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Abstract.  There is tremendous interest among financial analysts, researchers, policy makers 
and the general public regarding the impact of the recent United States subprime crisis on the 
global financial markets ensued by a prolonged and deep global recession.  In this paper, we are 
investigating the impact of the crisis on the stock markets of selected European markets within the 
framework of Capital Asset Pricing Model. The behavior and performance of the CAPM during 
the pre-crisis, crisis, and two post-crisis periods provides a convenient and powerful framework for 
an empirical assessment of the impact of the crisis on the European stock markets. Given the 
mixed results regarding the inference about the CAPM and betas, and the multi-scale nature of the 
systematic risk, in this paper, we have employed a recent and powerful method to estimate the 
systematic risk of CAPM using wavelet analysis to examine the meteor shower effects of the 
global financial crisis on selected European stock markets. Our results support the CAPM at 
medium scales, however, the behavior of beta is different for the two groups. Finally, the VaR  was 
estimated at different time-scales for the four time-periods. Our results indicate that for all periods 
the risk is concentrated at higher frequencies (lower scales) of the data. Moreover, the VaR  was 
increased for all countries during the crisis and the two post-crisis periods however the difference 
between the two groups is evident.  
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1. Introduction 
 
There is tremendous interest among financial analysts, researchers, policy makers and 
the general public regarding the impact of the recent United States subprime crisis on 
the global financial markets ensued by a prolonged and deep global recession.  The 
global financial crisis in 2008-2009 triggered by the subprime crisis led to a 
progressive deterioration of the investment situation and financial climate around the 
globe, in general, and European economies in particular. 

Although the major financial US institutions, such as New Century Financial, US 
holding of HSBC, and the world’s top five investment banks suffered huge losses in 
the subprime mortgage and collateralized debt obligation (CDO) transactions by 
summer 2007, the world financial system observed a period of relative calm with 
some optimism regarding the outcome of the ongoing crisis until the eight months of 
2008.  The subprime mortgage crisis eventually erupted when first, major US 
financial firms, such as Lehman Brothers and AIG and then European financial 
institutions, such as Northern Rock, Fortis, Dexia, and a number of Icelandic banks 
showed signs of insolvency.1  The crisis exposed the inherent vulnerabilities, systemic 
risks and a catalogue of regulatory failures in the global financial services industries.  
The crisis then expanded in magnitude, and a full-scale turmoil ensued in financial 
markets, buffeting many developed and emerging economies.  The meltdown of the 
subprime crisis of 2007 exerted a meteor showers effect across the world’s stock 
market by the fourth quarter of the 2008.  In the last quarter of 2008, the stock 
markets of both developed and emerging economies experienced large decline in 
prices of securities. 

In this paper, we are investigating the impact of the crisis on the stock markets of 
selected European markets, such as France, Germany, Greece, Italy, Netherlands, 
Portugal, Spain and the United Kingdom within the framework of Capital Asset 
Pricing Model (CAPM). The stock exchanges of these countries represent major 
exchanges within the European Union (EU) in terms of both market capitalisation and 
trading volume.  The behavior and performance of the CAPM during the pre-crisis, 
crisis, and two post-crisis periods provides a convenient and powerful framework for 
an empirical assessment of the impact of the crisis on the European stock markets. 

Since the seminal contribution made by Sharpe (1964) and Lintner (1965), the 
notion and significance of the CAPM has spawned considerable research at both 
theoretical and empirical levels that span almost six decades.  According to CAPM, in 
a perfect capital market, the excess return of a stock or a portfolio of stocks (return 
over the riskless rate of return) should move in proportion to the market premium 
(market return over the riskless rate of return).  The proportionality factor known as 
‘beta’ ( β ) captures the ‘systematic risk’ of the market.  Although early research 
during the 1970s is supportive to the theoretical prediction of the CAPM, later studies 
during the 1980s and 1990s yield mixed results.  Empirical research aimed at testing 
the validity of the CAPM progressed and expanded through several distinct strands.  
Gençay et al. (2005) succinctly summarized those issues as: the stability of beta over 
time, borrowing constraints, the impact of structural change and regime switches, the 
effect of world markets and volatility, non-synchronous data issues, time horizons of 
investors and the impact of return interval. 

Previous studies suggest that empirical validity of CAPM appears to depend on 
the return interval chosen albeit with mixed results.  For example, studies of Kothari 

                                                 
1 The mortgage financial crisis usually starts from the August 1, 2007 and ends until July 31, 2009. 



et al. (1995), and Handa et al. (1993) show that sβ  from annual returns produce 
stronger relation between beta and average return than sβ  from monthly return.  
Frankfurter et al. (1994) contend that the mean and variance of β  increases from 
daily returns to yearly returns.  A study by Brailsford & Faff (1997) suggests that 
CAPM is rejected when daily returns data is used, while CAPM is accepted when 
weekly returns data is used.  In contrast, Fama & French (1996) show that annual and 
monthly βs produce the same inference about β premium.2 

Given the mixed results regarding the inference about the CAPM and βs, and the 
multi-scale nature of the systematic risk, in this paper, we have employed a recent and 
powerful method to estimate the systematic risk of CAPM using wavelet analysis 
(WA) to examine the meteor shower effects of the global financial crisis on selected 
European stock markets.  WA provides a powerful and appropriate platform to 
investigate the multi-scale behaviour of beta at different time horizons in frequency 
domain framework. 

Our analysis is also motivated by Fernandez (2006), Gencay et al. (2005), Masih 
et al. (2010), and Norsworthy et al. (2000), among others, who advocate the 
incorporation of different time scales using a framework of the WA in the empirical 
reassessment of CAPM.  As Masih et al. (2010) contend, the security market consists 
of thousands of traders and investors with different time horizons and strategies in 
their mind regarding the investment decision.  Owing to different decision-making 
time horizons and strategies, among investors, the true dynamics of the relationship 
between stock returns and risk factors is likely to vary depending on the time horizon 
of the investors.  In addition, even if investors agree on a well-diversified portfolio to 
be the proxy of market portfolio, their perception and measurement of the portfolio 
risk will not be the same.  In this circumstance, financial analysts need to examine the 
behaviour of systematic risk using a framework of different time scales or horizons in 
decision making process.  Furthermore, Fernandez (2006) recommends the use of 
wavelet method as a suitable alternative to GARCH and GARCH-in-mean models to 
study the time-varying beta and time-varying risk premium.  The wavelet approach 
provides a robust result under the conditions of structural break, discontinuity, non-
normality and time-varying volatility. 

The rest of the paper is organised as follows.  Section 2 presents the model with a 
discussion of the methodology. In  Section 3 the dataset is described. A quick 
introduction of wavelet analysis is provided in Section 4. In Section 5 the computation 
of the wavelet variance and covariance is presented. The estimation of the Value-at-
Risk at different time-scales are presented in Section 6. Finally, in Section 7 we 
conclude. 

