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Optimisation of maintenance policies for a deteriorating 

multi-component system under external shocks 

 

Hongyan Dui, Hao Zhang, Ning Wang, Shaomin Wu 

Abstract: Many engineering systems are affected by shocks from their operating environments. When 

the state of a component degrades to a certain threshold level, preventive maintenance is needed for the 

purpose of reliability improvement. However, existing studies usually ignore the impact of shocks on 

different components of a system and therefore on the maintenance policies. This paper proposes to 

model the degradation processes of components with a k-dimensional Wiener process. Under both 

deterministic and stochastic environmental conditions, the Eyring model is used to measure the 

environmental importance of the multi-dimensional degradation process. Then, according to different 

failure scenarios, different maintenance strategies are proposed. A periodic inspection policy is 

considered for each component that may fail due to shock environments. As for multiple components, 

the maintenance priority is determined based on the joint importance, and optimal preventive 

maintenance is obtained under the condition of limited resources. Finally, a robot system is taken as an 

example to verify the correctness and effectiveness of the proposed methods. 

Keywords: System Reliability; Preventive maintenance; Importance measure; Degradation 

1. Introduction 

The impact of external shocks, which are from the operating environment of an engineering system, 

on the reliability of the systems has been considered in the literature of reliability and maintenance [1, 

2, 3]. Wang et al. [4] investigate the impact of shocks from multiple external sources. Zhao et al. [5] 

propose a new shock model for the scenarios that the damage process of a component accelerates with 

https://www.mdpi.com/2227-7390/10/4/563
https://www.mdpi.com/2227-7390/10/4/563
https://www.sciencedirect.com/science/article/abs/pii/S0951832022003568
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the increased damage from external shocks. Wu et al. [6] study a performance-sharing system under 

external shocks. Zhao et al. [7] jointly optimize  inspection policies and condition-based mission 

abortion policies for systems subject to continuous degradation. Zhao et al. [8] investigate systems’ 

executing missions in a random environment with a cumulative shock model and a run shock model. 

Song et al. [9] use both probabilistic and physical degradation modeling concepts to develop a new 

system reliability model by considering the effects of shock damages. 

In reliability and safety engineering, many importance measures have been proposed. These 

importance measures have been widely used in  maintenance policy optimisation to provide guidance 

during the stages for reliability improvement and maintenance policy optimization. Considering the 

maintenance cost, Bai et al. [10] propose an importance measure based on fuzzy cost and analyze weak 

links of the industrial robot system from the perspective of the maintenance economy. Dui et al. [11] 

propose an improved uncertainty significance analysis method to effectively characterize the reliability 

of polymorphic systems. Chen et al. [12] use the Wiener process to describe the continuous-time 

degradation process and develop a Copula Hierarchical Bayesian Network for system reliability 

estimation. In terms of system performance, Dui et al. [13,14] extend the materiality measurement 

standard to evaluate how the transfer of component state affects the change in system performance. 

Considering component maintenance cost and time, Dui et al. [15] propose a cost-based comprehensive 

importance measure to identify components or component groups that can be selected for preventive 

maintenance. Liu et al. [16] introduce an importance measure based on cost by comprehensively 

considering the objective function and constraint conditions. Levitin et al. [17] consider some commonly 

used importance measures in a generalized version for the application to multi-state systems. Si et al. 

[18] extend the integrated importance measure to estimate the effect of a component residing at certain 

https://www.tandfonline.com/doi/abs/10.1080/24725854.2021.1972184?journalCode=uiie21
https://www.sciencedirect.com/science/article/abs/pii/S0377221720309619
https://www.sciencedirect.com/science/article/abs/pii/S0951832020307444
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https://www.sciencedirect.com/science/article/abs/pii/S1568494621010747
https://www.tandfonline.com/doi/abs/10.1080/15397734.2021.1956324?journalCode=lmbd20
https://www.sciencedirect.com/science/article/abs/pii/S0951832022005002
https://ieeexplore.ieee.org/document/7080918
https://www.researchgate.net/publication/315502884_Generalized_integrated_importance_measure_for_system_performance_evaluation_Application_to_a_propeller_plane_system
https://www.sciencedirect.com/science/article/abs/pii/S0951832016306706
https://www.sciencedirect.com/science/article/abs/pii/S0951832022000795
https://www.sciencedirect.com/science/article/abs/pii/S0951832017313005
https://www.sciencedirect.com/science/article/abs/pii/S0951832013000586
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states on the performance of the entire multi-state systems. 

Preventive maintenance plays a critical role in ensuring reliable performance at the lowest cost. 

Levitin et al. [19] consider the problem of optimal maintenance strategies for networks affected by 

multiple performance degradation levels and performing real-time tasks, which enriches evaluation 

methodologies for software aging and rejuvenation systems. Zhao et al. [5] propose an opportunistic 

maintenance policy based on a new shock model and an optimization model is constructed to obtain the 

optimal maintenance solutions. Zhao et al. [20] investigated the component reassignment problem for a 

balanced system with multi-state components working in a shock environment. Zhu et al. [21] present 

the importance of considering various maintenance behaviors such as incomplete maintenance and 

replacement and propose preventive maintenance strategies based on residual life and residual profit. 

