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Abstract.  The purpose of this study is to develop a model that accurately describes the 
dynamics of the daily average temperature. The statistical properties of the daily average 
temperatures will be examined in order to propose a process that exhibits the same behavior. 
A framework using wavelet analysis for accurately selecting the seasonal parts of the mean 
and variance was presented. In addition a novel approach using wavelet networks was 
applied in selecting the number of the lags of the speed of mean reversion. Our model was 
evaluated and compared in-sample and out-of-sample in seven locations against models 
previously proposed in literature. Our results indicate that the proposed model significantly 
outperforms alternative methods. In order to obtain a better understanding of the 
distributions of the residuals we expanded our analysis by fitting additional distributions to 
the residuals. Our findings suggest that the hyperbolic distribution provides a slightly better 
fit than the normal distribution. Finally, the pricing formulas for various temperature 
derivates were presented under the assumption of a normal and a hyperbolic distribution. 
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1. Introduction  
 

The purpose of this study is to develop a model that accurately describes the dynamics of the Daily 
Average Temperature (DAT) in the context of weather derivative pricing. A statistical analysis of the 
DAT in various European cities that weather derivatives are actively traded will be performed. The 
statistical properties of the DATs will be examined in order to propose a process that exhibits the same 
behavior. Then, the estimated model will be used in order to derive the pricing formulas for the 
weather derivatives on various temperature indices. 

Weather derivatives are financial instruments that can be used by organizations or individuals as part 
of a risk management strategy to reduce risk associated with adverse or unexpected weather 
conditions. Just as traditional contingent claims, whose payoffs depend upon the price of some 
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fundamental, a weather derivative has an underlying measure such as: rainfall, temperature, humidity 
or snowfall. The difference from other derivatives is that the underlying asset has no value and it 
cannot be stored or traded while at the same time the weather should be quantified in order to be 
introduced in the weather derivative. To do so, temperature, rainfall, precipitation or snowfall indices 
are introduced as underlying assets.  

Today, weather derivatives are being used for hedging purposes by companies and industries, whose 
profits can be adversely affected by unseasonal weather or, for speculative purposes by hedge funds 
and others interested in capitalizing on those volatile markets.  

According to (Hanley, 1999) and (Challis, 1999) nearly $1 trillion of the US economy is directly 
exposed to weather risk. It is estimated that nearly 30% of the US economy and 70% of the US 
companies are affected by weather, (CME, 2005). Today the weather market is one of the fasted 
developing markets. In 2004, the notional value of Chicago Mercantile Exchange (CME) weather 
derivatives was $2.2 billion and grew tenfold to $22 billion through September 2005, with open 
interest exceeding 300,000 and volume surpassing 630,000 contracts traded. However, the Over-The-
Counter (OTC) market was still more active than the exchange, so the bid-ask spreads were quite large.  

Early methods such as the Actuarial Method or the Historical Burn Analysis (HBA) were used to 
derive the price of a temperature derivative written on a temperature index without actually modeling 
the dynamics of the temperature. Both methods measure how a temperature derivative would perform 
the previous years. The average (discounted) payoff that was derived from the previous years is 
considered to be the payoff of the derivative, (Jewson, Brix, & Ziehmann, 2005). 

Alternatively, one can directly model the corresponding index, namely “index modeling”, such as the 
Heating Degree Day (HDD) index, the Cooling Degree Day (CDD) index, the Cumulative Average 
Temperature (CAT) index, the Accumulated HDDs AccHDDs index or the Accumulated CDDs 
(AccCDDs) index. A different model must be developed for each index. In literature few papers 
suggest that temperature index modeling (HDD or CDD Index) might be more appropriate, (Davis, 
2001; Dorfleitner & Wimmer, 2010; Geman & Leonardi, 2005) and (Jewson, et al., 2005). 

Another approach to estimate the temperature driving process is to use models based on daily 
temperatures. Daily modeling can in principle, lead to more accurate pricing than modeling 
temperature indices, (Jewson, et al., 2005), as a lot of information is lost due to existing boundaries in 
the calculation of temperature indices by a normal or lognormal process, such as HDD being bounded 
by zero. On the other hand, deriving an accurate model for the daily temperature is not a 
straightforward process. Observed temperatures show seasonality in all of the mean, variance, 
distribution and autocorrelation and there is evidence of long memory in the autocorrelation. The risk 
with daily modeling is that small misspecifications in the models can lead to large mispricing of the 
temperature contracts, (Jewson, et al., 2005). 

In the literature two methods have been proposed for the modelling of the DAT, the usage of a discrete 
or a continuous process. (Moreno, 2000) argues against the use of continuous processes in the 
temperature modeling based on the fact that the values of temperature are in discrete form, hence a 
discrete process should be used directly. (Caballero & Jewson, 2002; Caballero, Jewson, & Brix, 2002; 
Campbell & Diebold, 2005; Cao, Li, & Wei, 2004; Cao & Wei, 1999, 2000, 2003, 2004; Carmona, 
1999; Franses, Neele, & van Dijk, 2001; Jewson & Caballero, 2003a, 2003b; Moreno, 2000; Roustant, 
Laurent, Bay, & Carraro, 2003a, 2003b; Svec & Stevenson, 2007; Taylor & Buizza, 2002, 2004) and 
(Tol, 1996)make use of a general ARMA framework.  

On the other hand a wide range of studies suggest a temperature diffusion stochastic differential 
equation, (Alaton, Djehince, & Stillberg, 2002; Bellini, 2005; Benth, 2003; Benth & Saltyte-Benth, 



2005, 2007; Benth, Saltyte-Benth, & Koekebakker, 2007, 2008; Bhowan, 2003; Brody, Syroka, & 
Zervos, 2002; Dischel, 1998a, 1998b, 1999; Dornier & Queruel, 2000; Geman & Leonardi, 2005; 
Hamisultane, 2006a, 2006b, 2007, 2008; McIntyre & Doherty, 1999; Oetomo & Stevenson, 2005; 
Richards, Manfredo, & Sanders, 2004; Schiller, Seidler, & Wimmer, 2008; Torro, Meneu, & Valor, 
2003; Yoo, 2003; Zapranis & Alexandridis, 2006, 2007, 2008, 2009b, 2009c) and (Zapranis & 
Alexandridis, 2011). The continuous processes used for modeling daily temperatures usually take a 
mean-reverting form, which has to be discretized in order to estimate its various parameters. Once the 
parameters of the process are estimated, one can then value any contingent claim by taking expectation 
of the discounted future payoff. Given the complex form of the process and the path-dependent nature 
of most payoffs, the pricing expression usually does not have closed-form solutions. In that case 
Monte-Carlo (MC) simulations are used. This approach typically involves generating a large number 
of simulated scenarios of weather indices to determine the possible payoffs of the weather derivative. 
The fair price of the derivative is then the average of all simulated payoffs, appropriately discounted 
for the time-value of money; the precision of the MC approach depends on the correct choice of the 
temperature process and the look back period of available weather data 

In this study the DAT time-series of seven different European cities will be examined. The seven 
European cities are: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome and Stockholm. Weather 
derivatives of these cities are traded in CME. Studying the past behavior of these time series will help 
us build a model that can predict the future behavior of the DATs because changes in temperature 
follow a cyclical pattern despite the large variability, (Bellini, 2005). 

Following and expanding previous studies such as (Bellini, 2005; Benth & Saltyte-Benth, 2005, 2007; 
Benth, et al., 2007; Zapranis & Alexandridis, 2008, 2009b, 2009c) a stochastic process is selected for 
describing the temperature process. The stochastic process will be build upon the statistical properties 
found on the seven DAT time series. 

In  (Zapranis & Alexandridis, 2008) a non-linear time depended speed of mean reversion variable was 
modeled by a neural network (NN). More precisely wavelet analysis was used in order to identify the 
trend and the seasonal part of the temperature signal and then a NN was used in the detrended and 
deseasonalized series. Deducting the form of the seasonal mean and variance was based on observing 
the wavelet decomposition. In this paper we expand the initial framework presented in (Zapranis & 
Alexandridis, 2008) by combining these two steps.  

In this study wavelet analysis (WA) will be applied in order to correctly identify the seasonal mean of 
the temperature and the seasonal variance in the residuals. In addition, the speed of mean reversion 
parameter is not considered constant but rather a time varying function. A wavelet network (WN) is 
used to estimate non-parametrically daily values of the speed of mean reversion. In our knowledge we 
are the first to do so. Estimating daily values of the speed of mean reversion gives us a better insight of 
the temperature dynamics. Moreover the impact of the false specification of the speed of mean 
reversion on the accuracy of the pricing of temperature derivatives is significant, (Alaton, et al., 2002). 
In addition we expand the analysis of (Zapranis & Alexandridis, 2008) by applying a novel procedure 
first presented in (A. Alexandridis, 2010) in order to estimate the length of the lag series in each city. 
Then, our proposed model will be evaluated and compared against other models previously proposed 
in literature in and out-of-sample. The in-sample comparison will be based upon the distributional 
statistics of the residuals and fitting criteria while the out-of-sample will be based upon the accuracy of 
predicting the DAT. Finally, the inclusion of a Lévy process instead of standard BM is investigated. 

The rest of the chapter is organized as follows. In section 2 the data is described and examined. In 
section 3 a model for the DATs is proposed based on the results of the data examination. Next, in 
section 3.1 WA is used in order to identify the statistical significant seasonal components of the DAT. 



A WN is constructed in order to model the detrended and deseasonalized DAT in section 4. More 
precisely in section 4.1 the training data set is constructed by selecting the significant lags of the 
DATs. In section 4.2 the topology of the WN is selected while in section 4.3 the WN is initialized and 
trained in order to model a nonlinear autoregressive (AR) model. Next, in section 4.4 the statistical 
properties of the time depended mean reversion function is examined. Next, in section 5 WA is used in 
order to identify model seasonal variance that exists in the residuals. In section 6 the distributional 
statistics of residuals after removing the seasonal variance are examined. Moreover our proposed 
model is compared in-sample against two popular models previously proposed in literature. Next, the 
residuals are tested under the assumption of a Lévy motion driving noise process in section 6.2. In 
section 7 an evaluation of our model out-of-sample is performed. In section 8 the pricing formulas of 
the weather derivatives are presented. More precisely, in section 8.1 the temperature derivatives traded 
on the exchange are presented. In section 8.2 and 8.3 the pricing formulas under the assumption of a 
normal and a hyperbolic distribution respectively are derived while in section  8.4 the market price of 
risk is discussed. Finally, in section 9 we conclude. 

 
2. Data description 

 
For accurate pricing and efficient weather risk management the weather data must be both of adequate 
amount and highly quality, (Dunis & Karalis, 2003). For this study we obtained data for the European 
cities that are traded in CME. At the end of 2009 the CME trades weather products written on the 
following 10 European cities: Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Oslo, Paris, 
Rome and Stockholm. The data corresponding to the European cities were provided by the European 
Climate Assessment & Dataset1 (ECAD). The weather index we are interested in is the DAT. In 
ECAD the DAT is measured as the average of the daily maximum and minimum temperature and is 
measured in Celsius degrees (oC). European weather contracts traded on the CME use the same 
measurement for the temperature. Precision with which temperature in the ECAD is measured is 0.1 

o

The dataset consists of 18615 values, corresponding to the DAT of 51 years, (1951-2001) in cities that 
derivatives are actively traded in CME. In order for each year to have equal observations the 29th of 
February was removed from the data.  

C. Unfortunately data from Essen were not available while the missing values from Barcelona and 
London were more than 50% of the data hence these three cities are not included in our analysis. 

One of the major problems of the data is the missing values. In (Dunis & Karalis, 2003) different 
methods for filling the missing data were described. In this study the procedure described below is 
followed in order to fill the missing values. Let tT  be the temperature at day t which value is missing. 
First the average temperature of that particular day across the years is calculated denoted by Avy . Next 
the average temperature of 7 days ago and 7 days after the missing value is calculated denoted by Avd
. Then the missing value is replaced by the average of these two parameters.  

The above procedure is very easy in implementation. More precisely a normal average is obtained 
which is balanced by the temporal temperature conditions around the missing values. However, in 
some cities (for example Rome) there are consecutive missing values. In this case the missing values 
are filled using the simple average over the years for the particular day. 

Due to space limitations only the data from Berlin are graphically presented. The results of the 
remaining cities are similar. More precisely the DAT and the empirical distribution, the mean, the 
standard deviation, the skewness and the kurtosis of the DAT in Berlin are presented in Figure 1. 
                                                            
1 http://eca.knmi.nl/ 
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In part (a) of Figure 1 the DATs for Berlin for the period 1/1/1991-31/12/2000 are presented. A closer 
inspection of Figure 1 reveals a seasonal cycle of one year as it was expected. Moreover, extreme 
values in summer and winter are evident in all cities. In order to obtain a better insight of the 
temperature dynamics the descriptive statistics of the DATs are examined. The mean temperature 
ranges from 6.49 in Oslo to 15.57 in Rome. Τhe variation of the DAT is quite large in every city. The 
standard deviation ranges from 6.08 for Amsterdam while it is 7.91 for Berlin. Cities with warmer 
climate like Amsterdam, Rome and Paris have smaller standard deviation while cities with colder 
climate with large periods of winter like Oslo, Berlin and Stockholm have the largest standard 
deviation values. The difference between the maximum and minimum temperatures is around 30 
degrees for Rome and Madrid while it is over 40 degrees for Berlin, Oslo and Stockholm. The 
maximum and minimum temperatures vary from city to city but it is explained from their location. The 
above results indicate that temperature is very volatile and it is expected to be difficult to accurately 
model and predict it. 

Negative skewness is evident in all cities with the exception of Madrid, Stockholm and Rome. 
Moreover all cities exhibit excess negative kurtosis. The kurtosis is 2 for Madrid and Rome while the 
largest kurtosis value is 2.6 for Amsterdam. The above results indicate that the distribution of the DAT 
in Europe is platykurtic with lower and wider peak where the mass of the distribution is concentrate on 
the left tail (on the right tail for Madrid and Rome). 

Finally, a normality test is performed. In all cities the normality is strongly rejected by a Jarque- Bera 
(JB) test. The JB statistic is over 36 in all cases and the p-values are zero indicating the rejection of the 
null hypothesis that the temperature at the seven European cities follows a normal distribution. Part (b) 
of Figure 1 presents the empirical distributions of the DAT in Berlin. All cities exhibit a bimodal 
distribution where the two peaks correspond to summer and winter temperatures. 

