
Bacho, Florian and Chu, Dominique (2023) Exploring tradeoffs in spiking neural
networks. Neural Computation . ISSN 0899-7667. (In press)

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/101545/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Pre-print

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/101545/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

1

Exploring Tradeoffs in Spiking Neural Networks

Florian Bacho1 and Dominique Chu1

1CEMS, School of Computing, University of Kent, Canterbury CT2 7NF, UK

Keywords: Spiking Neural Networks, Tradeoffs, Time-To-First-Spike, Error Back-

propagation

Abstract

Spiking Neural Networks (SNNs) have emerged as a promising alternative to traditional

Deep Neural Networks for low-power computing. However, the effectiveness of SNNs

is not solely determined by their performance but also by their energy consumption,

prediction speed, and robustness to noise. The recent method Fast & Deep, along with

others, achieves fast and energy-efficient computation by constraining neurons to fire

at most once. Known as Time-To-First-Spike (TTFS), this constraint however restricts

the capabilities of SNNs in many aspects. In this work, we explore the relationships

between performance, energy consumption, speed and stability when using this con-

straint. More precisely, we highlight the existence of tradeoffs where performance and

robustness are gained at the cost of sparsity and prediction latency. To improve these

tradeoffs, we propose a relaxed version of Fast & Deep that allows for multiple spikes

per neuron. Our experiments show that relaxing the spike constraint provides higher

performance while also benefiting from faster convergence, similar sparsity, compa-

rable prediction latency, and better robustness to noise compared to TTFS SNNs. By

highlighting the limitations of TTFS and demonstrating the advantages of unconstrained

SNNs we provide valuable insight for the development of effective learning strategies

for neuromorphic computing.

1 Introduction

Over the last decade, Deep Neural Networks (DNNs) have become indispensable tools

in statistical machine learning, achieving state-of-the-art performance in various ap-

plications, including Computer Vision (Krizhevsky et al., 2012; Szegedy et al., 2013),

Natural Language Processing (Vaswani et al., 2017; Devlin et al., 2018; Brown et al.,

2020), and Reinforcement Learning (Mnih et al., 2013, 2016). However, their impres-

sive performance often comes at a significant hardware and energy cost. For example,

Natural Language Processing models can consist of billions of parameters and require

energy-intensive GPU clusters to train efficiently (Brown et al., 2020). These hard-

ware and energy requirements pose a significant challenge in terms of sustainability

and restrict the practical applicability of DNNs in resource-limited environments such

as low-powered edge devices. Therefore, exploring more energy-efficient alternatives

2

to DNNs is crucial not only to address the environmental cost of machine learning but

also to provide practical and sustainable solutions in edge computating.

One possible alternative to DNNs is Spiking Neural Networks (SNNs). Spiking

neurons process information through discrete spatio-temporal events known as spikes

rather than continuous real-number values (Maass, 1997; Gerstner and Kistler, 2002).

Spikes enable efficient implementations of neural networks on non-von Neumann neu-

romorphic hardware such as Intel Loihi, IBM TrueNorth, Brainscale2, and SpiNNaker

(Painkras et al., 2013; Akopyan et al., 2015; Schmitt et al., 2017; Davies et al., 2018;

Furber, 2016; Hendy and Merkel, 2022). Such hardware only consumes a fraction of

the power required by DNNs on von Neumann computers and thus represents a suit-

able solution for energy-efficient edge computing (Blouw et al., 2019; Taunyazov et al.,

2020).

The power consumption of neuromorphic hardware is closely related to the number

of spikes they produce. Therefore, sparse SNNs that only fire a small number of spikes

achieve high energy efficiency on hardware. However, such networks also transmit less

information, creating a trade-off between energy consumption and model accuracy. In

addition to sparsity, various tradeoffs between performance and other aspects of SNNs

are commonly explored in the literature (Park et al., 2021; Yin et al., 2023; Li et al.,

2021; Diehl et al., 2015).

For instance, unsupervised learning rules such as Spike Time Dependent Plasticity

(STDP) can be implemented directly on neuromorphic hardware, allowing for biologi-

cally plausible and energy-efficient training of SNNs that are resilient to substrate noise

of analog circuits (Kim et al., 2020). However, the performance of unsupervised learn-

3

ing lags behind that achieved with supervised learning. Meanwhile, state-of-the-art per-

formance with SNNs is currently achieved through various error backpropagation (BP)

techniques adapted from deep learning (Bohté et al., 2000; Lee et al., 2016; Jin et al.,

2018; Kheradpisheh and Masquelier, 2020; Kheradpisheh et al., 2021; Zhang et al.,

2022; Shrestha and Orchard, 2018; Wu et al., 2018; Mostafa, 2016; Comsa et al., 2020;

Göltz et al., 2021; Fang et al., 2020). However, BP algorithms often require constraints

on spikes to achieve high sparsity and low prediction latency, at the cost of performance

(Yan et al., 2022; Mostafa, 2016; Guo et al., 2020; Kheradpisheh and Masquelier, 2020;

Kheradpisheh et al., 2021; Göltz et al., 2021). In addition, BP requires global transport

of information that is incompatible with neuromorphic hardware and training must be

performed either offline or in-the-loop, where a conventional computer is used in con-

junction with neuromorphic hardware (Schmitt et al., 2017; Göltz et al., 2021). There-

fore, SNNs trained offline or in the loop must also be resilient to the substrate noise and

weight quantization of analog hardware to avoid performance drops at deployment.

One particularly interesting approach for training fast, energy-efficient and noise-

resilient SNNs is Fast & Deep (Göltz et al., 2021). This exact BP method employs

Time-To-First-Spike (TTFS) coding, which restricts neurons to fire only once. Inspired

by the human visual system (Thorpe et al., 1996), TTFS is based on the idea that first

spikes of neurons must carry most of the information about input stimuli, enabling fast,

sparse, and energy-efficient computation. Due to this constraint imposed on firing, we

thus referred to TTFS networks as constrained SNNs. However, relaxing the spike

constraint of TTFS and allowing multiple spikes per neuron typically results in higher

information rates, better performance, and increased noise resilience compared to TTFS

4

networks (Jin et al., 2018; Zhang and Li, 2019; Shrestha and Orchard, 2018; Lee et al.,

2016; Zhang et al., 2022). Thus referred to as unconstrained SNNs, one might assume

that such network would improve performance and noise robustness but also result in

slower inference and lower energy efficiency due to increased firing rates.

In this work, we explore the tradeoffs between performance, convergence, energy

consumption, prediction speed and robustness of SNNs, with and without the spike

constraint imposed by TTFS. Our main contributions are:

• We demonstrate that many aspects are driven by the weight distribution in Fast &

Deep, highlighting tradeoffs between performance, energy consumption, latency,

and stability in TTFS SNNs.

• We extend the Fast & Deep algorithm to multiple spikes per neuron and describe

how errors are backpropagated in unconstrained SNNs.

• We show that our proposed method improves performance while providing better

convergence rate, similar sparsity, comparable latency and improved robustness

to noise compared to Fast & Deep, suggesting that relaxing the spike constraints

in TTFS can lead to better tradeoffs.

The rest of the article is structured as follows. In Section 2, we derive the closed-form

solution for spike timings as well as their gradients, as described by Fast & Deep (Göltz

et al., 2021), and describe how errors are backpropagated in unconstrained SNNs. In

Section 3 we show the results of our experiments on performance, convergence, spar-

sity, prediction latency, and robustness to noise and weight quantization of Fast & Deep

and our proposed method.

5

2 Method

In this section, we describe our generalization of the Fast & Deep algorithm to multiple

spikes per neuron. Our main contribution lies in the reset of the membrane potential and

how errors are backpropagated through inter-neuron and intra-neuron dependencies.