For the systems that fail due to degradation or external impact, Hashemi et al. [22] propose an optimal 

preventive maintenance model based on service age by considering preventive maintenance cost, 

corrective maintenance cost, and minimum maintenance cost. Shi et al. [23] establish an optimization 

model for the preventive maintenance policy of the system through an in-depth discussion of the impact 

of maintenance on structural performance function and use this model to estimate the reliability of the 

system. Levitin et al. [24] make contributions by modeling and optimizing the replacement and 

maintenance schedule (RMS) to minimize the total expected mission cost, covering operation, standby, 

and maintenance costs as well as mission failure penalty cost. Levitin et al. [25] formulate and solve a 

constrained optimization problem that determines the joint RMS and mission abort policy. 

Existing literature, however, has paid little attention to the impact of external environments on 

reliability, and the impact of shock environments on maintenance policy is rarely considered. For 

example, extreme conditions including wet or muddy terrain, dust, moisture, vibration, corrosion, and 

https://www.sciencedirect.com/science/article/abs/pii/S0951832003001716
https://www.sciencedirect.com/science/article/abs/pii/S0360835219304887
https://www.sciencedirect.com/science/article/abs/pii/S0951832019302960
https://www.sciencedirect.com/science/article/abs/pii/S0951832021004646
https://www.sciencedirect.com/science/article/abs/pii/S0360835221007336
https://www.sciencedirect.com/science/article/abs/pii/S0951832022000072
https://www.sciencedirect.com/science/article/abs/pii/S0951832021006219
https://www.sciencedirect.com/science/article/abs/pii/S0951832021004373
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toxic conditions (such as radiation) may have a great impact on the service life of industrial robots.  

This paper focuses on the deterioration phase in shock environments when exploring an optimal 

preventive maintenance policy for the system. The major challenges and contributions of this paper are 

summarized in the following. First, a degradation process model in shock environments is developed to 

study the reliability of a system under the working state from deterministic and stochastic perspectives. 

Second, an environmental importance measure is used to assess the preventive maintenance priority of 

each component with external shocks. The importance takes the impact of the multi-dimensional 

deterioration period into account. Third, optimal preventive maintenance is developed to maximize 

reliable performances and minimize failure losses.  

The remainder of this paper is organized as follows. Section 2 proposes a degradation model, which 

considers the characteristics of external shocks. Section 3 proposes a preventive maintenance policy on 

environmental importance. Section 4 presents a case study and illustrates the proposed metho on a robot 

system. Section 5 concludes the paper. 

2. Degradation modeling in shock environments 

System failures can usually be due to the failures of their components. In general, many 

components do not fail catastrophically but degrade over time, that is, the critical state of components 

usually changes over time and is affected by a series of factors, such as component reliability, 

degradation process, system structure, and environmental conditions. The criticality of components in 

the system can be obtained by using importance measures. The criticality of components usually 

depends on the degree of degradation, the level of fault threshold caused by degradation, dynamic 

environmental conditions, and system configuration. 

Assuming that a system has 𝑛 components, which  are statistically independent of each other. The 
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degradation process 𝑗 of component 𝑖 is expressed as (𝑋𝑗
(𝑖)
)
𝑗=1,2,⋯,𝑘

. When any degradation process 𝑘𝑖 

relates to this component reaches the threshold level 𝑛𝑗
(𝑖)

, component 𝑖 fails. That is,  component 𝑖 has 

multiple competing failure modes due to multi-dimensional degradation. For example, there are six 

failure modes of a six-axis robot’s servo-driver components: IGBT overvoltage, IGBT overheating, 

IGBT overcurrent, resistance short circuit, resistance open circuit, and integrated circuit fault. The 

component will fail when any of the six degradation processes associated with the component reaches a 

certain threshold level. 

The degradation process of components is modeled as a K-dimensional Wiener process. Then the 

relationship between the degradation process and shock environments is established, and the expression 

of environmental importance is obtained. 

2.1 Deterministic environmental condition 

Let 𝑒𝑡: [0，∞) → 𝑅 be a time-dependent real-valued function that specifies the shock environment 

at time 𝑡 . Under certain external shocks, 𝑒𝑡 = 𝑒0, 𝑡 ≥ 0 , the degradation process 𝑗  of component 𝑖  is 

modeled as: 

 𝑑𝑋𝑗
(𝑖)(𝑡; 𝑒0) = 𝜇𝑗,0

(𝑖)𝑑𝑡 + 𝜎𝑗,0
(𝑖)𝑑𝐵𝑡 (1) 

where (𝐵𝑡)𝑡≥0 is the standard Brownian motion, and 𝜇𝑗,0
(𝑖)

 and 𝜎𝑗,0
(𝑖)

 are respectively the degradation rate 

and diffusion coefficient under a constant shock environment, 𝑒0. In practice, the degradation rate under 

a constant environmental condition is often determined by the physics-of-failure and can be modeled by 

degradation testing. The diffusion coefficient refers to the expected value of degradation change per unit 

of time. The generalized Wiener process has a constant expected diffusion coefficient. 

