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Abstract. Wind is considered to be a free, renewable and environmentally friendly source of 
energy. However, wind farms are exposed to excessive weather risk since the power production 
depends on the wind speed and the wind direction. This risk can be successfully hedged using a 
financial instrument called weather derivatives. In this study the dynamics of the wind generating 
process are modeled using a non-parametric non-linear wavelet network. Our model is validated in 
New York. The proposed methodology is compared against alternative methods, proposed in prior 
studies. We find that wavelet networks can model the wind process very well and consequently 
they constitute an accurate and efficient tool for wind derivatives pricing. Finally, we provide the 
pricing equations for wind futures. 
 

Keywords: Wind Derivatives, Weather Derivatives, Pricing, Forecasting, Wavelet 

Networks 

1. Introduction 

Weather derivatives are financial tools that can help organizations or individuals 

to reduce risk associated with adverse or unexpected weather conditions. Weather 

derivatives can be used as part of a risk management strategy. Weather derivatives 

linked to various weather indices, such as rainfall, temperature or wind, are 

extensively traded in Chicago Mercantile Exchange (CME) as well as on Over-

The-Counter (OTC) market. According to (Challis 1999; Hanley 1999) nearly $1 

trillion of the US economy is directly exposed to weather risk. It is estimated that 

nearly 30% of the US economy and 70% of the US companies are affected by 

weather, (CME 2005). The electricity sector is especially sensitive to the 

temperature and wind since. Hence, it is logical that energy companies are the 

main investors of the weather market. In (Zapranis and Alexandridis 2008, 2009; 

Alexandridis 2010; Zapranis and Alexandridis 2010) a detailed framework for 

modeling and pricing temperature derivatives was developed. In this study we 

focus on wind derivatives. 

The notional value of the traded wind-linked securities is around $36 million 

indicating a large and growing market, (WRMA 2010). Wind is free, renewable 
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and environmentally friendly source of energy, (Billinton et al. 1996). While the 

demand for electricity is closely related to the temperature, the electricity 

produced by a wind farm is dependent on the wind conditions.  The risk exposure 

of the wind farm depends on the wind speed and the wind direction, (F. E. Benth 

and Saltyte-Benth 2009). However, modern wind turbines include mechanisms 

that allow turbines to rotate on in the appropriate wind direction, (Caporin and 

Pres 2010). Hence, the risk exposure of a wind farm can be analyzed by 

quantifying only the wind speed. 

Many different approaches have been proposed so far for modeling the dynamics 

of the wind speed process. The most common is the generalized autoregressive 

moving average (ARMA) approach. There have been a number of studies on the 

use of linear ARMA models to simulate and forecast wind speed in various 

locations (Daniel and Chen 1991; Caporin and Pres 2010; Huang and Chalabi 

1995; Torres et al. 2005; Billinton et al. 1996; Tol 1997; Kamal and Jafri 1997; 

Martin et al. 1999; Castino et al. 1998; J. r. a. Benth and Benth 2010). In 

(Kavasseri and Seetharaman 2009) a more sophisticated fractional integrated 

ARMA (ARFIMA) model was used. Most of these studies did not consider in 

detail the accuracy of the wind speed forecasts, (Huang and Chalabi 1995). On the 

other hand, (Ailliot et al. 2006) apply an autoregressive model (AR) with time-

varying coefficients to describe the space-time evolution of wind fields. In (F. E. 

Benth and Saltyte-Benth 2009) a stochastic process, called Continuous AR (CAR) 

model is introduced in order to model and forecast daily wind speeds. Finally, in 

(Nielsen et al. 2006) various statistical methods were presented for short-term 

wind speed forecasting. (Sfetsos 2002) argues about the use of linear or 

meteorological models since their prediction error is not significantly lower than 

the elementary persistent method. Alternatively, some studies use space-state 

models to simultaneously fit the speed and the direction of the wind, (Castino et 

al. 1998; Cripps et al. 2005; Martin et al. 1999; Tolman and Booij 1998; Tuller 

and Brett 1984; Haslett and Raftery 1989). 

Alternatively to the linear models, artificial intelligence was applied in wind speed 

modeling and forecasting. In (Sfetsos 2000, 2002; More and Deo 2003; Barbounis 

et al. 2006; Beyer et al. 1994; Mohamed A. Mohandes et al. 1998; Alexiadis et al. 

1998) neural networks were applied in order to model the dynamics of the wind 
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speed process. In (M. A. Mohandes et al. 2004) support vector machines were 

used while in (Pinson and Kariniotakis 2003) fuzzy neural networks were applied. 