2.1 The CuBa LIF Neuron

We consider a neural network of Current-Based Leaky Integrate-and-Fire neurons with

a soft reset of the membrane potential. (Gerstner and Kistler, 2002; Davies et al., 2018;

Göltz et al., 2021).

Formally, the dynamic of the membrane potential u(l,j) of the j th neuron in layer l is

given by the system of linear ordinary differential equations:

du(l,j)

dt
= −1

τ
u(l,j)(t) + g(l,j)(t)− ϑδ

(
u(l,j)(t)− ϑ

)︸ ︷︷ ︸
Reset

dg(l,j)

dt
= − 1

τs
g(l,j)(t) +

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

δ(t− t(l−1,i)z)︸ ︷︷ ︸
Pre-synaptic spikes

(1)

where

δ(x) =


+∞ if x = 0

0 otherwise

(2)

is the Dirac delta function that satisfies the identiy
∫ +∞
−∞ δ(x)dx = 1. We denote the

number of neurons in the layer l as N (l), the number of spikes fired by the neuron

j of this layer as n(l,j) and the kth spike of this neuron as t(l,j)k . Each pre-synaptic

spike received at a synapse i of a neuron j induces an increase in post-synaptic current

g(l,j) by an amount w(l)
i,j , which defines the strength of the synaptic connection. The

6

post-synaptic current g(l,j) is then integrated into the membrane potential u(l,j). We

denote by τ and τs the membrane and synaptic time constants that control the decay of

the membrane potential and the post-synaptic current respectively. Finally, when the

membrane potential reaches the threshold ϑ the neuron emits a post-synaptic spike at

time t(l,j)k where k is the index of the emitted spike and u(l,j) is reset to zero due to an

instantaneous negative current of the size of the threshold.

The reset of the membrane potential in Equation 1 is the major difference with the

TTFS model used in Fast & Deep (Göltz et al., 2021). By resetting the membrane

potential after post-synaptic spikes, our model allows for further integration of inputs

and thus the firing of several spikes. Therefore, this relaxes the constraint on spike

counts imposed by Fast & Deep.

2.2 SRM Mapping

The Spike Response Model (SRM) is a generalization of the LIF neuron where the

sub-threshold behavior of the neuron is defined by an integral over the past (Gerstner

and Kistler, 2002; Göltz et al., 2021; Wunderlich and Pehle, 2021). This form is more

convenient to derive as it is an explicit function of time. Formally, the SRM neuron

defines the membrane potential as:

u(l,j) (t) =
N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

ε
(
t− t(l−1,i)z

)
−

n(l,j)∑
z=1

η
(
t− t(l,j)z

)
(3)

where ε(t) is the Post-Synaptic Potential (PSP) kernel that represents the response of

the neuron to a pre-synaptic spike and η(t) is the refractory kernel that defines the reset

behavior. In Fast & Deep (Göltz et al., 2021), the refractory kernel η(t) = 0 is zero as

no reset of the membrane potential is required.

7

Using the definition of the CuBa LIF (Equation 1), we find by integration the fol-

lowing PSP and refractory kernels (Gerstner and Kistler, 2002):

ε(t) =Θ(t)
ττs
τ − τs

[
exp

(−t
τ

)
− exp

(−t
τs

)]
η(t) =Θ(t)ϑ exp

(−t
τ

) (4)

where

Θ(x) :=


1 if x > 0

0 otherwise

(5)

is the Heavyside step function.

2.3 Closed-Form Solution of Spike Timing

Let us consider the kth spike timing t(l,j)k of the neuron j in layer l. Fast & Deep (Göltz

et al., 2021) described that, by constraining the membrane time constant as twice the

synaptic time constant (τ = 2τs), the SRM mapping of the LIF neuron can be written

as a polynomial of degree 2, such as:

0 = −a(l,j)k exp

(
−t(l,j)k

τ

)2

+ b
(l,j)
k exp

(
−t(l,j)k

τ

)
− c(l,j)k (6)

where a(l,j)k , b(l,j)k and c(l,j)k are three coefficients that depend on the definition of the

model. Equation 6 can therefore be solved for t(l,j)k by using the quadratic formula:

t
(l,j)
k = τ ln

[
2a

(l,j)
k

b
(l,j)
k + x

(l,j)
k

]
(7)

with x(l,j)k =

√(
b
(l,j)
k

)2
− 4a

(l,j)
k c

(l,j)
k .

This equation can be thus used to infer the spike trains of neurons in an event-based

manner.

8

According to the definition of our model, we find by factorizing Equation 3 into

Equation 6 the following coefficients:

a
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)z

)
exp

(
t
(l−1,i)
z

τs

)
(8)

b
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)z

)
exp

(
t
(l−1,i)
z

τ

)

− ϑ

τ

n(l,j)∑
z=1

Θ
(
t
(l,j)
k − t(l,j)z

)
exp

(
t
(l,j)
z

τ

) (9)

and

c := c
(l,j)
k =

ϑ

τ
(10)

Note that the value of c(l,j)k is common to every spike emitted by the neuron. We thus

denote its value as c for short. Moreover, only the definition of the coefficient b(l,j)k

differs from Fast & Deep (Göltz et al., 2021) due to the reset of the membrane potential.

For comparison, b(l,j)k is defined as follows in Fast & Deep (Göltz et al., 2021):

b
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)z

)
exp

(
t
(l−1,i)
z

τ

)
(11)

2.4 Spike Count Loss Function

For each neuron j in the output layer o, we define a spike count target yj . The aim is to

minimize the distance between the actual output spike counts and their corresponding

targets. Therefore, we define the loss function as:

L :=
1

2

N(o)∑
j=1

(
yj − n(o,j)

)2
(12)

where o is the index of the output layer and yj is the spike count target associated with

the same neuron.

9

2.5 Gradient of Unconstrained Neurons

Because the spike timing now has a closed-form solution, it becomes differentiable

which allows the computation of an exact gradient. We first state the total change of

weight between two neurons.

Let δ(l,j)k be the error received by the spike k of the neuron j in layer l, the change of

weight ∆w
(l)
i,j between the pre-synaptic neuron i and the post-synaptic neuron j of the

layer l is defined as a sum of all errors applied to their corresponding spike derivatives:

∆w
(l)
i,j =

n(l,j)∑
k=1

∂L
∂t

(l,j)
k

∂t
(l,j)
k

∂w
(l)
i,j

=
n(l,j)∑
k=1

δ
(l,j)
k

∂t
(l,j)
k

∂w
(l)
i,j

(13)

where

∂t
(l,j)
k

∂w
(l)
i,j

=
n(l−1,i)∑
z=1

Θ
(
t
(l,j)
k − t(l−1,i)z

)[
f
(l,j)
k exp

(
t
(l−1,i)
z

τs

)
− h(l,j)k exp

(
t
(l−1,i)
z

τ

)]

(14)

is the partial derivative of Equation 7 with respect to the weight w(l)
i,j and:

f
(l,j)
k :=

∂t
(l,j)
k

∂a
(l,j)
k

=
τ

a
(l,j)
k

[
1 +

c

x
(l,j)
k

exp

(
t
(l,j)
k

τ

)]

h
(l,j)
k :=

∂t
(l,j)
k

∂b
(l,j)
k

=
τ

x
(l,j)
k

(15)

Therefore, the weight w(l)
i,j can be updated using the gradient descent algorithm as:

w
(l)
i,j = w

(l)
i,j − λ∆w

(l)
i,j (16)

where λ is a learning rate parameter.

