N5. It follows from the commutation relations of Aβ (see Lemma A.1) that

ê1
i1 ê2

i2 ê3
i3 ê4

i4+1ê5
i5 ê6

i6 = q•
6∏

s=1
ês

is ê4 − q•d1[i6]ê1
i1 ê2

i2 ê3
i3 ê4

i4 ê5
i5+3ê6

i6−1.

From the inductive hypothesis, ê1
i1 ê2

i2 ê3
i3 ê4

i4 ê5
i5+3ê6

i6−1 ∈ Span(S). Hence, we pro-
ceed to show that Π6

s=1ês
is ê4 is also in the span of S. From the inductive hypothesis, 

we have

6∏
s=1

ês
is ê4 =

∑
(ξ,v)∈I

a(ξ,v)ê1
iê2

j ê3
kê4

ξ ê5
lê6

mê4.

Using the commutation relations in Lemma A.1, we have that
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6∏
s=1

ês
is ê4 =

∑
(ξ,v)∈I

q•a(ξ,v)ê1
iê2

j ê3
kê4

ξ+1ê5
lê6

m

+
∑

(ξ,v)∈I

q•d1[m]a(ξ,v)ê1
iê2

j ê3
kê4

ξ ê5
l+3ê6

m−1.

All the terms in the above expression belong to the span of S except ê1
iê2

j ê3
kê4

2ê5
lê6

m. 
From (12), we have that

ê4
2 = β0ê2ê4ê6 + bβ0ê2ê5

3 + bβ0ê3
3ê6 + b′β0ê3

2ê5
2 + c′β0ê3ê4ê5 − ββ0, (13)

where β0 = −1/d′. Substituting (13) into ê1
iê2

j ê3
kê4

2ê5
lê6

m, one can easily verify that

ê1
iê2

j ê3
kê4

2ê5
lê6

m ∈ Span(S).

Therefore, ê1
i1 ê2

i2 ê3
i3 ê4

i4+1ê5
i5 ê6

i6 can be written as a finite linear combination of the 
elements of S over K for all i1, . . . , i6 ∈ N. By the principle of mathematical induction, 
S is a spanning set of Aβ over K.

Next we show that S is a linearly independent set. Suppose that∑
(ξ,v)∈I

a(ξ,v)ê1
iê2

j ê3
kê4

ξ ê5
lê6

m = 0.

Since Aβ = A/〈Ω2 − β〉, it follows that∑
(ξ,v)∈I

a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 = (Ω2 − β)ν,

with ν ∈ A. Write ν =
∑

(i,...,n)∈J

b(i,...,n)E
i
1E

j
2E

k
3E

l
4E

m
5 En

6 , where J is a finite subset of 

N6 and b(i,...,n) are all scalars. It follows that

∑
(ξ,v)∈I

a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 =

∑
(i,...,n)∈J

b(i,...,n)E
i
1E

j
2E

k
3 (Ω2 − β)El

4E
m
5 En

6 . (14)

Before we continue the proof, the following needs to be noted.

♣ Let (i′, j′, k′, l′, m′, n′), (i, j, k, l, m, n) ∈ N6. We say that (i, j, k, l, m, n) <4 (i′, j′,
k′, l′, m′, n′) if [l < l′] or [l = l′ and i < i′] or [l = l′, i = i′ and j < j′] or 
[l = l′, i = i′, j = j′ and k < k′] or [l = l′, i = i′, j = j′, k = k′ and m < m′] or 
[l = l′, i = i′, j = j′, k = k′, m = m′ and n ≤ n′]. Note that the purpose of the 
square bracket [ ] is to differentiate the options.
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From Section 3.1, we have that Ω2 = E2E4E6 + bE2E
3
5 + bE3

3E6 + b′E2
3E

2
5 + c′E3E4E5 +

d′E2
4 in A = U+

q (G2). Now,

∑
(ξ,v)∈I

a(ξ,v)E
i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 =

∑
(i,...,n)∈J

b(i,...,n)E
i
1E

j
2E

k
3 (Ω2 − β)El

4E
m
5 En

6

=
∑

(i,...,n)∈J

d′b(i,...,m)E
i
1E

j
2E

k
3E

l+2
4 Em

5 En
6 + LT<4 ,

where LT<4 contains lower order terms with respect to <4 (as in ♣). Moreover, LT<4

vanishes when b(i,...,n) = 0 for all (i, . . . , n) ∈ J (one can easily confirm this by fully 
expanding the right hand side of (14)).

Now, suppose that there exists (i, j, k, l, m, n) ∈ J such that b(i,j,k,l,m,n) �= 0.
Let (i′, j′, k′, l′, m′, n′) be the greatest element of J with respect to <4 (defined in ♣
above) such that b(i′,j′,k′,l′,m′,n′) �= 0. Note that the family (Ei

1E
j
2E

k
3E

l
4E

m
5 En

6 )(i,...,n)∈N6

is a basis of A. Since LT<4 contains lower order terms, identifying the coefficients 
of Ei′

1 E
j′

2 Ek′
3 El′+2

4 Em′
5 En′

6 in the above equality, we have that d′b(i′,...,n′) = 0. Since 
b(i′,j′,k′,l′,m′,n′) �= 0, it follows that d′ = q12/(q6 − 1) = 0, a contradiction (see Ap-
pendix A.2 for the expression of d′). As a result, b(i,j,k,l,m,n) = 0 for all (i, j, k, l, m, n) ∈ J . 
Therefore, 

∑
(ξ,v)∈I a(ξ,v)E

i
1E

j
2E

k
3E

ξ
4E

l
5E

m
6 = 0. Since (Ei

1E
j
2E

k
3E

l
4E

m
5 En

6 )(i,...,n)∈N6 is a 
basis of A, it follows that a(ξ,v) = 0 for all (ξ, v) ∈ I. In conclusion, S is a linearly 
independent set and hence forms a basis of Aβ as desired. �
Proposition 4.3. Let (α, β) ∈ K2 \ {(0, 0)}. The set B = {ei1ej2eε13 eε24 ek5e

l
6 | i, j, k, l ∈

N and ε1, ε2 ∈ {0, 1}} is a K-basis of Aα,β.

Proof. The proof is analogous to the proof of Proposition 4.2. We refer the interested 
reader to [18, Section 3.2] for the details of this proof. �
Remark 4.4. Given the basis of Aα,β , we have computed the group of units of Aα,β . 
However, we do not include the details in this manuscript due to the voluminous com-
putations involved. We only summarize our findings below. Set

h1 := e3e5 + ae4 and h2 := (q−3 − q−9)e2e4 − (q4 − 2q2 + 1)/(q4 + q2 + 1)e3
3.

Theorem 4.5. Let (α, β) ∈ K2 \ {(0, 0)} and U(Aα,β) denote the group of units of Aα,β. 
We have that:

U(Aα,β) =

⎧⎪⎪⎨⎪⎪⎩
{λhi

1 | λ ∈ K∗, i ∈ Z} if α = 0
{λhi

2 | λ ∈ K∗, i ∈ Z} if β = 0
K∗ otherwise.
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4.3. Aα,β as a q-deformation of a quadratic extension of A2(K)

In this subsection, we assume that the characteristic of K, denoted char(K), not equal 
to 3.

Recall that GKdim(Aα,β) = 4 and so we should compare Aα,β to the second Weyl 
algebra. We prove that, for a suitable choice of α and β, the simple algebra Aα,β is a 
q-deformation of a quadratic extension of A2(K).

Recall that A2(K) is generated by x1, x2, y1 and y2 subject to the relations:

y1y2 = y2y1 x2y1 = y1x2 x1x2 = x2x1 x1y1 − y1x1 = 1

y1y2 = y2y1 x1y2 = y2x1 x2y1 = y1x2 x2y2 − y2x2 = 1.