In order to obtain better understanding of the temperature dynamics, the daily mean,  standard 
deviation, skewness and kurtosis of DAT were estimated. The mean of the DAT, ,avy tT , was estimated 

using only observations for each particular day t . In part (c) of Figure 1 the seasonal pattern is clear. 
For all cities the temperature has its highest values during the end of July and the beginning of August 
while the lowest values are observed during the end of December and until the beginning of February. 
The mean DAT in Amsterdam fluctuates from .1.9o C . to 19.7o C . Similarly, in Berlin the mean 
temperature fluctuates from 1.2o C−  to 22.4o C , from 4.9o C  to 28.3o C  in Madrid, from 5.7o C−  to 
18.8o C  in Oslo, from 3.1o C  to . 23o C . in Paris, from 6o C  to 27o C  in Rome and from 4.2o C−  to 
19.5o C  in Stockholm. 

Next the standard deviation of the DAT is estimated. In part (d) of Figure 1 the standard deviation for 
Berlin is presented. The standard deviation is higher in the winter period while it is smaller in summer 
for all cities with exception of Madrid. Our results confirm the studies of (Bellini, 2005; Benth & 
Saltyte-Benth, 2005, 2007; Benth, et al., 2007; Zapranis & Alexandridis, 2008, 2009c). 

Part (e) of Figure 1 presents the estimated skewness for each day t  for the seven cities. Figure 1 
reveals that the skewness tends to increases during the summer months while it decreases during the 
winter months with exception of Rome and Madrid. In general the skewness is negative at winter 
months and positive at summer months. This means that it is more likely to have warmer days than 
average in summer and colder days than average in winter, (Bellini, 2005). 

Finally, the kurtosis on each day t  can be found in part (f) of Figure 1. Figure 1 does not reveal any 
seasonal pattern of the kurtosis. On the other hand it is clear that for all cities the kurtosis have small 
deviations around two with many upwards large spikes. 



Next the correlation of the temperature between different cities is examined. If strong correlation is 
present then weather derivatives of correlated cities can be used for risk management and reduction of 
the basis risk. The correlation in general is very high and over 0.81 while it is 0.954 between Oslo and 
Stockholm. The correlation values are explained by the geographical location of each site. As it was 
expected there is large correlation between Oslo and Stockholm and between Amsterdam and Berlin 
while the correlation is smaller between distant cities like Madrid and Oslo or Stockholm. However, 
the correlation should be estimated after removing all seasonal components or substantial values are 
estimated. 

Next the Hurst exponent is estimated. In (Brody, et al., 2002), (Benth, 2003) and (Caballero, et al., 
2002) fractional models were proposed with evidence that the Hurst exponent is greater than 0.5. The 
Hurst exponent was estimated using iterative methods described in (Koutsouyiannis, 2003). Our results 
indicate that the Hurst exponent is significantly different than 0.5, with an exception of Oslo. More 
precisely the Hurst exponent is 0.5222 for Oslo and for the remaining cities it varies from 0.6161 in 
Rome to 0.7592 in Madrid. However, the Hurst exponent must be calculated after all seasonal effects 
were removed or an unsubstantial value will be estimated, (Bellini, 2005).  

Two unit root test were performed in the DAT for the seven cities. Each time-series is tested for unit 
root using an Augmented Dickey-Fuller (ADF) test. The ADF performed using the Schwartz 
information criterion in order to select the optimal number of lagged values. Our results reveal that the 
null hypothesis of a unit root is rejected since the ADF statistic is always smaller than the critical value 
at 5% significance level. More precisely the largest value for the ADF statistic in -3.7785 in Rome 
while the critical value at 5% significance level is -2.8621. Moreover the p-values are almost zero for 
the seven cities. 

In order to obtain a more powerful test, the (Kwiatkowski, Phillips, Schmidt, & Shin, 1992) (KPSS) 
unit root test is also performed. In contrast to the ADF test, the KPSS tests the null hypothesis that the 
time-series is stationary versus the alternative that the time-series is non-stationary (a unit root exists). 
The optimal bandwidth number was estimated using the Newery-West method. The largest KPSS 
statistic is obtained in Amsterdam with value of 0.0844. The KPSS statistic has a value smaller than 
the critical value 0.463 for all cities, hence the null hypothesis, that the time-series is stationary, cannot 
be rejected for all cities. 

 
3. A model for the daily average temperature: a Gaussian Ornstein-Uhlenbeck process with 

lags and time-varying mean-reversion 
 
Many different models have been proposed in order to describe the dynamics of a temperature process. 
In this section a model for the seven cities studied in the previous section will be derived. Studying 
temperature data (Cao, et al., 2004; Cao & Wei, 1999, 2000, 2003) build their framework on the 
following five assumptions about DAT: 

• It follows a predicted cycle 

• It moves around a seasonal mean 

• It is affected by global warming and urban effects 

• It appears to have autoregressive changes 

• Its volatility is higher in the winter than in summer 



As it will be shown in the rest of the section our results confirm the above assumptions. It is known 
that temperature follows a predicted cycle. As it was expected and it is shown on Figure 1 a strong 
cycle of one year is evident in all cities. It is also known that temperature has a mean-reverting form. 
Temperature moves around a seasonal mean and cannot deviate from that seasonal mean for long 
periods. This can be verified by Figure 1. In other words it is not possible to observe temperatures of 
20o C  in winter in Oslo. Additionally, temperature is affected by global warming and urban effects. In 
areas under development the surface temperature rises as more people and buildings concentrate. This 
is due to the sun’s energy absorbed by the urban buildings and the emissions of vehicles, industrial 
buildings and cooling units. Hence, urbanization around a weather station results to an increment in the 
observed measurements of temperature. Finally, observing Figure 1 it is clear that the temperature 
volatility is higher in winter than in summer.  

Following (Zapranis & Alexandridis, 2008, 2011) and (A. Alexandridis, 2010) a model that describes 
the temperature dynamics is given by a Gaussian mean-reverting O-U process defined as follows: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t S t dt t dB tκ σ= + − +  (1) 

where ( )T t  is the average daily temperature, ( )tκ  is the speed of mean reversion, ( )S t  is a 
deterministic function modeling the trend and seasonality, ( )tσ  is the daily volatility  of temperature 
variations and ( )B t is the driving noise process. As it was shown in (Dornier & Queruel, 2000) the 
term ( )dS t  should be added for a proper mean-reversion towards the historical mean, ( )S t . 

Intuitively, it is expected that the speed of mean reversion is not constant. If the temperature today is 
away from the seasonal average (a cold day in summer) then it is expected that the speed of mean 
reversion is high; i.e. the difference of today and tomorrows temperature is expected to be high. In 
contrast if the temperature today is close to the seasonal variance we expect the temperature to revert to 
its seasonal average slowly. To capture this feature the speed of mean reversion is modeled by a time-
varying function ( )tκ . 

In (Benth & Saltyte-Benth, 2007) the historical mean is captured by a simple sinusoid while the 
seasonal variance captured by a Fourier series arbitrary truncated. In this study the true structure of the 
seasonal mean ( )S t  and the seasonal variance 2 ( )tσ  are extracted using WA. Hence we model them 
as follows: 
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In order to identify the terms 1,  iI p  in (2) and 2 2,  ,  iI J p′  in (3) we decompose the temperature series 
using a wavelet transform. 

Finally, the driving noise process ( )B t  is modeled by a standard Brownian motion (BM). In Figure 2 
the histogram of the first difference of the DAT and the normal distribution (solid line) is presented. A 



closer inspection of Figure 2 reveals that the empirical distribution of the first difference of the DAT is 
similar to the normal distribution. Hence, selecting the BM as the driving noise process seems logical. 
This hypothesis will be further tested later. 

3.1 Identifying and removing the trend and the seasonal mean using wavelet analysis 

In this section a method for estimating and removing the trend and the seasonal component of the 
temperature series is described. 

In order to justify the structure of the seasonal part of the temperature and to identify the terms 1,  iI p  
in (2) the temperature series is decomposed using a wavelet transform. (Lau & Weng, 1995) confirmed 
seasonalities in the temperature series with a period significantly greater than one year. (Lau & Weng, 
1995) examined the monthly Northern Hemisphere Surface Temperature for the period January 1854 – 
July 1993 using WA. They reported that the temperature has three main frequency branches: inter-
annual (2-5 yrs), inter-decadal (10-12 yrs, 20-25yrs and 40-60 yrs) and century (~180 yrs) scales. This 
conclusion was also reached in (Zapranis & Alexandridis, 2006, 2008, 2009b, 2009c).  

In this study the Daubechies wavelet family was chosen which has proved to outperform other wavelet 
families in various applications, (Daubechies, 1992). More precisely, the Daubechies 11 wavelet at 
level 11 was selected and applied in 50 years of DATs in each city. For a more detailed exposition on 
the mathematical aspects of wavelets refer to (Daubechies, 1992; Mallat, 1999). 

Here, for simplicity we will refer analytically only to the results of the wavelet decomposition from 
Berlin. The results of the remaining cities are similar and can be found in Table 1 and Table 2. Figure 3 
refers to selected parts of the wavelet decomposition from Berlin, the results from the remaining cities 
are similar. 

First, an upward trend exists in the DATs, reflecting urban and global warming. This is clearly shown 
in Figure 3, in all approximations, ja . Moreover a series of cycles affects the dynamics of 

temperature. As expected an one year cycle exists in the first seven approximations ( 1 1p = ). 

Additionally, cycles of 2 2.12p = , 3 6.88p =  and 4 13.75p =  years are evident and affect the 

temperature dynamics (details 9d , 10a  and 11a , respectively). The above results indicate the 
periodicities in which the temperature is expected to be above or below the historical average. 

Also a product of two sinusoids was captured by WA, with period of 1 and 1 8ip + =  years respectively 

( 8d  and 7a ). The above results indicate that every 8 years it is expected to have warmer than the usual 
summer and colder than the usual winter or colder than the usual summer and warmer than the usual 
winter. 

Finally, the lower details (detail 1d ) reflect the noise part of the time series. A closer inspection of the 
noise part reveals seasonalities, which will be extracted later. Hence, modelling the historical seasonal 
mean by (2) is justified by the results of the previous analysis.  

Panel A of Table 2 reports all the cycles than can be found on the temperature dynamics using WA for 
the seven cities. In Table 2 only the statistical significant parameters with p-values<0.05 are reported. 
Parameters with p-values>0.05 are omitted and removed from our model. 

First, the upward trend indicated by the results of the WA is quantified by fitting a linear regression to 
the temperature data. Our analysis will be focused on the last 10 years (1991-2000) since we want to 
emphasize on the dynamics that currently affect the temperature. Using a very large sample of 



historical data of DAT runs the danger for the estimated parameters to be affected by dynamics of the 
temperature that do not represent the future behavior of temperature anymore. Table 1 shows the 
estimated parameters a  and b  of the linear trend represented by (4). All p-values are smaller than 0.05 
suggesting that a trend exists and it is statistical significant. Parameter b  represents the slope of the 
trend. It is clear that a positive trend is present in all seven cities. The parameter b  ranges from 
0.000238 in Madrid to 0.000509 in Stockholm indicating an upward trend. The value of b  indicates an 
increase in temperature from 0.9o C  in Madrid to 1.9o C  in Stockholm the last 10 years. Subtracting 
the trend form the original data we obtain the de-trended DAT series. 

After removing the linear trend from the data, the seasonal part identified by the WA can be fitted. The 
results of the WA indicate that the seasonal part of the temperature takes the form of equation (2). 
Since parameters ip  were already identified by WA, next, least squares method can be applied in 

order to fit the parameters ia  and if .  

The estimated parameters of the seasonal part in Berlin are as follows: 1 9.79a = − , 2 0.27a = − , 

3 0.56a = , 4 0.37a = − , 1 0.43ia + = , 1 73.79f = − , 2 149.28f = , 3 148.27f =  and 4 981.76f = − . On the 
other hand 

1 1If +  is not statistically significant different from zero. It is clear that the one year cycle has 

the biggest impact on the temperature dynamics since its coefficient has the largest absolute value. The 
estimated parameters of the seasonal part of ( )S t  of the remaining cities are reported in Panel B of 
Table 2. In Table 2 only the statistical significant parameters are reported. Hence, parameters with p-
value greater than 0.05 were considered not significant and were omitted, (Aczel, 1993). Next, the 
temperature series were deseasonalized by removing ( )S t  from the detrended data. 

 
4. Using Wavelet Networks On Detrended and Deseasonalized Daily Average Temperatures 

 
In the previous section the temperature series were detrended and deseasonalized. In this section a 
model for the detrended and deseasonalized DATs will be developed. Next, the derived model will be 
estimated by a nonparametric nonlinear WN. The variable significance testing framework described  in 
(A. Alexandridis, 2010) and (Antonis Alexandridis & Zapranis, 2011) will be applied in order to 
construct an appropriate training set for the WN. Then the model selection algorithm will be applied in 
order to construct a WN with the best generalization ability. Finally, the WN will be initialized by 
applying the backward elimination method and will be trained using the back-propagation method, 
(Antonis Alexandridis & Zapranis, 2011). Here we present only the basic notion of WN. For an 
analytical study on WN refer to (Antonis Alexandridis & Zapranis, 2011). 