10

Time

L
a
y
e
r

in
d
e
x

Output errors

Intra-neuron

dependencies

Inter-neuron

dependencies

Error back-propagation

1

2

3

Figure 1: Illustration of error backpropagation through spikes. This figure represents a

three-layered network where the spike trains of only one neuron per layer are shown.

The grey arrows represent the error coming from the loss function, the dashed blue

arrows are the errors backpropagated from the downstream spikes (i.e. inter-neuron de-

pendencies) and the red arrows are the error backpropagated from the future activity of

the neuron due to the recurrence of the reset function (i.e. intra-neuron dependencies).

2.6 Spike Errors

We now derive the spike error δ(l,j)k associated to the spike at time t(l,j)k . In unconstrained

SNNs, errors are backpropagated through two distincts paths: from post-synaptic to pre-

synaptic spikes (i.e. inter-neuron dependencies) due to the synaptic connections and

through post-synaptic to post-synaptic spikes (intra-neuron dependencies) due to the

reset of the membrane potential after firing. In contrast, Fast & Deep (Göltz et al., 2021)

only propagates errors through inter-neuron dependencies as the membrane potential

of constrained neurons is never reset. Figure 1 provides a visual illustration of these

dependencies. Therefore, we decompose the error received by the spike t(l,j)k into two

11

error components, such as:

δ
(l,j)
k :=

∂L
∂t

(l,j)
k

=
N(l+1)∑
i=1

n(l+1,i)∑
z=1

∂L
∂t

(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k︸ ︷︷ ︸

Inter-Neuron

+
n(l,j)∑
z=k+1

∂L
∂t

(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k︸ ︷︷ ︸

Intra-Neuron

=φ
((l,j)
k + µ

(l,j)
k

(17)

where φ((l,j)
k is the error backpropagated from inter-neuron dependencies and µ(l,j)

k is

the error backpropagated from intra-neuron dependencies.

The inter-neuron error φ((l,j)
k has different definitions for output neurons and hidden

neurons. For output neurons, the inter-neuron error φ((o,j)
k received by the kth spike of

the neuron j is defined as the derivative of the spike count loss function as no inter-

neuron backpropagation is required:

φ
(o,j)
k :=

∂L
∂n(o,j)

= yj − n(o,j) (18)

For hidden neurons, the inter-neuron error φ(l,j)
k is defined as the sum of all errors back-

propagated from the downstream spikes that have been emitted since t(l,j)k , such as:

φ
(l,j)
k :=

N(l+1)∑
i=1

n(l+1,i)∑
z=1

∂L
∂t

(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k

=
N(l+1)∑
i=1

n(l+1,i)∑
z=1

δ(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k

(19)

where

∂t
(l+1,i)
z

∂t
(l,j)
k

=Θ
(
t(l+1,i)
z − t(l,j)k

)
w

(l+1)
j,i

[
f
(l+1,i)
z

τs
exp

(
t
(l,j)
k

τs

)
− h

(l+1,i)
z

τ
exp

(
t
(l,j)
k

τ

)]

(20)

For the intra-neuron error µ(l,j)
k , all the errors backpropagated from the future spike

activity of the neuron must be taken into account due to the temporal impact of the

12

resets on the future membrane potential. Therefore, µ(l,j)
k is defined as a sum over all

errors backpropagated from the following post-synaptic spikes in time:

µ
(l,j)
k :=

n(l,j)∑
z=k+1

∂L
∂t

(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k

=
n(l,j)∑
z=k+1

δ(l,j)z

∂t
(l,j)
z

∂t
(l,j)
k

(21)

where

∂t
(l,j)
z

∂t
(l,j)
k

=
ϑ

τx
(l,j)
z

exp

(
t
(l,j)
k

τ

)
(22)

If evaluated as written, Equation 21 implies a quadratic time complexity O (n2) (where

n is the total number of spikes emitted by the neurons) due to the recurrence. However,

every reset has the same impact on the membrane potential i.e. an instantaneous neg-

ative current of the size of the threshold. Therefore, Equation 21 can be factorized as

follows:

µ
(l,j)
k =

n(l,j)∑
z=k+1

ϑ

τx
(l,j)
z

exp

(
t
(l,j)
k

τ

)
δ(l,j)z

=
ϑ

τ
exp

(
t
(l,j)
k

τ

)
n(l,j)∑
z=k+1

δ
(l,j)
z

x
(l,j)
z

=α
(l,j)
k β

(l,j)
k

(23)

where

α
(l,j)
k :=

ϑ

τ
exp

(
t
(l,j)
k

τ

)
(24)

is the unique factor and

β
(l,j)
k :=

n(l,j)∑
z=k+1

δ
(l,j)
z

x
(l,j)
z

(25)

is the backpropagated factor that can be accumulated in linear time complexity O (n)

during the backward pass which significantly reduces the processing time.

13

3 Results

In this section, we compare our proposed method with Fast & Deep. This evaluation

was conducted based on multiple criteria including performance on benchmark datasets,

convergence rate, sparsity, classification latency, as well as robustness to noise and

weight quantization.

Experimental conditions were standardized for both methods, except for weight dis-

tributions and thresholds. Two uniform weight distributions (wi,j ∼ U(−1, 1) and

wi,j ∼ U(0, 1)) were used to evaluate Fast & Deep, to measure the effect of initial

weight distributions on the different evaluation criteria. Our method was solely assessed

using wi,j ∼ U(−1, 1), as positive initial weights lead to excessive spiking activity, hin-

dering computational and energy efficiency. Thresholds were manually tuned to find the

best-performing networks and kept fixed during training. In our experiments, all layers

(including convolutional layers) have been directly trained using our proposed method

and Fast & Deep and no conversion from DNN to SNN has been performed. More

details about our experimental settings can be found in Appendix.

3.1 Performance and Convergence Rate

To assess the performance of our proposed method, we trained fully-connected SNNs

on the MNIST (LeCun et al., 2010), EMNIST (Cohen et al., 2017) (Balanced Ex-

tended MNIST) and Fashion-MNIST (Xiao et al., 2017) datasets as well as Convolu-

tional SNNs on MNIST. We also evaluated our method on temporal data classification

by training fully-connected networks on the Spiking Heidelberg Digits (SHD) dataset

(Cramer et al., 2022), an english and german spoken digits classification task. We com-

14

Table 1: Performances comparison between Fast & Deep and our method on the

MNIST, EMNIST, Fashion-MNIST and Spiking Heidelberg Digits (SHD) datasets. The

initial weight distribution used in each column is specified in the first row of the table.

Conv. refers to a convolutional SNN with the following architecture: 15C5-P2-40C5-

P2-300-10.

Dataset Architecture
Fast & Deep

U(−1, 1)

Fast & Deep

U(0, 1)

Our Method

U(−1, 1)

MNIST
800-10 96.76 ± 0.17% 97.83 ± 0.08% 98.88 ± 0.02%

Conv. 99.01 ± 0.16% 99.22 ± 0.05% 99.38 ± 0.04%

EMNIST 800-47 69.56 ± 6.70% 83.34 ± 0.27% 85.75 ± 0.06%

Fashion MNIST 400-400-10 88.14 ± 0.08% 88.47 ± 0.20% 90.19 ± 0.12%

SHD 128-20 33.84 ± 1.35% 47.37 ± 1.65% 66.8 ± 0.76%

15

0 2 4 6 8 10
90

92

94

96

98

Epoch

Te
st

ac
cu

ra
cy

(%
)

Fast & Deep U(0, 1)
Fast & Deep U(−1, 1)
Our method U(−1, 1)

Figure 2: Test accuracy (Figure 2) of Fast & Deep and our method on MNIST for the

same learning rate. The unconstrained SNN trained with our method benefits from a

higher convergence rate than the temporaly-coded networks trained with Fast & Deep.