Depending on the application, wind modeling is based on hourly, (Yamada 2008; 

Ailliot et al. 2006; Torres et al. 2005; Sfetsos 2000, 2002; Castino et al. 1998; 

Martin et al. 1999; Kamal and Jafri 1997; Daniel and Chen 1991), daily, (Caporin 

and Pres 2010; F. E. Benth and Saltyte-Benth 2009; More and Deo 2003; Tol 

1997; Billinton et al. 1996; Huang and Chalabi 1995), weekly or monthly basis, 

(More and Deo 2003). When the objective is to hedge against electricity demand 

and production, hourly modeling is used while for weather derivative pricing the 

daily method is used. More rarely, weekly or monthly modeling is used in order to 

estimate monthly wind indexes. Since, we want to focus on weather derivative 

pricing the daily modeling approach is followed; however, the proposed method 

can be easily adapted in hourly modeling too. 

Wind speed modeling is much more complicated than temperature modeling since 

wind has a direction and is greatly affected by the surrounding terrain such as 

building, trees, etc. (Jewson et al. 2005). However, in (F. E. Benth and Saltyte-

Benth 2009) it is shown that wind speeds dynamics share a lot of common 

characteristics with the dynamics of temperature derivatives as it was found on (F. 

E. Benth and Saltyte-Benth 2007; Zapranis and Alexandridis 2008, 2009; 

Alexandridis 2010; Zapranis and Alexandridis 2010). In this context we use a 

mean reverting Ornstein-Uhlenbeck stochastic process to model the dynamics of 

the wind speed dynamics were the innovations are driven by a Brownian motion. 

The statistical analysis reveals seasonality in the mean and variance. In addition 

we use a novel approach to model the autocorrelation of the wind speeds. More 

precisely, a wavelet network (WN) is applied in order to capture accurately the 

autoregressive characteristics of the wind speeds. 

The evaluation of the proposed methodology against alternative modeling 

procedures proposed in prior studies indicates that WNs can accurately model and 

forecast the dynamics and the evolution of the speed of the wind. The 

performance of each method was evaluated in-sample as well as out-of-sample 

and for different time periods. 

The rest of the paper is organized as follows. In section 2 a statistical analysis of 

the wind speed dynamics is presented. In section 3 a linear model is fitted to the 

data while in section 4 a nonlinear nonparametric WN is applied. The evaluation 
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of the studied models is presented in section 5. In section 6 we derive the pricing 

formulas for futures derivatives written on the wind index. Finally, in section 7 we 

conclude. 

 

2. Wind Speed Modeling 

In this section we derive empirically the characteristics of the daily average wind 

speed (DAWS) dynamics in New York, USA. The data were collected from 

NOAA1

In the 

 and correspond to DAWSs. The wind speeds are measured in 0.1 Knots. 

The measurement period is between 1st of January 1988 and 28th of February 

2008. The first 20 years are used for the estimation of the parameters while the 

remaining two months are used for the evaluation of the performance of the 

proposed model. In order for each year to have the same number of observations 

the 29th of February is removed from the data resulting to 7,359 data points. The 

time-series is complete without any missing values.  

Fig. 1 the DAWSs for the first 20 years are presented. The descriptive 

statistics of the in-sample data are presented in Table 1. The values of the data are 

always positive and range from 1.8 to 32.8 with mean around 9.91. Also, a closer 

inspection of Fig. 1 reveals seasonality. 

The descriptive statistics of the DAWSs indicate that there is a strong positive 

kurtosis and skewness while the normality hypothesis is rejected based on the 

Jarque-Bera statistic. The same conclusions can be reached observing the first part 

of Fig. 2 where the histogram of the DAWSs is represented. Hence, the 

distribution of DAWSs deviates significantly from the normal and it is not 

symmetrical. In literature the Weibull or the Rayleigh (which is a special case of 

the Weibull) distributions were proposed, (F. E. Benth and Saltyte-Benth 2009; 

Brown et al. 1984; Daniel and Chen 1991; Garcia et al. 1998; Justus et al. 1978; 

Kavak Akpinar and Akpinar 2005; Nfaoui et al. 1996; Torres et al. 2005; J. r. a. 

Benth and Benth 2010; Celik 2004; Tuller and Brett 1984). In addition, some 

studies propose the use of the lognormal distribution, (F. E. Benth and Saltyte-

Benth 2009; Garcia et al. 1998), or the Chi-square, (Dorvlo 2002). Finally, in 

(Jaramillo and Borja 2004) a bimodal Weibull and Weibull distribution is used. 

                                                 
1 http://www.noaa.gov/ 
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However, empirical studies favor the use of the Weibull distribution, (Celik 2004; 

Tuller and Brett 1984). 