The function 𝑘𝑗
(𝑖)(𝑒𝑡) models the influence of the shock environments on both the degradation rate 

and diffusion coefficient:  
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𝜇𝑗
(𝑖)
(𝑡, 𝑒𝑡)

𝜇𝑗,0
(𝑖)

= (
𝜎𝑗
(𝑖)
(𝑡, 𝑒𝑡)

𝜎𝑗,0
(𝑖)

)

2

= 𝑘𝑗
(𝑖)(𝑒𝑡) (2) 

with 𝜇𝑗
(𝑖)(𝑡, 𝑒𝑡) and 𝜎𝑗

(𝑖)(𝑡, 𝑒𝑡), respectively, being the degradation rate and diffusion coefficient of the 

degradation process 𝑗  of component 𝑖  at time 𝑡  and under the shock environment 𝑒𝑡 . The choice of 

𝑘𝑗
(𝑖)
(𝑒𝑡) is always case dependent in practice. For example, the degradation of electronic devices can 

often be attributed to the free energy difference between the initial state and the degraded state, and the 

function 𝑘𝑗
(𝑖)
(𝑒𝑡) becomes the Arrhenius equation. However, in the Arrhenius model, only the influence 

of a single temperature stress on the change of physical and chemical properties of the system is 

considered. In engineering practice, multiple stresses are acting on the system at the same time. While 

the Eyring model belongs to the multi-stress model, it is more general to use the Eyring model to 

represent shock environments 𝑘𝑗
(𝑖)
(𝑒𝑡):  

 𝑘𝑗
(𝑖)(𝑒𝑡) = 𝐾(𝑇, 𝑆) =

𝑑𝑀

𝑑𝑡
= 𝐴

𝑘𝑇

ℎ
𝑒−𝑘/𝐸𝑇𝑒𝑆(𝐶+𝐷/𝑘𝑇) = 𝐾0𝑓1𝑓2 (3) 

where, 𝑇 is the temperature stress (thermodynamic temperature), 𝑆 is the non-temperature stress, 
𝑑𝑀

𝑑𝑡
 is 

the chemical reaction rate, 𝐾0 = 𝐴
𝑘𝑇

ℎ
𝑒−𝑘/𝐸𝑇 is the Eyring reaction rate with only temperature stress, ℎ 

is Planck constant, 𝐸  is the activation energy (obeying Boltzmann distribution), 𝑘  is the Boltzmann 

constant, 𝑓1 = 𝑒
𝑆𝐶 is the correction factor for the energy distribution in the presence of non-temperature 

stresses, while 𝑓2 = 𝑒
𝐷𝑆/𝑘𝑇 is the correction factor for the activation energy in the presence of non-

temperature stresses. 

Let 𝑥𝑗
(𝑖)(0) be the initial degradation level of the degradation process 𝑗 of component 𝑖. Thus, the 

degradation process under a time-varying shock environment 𝑒𝑡 is:  
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         𝑋𝑗
(𝑖)(𝑡; 𝑒0) = 𝑥𝑗

(𝑖)(0) + ∫ 𝑑𝑋𝑗
(𝑖)(𝑥; 𝑒0)

𝑡

0

= 𝑥𝑗
(𝑖)(0) + ∫ 𝜇𝑗,0

(𝑖)𝑘𝑗
(𝑖)(𝑒𝑥)𝑑𝑥

𝑡

0

+∫ 𝜎𝑗,0
(𝑖) (𝑘𝑗

(𝑖)(𝑒𝑥))

1
2
𝑑𝐵𝑥

𝑡

0

 

(4) 

According to Liu et al. [26], this process is a Wiener process with a time-dependent mean value 

function and diffusion.  

The components suffer from the process of degradation, so each component has multi-performance 

states. Due to the dependence among phases, the state of a component at the beginning of the current 

phase depends on its state at the end of the previous phase, and the component’s behavior in a future 

instant only depends on its current state. Thus, we assume that the state of each component follows a 

continuous-time discrete-state Markov stochastic process. In this paper, we only consider the stationary 

performance when the system operates for a rather long time, and focus on the stationary distributions 

of the Markov stochastic processes. 

Component 𝑖  has 𝑀𝑖  different performance levels, represented by the set 𝑤𝑖 =

{𝑤𝑖,1, 𝑤𝑖,2,⋯ ,𝑤𝑖,𝑀𝑖
}, where 1 indicates the faulty state, 𝑀𝑖 indicates the intact state, and other states 

increase in the order from faulty to intact. The sets of stationary state probability associated with 𝑤𝑖 is 

𝛼𝑖 = {𝛼𝑖,1, 𝛼𝑖,2,⋯ , 𝛼𝑖,𝑀𝑖
}. The 𝜆𝑚,𝑙 describes the transition rate from state 𝑚 to state 𝑙 of component 𝑖 

in a period 𝑇, as shown in Figure 1 and equation (5). 