The two SNNs trained with Fast & Deep have similar convergence rates despite their

difference in initial weight distribution.

pared our results to those obtained using the original Fast & Deep algorithm. Table

1 summarizes the average test accuracies of both methods given the considered initial

weight distributions. For completeness, a comparison of Fast & Deep and our method

with other spike-based BP algorithms can be found in Appendix.

Firstly, it should be noted that the Fast & Deep algorithm generally achieves better

performance when the weights are initialized with positive values, which is consis-

tent with the choice of weight distribution made by Göltz et al. (2021). Secondly, our

proposed method demonstrates superior performance compared to the Fast & Deep al-

gorithm, with improvement margins ranging from 1.05% on MNIST to 2.41% on the

more difficult EMNIST dataset. This is not surprising given that unconstrained SNNs

are known to perform better compared to TTFS networks (Jin et al., 2018; Zhang and

Li, 2019; Shrestha and Orchard, 2018; Lee et al., 2016; Zhang et al., 2022). More-

16

0 0.2 0.4 0.6 0.8 1
0

200

400

600

N
eu

ro
n

in
de

x

(a) Inputs

0 0.2 0.4 0.6 0.8 1
0

50

100

(b) Our method U(−1, 1)

0 0.2 0.4 0.6 0.8 1
0

50

100

Time (s)

N
eu

ro
n

in
de

x

(c) Fast & Deep U(−1, 1)

0 0.2 0.4 0.6 0.8 1
0

50

100

Time (s)

(d) Fast & Deep U(0, 1)

Figure 3: Spiking activity of hidden neurons in a SNN trained with our method (Fig-

ure 3b) and Fast & Deep (Figures 3c and 3d) given a spoken ”zero” (Figure 3a) from

the SHD dataset. TTFS neurons in Fast & Deep manly respond to early stimuli, miss-

ing most of the input information. In contrast, our method allows for multiple spikes

per neuron which enables them to capture all the information from the inputs. This

demonstrates the importance of relaxing the spike constraint of TTFS when processing

temporal data.

17

over, our methods outperforms by at least 19% Fast & Deep on the SHD dataset with

a single hidden layer of 128 neurons. Note that no recurrent connections was used in

these experiments. To understand the reason for this performance gap, we analyzed the

spiking activity in the hidden layers after training. Figure 3 shows that TTFS neurons

only respond to early stimuli. In temporal coding, high-valued information is encoded

by early spikes. Training with a one spike constraint is therefore energy efficient but

tends to make SNNs spike as early as possible, thus missing the information occuring

later in time. In contrast, neurons trained without spike constraint are able to response

throughout the duration of the sample, thus capturing all the information despite an in-

creased total of spikes fired. This highlights the importance of firing more than once

and demonstrate that a tradeoff exists between performance and energy consumption

when processing temporal data.

In addition, our results indicate that the convergence rate of SNNs with multiple

spikes is higher compared to TTFS networks. Figure 2 depicts the evolution of the test

accuracy of both methods on MNIST. This demonstrates that our method can reach de-

sired accuracies in fewer epochs compared to Fast & Deep. Such improvement implies

that discriminative features are learnt earlier during training.

3.2 Network Sparsity

Achieving high sparsity in trained SNNs is critical for energy efficiency, as neuromor-

phic hardware only consumes energy at spike events.

Figure 4 shows the population spike counts of fully-connected SNNs trained on

MNIST using both methods. It appears that the initial weight distribution plays an

18

Spike count Active neurons
0

200

400

600

800
660 660

192 192216

54

Fast & Deep U(0, 1)
Fast & Deep U(−1, 1)
Our method U(−1, 1)

Figure 4: Comparison of the population spike count and the number of active neurons

in fully-connected SNNs trained using Fast & Deep and our proposed method on the

MNIST dataset. These results indicate that the sparsity of SNNs after training depends

on the weight distribution, with the SNN initialized with only positive weights appear-

ing to be less sparse than those initialized with both negative and positive weights.

Additionally, our proposed method demonstrates a similar level of sparsity and fewer

active neurons as Fast & Deep for the same initial weight distribution, despite the re-

laxed constraint on neuron spike counts.

19

0 20 40 60 80
0
1
2
3
4
5
6
7
8
9

Hidden neuron index

L
ab

el

(a) Fast & Deep U(−1, 1)

0 20 40 60 80
0
1
2
3
4
5
6
7
8
9

Hidden neuron index

L
ab

el

0

1

2

3

4

5

Sp
ik

e
co

un
t

(b) Fast & Deep U(0, 1)

0 20 40 60 80
0
1
2
3
4
5
6
7
8
9

Hidden neuron index

L
ab

el

0

1

2

3

4

5

Sp
ik

e
co

un
t

(c) Our method U(−1, 1)

Figure 5: Figures 5a and Figure 5b show the average spike count of hidden neurons

trained with Fast & Deep on the MNIST dataset, while Figure 5c shows the average

spike count of hidden neurons trained with our proposed method. Each row corresponds

to the average activity over all the test samples of a particular digit. As TTFS networks

mainly encode information temporally, we observe that neurons trained with Fast &

Deep fire indiscriminately in response to stimuli, making it difficult to differentiate the

labels from the mean spike count, regardless of the initial weight distribution. However,

our proposed SNN training method results in a different distribution of firing activity.

More precisely, key neurons respond selectively to particular digits, while most of the

other neurons remain mostly silent.

20

0.5 1 1.5
200

400

600

800

Output Threshold

H
id

de
n

sp
ik

e
co

un
t

(a)

0.5 1 1.5

5

10

15

20

Output Threshold

O
ut

pu
ts

pi
ke

co
un

t

(b)

0.5 1 1.5

0

0.1

Output Threshold

O
ut

pu
te

rr
or

s

(c)

0.5 1 1.5

−1.5

−1

−0.5

0
·10−4

Output Threshold

C
ha

ng
e

of
w

ei
gh

ts

(d)

Figure 6: Influence of the output threshold on the sparsity of a 2-layer SNN trained on

MNIST with our method. Figure 6a illustrates that a lower output threshold results in

fewer spikes generated after 1 epoch. Figure 6b indicates that decreasing the output

threshold increases the initial activity in the output layer, thereby leading to a greater

number of negative errors transmitted during the backward pass (as shown in Figure

6c). This, in turn, leads to a decrease in the weights in the hidden layer, as depicted in

Figure 6d.

21

important role in the final sparsity level of the trained SNNs. In the analyzed case,

SNNs initialized with positive weights appear to be less sparse after training than SNNs

initialized with both negative and positive weights.

While our proposed method allows for an increased number of spikes per neuron,

which implies more energy consumption, we found that it can achieve similar sparsity

as TTFS networks initialized with both negative and positive weights while performing

better than TTFS networks initialized with positive weights only (see Figure 4 and

Table 1). This suggests that our proposed method can offer improved tradeoffs between

accuracy and sparsity.

To understand why our method can achieve such levels of sparsity despite not im-

posing any constraints on neuron firing, we analyzed the average activity in each net-

work. Figure 5 shows that neurons trained with Fast & Deep fire indiscriminately in

response to any input digit, which is characteristic of temporal coding where infor-

mation is represented by the timing of spikes, rather than the presence or absence of

spikes. In contrast, SNNs trained with our method exhibit a different distribution of

firing activity, with certain key neurons selectively responding to specific digits. Figure

4 indicates that only 7% of neurons trained with our method are active during inference

(i.e. neurons that fire at least once). In comparison, the SNN trained with Fast & Deep

and initialized with both negative and positive weights has 24% of its neurons firing.