A closer inspection of part (a) of Fig. 2 reveals that the DAWSs in New York 

follow a Weibull distribution with scale parameter 11.07λ =  and shape parameter 

3.04k = . Following (Brown et al. 1984; F. E. Benth and Saltyte-Benth 2009; 

Daniel and Chen 1991) in order to symmetrize the data, the Box-Cox transform is 

applied. The Box-Cox transformation is given by: 

 

( )
1    0

ln( )     0

l

l
W lW l

W l

 −
≠= 

 =                                    (1) 

where ( )lW  is the transformed data. The parameter l is estimated by maximizing 

the log-likelihood function. Note that the Log-transform is a special case of the 

Box-Cox transform with 0l = . The optimal l of the Box-Cox transform for the 

DAWS in New York is estimated to be 0.014. In the second part of Fig. 2 the 

histogram of the transformed data can be found while the second row of Table 1 

shows the descriptive statistics of the transformed data.  

The DAWSs exhibit a clear seasonal pattern which is preserved in the transformed 

data. The same conclusion can be reached by examining the autocorrelation 

function (ACF) of the DAWS in the first part of Fig.  3. In (F. E. Benth and 

Saltyte-Benth 2009; J. r. a. Benth and Benth 2010; Caporin and Pres 2010) the 

seasonality was captured by series of sinusoids. As in (Zapranis and Alexandridis 

2008, 2009, 2010) for the case of temperature process, the seasonal effects are 

modeled by a truncated Fourier series given by: 

 

( ) ( )
1 1

0 0
1 1

( ) sin 2 ( ) 365 sin 2 ( ) 365
I J

i i i j
i j

S t a b t a i t f b j t gπ π
= =

= + + − + −∑ ∑       (2) 

In addition we examine the data for a linear trend representing the global warming 

or the urbanization around the meteorological station. First, we quantify the trend 

by fitting a linear regression to the DAWS data. The regression is statistically 

significant with intercept 0 2.3632a =  and slope 0 0.000024b = −  indicating a 

slightly decrease in the DAWSs. Next, the seasonal periodicities are removed 

from the detrended data. The remaining statistically significant estimated 
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parameters of equation (2) with 1 1 1I J= =  are presented in Table 2. As it is 

shown on the second part of Fig.  3 the seasonal mean was successfully removed. 

The same conclusion was reached in previous studies for daily models for both 

temperature and wind, (Alexandridis 2010; Zapranis and Alexandridis 2008, 

2009, 2010; F. E. Benth and Saltyte-Benth 2005, 2007; F. E. Benth et al. 2007; F. 

E. Benth and Saltyte-Benth 2009; F. E. Benth et al. 2009) 

3. The linear ARMA model 

In literature, various methods for studying the statistical characteristics of the 

wind speed, in daily or hourly measurements, were proposed. However the 

majority of the studies utilize variations of the general ARMA model, (Ailliot et 

al. 2006; Billinton et al. 1996; Brett and Tuller 1991; Daniel and Chen 1991; 

Huang and Chalabi 1995; Kamal and Jafri 1997; Lei et al. 2009; Nfaoui et al. 

1996; Rehman and Halawani 1994; Torres et al. 2005). In this paper we will first 

estimate the dynamics of the detrended and deseasonalized DAWSs process using 

a general ARMA model and then we will compare our results with a WN. 

First, in order to select the correct ARMA model, we examine the ACF of the 

detrended and deseasonalized DAWS. A closer inspection of the second part of 

Fig.  3 reveals that the 1st, 2nd and the 4th lags are significant. On the other hand 

by examining the Partial Autocorrelation Function (PACF) in Fig. 4 we conclude 

that the first 4 lags are necessary to model the autoregressive effects of the winds 

speed dynamics. 

In order to find the correct model we estimate the Log Likelihood function (LLF) 

and the Akaike Information Criterion (AIC). Consistent with the PACF, both 

criteria suggest that an AR(4) model is adequate for modeling the wind process 

since they were minimized when a model with 4 lags was used. The estimated 

parameters and the corresponding p-values are presented in Table 3. It is clear that 

the three first parameters are statistically very significant since their p-value is less 

than 0.05. The parameter of the 4th lag is statistically significant with p-value 

0.0657. The AIC for this model is 0.46852 while the LLF is -1705.14.  

Observing the residuals of the AR model in the first part of Fig. 5 we conclude 

that the autocorrelation was successfully removed. However, the ACF of the 

squared residuals indicates a strong seasonal effect in the variance of the wind 

speed as it is shown in Fig. 6. The same conclusion was reached in previous 



7 

studies for daily models for both temperature and wind, (Alexandridis 2010; 