In Figure 4 the structure and the mathematical expressions of a WN are presented. Given an input 
vector x  (the harmonics) and a set of weights w  (parameters), the network response (output) 

( );gλ x w is: 
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In that expression, Ψj

 

(x) is a multidimensional wavelet which is constructed by the product of m scalar 
wavelets, x is the input vector, m is the number of network inputs, λ is the number of HUs and w stands 
for a network weight. The multidimensional wavelets are computed by: 
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The mother wavelet is given by the Mexican Hat function: 
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Following (Benth & Saltyte-Benth, 2007) and (Zapranis & Alexandridis, 2008) a discrete 
approximation of (1) is obtained and is given by: 

 ( )( ) ( ) ( 1) ( 1) ( ) ( )T t S t T t S t t B tκ σ∆ ≈ ∆ + − − − + ∆  (9) 

Next, by setting 

 ( ) ( ) ( )T t T t S t= −  (10) 

we have that 

 ( ) ( 1) ( ) ( )T t aT t t tσ ε= − +   (11) 

with 

 1a κ= +  (12) 

Similarly, when the speed of mean reversion is a function of time we have that 

 ( ) ( 1) ( 1) ( ) ( )T t a t T t t tσ ε= − − +   (13) 

 ( ) 1 ( )a t tκ= +  (14) 

The detrended and deseasonalized temperature series, ( )T t , can be modeled with an AR(1) process 
with a zero constant term, as shown in (13). In the context of such a model the mean reversion 
parameter a  is typically assumed to be constant over time. In (Brody, et al., 2002) it was mentioned 
that in general a  should be a function of time, but no evidence was presented. On the other hand, 
(Benth & Saltyte-Benth, 2005), using a dataset comprising of 10 years of Norwegian temperature data, 
calculated mean annual values of a . They reported that the variation of the values of a  from year to 
year was not significant. They also investigated the seasonal structures in monthly averages of a  and 
they reported that none was found. However, since to date, no one has computed daily values of the 
mean reversion parameter, since there is no obvious way to do this in the context of model (13). On the 
other hand, averaging techniques, in a yearly or monthly basis, run the danger of filtering out too much 
variation and consequently presenting a distorted picture regarding the true nature of a . The impact of 
a false specification of a , on the accuracy of the pricing of temperature derivatives is significant, 
(Alaton, et al., 2002). However, (Zapranis & Alexandridis, 2008) estimated daily values of the variable 



( )a t  for the city of Paris using a non-parametric non-linear NN. Their results indicate strong time 
dependence in the daily values of ( )a t . 

In this section, we address that issue, by using a WN to estimate non-parametrically relationship (13) 
and then estimate a  as a function of time. In addition, we propose a novel approach for selecting the 
number of lags in the temperature process first presented by (A. Alexandridis, 2010). Hence a series of 
speed of mean reversion parameters, ( )ia t , are estimated. By computing the derivative of the network 

output with respect to (w.r.t.) the network input we obtain a series of daily values for ( )ia t . This is 
done for the first time, and it gives us a much better insight in temperature dynamics and in 
temperature derivative pricing. As we will see the daily variation of ( )ia t  is quite significant after all. 
In addition it is expected that the waveform of the WN will provide a better fit to the DATs that are 
governed by seasonalities and periodicities. 

Previous studies, (Alaton, et al., 2002; Bellini, 2005; Benth & Saltyte-Benth, 2005, 2007; Zapranis & 
Alexandridis, 2008, 2009c), show that an AR(1) model is not complex enough to completely remove 
the autocorrelation in the residuals. Alternatively more complex models were suggested, (Carmona, 
1999; Geman & Leonardi, 2005). Using WNs the generalized version of  (13) is estimated nonlinearly 
and non-parametrically, that is: 

 ( )( 1) ( ), ( 1),... ( )T t T t T t e tφ+ = − +    (15) 

where  

 ( ) ( ) ( )e t t tσ ε=  (16) 

Model (15) uses past temperatures (detrended and deseasonalized) over one period. Using more lags 
we expect to overcome the strong correlation found in the residuals in models such as in (Alaton, et al., 
2002), (Benth & Saltyte-Benth, 2007) and (Zapranis & Alexandridis, 2008). However, the length of 
the lag series must be selected. Since the WN is a non-parametrical nonlinear estimator results from 
the autocorrelation function (ACF) or the partial ACF (PACF) cannot be used. Similarly, criteria used 
in linear models like the Schwarz criterion cannot be applied. Hence, the variable significance 
algorithm presented in (A. Alexandridis, 2010) is applied in order to determine the number of 
significant lags in each city. 

4.1 Variable selection: selecting the significant lags 

In this section our proposed variable selection framework will be applied on the detrended and 
deseasonalized DATs of the seven European cities in order to select the length of the lag series. 

The target values of the WN are the DATs. The explanatory variables are lagged versions of the target 
variable. Choosing the number of lags in linear models can be done by minimizing an information 
criterion like Akaike or Schwarz criteria. Alternatively the ACF and the PACF can be studied.  
Focusing on Berlin, the ACF suggests that the first 35 lags are significant. On the other hand the PACF 
suggests that the 6 first lags as well as the 8th and the 11th

Alternatively, in order to select only the significant lags the variable selection algorithm presented in 
(A. Alexandridis, 2010) will be applied. In this framework first a network with a lot of information - 
.i.e. a large number of lags -  is build and then gradually it is optimized by removing the parts that do 

 lag must be included on the model. However 
results from these methods are not necessarily true in nonlinear nonparametric models. The results of 
the remaining cities are also inconclusive. 



not contribute to the predictive power of the WN. Initially, the training set contains the dependent 
variable and 7 lags. Hence, the training set consists of 7 inputs, 1 output and 3643 training pairs. 

In this study the relevance of a variable to the model is quantified by the sensitivity based pruning 
(SBP) criterion which was introduced by (Moody & Utans, 1992). The analysis presented in (A. 
Alexandridis, 2010) indicates that the SBP fitness criterion was found to significantly outperform 
alternative criteria in the variable selection algorithm. The SBP quantifies the effect on the empirical 
loss of replacing a variable by its mean. In order to approximate the empirical distribution of the SBP 
the bootstrap method is applied as it was described in (A. Alexandridis, 2010). Using the empirical 
distribution of the SBP, hypothesis tests can be constructed. 

The backward elimination algorithm examines the contribution of each available explanatory variable 
to the predictive power of the WN. First, the prediction risk of the WN is estimated as well as the 
statistical significance of each variable. If a variable is statistically insignificant it is removed from the 
training set and the prediction risk and the new statistical measures are estimated. The algorithm stops 
if all explanatory variables are significant. Hence, in each step of our algorithm, the variable with the 
larger p-value greater than 0.1 will be removed from the training set of our model. After each variable 
removal, a new architecture of the WN will be selected and a new WN will be trained. However the 
correctness of the decision of removing a variable must be examined. This can be done either by 
examining the prediction risk or the 2R . If the new prediction risk is smaller than the new prediction 
risk multiplied by a threshold then the decision of removing the variable was correct. If the prediction 
risk increased more than the allowed threshold then the variable was reintroduced back to the model. 
We set this threshold at 5%. 

Table 3 summarizes the results of the model identification algorithm for Berlin. Both the model 
selection and variable selection algorithms are included in Table 3. The algorithm concluded in 4 steps 
and the final model contains only 3 variables. The prediction risk for the reduced model is 3.1914 
while for the original model was 3.2004. On the other hand the empirical loss slightly increased from 
1.5928 for the initial model to 1.5969 for the reduced model indicating that the explained variability 
(unadjusted) slightly decreased. However, the explained variability (adjusted for degrees of freedom) 
was increased for the reduced model to 64.61% while it was 63.98% initially. Finally, the number of 
parameters were significantly reduced in the final model. The initial model needed 5 HUs and 7 inputs. 
Hence, 83 parameters were adjusted during the training phase. Hence the ratio of the number of 
training pairs n  to the number of parameters p  was 43.9. In the final model only 1 HU and 3 inputs 
were used. Hence only 11 parameters were adjusted during the training phase and the ratio of the 
number of training pairs n  to the number of parameters p  was 331.2. 

In the full model the last four variables have p-value greater than 0.1 while the 6th

6X
 lag has a p-value of 

0.8826 strongly indicating a “not significant” variable. In the first step by removing  from the 

model the p-value of 5X  became 0 while for 7X  and 4X  the p-values became 0.5700 and 0.1403 

respectively. At step 2, 7X , which had the largest p-value=0.5700 at the previous step, was removed 

from the model. The p-values reveal that at in the third step the 5X  must be removed from the model 

since its p-value is 0.1907. At step 3 only 4X  has a p-value greater than 0.1. Finally, at step 4 the three 
remaining variables have all p-value equal to zero. 

Our proposed algorithm indicates that only the 3 most recent lags should be used while PACF 
suggested the first 6 lags as well as the 8th and the 11th

Concluding, in the final model only three of the seven variables were used. The complexity of the 
model was significantly reduced since from 83 parameters in the initial model only 11 parameters have 

 lag. 



to be trained in the final model. In addition in the reduced model the prediction risk minimized when 
only one HU was used while 5 HUs were needed initially. Our results indicate that the in-sample fit 
was slightly decreased in the reduced model. However when an adjustment for the degrees of freedom 
is made we observe that the 2R  was increased to 64.61% from 63.98% in the initial model. Finally, the 
prediction power of the final and less complex proposed model was improved since the prediction risk 
was reduced to 3.1914 from 3.2004. 

On the first row of Table 4 the statistical significant lags for the seven cities are presented. The 
number of significant lags for each city is as follows: Oslo 2 lags, Berlin, Paris and Stockholm 3 lags, 
Amsterdam 4 lags, Madrid 6 lags and Rome 7 lags. 

4.2 Model selection: selecting the architecture of the wavelet network 

In each step the appropriate number of HUs is determined by applying the model selection algorithm. 
The model selection algorithm was presented in (A. Alexandridis, 2010; Zapranis & Alexandridis, 
2009a). For simplicity we refer only to results from Berlin. The results of the remaining cities are 
similar. Ideally, the prediction risk will decrease (almost) monotonically until a minimum is reached 
and then it will start to increase (almost) monotonically. The number of HUs that minimizes the 
prediction risk is selected for the construction of the model. 

In the initial model, where all seven inputs were used, the prediction risk with one HU is only 3.2009. 
When one additional HU is added to the model the prediction risk increases. Then, as more HUs are 
added to the model the prediction risk  monotonically decreases. The minimum is reached when 5 HUs 
are used and is 3.2004. When additional HUs are added in the topology of the model the prediction risk 
increases. Hence, the architecture of the WN contains 5 HUs. On other words the 5 higher ranking 
wavelets should be selected form the wavelet basis in order to construct the WN. The prediction risk at 
the initial model with only one HU is almost the same as in the model with 5 HUs. This due to the 
small number of parameters that were adjusted during the training phase when only 1 HU is used and 
not due to a better fit. 

At the second step, when variable 6X  was removed, the prediction risk is minimized when 2 HUs are 
used. Similarly, at steps two, three and four the prediction risk is minimized when only one HU is 
used. Additional HUs does not improve the fitting or the predictive power of the model. It is clear that 
the prediction risk is minimized when one HU is used and then it increases almost monotonically. 
Table 4 presents the appropriate HUs for the construction of the final WN for each city. Our results 
indicate that a very simple model with only 1 HU is adequate to fit the DATs in the seven cities of our 
analysis. 

  

4.3 Initializing and training the wavelet network 

After the training set and the correct topology of the WN are selected, the WN can be constructed and 
trained. The backward elimination method is used to initialize the WN. A wavelet basis is constructed 
by scanning the 4 first levels of the wavelet decomposition of the DAT of each city. 

Focusing on Berlin again, the wavelet basis consists of 168 wavelets. However, not all wavelets in the 
wavelet basis contribute to the approximation of the original time-series. Following (Zhang, 1997) the 
wavelets that contain less than 5 sample points of the training data in their support are removed. 76 
wavelets that do not significantly contributed to the approximation of the original time-series were 
indentified. The truncated basis contains 92 wavelet candidates. Applying the backward elimination 
method  first introduced in (Zhang, 1997) the wavelets are ranked in order of significance. The 



wavelets in the wavelet library are ranked as follows: the backward elimination starts the regression by 
selecting all the available wavelets from the wavelet library. Then the wavelet that contributes the least 
in the fitting of the training data is repeatedly eliminated. Since only one HU is used on the 
architecture of the model, only the wavelet with the highest ranking is used to initialize the WN. The 
initialization is very good and the WN converged after only 19 iterations. The training stopped when 
the minimum velocity, 510− , of the training algorithm was reached. The results in the remaining cities 
are similar. 

In Table 4 various fitness criteria of the seven WNs corresponding to the seven cities are presented. A 
closer inspection of Table 4 reveals that the WNs fit the DATs reasonable well. The overall fit for Oslo 
is 2 57.9%R =  while for Madrid is 2 71.02%R = . The smallest MSE is observed in Rome and is only 
2.4210 while the largest one is observed in Berlin and it is 5.4196. The MAE is only 1.1709 in Rome 
and 1.8090 in Berlin. 

In Table 4 the Prediction of Sign (POS) as well the Prediction of Change in Direction (POCID) and the 
Independent Prediction of Change in Direction (IPOCID) are also reported. These three criteria 
examine the ability of the network to predict changes, independently of the size of the change and they 
are referred as percentages. For a detailed explanation of the fitness criteria we refer to (A. 
Alexandridis, 2010) and (Zapranis & Refenes, 1999). The POS for the detrended and deseasonalized 
DATs is very high for all cities and it ranges from 78.18% in Oslo to 81.73% in Amsterdam. The 
POCID ranges from 59.9% in Paris to 61.62% in Amsterdam. Similarly, the minimum IPOCID is 
47.87% and it is observed in Oslo while the maximum is 56.05% and it is observed in Amsterdam. 

  

4.4 The wavelet neural networks approach: time dependent mean reversion parameter 

In this section we focus on analyzing the speed of mean reversion, ( )tκ . The DATs are modeled by a 
nonlinear AR model. By fitting the AR model nonlinearly and non-parametrically with a WN allows us 
to examine the time structure of the speed of the mean reversion of the temperature process. By 
computing the derivative of the WN output with respect to the network input, a series of the daily 
values for the mean reversion function are estimated. Since the relation between the “coefficient” of 
the nonlinear model and the speed of mean-reversion function is linear the “coefficient” of the 
nonlinear AR model is examined instead. The relation between the “coefficient” of the nonlinear AR 
model and the speed of mean-reversion is given by (14). 

Using a WN relation (15) is estimated non-parametrically. Once we have the estimator of the 
underlying function φ , then the daily values of a  can be computed as follows: 

 1( ) ( 1) / ( ) /t dT t dT t d dTα φ= + =   (17) 

The analytic expression for derivative of the WN w.r.t. the input variable /d dTφ  can be found in (A. 
Alexandridis, 2010). We estimate ( )φ  non-parametrically with a WN, ( )g .  