 

Fig. 1. State transition of component 𝑖 

         
   ,    ,    , 

  ,   ,      ,    ,    

  

https://www.tandfonline.com/doi/abs/10.1080/0740817X.2013.851433?journalCode=uiie20
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 Ψ𝑖 = [

𝜆𝑀𝑖,𝑀𝑖−1
⋯ 𝜆𝑀𝑖,1

⋮ ⋱ ⋮
0 ⋯ 𝜆2,1

] (5) 

The probability of component 𝑖 with a transfer rate between any two states at instant time 𝑡 can be 

expressed as: 

 

{
 
 
 
 

 
 
 
 𝑑𝛼𝑖,1(𝑡)

𝑑𝑡
=∑𝛼𝑖,𝑙(𝑡)𝜆𝑙,1

𝑀𝑖

𝑙=2

𝑑𝛼𝑖,𝑚(𝑡)

𝑑𝑡
= ∑ 𝛼𝑖,𝑙(𝑡)𝜆𝑙,𝑚

𝑀𝑖

𝑙=𝑚+1

− 𝛼𝑖,𝑚(𝑡) ∑ 𝜆𝑚,𝑙

𝑚−1

𝑙=1

𝑑𝛼𝑖,𝑀𝑖
(𝑡)

𝑑𝑡
= −𝛼𝑖,𝑀𝑖

(𝑡) ∑ 𝜆𝑀𝑖,𝑙

𝑀𝑖−1

𝑙=1

 

(6) 

The stationary state probability 𝛼𝑖,𝑙 can be obtained by letting the left side of Eq. (6) equal to 0 and 

solving the equation ∑ 𝛼𝑖,𝑙(𝑡) =  
𝑀𝑖
𝑙=1 . Since we just consider the stationary state of each unit, the state 

distribution of a unit keeps unchanged across all the phases. 

2.2 Stochastic environmental condition 

When 𝑒𝑡  is stochastic, the degradation rates and diffusion coefficients of the 𝑘𝑖  degradation 

processes associated with component 𝑖 are also stochastic. Additionally, as the degradation rates and 

diffusion coefficients of the 𝑘𝑖 degradation processes share the same environmental condition 𝑒𝑡, the 𝑘𝑖 

degradation processes are no longer statistically independent.  

Suppose that the shock environment can be written as 𝑒𝑡 = 𝑒�̂� + 𝑏𝑡 , where 𝑏𝑡  is a stochastic 

process and 𝑒�̂� is the predicted shock environment at time 𝑡. The choice of 𝑏𝑡 is always case-dependent. 

For example, if 𝑏𝑡  is a Brownian motion with drift zero and diffusion 𝜎𝑒—i.e., 𝑏𝑡 = (𝜎𝑒𝐵𝑡)𝑡≥0  and 

𝜀𝑡𝑛 = 0—then 𝑒𝑡 is a Brownian motion with a mean value function 𝑒�̂� and a fluctuation 𝑏𝑡, or 𝑏𝑡 can be 

a normal random representing the white noise.  
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3. Preventive maintenance based on environmental importance 

In this section, we study environmental importance and preventive maintenance. Under external 

shocks, a component may fail due to its degradation, or multiple components may fail together due to 

common fatal shocks arriving from external sources. For different scenarios, different preventive 

maintenance strategies are discussed as follows. 

3.1 Scenario 1: Single-component failure caused by external shocks 

A periodic inspection policy is considered for the system. It is assumed that the system is inspected 

at every interval 𝑇. The inspection time is assumed to be negligible and the inspection cost is 𝑐𝑖. The 

state of the component can be known only through inspection, but component failures can be detected 

immediately. 

Assume that state 𝑛𝑖  is the threshold state of component 𝑖 . Once the state of component 𝑖 

degenerates below 𝑛𝑖, the component fails and is replaced, where the cost of replacement is 𝑐𝑓. Suppose 

the observed state is (𝑛0)
𝑖, and the state of component 𝑖 is below 𝑛𝑖, (𝑛0)

𝑖 < 𝑛𝑖. When the component 

state is (𝑛0)
𝑖 > 𝑛𝑖 at the epoch of inspection, preventive maintenance is executed immediately at the 

cost of 𝑐𝑝. The replacement and preventive maintenance of components are all instantaneous and perfect. 

The relationship among the costs involved in maintenance actions is 𝑐𝑝 < 𝑐𝑓. 

As for a component, the objective is to minimize the long-run expected average cost per unit of 

time by choosing the best combination of 𝑛∗  and 𝑇∗ . 𝑤𝑖(𝑡), 𝑖 =  , ,⋯ ,𝑀  represent states of the 

component at time 𝑡 and 𝛼𝑖 represent the sets of steady-state probability associated with 𝑤𝑖.  

In a word, the period length of the system is 

 𝐿 = 𝑇𝐿𝐼{𝑋≤𝑇} + 𝑇𝐼{𝑋>𝑇} (7) 

where 𝑇𝐿 represents the lifetime of the component, 𝐼{} denotes the indicator function which equals 1 if 
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the argument is true and 0 otherwise. 