Given the relations of Aα,β at the onset of this section, we have that A1, 1
9(q6−1)

satisfies 
the following relations:

e2e1 = q−3e1e2 e3e1 = q−1e1e3 − (q + q−1 + q−3)e2

e3e2 = q−3e2e3 e4e1 = e1e4 + (1 − q2)e2
3

e4e2 = q−3e2e4 −
q4 − 2q2 + 1
q4 + q2 + 1 e3

3 e4e3 = q−3e3e4

e5e1 = qe1e5 − (1 + q2)e3 e5e2 = e2e5 + (1 − q2)e2
3

e5e3 = q−1e3e5 − (q + q−1 + q−3)e4 e5e4 = q−3e4e5

e6e1 = q3e1e6 − q3e5 e6e2 = q3e2e6 + (q4 + q2 − 1)e4 + (q2 − q4)e3e5

e6e3 = e3e6 + (1 − q2)e2
5 e6e4 = q−3e4e6 −

q4 − 2q2 + 1
q4 + q2 + 1 e3

5

e6e5 = q−3e5e6,

and

(q−2 − 1)e1e3e5 + (q2 + 1 + q−2)e1e4 + (q2 + 1 + q−2)e2e5 − q4e2
3 = q−2 − 1,

(q6 − 1)e2e4e6 + 2q−1 − q−3 − q

q4 + q2 + 1 e2e
3
5 + 2q−1 − q−3 − q

q4 + q2 + 1 e3
3e6

+(q6 − 1)(q13 − q11)
(q4 + q2 + 1)2 e2

3e
2
5 −

q9(q6 − 1)
q4 + q2 + 1e3e4e5 + q12e2

4 = 1
9 .

Note that we have made the necessary substitutions for a, a′, b, b′, c′ and d′ from 
Appendix A.2.

Set F := K[z±1]. One can define a F [(z4+z2+1)−1]-algebra Az generated by e1, . . . , e6
subject to the following relations:
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e2e1 = z−3e1e2 e3e1 = z−1e1e3 − (z + z−1 + z−3)e2

e3e2 = z−3e2e3 e4e1 = e1e4 + (1 − z2)e2
3

e4e2 = z−3e2e4 −
z4 − 2z2 + 1
z4 + z2 + 1 e3

3 e4e3 = z−3e3e4

e5e1 = ze1e5 − (1 + z2)e3 e5e2 = e2e5 + (1 − z2)e2
3

e5e3 = z−1e3e5 − (z + z−1 + z−3)e4 e5e4 = z−3e4e5

e6e1 = z3e1e6 − z3e5 e6e2 = z3e2e6 + (z4 + z2 − 1)e4 + (z2 − z4)e3e5

e6e3 = e3e6 + (1 − z2)e2
5 e6e4 = z−3e4e6 −

z4 − 2z2 + 1
z4 + z2 + 1 e3

5

e6e5 = z−3e5e6,

(z−2 − 1)e1e3e5 + (z2 + 1 + z−2)e1e4 + (z2 + 1 + z−2)e2e5 − z4e2
3 = z−2 − 1, and

(z6 − 1)e2e4e6 + 2z−1 − z−3 − z

z4 + z2 + 1 e2e
3
5 + 2z−1 − z−3 − z

z4 + z2 + 1 e3
3e6

+(z6 − 1)(z13 − z11)
(z4 + z2 + 1)2 e2

3e
2
5 −

z9(z6 − 1)
z4 + z2 + 1e3e4e5 + z12e2

4 = 1
9 .

Set A1 := Az/〈z − 1〉 and observe that A1 satisfies the following relations:

e2e1 = e1e2 e3e1 = e1e3 − 3e2 e3e2 = e2e3

e4e1 = e1e4 e4e2 = e2e4 e4e3 = e3e4

e5e1 = e1e5 − 2e3 e5e2 = e2e5 e5e3 = e3e5 − 3e4

e5e4 = e4e5 e6e1 = e1e6 − e5 e6e2 = e2e6 + e4

e6e3 = e3e6 e6e4 = e4e6 e6e5 = e5e6

e2
4 = 1/9 0 = e2

3 − 3e1e4 − 3e2e5.

Lemma 4.6. e4 ∈ Z(A1) and also it is invertible.

Proof. Since e4ei = eie4 for all 1 ≤ i ≤ 6, we have that e4 ∈ Z(A1). Again, from 
e2
4 = 1/9, we have that e4(9e4) = (9e4)e4 = 1. Hence e4 is invertible with e−1

4 = 9e4. �
Given that e−1

4 = 9e4 and e4 ∈ Z(A1), it follows from the relation e2
3−3e1e4−3e2e5 = 0

that e1 = 3e2
3e4 − 9e2e4e5. Therefore, A1 can be generated by only e2, . . . , e6. All these 

generators commute except that

e6e2 = e2e6 + e4 and e5e3 = e3e5 − 3e4.

Since e4 is invertible, one can also verify that 9e2e4, 3e3e4, e4, e5 and e6 generate A1.
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Let R be an algebra generated by f2, f3, f4, f5, f6 subject to the following defining 
relations:

f3f2 = f2f3 f4f2 = f2f4 f4f3 = f3f4

f5f2 = f2f5 f5f4 = f4f5 f6f3 = f3f6

f6f4 = f4f6 f6f5 = f5f6 f2
4 = 1/9

f6f2 = f2f6 + 1 f5f3 = f3f5 − 1.

Proposition 4.7. R ∼= A1.

Proof. One can easily check that we define a homomorphism φ : R −→ A1 via

φ(f2) = 9e2e4 φ(f3) = 3e3e4 φ(f4) = e4 φ(f5) = e5 φ(f6) = e6.

Recall that e2
4 = 1/9. To check that φ is indeed a homomorphism, we just need to 

check its compatibility with the defining relations of R. We check this on the relation 
f6f2 − f2f6 = 1, and leave the remaining ones for the reader to verify. We do that as 
follows: φ(f6)φ(f2) −φ(f2)φ(f6) = 9e6e2e4−9e2e4e6 = 9e4(e6e2−e2e6) = 9e2

4 = 9(1/9) =
1 as required.

Conversely, one can check that a homomorphism ϕ : A1 −→ R can be defined via

ϕ(e1) = 3f2
3 f4 − f2f5 ϕ(e2) = f2f4 ϕ(e3) = 3f3f4

ϕ(e4) = f4 ϕ(e5) = f5 ϕ(e6) = f6.

We check this on the relation e2
3 − 3e1e4 − 3e2e5 = 0, and leave the remaining ones 

for the reader to verify. We do that as follows: ϕ(e3)2 − 3ϕ(e1)ϕ(e4) − 3ϕ(e2)ϕ(e5) =
(3f3f4)2 − 3(3f2

3 f4 − f2f5)f4 − 3f2f4f5 = 9f2
3 f

2
4 − 9f2

3 f
2
4 + 3f2f4f5 − 3f2f4f5 = 0 as 

expected.
To conclude we just observe that φ and ϕ are inverses of each other. �
The corollary below can easily be deduced from the above proposition.

Corollary 4.8. Set F := K[f4]/〈f2
4 − 1/9〉, we have that R ∼= A2(F), where A2(F) is the 

second Weyl algebra over the ring F .

Remark 4.9. We have the following isomorphisms:

F ∼= K[f4]/〈f4 − 1/3〉 ⊕K[f4]/〈f4 + 1/3〉 ∼= K⊕K.

These induce an isomorphism A2(F) ∼= A2(K) ⊕A2(K).
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Remark 4.10. Observe that the subalgebra B of R generated by f2, f3, f5, f6 is isomorphic 
to A2(K) and R ∼= B[f4]/〈f2

4 − 1/9〉 ∼= A2(K)[f4]/〈f2
4 − 1/9〉. Thus R is a quadratic 

extension of A2(K). Note also that A1, 1
9(q6−1)

is a q-deformation of A1 ∼= R ∼= A2(F) ∼=
A2(K)[f4]/〈f2

4 − 1/9〉 ∼= A2(K) ⊕A2(K).

5. Derivations of the simple quotients of U+
q (G2)

In this section, we compute the derivations of the algebra Aα,β using the DDA that 
allows to embed Aα,β into a suitable quantum torus. Derivations of quantum tori are 
known, thanks to the work of Osborn and Passman [19]. In our cases, such derivations 
are always the sum of an inner derivation and a scalar derivation (of the quantum torus). 
Since Aα,β can be embedded into a quantum torus, we first extend every derivation of 
Aα,β to a derivation of such quantum torus, and then pull back their description as 
a derivation of the quantum torus to a description of their action on the generators of 
Aα,β by “reverting” the DDA process. We conclude that every derivation of Aα,β is inner 
when α and β are both non-zero. However, when either α or β is zero, we conclude that 
every derivation of Aα,β is the sum of an inner and a scalar derivation. In fact, the first 
Hochschild cohomology group of Aα,β is of dimension 0 when α and β are both non-zero 
and 1 when either α or β is zero.