 
2. Estimation of the Capital Asset Pricing Model 
 
The choice of optimal portfolio in investment decision emanates from the 
consumption-saving-investment decision of representative investor.  The choice of the 
optimal portfolio is a function of both the risk-return possibility curve that is available 
in the market and the investor's utility function.  The OHR is obtained by setting the 

                                                 
2 Several explanations are offered for the interval bias of systematic risk, such as infrequent trading, 
delays in information processing, increase of standard error of the beta as the return interval is 
lengthened, disproportionate move of covariance relative to the variance estimate in the measurement 
of beta, and seasonality.  Masih et al. (2010) furnished a good discussion on the issue. 



investor's subjective marginal rate of substitution (MRS) between risk and return 
equal to the slope of the risk-return possibility curve. 

Both life-cycle and permanent income hypotheses utilize and inter-temporal 
optimization framework where our finitely-lived representative household is faced 
with the following problem of maximization3: 
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where tE  denotes mathematical expectations, conditional on all information available 
at t; δ signifies rate of subjective time preference; ( )u ⋅  implies single-period utility 
function; variables c, w, r and y denote constant-price consumer expenditure, real 
value of non-human wealth, real rate of interest, and real labor income, respectively.4 

Solving the first-order condition for a constrained optimization problem from the 
corresponding lagrangean function, and after certain manipulation, we may derive the 
following stochastic Euler equation (see Gausden & Whitfield (2000)): 

 
 ( ) ( )( ) ( )1 1 1t t t tE u c r E u cδ+′ ′+ +   (3) 
 
Equation (3) asserts that optimal consumption decision requires marginal utilities of 
adjacent periods to be proportional to one another.  Assuming that consumer can 
allocate his wealth among n-1 risky assets with an ,i tr  rate of return and a riskless 
asset with a rate of return ,f tr , the resulting first order condition may be rewritten as: 
 
 ( ) ( )1 , , 1 ,, 0t i t f t t i tE u c E r r Cov u c r+ +′ ′   − + =        (4) 
 
at equilibrium, the return from asset i must satisfy the following equation 
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If we further assume that the return of a benchmark market portfolio (proixed by 

market index) is inversely related with the marginal utility of consumption in the next 
period, so that: 
 
 ( )1 ,t m tu c rγ+′ = −   (6) 
 
for some positive γ. 
                                                 
3 This part draws extensively from Gencay et al (2005) and Gausden and Winfield (2000). 
4 In the model specification, variables are expressed in real terms as we assume that consumer does not 
suffer from money illusion. 



It follows that ( )1 , , ,, ,t i t i t m tCov u c r Cov r rγ+′   =     and allows us to rewrite 
equation (5) after certain manipulation as5: 
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σ
       = + −       (7) 

  
Equation (7) in estimable form yields the widely presented testing equation for the 
Capital Asset Pricing Model: 
 
 ( ), , , , ,i t f t m t f t i tr r r rβ ε− = − +   (8) 
 

From equation (8) the variance of the return on asset i  is estimated by: 
  
 2 2 2 2

i i m εσ β σ σ= +  (9) 
 
3. Data description 
 
In this section we will focus on estimating the CAPM at different time-scales. We are 
investigating the impact of the crisis on the stock markets of eight European markets. 
The selected markets are distinguished in two groups. The first group consists of four 
countries that at the moment they face a lot of uncertainty and they are under a rescue 
program and under the supervision of the International Monetary Fund (IMF) and/or 
the European Central Bank (ECB). These countries are: Portugal, Italy, Greece and 
Spain. On the other hand, the second group consists of four countries where 
traditionally their economies are considered strong and stable. These countries are: 
Germany, Netherlands, UK and France. The selected countries represent major 
exchanges within the EU in terms of both market capitalisation and trading volume. 

Our data set includes the daily values of the main stock index in each country 
from 01/06/2005 to 10/09/2012 as well as the daily stock prices of the stocks that 
constitute each index. The eight indices are the following: AEX25 from Netherlands, 
FTSE/ATHEX 20 from Greece, CAC 40 from France, DAX 30 from Germany, FTSE 
100 from UK, IBEX 35 from Spain, MIB 40 from Italy and PSI 20 from Portugal. 

In our analysis, only the stocks that survive for the whole sample period are 
analyzed. Hence, this results to 23 stocks from Netherlands, 19 from Greece, 37 from 
France, 87 from UK, 26 from Germany, 32 from Italy and 15 from Portugal. 

As it is already mentioned, in this study we estimate the beta of a risky asset at 
different time-frequencies. Moreover, in this study we repeat our analysis in different 
time-periods in order to obtain an estimate of the impact of the crisis in the systematic 
risk in these markets.  

More precisely, our data set is split in different 4 periods. The first data set 
corresponds to the pre-crisis period and includes daily stock values from 01/06/2005-
31/07/2007. The second data set represents the crisis period and it is the dataset 
ranges from 01/08/2007-30/09/2009. The third data set represent the post-crisis period 
in USA and the beginning of the crisis in Europe, 01/10/2009-30/11/2011. Finally, 
there is fourth data set from 01/12/2011-10/09/2012 that represents the current 
situation in Europe. Finally, our analysis is repeated in the whole time period, from 
                                                 
5 For a detailed derivation, see Gencay et al. (2005). 



01/06/2005-10/09/2012, in order to have a complete evaluations and empirical 
assessment of the impact of the crisis on the European stock markets 

Daily return series for each stock as well as the market index were collected from 
each stock market. This results to 564 values for the first sample, 566 for the second, 
565 for the third, 203 for the fourth resulting to 1898 values. The daily stock returns 

,i tr  are calculated using the log-returns formula: 
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where ,i tS  is the price of the stock i  at day t . Similar the return of the market index is 
estimated by: 
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where ,m tS  is the value of the index at day t . 
 
4. Wavelet Analysis 

 
The attempt to understand complicated time-series by breaking them into basic pieces 
that are easier to understand is one of the central themes in Fourier analysis. In the 
framework of Fourier series, complicated periodic functions are written as the sum of 
simple waves mathematically represented by sines and cosines. More precisely, 
Fourier Transform (FT) breaks down a signal into a linear combination of constituent 
sinusoids of different frequencies; hence the FT is decomposition on a frequency by 
frequency basis. 

Fourier analysis performs excellent in the analysis of periodic signals. However, 
in transforming to the frequency domain, time information is lost. When looking at a 
FT of a signal, it is impossible to tell when a particular event took place. This is a 
serious drawback if the signal properties change a lot over time, i.e., if they contain 
nonstationary or transitory characteristics: drift, trends, abrupt changes, or beginnings 
and ends of events. These characteristics are often the most important part of a time-
series, and FT is not suited to detecting them, Zapranis & Alexandridis (2006). 

Trying to overcome the problems from the classical FT, Gabor applied the FT in 
small time “windows”, Mallat (1999). Window Fourier Transform (WFT) or Short-
Time Fourier Transform (STFT) is an extension of the FT where a symmetric window 
is used to localize signals in time. The STFT represents a sort of compromise between 
the time- and frequency-based views of a signal.  

Fourier analysis is inefficient in dealing with local behavior of signals. On the 
other hand Windowed Fourier Analysis is an inaccurate and inefficient tool for 
analyzing regular time behavior that is either very rapid or very slow relatively to the 
size of the window, Kaiser (1994).  