Zapranis and Alexandridis 2008, 2009, 2010; F. E. Benth and Saltyte-Benth 2005, 

2007; F. E. Benth et al. 2007; F. E. Benth and Saltyte-Benth 2009; F. E. Benth et 

al. 2009). Following (Alexandridis 2010) we model the seasonal variance with a 

truncated Fourier series: 

 

 ( ) ( )
2 2

2
0

1 1
( ) sin 2 365 sin 2 365

I J

i j
i j

t c c i t d jtσ π π
= =

= + +∑ ∑                  (3) 

 
Note that we assume that the seasonal variance is periodic and repeated every 

year, i.e. 2 2( 365) ( )t tσ σ+ =  where 1,...,7359t = . The empirical and the fitted 

seasonal variance are presented in Fig. 7 while in Table 4 the estimated 

parameters of equation (3) are presented. Non-surprisingly, the variance exhibits 

the same characteristics as in the case of temperature, (Alexandridis 2010; 

Zapranis and Alexandridis 2008; F. E. Benth and Saltyte-Benth 2007). More 

precisely the seasonal variance is higher in the winter and early summer while it 

reaches its lower values during the summer period.  

Finally, the descriptive statistics of the final residuals are examined. A closer 

inspection of Table 5 shows that the autocorrelation has successfully removed as 

indicated by the Ljung-Box Q-statistic. In addition the distribution of the residuals 

is very close to the normal distribution as it is shown on the first part of Fig. 8; 

however, small negative skewness exists. More precisely, the residuals have mean 

0 and standard deviation of 1. In addition, the kurtosis is 3.03 and the skewness is 

-0.09. 

Concluding, the previous analysis indicates that an AR(4) model provides a good 

fit for the wind process while the final residuals are very close to the normal 

distribution. 

 

4. Wavelet Networks for Wind Speed Modeling 

 
In this section WNs are used in the transformed, detrended and deseasonalized 

wind speed data in order to model the daily dynamics of wind speeds in New 

York. Motivated by the waveform of the data we expect a wavelet function to 

better fit the wind speed. In addition, it is expected that the non-linear form of the 
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WN will provide more accurate representation of the dynamics of the wind speed 

process both in-sample and out-of-sample. 

In Fig. 9 the structure and the mathematical expressions of a WN are presented. In 

(Alexandridis 2010) detailed explanation of how to use WNs in model 

identification problems is described. Model identification can be separated in two 

parts, in model selection and in variable significance testing. Since WNs are 

nonlinear tools, criteria like AIC or LLF cannot be used. Hence, in this section 

WNs will be used in order to select the significant lags, to select the appropriate 

network structure, to train a WN in order to  learn the dynamics of the wind 

speeds and, finally, to forecast the future evolution of the wind speeds. 

The algorithm developed by (Alexandridis 2010) simultaneously estimates the 

correct number of lags that must be used in order to model the wind speed 

dynamics and the architecture of the WN by using a recurrent algorithm. An 

illustration of the model identification algorithm is presented in Fig. 10. In 

(Alexandridis 2010) we give a concise treatment of the WN theory. Here the 

emphasis is in presenting the basic notions of the model selection algorithm. For a 

more detailed exposition on the mathematical aspects of WN we refer to 

(Alexandridis 2010). 

Our backward elimination algorithm examines the contribution of each available 

explanatory variable to the predictive power of the WN. First, the prediction risk 

of the WN is estimated as well as the statistical significance of each variable. If a 

variable is statistically insignificant it is removed from the training set and the 

prediction risk and the new statistical measures are estimated. The algorithm stops 

if all explanatory variables are significant. In this study the selected statistical 

measure is the Sensitivity Based Pruning (SBP) proposed by (Moody and Utans 

1992). Previous analysis in (Alexandridis 2010) indicates that the SBP fitness 

criterion was found to significantly outperform alternative criteria in the variable 

selection algorithm. The SBP quantifies the effect on the empirical loss of 

replacing a variable by its mean. Analytical description of the SBP is given in 

(Alexandridis 2010; Zapranis and Refenes 1999; Moody and Utans 1992). In each 

step the SBP and the corresponding p-value are calculated. For analytical 

explanation of each step of the algorithm we refer to (Alexandridis 2010). 

The proposed variable selection framework will be applied on the transformed, 

detrended and deseasonalized wind speeds in New York in order to select the 
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length of the lag series. The target values of the WN are the DAWSs. The 

explanatory variables are lagged versions of the target variable. The relevance of a 

variable to the model is quantified by the SBP criterion which was introduced in 

(Moody and Utans 1992). Initially the training set contains the dependent variable 

and 7 lags. The analysis in the previous section indicates that a training set with 7 

lags will provide all the necessary information of the ACF of the detrended and 

deseasonalized DAWSs. Hence, the training set consists of 7 inputs, 1 output and 

7293 training pairs.  