5.1. Preliminaries and strategy

Let 2 ≤ j ≤ 7 and (α, β) ∈ K2 \ {(0, 0)}. Set

A
(j)
α,β := A(j)

〈Ω1 − α,Ω2 − β〉 ,

where A(j) is defined in Section 3.1 and, Ω1 and Ω2 are the generators of the centre of 
A(j), see Remark 3.2. Note in particular that A(7)

α,β = Aα,β . For each 2 ≤ j ≤ 7, denote 

the canonical images of the generators Ei,j of A(j) in A(j)
α,β by ei,j for all 1 ≤ i ≤ 6.

As usual we denote by ti the canonical image of Ti in A(2)
α,β for each 1 ≤ i ≤ 6. For each 

3 ≤ j ≤ 6, define Sj :=
{
λt

ij
j t

ij+1
j+1 . . . ti66 | ij , . . . , i6 ∈ N and λ ∈ K∗

}
. One can observe 

that Sj is a multiplicative system of non-zero divisors (or regular elements) of A(j)
α,β . 

Furthermore; tj , . . . , t6 are all normal elements of A(j)
α,β and so Sj is an Ore set in A(j)

α,β. 
One can localize A(j)

α,β at Sj as follows:

Rj := A
(j)
α,βS

−1
j .

Let 3 ≤ j ≤ 6, and set Σj := {tkj | k ∈ N}. By [4, Lemme 5.3.2], Σj is an Ore set in both 

A
(j)
α,β and A(j+1)

α,β , and
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A
(j)
α,βΣ−1

j = A
(j+1)
α,β Σ−1

j .

As a consequence, similar to (8), we have that

Rj = Rj+1Σ−1
j , (15)

for all 2 ≤ j ≤ 6. By convention, R7 := Aα,β . We also construct the following tower of 
algebras in a manner similar to (9):

R7 = Aα,β ⊂ R6 = R7Σ−1
6 ⊂ R5 = R6Σ−1

5 ⊂ R4 = R5Σ−1
4 ⊂ R3. (16)

Note that R3 = A
(3)
α,βS

−1
3 = R4Σ−1

3 is the quantum torus Aα,β = KqN [t±1
3 , t±1

4 , t±1
5 , t±1

6 ]
studied in Section 4.1.

Our strategy to compute the derivations of R7 is to extend these derivations to deriva-
tions of the quantum torus R3. Then we can use the description of the derivations of 
a quantum torus obtained by Osborn and Passman in [19]. Once this is done, we will 
have a “nice” description but involving elements of R3 and we will then use the fact that 
these derivations fix (globally) all Ri to obtain a description only involving elements of 
R7. This is a step by step process requiring knowing linear bases for Ri. We find such 
bases in the next subsection.

Before doing so, we note from [4, Lemme 5.3.2] that the DDA theory predicts the 
following relations between the elements ei,j :

e1,6 = e1 + re5e
−1
6

e2,6 = e2 + te3e5e
−1
6 + ue4e

−1
6 + ne3

5e
−2
6

e3,6 = e3 + se2
5e

−1
6

e4,6 = e4 + be3
5e

−1
6

e1,5 = e1,6 + he3,6e
−1
5,6 + ge4,6e

−2
5,6

e2,5 = e2,6 + fe2
3,6e

−1
5,6 + pe3,6e4,6e

−2
5,6 + ee2

4,6e
−3
5,6

e3,5 = e3,6 + ae4,6e
−1
5,6

e1,4 = e1,5 + se2
3,5e

−1
4,5

e2,4 = e2,5 + be3
3,5e

−1
4,5

e1,3 = e1,4 + ae2,4e
−1
3,4

t1 := e1,2 = e1,3

t2 := e2,2 = e2,3 = e2,4

t3 := e3,2 = e3,3 = e3,4 = e3,5

t4 := e4,2 = e4,3 = e4,4 = e4,5 = e4,6

t5 := e5,2 = e5,3 = e5,4 = e5,5 = e5,6 = e5
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t6 := e6,2 = e6,3 = e6,4 = e6,5 = e6,6 = e6,

where, as usual, the necessary parameters can be found in Appendix A.2.
We also note that we have complete control over the centres of the algebras Ri.

Lemma 5.1. Let Z(Ri) denote the centre of Ri, then Z(Ri) = K for each 3 ≤ i ≤ 7.

Proof. One can easily verify that Z(R3) = K. Note that R7 = Aα,β . Since Ri is a 
localization of Ri+1 (see (15)), we have that K ⊆ Z(R7) ⊆ Z(R6) ⊆ Z(R5) ⊆ Z(R4) ⊆
Z(R3) = K. Therefore, Z(R7) = Z(R6) = Z(R5) = Z(R4) = Z(R3) = K. �
5.2. Linear bases for R3, R4 and R5

Let (α, β) ∈ K2 \ {(0, 0)}. We aim to find a basis of Rj for each j = 3, 4, 5. Since 
R3 = Aα,β , the set {ti3tj4tk5tl6 | i, j, k, l ∈ Z} is a K-basis of R3.

For simplicity, we set

f1 : = e1,4 F1 : = E1,4

z1 : = e1,5 Z1 : = E1,5

z2 : = e2,5 Z2 : = E2,5.

Basis for R4. Observe that

A
(4)
α,β = A(4)

〈Ω1 − α,Ω2 − β〉 ,

where Ω1 = F1T3T5 + aT2T5 and Ω2 = T2T4T6 in A(4). Recall from Section 4.2 that 
finding a basis for the algebra Aβ served as a good ground for finding a basis for Aα,β. 
In a similar manner, to find a basis for R4, we will first and foremost find a basis for the 
algebra

A
(4)
β S−1

4 = A(4)S−1
4

〈Ω2 − β〉 = A(4)S−1
4

〈T2T4T6 − β〉 ,

where β ∈ K∗. We will denote the canonical images of Ei,4 (resp. Ti) in A(4)
β by êi,4

(resp. t̂i) for all 1 ≤ i ≤ 6. Observe that t̂2 = βt̂6
−1

t̂4
−1 in A(4)

β S−1
4 . Note that when 

β = 0, then one can easily deduce that A(4)
β S−1

4 = A(4)S−1
4 /〈T2〉, hence, t̂2 = 0.

Proposition 5.2. The set S4 =
{
f̂1

i1
t̂3

i3
t̂4

i4
t̂5

i5
t̂6

i6 | (i1, i3, i4, i5, i6) ∈ N2 × Z3
}

is a K-

basis of A(4)
β S−1

4 , where β ∈ K.
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Proof. We begin by showing that S4 is a spanning set for A(4)
β S−1

4 . It is sufficient to do 

this by showing that f̂1
k1
t̂2

k2
t̂3

k3
t̂4

k4
t̂5

k5
t̂6

k6 can be written as a finite linear combination 
of the elements of S4 for all (k1, . . . , k6) ∈ N3 ×Z3. This can easily be done through an 

induction on k2 using the fact that t̂2 = βt̂6
−1

t̂4
−1 (note that, if β = 0, then t̂2 = 0).

We now prove that S4 is a linearly independent set. Suppose that∑
i∈I

aif̂1
i1
t̂3

i3
t̂4

i4
t̂5

i5
t̂6

i6 = 0.

This implies that ∑
i∈I

aiF
i1
1 T i3

3 T i4
4 T i5

5 T i6
6 = (Ω2 − β)ν,

for some ν ∈ A(4)S−1
4 . Write ν =

∑
j∈J

bjF
i1
1 T i2

2 T i3
3 T i4

4 T i5
5 T i6

6 , where j = (i1, i2, i3, i4, i5, i6)

∈ J ⊂ N3 × Z3 and bj is a family of scalars. Given that Ω2 = T2T4T6, it follows from 
the above equality that∑

i∈I

aiF
i1
1 T i3

3 T i4
4 T i5

5 T i6
6 =

∑
j∈J

q•bjF
i1
1 T i2+1

2 T i3
3 T i4+1

4 T i5
5 T i6+1

6

−
∑
j∈J

βbjF
i1
1 T i2

2 T i3
3 T i4

4 T i5
5 T i6

6 .

We denote by <2 the total order on Z6 defined by (i1, i2, i3, i4, i5, i6) <2 (w1, w2,

w3, w4, w5, w6) if [w2 > i2] or [w2 = i2, w1 > i1] or [w2 = i2, w1 = i1, w3 > i3] or . . . or 
[wl = il, w6 ≥ t6, l = 2, 1, 3, 4, 5].