In Grossmann & Morlet (1984) instead of the constant window used in WFT, 
waveforms of shorter duration at higher frequencies and waveforms of longer 
duration at lower frequencies were used as windows. This method is called WA. WA 
is an extension of the FT. The fundamental idea behind wavelets is to analyze 

http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Cosine


according to scale. Low scale represents high frequency while high scales represent 
low frequency. The wavelet transform (WT) not only is localized in both time and 
frequency but also overcomes the fixed time-frequency partitioning. This means that 
the WT has good frequency resolution for low-frequency events and good time 
resolution for high-frequency events. Hence, the WT can be used to analyze time 
series that contain nonstationary dynamics at many different frequencies, Daubechies 
(1992). 

WA has proved to be a valuable tool for analyzing a wide range of time-series and 
has already been used with success in time-series analysis, image processing, signal 
de-noising, density estimation, signal and image compression and time-scale 
decomposition. Wavelet techniques are being used in finance, for detecting the 
properties of quick variation of values.WA is often regarded as a “microscope” in 
mathematics, Cao et al. (1995), and it is a powerful tool for representing 
nonlinearities, Fang & Chow (2006). 

The daily return time-series are represented by local information such as 
frequency, duration, intensity and time-position and by global information such as the 
mean states over different time periods. Both global and local information is needed 
for a correct analysis of the daily return time-series.  
 In addition, wavelets have the ability to decompose a signal or a time-series in 
different levels. As a result, this decomposition brings out the structure of the 
underlying signal as well as trends, periodicities, singularities or jumps that cannot be 
observed originally.  

WA decomposes a general function or signal into a series of (orthogonal) basis 
functions, called wavelets, with different frequency and time locations. More 
precisely, WA decomposes time-series and images into component waves of varying 
durations, called wavelets. These wavelets are localized variations of a signal, Walker 
(2008). As illustrated in Donoho & Johnstone (1994) the wavelet approach is very 
flexible in handling very irregular data series. Ramsey (1999) also comments that WA 
has the ability to represent highly complex structures without knowing the underlying 
functional form, which is of great benefit in economic and financial research. A 
particular feature of the analyzed signal can be identified with the positions of the 
wavelets into which it is decomposed. Recently an increasing number of studies apply 
WA in order to analyze  financial time series, Alexandridis & Zapranis (2012), 
Fernandez (2006), Fernandez (2005), Gençay et al. (2003), (2005), He et al. (2012), 
In & Kim (2006a), In & Kim (2006b), (2007), Kim & In (2005), (2007), Maharaj et 
al. (2011), Masih et al. (2010), Norsworthy et al. (2000), Rabeh & Mohamed (2011), 
Ramsey (1999), Rua & Nunes (2012), Yousefi et al. (2005), Zapranis & Alexandridis 
(2008), (2009), (2011). 

A wavelet ψ  is a waveform of effectively limited duration that has an average 
value of zero. The WA procedure adopts a particular wavelet function, called a 
mother wavelet. A wavelet family is a set of orthogonal basis functions generated by 
dilation and translation of a compactly supported scaling function, φ (or father 
wavelet), and a wavelet function, ψ  (or mother wavelet).  

The father wavelets ϕ  and mother wavelets ψ  satisfy: 
 
 ( ) 1t dtϕ =∫  (12) 
 
 ( ) 0t dtψ =∫  (13) 



 
 
The wavelet family consists of wavelet children which are dilated and translated 

forms of a mother wavelet: 
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a b
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aa
ψ ψ − =  

 
 (14) 

 
where, a  is the scale or dilation parameter and b  is the shift or translation parameter. 

The value of the scale parameter determines the level of stretch or compression of 
the wavelet. The term 1 a  normalizes ( ), 1a b tψ = . In most cases, we will limit our 
choice of a  and b  values by using a discrete set, because calculating wavelet 
coefficients at every possible scale is computationally intensive. Temporal analysis is 
performed with a contracted high-frequency version of the mother wavelet, while 
frequency analysis is performed with a dilated, low-frequency version of the same 
mother wavelet. In other words, while Fourier analysis consists of breaking up a 
signal into sine waves of various frequencies, WA is the breaking up of a signal into 
shifted and scaled versions of the original (or mother) wavelet, Misiti et al. (2009). 

 
4.1. Maximal Overlap Discrete Wavelet Transform 
 
In this study we use the Maximal Overlap Discrete Wavelet Transform (MODWT). 
The MODWT is an extension of the classical discrete wavelet transform (DWT) that 
has many desirable properties, Gençay et al. (2002), Percival & Walden (2000), In & 
Kim (2007). First, the MODWT can handle any sample size of the data. Second, the 
MODWT does not suffer from sensitivity to the choice of a starting point for a time 
series. More precisely, in MODWT both wavelet and scaling coefficients are invariant 
to circularly shifting the original time series. Third, the detains and smooth 
coefficients of a MODWT MRA are associated with zero phase filters. Hence, it is 
possible to align features in the MRA with the original time-series. Finally, the 
wavelet variance estimator is asymptotically more efficient that the same estimator 
based on the DWT. However, on the other hand the MODWT is more computational 
expensive than the classical DWT. 

So far, the MODWT was successfully applied in many studies in finance. In In & 
Kim (2006a) and In & Kim (2006b) the MODWT was applied in the estimation of the 
hedge ratio while it was used in the estimation of the International CAPM in In & 
Kim (2007). The estimation of the systematic risk was studied in Gençay et al. 
(2002), Gençay et al. (2005), Masih et al. (2010) and Rabeh & Mohamed (2011). In 
Maharaj et al. (2011) a comparison is made of developed and emerging equity market 
return volatility at different time scales. In Kim & In (2007) the relationship between 
changes in stock prices and bond yields in the G7 countries was studied. Finally, in 
Kim & In (2005) the relationship between stock returns and inflation is examined 
using the MODWT. 

In this study the LA8 (Least Asymmetric of length 8) wavelet transform filter is 
used. Our analysis is performed in 5 levels of the decomposition and the reflection 
method was used for the boundary conditions.  

A time-series ( )f t  can be written as a linear combination of wavelet functions as 
follows: 
 



 , , , , 1, 1, 1, 1,( ) ( ) ( ) ( ) ( )J k J k J k J k J k J k k k
k k k k

f t s t d t d t d tϕ ψ ψ ψ− −≈ + + + ⋅⋅⋅+∑ ∑ ∑ ∑  (15) 

 
where J  is the number of scales and k  indicates the thk  coefficient.  Following the 
notations from Fernandez (2006) the wavelet transform coefficients ,J ks , ,J kd ,…, 1,kd  
can be approximated by the following integrals: 
 
 ( ) ( ), , ,   1, 2,...,J k J ks t f t dt j Jϕ≈ =∫  (16) 
 
 ( ) ( ), , ,   1, 2,...,J k J kd t f t dt j Jψ≈ =∫  (17) 
 
The functions ,j kϕ  and ,j kψ  are the approximating wavelet functions and are given 
by: 
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By setting  
 
 , ,( ) ( ) ( )J J k J k

k
S t s t tϕ=∑  (20) 

 
 , ,( ) ( ) ( )J J k J k

k
D t d t tψ=∑  (21) 

 
the original time-series can be reconstructed: 
 
 1 1( ) ( ) ( ) ( ) ( )J J Jf t S t D t D t D t−≈ + + + ⋅⋅⋅+  (22) 
 

This reconstruction is known as Multi-resolution analysis (MRA). MRA is 
applied in order to reconstruct the original time-series from the wavelet and scaling 
coefficients. The elements of JS  are related to the scaling coefficients at the maximal 
scale and therefore represent the smooth components of ( )f t . The elements of jD  are 
the detail (or rough) coefficients of ( )f t  at scale j . 
 