Table 6 summarizes the results of the model identification algorithm for the New 

York. Both the model selection and the variable selection algorithms are included 

in Table 6. The algorithm concluded in 4 steps and the final model contains only 3 

variables, i.e 3 lags. The prediction risk for the reduced model is 0.0937 while for 

the original model was 0.0938. On the other hand the empirical loss slightly 

increased from 0.0467 for the initial model to 0.0468 for the reduced model 

indicating that the explained variability (unadjusted) slightly decreased. Finally, 

the complexity of the network structure and number of parameters were 

significantly reduced in the final model. The initial model needed 1 hidden unit 

(HU) and 7 inputs. Hence, 23 parameters were adjusted during the training phase. 

Hence the ratio of the number of training pairs n to the number of parameters p 

was 317.4. In the final model only 2 HU and 3 inputs were used. Hence only 18 

parameters were adjusted during the training phase and the ratio of the number of 

training pairs n to the number of parameters p was 405.6.  

The proposed algorithm suggests that a WN needs only 3 lags to extract the 

autocorrelation from the data while the linear model needed 4 lags. A closer 

inspection of Table 6 reveals that the WN with 3 and 4 lags have the same 

predictive power in-sample and out-of-sample. Hence, we chose the simpler 

model. Our model is similar to an AR(3) model with time-varying parameters. 

Examining the second part of Fig. 5 we conclude that the autocorrelation was 

successfully removed from the data; however, the seasonal autocorrelation in the 

squared residuals is still present as it is shown in Fig. 6. We will remove the 

seasonal autocorrelation using equation (3). The estimated parameters are 

presented in Table 7 and as it was expected their values are similar to those of the 

case of the linear model. In Fig. 7 the empirical and the fitted seasonal variance is 

presented. Again, the same conclusions are reached for the seasonal variance. The 
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variance is higher at winter period while it reaches its minimum during the 

summer period. 

Finally, examining the final residuals of the WN model, we observe that the 

distribution of the residuals is very close to the normal distribution as it is shown 

in Fig. 8 while the autocorrelation was successfully removed from the data. In 

addition we observe an improvement in the distributional statistics in contrast to 

the case of the linear model. The distributional statistics of the residuals are 

presented in Table 8.  

Concluding, the distributional statistics of the residuals indicate that in-sample the 

two models can accurate represent the dynamics of the DAWSs however an 

improvement is evident when a nonlinear nonparametric WN is used. 

 

5. Forecasting daily average wind speeds 

 
In this section our proposed model will be validated out-of-sample. In addition the 

performance of our model will be tested against two models, first, against the 

linear model previously described and second, against the simple persistent 

method usually referred as benchmark. The linear model is the AR(4) model 

described in the previous section. The persistent method assumes that the today’s 

and tomorrow’s DAWSs will be equal, i.e. *( 1) ( )W t W t+ =  where the *W  

indicates the forecasted value. 

The three models will be used for forecasting DAWSs for two different periods. 

Usually wind derivatives are written for a period of a month. Hence, DAWSs for 

1 and 2 months will be forecasted. The out-of-sample dataset correspond to the 

period from January 1st to February 28th 2008 and were not used for the estimation 

of the linear and nonlinear models. Note that our previous analysis reveals that the 

variance in higher in the winter period indicating that it is more difficult to 

forecast accurately DAWS for these two months.  

In Table 9 the performance of the three methods when the forecast window is one 

month is presented. Various error criteria are estimated like the Mean, Median and 

Maximum Absolute Error (Max. AE), the Mean Square Error (MSE), the Position 

of Change in Direction (POCID) and the Independent POCID. As it is shown on 

Table 9 our proposed method outperforms both the persistent and the AR(4) 
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model. The AR(4) model performs better than the naïve persistent method 

however all error criteria are improved when a nonlinear WN is used. The MSE is 

16.3848 for the persistent method, 10.6127 for the AR(4) model and 10.3309 for 

the WN. In addition our model can predict more accurately the movement of the 

wind speed since the POCID is 80% for the WN and the AR(4) models while it is 

only 47% for the persistent method. Moreover the IPOCID is 37% for the 

proposed model while it is only 33% for the other two methods. 

In order to compare our model directly with the linear method, we estimate a 

linear AR(3) model. However, our proposed methodology still outperforms the 

linear method. 