Suppose that there exists (i1, . . . , i6) ∈ J such that b(i1,...,i6) �= 0. Let (w1, . . . , w6) ∈ J

be the greatest element of J with respect to <2 such that b(w1,...,w6) �= 0. Note that (
F i1

1 T i2
2 T i3

3 T i4
4 T i5

5 T i6
6
)
(i1,...,i6)∈J

is a basis of A(4)S−1
4 . Identifying the coefficients of 

Fw1
1 Tw2+1

2 Tw3
3 Tw4+1

4 Tw5
5 Tw6+1

6 , we have that b(w1,...,w6) = 0. This is a contradiction 
to our assumption, hence b(i1,...,i6) = 0 for all (i1, . . . , i6) ∈ J . This implies that∑

i∈I

aiF
i1
1 T i3

3 T i4
4 T i5

5 T i6
6 = 0.

Consequently, ai = 0 for all i ∈ I. Therefore, S4 is a linearly independent set. �
In R4 = A

(4)
α,βS

−1
4 , we have the following two relations: f1t3t5 +at2t5 = α and t2t4t6 =

β. This implies that f1t3 = αt−1
5 − at2 and t2 = βt−1

6 t−1
4 . Putting these two relations 

together, we have that

f1t3 = αt−1
5 − aβt−1

6 t−1
4 . (17)
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Note that we will usually identify R4 with A(4)
β S−1

4 /〈Ω̂1 − α〉.

Proposition 5.3. The set B4 =
{
f i1
1 ti44 ti55 ti66 , ti33 ti44 ti55 ti66 | i1, i3 ∈ N and i4, i5, i6 ∈ Z

}
is a 

K-basis of R4.

Proof. Since 
(
f̂1

k1
t̂3

k3
t̂4

k4
t̂5

k5
t̂6

k6
)

(k1,k3,...,k6)∈N2×Z3
is a basis of A(4)

β S−1
4 (Proposi-

tion 5.2), the set 
(
fk1
1 tk3

3 tk4
4 tk5

5 tk6
6

)
(k1,k3,...,k6)∈N2×Z3

spans R4. We show that B4 is a 

spanning set of R4 by showing that fk1
1 tk3

3 tk4
4 tk5

5 tk6
6 can be written as a finite linear com-

bination of the elements of B4 for all (k1, k3, . . . , k6) ∈ N2 × Z3. By Proposition 5.2, it 
is sufficient to do this by induction on k1. The result is clear when k1 = 0. Assume that 
the statement is true for k1 ≥ 0. That is,

fk1
1 tk3

3 tk4
4 tk5

5 tk6
6 =

∑
i∈I1

aif
i1
1 ti44 ti55 ti66 +

∑
j∈I2

bjt
i3
3 ti44 ti55 ti66 ,

where i = (i1, i4, i5, i6) ∈ I1 ⊂ N × Z3 and j = (i3, i4, i5, i6) ∈ I2 ⊂ N × Z3. Note that 
ai and bj are all scalars. It follows that

fk1+1
1 tk3

3 tk4
4 tk5

5 tk6
6 = f1

(
fk1
1 tk3

3 tk4
4 tk5

5 tk6
6

)
=

∑
i∈I1

aif
i1+1
1 ti44 ti55 ti66 +

∑
j∈I2

bjf1t
i3
3 ti44 ti55 ti66 .

Clearly, the monomial f i1+1
1 ti44 ti55 ti66 ∈ Span(B4). We have to also show that f1t

i3
3 ti44 ti55 ti66 ∈

Span(B4) for all i3 ∈ N and i4, i5, i6 ∈ Z. This can easily be achieved by an induction 
on i3, and the use of the relation f1t3 = αt−1

5 − aβt−1
6 t−1

4 . Therefore, by the principle of 
mathematical induction, B4 is a spanning set of R4 over K.

We prove that B4 is a linearly independent set. Suppose that

∑
i∈I1

aif
i1
1 ti44 ti55 ti66 +

∑
j∈I2

bjt
i3
3 ti44 ti55 ti66 = 0.

It follows that there exists ν ∈ A
(4)
β S−1

4 such that

∑
i∈I1

aif̂1
i1
t̂4

i4
t̂5

i5
t̂6

i6 +
∑
j∈I2

bj t̂3
i3
t̂4

i4
t̂5

i5
t̂6

i6 =
(
Ω̂1 − α

)
ν.

Write ν =
∑
l∈J

clf̂1
i1
t̂3

i3
t̂4

i4
t̂5

i5
t̂6

i6 , where l = (i1, i3, i4, i5, i6) ∈ J ⊂ N2×Z3 and cl ∈ K. 

Note that t̂2 = βt̂6
−1

t̂4
−1. We have that Ω̂1 = f̂1t̂3t̂5 + at̂2t̂5 = f̂1t̂3t̂5 + aβt̂6

−1
t̂4

−1
t̂5.
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Therefore,

∑
i∈I1

aif̂1
i1
t̂4

i4
t̂5

i5
t̂6

i6 +
∑
j∈I2

bj t̂3
i3
t̂4

i4
t̂5

i5
t̂6

i6 =
∑
l∈J

q•clf̂1
i1+1

t̂3
i3+1

t̂4
i4
t̂5

i5+1
t̂6

i6

+
∑
l∈J

q•βaclf̂1
i1
t̂3

i3
t̂4

i4−1
t̂5

i5+1
t̂6

i6−1

−
∑
l∈J

αclf̂1
i1
t̂3

i3
t̂4

i4
t̂5

i5
t̂6

i6
.

Suppose that there exists (i1, i3, i4, i5, i6) ∈ J such that c(i1,i3,i4,i5,i6) �= 0.
Let (w1, w3, w4, w5, w6) ∈ J be the greatest element (in the lexicographic order on N2 ×
Z3) of J such that c(w1,w3,w4,w5,w6) �= 0. Since 

(
f̂1

k1
t̂3

k3
t̂4

k4
t̂5

k5
t̂6

k6
)

(k1,k3,...,k6)∈N2×Z3

is a basis of A(4)S−1
4 , it follows that the coefficients of f̂1

w1+1
t̂3

w3+1
t̂4

w4
t̂5

w5+1
t̂6

w6 in the 
above equality can be identified as: q•c(w1,w3,w4,w5,w6) = 0. Hence, c(w1,w3,w4,w5,w6) = 0, 
a contradiction! Therefore, c(i1,i3,i4,i5,i6) = 0 for all (i1, i3, i4, i5, i6) ∈ J . This further 
implies that

∑
i∈I1

aif̂1
i1
t̂4

i4
t̂5

i5
t̂6

i6 +
∑
j∈I2

bj t̂3
i3
t̂4

i4
t̂5

i5
t̂6

i6 = 0.

It follows from the previous proposition that ai and bj are all zero. In conclusion, B4 is 
a linearly independent set. �

Basis for R5. We will identify R5 with A(5)
α S−1

5 /〈Ω̂2 − β〉, where A(5)
α S−1

5 = A(5)S−1
5

〈Ω1 − α〉 . 

Note that the canonical images of Ei,j (resp. Ti) in A(5)
α will be denoted by êi,j (resp. 

t̂i). We now find a basis for A(5)
α S−1

5 . Recall that Ω1 = Z1T3T5 + aZ2T5 and Ω2 =
Z2T4T6 + bT 3

3 T6 in A(5) (remember that Z1 := E1,5 and Z2 := E2,5). Since z2t4t6 +
bt33t6 = β and ẑ1t̂3t̂5 + aẑ2t̂5 = α in R5 and A(5)

α S−1
5 respectively, we have the relation 

ẑ2 = 1
a

(
αt̂5

−1 − ẑ1t̂3

)
in A(5)

α S−1
5 and, in R5, we have the following two relations:

z2 = 1
a

(
αt−1

5 − z1t3
)
, (18)

t33 = 1
b

(
βt−1

6 − z2t4
)

= β

b
t−1
6 − q3α

ab
t4t

−1
5 + 1

ab
z1t3t4. (19)

Proposition 5.4. The set S5 =
{
ẑ1

i1 t̂3
i3
t̂4

i4
t̂5

i5
t̂6

i6 | (i1, i3, . . . , i6) ∈ N3 × Z2
}

is a K-

basis of A(5)
α S−1

5 , where α ∈ K.
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Proof. The proof is similar to that of Proposition 5.2, and so it is left to the reader. 
Details can be found in [18, Sec. 4.1]. �
Proposition 5.5. The set B5 =

{
zi11 tξ3t

i4
4 ti55 ti66 | (ξ, i1, i4, i5, i6) ∈ {0, 1, 2} ×N2 × Z2

}
is 

a K-basis of R5.