5. Computation of Wavelet Variance and Covariance 
 

In order to estimate the wavelet-variance, the variance must be split it in various 
parts, each one representing the variance at each scale. This wavelet-variance analysis 
shows us which scales are contributing significantly to the overall variability of the 
time-series, Percival & Walden (2000). Suppose a stationary process X , then the 
variance 2

Xσ  is given by: 
 



 ( )2 2

1
X x j

j
σ υ τ

∞

=

=∑  (23) 

 
where ( )2

x jυ τ  is the wavelet variance for scale jτ . As it is mentioned in Fernandez 
(2006) and Masih et al. (2010), equation (23) is analogous to the relationship between 
the variance of a stationary process and its spectral density function. 
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Following Gençay et al. (2002), an unbiased estimator of the wavelet variance is 

given by:  
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where 2

,j td  is the MODWT wavelet coefficients at scale jτ , n  is the sample size,
 ( )( )2 1 1 1j

jL L= − − +  is the length of the scale jτ  wavelet filter and 1j jN N L= − +   
is the number of the MODWT coefficients unaffected by the boundary and L  is the 
width of the wavelet filter. 

Similarly, an unbiased estimator of the wavelet-covariance between two time-
series X  and Y  is given by: 
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Since, the wavelet variance and wavelet covariance are known, under the CAPM 

the wavelet beta estimator for asset i  at scale j  is defined as: 
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where ( )2ˆ

i mR R jυ τ  is the wavelet covariance of asset i  and the market portfolio at scale 

j , and ( )2ˆ
mR jυ τ  is the wavelet variance of the market portfolio at  scale j . Following 

Fernandez (2005) and Masih et al. (2010) the wavelet 2R  estimator for asset i  at 
scale j  is given by: 
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In Table 1 to Table 5 the beta and  2R   at each scale j   are presented. 
Furthermore, in the last two columns of Table 1 to Table 5 the beta and  2R  from the 
raw data are presented. The average beta and the average 2R  at each scale is 
presented for each country. 

In Table 1 the results for the pre-crisis period are presented. It is clear that the 
linear relationship between an individual stock and the market portfolio becomes 
stronger as the scale increases. However, in most cases a slight decrease is observed at 
scale 5. In other words the maximum values of beta and 2R   are observed in scales 3 
and 4. Our results are in line with Gençay et al. (2005), Masih et al. (2010) and 
Fernandez (2006). The results for all countries are similar. The mean betas in each 
scale is around 1 and increases in higher scales. Similarly, the 2R  increases as the 
scale increases. The 2R  ranges from 0.12 at scale 1 in Portugal to 0.47 in scale 5 in 
Spain. The lower values of 2R  are observed in Portugal, Netherlands and Greece 
while the highest values are observed in Spain, Germany and France. 

Our analysis in Table 2 reflects the results during the in-crisis period. The results 
are similar as in the pre-crisis period. However, a closer inspection of Table 2 reveals 
that both betas and 2R  are increased for every country. The lower values of 2R  were 
observed in Germany and UK, 0.37 and 0.38 respectively, while the 2R  for the 
remaining countries are over 0.40 and up to 0.53 in Spain. In addition, in contrast to 
the remaining countries, the beta in Greece decreases 0.83 at scale 1 to 0.81 at scale 4 
and then goes up to 0.88 at scale 5. For the remaining countries the maximum beta is 
observed at scales 3 and 4 while the minimum, usually, at scale 1. 

Next, we focus on Table 3 where the results during the post-crisis period are 
presented. This period reflects the end of the American crisis and the beginning of the 
European crisis. Our results indicate that the betas in almost every country are almost 
1 for each scale although a slight increase is observed at higher scales. The 2R  was 
increased in each country and it is 0.51, 0.47, 0.61,0.50, 0.43, 0.60, 0.56, 0.48 in 
Netherlands, Greece, France, Germany, UK, Spain, Italy and Portugal respectively. 
Again the maximum betas were observed at scales 3 and 4 while the minimum at 
scale 1. For all countries the 2R  increases from scale 1 to scale 3 and then starts to 
decrease until scale 5. 

Table 4 presents the results of our analysis in the last time-period which reflects 
the current situation in Europe. The results are similar as in Table 3. However, a slight 
increase is observed in the beta values of Netherlands, Greece, France, Spain and 
Italy. On the other hand, the betas in Germany, UK and Portugal remained the almost 
the same. On the contrary, the 2R   was reduced for every country with an exception 
of Portugal. The maximum betas were observed at scales 3 for France, UK, Spain, and 
Italy; at scale 4 for Greece and Portugal; at scale 5 for Netherlands and Germany. For 
all countries the 2R  increases as we move from lower scales to mid-scales and then it 
decreases at higher scales. 

Finally, in Table 5 the beta and 2R  is estimated for each country for the whole 
sample. Our results indicate that beta increases at higher scales. The beta from the raw 
data ranges from 0.88 in Greece to 1.06 in France while the 2R  from 0.36 in Portugal 
to 0.53 in Spain. Again the maximum beta were observed at scales 3 and 4 with an 
exception of Greece, Spain, Italy and Portugal where the beta was maximized at scale 
5. A similar behavior is observed for the 2R . 
 
6. Value-at-Risk at different time-scales 



 
In this section we focus on the estimation of the Value-at-Risk (VaR). VaR is a very 
popular measure that describes the market risk. VaR measures the amount that an 
investor can lose with a given probability over a certain time horizon. 

From the CAPM we have that the variance of the excess return of stock i  and the 
covariance of the returns of stocks i  and j  is given by: 
 
 2 2 2 2 ,    1, 2,...,i i m i kεσ β σ σ= + =  (29) 
 
and 
 
 2
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where ( )2 2

iiE εε σ=  and ( ) 0,  i jE i jε ε = ∀ ≠ . 
Following Fernandez (2005) and Fernandez (2006) the variance-covariance of the 

excess returns can be written in a matrix form as: 
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For simplicity we assume an equally weighted portfolio of k  assets where ω  is 

vector that contains the portfolio weights, i.e. a 1k ×  vector which each element is 
1 k . Hence, the ( )1 %a−  Value-at-Risk, ( )VaR a , for a portfolio with initial value 0V  
is given by: 
 

 ( ) ( )1 2
0( ) 1 mVaR a V a ω σ ω− ′ ′= Φ − ΒΒ +Ε  (34) 

 
or similarly for an equally weighted portfolio by: 
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where ( )1 1 a−Φ −  is the inverse cumulative distribution function of the standard 
normal distribution at the probability level 1 a− . In our analysis we set 0.05a =  . 