Next, the three forecasting methods are evaluated in two months day-ahead 

forecasts. The results are similar and presented in Table 10. The proposed WN 

outperforms the other two methods. Only the Max. AE and the POCID are 

slightly smaller when the AR(4) model is used. However the IPOCID is 38% for 

both methods. Also, our results indicate that the persistent method produces 

significantly worse forecasts. Finally, the WN and the linear AR(3) model are 

compared with first to show better forecasting ability.  

Our results indicate that the WN can forecast the evolution of the dynamics of the 

DAWSs and hence they constitute an accurate tool for wind derivatives pricing. 

6. Pricing 

In this section the pricing formulas for wind derivatives are presented under the 

assumption of a normal driving noise process. The analysis that performed in the 

previous section indicates the assumption that the final residuals, after dividing 

out the seasonal variance, follow a normal distribution is justified. 

When the market is complete, a unique risk-neutral probability measure ~Q P  

can be obtained, where P is the real world probability measure. This change of 

measure turns the stochastic process into a martingale. Hence, financial 

derivatives can be priced under the risk-neutral measure by the discounted 

expectation of the derivative payoff. 

The weather market is an incomplete market in the sense that the underlying 

weather derivative cannot be stored or traded. Moreover the market is relatively 

illiquid. In principle, (extended) risk-neutral valuation can be still carried out in 

incomplete markets, (Xu et al. 2008). However, in incomplete markets a unique 
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price cannot be obtained using the no-arbitrage assumption. In other words, under 

every measure Q all assets are martingales after discounting. 

The change of measure from the real world to the risk-neutral world under the 

dynamics of a BM can be performed using the Girsanov theorem. The Girsanov 

theorem tells us how changes in the measure affect a stochastic process. Then the 

discounted expected payoff of the various weather contracts can be estimated. 

However, in order to estimate the expected payoff of each derivative, the solution 

of the stochastic differential equation that describes the wind speed dynamics 

must be solved. This can be done by applying the Itô’s Lemma when a BM is 

considered. 

Following (F. E. Benth and Saltyte-Benth 2009) we focus on the Nordix Wind 

Speed Index which is the index that the US Future Exchange used to settle wind 

derivatives. The Nordix Index is given by: 

 ( )
2

1

1 2 20( , ) 100 ( ) ( )
s

I W s w s
τ

τ

τ τ
=

= + −∑  (4) 

and measures the daily wind speed deviations from the mean of the past 20 years 

over a period 1 2[ , ]τ τ . 

The statistical analysis indicates that the transformed DAWSs can be modeled by 

a mean reverting Ornstein-Uhlenbeck process where the speed of mean reversion 

variable is a function of time: 

 
 ( )( ) ( )

1( ) ( ) ( 1) ( )l l
t t tdW S t a t W S t dt t dBσ−= + − − +  (5) 

 

where S(t) is the seasonal function, ( )tσ is the seasonal variance which is bounded 

by zero, ( )a t  is the speed of mean reversion and tB  is the driving noise process.  

Using the Girsanov’s theorem, under the risk neutral measure Q, we have that: 

 

 ( )t tdB dB tθ θ= −  (6) 
 

where ( )tθ  is the market price of risk and  

 2

0
( )

T
t dtθ < ∞∫  (7) 

 

Hence, applying Ito Formula on equations (5) and (6) the solution of the 

transformed DAWS under the risk neutral measure Q is given by: 
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The proposed model is an extension of the CAR(p) introduced by (Brockwell and 

Marquardt 2005) and applied by (F. E. Benth and Saltyte-Benth 2009) in wind 

derivative pricing. Hence, we follow a similar pricing approach presented in (F. E. 

Benth and Saltyte-Benth 2009). 

The transformed, detrended and deseasonalized DAWS ( ) ( ) ( )l l
t tW W S t= −  are 

normally distributed with mean: 

 

 
( ) ( ) ( )( ) ( )( , , ) ( ) ( )

s s u

t t t
sa z dz a z dz a z dzl l

t s t
t s W e W e u u e duθµ σ θ

−∫ ∫ ∫= + ∫   (9) 

 
And variance 

 

 
2 ( ) 2 ( )2 2( , ) ( )

s u

t t
sa z dz a z dz

t
t s e s e duσ

−∫ ∫Σ = ∫  (10) 

 
If Q is the risk-neutral probability r is the constant compounding interest rate, the 

arbitrage-free price of Nordix Wind Future index at time 1 2t τ τ≤ <  is given by: 

 

 ( )
2 2

2

1 1

20 1 2100 ( ) ( ) ( , , ) | 0r t
Q NWI t

s s
e w s W s F t

τ τ
τ

τ τ

τ τ− −

= =

 
Ε − + − = 

 
∑ ∑ F  (11) 

 
and since 1 2( , , )NWIF t τ τ  is tF  adapted we derive the price of a Nordix Wind Future 

Index to be: 

 

 
2 2

1 1

1 2 20( , , ) 100 ( ) ( ) |NWI Q t
s s

F t w s W s
τ τ

τ τ

τ τ
= =

 
= − +Ε  

 
∑ ∑ F  (12) 

 
Applying the Lemma 4.1 from (F. E. Benth and Saltyte-Benth 2009) we find the 

explicit solution for the price of the Nordix Wind Future Index: 
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 (13) 

 

where 2( , )kM a b  is the thk  moment of a normal random variable with mean a and 

variance 2b . 