Therefore, the reduced proportion of active units in our method compensates for the

increased number of spikes per neuron, leading to fewer spikes emitted in the network.

We found during our experiments that the sparsity of SNNs trained with our method

was also influenced by the choice of threshold values. More precisely, we observed

22

that decreasing the output threshold resulted in a reduction of activity in the network, as

illustrated in Figure 6a. This decrease in activity occurred because the output neurons

fired more often, which is illustrated in Figure 6b. The increased number of output

spikes caused the loss function to produce more negative errors, which resulted in neg-

atives change of weights in the hidden layer. However, lowering the threshold has a

dual impact on activity: it increases the firing rates at initialization but also contributes

to producing more negative errors, which can decrease activity during learning. While

controlling sparsity using thresholds is trivial in shallow SNNs, a fine balance between

thresholds has to be found to control sparsity in Deep SNNs, making it challenging to

achieve sparsity with larger architectures. However, our findings suggest that threshold

values play a crucial role in determining the sparsity of unconstrained SNNs and can be

seen as a way to control activity without the need for firing rate regularization.

3.3 Prediction Latency

We also investigated the prediction latency of SNNs trained using different methods.

This corresponds to the amount of simulation time needed by the models to reach

full confidence in their predictions and determines the simulation duration required to

achieve high accuracy.

Figure 7a shows the averaged prediction confidence over time for SNNs trained

using each method. We found that, when initialized with only positive weights, Fast &

Deep achieved high confidence on predictions after more than 150ms. However, when

initialized with both negative and positive weights, both Fast & Deep and our proposed

method achieved confidence earlier (in 20ms and 50ms, respectively). This suggests

23

0 50 100 150 200

0

50

100

Time (ms)
Pr

ed
ic

tio
n

co
nfi

de
nc

e
(%

)

(a)

0 200 400 600

50

100

Spike count

A
cc

ur
ac

y
(%

)

Fast & Deep U(−1, 1)
Fast & Deep U(0, 1)

Our method U(−1, 1)

(b)

Figure 7: Figure 7a shows the evolution of the average prediction confidence during

simulations on the MNIST test set. To produce this figure, we measured the probability

of predictions at a time t being equal to the final predictions at the end of the simu-

lations. The vertical dotted line represents the end of input spikes. The initial weight

distribution seems to have a crutial impact on the latency of predictions. More pre-

cisely, negative initial weights produce confidence earlier than positive initial weights.

Therefore, simulation time can be reduced to further improve sparsity. Figure 7b shows

the relationship between spike count and accuracy as the simulation time increases. It

demonstrates that the duration of simulation can be used as a post-training method to

further reduce energy consumption while maintaining high performance.

24

that initialization has a significant impact on prediction latency. However, SNNs trained

with our proposed method are slightly slower than TTFS networks trained with Fast &

Deep for the same weight distribution due to the increased spike count per neuron.

Despite this difference, the short latency of these networks allows for shorter simu-

lation durations, which can further improve sparsity without affecting performance. In

Figure 7b, we show the relationship between population spike count and accuracy for

each SNN as simulation time increases from 0 to 200 milliseconds. This demonstrates

that, by reducing the simulation time, SNNs can become more sparse while maintaining

high performance. Therefore, the sparsity-accuracy tradeoff can be further improved

after training by adjusting the simulation duration. This also demonstrates that our

method can align with the level of the sparsity of Fast & Deep while still performing

better.

3.4 Robustness to Noise and Weights Quantization

Analog neuromorphic hardware are inherently noisy and are often limited to specific

ranges and resolutions of weights. Having a model that is robust to noise and weight

quantization is therefore important to achieve high performance on such systems. To

assess the robustness of each method, we measured the impact of spike jitter, weight

clipping, and weight precision on their accuracy. In these experiments, performance

was normalized with the maximum accuracy of each method to better compare varia-

tions.

Figure 8a shows the impact of spike jitter on the performance of each method. These

results were produced by artificially adding noise to spike timings with a normal dis-

25

0 1 2 3
99.4

99.6

99.8

100

Jitter standard deviation σ (ms)

N
or

m
al

iz
ed

ac
c.

(%
)

(a)

0.5 1 1.5 2

97

98

99

100

wclip

N
or

m
al

iz
ed

ac
c.

(%
)

(b)

2 3 4 5 float

99

99.5

100

n (bit)

N
or

m
al

iz
ed

ac
c.

(%
)

Fast & Deep U(−1, 1)
Fast & Deep U(0, 1)

Our method U(−1, 1)

(c)

Figure 8: Figure 8a shows the effect of spike jitter on the performance of each method.

This was achieved by introducing artificial noise to the spike timings, following a nor-

mal distribution N (0, σ). Figure 8b displays the impact of weight clipping, which

involved restricting weights to the range [−wclip, wclip] during training. Lastly, Fig-

ure 8c demonstrates the effect of weight precision, which was obtained by discretizing

weights into 2n+1 − 1 bins (n bits plus one bit for the sign of the synapse) within the

range [−1, 1]. Overall, our method was found to be more resilient to noise and reduced

weight precision than Fast & Deep.

26

tribution N (0, σ) during training. When initialized with both negative and positive

weights, Fast & Deep appears to be less robust than using only positive weights. With

negative weights, only a fraction of neurons transmits information which leads to an

increased sparsity, as illustrated in Figure 4. Therefore, introducing noise to spike tim-

ings significantly impacts performance. In contrast, positive weights ensure consistent

network activity and redundancy in transmitted information. SNNs initialized with pos-

itive weights are thus less affected by spike jitter. However, SNNs trained with Fast &

Deep remain susceptible to noise, even with positive initial weights. Perturbations in

spike timing still have a critical impact on temporal coding. In contrast, our proposed

method demonstrates greater robustness to spike jitter than Fast & Deep, with minimal

variation observed. This is a result of the redundancy created by the multiple spikes

fired by neurons.

In Figure 8b, we demonstrate the effect of weight range on performance by clipping

weights between the range [−wclip, wclip] during training. The performance of Fast &

Deep initialized with positive weights degrades when wclip is lower than 1.5. However,

both our method and Fast & Deep exhibit robustness to reduced weight ranges when ini-

tialized with both negative and positive weights. This suggests that weight distribution

may play a role in the network’s resilience to limited weight ranges.

Finally, Figure 8c shows the performance of each method with reduced weight res-

olutions from 5 to 2 bits (results with float precision are also given as a reference). It

highlights that Fast & Deep is less robust to reduced weight precision than our method,

particularly with negative weights. In contrast, our approach is only slightly impacted

by the decreased precision, even when reduced to as low as 2 bits.

27

4 Discussion

In this work, we explored the tradeoffs between performance and various aspects of

TTFS SNNs such as sparsity, classification latency and robustness to noise and weight

quantization. We also generalized the Fast & Deep algorithm by incorporating a reset

of the membrane potential which enables multiple spikes per neuron and compared the

improvements of the proposed method with the origin algorithm on those tradeoffs.

We found that initializing Fast & Deep with positive weights leads to better gener-

alization capabilities compared to initializing with both negative and positive weights.

This observation is consistent across the benchmarked datasets, as shown in Table 1.

However, relaxing the spike constraint improves the overall performance and conver-

gence rate of SNNs, at least on the benchmark problems we considered. This result was

expected before our experiments since BP methods that use multiple spikes per neuron

generally perform better than methods that impose firing constraints (Jin et al., 2018;

Zhang and Li, 2019; Shrestha and Orchard, 2018; Lee et al., 2016; Zhang et al., 2022).

Our experiments also demonstrate that the weight distribution significantly influ-

ences the sparsity of Fast & Deep. We observed that SNNs with positive weight ini-

tialization tend to be less sparse than those initialized with weights between -1 and 1.