Therefore, the average period length is: 

𝐸(𝐿) = [∫ 𝑡𝑑
𝑇

0

𝐹𝑧(𝑡) + ∫ 𝑇𝑑
∞

𝑇

𝐹𝑧(𝑡)]∑𝛼𝑖

𝑛

𝑖=1

= ∫ ( − 𝐹𝑧(𝑡))𝑑𝑡
𝑇

0

 ∑𝛼𝑖

𝑛

𝑖=1

= ∫ 𝑅(𝑡)𝑑𝑡
𝑇

0

 ∑𝛼𝑖

𝑛

𝑖=1

 

(8) 

where 𝐹𝑧(𝑡) represents the lifetime function of the system. 

The expected cost of a period is: 

 
𝐸(𝐶) = 𝑐𝑖𝛼𝑖𝑤𝑀 + ∑ (𝑐𝑖 + 𝑐𝑝)𝛼𝑖𝑤𝑖

𝑛<𝑖<𝑀

+ ∑ (𝑐𝑖 + 𝑐𝑓)𝛼𝑖𝑤𝑖
1≤𝑖≤𝑛

 (9) 

For preventive maintenance thresholds, the objective function 𝐶𝑚𝑖𝑛 can be obtained by solving the 

following linear equation. 

 𝑚𝑖𝑛𝐶 =
𝐸(𝐶)

𝐸(𝐿)
=
𝑐𝑖𝛼𝑖𝑤𝑀 + ∑ (𝑐𝑖 + 𝑐𝑝)𝛼𝑖𝑤𝑖𝑛<𝑖<𝑀 + ∑ (𝑐𝑖 + 𝑐𝑓)𝛼𝑖𝑤𝑖1≤𝑖≤𝑛

∑ 𝛼𝑖
𝑛
𝑖=1 ∫ 𝑅(𝑡)𝑑𝑡

𝑇

0

 (10) 

3.2 Scenario 2: Multiple components’ common cause failure 

Let 𝑛𝑗
(𝑖)

  be the failure threshold of the degradation process 𝑗  of component 𝑖 . The time when 

𝑋𝑗
(𝑖)(𝑡; 𝑒0)  first attains the threshold 𝑛𝑗

(𝑖)
  —i.e., the first passage time—is given by 𝑇𝑗

(𝑖) =

inf (𝑡; 𝑋𝑗
(𝑖)(𝑡; 𝑒0) ≥ 𝑛𝑗

(𝑖)). In a special case when the occurrence of external shocks is independent of 

time, it is well known that 𝑇𝑗
(𝑖)

 follows an inverse Gaussian distribution. Because component 𝑖 is subject 

to 𝑘𝑖  competing failure modes due to multi-dimensional degradation, the lifetime of component 𝑖  is 

defined as 𝑇(𝑖) = min
𝑗=1,2,⋯,𝑘𝑖

𝑇𝑗
(𝑖)

.  

If 𝑒𝑡  is deterministic, the degradation rates and diffusion coefficients of the 𝑘𝑖  degradation 

processes associated with component 𝑖 are also deterministic and are statistically independent. Hence, 
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the reliability of the component 𝑖 is given by:  

 

𝑅(𝑖)(𝑡; 𝑒𝑡) = 𝑃𝑟(𝑇
(𝑖) > 𝑡; 𝑒𝑡) =∏( − 𝐹

𝑇𝑗
(𝑖)(𝑡; 𝑒𝑡))

𝑘𝑖

𝑖=1

 

(11) 

Let 𝑍(𝑖)(𝑡) =   when component 𝑖 functions at time 𝑡, and 𝑍(𝑖)(𝑡) = 0 when component 𝑖 is in a 

failed state at time 𝑡 , and 𝑍(𝑡) = (𝑍(1)(𝑡), 𝑍(2)(𝑡),⋯ , 𝑍(𝑛)(𝑡)) . Then the system structure function, 

φ(𝑍(𝑡)), is defined as:  

 
𝜑(𝑍(𝑡)) = {

 , 𝑖𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
0, 𝑖𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

 
(12) 

Thus, the environmental importance of component 𝑖 with a multidimensional degradation process 

under deterministic environmental conditions can be obtained by: 

 𝐵𝐼𝑀(𝑖)(𝑡; 𝑒𝑡) = 𝑃𝑟(𝜑(𝑍(𝑡)) =  |𝑍
(𝑖) =  ; 𝑒𝑡) − 𝑃𝑟(𝜑(𝑍(𝑡)) =  |𝑍

(𝑖) = 0; 𝑒𝑡)

=
𝜕𝑅(𝑡; 𝑒𝑡)

𝜕𝑅(𝑖)(𝑡; 𝑒𝑡)
 

(13) 

The environmental importance of component 𝑖  under random shock environments can be 

calculated using the following Monte Carlo method. 