For Berlin the daily values of ( )a t  (3,647 values) are depicted in Figure 5. Because in Berlin there are 

3 significant lags, there are three mean-reverting functions, ( )ia t . The corresponding frequency 
histograms are given in Figure 6. The graphs for all cities are very similar. The relevant statistics of 

( )ia t  for all cities are presented in Table 5. Our results indicate that the mean reversion parameter is 
not constant. On the contrary, its daily variation is quite significant; this fact naturally has an impact on 
the accuracy of the pricing equations and it has to be taken into account, (Alaton, et al., 2002). 



Intuitively, it was expected ( )ia t  not to be constant. If the temperature today is away from the seasonal 
average (a cold day in summer) then it is expected that the speed of mean reversion to be high; i.e. the 
difference of today and tomorrows temperature it is expected to be high. In contrast if the temperature 
today is close to the seasonal average then is expected the temperature to revert to its seasonal average 
slowly. 

Referring now to Figure 5 and Figure 6, we observe that the spread between the maximum and 
minimum value is similar for the three mean reverting parameters, 0.04. The standard deviation is 0.01 
and the mean is 0.90, -0.15 and 0.05 for 1 2( ),  ( )a t a t  and 3 ( )a t respectively. We also observe that there 

is an upper threshold in the values of ( )ia t  (0.915, -0.137 and 0.068) which is rarely exceeded. This 

can also be seen in the frequency distribution of ( )ia t  in Figure 6. A closer inspection of Table 5 

reveals that in every city 1( )a t  has the largest value (over 0.79) and 2 ( )a t  is always negative. A closer 

inspection of Table 5 reveals that the absolute average value of ( )ia t  of higher order lags decreases 

when the lag order increases which was expected. The value of 1( )a t ranges from 0.79 in Oslo to 0.99 

in Amsterdam and Madrid. Finally, strong autocorrelation is present in the values of ( )ia t  in every 
city. 

Next, the structure of ( )ia t  is examined. More precisely, it is examined if ( )ia t  are stochastic 
processes by themselves. Both an ADF and a KPSS tests are used. The ADF test statistic is -21.12, -
25.65 and -21.38 for 1 2( ),  ( )a t a t  and 3 ( )a t  respectively for Berlin. The p-value=0 for the three mean-

reversion functions that leads to the rejection of the null hypothesis that ( )ia t  has a unit root. In order 
to have a more powerful test, the KPSS test is also applied. The KPSS test statistic is 0.043, 0.045 and 
0.044 for 1 2( ),  ( )a t a t  and 3 ( )a t  respectively and less than the critical values in 1%, 5% and 10% 

confidence level. The previous results suggest the acceptance of the null hypothesis that ( )ia t  is 

stationary. The results of the remaining cities are similar. The null hypothesis of the ADF that ( )ia t  

have a unit root is rejected for all cities. Similarly, the null hypothesis of the KPSS that ( )ia t  are 
stationary cannot be rejected for all cities. 

The histogram in Figure 6 may suggest that the distributions of ( )ia t  are bimodal. In order to test the 
hypothesis of bimodality the Hartigan’s DIP statistic is estimated. Hartigan’s DIP statistic is a measure 
of departure from unimodality. If a distribution is unimodal then the DIP converges to zero otherwise 
converges to a positive constant, (Hartigan & Hartigan, 1985). The null hypothesis test is that ( )ia t  

follow a unimodal distributions versus the alternative that ( )ia t  follows a bimodal distribution. The 

estimated DIP statistics for Berlin are 0.0043, 0.0039 and 0.0037 for 1 2( ),  ( )a t a t  and 3 ( )a t  

respectively with p-values over 0.97. Hence, the null hypothesis that ( )ia t follows a unimodal 
distribution cannot be rejected in Berlin. The results of the remaining cities are similar. 

The results from (Zapranis & Alexandridis, 2008) indicate that 1( )a t  follows a bimodal distribution in 
Paris. However in (Zapranis & Alexandridis, 2008) only one lag is used in order to estimate model 
(15) which may have a strong impact on the structure and values of 1( )a t . 

Moreover, Figure 5 may suggest seasonalities in the structure of ( )ia t . The ACF of ( )ia t  is shown in 
Figure 7. A seasonality of a half year can be shown in the ACF. Also the first 35 lags are statistically 
important and positive correlated while the next 20 are negatively correlated. 



In this section the daily values of ( )ia t  were successfully estimated. Hence, the residuals ( )e t  of 
model (15) can be obtained. In the next section the residuals ( )e t  will be examined. 

 
5. Identifying and removing the seasonal variance using wavelet analysis 

 
In this section the residuals of the WN will be examined. The initial hypothesis for the residuals ( )e t  
of model (15) was that they follow the normal distribution. However  a closer inspection of the noise 
part of the wavelet decomposition of Berlin’s DAT (Figure 3) reveals seasonalities. 

The mean value of the residuals is very close to zero for all cities however the standard deviation is 
around 2. More precisely the minimum standard deviation is observed in Rome and is 1.55 while the 
maximum is observed in Berlin and it is 2.33. With an exception of Paris, all cities exhibit large 
positive kurtosis. On the other hand the skewness is -0.40 for Rome while it is 0.14 for Amsterdam. 
Next, a normality test will be performed on the estimated residuals of the WN. More precisely, the 
distance of the empirical distribution of the residuals and the standard normal distribution will be 
estimated by the Kolmogorov-Smirnov test or the Kolmogorov distance. The normality hypothesis is 
rejected for all cities since the Kolmogorov-Smirnov statistics are larger than 4.5 for all cities. The 
critical values of the Kolmogorov-Smirnov test is 1.36 for confidence level of 5%. Moreover, the p-
values are 0 for all cities indicating the rejection of the null hypothesis that the residuals are drawn 
from the standard normal distribution.  

Finally a Ljung-Box lack-of-fit hypothesis test is performed.  All p-values are larger than 0.05 with an 
exception of Berlin where the p-values is 0.0493, indicating the absence of autocorrelation in the 
residuals of the WN in 5% significance level. 

The above results are confirmed by the ACF of the residuals. The ACF of the residuals is shown on 
Figure 8. However, a closer inspection of the ACF reveals a seasonal component in the residuals in 
Madrid and Rome. 

Previous studies identified the existence of seasonal variance in the residuals of either the linear or the 
nonlinear AR model, (Benth & Saltyte-Benth, 2005, 2007; Zapranis & Alexandridis, 2008, 2009c). 
Hence, the residuals are further examined. More precisely, the ACF of the squared residuals are 
inspected. The ACF of the squared residuals can be found in Figure 9. By squaring the residuals the 
seasonal pattern in the ACF is clear in every city as it is shown in Figure 9. 

As it was mentioned earlier the seasonal variance is modeled by equation (3). Since for the residuals 
( )e t  of the nonlinear AR model it is true that ( ) ( ) ( )e t t tσ ε=  where ( )tε  are i.i.d. (0,1)N , the 

seasonal variance of the residuals can be extracted as follows. First, the residuals are grouped into 365 
groups, comprising 10 observations each (each group corresponds to a single day of the year). Then, 
by taking the average of the 10 squared values the variance of that day is obtained. That is, we assume 
that the seasonal variance is repeated every year: 

 2 2( 365) ( )t tσ σ+ =  (18) 

where 1,...,3650t = . 

To decide which terms of the truncated Fourier series to use in order to model the variance 2 ( )tσ , WA 
is performed again. The Daubechies 8 wavelet at level 8 was used.  



In Figure 10 selected parts of the wavelet decomposition of the squared residuals for Berlin are 
presented. It is clear that a cycle of 1 year exists (approximation at level 8, 8a ) as it was assumed by 

(18). Moreover a half-year cycle ( 6a  and 7d ) as well as a seasonal cycle exist ( 6d ). Hence, in (3) we 

set 2 3I =  and 2 3J = . Moreover the results from WA indicate that 1 1p′ = , 2 2p′ =  and 3 3p′ = . In panel 
A of Table 6 the results of the wavelet decomposition for the remaining cities are presented. Since 
parameters ip′  were identified by WA, least squares method were used to fit the parameters ic  and jd  

of equation (3). 

The estimated parameters of the seasonal variance in Berlin are as follows: 0 5.42c = , 1 0.94c = , 

2 0.53c = − , 2 1.13d = , and 3 0.31d = − . Note that parameters 3c  and 1d  are not statistically significant 
and they are not reported. In panel B of Table 6 the estimated parameters of the remaining cities are 
reported. Note that only the statistically significant parameters (p-value<0.05) are reported. Parameters 
with p-value>0.05 are omitted and removed from the model. Hence, in Madrid only 3 parameters were 
needed in order to fit and remove the seasonal variance, while in Amsterdam and Stockholm 6 
parameters were needed. 

The empirical values of the variance of the residuals (365 values) in Berlin together with the fitted 
variance can be seen in Figure 11. We observe that the variance takes its highest values during the 
winter months while it takes its lowest values during the summer months. This is consistent with our 
initial hypothesis. Moreover an increase in variance is observed during May. 

 
6. Testing the residuals after dividing out the seasonal variance 

 
In this section the residuals ( )tε  after dividing out the seasonal variance will be examined. Various 
statistics of the remaining residuals will be presented as well as distributional tests will be performed. 
Finally, a comparison between the proposed model and previous studies will be presented.  More 
precisely, our model will be compared against the models proposed by (Alaton, et al., 2002) and by 
(Benth & Saltyte-Benth, 2007). 

First, the ACF of the residuals after dividing out the seasonal variance is examined. Figure 12 presents 
the ACF of the squared residuals after dividing out the seasonal variance for the seven cities. We 
observe that the seasonality has been successfully removed from all cities. 

In Table 7 the descriptive statistics of the residuals after dividing out the seasonal variance are 
presented. The residuals for the seven cities have a mean of almost 0 and standard deviation of 1. In all 
cities a negative skewness is present with an exception of Amsterdam where the skewness is positive. 
In addition positive kurtosis is evident in all cities. Moreover a Ljung-Box lack-of-fit hypothesis test is 
performed. The corresponding statistics and p-values can be found on Table 7. All p-values are larger 
than 0.05 indicating the absence of autocorrelation in the residuals in confidence level of 5%. Finally, a 
Kolmogorov-Smirnov is performed to test the normality hypothesis. In Table 7 the corresponding 
statistics and p-values are presented. In Berlin, Oslo, Paris and Stockholm the null hypothesis that the 
residuals are drawn from the normal distribution cannot be rejected in 10% confidence level. Similar, 
in Amsterdam the null hypothesis cannot be rejected in 1% confidence level. Only in two cities, in 
Madrid and Rome the normality hypothesis is rejected. 

Next, the hypothesis of long range dependence in the estimated residuals should be tested. The Hurst 
exponent is related to the fractional differencing parameter d  and is given by: 



 1
2

H d= +  (19) 

The Hurst exponent takes values in the interval (0,1). For 1 12 H< <  the process has long memory, for 

10 2H< <  the process has short memory while for 1
2H =  the BM is retrieved, (Bellini, 2005). In 

Table 8 the Hurst exponent for the seven cities is presented. The Hurst exponent was estimated after all 
seasonal component were removed from the data. The iterative method described in (Koutsouyiannis, 
2003) is followed in order to estimate the Hurst exponent. 

Results from Table 8 indicate that the Hurst exponent does not differ significantly from 0.5. The 
smallest Hurst exponent was observed in Amsterdam with value of 0.4874 while the largest Hurst 
exponent was observed in Oslo with value of 0.5201. The above results indicate the absence of 
fractionality characteristics in the dynamics of the temperature process. Therefore, the assumption of a 
BM instead of Fractional BM is justified.  

Our results are in contrast to those of (Brody, et al., 2002) and (Benth, 2003). In (Brody, et al., 2002) 
the Hurst exponent was calculated before the elimination of any seasonal components. In this study, 
WA was used in order to successfully remove all seasonal effects in temperature and in the seasonal 
variance. Hence, any possible fractionality was successfully removed. The same conclusion achieved 
in (Bellini, 2005) using Fourier theory in order to indentify periodicities in the temperature data. 

6.1 In sample comparison – distributional comparison  

Next, the proposed model will be compared in-sample against two models previously proposed in the 
literature. The first model was proposed by (Alaton, et al., 2002) while the second model was proposed 
by (Benth & Saltyte-Benth, 2007). For simplicity we name the two models as the Alaton and the Benth 
model respectively. 

In Table 9 the estimated parameters from Alaton model are presented while in Table 10 the descriptive 
statistics of the residuals can be found. In Table 9 only the statistical significant parameters at 
significance level 5% are reported. A closer inspection of Table 10 indicates that the distributional 
statistics are similar to the statistics of the residuals of our proposed model. The mean is almost zero 
and the standard deviation is almost 1 for all cities. With an exception of Paris, there is positive 
kurtosis. On the other hand negative skewness is present in all cities with the exception of Amsterdam 
and Berlin. The results of the normality hypothesis test performed by the Kolmogorov-Smirnov test 
indicate that the normality hypothesis is rejected in Amsterdam, Madrid and Rome while there is not 
enough evidence to reject the normality hypothesis in Oslo, Berlin, Paris and Stockholm in 10% 
confidence level. However, the Ljung-Box Q-statistic lack-of-fit reveals strong autocorrelation in the 
residuals. Hence, the results of the previous test for normality may not lead to substantial values of the 
Kolmogorov-Smirnov test.  

In Table 11 the estimated parameters from the Benth model are presented while in Table 12 the 
descriptive statistics of the residuals can be found. In Table 11 only the statistical significant 
parameters at significance level 5% are reported. A closer inspection of Table 12 indicates that the 
standard deviation is close to 0.8 in contrast to the initial hypothesis that the residuals follow a N(0,1) 
distribution. This results to an implication of the estimation of the seasonal variance. In addition the 
normality hypothesis is rejected in all cities. More precisely the Kolmogorov-Smirnov value is over 3.5 
with p-value of 0 for all cities. Finally, the Ljung-Box Q-statistic lack-of-fit reveals strong 
autocorrelation in the residuals. 



The findings of (Benth & Saltyte-Benth, 2007) for the Stockholm temperature series are very similar. 
Although, they did not use WA to calibrate their model, they had managed to remove seasonality from 
the residuals, but their distribution proved to be non-normal. They suggested that a more refined model 
would probably rectify this problem, but they did not proceed in estimating one. In an earlier paper 
regarding Norwegian temperature data, (Benth & Saltyte-Benth, 2005) suggested to model the 
residuals by a generalized hyperbolic distribution. However, as the same authors comment the 
inclusion of a non-normal model leads to a complicated Lévy process dynamics. Recently (Benth, et 
al., 2007) proposed a continuous-time autoregressive process with lag p (CAR(p)-process). Although 
they managed to correct the autocorrelation on the residuals their distribution proved again to be non-
normal. 