However, the former consistently outperforms the latter in terms of performance. This

highlights the accuracy-sparsity tradeoff often observed when training SNNs (Yin et al.,

2023; Li et al., 2021). The quasi-dense activity provided by positive weights explains

the difference in sparsity, as shown in Figure 5b. In contrast, initializing Fast & Deep

with both negative and positive weights leads to fewer active neurons due to the inhi-

bition provided by negative weights. Additionally, neurons trained with Fast & Deep

28

fire indiscriminately to stimuli, suggesting a pure temporal representation of informa-

tion, whereas neurons trained with our proposed method selectively respond to their

inputs and exhibit a different distribution of activity, as shown in Figure 5c. Our un-

constrained SNNs allow for a different distribution of the spike activity, whereby key

neurons can fire more often than others, while irrelevant neurons may not spike at all.

This enables our method to achieve a level of sparsity comparable to Fast & Deep on

image classification, as illustrated in Figure 4.

To achieve a high degree of sparsity without firing rate regularization, thresholds can

be tuned to indirectly influence spiking activity through learning. Decreasing thresh-

olds increases the firing rate of downstream layers, resulting in more negative errors at

outputs and consequently negative weight changes in hidden layers, as shown in Fig-

ure 6. This mechanism offers a natural way to control sparsity in unconstrained SNNs

without requiring any regularization technique. By leveraging this principle, we were

able to train shallow SNNs with a sparsity level similar to Fast & Deep while achieving

higher performance. This implies that allowing multiple spikes per neuron has the po-

tential to enhance the accuracy-sparsity tradeoff and prompts further investigation into

the effectiveness of TTFS in achieving efficient computation. However, finding thresh-

olds that lead to high sparsity is more difficult when networks become deeper due to

the fluctuations in the firing rates of each layer. The factors that influence sparsity in

unregularized SNNs are currently not fully understood and present an opportunity for

future research to investigate how to naturally achieve sparsity in deep architectures.

Our experiments on the SHD dataset also demonstrated the significance of the

accuracy-sparsity tradeoff when processing temporal data. We found that the ability

29

of neurons to fire multiple spikes is critical in capturing all the information about the

inputs over time. However, since TTFS neurons encode important information in early

spikes, they tend to fire too early to capture all the information, which makes them

less effective than unconstrained SNNs on temporal data. Although TTFS SNNs are

more energy-efficient, the relaxation of spike constraints in unconstrained SNNs allows

neurons to fire throughout the simulation, thereby capturing all the relevant information.

Consequently, they perform significantly better than TTFS SNNs when processing tem-

poral data.

In addition to performance and sparsity, we measured the prediction latency of each

method, which is the waiting time required before the system can make reliable pre-

dictions. We found that the speed of classification was primarily driven by the weight

distribution. Figure 7a shows that both Fast & Deep and our method achieve similar

latencies when initialized between -1 and 1, with a slight advantage for Fast & Deep.

However, when initialized with only positive values, Fast & Deep requires more simu-

lation time to achieve full confidence in predictions. Low latency is advantageous not

only in terms of inference speed but also in improving energy efficiency. If predictions

occur early enough, the duration of simulations can be significantly reduced, limiting

the number of spikes fired by neurons. In Figure 7b, we demonstrated that reducing the

simulation time can lead to a reduction in computational cost for both Fast & Deep and

our method while maintaining the same performance. This shows that prediction la-

tency, energy consumption, and performance are closely related and that unconstrained

SNNs can offer better tradeoffs between these aspects than TTFS SNNs.

The last characteristic that we investigated is the robustness to noise and weight

30

quantization that are inherent to analog neuromorphic hardware. The timing of spikes

is a critical factor for the performance of TTFS SNNs as it carries most of the informa-

tion. Therefore, perturbations in these timings and weight constraints can significantly

affect the reliability of the feature extraction. In contrast, our proposed method benefits

from an increased number of spikes per neuron, providing redundancy that enhances

resilience to noise and weight constraints. For instance, Figure 8a demonstrates that

our method is less impacted by perturbations in spike timings than Fast & Deep. This

suggests that our proposed method has the potential to provide more stable learning on

analog neuromorphic hardware than Fast & Deep.

Finally, our work specifically concentrated on backpropagation in SNNs with fixed

thresholds and time constants. However, several studies have demonstrated that incor-

porating adaptive thresholds and trainable time constants can enhance the convergence,

sparsity, and performance of SNNs (Zambrano et al., 2019; Chen et al., 2022; Fang

et al., 2021; Yin et al., 2021). Therefore, future studies could explore the integration

of adaptive thresholds and trainable time constants into our proposed method to further

enhance the sparsity-accuracy tradeoffs in SNNs.

5 Conclusion

Our work demonstrates that relaxing the spike constraint of TTFS SNNs results in

improved tradeoffs among performance, sparsity, latency, and noise robustness. Our

findings also highlight the crucial role of thresholds in regulating the sparsity of un-

constrained SNNs during learning, which could serve as a natural alternative to firing

31

rate regularization. Although error backpropagation algorithms for SNNs are incom-

patible with neuromorphic hardware, their development provides valuable insights into

how spiking neurons affect objective functions and could support the development of

hardware-compatible algorithms. Therefore, our work contributes to a better under-

standing of how to compute exact gradients in SNNs and highlights the advantages of

using multiple spikes per neuron over TTFS.

6 Code Availability

The code produced in this work will be made available at: https://github.com/Florian-

BACHO/bats

Appendix

Experimental Settings

Simulations

We implemented the method introduced in Section 2 in a custom Python simulator for

GPUs using CuPy (Okuta et al., 2017). In our implementation, both simulations and

error backpropagation are event-based.

Input Encoding

We used a TTFS encoding scheme to benefit from a low number of input spikes and

fast processing. For image classification tasks, we encoded the pixels into spike timing

32

as follows:

Given the time window Tenc = 100 milliseconds and the maximum pixel value

Xmax = 255, the input spike timing t(1,ijmax+j)
1 associated with the pixel value xi,j in row

i and column j is computed as:

t
(1,ijmax+j)
1 =

Tenc

Xmax
(Xmax − xi,j) (26)

where jmax is the width of the image in pixels. Neurons with a pixel value xi,j = 0 do not

produce any spikes to further limits the number of events to process. For convolutional

SNNs, the same temporal encoding was used but the shape of the input was set as a

three-dimensional tensor corresponding to the image with a single channel.

6.1 Implementation of Fast & Deep

To reproduce Fast & Deep with TTFS models, we constrained the number of firing al-

lowed per neuron to one in our implementation and used a TTFS softmax cross-entropy

loss function, as described in (Göltz et al., 2021).

6.2 Architectures and Parameters

For the MNIST EMNIST and SHD datasets, we trained both TTFS and unconstrained

fully-connected SNNs with a batch size of 50 and a maximum number of spikes per

neuron of 30 for the unconstrained SNNs. Output spike targets were set to 15 for the

target label and 3 for the others. We used a learning rate of λ = 0.003 for image

classification and λ = 0.001 for the SHD dataset. No data augmentation was used with

full connected networks.

33

For Fashion-MNIST, we implemented a three-layer fully-connected network com-

posed of two hidden layers of 400 neurons each and a 10 neuron output layer. We

allowed a maximum number of spikes per neuron of 5 for the hidden layers and 20 for

the output layer. We also set the target spike counts to 15 for the true class and 3 for

the others. We used a batch size of 5 with a learning rate of λ = 0.0005, a learning rate

decay factor of 0.5 every 10 epochs and a minimum rate of 0.0001.