Proof. The proof is similar to that of Proposition 5.3, and so it is left to the reader. 
Details can be found in [18, Sec. 4.1]. �

We note for future reference the following immediate corollary.

Corollary 5.6. Let I be a finite subset of {0, 1, 2} ×N ×Z3 and (a(ξ,i))i∈I be a family of 
scalars. If ∑

(ξ,i)∈I

a(ξ.i)z
i1
1 tξ3t

i4
4 ti55 ti66 = 0,

then a(ξ,i) = 0 for all (ξ, i) ∈ I.

Remark 5.7. We were not successful in finding a basis for R6. However, this has no effect 
on our main results in this section. Since R7 = Aα,β , we already have a basis for R7
(Proposition 4.3).

5.3. Derivations of Aα,β

We are now going to study the derivations of Aα,β. We will only treat the case when 
both α and β are non-zero, and mention results when either α or β is zero without 
details.

Throughout this subsection, we assume that α and β are non-zero. Let Der(Aα,β)
denote the set of K-derivations of Aα,β and D ∈ Der(Aα,β). Via localization, D extends 
uniquely to a derivation of each of the series of algebras in (16). Therefore, D extends 
to a derivation of the quantum torus R3 = KqN [t±1

3 , t±1
4 , t±1

5 , t±1
6 ]. It follows from [19, 

Corollary 2.3] that D can uniquely be written as:

D = adx + δ,

where x ∈ R3, and δ is a scalar derivation of R3 defined as δ(ti) = λiti for each 
i = 3, 4, 5, 6. Note that λi ∈ Z(R3) = K. Also, adx is an inner derivation of R3 defined 
as adx(u) = xu − ux for all u ∈ R3.

We aim to describe D as a derivation of Aα,β = R7. We do this in several steps.
Before starting the process we note the following relations that will be used in this 

section. They all follow from [4, Lemme 5.3.2].
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Remark 5.8. Recall the notations:

f1 : = e1,4 F1 : = E1,4

z1 : = e1,5 Z1 : = E1,5

z2 : = e2,5 Z2 : = E2,5.

Then

f1 = t1 − at2t
−1
3 e3,6 = t3 − at4t

−1
5

z1 = f1 − st23t
−1
4 e1 = e1,6 − rt5t

−1
6

z2 = t2 − bt33t
−1
4 e3 = e3,6 − st25t

−1
6

e1,6 = z1 − he3,6t
−1
5 − gt4t

−2
5 e4 = t4 − bt35t

−1
6 .

We first describe D as a derivation of R4.

Lemma 5.9.

1. x ∈ R4.
2. λ5 = λ4 + λ6, δ(f1) = −(λ3 + λ5)f1 and δ(t2) = −λ5t2.
3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. Then, D(eκ,4) = adx(eκ,4) + λκeκ,4 for all 

κ ∈ {1, . . . , 6}.

Proof. 1. Set Qq := KqN′ [t±1
4 , t±1

5 , t±1
6 ], where N ′ is the skew-symmetric sub-matrix of 

N (see Section 4.1) obtained by deleting the first row and first column of N . Observe 
that Qq is a subalgebra of both R3 and R4 with central element

z := t4t
−1
5 t6.

Furthermore, since R3 is a quantum torus, we can present it as a free left Qq-module 
with basis (ts3)s∈Z. With this presentation, x ∈ R3 can be written as

x =
∑
s∈Z

yst
s
3,

where ys ∈ Qq. Set

x+ :=
∑
s≥0

yst
s
3 and x− :=

∑
s<0

yst
s
3.

Clearly, x = x+ + x−. Obviously, x+ ∈ R4, hence we aim to also show that x− belongs 
to R4 by following a pattern similar to [11, Proposition 7.1.2]. As D is a derivation 
of R4, we have that D(zj) ∈ R4 for all j ∈ N≥1. Now D(zj) = adx(zj) + δ(zj) =
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adx+(zj) + adx−(zj) + δ(zj). Observe that adx+(zj) ∈ R4; since x+, zj ∈ R4. Also, 
δ(z) = δ(t4t−1

5 t6) = (λ4 − λ5 + λ6)t4t−1
5 t6 = (λ4 − λ5 + λ6)z, where λ4, λ5, λ6 ∈ K. 

It follows that δ(zj) = j(λ4 − λ5 + λ6)zj ∈ R4. We can therefore conclude that each 
adx−(zj) belongs to R4 since D(zj), adx+(zj), δ(zj) ∈ R4. We have:

adx−(zj) = x−z
j − zjx− =

−n∑
s=−1

yst
s
3z

j −
−n∑

s=−1
ysz

jts3.

One can verify that zt3 = q−2t3z. Therefore,

adx−(zj) =
−n∑

s=−1
(1 − q−2js)ysts3zj , hence, adx−(zj)z−j =

−n∑
s=−1

(1 − q−2js)ysts3.

Set νj := adx−(zj)z−j ∈ R4. It follows that

νj =
−n∑

s=−1
(1 − q−2js)ysts3,

for each j ∈ {1, . . . , n}. One can therefore write the above equality as a matrix equation 
as follows:

⎡⎢⎢⎢⎢⎢⎣
(1 − q2) (1 − q4) (1 − q6) · · · (1 − q2n)
(1 − q4) (1 − q8) (1 − q12) · · · (1 − q4n)
(1 − q6) (1 − q12) (1 − q18) · · · (1 − q6n)

...
...

...
. . .

...
(1 − q2n) (1 − q4n) (1 − q6n) · · · (1 − q2n2)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
y−1t

−1
3

y−2t
−2
3

y−3t
−3
3

...
y−nt

−n
3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ν1
ν2
ν3
...
νn

⎤⎥⎥⎥⎥⎦ .

We already know that each νj belongs to R4. We want to show that ysts3 also belongs to 
R4 for each s ∈ {−1, . . . , −n}. To establish this, it is sufficient to show that the coefficient 
matrix of the above matrix equation is invertible. Let U represent this matrix. Thus,

U =

⎡⎢⎢⎢⎢⎢⎣
(1 − q2) (1 − q4) (1 − q6) · · · (1 − q2n)
(1 − q4) (1 − q8) (1 − q12) · · · (1 − q4n)
(1 − q6) (1 − q12) (1 − q18) · · · (1 − q6n)

...
...

...
. . .

...
(1 − q2n) (1 − q4n) (1 − q6n) · · · (1 − q2n2)

⎤⎥⎥⎥⎥⎥⎦ .

Apply row operations: −rn−1 + rn → rn, . . . , −r2 + r3 → r3, −r1 + r2 → r2 to U to 
obtain:
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U ′ =

⎡⎢⎢⎢⎢⎣
l1 l2 l3 · · · ln
q2l1 q4l2 q6l3 · · · q2nln
q4l1 q8l2 q12l3 · · · q4nln

...
...

...
. . .

...
q2(n−1)l1 q4(n−1)l2 q6(n−1)l3 · · · q2n(n−1)ln

⎤⎥⎥⎥⎥⎦ ,

where li := 1 − q2i; i ∈ {1, 2, . . . , n}. Clearly, U ′ is similar to a Vandermonde matrix 
(since the terms in each column form a geometric sequence) which is well known to be 
invertible when all parameters are pairwise distinct (this is the case here as q is not a root 
of unity). This further implies that U is invertible. So each ysts3 is a linear combination 
of the νj ∈ R4. As a result, ysts3 ∈ R4 for all s ∈ {−1, . . . , −n}. Consequently, x− =∑−n

s=−1 yst
s
3 ∈ R4 as desired.