The above equation can be used in order to estimate the ( )VaR a  at different time-
scales. More precisely, if only the variance and beta components of the j-scale are 
used, then the ( )VaR a  at j-scale can be estimated. Hence, we have that the ( )VaR a  at 
j-scale is given by: 
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and the noise variance at each scale can be estimated by rearranging (29) which 
results to: 
 
 ( ) ( ) ( ) ( )2 2 2 2

j i j i j m jεσ τ σ τ β τ σ τ= −  (37) 
 
Hence, an approximation of the ( )VaR a  above all scales is given by: 
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The difference between equations (36) and (38) should be negligible, Fernandez 

(2006). Hence, from (36) and (38) we have that  
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Hence, the ratio 
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is an estimate of the contribution of scale j to total Value-at-Risk of an equally 
weighted portfolio, Fernandez (2006), Masih et al. (2010). 

In Table 6 to Table 9 the ( )VaR a  at different time scales for an equally weighted 
portfolio is presented for the four different time-periods while in Table 10 the ( )VaR a  
at different time scales for an equally weighted portfolio is presented for the whole 



time period. The initial value of the portfolio was 1 unit of the specific market’s 
currency invested in 1-day horizon at the 95% confidence interval.  

As we can see from Table 6 to Table 10 the ( )VaR a  declines monotonically as 
we move to higher scales. In other word, the ( )VaR a  is higher at lower scales. 
Similarly, the contribution of the ( )VaR a  is higher at lower scales and decreases as 
we move to higher scales. In other words, potential losses of the portfolio is higher 
when we focus on lower scales. Finally, we can observer that the total ( )VaR a  
estimated from the raw data and the total ( )VaR a  estimated from the recomposed data 
are very close. 

Our results are similar to the ones presented in Fernandez (2006) and  Masih et 
al. (2010) and suggest that risk is concentrated at the lower scale of the data. In all 
time samples, Scale 1 contributes with more that 41% to the total ( )VaR a  while in 
some cases reaches up to 55%. 

A closer inspection of Table 6 reveals that the total ( )VaR a  is relatively low for 
all countries. More precisely, the lower values are observed in Portugal and Italy, 
0.009 and 0.012 respectively. The higher value is estimated for Greece and it is 
0.0163. However, these values are not significantly different than the ones observed 
in France and Germany, 0.0145 and 0.0137 respectively. 

In Table 7 the ( )VaR a  is estimated during the crisis time-period. A closer 
inspection of Table 7 reveals that the ( )VaR a  was grown threefold almost for every 
country. Again, the lower values were observed in Portugal and Italy, 0.0257 and 
0.0280 respectively, while the higher values were observed in France and 
Netherlands, 0.0364 and 0.0351. Our results, from Table 6 and Table 7 indicate that 
the countries that are now in crisis and under a rescue plan were performing similar or 
in some cases better that the countries with stronger and more stable economies. 

In Table 8 the ( )VaR a  estimated in the post-crisis can be found. This period is 
also the same as when the European crisis started. The effects can be found in the 
estimation of ( )VaR a  in Greece, which was further increased. On the contrary the 

( )VaR a  from the remaining countries were decreased or remained stable.  
The results of our analysis between 01/12/2011-10/09/2012 are presented in 

Table 9. During this time Greece was in deep crisis while Spain and Italy were under 
a rescue plan. This can be reflected from the estimated ( )VaR a  in each country. For 
Greece the ( )VaR a  is 0.0507 while for Spain and Italy is 0.0306 and 0.0324. On the 
other hand the ( )VaR a  for Germany, UK, Netherlands and France is 0.02, 0.0161, 
0.0223 and 0.0262 respectively. Surprisingly, the estimated ( )VaR a  for Portugal, 
another country with financial problems, is 0.0211. 

Finally, in Table 10 the ( )VaR a  is estimated for the whole time-period, from 
01/06/2005 to 10/09/2012. Our results indicate that the ( )VaR a  is similar for all 
countries and around 0.022 with an exception of Greece which is 0.0338. 

 
 

7. Conclusions 
 
In this study the  we examined how the global financial crisis affected the systematic 
crisis in selected European markets. Furthermore, a multi-scale analysis of the 
systematic risk was presented. More precisely, in this study the CAPM was estimated 



in at different time-scale for 8 European countries - four countries heavily affected by 
the financial crisis and four countries that traditionally their economies are considered 
strong and stable. Furthermore, our analysis was repeated in four time-periods defined 
as pre-crisis, crisis and two post crisis periods. 

Our results indicate that in most cases the maximum betas at observed at scales 3 
and 4 supporting the CAPM at medium time horizons. Moreover, in our analysis, the 
results from the two post-crisis samples, indicate that changes of both the betas and 

2R  varies between the two groups of the European markets. 
Finally, the VaR  was estimated at different time-scales for the four time-periods. 

Our results indicate that for all periods the risk is concentrated at higher frequencies 
(lower scales) of the data. Moreover, the VaR  was increased for all countries during 
the crisis and the two post-crisis periods however the difference between the two 
groups are evident. The VaR  was stable in last period for Germany, Netherlands, 
France and UK while it was significantly increased for Greece, Spain Portugal and 
Italy.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 1. Beta and R2 computed from recomposed crystals of each  index. Pre Crisis Period 