The weight kernels of convolution neurons were shared within each layer, as in

rate-based CNNs. Convolution allows the detection of spatially-correlated features

and therefore, makes networks invariant to translations. In contrast to fully connected

SNNs, the translations invariance of CSNNs allows the networks to detect objects at

different locations in space. We used a 6 layer CSNN composed of two spiking con-

volutional layers of 15 5x5 and 40 5x5 filters respectively, each followed by 2x2 spike

aggregation pooling layers (i.e. the spike trains of input neurons are aggregated into a

single spike train). The spikes of the last pooling layer are finally sent to two successive

fully-connected layers of sizes 300 and 10 respectively. Each layer allows an increas-

ing number of spikes per neuron, starting from a single spike for the first convolutional

layer, 3 for the second layer, 10 for the fully-connected layer and 30 spikes per neuron

for the output layer. We also set the output spike targets to 30 for the true label and 3

for the others. The CSNN was also trained with data augmentation. In this case, we

used Elastic Distortions Simard et al. (2003) to transform the MNIST training images.

We finally trained the networks for 100 epochs with a batch size of 20, a learning rate

of λ = 0.003, a decay factor of 0.5 every 10 epochs and a minimum rate of 0.0001.

In all our experiments, we used the Adam optimizer with the values of β1, β2 and

34

ε set as in the original paper (Kingma and Ba, 2015). Initial weights were randomly

drawn from a uniform distribution U [a, b]. Networks trained on image classification

used the same base time constant of τs = 0.130. For the SHD dataset, we used a time

constant of τs = 0.100. All thresholds were manually tuned to find the best-performing

networks for each method and dataset. Thresholds were then kept fixed during training.

Finally, we did not use any regularization or synaptic scaling techniques in any of our

experiments to provide a fair comparison between TTFS and unconstrained SNNs.

35

Fully-connected SNNs on MNIST

Table 2: Performances of several methods on the MNIST dataset. Results for Fast &

Deep and our method are highlighted in bold.

Method Arch. Test accuracy

T
T

FS

Fast & Deep (Göltz et al., 2021) 350 97.1 ± 0.1%

Wunderlich & Pehle (Wunderlich and Pehle, 2021) 350 97.6 ± 0.1%

Alpha Synapses (Comsa et al., 2020) 340 97.96%

S4NN (Kheradpisheh and Masquelier, 2020) 400 97.4 ± 0.2%

BS4NN (Kheradpisheh et al., 2021) 600 97.0%

Mostafa (Mostafa, 2016) 800 97.2%

STDBP (Zhang et al., 2022) 800 98.5%

Fast & Deep (Göltz et al., 2021)

(our implementation)
800 97.83 ± 0.08%

U
nc

on
st

ra
in

ed

eRBP (Neftci et al., 2017) 2x500 97.98%

Lee et al. (Lee et al., 2016) 800 98.71%

HM2-BP (Jin et al., 2018) 800 98.84 ± 0.02%

This work 800 98.88 ± 0.02%

36

Fully-connected SNNs on EMNIST

Table 3: Performances of several methods on the EMNIST dataset. Results for Fast &

Deep and our method are highlighted in bold.

Method Arch. Test accuracy

T
T

FS Fast & Deep (Göltz et al., 2021)

(our implementation)
800 83.34 ± 0.27%

U
nc

on
st

ra
in

ed

eRBP (Neftci et al., 2017) 2x200 78.17%

HM2-BP (Jin et al., 2018) 2x200 84.31 ± 0.10%

HM2-BP (Jin et al., 2018) 800 85.41 ± 0.09%

This work 800 85.75 ± 0.06%

37

Fully-connected SNNs on Fashion MNIST

Table 4: Performances of several methods on the Fashion-MNIST dataset. Results for

Fast & Deep and our method are highlighted in bold. * means that the trained model

has recurrent connections.

Method Architecture Test accuracy

T
T

FS

S4NN (Kheradpisheh and Masquelier, 2020) 1000 88.0%

BS4NN (Kheradpisheh et al., 2021) 1000 87.3%

STDBP (Zhang et al., 2022) 1000 88.1%

Fast & Deep (Göltz et al., 2021)

(our implementation)
2x400 88.28 ± 0.41%

U
nc

on
st

ra
in

ed

HM2-BP (Jin et al., 2018) 2x400 88.99%

TSSL-BP (Zhang and Li, 2020) 2x400 89.75 ± 0.03%

ST-RSBP* (Zhang and Li, 2019) 2x400 90.00 ± 0.14%

This work 2x400 90.19 ± 0.12%

38

Fully-connected SNNs on SHD

Table 5: Performances of several methods on the Spiking Heidelberg Digits (SHD)

dataset. Results for Fast & Deep and our method are highlighted in bold. * means that

the trained model has recurrent connections.

Method Architecture Test accuracy

T
T

FS Fast & Deep (Göltz et al., 2021)

(our implementation)
128 47.37 ± 1.65%

U
nc

on
st

ra
in

ed Cramer et al. (Cramer et al., 2022) 128 48.10 ± 1.6%

Cramer et al.* (Cramer et al., 2022) 128 71.4 ± 1.9%

This work 128 66.79 ± 0.66%

Convolutional SNNs on MNIST

Table 6: Network architectures used in Table 7. 15C5 represents a convolution layer

with 15 5x5 filters and P2 represents a 2x2 pooling layer.

Network Name Architecture

Net1 32C5-P2-16C5-P2-10

Net2 12C5-P2-64C5-P2-10

Net3 15C5-P2-40C5-P2-300-10

Net4 20C5-P2-50C5-P2-200-10

Net5 32C5-P2-32C5-P2-128-10

Net6 16C5-P2-32C5-P2-800-128-10

39

Table 7: Performances of several methods on the MNIST dataset with Spiking Convo-

lutional Neural Networks. The network topologies are given in Table 6. * means that

the network has been trained using data augmentation.

Method Arch. Test accuracy

T
T

FS

Zhou et al* (Zhou et al., 2021) Net1 99.33%

STDBP* (Zhang et al., 2022) Net6 99.4%

Fast & Deep (our implementation) Net3 99.22 ± 0.05%

Fast & Deep* (our implementation) Net3 99.46 ± 0.01%

U
nc

on
st

ra
in

ne
d

Lee et al.* (Lee et al., 2016) Net4 99.31%

HM2-BP* (Jin et al., 2018) Net3 99.42% ± 0.11%

TSSL-BP (Zhang and Li, 2020) Net3 99.50 ± 0.02%

ST-RSBP* (Zhang and Li, 2019) Net2 99.50 ± 0.03%

ST-RSBP* (Zhang and Li, 2019) Net3 99.57 ± 0.04%

This work Net3 99.38 ± 0.04%

This work* Net3 99.60 ± 0.03%

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam,

N., Nakamura, Y., Datta, P., Nam, G.-J., Taba, B., Beakes, M., Brezzo, B., Kuang,

J. B., Manohar, R., Risk, W. P., Jackson, B., and Modha, D. S. (2015). Truenorth:

Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip.

40

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

34(10):1537–1557.

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). Benchmarking keyword

spotting efficiency on neuromorphic hardware. In Proceedings of the 7th Annual

Neuro-Inspired Computational Elements Workshop, NICE ’19, New York, NY, USA.

Association for Computing Machinery.

Bohté, S. M., Kok, J. N., and Poutré, H. L. (2000). Spikeprop: backpropagation for

networks of spiking neurons. In ESANN.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen,

M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,

Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot

learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors,

Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.

Curran Associates, Inc.

Chen, Y., Mai, Y., Feng, R., and Xiao, J. (2022). An adaptive threshold mechanism for

accurate and efficient deep spiking convolutional neural networks. Neurocomputing,

469:189–197.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. (2017). Emnist: Extending mnist

to handwritten letters. In 2017 International Joint Conference on Neural Networks

(IJCNN), pages 2921–2926.