7. Conclusions 

In this study DAWSs from New York were studied. Our analysis revealed strong 

seasonality in the mean and variance. The DAWSs were modeled by a mean 

reverting Ornstein-Uhlenbeck process in the context of wind derivatives pricing. 

In this study the dynamics of the wind generating process are modeled using a 

non-parametric non-linear WN. Our proposed methodology was compared in-

sample and out-of-sample against two methods often used in prior studies. The 

characteristics of the wind speed process are very similar to the process of daily 

average temperatures. 

Our method is validated in a two month ahead out of sample forecast period. 

Moreover, the various error criteria produced by the WN are compared against the 

linear AR model and the persistent method. Results show that the WN 

outperforms the other two methods, indicating that WNs constitute an accurate 

model for forecasting DAWSs. More precisely the WN’s forecasting ability is 

stronger in both samples. Testing the fitted residuals of the WN we observe that 

the distribution of the residuals is very close to the normal. Also, the WN needed 

only the information of the past 3 days while the linear method suggested a model 

with 4 lags. Finally, we provided the pricing equations for wind futures of the 

Nordix index. Although we focused on DAWSs our model can be easily adapted 

in hourly modeling. 

The results in this study are preliminary and can be further analyzed. More 

precisely alternative methods for estimating the seasonality in the mean and in the 

variance can be developed. Alternative methods could improve the fitting to the 

original data as well as the training of the WN.  

Also, it is important to test the largest forecasting window of each method. Since  

meteorological forecasts of a window larger than few days are considered 
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inaccurate this analysis will suggest the best model according to the desired 

forecasting interval.  

Finally, a large scale comparison must be conducted. Testing the proposed 

methods as well as more sophisticated models, like general ARFIMA or GARCH, 

in various meteorological stations will provide a better insight in the dynamics of 

the DAWS as well as in the predictive ability of each method. 
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Fig. 1 Daily Average Wind Speed for New York 

 
(a)                                                                           (b) 

Fig. 2 Histogram of the (a) original and (b) Box-Cox transformed data 
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            (a)                                                                      (b) 

Fig.  3 The Autocorrelation Function of the transformed DAWSs in New York (a) before and (b) 

after removing the seasonal mean 

 
Fig. 4 The Partial Autocorrelation Function of the de-trended and de-seasonalized DAWS in New 

York 

 

 
            (a)                                                                      (b) 

Fig. 5 Autocorrelation function of the residuals of (a) the linear model and (b) the WN 

 
            (a)                                                                      (b) 

Fig. 6 Autocorrelation function of the squared residuals of (a) the linear model and (b) the WN 
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                                        (a)                                                                        (b) 

Fig. 7 Empirical and fitted seasonal variance of (a) the linear model and (b) the WN 

 

 
            (a)                                                                      (b) 

Fig. 8 Empirical and fitted Normal distribution of the final residuals of the WN 

 
Fig. 9 Structure of a Wavelet Network 
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Fig. 10 Model and Variable Selection Algorith 

  
Table 1. Descriptive statistics of the wind speed in New York. 

 Mean       Median   Max  Min StdDev. Skew Kurt   J-B p-value 
Original 9.91 9.3 32.8 1.8 3.38 0.96 4.24 1595.41 0 
Transformed 2.28    2.3   3.6 0.6 0.34 0.00 3.04       0.51 1 

J-B=Jarque-Bera statistic 
p-value=p-values of the J-B statistic 
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Table 2. Estimated parameters of the seasonal component. 
a0 b0 a1 f1 b1 g1 

2.3632 -0.000024 0.0144 827.81 0.1537 28.9350 
 
 

Table 3. Estimated parameters of the linear AR(4) model. 
Parameter     AR(1) AR(2) AR(3) AR(4) 
Value      0.3617 -0.0999 0.0274 0.0216 
p-value 0.0000 0.0000 0.0279 0.0657 

 
 
 

Table 4. Estimated parameters of the seasonal variance in the case of the linear model. 
c0 c1 c2 c3 c4 d1 d2 d3 d4 

0.0932 0.000032 -0.0041 0.0015 -0.0028 0.0358 -0.0025 -0.0048 -0.0054 
 

 
Table 5. Descriptive statistics of the residuals for the linear AR(4) model. 