(Zapranis & Alexandridis, 2006) estimated a number of alternatives to the original AR(1) model. In 
particular they estimated an ARMA(3,1) model, a long-memory homoscedastic ARFIMA model and a 
long-memory heteroscedastic ARFIMA-FIGARCH model. Their findings suggest that, increasing the 
model complexity and thus the complexity of theoretical derivations in the context of weather 
derivative pricing does not seem to be justified. 

Our model outperformed the two models in the sense of distributional statistics. First of all in contrast 
to the models of Alaton and Benth, our tests indicate the absence of autocorrelation in the residuals. 
Next, only in two of the seven cities the normality hypothesis was rejected justifying our initial 
hypothesis of a BM as the driving noise process. Finally, WA successfully, indentified all the seasonal 
cycles that affect the temperature dynamics. 

6.2 Testing the residuals under the Lévy motion assumption 

In the previous section the residuals of our proposed model were examined. We concluded that the use 
of a BM is justified since the normality hypothesis was rejected in only two cities. In order to obtain a 
better understanding of the distributions of the residuals we expand our analysis by fitting additional 
distributions. More precisely, a Lévy family distribution is fitted to the residuals. The Lévy family 
contains many known distributions as subclasses. To our knowledge only (Benth & Saltyte-Benth, 
2005) and (Bellini, 2005) used a Lévy process as the driving noise process. In particular, (Benth & 
Saltyte-Benth, 2005) used a generalized hyperbolic distribution. In (Bellini, 2005) an hyperbolic 
distribution was used which is a limiting case of the generalized hyperbolic distribution. In this study 
two limiting cases of the generalized hyperbolic, the hyperbolic and the NIG and one limiting case of 
the Lévy distribution, the stable distribution are examined. 

The distance between the empirical distribution of the residuals and the four distributions is estimated 
by the Kolmogorov distance. In addition the Anderson-Darling test which gives additional weight to 
the tails of the distribution is also performed, (Bellini, 2005). In Table 13 the estimated Kolmogorov 
distance and the Anderson-Darling statistics are presented for four distributions: normal, hyperbolic, 
NIG and stable. From Table 13 it is clear that both statistics have the smallest values when the 
hyperbolic distribution is used with an exception of Paris where the Stable distribution provides the 
smallest Kolmogorv-Smirnov statistic.  

Concluding, the hyperbolic distribution provides a slightly better fit than the normal distribution. 
However, introducing a Lévy process in the temperature dynamics does not allow to find closed form 
solutions for the temperature derivatives. The increased complexity of the pricing formulas of the 
weather derivatives makes the use of the normal distribution more favorable. 

 
7. Evaluating the temperature model out-of-sample 

 



In this section our proposed model will be validated out of sample. Our method is validated and 
compared against two forecasting methods proposed in prior studies, the Alaton’s and Benth’s models. 
The three models will be used for forecasting out-of-sample DATs for different periods. Usually, 
temperature derivatives are written for a period of a month or a season and sometimes even for a year. 
Hence, DATs for 1, 2, 3, 6 and 12 months will be forecasted. The out-of-sample period corresponds to 
the period of 1st January – 31st December 2001 and every time interval starts at 1st

The predictive power of the three models will be evaluated using two out-of-sample forecasting 
methods. First, we will estimate out-of-sample forecasts over a period and then 1-day-ahead forecasts 
over a period. The first case, in the out-of-sample forecasts, today (time step 0) temperature is known 
and is used to forecast the temperature tomorrow (time step 1). However, tomorrow’s temperature is 
unknown and cannot be used to forecast the temperature 2 days ahead. Hence, we use the forecasted 
temperature at time step 1 to forecast the temperature at time step 2 and so on. We call this method the 
out-of-sample over a period forecast. The second case, the 1-day-ahead forecast, the procedure is as 
follows. Today (time step 0) temperature is known and is used to forecast the temperature tomorrow 
(time step 1). Then tomorrow’s real temperature is used to forecast the temperature at time step 2 and 
so on. We will refer to this method as the 1-day-ahead over a period forecast. The first method can be 
used for out-of-period valuation of a temperature derivative, while the second one for in-period 
valuation. Naturally, it is expected the first method to cause larger errors. 

 January of 2001. 
Note that the DATs from 2001 were not used for the estimation of the parameters of the three models. 
Next the corresponding HDDs and CAT indices will be constructed. 

In order to forecast the future DATs in the seven cities, the MC method was applied. In this study we 
create 10.000 sample paths for each model that represent the future evolution of temperature over a 
specified period. 

Since we are studying 7 cities and 2 indices for 5 different time periods, the three models are compared 
in 70 cases for each method. Our results are very promising. In the out-of-sample forecasts our method 
outperformed alternative methods in 34 cases out of the 70. In the 1-day-ahead forecasts our model 
performed even better outperforming the Alaton and Benth models in 47 times out of 70. 

Over the 5 different periods our method gives the best results in 17 times for the HDD index and 17 
times for the CAT. On the other hand, the Alaton method causes the smallest errors in 11 cases for 
both indices while the Benth model in 7 and 8 cases for the HDD and CAT indices respectively. The 
results for the HDD and the CAT index are the same. Moreover, we observe that our proposed method 
gives almost always better results for the following cities: Berlin, Oslo and Rome. On the other hand 
Alaton method performs better in Stockholm. Finally, the forecasts of the Benth model deteriorate as 
the forecast window increases. 

Next, our model is validated using the 1-day-ahead forecasts over 5 different periods. Over the 5 
different periods our method gives the best results in 23 times for the HDD index and 24 times for the 
CAT. On the other hand, the Alaton method causes the smallest errors only in 7 cases for both indices 
while the Benth model only in 5 and 4 cases for the HDD and CAT indices respectively. Again the 
results for the HDD and the CAT index are the same. 

As it was expected the absolute percentage errors are very small. Modeling the DATs using WNs a 
very good estimate of the real indices is obtained. The absolute percentage error is less than 2.5% in all 
cases for the HDD index. The worst predicted estimated level of HDD index produced when 
approximating the 3 month HDD in Rome. In general the proposed method produces the worst results 
when forecasting the DAT in Rome while the best 1-day-ahead out-of-sample forecasts are obtained in 



Amsterdam, Madrid and Paris with absolute percentage errors less than 0.2%, 0.5% and 0.9% 
respectively. 

Our results corresponding to the CAT index are similar. Finally, as in the case of the out-of-sample 
forecasts, the forecasts of the Benth model deteriorate as the forecast window increases. 

Table 14 summarizes the results of the performance of each method. The proposed model 
outperformed the other two methods in 81 cases out of 140 resulting to a success ratio of 58%. On the 
other hand the Alaton model gave the best results in only 35 cases with a success ratio of 25% and the 
Benth model in only 24 cases with a success ratio of 17%. Our results suggest that the proposed 
method significantly outperforms other methods previously proposed in literature.  

The previous extensive analysis indicates that our results are very promising. Modeling the DAT using 
WA and WNs enhance the fitting and the predictive accuracy of the temperature process. Modeling the 
DAT assuming a time varying speed of mean reversion resulted to a better out-of-sample predictive 
accuracy of our model. The additional accuracy of the proposed model will have an impact on the 
accurate pricing of temperature derivatives. 

In the proposed model, weather forecasts can easily be implemented. It is expected that the use of 
weather forecasts would further improve the forecasting ability of the WN model and hence the 
accuracy of the pricing of weather derivatives.  

8. Pricing Temperature Derivatives 
 
The analysis that performed in the previous chapter indicates that assuming a normal distribution is 
justified. In general the normal distributions fits the final residuals after dividing out the seasonal 
variance reasonably well while only in two of the seven cities the normality hypothesis was rejected. 
Expanding our research, three more distributions were tested, the hyperbolic, NIG and stable 
distribution. Our results indicate that the hyperbolic distribution provides the best fit to the residuals. 
The Anderson-Darling statistic and the Kolmogorov distance had the smallest value in every city when 
a hyperbolic distribution was used. In this chapter the pricing formulas of various temperature 
derivatives will be presented first under the assumption of normal distribution and then under the 
assumption of a Lévy motion noise. More precisely, the pricing formulas for the following indices will 
be derived: CAT, AccHDD, AccCDD and the Pacific Rim. 

When the market is complete, then a unique risk-neutral probability measure ~Q P  can obtained, 
where P  is the real world probability measure. This change of measure turns the stochastic process 
into a martingale. Hence, financial derivatives can be priced under the risk-neutral measure by the 
discounted expectation of the derivative payoff. 

The weather market is an incomplete market in the sense that the underlying weather derivative cannot 
be stored or traded. Moreover the market is relatively illiquid. In principle, (extended) risk-neutral 
valuation can be still carried out in incomplete markets, (Xu, Odening, & Musshof, 2008). However, in 
incomplete markets a unique price cannot be obtained using the no-arbitrage assumption. In other 
words, under every measure Q  all assets are martingales after discounting. 

The change of measure from the real world to the risk-neutral world under the dynamics of a BM can 
be performed using the Girsanov theorem (or the Esscher transform for a jump process). The Girsanov 
theorem tells us how a stochastic process changes under changes in the measure. Then the discounted 
expected payoff of the various weather contracts can be estimated. However, in order to estimate the 
expected payoff of each derivative, the solution of the stochastic differential equation that describes the 



temperature dynamics must be solved. This can be done by applying the Itô’s Lemma when a BM is 
considered or the Itô Formula for semimartingales when a Lévy motion is considered. 

8.1 Temperature Derivatives Traded On the CME  
 
The list of traded contracts on the weather derivatives market is extensive and constantly evolving. 
Chicago Mercantile Exchange (CME) offers various weather futures and options contracts. They are 
index-based products geared to average seasonal and monthly weather in 46 cities2

In Europe, CME weather contracts for the summer months are based on an index of CAT. The CAT 
index is the sum of the DATs over the contract period. The average temperature is measured as the 
simple average of the minimum and maximum temperature over one day. The value of a CAT index 
for the time interval 

 around the world - 
24 in the U.S., 10 in Europe, 6 in Canada, 3 Australian and 3 in Japan. 

1 2[ , ]τ τ  is given by the following expression: 

 2

1

( )CAT T s ds
τ

τ
= ∫  (20) 

where the temperature is measured in degrees Celsius. In London one CAT index futures contract costs 
£20 per index point while it costs €20 per index unit in all other European locations. CAT contracts 
have monthly or seasonal duration. CAT futures and options are traded on the following moths: May, 
June, July, August, September, April and October. 

In the USA, Canada and Australia, CME weather derivatives are based on the HDD or CDD index. A 
HDD is the number of degrees by which the daily temperature is below a base temperature, and a CDD 
is the number of degrees by which the daily temperature is above the base temperature, i.e. 

Daily HDD = max(0, base temperature – daily average temperature) 

Daily CDD = max(0, daily average temperature – base temperature) 

The base temperature is usually 65 degrees Fahrenheit in the USA and 18 degrees Celsius in Europe 
and Japan. HDDs and CDDs are usually accumulated over a month or over a season. CME also trades 
HDDs contracts for the European cities. Contacts on the following months can be found: November, 
December, January, February, March, October and April. 

For the three Japanese cities, weather derivatives are based on the Pacific Rim index. The Pacific Rim 
index is simply the average of the CAT index over the specific time period: 
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1 ( )PAC T s ds
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ττ τ
=

− ∫  (21) 

The pricing of these contracts using daily models is not a straightforward process. In (Alaton, et al., 
2002) a numerical approach was adapted in order to find the fair price of HDD option contract. 
However, in (Alaton, et al., 2002) strong simplifications were made that significantly reduced the 
complexity of the pricing formulas. In (Brody, et al., 2002) and later in  (Benth, 2003) the price of 
various temperature options was estimated under the assumption that the driving noise process of the 
temperature is a Fractional BM. In a more recent paper (Benth & Saltyte-Benth, 2005) estimate the 
prices of a CAT future and option contracts under the assumption of a Lévy noise process. More 
precisely (Benth & Saltyte-Benth, 2005) propose that the residuals follow the generalized hyperbolic 
distribution. Similarly,  (Bellini, 2005) presents the pricing of HDDs and CDDs contracts under the 
assumption of a Lévy noise process where the residuals follow the hyperbolic distributions. More 
recently, (Benth & Saltyte-Benth, 2007) presented the pricing formulas of derivatives on various 
temperature indices under the normality assumption. More precisely, prices of futures and options of 
the following indices were derived: the CAT, Pacific Rim, HDDs and CDDs indices. In (Benth, et al., 

                                                            
2 The number of cities that the CME trades weather contracts at the end of 2009. 



2008) the temperature dynamics were modeled by a Continuous Autoregressive (CAR(p)) process first 
introduced by (Brockwell & Marquardt, 2005). Under the normality assumption, pricing formulas for 
the CAT, HDDs and CDDs indices were presented. In (Zapranis & Alexandridis, 2008) the price of 
CAT futures were derived when the speed of mean is reversion is a time-varying function.  

In (Geman, 1999) and (Jewson, et al., 2005) various pricing approaches were presented. These 
approaches were derived either from daily or index models or actuarial based methods. (Davis, 2001) 
price weather derivatives by marginal value using a modified Black-Scholes equation while (Platen & 
West, 2005) suggest a fair pricing approach based on an equilibrium method. On the other hand, 
(Garman, Blanco, & Erickson, 2000) introduces MC to price weather derivatives while (Xu, et al., 
2008) apply an indifference pricing approach for weather derivatives that are traded OTC. 

Our results indicate that the proposed model significantly outperforms alternative methods in the sense 
of forecasting, in sample and out-of-sample. It follows that the assumption of a constant mean-
reversion parameter introduces significant error in the pricing of weather derivatives. In this study we 
present the pricing formulas for a future and an option contract written on the indices presented above 
that incorporates the time dependency of the speed of the mean-reversion parameter. First, we rewrite 
our model that describes the temperature dynamics and solve the stochastic differential equation using 
the Itô’s Lemma. 