 𝐵𝐼𝑀(𝑖)(𝑡; 𝑒𝑡) ≈ 𝐵𝐼�̂�
(𝑖)(𝑡; 𝑒𝑡) =

 

𝑁
∑𝐵𝐼𝑀(𝑖)(𝑡; 𝑒�̃�

(𝑝))

𝑁

𝑝=1

 (14) 

Assuming that the states of each component corresponding to the positioning accuracy can be 

observed, to propose preventive maintenance strategies to achieve more accurate preventive 

maintenance and maximize the expected performance of the system, this section is based on the 

environmental importance proposed in the previous section. Combined with the concept of joint 

importance proposed by Dui et al. [27, 28], the influence of component 𝑗 on system reliability when 

component 𝑖 is repaired is expressed as: 

 
𝐵𝐼𝑀𝑖|𝑗(𝑡; 𝑒𝑡) =

𝜕2𝑅(𝑡; 𝑒𝑡)

𝜕𝑅(𝑖)(𝑡; 𝑒𝑡)𝜕𝑅
(𝑗)(𝑡; 𝑒𝑡)

 
(15) 

https://www.sciencedirect.com/science/article/abs/pii/S0951832018302746
https://www.sciencedirect.com/science/article/abs/pii/S0951832018302746
https://www.sciencedirect.com/science/article/abs/pii/S0951832021002635#:~:text=Some%20extensions%20of%20the%20component%20maintenance%20priority%201,...%204%20Conclusions%20...%205%20Author%20statement%20
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Let 𝑌𝑖(𝑡)  represent the state of component 𝑖  at time 𝑡 , 𝑌𝑖(𝑡) = 0, , , . . . , 𝑀𝑖 , 𝑌(𝑡) =

(𝑌1(𝑡), 𝑌2(𝑡), … , 𝑌𝑛(𝑡)) represents the state vector of the component; Φ(𝑌(𝑡)) is the system structure 

function.  

Once the state of a component degrades below its threshold state, the corresponding component 

may need to be located and must be repaired. In this case, the components being repaired may be critical 

or non-critical. Assuming that the component being served is important, the system must stop working. 

Preventive maintenance can be performed on all other components. If the maintenance component is 

not critical, the system does not need to stop working. Preventive maintenance can be performed on 

non-critical components. 

Assuming that the state of component 𝑖 is less than its threshold state 𝑛𝑖, namely (< 𝑛)𝑖, then under 

the above maintenance policy, let the component maintenance priority (CMP) of component 𝑗(𝑗 ≠ 𝑖) be: 

 
𝐶𝑀𝑃𝑖|𝑗(𝑡; 𝑒𝑡) = 𝐻𝑗|𝑖

𝜕2𝑅(𝑡; 𝑒𝑡)

𝜕𝑅(𝑖)(𝑡; 𝑒𝑡)𝜕𝑅
(𝑗)(𝑡; 𝑒𝑡)

 
(16) 

 𝐻𝑗|𝑖 =

{
 

  ,𝛷 ((< 𝑛)𝑖, 𝑌(𝑡)) < 𝑁

 ,𝛷 ((< 𝑛)𝑖, 𝑌(𝑡)) ≥ 𝑁 𝑎𝑛𝑑 𝑗 ∈ {𝑗|𝛷 ((< 𝑛)𝑖, (< 𝑛)𝑗, 𝑋(𝑡)) ≥ 𝑁}

0, other

 (17) 

where (< 𝑛)𝑖  indicates that the state of component 𝑖  degenerates below its threshold state 𝑛𝑖 . The 

symbol (< 𝑛)𝑗 indicates that the state of component 𝑗 degenerates below its threshold state 𝑛𝑗. If the 

state degradation of component 𝑖 falls below 𝑛𝑖, causing the value of the system structure function Φ(∙) 

to fall below its threshold state N, i.e. Φ((< 𝑛)𝑖, 𝑌(𝑡)) < 𝑁 , component 𝑖  becomes critical and the 

system stops functioning. Therefore, all other components 𝑗 ∈ { ,… , 𝑖 −  , 𝑖 +  ,… , 𝑛}  perform 

preventive maintenance. Component 𝑖  is non-critical if Φ((< 𝑛)𝑖, 𝑌(𝑡)) ≥ 𝑁 . So can non-critical 

components 𝑗 ∈ {𝑗|Φ ((< 𝑛)𝑖, (< 𝑛)𝑗, 𝑋(𝑡)) ≥ 𝑁} perform preventive maintenance.  

While servicing component 𝑖, which has the largest 𝐶𝑀𝑃𝑖|𝑗(𝑡; 𝑒𝑡), should be chosen and preventive 
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maintenance should be performed on component 𝑗 so that system positioning accuracy can be optimally 

improved. Should be in accordance with the components 𝐶𝑀𝑃𝑖|𝑗(𝑡; 𝑒𝑡)  to establish the preventive 

maintenance order.  

Given limited maintenance costs, the set of components to perform preventive maintenance should 

be determined to maximize the expected system positioning accuracy, given a fixed total maintenance 

cost of 𝐶 . When the preventive maintenance costs of components are different, the more important 

components may lead to higher maintenance costs. When component i is serviced, the following integer 

programming issues need to be addressed： 

 𝑚𝑎𝑥
𝑧𝑗

∑𝐶𝑀𝑃𝑖|𝑗(𝑡; 𝑒𝑡) ∙ 𝑧𝑗
𝑗≠𝑖

 

𝑠. 𝑡.  𝑐𝑖 +∑𝑐𝑗𝑧𝑗 ≤ 𝐶 

𝑗≠𝑖

& 𝑧𝑗 ∈ {0, } 

(18) 

where, 𝑐𝑖 is the maintenance cost of component 𝑖, 𝑐𝑗 is the maintenance cost of component 𝑗, 𝑧𝑗 is the 

preventive maintenance variable of component 𝑗  and represents the decision variable of whether to 

maintain component 𝑗 . 𝑧𝑗  can only adopt the value between 0 and 1. When 𝑧𝑗 =   , preventive 

maintenance is carried out for the component 𝑗; otherwise, no maintenance is carried out. 