2. Recall that δ(tκ) = λκtκ for all κ ∈ {3, 4, 5, 6} and λκ ∈ K. From Remark 5.8, we 
have that f1 = t1 − at2t

−1
3 . Recall from Section 4.1 that t1 = αt−1

5 t−1
3 and t2 = βt−1

6 t−1
4

in R3 = Aα,β . As a result, f1 = αt−1
5 t−1

3 − aβt−1
6 t−1

4 t−1
3 . Hence,

δ(f1) = − (λ5 + λ3)αt−1
5 t−1

3 + (λ6 + λ4 + λ3)aβt−1
6 t−1

4 t−1
3 . (20)

From Proposition 5.3, the set B4 =
{
f i1
1 ti44 ti55 ti66 , ti33 ti44 ti55 ti66 | i1, i3 ∈ N and i4, i5, i6 ∈ Z

}
is a K-basis of R4. Since t4, t5 and t6 q-commute with f1 and t3, one can also write 
δ(f1) ∈ R4 in terms of B4 as follows:

δ(f1) =
∑
r>0

arf
r
1 +

∑
s≥0

bst
s
3, (21)

where ar and bs belong to Qq = KqN′ [t±1
4 , t±1

5 , t±1
6 ].

fr
1 = (αt−1

5 t−1
3 − aβt−1

6 t−1
4 t−1

3 )r =
r∑

i=0

(
r

i

)
q•

(αt−1
5 t−1

3 )i(−aβt−1
6 t−1

4 t−1
3 )r−i

=
r∑

i=0

(
r

i

)
q•
αi(−aβ)r−iq

1
2 i(i−1)+ 3

2 (r−i)(r−i−1)+3i(i−r)t−i
5 (t−1

6 t−1
4 )r−it−r

3

= crt
−r
3 , (22)

where

cr =
r∑

i=0

(
r

i

)
q•
q

1
2 i(i−1)+ 3

2 (r−i)(r−i−1)+3i(i−r)αi(−aβ)r−it−i
5 (t−1

6 t−1
4 )r−i ∈ Qq \ {0}.

(23)

Substitute (22) into (21) to obtain;

δ(f1) =
∑
r>0

arcrt
−r
3 +

∑
s≥0

bst
s
3. (24)
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One can rewrite (20) as

δ(f1) = dt−1
3 , (25)

where d = −(λ5 + λ3)αt−1
5 + (λ6 + λ4 + λ3)aβt−1

6 t−1
4 ∈ Qq. Comparing (24) to (25)

shows that bs = 0 for all s ≥ 0, and arcr = 0 for all r �= 1. Therefore δ(f1) = a1c1t
−1
3 . 

Moreover, from (23), c1 = −aβt−1
6 t−1

4 + αt−1
5 . Hence,

δ(f1) = a1c1t
−1
3 = a1(−aβt−1

6 t−1
4 + αt−1

5 )t−1
3 = a1αt

−1
5 t−1

3 − a1aβt
−1
6 t−1

4 t−1
3 . (26)

Comparing (26) to (20) reveals that a1 = −(λ5 + λ3) = −(λ6 + λ4 + λ3). Consequently, 
λ5 = λ6 +λ4. Hence, δ(f1) = −(λ5 +λ3)αt−1

5 t−1
3 +(λ5 +λ3)aβt−1

6 t−1
4 t−1

3 = −(λ5 +λ3)f1. 
Finally, since t2 = βt−1

6 t−1
4 in R4, it follows that δ(t2) = −(λ6 + λ4)βt−1

6 t−1
4 = −(λ6 +

λ4)t2 = −λ5t2.
3. This easily follows from parts 1 and 2. �
We proceed to describe D as a derivation of R5.

Lemma 5.10.

1. x ∈ R5.
2. λ4 = 3λ3 + λ5, λ6 = −3λ3, δ(z1) = −(λ3 + λ5)z1 and δ(z2) = −λ5z2.
3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. Then, D(eκ,5) = adx(eκ,5) + λκeκ,5 for all 

κ ∈ {1, . . . , 6}.

Proof. In this proof, we denote υ := (i, j, k, l) ∈ N × Z3.
1. We already know that x ∈ R4 = R5[t−1

4 ]. Given the basis B5 of R5 (Proposition 5.5), 
x can be written as x =

∑
(ξ,υ)∈I

a(ξ,υ)z
i
1t

ξ
3t

j
4t

k
5t

l
6, where I is a finite subset of {0, 1, 2} ×

N × Z3 and the a(ξ,υ) are scalars. Write x = x− + x+, where

x+ =
∑

(ξ,υ)∈I
j≥0

a(ξ,υ)z
i
1t

ξ
3t

j
4t

k
5t

l
6 and x− =

∑
(ξ,υ)∈I
j<0

a(ξ,υ)z
i
1t

ξ
3t

j
4t

k
5t

l
6.

Suppose that x− �= 0. Then, there exists a minimum j0 < 0 such that a(ξ,i,j0,k,l) �= 0 for 
some (ξ, i, j0, k, l) ∈ I and a(ξ,i,j,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I with j < j0. Given this 
assumption, write

x− =
∑

(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)z
i
1t

ξ
3t

j
4t

k
5t

l
6.
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Now, D(t6) = adx+(t6) + adx−(t6) + δ(t6) ∈ R5. This implies that adx−(t6) ∈ R5, since 
adx+(t6) +δ(t6) = adx+(t6) +λ6t6 ∈ R5. We aim to show that x− = 0. Since t6 is normal 
in R5, one can easily verify that

adx−(t6) =
∑

(ξ,υ)∈I
j0≤j≤−1

(
q3(i−j−k) − 1

)
a(ξ,υ)z

i
1t

ξ
3t

j
4t

k
5t

l+1
6 .

Set w := (i, j, k, l) ∈ N2×Z2. One can equally write adx−(t6) ∈ R5 in terms of the basis 
B5 of R5 (Proposition 5.5) as:

adx−(t6) =
∑

(ξ,w)∈J

b(ξ,w)z
i
1t

ξ
3t

j
4t

k
5t

l
6,

where J is a finite subset of {0, 1, 2} ×N2 ×Z2 and b(ξ,w) are all scalars. It follows that

∑
(ξ,υ)∈I
j0≤j≤−1

(
q3(i−j−k) − 1

)
a(ξ,υ)z

i
1t

ξ
3t

j
4t

k
5t

l+1
6 =

∑
(ξ,w)∈J

b(ξ,w)z
i
1t

ξ
3t

j
4t

k
5t

l
6.

As B5 is a basis for R5, we deduce from Corollary 5.6 that 
(
zi1t

ξ
3t

j
4t

k
5t

l
6

)
(i∈N;j,k,l∈Z;ξ∈{0,1,2})

is a basis for R5[t−1
4 ]. Now, at j = j0, denote υ = (i, j, k, l) by υ0 := (i, j0, k, l). Since 

v0 ∈ N × Z3 (with j0 < 0) and w = (i, j, k, l) ∈ N2 × Z2 (with j ≥ 0), it follows from 
the above equality that, at υ0, we must have(

q3(i−j0−k) − 1
)
a(ξ,υ0) = 0.

From our initial assumption, the coefficients a(ξ,υ0) are all not zero, therefore q3(i−j0−k)−
1 = 0. This implies that

k = i− j0, (27)

for some (ξ, υ0) ∈ I.
In a similar manner, D(t3) = adx+(t3) + adx−(t3) + δ(t3) ∈ R5. This implies that 

adx−(t3) ∈ R5, since adx+(t3) + δ(t3) = adx+(t3) + λ3t3 ∈ R5. We have that

adx−(t3) =
∑

(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)z
i
1t

ξ
3t

j
4t

k
5t

l
6t3 −

∑
(ξ,υ)∈I

j0≤j≤−1

a(ξ,υ)t3z
i
1t

ξ
3t

j
4t

k
5t

l
6.