 

Proposition 1. If the DAT follows a mean reverting O-U process with time varying speed of 
mean reversion and seasonal mean and variance: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t S t dt t dB tκ σ= + − +   

an explicit solution can be derived from the Itô formula: 
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Proof.   Let us rewrite (1) as  

 ( ) ( ) ( ) ( ) ( )dT t t T t dt t dB tκ σ= +   

where ( )( ) ( ) ( )T t T t S t= − . Then, the proof follows by a direct application of the Itô’s Lemma.  

□ 

8.2 Pricing Under the Normal Assumption 

In this section the pricing formulas of the weather derivatives on various temperature indices under the 
assumption of the normal distribution are presented. More precisely, the pricing formulas of futures 
and options on futures for the CAT, AccHDDs, AccCDDs and Pacific Rim indices are derived.  

 

8.2.1 CAT and Pacific Rim Futures and Options 

Our aim is to give a mathematical expression for the CAT futures price. The weather derivative market 
it is a classical incomplete market. In order to derive the pricing formula, first we must find a risk-
neutral probability measure ~Q P , where all assets are martingales after discounting. In the case of 
weather derivatives, any equivalent measure Q  is a risk-neutral probability. If Q  is the risk-neutral 



probability and r  is the constant compounding interest rate, then the arbitrage-free future price of a 
CAT contract at time 1 2t τ τ≤ <  is given by 

 2
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and since CATF  is tF  adapted we derive the price of a CAT futures to be 
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Using Girsanov’s theorem, under the equivalent measure Q, we have 
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t
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or equivalently 

 ( ) ( ) ( )dW t dB t t dtθ= −  (26) 

and note that ( )tσ  is bounded away from zero. Hence, by combining equations (1) and (26) the 
stochastic process of the temperature in the risk-neutral probability Qθ  is 

 ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t s t t t dt t dW tκ σ θ σ= + − + +  (27) 

where ( )tθ  is a real-valued measurable and bounded function denoting the market price of risk. The 
market price of risk can be calculated from historical data. More specifically, ( )tθ  can be calculated 
by looking at the market price of contracts. The value that makes the price of the model fit the market 
price is the market price of risk. Using the Itô formula, the solution of equation (27) under Qθ  is 
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The proof of equation (28) is similar to the proof of Proposition 1. Note Q is the risk-neutral 
probability measure where ~Q P  while Qθ  is a subclass of these probabilities defined by the 
Girsanov theorem. Since we restrict our attention in these probabilities, in order to simplify the 
notation in the remaining of the chapter we will define this subclass of probabilities also with the same 
letter Q . 

Replacing expression (28) in (24) we find the price of a future contract on the CAT index at time t, 
where 1 2t τ τ≤ < . 

Proposition 2. The CAT future price for 1 2t τ τ≤ <   is given by 
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Proof.   From equations (24) and (28) we have 
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and using Itô’s isometry we can interchange the expectation and the integral 
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where [ , ]1 t s  is zero outside the interval [ , ]t s . Then we can change the order of the integrals, 
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Next we split the outer integral in two parts: 
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The second part is zero when s u> . Hence we can change the limits of the inner integral 
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or, equivalently, 
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□ 



Proposition 2 gives the price of a futures CAT at time 1 2t τ τ≤ < . In other words the price of a futures 
CAT before the contract period. Hence, (29) corresponds to out-of-period valuation. In order to 
evaluate the future price inside the contract period the above formula can be easily modified. 

Proposition 3. The CAT futures price for 1 2tτ τ≤ ≤   is given by 
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Proof. We have that the CAT futures price is  
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Note that the first term is known at time t  since it refers to past temperatures while the second term is 
stochastic. 

□ 

 

Similar, the in-period pricing formulas of the remaining indices can be easily extracted from the 
pricing formulas of the out-of-period valuation. Following the notation of (Benth & Saltyte-Benth, 
2007) the dynamics of the CAT futures price under Q  is given in the following proposition. 

Proposition 4. The dynamics of 1 2( , , )CATF t τ τ  under the risk-neutral measure Q  is  

 1 2 1 2( , , ) ( , , ) ( )CAT CATdF t t dW tτ τ τ τ= Σ  (33) 

where 
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1 2( , , ) ( )
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t
z dz

CAT t t e ds
τ κ

τ
τ τ σ ∫Σ = ∫  (34) 

Proof.  1 2( , , )CATF t τ τ  is Q  martingale, hence the proposition follows after a direct application of the 
Itô formula. We focus only on the part ( )dW t  since the drift part is zero. We have that 
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hence, 
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τ κ

τ
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□ 

 



Using Proposition 4 the price of call option written on CAT futures can be estimated. 

Proposition 5. The price at time t τ≤  of a call option written on a CAT futures with strike 
price K  at exercise time 1τ τ≤  is  
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 (35) 

where 
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1 2 2
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−
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Σ
 (36) 

and 

 2 2
, 1 2( , , )t CATt

t ds
τ

τ τ τΣ = Σ∫  (37) 

and Φ is the cumulative standard normal distribution function. 

Proof. The option price by definition is given by 

 ( )( )
1 2 1 2( , , , ) max ( , , ) ,0 |r t

CAT Q CAT tC t e F Kττ τ τ τ τ τ− −= Ε  −  F  

From Proposition 4 we have that the Q  dynamics of the futures price can be written as  

 1 2 1 2 1 2( , , ) ( , , ) ( , , ) ( )CAT CAT CATt
F F t s dW s

τ
τ τ τ τ τ τ τ= + Σ∫  

From this it follows that 1 2( , , )CATF τ τ τ  conditioned on 1 2( , , )CATF t τ τ  follows the normal distribution 
with mean 1 2( , , )CATF t τ τ and variance given by 
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Hence, 
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The price CATC  follows by a straightforward calculation using the properties of the normal distribution. 

□ 

As it was mentioned earlier the Pacific Rim index is simply the average of the CAT index over the 
specific time period. Then the arbitrage-free future price of a Pacific Rim contract at time 1 2t τ τ≤ <  is 
given by: 
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1 ( ) ( , , ) | 0r t
Q PAC te T d F t

ττ

τ
τ τ τ τ

τ τ
− −  
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∫ F  (38) 

and since PACF  is tF  adapted we derive the price of a PAC futures to be 
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Observing equations (24) and (39) we conclude that: 

 1 2 1 2
2 1

1( , , ) ( , , )PAC CATF t F tτ τ τ τ
τ τ

=
−

 (40) 

and, similarly, that the price of call option written on a PAC futures is given by: 

 1 2 1 2
2 1

1( , , ) ( , , )PAC CATC t C tτ τ τ τ
τ τ

=
−

 (41) 

 

8.2.2 HDD and CDD Futures and Options 

Next the pricing formulas for the CDDs and HDDs are presented. The AccCDD and AccHDD indices 
over a period 1 2[ , ]τ τ  are given by 

 ( )2

1

max ( ),0AccHDD c T s ds
τ

τ
= −∫  (42) 

 ( )2

1

max ( ) ,0AccCDD T s c ds
τ

τ
= −∫  (43) 

Hence, the pricing equations are similar for both indices. Our aim is to give a mathematical expression 
for the HDD future price. If Q  is the risk neutral probability and r  is the constant compounding 
interest rate then the arbitrage free future price of a HDD contract at time 1 2t τ τ≤ <  is given by:  
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and since HDDF  is tF  adapted we derive the price of a HDD futures to be 
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τ
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Similarly, we have that the arbitrage free futures price of a CDD contract at time 1 2t τ τ≤ <  is given 
by:  
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Observing equations (24), (45) and (46) we have the following proposition. 

Proposition 6. The CDD, HDD and CAT prices are linked by the following relation: 



 ( )1 2 2 1 1 2 1 2( , , ) ( , , ) ( , , )HDD CAT CDDF t c F t F tτ τ τ τ τ τ τ τ= − − +  (47) 

Proof. We have that 
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Hence, by replacing the above relation to (45) we have that 
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□ 

Proposition 6 indicates that the pricing formulas of futures on CDD and HDD indices are similar. 
Hence, we can focus only on the pricing formulas of the CDD indices. 

Proposition 7. The CDD future price for 1 20 t τ τ≤ ≤ <  is given by 
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 (48) 

                                  

where, 
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and ( ) ( ) '( )x x x xΨ = Φ +Φ  where Φ is the cumulative standard normal distribution function. 

 

Proof.    From equations  (45) and (28) we have that: 
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τ
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and using Itô’s Isometry we can interchange the expectation and the integral 
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( )T s  is normally distributed under the probability measure Q with mean and variance given by: 
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Hence, ( )T s c−  is normally distributed with mean given by 
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( , , ( ))
s

t
z dz

m t s e T t
κ∫   and variance given by 

2 ( , )v t s  and the proposition follows by standard calculations using the properties of the normal 
distribution. 

□ 

Proposition 7 gives the price of a futures CDD at time 1 2t τ τ≤ < . In other words the price of a futures 
CDD before the contract period. Hence, (48) corresponds to out-of-period valuation. In order to 
evaluate the future price inside the contract period the above formula can be easily modified. 

Proposition 8. The CDD future price for 1 2tτ τ≤ <  is given by 
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Proof.  We have that the futures price of a CDD is given by 
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Note that the first term is known at time t  since it refers to past temperatures while the second term is 
stochastic. 

□ 

Following the notation of (Benth, et al., 2007) and (Benth, et al., 2008) the dynamics of the CDD 
futures price under Q  is given in the following proposition. 

Proposition 9. The dynamics of 1 2( , , )CDDF t τ τ  for 10 t τ≤ ≤  under Q  is given by  

 1 2 1 2( , , ) ( , , ) ( )CDD CDDdF t t dW tτ τ τ τ= Σ  (52) 

where 
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and Φ  is cumulative standard normal distribution function 

Proof. 1 2( , , )CDDF t τ τ  is Q  martingale, hence the proposition follows after a direct application of the 
Itô formula. We focus only on the part ( )dW t  since the drift part is zero. First note that, ( , )v t s  does 
not depend on ( )T t  and that 
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Also, substituting ( ) ( )x x′Ψ = Φ  we have that 
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Hence, we have that 
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□ 

In Proposition 9 the term 1 2( , , )CDD t τ τΣ  represents the term structure of the volatility of CDD futures. 
Hence, the price of a call option on a CDD futures can be derived. From Proposition 9 the price of a 
CDD futures option can be estimated. 

Proposition 10. The price at time t τ≤  of a call option written on a HDD futures with strike 
price K  at exercise time 1τ τ≤  is  
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and 
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and Y is a standard normal random variable. 

Proof. The option price is given as 
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The Itô integral inside the expectation is independent of tF  and has variance
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Taking the conditional expectation yields the result. 

□ 

 
8.3 Pricing Under the Assumption of a Lévy Noise Process 

Under the assumption of a Lévy motion as the driving noise process, the stochastic differential 
equation that describes the DAT is a generalization of the proposed model (1). Hence, the DATs 
follow a mean reverting O-U process with time varying speed of mean reversion and seasonal mean 
and variance and a Lévy driving noise process given by: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t S t dt t dL tκ σ= + − +  (58) 

where ( )L t  is Lévy noise. Applying the Itô formula for semimartingales, (Ikeda & Watanabe, 1981), 
the explicit solution of (58) is obtained: 
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As in the case of the BM we derive the price of a CAT futures to be 
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Proposition 11. The cumulative temperature over the time interval 1 2[ , ]τ τ  is given by: 
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Proof. We have that 
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Focusing on the last integral we have that 
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□ 

In the previous section the Girsanov theorem was applied in order to find an equivalent probability 
measure Q . The Girsanov theorem is a special case of the Esscher transform when the distribution is a 
BM. In the case of a jump process the Esscher transform is applied. 

Let ( )tθ  to be a real-valued measurable and bounded function denoting the market price of risk and 
consider the stochastic process 

 ( )( )0 0
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t t
Z t s L s s dsθ ϕ θ= −∫ ∫  (61) 

where ( )ϕ λ is the logarithm of the moment generating function of ( )L t  

 ( )( ) ln exp (1)Lϕ λ λ= Ε    (62) 

We make the same assumptions as in (Benth & Saltyte-Benth, 2005) and (Bellini, 2005) We assume 
that the process ( )Z t  is well defined under natural exponential integrability conditions on the Lévy 
measure ( )l dz , which we assume to hold. Then the following proposition for the price of CAT futures 
follows 

Proposition 12. The futures prices 1 2( , , )CATF t τ τ  at time 1 2t τ τ≤ <  written on CAT over the 
interval 1 2[ , ]τ τ  is 
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Proof. First we prove that for a real-valued measurable and bounded function ( )f t   
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The proof of (64) can be found in many studies. For reasons of completeness of this study we 
reproduce the proof here. We follow the method presented in (Benth & Saltyte-Benth, 2005). First note 
the following lemma: 
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if [ ]: ,g s t → is a bounded and measurable function and the integrability condition of the Lévy 
measure holds. The proof of this lemma can be found in (Benth & Saltyte-Benth, 2004). Hence, we 
have that: 
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Hence, (64) holds. 

Next, the dynamics of the price of the future CAT 
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From equation (60) and the adaptivity property of the Lévy process we have that 
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Hence, using the adaptivity property again and equation (64) we have that 
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Substituting the above equation to the initial expectation yields the result. 

□ 

As it was mentioned earlier the Pacific Rim index is simply the average of the CAT index over the 
specific time period. Then the arbitrage-free future price of a CAT contract at time 1 2t τ τ≤ ≤  is given 
by: 
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and since PACF  is tF  adapted we derive the price of a PAC futures to be 
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Hence we conclude that: 
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Unfortunately, introducing the Lévy noise process prevents the calculation of option prices. In 
addition, finding closed form solutions for AccHDDs and AccCDDs futures and options including a 
Lévy process in the temperature stochastic differential equation is not possible. The problem arises 
from the fact that the class of generalized hyperbolic distributions is not closed under convolution, 
(Bellini, 2005). Alternatively, estimating the prices of weather derivatives under the Lévy assumption 
can be done numerically. One approach is by applying the FT. In order to do so, it is necessary to 
know the distributional properties of the random variable ( )T t . The unknown density ( )Tf x  can be 
estimated by a Fourier approach of the following integral of the characteristic function ( )Tψ λ  

 1( ) ( )
2

isx
T Tf x e s dsψ

π
+∞ −

−∞
= ∫  (68) 

Hence, if the characteristics function of the Lévy process is known then option prices as well futures 
on AccHDDs and AccCDDs can be estimated. This approach is analytically discussed in (Carr & 
Madan, 1999). 