4. Case study 

An industrial robot system is a complex system composed of a mechanical body, electrical system, 

and control system. The robot system is composed of  software and hardware subsystems. Its core 

components include a decelerator, servo-motor, servo-driver, demonstrator, control cabinet, and robot 

body. The failure mode of each component is different, which will affect the operation of the whole 

system differently. 

The industrial robot RV reducer usually has low reliability as it fails frequently. Therefore, the 
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failure of the RV reducer is used to demonstrate the proposed model.  

It is assumed that the states of the RV reducer can be divided into different stages according to the 

degree of damage. In this model, 𝑀 = 6, which means that state 6 represents a totally new state and the 

RV reducer is considered to be failed when it is in state 1. The system is inspected at every interval 𝑇 

and the inspection time can be ignored. Replacement and preventive maintenance of the RV reducer are 

all instantaneous and perfect. Suppose  𝑐𝑖 =  00 , 10, 𝑐𝑝 = 300  and 𝑐𝑓 = 600 . 𝑛  represents the 

thresholds of preventive maintenance and  < 𝑛 < 6. 

The optimal inspection interval 𝑇∗ under different 𝑛 is calculated based on Eq. (10) and Eq. (11) 

to minimize the average cost per unit time. Fig. 2 shows cost curves under different 𝑛. The minimum 

cost in each curve and the corresponding inspection interval are recorded in Table 1. 

 

 

Fig. 2. Cost functions under different threshold 
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Table 1. Optimal inspection interval and the corresponding minimum cost under different thresholds 

No. 𝑛 𝑇∗ 𝐶(𝑇∗) 

1 2 18.7 3729 

2 3 18.9 2984 

3 4 19.3 2504 

4 5 18.8 2268 

As shown in Table 1 and Fig. 2, when the preventive maintenance threshold and inspection interval 

are 5 and 18.8, respectively, the average cost per unit time can be minimized to 2268. The calculation 

methods and results of the optimal inspection interval, and the preventive maintenance threshold in this 

paper are valuably managerial suggestions for engineers to minimize average cost per unit time in reality. 

Considering multiple components, the failure modes of each component of the robot are different, 

and each failure mode is related to the degradation process. The main failure modes of each component 

are presented in Table 2. 

Table 2. The main failure modes of six-axis handling industrial robot components 

Number Name Number Name 

A1 Needle tooth failure D1 CPU failure 

A2 Planetary gear failure D2 LCD screen failure 

A3 Crankshaft failure D3 Software main control module failure 

A4 Bearing failure D4 Mainboard failure 

A5 Cycloidal wheel failure D5 Button failure 

A6 Seal failure D6 Instructor system failure 

A7 Tooth belt transmission failure E1 Converter failure 

B1 Stator failure E2 Heat exchanger failure 

B2 Rotor failure E3 Fan failure 

B3 Bearing wear and tear E4 Bus communication failure 

B4 Bearing cracking E5 I/O module failure 

B5 Excessive deflection of rotating shaft E6 Relay failure 

C1 IGBT overvoltage F1 Washer wear 

C2 IGBT overheating F2 Ring aging 

C3 IGBT overflows F3 Coupling failure 

C4 Resistance short circuit F4 Power failure 
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C5 Resistance open circuit F5 Sensor failure 

C6 Integrated circuit failure F6 Insufficient strength of the member 

Assuming that the environmental condition is determined and fully known before 𝑡 = 30 , the 

external shocks 𝑒𝑡 is expressed by the piecewise function as: 

 𝑒𝑡 = {
6, 0 ≤ 𝑡 <  0
7,  0 ≤ 𝑡 < 30 

 
(19) 

        The specific parameter values of the robot used in this example are shown in Table 3, and the data 

comes from the service data of a domestic robot. 

Table 3. Parameter values of simulation 

Failure mode 𝜇𝑗,0
(𝑖)

 𝜎𝑗,0
(𝑖)

 Initial degradation level 𝑥𝑗
(𝑖)(0) 𝑛𝑗

(𝑖)
 

Reducer     

A1 1 0.5 0 11 

A2 1 0.8 0 11 

A3 0.8 1 0 11 

A4 0.8 0.7 0 11 

A5 1 1 0 11 

A6 0.9 0.6 0 11 

A7 0.7 1.5 0 11 

Servo-motor     

B1 0.8 0.5 1 12 

B2 0.7 1 1 12 

B3 0.6 1 1 12 

B4 1.1 0.5 1 12 

B5 0.5 1 1 12 

Servo-driver     

C1 0.7 1 4 15 

C2 0.9 0.8 4 15 

C3 1 0.5 4 15 

C4 0.5 1 4 15 

C5 0.8 1.1 4 15 

C6 0.6 1 4 15 

Demonstrator     

D1 1.1 0.7 2 13 

D2 1.3 0.9 2 13 
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D3 0.6 1.3 2 13 