One can deduce from Lemma A.1(3a) that

t3z
i
1 = q−izi1t3 + d2[i]zi−1

1 z2,
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where d2[i] = q1−id2[1] 
(

1 − q−2i

1 − q−2

)
, d2[1] = −(q + q−1 + q−3) and d2[0] = 0. Therefore, 

the above expression for adx−(t3) can be expressed as:

adx−(t3) =
∑

(0,υ)∈I
j0≤j≤−1

f [i, j, k]a(0,υ)z
i
1t3t

j
4t

k
5t

l
6 +

∑
(1,υ)∈I
j0≤j≤−1

f [i, j, k]a(1,υ)z
i
1t

2
3t

j
4t

k
5t

l
6

+
∑

(2,υ)∈I
j0≤j≤−1

f [i, j, k]a(2,υ)z
i
1t

3
3t

j
4t

k
5t

l
6 −

∑
(ξ,υ)∈I
j0≤j≤−1

a(ξ,υ)d2[i]zi−1
1 z2t

ξ
3t

j
4t

k
5t

l
6,

where f [i, j, k] := q−(k+3j) − q−i. Recall from (18) and (19) that

z2 = 1
a

(
αt−1

5 − z1t3
)

and t33 = β

b
t−1
6 − q3α

ab
t4t

−1
5 + 1

ab
z1t3t4,

where a and b are non-zero scalars (Appendix A.2). Using these two expressions, one can 
write adx−(t3) in terms of the basis of R5 as:

adx−(t3) = K +
∑

(0,υ0)∈I

g[i, j0, k]a(0,υ0)z
i
1t3t

j0
4 tk5t

l
6 +

∑
(1,υ0)∈I

g[i, j0, k]a(1,υ0)z
i
1t

2
3t

j0
4 tk5t

l
6

+
∑

(2,υ0)∈I

q•β

b
a(2,υ0)g[i, j0, k]zi1t

j0
4 tk5t

l−1
6 −

∑
(ξ,υ0)∈I

q•α

a
d2[i]a(ξ,υ0)z

i−1
1 tξ3t

j0
4 tk−1

5 tl6

=
∑

1/b
(
q•βg[i, j0, k]a(2,i,j0,k,l+1) + (q•αbd2[i + 1]/a)a(0,i+1,j0,k+1,l)

)
zi1t

j0
4 tk5t

l
6

+
∑(

g[i, j0, k]a(0,i,j0,k,l) + (q•αd2[i + 1]/a)a(1,i+1,j0,k+1,l)
)
zi1t3t

j0
4 tk5t

l
6

+
∑(

g[i, j0, k]a(1,i,j0,k,l) + (q•αd2[i + 1]/a)a(2,i+1,j0,k+1,l)
)
zi1t

2
3t

j0
4 tk5t

l
6 + K,

(28)

where g[i, j0, k] := q−(k+3j0) − q−i + d2[i]/a and

K ∈ Span
(
B5 \ {zi1tξ3t

j0
4 tk5t

l
6 | (ξ, i, j0, k, l) ∈ {0, 1, 2} ×N × Z3}

)
.

One can also write adx−(t3) ∈ R5 in terms of the basis B5 of R5 (Proposition 5.5) as:

adx−(t3) =
∑

(ξ,w)∈J

b(ξ,w)z
i
1t

ξ
3t

j
4t

k
5t

l
6, (29)

where J is a finite subset of {0, 1, 2} ×N2 ×Z2, and b(ξ,w) ∈ K. Recall: w = (i, j, k, l) ∈
N2 × Z2. Now, (28) and (29) imply that
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∑
(ξ,w)∈J

b(ξ,w)z
i
1t

ξ
3t

j
4t

k
5t

l
6 =

∑
1/b

(
q•βg[i, j0, k]a(2,i,j0,k,l+1) + (q•αbd2[i + 1]/a)a(0,i+1,j0,k+1,l)

)
zi1t

j0
4 tk5t

l
6

+
∑(

g[i, j0, k]a(0,i,j0,k,l) + (q•αd2[i + 1]/a)a(1,i+1,j0,k+1,l)
)
zi1t3t

j0
4 tk5t

l
6

+
∑(

g[i, j0, k]a(1,i,j0,k,l) + (q•αd2[i + 1]/a)a(2,i+1,j0,k+1,l)
)
zi1t

2
3t

j0
4 tk5t

l
6 + K.

We have already established that 
(
zi1t

ξ
3t

j
4t

k
5t

l
6

)
(i∈N;j,k,l∈Z;ξ∈{0,1,2})

is a basis for R5[t−1
4 ]. 

Given that v0 = (i, j0, k, l) ∈ N × Z3 (with j0 < 0) and w = (i, j, k, l) ∈ N2 × Z2 (with 
j ≥ 0), it follows that

q•βg[i, j0, k]a(2,i,j0,k,l+1) + (q•αbd2[i + 1]/a)a(0,i+1,j0,k+1,l) = 0; (30)

g[i, j0, k]a(0,i,j0,k,l) + (q•αd2[i + 1]/a)a(1,i+1,j0,k+1,l) = 0; (31)

g[i, j0, k]a(1,i,j0,k,l) + (q•αd2[i + 1]/a)a(2,i+1,j0,k+1,l) = 0. (32)

Suppose that there exists (ξ, i, j0, k, l) ∈ I such that g[i, j0, k] = 0. Then,

g[i, j0, k] = q−(k+3j0) − q−i + d2[i]/a = 0.

Note that d2[i] = d2[1]q1−i

(
1 − q−2i

1 − q−2

)
, where d2[1] = −(q + q−1 + q−3) and d2[0] = 0. 

Again, recall from Appendix A.2 that a = (q2 + 1 + q−2)/(q−2 − 1) = qd2[1]
1 − q−2 . Given 

these expressions for d2[i] and a, we have that

g[i, j0, k] = q−(k+3j0) − q−i + d2[i]/a = q−3j0−k − q−3i = 0.

Since q is not a root of unity, we get

k = 3(i− j0). (33)

Comparing (33) to (27) shows that i − j0 = 0 which implies that i = j0 < 0, a contra-
diction (note that i ≥ 0). Therefore, g[i, j0, k] �= 0 for all (ξ, i, j, k, l) ∈ I.

Now, observe that if there exists ξ ∈ {0, 1, 2} such that a(ξ,i,j0,k,l) = 0 for all 
(i, j0, k, l) ∈ N × Z3, then one can easily deduce from equations (30), (31) and (32)
that a(ξ,i,j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I. This will contradict our initial assump-
tion. Therefore, for each ξ ∈ {0, 1, 2}, there exists some (i, j0, k, l) ∈ N × Z3 such that 
a(ξ,i,j0,k,l) �= 0. Without loss of generality, let (u, j0, v, w) be the greatest element in the 
lexicographic order on N×Z3 such that a(0,u,j0,v,w) �= 0 and a(0,i,j0,k,l) = 0 for all i > u.

From (31), at (i, j0, k, l) = (u, j0, v, w), we have:

g[u, j0, v]a(0,u,j0,v,w) + (q•αd2[u + 1]/a)a(1,u+1,j0,v+1,w) = 0.
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From (32), at (i, j0, k, l) = (u + 1, j0, v + 1, w), we have:

g[u + 1, j0, v + 1]a(1,u+1,j0,v+1,w) + (q•αd2[u + 2]/a)a(2,u+2,j0,v+2,w) = 0.

Finally, from (30), at (i, j0, k, l) = (u + 2, j0, v + 2, w − 1), we have:

q•βg[u + 2, j0, v + 2]a(2,u+2,j0,v+2,w) + (q•αbd2[u + 3]/a)a(0,u+3,j0,v+3,w−1) = 0.

Note that a, b, α, β, q• �= 0; g[i, j0, k] �= 0 for all (ξ, i, j0, k, l) ∈ I; and d2[i] �= 0 for i > 0. 
Since u + 3 > u, it follows from the above list of equations (starting from the last one) 
that

a(0,u+3,j0,v+3,w−1) = 0 ⇒ a(2,u+2,j0,v+2,w) = 0 ⇒ a(1,u+1,j0,v+1,w) = 0

⇒ a(0,u,j0,v,w) = 0,

a contradiction! Hence, a(0,i,j0,k,l) = 0 for all (i, j0, k, l) ∈ N × Z3. From (30), (31) and 
(32), one can easily conclude that a(ξ,i,j0,k,l) = 0 for all (ξ, i, j0, k, l) ∈ I. This contradicts 
our initial assumption, hence x− = 0. Consequently, x = x+ ∈ R5 as desired.

2. From Remark 5.8, we have z2 = t2 − bt33t
−1
4 . Since δ(tκ) = λκtκ, κ ∈ {2, . . . , 6}, 

with λ2 := −λ5 (see Lemma 5.9), it follows that

δ(z2) = − λ5t2 − b(3λ3 − λ4)t33t−1
4 = −λ5z2 − b(3λ3 − λ4 + λ5)t33t−1

4 .

Furthermore,

D(z2) = adx(z2) + δ(z2) = adx(z2) − λ5z2 − b(3λ3 − λ4 + λ5)t33t−1
4 ∈ R5.

Hence b(3λ3 −λ4 +λ5)t33t−1
4 ∈ R5, since adx(z2) −λ5z2 ∈ R5. This implies that b(3λ3 −

λ4+λ5)t33 ∈ R5t4 (note that from Appendix A.2, b �= 0). Set w := 3λ3−λ4+λ5. Suppose 
that w �= 0. From (19), we have:

t33 = β

b
t−1
6 − q3α

ab
t4t

−1
5 + 1

ab
z1t3t4.