Proposition 13. The characteristic function of ( )T t  under the risk neutral measure Q  is given 
by: 
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Proof. We have that: 
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Focusing on the expectation we have that: 
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From (69), (71) and (72) yields the result 
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where ( )ϕ ⋅  is the moment generating function of (1)L  and 2 1i = − .  

□ 

In the case of the generalized hyperbolic distribution (and hyperbolic distribution) the moment 
generating function ϕ  is known. Hence, the characteristic function ( ) ( )iψ λ ϕ λ=  is also known. Now, 
the distribution of our model can be found by numerical inversion of the characteristic function. 
Hence, we can proceed on deriving the pricing formulas for the CDDs futures using a Lévy process: 
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where ( )Tf x  is the density function of ( )T t  under the risk neutral measure Q  conditional on tF  and it 
is given by (68). Similarly, the HDD future price is given by  
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1

65

1 2 0
( , , ) ( )CDD TF t c x f x dxds

τ

τ
τ τ = −∫ ∫  (74) 

Practitioners often prefer easy-to-implement models than realistic ones. A classic example is the 
Black–Scholes equation. The above solution of the price of a CAT future is not easy to solve and to 
calculate the above pricing formulas is not a straightforward process. Alternatively, the price of a 
future or an option contract on a temperature index can be estimated using numerical procedures.  

 
8.4 Market price of risk 

 
The weather derivatives market is a classical incomplete market. Since, temperature is non-tradable the 
market price of risk must be incorporated in the pricing model. The market price of risk, ( )tθ , was 
introduced by applying the Girsanov’s theorem (or the Esscher transform). The change of measure of 
an asset’s stochastic process is closely related to the concept of the market price of risk, (Xu, et al., 
2008). Actually the drift rate of the asset’s stochastic process is corrected by a parameter that reflects 
the market price of risk, (Xu, et al., 2008). 

In most studies so far the market price of risk was considered zero. However, recently many studies 
examine the market price of risk and found that it is different than zero, contradicting the assumption 
of (Hull, 2003).  

(Turvey, 2005) proposed to estimate the market price of risk by using the capital asset pricing model.  
(Cao & Wei, 2004) and (Richards, et al., 2004) apply a generalized Lucas’ (1978) equilibrium pricing 
model to study the market price of risk. In that framework direct estimation of the weather risk’s 
market price is avoided, (Xu, et al., 2008). Their findings indicate that the market price of risk 
associated with the temperature variable is significant. They also conclude that the market price of risk 
affects option values much more than forward prices, mainly due to the payoff specification.  In (Xu, et 
al., 2008) an indifference pricing approach which is also based on utility maximization is proposed.  

The most common approach is the one presented in (Alaton, et al., 2002) and it was followed by 
(Bellini, 2005), (Benth, Hardle, & Lopez Cabrera, 2009) and (Hardle & Lopez Cabrera, 2009). 

(Alaton, et al., 2002) suggest that the market price of risk can be estimated from the market data. More 
precisely the market price of risk is derived as follows: we examine what value of the ( )tθ  gives a 
price from the theoretical model that fits the observable market price. 

In (Bellini, 2005), the implicit market price of risk is estimated by comparing theoretical futures prices, 
given in previous formulas, to the prices observed in the market under the assumption of a Lévy noise 
process. Their results indicate that for four cities in use that market price of risk has always a negative 
sign while it was found not to be constant. Moreover, in (Bellini, 2005) the time dependence of the 
market price of risk is examined. It was found that there is a relation between ( )tθ  and its lag as well 
with the number of available for trading future contracts  

In (Hardle & Lopez Cabrera, 2009), the implied market price of risk from Berlin was estimated. Their 
results indicate that the market price of risk for CAT derivatives is different from zero and shows a 



seasonal structure that increases as the expiration date of the temperature future increases. In a more 
recent paper (Benth, et al., 2009) study the market price of risk in various Asian cities. The market 
price of risk was estimated by calibrating model prices. Their results indicate that the market price of 
risk for Asian temperature derivatives is different from zero and shows a seasonal structure that comes 
from the seasonal variance of the temperature process. Their empirical findings suggest that by 
knowing the formal dependence of the market price of risk on seasonal variation on can infer the 
market price of risk for regions where weather derivative market does not exist.  

Unfortunately, we do not possess any market data like futures or option prices. Hence, we cannot 
proceed on estimating and analyzing the market price of risk. Once, market data is available then the 
market price of risk can be easily estimated using the approach described in (Alaton, et al., 2002). 

9. Conclusions 
 
In this study, several temperature time series were studied in order to develop a model that describes 
the temperature evolution in the context of weather derivative pricing. A mean reverting O-U with 
seasonal mean and variance and time varying speed of mean reversion was proposed. 

In the context of an O-U temperature process the time dependence of the speed of the mean reversion 
( )tκ  was examined using a WN. First, a novel approach for estimating the number of lags of the 

nonlinear AR model was applied. Then, by computing the derivative ( 1) ( )dT t dT t+   of the fitted WN 
model, daily values of ( )tκ  were obtained. To our knowledge we are the first to do so. Our results 
indicate a strong time dependence in the daily variations of the values of ( )tκ . 

We compared the fit of the residuals with the normal distributions with two types of models. The first 
type was the proposed nonlinear nonparametric model where κ  is a function of time. The second 
category of models consists of two linear models previously proposed and often cited in literature 
where κ  is constant. It follows that by setting the speed of mean reversion to be a function of time the 
accuracy of the pricing of temperature derivatives improves. Generally, in our model a better fit was 
obtained. Only in two of the seven cities the normality hypothesis was rejected. Moreover the 
framework presented for selecting the significant lags of the temperature completely removed the 
autocorrelation in the residuals. On the other hand on both Alaton and Benth models strong 
autocorrelation in the residuals was evident. Furthermore the normality hypothesis was rejected in 
every city when the Benth model was applied. 

Also, since small misspecifications in the dynamic models lead to large mispricing errors, an approach 
to estimate and calibrate the seasonal component in both the mean and variance using WA was 
presented. WA is an efficient and accurate tool that can be successfully used in the analysis of 
temperature data. WA was successfully applied in order to indentify and quantify all the statistical 
significant cycles in the seasonal mean and variance of DATs. 

The proposed model was evaluated out-of-sample. The predictive power of the proposed model was 
evaluated using two out-of-sample forecasting methods. First, out-of-sample forecasts over a period 
and then 1-day-ahead forecasts over a period were estimated. Modeling the DAT using WA and WNs 
enhanced the fitting and the predictive accuracy of the temperature process. Modeling the DAT 
assuming a time varying speed of mean reversion resulted to a model with better out-of-sample 
predictive accuracy. The additional accuracy of our model has an impact on the accurate pricing of 
temperature derivatives. 

In order to obtain a better understanding of the distributions of the residuals we expanded our analysis 
by fitting additional distributions. Of the four distributions (normal, hyperbolic, NIG, stable) the 
hyperbolic distribution provides a slightly better fit than the normal distribution. However, introducing 



a Lévy process in the temperature dynamics does not allow to find closed form solutions for the 
temperature derivatives. The increased complexity of the pricing formulas of the weather derivatives 
makes the use of the normal distribution more favorable. 

The pricing formulas for the weather derivatives on various temperature indices were presented. 
Assuming a normal distribution the pricing formulas for the following indices were derived: CAT, 
AccHDDs, AccCDDs and the Pacific Rim. The appealing properties of the normal distributions allows 
for derivation of pricing formulas in both futures and options on the above indices. 

Then, based on our results that the hyperbolic distribution provides a better fit to the residuals, a Lévy 
motion noise process was assumed. In this case the pricing formulas for the CAT and Pacific Rims 
futures were presented. We provided a representation of the characteristic function of the temperature 
dynamics under the risk-neutral probability measure which is crucial for finding the density function 
necessary for pricing options and futures on AccHDDs and AccCDDs. 

Finally, the importance of the market price of risk was discussed and an estimation method was 
presented. 
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Figure 1. The (a) daily average temperature, (b), the empirical distribution, (c), the mean, 
(d), the standard deviation, (e), the skewness and, (e), the kurtosis of the DAT in Berlin. 



 
Figure 2. Empirical and normal distribution (solid line) of the first difference of the daily 

average temperature of the seven cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, 
Stockholm 
 
 
 
 



 
Figure 3. Selected parts of the discrete wavelet decomposition in Berlin; approximations 

(aj) and details (dj
 

). The Daubechies 11 at level 11 wavelet was applied 

 



 
 
Figure 4. Structure of a Wavelet Network 
 

 

 
Figure 5. Daily variation of the speed of mean reversion functions ai in Berlin 



 
Figure 6. Frequency distribution of the speed of mean reversion function ai

 
 in Berlin 

 

 
 

Figure 7. Autocorrelation function of the speed of mean reversion functions of the nonlinear 
AR model, ( )ia t , in Berlin 
 



 
Figure 8. Autocorrelation function of the residuals of the wavelet network of the seven 

cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm 
 
 
 
 



 
Figure 9. Autocorrelation function of the squared residuals of the wavelet network of the 

seven cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm 
 
 
 
 
 
 



  

     
Figure 10. Selected parts of the discrete wavelet decomposition of the seasonal variance in 

Berlin; approximations (aj) and details (dj
 

). The Daubechies 8 wavelet at level 8 was used 

 
Figure 11. Empirical and fitted variance in Berlin 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 12. Autocorrelation function of the squared residuals after dividing out the volatility 
function of the seven cities: Amsterdam, Berlin, Madrid, Oslo, Paris, Rome, Stockholm 
 
 
 
 
 
 



 
Table 1. Estimated parameters of the linear trend for the period 1991-2000 

 
a p-value b p-value 

Amsterdam 9.42 0.0000 0.000440 0.0000 

Berlin 9.37 0.0000 0.000349 0.0038 

Madrid 14.62 0.0000 0.000238 0.0335 

Oslo 5.79 0.0000 0.000385 0.0011 

Paris 11.86 0.0000 0.000353 0.0003 

Rome 15.04 0.0000 0.000287 0.0056 

Stockholm 5.91 0.0000 0.000509 0.0000 
The coefficients of the linear trend and the 
corresponding p-values. The parameter a is intercept 
the and b is the slope  

 
 

Table 2. Estimated parameters of the seasonal part using wavelet analysis 

 
Amsterdam Berlin Madrid Oslo Paris Rome Stockholm 

Panel A 

1p  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2p  2.12 2.12 3.93 2.12 2.20 1.96 2.29 

3p  5.50 6.88 9.17 4.58 6.88 4.23 3.93 

4p  4.23 13.75 11.00 6.88 13.75 6.11 4.23 

5p  7.86 - - 7.86 - 13.75 7.86 

6p  13.75 - - 9.17 - - 13.75 

7p  - - - 13.75 - - - 

1ip +  7 8 - 8 7 7 6 

Panel B 

1a  -7.56 -9.79 9.27 9.72 -7.99 -8.89 9.39 

2a  -0.58 -0.27 -0.25 -0.87 -0.37 -0.29 0.97 

3a  4.95 0.56 -0.61 9.26 -0.23 -0.33 -3.00 

4a  -2.44 -0.37 0.67 272.14 0.26 0.16 3.23 

5a  5.85 - - 650.51 - -0.36 1.04 

6a  3.11 - - 480.94 - - 0.32 

.. - - - -101.47 - - - 

1ia +  0.73 0.43 - -0.79 0.52 0.24 -0.95 

1f  -65.11 -73.79 -254.69 103.74 296.15 -1158.35 109.33 

2f  217.60 149.28 484.40 -588.68 111.07 -739.94 -411.27 

3f  -168.97 148.27 - 2508.23 43.38 3001.32 1626.54 

4f  279.21 981.76 - 1629.79 -935.66 951.38 73.52 

5f  370.59  - 184.04 - 1823.78 2938.66 

6f  1855.94 - - 4952.47 -  -2508.79 

7f  - - - 1583.41 - -  

1if +  - - - 1381.93 2647.40 -923.93 1359.63 

In Panel A the length of each cycle in years is presented. In Panel B the estimated 
parameters of the seasonal mean are reported. Only the statistical significant parameters 
with p-value<0.05 are presented. 