41

Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and Alakuijala,

J. (2020). Temporal coding in spiking neural networks with alpha synaptic function:

Learning with backpropagation.

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2022). The heidelberg spiking

data sets for the systematic evaluation of spiking neural networks. IEEE Transactions

on Neural Networks and Learning Systems, 33(7):2744–2757.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G.,

Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty,

D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.-H., Wild, A., Yang,

Y., and Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip

learning. IEEE Micro, 38(1):82–99.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). Fast-

classifying, high-accuracy spiking deep networks through weight and threshold bal-

ancing. In 2015 International Joint Conference on Neural Networks (IJCNN), pages

1–8.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2020). Incor-

porating learnable membrane time constant to enhance learning of spiking neural

networks.

42

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021). Incor-

porating learnable membrane time constant to enhance learning of spiking neural

networks. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 2661–2671.

Furber, S. (2016). Large-scale neuromorphic computing systems. Journal of Neural

Engineering, 13(5):051001.

Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press.

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., Dold,

D., Kungl, A. F., Senn, W., Schemmel, J., Meier, K., and Petrovici, M. A. (2021). Fast

and energy-efficient neuromorphic deep learning with first-spike times. 3(9):823–

835.

Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2020). Towards

efficient neuromorphic hardware: Unsupervised adaptive neuron pruning. Electron-

ics, 9(7).

Hendy, H. and Merkel, C. (2022). Review of spike-based neuromorphic computing

for brain-inspired vision: biology, algorithms, and hardware. Journal of Electronic

Imaging, 31(1):1 – 25.

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro level backpropagation for

training deep spiking neural networks. Red Hook, NY, USA. Curran Associates Inc.

Kheradpisheh, S. R. and Masquelier, T. (2020). Temporal backpropagation for spiking

43

neural networks with one spike per neuron. International Journal of Neural Systems,

30.

Kheradpisheh, S. R., Mirsadeghi, M., and Masquelier, T. (2021). Bs4nn: Binarized

spiking neural networks with temporal coding and learning. Neural Processing Let-

ters, 54(2):1255–1273.

Kim, J., Park, J., Joo, S., and Jung, S.-O. (2020). Efficient hardware implementation of

stdp for aer based large-scale snn neuromorphic system. In 2020 35th International

Technical Conference on Circuits/Systems, Computers and Communications (ITC-

CSCC), pages 1–4.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In

Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Rep-

resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and Wein-

berger, K., editors, Advances in Neural Information Processing Systems, volume 25.

Curran Associates, Inc.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural networks

using backpropagation. Frontiers in Neuroscience, 10:508.

44

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021). Differentiable spike:

Rethinking gradient-descent for training spiking neural networks. In Ranzato, M.,

Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in

Neural Information Processing Systems, volume 34, pages 23426–23439. Curran As-

sociates, Inc.

Maass, W. (1997). Networks of spiking neurons: The third generation of neural network

models. Neural Networks, 10(9):1659–1671.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.

In International conference on machine learning, pages 1928–1937. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

Mostafa, H. (2016). Supervised learning based on temporal coding in spiking neural

networks. IEEE Transactions on Neural Networks and Learning Systems, PP.

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven ran-

dom back-propagation: Enabling neuromorphic deep learning machines. Frontiers

in Neuroscience, 11:324.

Okuta, R., Unno, Y., Nishino, D., Hido, S., and Loomis, C. (2017). Cupy: A numpy-

compatible library for nvidia gpu calculations. In Proceedings of Workshop on Ma-

45

chine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neu-

ral Information Processing Systems (NIPS).

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester,

D. R., Brown, A. D., and Furber, S. B. (2013). Spinnaker: A 1-w 18-core system-on-

chip for massively-parallel neural network simulation. IEEE Journal of Solid-State

Circuits, 48(8):1943–1953.

Park, S., Lee, D., and Yoon, S. (2021). Noise-robust deep spiking neural networks

with temporal information. In 2021 58th ACM/IEEE Design Automation Conference

(DAC), page 373–378. IEEE Press.

Schmitt, S., Klaehn, J., Bellec, G., Gruebl, A., Güttler, M., Hartel, A., Hartmann,

S., Husmann, D., Husmann, K., Karasenko, V., Kleider, M., Koke, C., Mauch, C.,

Müller, E., Müller, P., Partzsch, J., Petrovici, M., Schiefer, S., Scholze, S., and Meier,

K. (2017). Neuromorphic hardware in the loop: Training a deep spiking network on

the brainscales wafer-scale system.

Shrestha, S. B. and Orchard, G. (2018). Slayer: Spike layer error reassignment in time.

Simard, P., Steinkraus, D., and Platt, J. (2003). Best practices for convolutional neural

networks applied to visual document analysis. In Seventh International Conference

on Document Analysis and Recognition, 2003. Proceedings., pages 958–963.

Szegedy, C., Toshev, A., and Erhan, D. (2013). Deep neural networks for object detec-

tion. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger,

46

K. Q., editors, Advances in Neural Information Processing Systems, volume 26. Cur-

ran Associates, Inc.

Taunyazov, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., Tee, B. C., and

Soh, H. (2020). Event-driven visual-tactile sensing and learning for robots. arXiv

preprint arXiv:2009.07083.

Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the human visual

system. Nature, 381:520–2.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,

Advances in Neural Information Processing Systems, volume 30. Curran Associates,

Inc.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation

for training high-performance spiking neural networks. Frontiers in Neuroscience,

12:331.

Wunderlich, T. C. and Pehle, C. (2021). Event-based backpropagation can compute

exact gradients for spiking neural networks. Scientific Reports, 11(1).

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms.

Yan, Y., Chu, H., Jin, Y., Huan, Y., Zou, Z., and Zheng, L. (2022). Backpropagation

47

with sparsity regularization for spiking neural network learning. Frontiers in Neuro-

science, 16.

Yin, B., Corradi, F., and Bohté, S. M. (2021). Accurate and efficient time-domain

classification with adaptive spiking recurrent neural networks. Nature Machine In-

telligence, 3(10):905–913.

Yin, R., Kim, Y., Li, Y., Moitra, A., Satpute, N., Hambitzer, A., and Panda, P. (2023).

Workload-balanced pruning for sparse spiking neural networks.

Zambrano, D., Nusselder, R., Scholte, H. S., and Bohté, S. M. (2019). Sparse compu-

tation in adaptive spiking neural networks. Frontiers in Neuroscience, 12.

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z., Miriyala,

V. P. K., Qu, H., Chua, Y., Carlson, T. E., and Li, H. (2022). Rectified linear postsy-

naptic potential function for backpropagation in deep spiking neural networks. IEEE

Transactions on Neural Networks and Learning Systems, 33(5):1947–1958.

Zhang, W. and Li, P. (2019). Spike-train level backpropagation for training deep re-

current spiking neural networks. In Wallach, H., Larochelle, H., Beygelzimer, A.,

d’ Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information

Processing Systems, volume 32. Curran Associates, Inc.

Zhang, W. and Li, P. (2020). Temporal spike sequence learning via backpropagation

for deep spiking neural networks. In Larochelle, H., Ranzato, M., Hadsell, R., Bal-

can, M., and Lin, H., editors, Advances in Neural Information Processing Systems,

volume 33, pages 12022–12033. Curran Associates, Inc.

48

Zhou, S., Li, X., Chen, Y., Chandrasekaran, S. T., and Sanyal, A. (2021). Temporal-

coded deep spiking neural network with easy training and robust performance. Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 35(12):11143–11151.

49