It follows that

wbt33 = wβt−1
6 − q3wα

a
t4t

−1
5 + w

a
z1t3t4 ∈ R5t4.

Since t33, t4t
−1
5 and z1t3t4 are all elements of R5t4, it follows that t−1

6 ∈ R5t4. Hence, 
1 ∈ R5t4t6. Using the basis B5 of R5 (Proposition 5.5), this leads to a contradiction. 
Therefore, w = 0. That is, 3λ3 −λ4 +λ5 = 0, and so λ4 = 3λ3 +λ5. This further implies 
that δ(z2) = −λ5z2 as desired.

Again, from Lemma 5.9, we have that δ(f1) = −(λ3 + λ5)f1. Recall from Remark 5.8
that z1 = f1 − st23t

−1
4 . It follows that
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δ(z1) = − (λ3 + λ5)f1 − s(2λ3 − λ4)t23t−1
4 = −(λ3 + λ5)z1 − s(3λ3 − λ4 + λ5)t23t−1

4

= − (λ3 + λ5)z1 − s(3λ3 − (3λ3 + λ5) + λ5)t23t−1
4 = −(λ3 + λ5)z1.

Finally, we know that δ(t6) = λ6t6. This implies that δ(t−1
6 ) = −λ6t

−1
6 . From (19), we 

have that

t33 = β

b
t−1
6 − q3α

ab
t4t

−1
5 + 1

ab
z1t3t4,

where a and b are non-zero scalars (Appendix A.2). This implies that

t−1
6 = b

β
t33 + q3α

aβ
t4t

−1
5 − 1

aβ
z1t3t4.

Given that δ(z1) = −(λ3 + λ5)z1, δ(t3) = λ3t3, δ(t4) = (3λ3 + λ5)t4 and δ(t5) = λ5t5, 
applying δ to the above relation gives

−λ6t
−1
6 = 3λ3

(
b

β
t33 + q3α

aβ
t4t

−1
5 − 1

aβ
z1t3t4

)
.

It follows that λ6 = −3λ3 as desired.
3. Set λ1 := −(λ3 + λ5) and λ2 := −λ5. Remember: z1 = e1,5, z2 = e2,5 and ti = ei,5

(3 ≤ i ≤ 6). It follows from points (1) and (2) that D(eκ,5) = adx(eκ,5) + δ(eκ,5) =
adx(eκ,5) + λκeκ,5 for all κ ∈ {1, . . . , 6}. In conclusion, D = adx + δ with x ∈ R5. �

We are now ready to describe D as a derivation of Aα,β.

Lemma 5.11.

1. x ∈ Aα,β.
2. δ(eκ) = 0 for all κ ∈ {1, . . . , 6}.
3. D = adx.

Proof. The strategy of the proof is similar to that of Lemma 5.10, hence we omit it here 
and refer the interested reader to check it out in [18, Section 4.2]. �

Using similar techniques, one can describe the derivations of Aα,0 and A0,β. Details 
can be found in [18, Section 4.2]. There are fundamental differences in these two cases. 
Indeed, there exist in both cases derivations which are not inner. More precisely, one can 
check that the linear map θ on Aα,0 defined by

θ(e1) = −e1, θ(e2) = −e2, θ(e3) = 0, θ(e4) = e4, θ(e5) = e5, θ(e6) = 2e6

and extended to Aα,0 using the Leibniz rule is a K-derivation of Aα,0.
Similarly, the linear map θ̃ on A0,β defined by

θ̃(e1) = −2e1, θ̃(e2) = −3e2, θ̃(e3) = −e3, θ̃(e4) = 0, θ̃(e5) = e5, θ̃(e6) = 3e6



S. Launois, I. Oppong / Bull. Sci. math. 184 (2023) 103257 41
and extended to A0,β using the Leibniz rule is a K-derivation of A0,β .
We summarize our main results in the theorem below.

Theorem 5.12. Given Aα,β = U+
q (G2)/〈Ω1 − α, Ω2 − β〉, with (α, β) ∈ K2 \ {(0, 0)}, we 

have the following results:

1. if α, β �= 0; then every derivation D of Aα,β can uniquely be written as D = adx, 
where x ∈ Aα,β.

2. if α �= 0 and β = 0, then every derivation D of Aα,0 can uniquely be written as 
D = adx + λθ, where λ ∈ K and x ∈ Aα,0.

3. if α = 0 and β �= 0, then every derivation D of A0,β can uniquely be written as 
D = adx + λθ̃, where λ ∈ K and x ∈ A0,β.

4. HH1(Aα,0) = K[θ] and HH1(A0,β) = K[θ̃], where [θ] and [θ̃] respectively denote the 
classes of θ and θ̃ modulo the space of inner derivations.

5. if α, β �= 0; then HH1(Aα,β) = {[0]}, where [0] denotes the class of 0 modulo the 
space of inner derivations.

The above theorem shows that Aα,β when both α and β are nonzero shares a number 
of properties with the second Weyl algebra over K: it is a simple noetherian domain with 
GKdim 4, units are reduced to scalars, and all derivations are inner.

It would be interesting to compute the automorphism group of these algebras and 
verify if all endomorphisms are automorphisms, i.e. an analogue of the celebrated Dixmier 
Conjecture [6].

In general, the present work and [13] suggest that the primitive quotients of U+
q (g) by 

primitive ideals from the 0-stratum provide algebras that could (should?) be regarded 
(and studied) as quantum analogues of Weyl algebras.
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Appendix A. Relations of U+
q (G2), and definition of parameters used

A.1. Some selected general relations of U+
q (G2)

Lemma A.1. For any n ∈ Z≥0, we have that:

1(a) EjE
n
i = q−3nEn

i Ej (b) En
j Ei = q−3nEiE

n
j for all 1 ≤ i, j ≤ 6, with j − i = 1.

2(a) E6E
n
4 = q−3nEn

4 E6 + d1[n]En−1
4 E3

5 (b) En
6 E4 = q−3nE4E

n
6 + d1[n]E3

5E
n−1
6

(c) E4E
n
2 = q−3nEn

2 E4 + d1[n]En−1
2 E3

3 (d) En
4 E2 = q−3nE2E

n
4 + d1[n]E3

3E
n−1
4 ,

where d1[n] = q3(1−n)d1[1] 
(

1 − q−6n

1 − q−6

)
; d1[1] = −q4 − 2q2 + 1

q4 + q2 + 1 and d1[0] := 0.

3(a) E3E
n
1 = q−nEn

1 E3 + d2[n]En−1
1 E2 (b) En

3 E1 = q−nE1E
n
3 + d2[n]E2E

n−1
3

(c) E5E
n
3 = q−nEn

3 E5 + d2[n]En−1
3 E4 (d) En

5 E3 = q−nE3E
n
5 + d2[n]E4E

n−1
5 ,

where d2[n] = q1−nd2[1] 
(

1 − q−2n

1 − q−2

)
; d2[1] = −(q + q−1 + q−3) and d2[0] := 0.

4(a) En
6 E3 = E3E

n
6 + d3[n]E2

5E
n−1
6 (b) E5E

n
2 = En

2 E5 + d3[n]En−1
2 E2

3 ,

where d3[n] = d3[1] 
(

1 − q−6n

1 − q−6

)
; d3[1] = 1 − q2 and d3[0] := 0.

Proof. This is an easy proof by induction, left to the reader. �
A.2. Definition of parameters used throughout

In this subsection, we define some parameters/scalars used in this article. Any other 
scalars not defined here must be defined in/before the context in which it is found.

a = q2 + 1 + q−2

q−2 − 1 b = −q7 + 2q5 − q3

(q4 + q2 + 1)(1 − q−6) d′ = q12

q6 − 1

c′ = − q9

q4 + q2 + 1 .

g = q + q−1 + q−3

(1 − q−2)2 f = 1 − q2

1 − q−2 b′ = q13 − q11

(q4 + q2 + 1)2

h = q + q−1

q−2 − 1 s = 1 − q2

1 − q−6 a′ = af + hq = q6

q2 − 1

t = q−1 − q

1 − q−6 u = q + q−1 − q−3

1 − q−6 n = q12

(q4 + q2 + 1)3

p = q4 + q2 + 1
q2 − 1 r = −1

1 − q−6 e = −(q7 + q5 + q3)
q4 − 2q2 + 1
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