D4 1.4 0.7 2 13 

D5 1 1 2 13 

D6 0.9 0.5 2 13 

Control cabinet     

E1 0.8 1.2 0 11 

E2 0.7 0.7 0 11 

E3 0.5 1.4 0 11 

E4 0.9 1.1 0 11 

E5 1 1 0 11 

E6 1.1 0.7 0 11 

Robot body     

F1 1.5 0.5 3 14 

F2 0.5 1.3 3 14 

F3 1 1 3 14 

F4 1.2 1.1 3 14 

F5 1 1 3 14 

F6 0.7 1 3 14 

In component criticality analysis, the handling robot is a repairable system and its components are 

not new, so in this example, it is assumed that the initial degradation level of the servo-motor, servo-

driver, demonstrator, and robot body is greater than zero. 

The preventive maintenance policy model is simulated and analyzed, and the parameters of each 

component are analyzed to obtain the preventive maintenance priority of the other components in case 

of a component failure. The simulation results are shown in Figure 3.  
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Fig. 3. CMP of each component under different failure modes 

As shown in Fig. 1, when a certain component degrades below the threshold value, the priority of 

preventive maintenance of other components will first remain unchanged, then decline and  become flat. 

In addition, the CMP values of the servo-motor and the servo-driver are almost the same in the period 

0 ≤ 𝑡 < 30, and the CMP ranking is higher than that of the other components when the decelerator, the 

demonstrator, the control cabinet and the robot body fail. The results of the analysis provide a 

comprehensive ranking of the preventive maintenance priorities of the remaining components in the 

event of a component failure, as shown in Table 4. 

Table 4. Cropland node number table 

 Reducer Servo-motor Servo-driver Demonstrator Control cabinet Robot body 
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Reducer failure -- 1 2 3 5 4 

Servo-motor failure 3 -- 1 2 5 4 

Servo-driver failure 3 1 -- 2 5 4 

Demonstrator failure 3 1 2 -- 5 4 

Control cabinet failure 4 1 2 3 -- 5 

Robot body failure 4 1 2 3 5 -- 

After determining the comprehensive ranking of the CMP of each component, considering that 

maintenance incurs certain cost, maintenance costs per component are shown in Table 5. 

Table 5. Cost of component maintenance and preventive maintenance 

No. Component Maintenance cost Preventive maintenance cost 

1 Reducer 7000 2200 

2 Servo-motor 4000 1800 

3 Servo-driver 3900 1700 

4 Demonstrator 2600 1400 

5 Control cabinet 3500 1500 

6 Robot body 3000 1000 

As shown in Table 4, when a component fails at different time 𝑡, the  component set for preventive 

maintenance is selected under different cost constraints. Taking the failure of the decelerator for 𝑡 =  0 

and preventive maintenance as an example, the simulation results are shown in Figure 4. 
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Fig. 4. Selection of preventive maintenance components under different total maintenance costs 

According to Figure 4, considering the limitation of preventive maintenance cost and consideration 

of component maintenance priority, it can be seen that although the servo-motor and servo-driver have 

higher preventive maintenance costs, the higher component maintenance priority makes these two 

components have the top priority for preventive maintenance regardless of the changes of the total 

maintenance cost. In addition, although the component maintenance priority of the robot ontology ranks 

lower, the preventive maintenance cost is the lowest. As such, when the remaining maintenance cost is 

not enough to support the maintenance of other high-priority components, the robot ontology will be 

selected to enter the preventive maintenance component set. 

Taking the failure of the decelerator at 𝑡 =  0 and the total maintenance cost of 11200 RMB yuan 
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as an example, the component set for preventive maintenance was determined to be servo-motor and 

servo-driver, and the influence of this preventive maintenance policy on system reliability was analyzed. 

The variation curves of the reliability of each component with running time before and after preventive 

maintenance are shown in Figure 5 and Figure 6. 

 

Fig. 5. Before preventive maintenance                    Fig. 6. After preventive maintenance 

When 𝑡 =  0 , the reliability values of each component are shown in Table 6. The comparison 

shows that the preventive maintenance policy plays a significant role in improving system reliability. 

Table 6. Reliability value of each component when 𝑡 =  0 

Component reliability Before preventive maintenance After preventive maintenance 

Reducer𝑅(1) 0.847 0.978 

Servo-motor 𝑅(2) 0.831 0.927 

Servo-driver𝑅(3) 0.830 0.910 

Demonstrator 𝑅(4) 0.838 0.914 

Control cabinet𝑅(5) 0.898 0.945 

Robot body𝑅(6) 0.860 0.926 

5. Conclusions 

This paper provided a technical guidance for improving the performance of an engineering system 

under the influence of external shocks and  developed a preventive maintenance policy. The Wiener 
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process was used to model the deterioration processes the components in the system, which is more 

suitable for practical engineering.  An importance measure, the component maintenance priority, was 

proposed to prioritise weak components. In the case study, the service data of a robot were used to 

demonstrate the applicability of the proposed method and showed how the reliability of the whole 

industrial robot was affected by external shocks.  
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