 
Beta at each scale R2 at each scale Raw Data 

 
1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX  
            

Mean 0.93 0.95 0.95 0.97 0.95 0.29 0.28 0.34 0.32 0.28 0.94 0.29 

SD 0.23 0.25 0.25 0.26 0.37 0.16 0.16 0.16 0.16 0.16 0.22 0.15 

Skew. 0.23 0.22 0.26 0.69 0.72 1.60 1.45 1.34 0.77 0.89 0.17 1.72 

Kurtosis 2.71 1.76 2.10 2.52 3.61 4.42 4.34 4.26 3.30 3.92 2.28 4.97 

ATHEX  
            

Mean 0.89 0.82 0.91 0.98 0.87 0.28 0.28 0.32 0.35 0.34 0.88 0.29 

SD 0.32 0.26 0.27 0.31 0.50 0.18 0.17 0.18 0.18 0.24 0.28 0.17 

Skew. -0.26 0.47 0.06 0.08 -0.08 0.75 0.91 0.62 0.62 0.41 0.01 0.85 

Kurtosis 2.55 3.71 2.26 2.17 1.95 3.46 3.46 3.00 2.96 2.52 2.45 3.51 

CAC 40 
            

Mean 1.01 1.00 1.00 1.06 1.04 0.39 0.36 0.40 0.39 0.33 1.01 0.38 

SD 0.24 0.22 0.26 0.32 0.39 0.15 0.14 0.16 0.16 0.16 0.23 0.14 

Skew. 0.29 -0.17 -0.20 0.87 0.16 0.66 0.36 0.40 0.38 0.03 0.02 0.68 

Kurtosis 2.68 2.73 2.43 3.86 2.82 2.71 2.58 2.39 2.00 2.10 2.54 2.67 

DAX 30 
            

Mean 0.84 0.87 0.92 0.98 0.97 0.31 0.33 0.41 0.38 0.36 0.87 0.34 

SD 0.18 0.16 0.25 0.27 0.33 0.12 0.13 0.16 0.14 0.18 0.18 0.12 

Skew. 0.22 -0.03 0.04 0.54 0.67 0.82 0.98 0.18 0.30 0.35 0.22 0.82 

Kurtosis 2.32 2.15 2.32 2.80 3.29 3.70 4.24 2.45 2.31 2.19 2.09 3.52 

FTSE 100 
            

Mean 1.03 1.03 1.11 1.10 1.02 0.31 0.29 0.35 0.33 0.29 1.05 0.31 

SD 0.38 0.34 0.44 0.45 0.54 0.12 0.11 0.14 0.15 0.17 0.37 0.11 

Skew. 1.27 1.15 0.97 0.48 1.03 0.30 0.26 0.02 0.07 0.34 1.16 0.19 

Kurtosis 4.65 4.18 3.79 2.71 3.89 2.36 2.42 2.11 2.51 2.23 4.29 2.19 

IBEX 35 
            

Mean 1.02 1.04 1.07 1.17 1.11 0.41 0.39 0.42 0.45 0.47 1.05 0.41 

SD 0.23 0.24 0.34 0.41 0.39 0.16 0.15 0.16 0.15 0.17 0.25 0.15 

Skew. 0.41 0.54 0.34 1.06 0.84 0.63 0.53 -0.16 -0.09 -0.05 0.55 0.56 

Kurtosis 2.24 2.73 3.09 3.64 2.77 2.78 3.00 2.64 2.89 2.39 2.67 2.84 

MIB 
            

Mean 0.89 0.92 0.95 1.00 1.00 0.31 0.26 0.31 0.29 0.34 0.92 0.30 

SD 0.31 0.27 0.33 0.42 0.33 0.15 0.12 0.15 0.14 0.15 0.29 0.13 

Skew. -0.22 -0.54 0.01 0.89 0.17 0.29 0.25 0.54 0.19 -0.10 -0.34 0.30 

Kurtosis 2.93 2.79 2.29 4.51 2.39 2.73 2.62 3.15 1.84 2.19 2.53 2.84 

PSI-20 
            

Mean 0.73 0.73 0.81 0.96 0.94 0.12 0.12 0.18 0.26 0.21 0.78 0.14 

SD 0.41 0.49 0.38 0.44 0.61 0.11 0.12 0.15 0.15 0.16 0.38 0.12 

Skew. -0.12 0.08 -0.37 0.70 0.36 1.14 1.18 1.04 -0.05 0.11 -0.26 1.04 

Kurtosis 2.59 2.00 3.91 2.44 2.20 2.80 2.99 3.23 1.63 1.40 2.67 2.65 
 
 
 
 
 



Table 2.  Beta and R2 computed from recomposed crystals of each  index. In Crisis Period 

 
Beta at each scale R2 at each scale Raw Data 

 
1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX 
            

Mean 0.93 0.95 1.05 1.09 1.02 0.45 0.46 0.44 0.41 0.48 0.96 0.45 

SD 0.37 0.42 0.50 0.57 0.43 0.13 0.15 0.15 0.17 0.13 0.40 0.13 

Skew. 1.21 1.01 0.52 0.42 0.76 0.44 -0.18 -0.62 -0.45 -0.25 1.01 0.10 

Kurtosis 3.76 3.62 2.73 2.26 2.54 2.75 2.68 2.65 2.04 1.79 3.42 2.71 

ATHEX  
            

Mean 0.83 0.82 0.81 0.81 0.88 0.42 0.41 0.39 0.45 0.44 0.83 0.42 

SD 0.31 0.32 0.35 0.35 0.36 0.20 0.21 0.22 0.21 0.22 0.31 0.20 

Skew. 0.31 0.33 -0.30 0.67 0.04 0.54 0.41 0.20 0.40 0.32 0.33 0.50 

Kurtosis 2.22 2.60 2.93 3.29 1.49 2.09 2.31 2.63 2.77 2.22 2.37 2.30 

CAC 40 
            

Mean 1.01 1.07 1.16 1.16 1.14 0.52 0.54 0.48 0.49 0.45 1.05 0.52 

SD 0.28 0.32 0.42 0.46 0.38 0.13 0.13 0.14 0.17 0.13 0.31 0.12 

Skew. 0.37 -0.03 -0.13 -0.08 0.08 0.22 -0.13 -0.84 -0.76 -0.73 0.11 0.07 

Kurtosis 2.50 2.37 2.28 2.33 3.10 2.43 2.42 3.21 2.95 4.36 2.35 2.50 

DAX 30 
            

Mean 0.84 0.87 1.03 0.93 0.93 0.35 0.37 0.39 0.41 0.42 0.88 0.37 

SD 0.28 0.30 0.39 0.42 0.41 0.14 0.16 0.17 0.19 0.20 0.30 0.15 

Skew. 0.03 -0.02 -0.13 0.08 0.13 -0.27 0.01 -0.11 -0.31 -0.43 -0.02 -0.17 

Kurtosis 2.16 2.11 2.43 2.56 2.65 2.04 2.04 2.60 2.44 2.46 2.16 2.10 

FTSE 100 
            

Mean 0.96 0.97 1.03 1.06 0.99 0.39 0.40 0.35 0.34 0.35 0.98 0.38 

SD 0.36 0.40 0.49 0.64 0.50 0.11 0.13 0.13 0.14 0.16 0.39 0.11 

Skew. 1.01 1.03 0.80 1.67 1.21 0.14 0.04 -0.08 -0.01 0.26 0.99 0.21 

Kurtosis 2.97 3.19 3.01 7.38 3.86 3.24 2.46 2.71 2.54 2.55 2.92 2.96 

IBEX 35 
            

Mean 0.95 0.93 0.95 0.94 1.00 0.55 0.52 0.53 0.46 0.37 0.95 0.53 

SD 0.23 0.28 0.31 0.35 0.39 0.16 0.18 0.18 0.19 0.21 0.25 0.17 

Skew. -0.09 0.04 0.43 0.56 0.21 0.43 0.06 0.21 0.37 0.45 0.07 0.36 

Kurtosis 2.18 2.23 2.36 2.60 1.88 2.29 2.04 2.01 2.66 2.37 2.19 2.26 

MIB 
            

Mean 0.80 0.80 0.86 0.93 0.95 0.40 0.41 0.42 0.42 0.47 0.82 0.41 

SD 0.30 0.30 0.37 0.35 0.37 0.17 0.17 0.18 0.17 0.17 0.30 0.16 

Skew. 0.44 0.32 0.21 -0.05 0.81 0.35 0.23 -0.38 -0.26 0.12 0.28 0.13 

Kurtosis 3.43 3.33 2.93 3.14 4.57 2.55 2.90 2.69 2.66 2.29 3.47 2.87 

PSI-20 
            

Mean 0.91 0.94 0.95 0.96 1.01 0.41 0.38 0.41 0.37 0.36 0.94 0.40 

SD 0.20 0.25 0.29 0.30 0.31 0.12 0.14 0.12 0.12 0.11 0.22 0.11 

Skew. -0.97 -0.87 -0.31 -0.73 0.75 -0.43 0.35 0.13 -0.90 0.65 -0.80 0.08 

Kurtosis 3.61 3.19 1.99 2.42 2.48 3.51 3.45 1.76 2.64 3.19 2.91 3.25 
 
 
 
 
 