Var Mean St.Dev Max Min Skew Kur. JB p-value KS p-value LBQ p-value 
noise 0 1 3.32 -5.03 -0.09 3.03 10.097 0.007 1.033 0.2349 8.383 0.989 

St.Dev.=Standard Deviation 
JB=Jarque-Bera statistic 
KS=Komogorov-Smirnov statistic 
LBQ= Ljung-Box Q-statistic 

 
 

Table 6. Variable selection with backward elimination in New York. 
Step Variable to 

remove (lag) 
Variable to 
enter (lag) 

Variables in 
model 

Hidden Units 
(Parameters) 

n/p 
Ratio 

Empirical 
Loss 

Prediction 
Risk 

- 
  

7 1 (23) 317.4 0.0467 0.0938 
1 7 - 6 1 (20) 365.0 0.0467 0.0940 
2 5 - 5 1 (17) 429.4 0.0467 0.0932 
3 6 - 4 2 (23) 317.4 0.0467 0.0938 
4 4 - 3 2 (18) 405.6 0.0468 0.0937 

The algorithm concluded in 4 steps. In each step the following are presented: which variable is 
removed, the number of hidden units for the particular set of input variables and the parameters 
used in the wavelet network, the ratio between the parameters and the training patterns, the 
empirical loss and the prediction risk. 
 
 
 

Table 7. Estimated parameters of the seasonal variance in the case of the WN. 
c0 c1 c2 c3 c4 d1 d2 d3 d4 

0.0935 -0.000020 -0.0034 0.0014 -0.0026 0.0353 -0.0016 -.0042 -0.0052 
 
 
 

Table 8. Descriptive statistics of the residuals for the WN model. 
Var Mean St.Dev Max Min Skew Kur. JB p-value KS p-value LBQ p-value 

noise 0 1 3.32 -4.91 -0.08 3.04 8.84 0.0043 0.927 0.3544 13.437 0.858 
St.Dev.=Standard Deviation 
JB=Jarque-Bera statistic 
KS=Komogorov-Smirnov statistic 
LBQ= Ljung-Box Q-statistic 
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Table 9. Out-of-sample comparison. 1 month. 
 PERSISTENT AR(4) WN  

Md.AE 2.3000 2.2147 2.1081 
MAE 3.3000 2.5547 2.5026 
Max AE 8.2000 7.9217 7.7590 
SSE 507.9300 328.9947 320.2573 
RMSE 4.0478 3.2577 3.2142 
NMSE 1.5981 1.0351 1.0076 
MSE 16.3848 10.6127 10.3309 
MAPE 0.3456 0.2744 0.2680 
SMAPE  0.3233 0.2570 0.2518 
POCID 47% 80% 80% 
IPOCID 33% 33% 37% 
POS 100% 100% 100% 

Md. AE=Median Absolute Error 
MAE=Mean Absolute Error 
Max AE=Maximum Absolute Error 
SSE=Sum of Squared Errors 
RMSE=Root Mean Square Error 
NMSE=Normalized Mean Square Error 
MSE= Mean Square Error 
MAPE=Mean Absolute Percentage Error 
SMAPE=Symmetric MAPE 
POCID=Position of change in direction 
IPOCID=Independent POCID 
POS=Position of Sign 

 
 

Table 10. Out-of-sample comparison. 2 months. 

 
PERSISTENT AR(4) WN  

Md.AE 2.4000 2.7981 2.6589 
MAE 3.3678 2.8126 2.7976 
Max AE 11.2000 7.9345 8.0194 
SSE 1054.3500 706.1806 702.4437 
RMSE 4.2273 3.4596 3.4505 
NMSE 1.4110 0.9450 0.9400 
MSE 17.8703 11.9692 11.9058 
MAPE 0.3611 0.3014 0.3001 
SMAPE  0.3289 0.2798 0.2782 
POCID 45% 71% 69% 
IPOCID 36% 38% 38% 
POS 100% 100% 100% 

Md. AE=Median Absolute Error 
MAE=Mean Absolute Error 
Max AE=Maximum Absolute Error 
SSE=Sum of Squared Errors 
RMSE=Root Mean Square Error 
NMSE=Normalized Mean Square Error 
MSE= Mean Square Error 
MAPE=Mean Absolute Percentage Error 
SMAPE=Symmetric MAPE 
POCID=Position of change in direction 
IPOCID=Independent POCID 
POS=Position of Sign 

 