 
 



 
 
 
 

Table 3. Variable selection with backward elimination in Berlin 
Step 

 
Variable to 

remove (lag) 
Variable to 
enter (lag) 

Variables 
in model 

Hidden Units 
(Parameters) 

n/p 
ratio 

Empirical 
Loss 

Prediction 
Risk 

2R  

 - - 7 5 (83) 43.9 1.5928 3.2004 63.98% 

1 6X  - 6 2 (33) 110.4 1.5922 3.1812 64.40% 

2 7X  - 5 1 (17) 214.3 1.5927 3.1902 64.59% 

3 
5X  - 4 1 (14) 260.2 1.6004 3.2056 64.61% 

4 4X  - 3 1 (11) 331.2 1.5969 3.1914 64.61% 
The algorithm concluded in 4 steps. In each step the following are presented: which variable is removed, the number 
of hidden units for the particular set of input variables and the parameters used in the wavelet network, the empirical 
loss and the prediction risk  

 
Table 4. Model Selection and fitness criteria of the wavelet network for the seven cities 

 
Amsterdam Berlin Madrid Oslo Paris Rome Stockholm 

Lags k 4 3 6 2 3 7 3 

HU 1 1 1 1 1 1 1 

n/p ratio 260 332 182 456 332 158 332 

MAE 1.3797 1.8090 1.3947 1.6717 1.5868 1.1709 1.5705 

Max AE 8.3484 11.0931 8.3846 11.3632 8.2646 7.1735 9.1467 

NMSE 0.3193 0.3523 0.2883 0.4202 0.3601 0.3702 0.3787 

MSE 3.1829 5.4196 3.1842 4.7831 3.9800 2.4210 4.1678 

MAPE 3.0692 3.7154 3.3918 2.9820 2.1585 2.0666 5.9942 

POCID 61.62% 60.15% 60.86% 60.84% 59.90% 60.24% 60.12% 

IPOCID 56.05% 52.30% 54.54% 47.87% 52.85% 51.13% 51.89% 

POS 81.73% 81.49% 82.38% 78.18% 80.39% 80.87% 80.15% 
2

R  67.95% 64.61% 71.02% 57.9% 63.88% 62.75% 61.94% 
The number of hidden units and lags used in each city to model the daily average 
temperature are presented. The fitting criteria using the wavelet network in each city are 
also presented.  
HU=Hidden Units 
MAE=Mean Absolute Error 
 Max AE= Maximum Absolute Error 
NMSE=Normalized Mean Square Error 
MSE= Mean Square Error 
MAPE=Mean Absolute Percentage Error 
POCID=Position of Change in Direction 
IPOCID= Independent Position of Change In Direction 
POS=Position of Sign 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 5. Descriptive statistics of the mean reverting functions 
Amsterdam Mean St.Dev Max Median Min Skewness Kurtosis KS p-value LBQ p-value 

4 ( )a t  0.00 0.005 0.01 0.00 -0.01 0.08 2.31 29.90 0.0000 4150.98 0.0000 

3 ( )a t  0.14 0.004 0.15 0.14 0.13 0.13 2.07 33.26 0.0000 4264.02 0.0000 

2 ( )a t  -0.31 0.004 -0.30 -0.31 -0.32 0.14 2.06 37.35 0.0000 4327.80 0.0000 

1( )a t  0.99 0.005 1.00 0.99 0.98 0.08 2.32 50.46 0.0000 4289.41 0.0000 

Berlin            
3 ( )a t  0.05 0.010 0.07 0.05 0.03 0.19 2.21 30.91 0.0000 3979.24 0.0000 

2 ( )a t  -0.15 0.010 -0.13 -0.15 -0.17 0.27 2.00 33.42 0.0000 4180.54 0.0000 

1( )a t  0.90 0.010 0.92 0.90 0.88 0.22 2.160 48.90 0.0000 4099.78 0.0000 

Madrid            
6 ( )a t  0.05 0.004 0.08 0.05 0.02 0.07 10.80 31.09 0.0000 1041.98 0.0000 

5 ( )a t  -0.01 0.003 0.01 -0.01 -0.03 -0.69 12.30 30.07 0.0000 346.56 0.0000 

4 ( )a t  0.01 0.003 0.02 0.01 -0.01 -0.35 10.39 30.03 0.0000 392.80 0.0000 

3 ( )a t  0.05 0.003 0.07 0.05 0.02 -0.07 15.99 31.03 0.0000 479.11 0.0000 

2 ( )a t  -0.25 0.003 -0.23 -0.25 -0.27 0.73 13.19 35.60 0.0000 362.57 0.0000 

1( )a t  0.99 0.003 1.01 0.99 0.96 -0.82 11.95 50.26 0.0000 524.43 0.0000 

Oslo            
2 ( )a t  -0.04 0.010 -0.02 -0.05 -0.08 0.53 2.95 30.66 0.0000 1068.88 0.0000 

1( )a t  0.79 0.010 0.81 0.79 0.76 0.52 2.87 46.87 0.0000 1031.85 0.0000 

Paris            
3 ( )a t  0.07 0.020 0.12 0.07 0.03 0.45 2.72 30.91 0.0000 2966.06 0.0000 

2 ( )a t  -0.19 0.020 -0.14 -0.20 -0.23 0.67 2.66 33.65 0.0000 3279.65 0.0000 

1( )a t  0.91 0.020 0.97 0.91 0.88 0.48 2.64 48.91 0.0000 3074.21 0.0000 

Rome            
7 ( )a t  0.04 0.002 0.09 0.04 0.00 0.56 139.43 30.59 0.0000 188.80 0.0000 

6 ( )a t  -0.02 0.003 0.02 -0.02 -0.10 -6.35 335.22 30.08 0.0000 33.65 0.0286 

5 ( )a t  0.03 0.002 0.06 0.03 -0.01 -1.60 79.05 30.43 0.0000 29.45 0.0793 

4 ( )a t  -0.04 0.002 -0.01 -0.04 -0.09 0.33 91.04 30.76 0.0000 13.82 0.8393 

3 ( )a t  0.05 0.003 0.09 0.05 -0.03 -7.00 256.78 30.80 0.0000 24.21 0.2333 

2 ( )a t  -0.14 0.003 -0.09 -0.14 -0.19 2.62 140.34 33.04 0.0000 20.23 0.4439 

1( )a t  0.88 0.002 0.91 0.88 0.85 -1.99 70.74 48.49 0.0000 21.10 0.3915 

Stockholm            
3 ( )a t  0.06 0.003 0.07 0.06 0.05 -0.38 2.43 31.52 0.0000 3696.99 0.0000 

2 ( )a t  -0.17 0.003 -0.16 -0.17 -0.18 -0.47 2.26 34.13 0.0000 3785.76 0.0000 

1( )a t  0.88 0.003 0.89 0.88 0.87 -0.39 2.39 48.83 0.0000 3752.39 0.0000 

St.Dev=Standard Deviation 
K-S= Kolmogorov-Smirnov goodness-of-fit 
LBQ = Ljung-Box Q-statistic lack-of-fit 
 
 
 
 
 



 
 
 
 
 

Table 6. Estimated parameters of the seasonal variance using wavelet analysis 

 
Amsterdam Berlin Madrid Oslo Paris Rome Stockholm 

Panel A 

1p′  1 1 1 1 1 1 1 

2p′  2 2 - 2 1.5 2 2 

3p′  5 3 - - - - 4 

Panel B 

c 3.18 0 5.42 3.18 4.78 4.44 2.41 4.16 

c 0.34 1 0.94 0.38 0.68 1.07 0.25 0.85 

c -0.42 2 -0.53 - - -1.28 -0.32 -0.40 

c - 3 - - - - - 0.43 

d 0.69 1 - -0.46 2.51 -0.73 - 1.10 

d 0.72 2 1.13 
 

1.27 - 1.02 0.75 

d -0.31 3 0.47 - - - - - 
In Panel A the length of each cycle in years is presented. In Panel B the estimated parameters of 
the seasonal mean are reported. Only the statistical significant parameters with p-value<0.05 are 
presented. 

 
Table 7. Descriptive statistics of the residuals of the proposed model after dividing out the 

seasonal variance 
City Mean St.Dev Max Median Min Skewness Kurtosis K-S p-value LBQ p-value 

Amsterdam 0.00 1.00 3.80 -0.04 -4.16 0.13 3.50 1.49 0.0237 23.068 0.2855 

Berlin 0.00 1.00 4.45 0.00 -4.02 -0.02 3.53 0.96 0.3086 29.616 0.0763 

Madrid 0.01 1.00 4.40 0.08 -4.37 -0.34 3.64 2.41 0.0010 27.937 0.1109 

Oslo 0.00 1.00 3.95 0.02 -4.37 -0.08 3.67 1.06 0.2125 29.681 0.0750 

Paris 0.00 1.00 2.89 0.02 -4.23 -0.17 3.01 0.90 0.3960 21.192 0.3859 

Rome 0.01 1.00 3.94 0.02 -4.21 -0.10 3.90 1.80 0.0030 23.802 0.2512 

Stockholm -0.01 1.00 3.74 0.03 -4.49 -0.16 3.64 1.21 0.1084 28.340 0.1016 
St.Dev=Standard Deviation 
K-S= Kolmogorov-Smirnov goodness-of-fit 
LBQ = Ljung-Box Q-statistic lack-of-fit 
 
 

Table 8. Hurst exponent of the residuals after removing all seasonal components 
 Amsterdam Berlin Madrid Oslo Paris Rome Stockholm 
Hurst 0.4874 0.5078 0.4951 0.5201 0.4928 0.5138 0.5069 

 
 
 
 
 
 
 
 
 
 



Table 9. Estimated parameters using the Alaton model for the seven cities 
City κ A B C φ 

2
R  

Amsterdam 0.194 9.66 0.000312 7.251 -1.923 71.58 

Berlin 0.216 9.59 0.000226 9.658 -1.825 74.79 

Madrid 0.178 15.06 - 9.264 -1.898 79.37 

Oslo 0.251 6.06 0.000239 9.966 -1.865 80.30 

Paris 0.226 12.08 0.000233 7.766 -1.880 72.91 

Rome 0.231 15.41 0.000087 8.788 -2.030 85.28 

Stockholm 0.220 6.26 0.000319 9.663 -1.966 79.54 
The parameters using the Alton mode. κ is the speed of mean reversion, A is the 
intercept and B is the slope of the linear trend, C is the amplitude of the seasonal 
component and φ is the angle referring to the day of the maximum temperature. 
Only the statistical significant parameters with p-value<0.05 are presented. 
 

Table 10. Descriptive statistics of the residuals of the Alaton model 
City Mean St.Dev Max Median Min Skewness Kurtosis K-S p-value LBQ p-value 

Amsterdam 0.00 0.99 3.42 -0.04 -4.05 0.16 3.40 1.89 0.0015 193.43 0.0000 

Berlin 0.00 0.99 4.40 -0.02 -3.85 0.01 3.43 0.99 0.2799 87.82 0.0000 

Madrid 0.00 1.00 3.91 0.08 -4.46 -0.31 3.44 2.17 0.0002 188.45 0.0000 

Oslo 0.00 0.99 3.51 0.03 -4.84 -0.07 3.51 1.20 0.1126 60.96 0.0000 

Paris 0.00 0.99 3.03 0.00 -3.61 -0.13 2.95 0.75 0.6156 100.63 0.0000 

Rome 0.01 0.99 3.92 0.01 -4.20 -0.07 3.85 2.07 0.0004 99.13 0.0000 

Stockholm 0.00 0.99 3.64 0.02 -4.32 -0.12 3.50 1.13 0.1567 100.15 0.0000 
St.Dev=Standard Deviation 
K-S= Kolmogorov-Smirnov goodness-of-fit 
LBQ = Ljung-Box Q-statistic lack-of-fit 
 

Table 11. Estimated parameters of the Benth model for the seven cities 
Parameter Amsterdam Berlin Madrid Oslo Paris Rome Stockholm 

a 9.66 9.59 15.06 6.06 12.08 15.41 6.26 

b 0.000312 0.000226 - 0.000239 0.000233 0.000087 0.000319 

κ 0.194 0.216 0.178 0.253 0.226 0.231 0.220 

b -7.246 1 -9.654 -9.256 -9.961 -7.762 -8.777 -9.655 

g 20.365 1 14.676 18.830 16.989 17.870 26.551 22.820 

c 4.983 0 8.490 4.765 8.020 6.432 3.916 6.658 

c 0.581 1 1.461 0.416 1.158 0.680 0.384 1.358 

c -0.675 2 -0.963 -0.237 -0.292 -0.233 -0.529 -0.618 

c 0.230 3 0.288 -0.297 0.872 -0.356 -0.064 0.664 

c 0.360 4 0.071 0.285 0.041 0.303 -0.271 0.739 

d 1.078 1 -0.011 -0.913 4.292 0.056 1.652 1.803 

d 1.164 2 1.777 0.231 2.160 0.851 0.316 1.258 

d 0.235 3 0.726 0.245 0.912 0.011 0.125 0.507 

d -0.330 4 -0.251 0.410 0.062 -0.073 0.271 -0.321 
The parameters using the Benth model. κ is the speed of mean reversion, a is the intercept and b is the slope 
of the linear trend.  b1 and g1 is the amplitude and the angle of the seasonal mean. c1 and d1 

 

 are the 
parameters of the seasonal variance. Only the statistical significant parameters with p-value<0.05 are 
presented. 

 
 
 



Table 12. Descriptive statistics of the residuals of the Benth model for the seven cities 
City Mean St.Dev Max Median Min Skewness Kurtosis K-S p-value LBQ p-value 

Amsterdam 0.00 0.82 2.86 -0.03 -3.18 0.15 3.42 3.82 0.0000 197.39 0.0000 

Berlin 0.00 0.81 3.60 -0.01 -3.25 0.00 3.49 3.91 0.0000 82.29 0.0000 

Madrid 0.00 0.84 3.23 0.07 -3.45 -0.31 3.48 3.76 0.0000 181.94 0.0000 

Oslo 0.00 0.78 2.91 0.02 -3.89 -0.06 3.58 4.60 0.0000 40.21 0.0047 

Paris 0.00 0.80 2.53 0.00 -3.10 -0.15 2.99 3.57 0.0000 98.97 0.0000 

Rome 0.01 0.79 3.31 0.00 -3.44 -0.08 3.90 4.89 0.0000 83.79 0.0000 

Stockholm 0.00 0.80 2.90 0.02 -3.39 -0.14 3.58 4.11 0.0000 88.77 0.0000 
St.Dev=Standard Deviation 
K-S= Kolmogorov-Smirnov goodness-of-fit 
LBQ = Ljung-Box Q-statistic lack-of-fit 

 
 
 
 

Table 13. Distributional tests 

 
Amsterdam Berlin Madrid Oslo Paris Rome Stockholm 

 
A-D K-S A-D K-S A-D K-S A-D K-S A-D K-S A-D K-S A-D K-S 

Normal 3.96 1.49 1.39 0.96 8.68 2.41 1.96 1.06 1.26 0.90 7.40 1.80 2.82 1.21 

Hyperbolic 0.47 0.53 0.17 0.48 0.48 0.58 0.29 0.54 0.44 0.80 0.20 0.50 0.34 0.57 

NIG 0.52 0.55 0.17 0.48 0.53 0.61 0.29 0.54 inf 0.80 0.22 0.52 0.34 0.59 

Stable 1.04 0.61 0.31 0.62 8.88 2.57 0.98 0.83 0.65 0.61 0.84 0.69 1.15 0.83 
Kolmogorov distances (K-S) and the Anderson-Darling (A-D) statistics, performed to test if the residuals come from the 
specified distribution. The Normal, Hyperbolic, Normal Inverse Gaussian (NIG) and Stable distributions are tested. The 
critical value of the Kolmogorov distribution is 1.36 at confidence level of 5% and 1.63 at 1%. For the A-D statistic critical 
values are not available for the Hyperbolic, NIG and Stable distributions. 

 
 

 

Table 14. Out-of sample performance of the proposed, the Alaton and Benth models 
 1-day-ahead Out-of-sample Total 
Proposed 44 (66%) 35 (50%) 81 (58%) 
Alaton 14 (20%) 21 (30%) 35 (25%) 
Benth 10 (14%) 14 (20%) 24 (17%) 
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