 
Table 3. Beta and R2 computed from recomposed crystals of each  index. Post Crisis Period 

 
Beta at each scale R2 at each scale Raw Data 

 
1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX 
            

Mean 1.01 1.04 1.11 1.11 1.13 0.46 0.53 0.59 0.57 0.58 1.05 0.51 

SD 0.44 0.41 0.44 0.45 0.43 0.15 0.14 0.16 0.16 0.16 0.43 0.14 

Skew. 0.82 0.93 0.15 0.08 -0.07 -0.04 -0.31 -0.77 -0.58 -0.72 0.61 -0.32 

Kurtosis 3.58 3.88 2.47 2.26 2.13 2.18 2.22 2.32 2.25 3.36 3.19 2.20 

ATHEX 
            

Mean 0.85 0.87 0.86 0.92 0.87 0.45 0.49 0.49 0.45 0.42 0.86 0.47 

SD 0.44 0.46 0.34 0.37 0.35 0.21 0.20 0.16 0.18 0.18 0.42 0.19 

Skew. 0.67 0.73 0.29 0.36 0.27 0.42 0.27 0.21 0.10 0.08 0.65 0.34 

Kurtosis 2.13 2.16 1.65 1.90 1.78 2.21 2.03 2.10 2.09 1.88 2.07 2.14 

CAC 40 
            

Mean 1.04 1.05 1.09 1.05 1.06 0.58 0.64 0.65 0.62 0.60 1.05 0.61 

SD 0.32 0.34 0.37 0.35 0.37 0.14 0.13 0.13 0.15 0.17 0.33 0.13 

Skew. 0.39 0.67 0.22 0.32 0.08 -0.46 -0.38 -0.73 -0.54 -0.50 0.41 -0.48 

Kurtosis 3.04 3.16 2.54 2.61 2.16 2.65 2.59 3.21 2.50 2.41 2.91 2.79 

DAX 30 
            

Mean 0.91 0.92 0.95 0.94 0.90 0.45 0.55 0.59 0.54 0.52 0.92 0.50 

SD 0.29 0.28 0.32 0.31 0.27 0.14 0.15 0.16 0.16 0.18 0.28 0.15 

Skew. -0.32 -0.19 -0.07 0.03 -0.09 -0.75 -0.69 -0.62 -0.38 0.02 -0.27 -0.67 

Kurtosis 2.30 2.63 2.11 2.18 1.93 2.88 3.09 2.32 2.50 1.95 2.23 2.76 

FTSE 100 
            

Mean 0.98 1.02 1.04 1.00 0.99 0.40 0.47 0.50 0.46 0.46 1.00 0.43 

SD 0.41 0.39 0.49 0.46 0.49 0.15 0.14 0.17 0.18 0.20 0.41 0.15 

Skew. 0.85 0.68 0.75 0.56 0.83 0.36 -0.15 -0.26 -0.10 -0.26 0.74 0.10 

Kurtosis 3.16 2.71 2.71 2.55 3.40 2.60 2.54 2.32 2.33 2.14 2.78 2.40 

IBEX 35 
            

Mean 0.89 0.92 0.99 0.98 1.02 0.56 0.65 0.68 0.63 0.63 0.92 0.60 

SD 0.22 0.22 0.25 0.25 0.24 0.18 0.14 0.13 0.15 0.17 0.22 0.16 

Skew. 0.61 0.59 0.23 0.10 0.16 0.73 0.49 0.25 -0.23 -0.30 0.45 0.63 

Kurtosis 2.87 2.69 1.84 2.31 2.96 2.38 2.53 2.46 2.44 2.07 2.54 2.47 

MIB 
            

Mean 0.91 0.92 0.95 0.92 0.93 0.53 0.59 0.61 0.57 0.50 0.92 0.56 

SD 0.30 0.30 0.31 0.26 0.36 0.15 0.16 0.16 0.16 0.20 0.29 0.15 

Skew. 0.43 0.30 0.06 0.02 0.28 0.06 -0.27 -0.45 0.01 -0.27 0.32 -0.02 

Kurtosis 3.23 3.25 2.78 2.77 2.63 2.35 2.34 2.19 1.94 2.20 3.19 2.26 

PSI-20 
            

Mean 0.95 0.99 0.94 0.93 1.05 0.45 0.52 0.51 0.47 0.50 0.97 0.48 

SD 0.31 0.35 0.31 0.35 0.36 0.15 0.16 0.16 0.19 0.13 0.31 0.15 

Skew. -1.14 -0.85 -1.38 -1.01 0.19 -1.64 -1.99 -2.04 -1.38 -0.81 -1.23 -2.13 

Kurtosis 4.81 4.23 4.87 4.93 1.94 6.32 7.37 7.27 4.28 2.58 5.05 8.08 
 
 
 
 



Table 4. Beta and R2 computed from recomposed crystals of each  index. Forc. Crisis Period 

 
Beta at each scale R2 at each scale Raw Data 

 
1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX 
            

Mean 1.22 1.21 1.22 1.17 1.25 0.44 0.44 0.47 0.33 0.31 1.21 0.43 

SD 0.58 0.57 0.58 0.72 0.78 0.18 0.18 0.19 0.20 0.24 0.57 0.17 

Skew. 0.22 0.43 0.60 1.43 0.15 -0.38 -0.24 -0.13 0.40 0.40 0.32 -0.32 

Kurtosis 1.88 2.11 2.38 5.19 2.06 2.98 2.36 2.16 2.29 1.90 2.02 2.66 

ATHEX  
            

Mean 0.97 1.00 1.03 1.14 1.09 0.42 0.46 0.41 0.46 0.67 1.01 0.44 

SD 0.58 0.60 0.60 0.76 0.41 0.18 0.18 0.20 0.25 0.17 0.57 0.17 

Skew. 0.95 0.84 0.46 0.69 -0.17 0.47 0.46 -0.23 -0.27 -1.24 0.87 0.43 

Kurtosis 2.56 2.49 2.18 2.59 2.83 2.16 2.19 2.28 1.81 4.80 2.55 2.17 

CAC 40 
            

Mean 1.13 1.16 1.17 1.11 1.13 0.54 0.57 0.56 0.43 0.40 1.14 0.54 

SD 0.38 0.40 0.48 0.63 0.58 0.15 0.15 0.17 0.21 0.22 0.40 0.15 

Skew. 0.15 0.26 0.52 1.05 0.15 -0.25 -0.84 -0.68 -0.15 -0.45 0.30 -0.38 

Kurtosis 2.13 2.25 2.67 4.15 2.35 1.99 3.36 2.83 1.92 1.91 2.39 2.08 

DAX 30 
            

Mean 0.88 0.97 0.95 0.93 1.04 0.42 0.53 0.54 0.35 0.40 0.92 0.46 

SD 0.34 0.33 0.35 0.42 0.47 0.17 0.15 0.19 0.19 0.18 0.33 0.16 

Skew. 0.50 0.36 -0.16 0.06 0.63 -0.07 -0.09 -0.45 0.28 -0.38 0.19 -0.17 

Kurtosis 3.35 2.51 2.31 2.10 2.91 2.20 2.46 2.35 1.88 1.88 2.64 2.28 

FTSE 100 
            

Mean 1.02 1.11 1.11 0.97 0.94 0.41 0.40 0.39 0.31 0.31 1.05 0.39 

SD 0.46 0.52 0.58 0.59 0.59 0.16 0.17 0.19 0.19 0.19 0.48 0.16 

Skew. 0.76 0.53 0.33 0.78 0.91 -0.12 -0.05 -0.16 0.48 0.16 0.65 -0.03 

Kurtosis 3.24 2.51 2.25 2.72 3.64 2.14 2.08 2.01 2.32 1.91 2.78 2.07 

IBEX 35 
            

Mean 0.99 0.97 1.04 0.92 0.92 0.54 0.59 0.61 0.44 0.49 0.99 0.56 

SD 0.26 0.28 0.33 0.41 0.43 0.16 0.17 0.17 0.25 0.25 0.27 0.16 

Skew. -0.12 -0.01 0.74 -0.12 0.20 0.89 0.58 0.34 0.17 0.00 -0.02 0.86 

Kurtosis 2.15 1.58 4.05 1.70 1.93 2.96 2.49 2.31 2.18 2.00 1.97 2.78 

MIB 
            

Mean 1.01 1.05 1.08 0.98 1.08 0.52 0.54 0.55 0.44 0.41 1.04 0.52 

SD 0.41 0.44 0.51 0.50 0.59 0.16 0.15 0.17 0.20 0.24 0.44 0.15 

Skew. 0.46 0.32 0.40 0.58 0.32 0.04 -0.02 -0.36 -0.37 -0.04 0.38 0.05 

Kurtosis 2.10 1.87 2.32 3.83 1.94 2.16 1.98 2.67 2.32 1.80 2.02 2.23 

PSI-20 
            

Mean 0.97 0.94 0.96 1.21 1.04 0.25 0.30 0.33 0.41 0.42 0.99 0.29 

SD 0.53 0.51 0.51 0.82 0.75 0.14 0.16 0.15 0.20 0.28 0.54 0.15 

Skew. 0.19 0.32 0.83 0.58 0.03 0.00 -0.24 -0.57 -0.53 -0.01 0.41 -0.20 

Kurtosis 2.11 2.31 4.06 2.59 1.55 1.90 2.16 2.75 2.59 1.50 2.54 2.18 

 
 
 



Table 5. Beta and R2 computed from recomposed crystals of each  index. All Period 

 
Beta at each scale R2 at each scale Raw Data 

 
1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX 
            

Mean 0.97 0.99 1.07 1.08 1.04 0.42 0.44 0.45 0.41 0.44 1.00 0.43 

SD 0.37 0.40 0.45 0.48 0.38 0.13 0.14 0.14 0.14 0.12 0.39 0.13 

Skew. 0.99 0.98 0.39 0.31 0.42 0.18 -0.06 -0.58 -0.40 -0.17 0.83 -0.04 

Kurtosis 3.43 3.68 2.59 2.19 2.31 2.18 2.43 2.55 2.20 1.88 3.23 2.36 

ATHEX 
            

Mean 0.87 0.87 0.88 0.92 0.95 0.40 0.42 0.40 0.42 0.46 0.88 0.41 

SD 0.39 0.41 0.35 0.39 0.33 0.19 0.19 0.17 0.18 0.15 0.39 0.18 

Skew. 0.64 0.71 0.34 0.53 0.28 0.68 0.69 0.48 0.57 0.21 0.65 0.69 

Kurtosis 2.07 2.11 1.93 1.97 1.89 2.46 2.29 2.79 2.54 2.00 2.05 2.49 

CAC 40 
            

Mean 1.03 1.06 1.12 1.11 1.09 0.52 0.54 0.52 0.49 0.44 1.06 0.52 

SD 0.28 0.29 0.37 0.39 0.33 0.12 0.12 0.13 0.14 0.12 0.30 0.12 

Skew. 0.17 0.01 -0.04 0.08 0.10 0.02 0.04 -0.48 -0.16 -0.04 0.07 0.03 

Kurtosis 2.24 2.19 2.20 2.27 2.53 2.19 2.10 2.70 2.09 2.61 2.19 2.21 

DAX 30 
            

Mean 0.86 0.90 0.98 0.94 0.93 0.37 0.42 0.45 0.42 0.40 0.90 0.40 

SD 0.26 0.27 0.31 0.34 0.29 0.13 0.14 0.15 0.17 0.16 0.27 0.14 

Skew. -0.13 -0.13 -0.24 0.10 -0.06 -0.26 -0.12 -0.31 -0.18 -0.04 -0.13 -0.20 

Kurtosis 2.23 2.34 2.39 2.45 2.26 2.16 2.31 2.55 2.47 2.22 2.30 2.26 

FTSE 100 
            

Mean 0.97 1.00 1.04 1.05 0.98 0.37 0.39 0.37 0.35 0.34 0.99 0.37 

SD 0.36 0.37 0.46 0.51 0.46 0.11 0.11 0.12 0.13 0.15 0.38 0.11 

Skew. 0.98 0.89 0.70 1.03 1.19 0.39 0.09 -0.20 0.08 0.47 0.90 0.27 

Kurtosis 3.09 2.90 2.66 4.01 3.97 3.05 2.56 2.42 2.25 2.76 2.91 2.74 

IBEX 35 
            

Mean 0.94 0.94 0.98 0.97 1.01 0.52 0.55 0.56 0.48 0.45 0.95 0.53 

SD 0.20 0.22 0.26 0.26 0.25 0.16 0.16 0.14 0.15 0.16 0.22 0.15 

Skew. -0.07 -0.02 0.09 0.33 0.09 0.95 0.75 0.66 0.91 0.76 -0.02 0.93 

Kurtosis 2.26 2.25 1.90 2.35 1.76 2.91 2.72 2.72 3.52 2.88 2.14 2.96 

MIB 
            

Mean 0.87 0.88 0.93 0.93 0.96 0.43 0.46 0.47 0.44 0.43 0.89 0.45 

SD 0.27 0.28 0.33 0.29 0.30 0.15 0.15 0.15 0.15 0.13 0.28 0.15 

Skew. 0.41 0.38 0.23 0.09 0.63 0.47 0.31 -0.12 0.13 0.19 0.33 0.34 

Kurtosis 3.61 3.73 3.25 3.30 3.99 2.65 2.68 2.65 2.33 1.95 3.65 2.74 

PSI-20 
            

Mean 0.92 0.94 0.94 0.99 1.03 0.35 0.36 0.37 0.37 0.37 0.95 0.36 

SD 0.24 0.28 0.27 0.30 0.26 0.11 0.13 0.12 0.13 0.10 0.25 0.11 

Skew. -1.39 -1.31 -1.05 -0.82 -0.34 -1.15 -0.79 -0.79 -0.64 -0.59 -1.29 -1.10 

Kurtosis 5.02 4.57 3.50 3.03 2.29 5.02 4.41 3.30 2.89 2.54 4.41 4.96 

 
 
 



Table 6. Value At Risk (VaR) at different time scales for equally weighted portfolio. Pre Crisis Period. 
 

 
VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR 

 
AEX 

 
ATHEX 

 
CAC 

 
DAX 

 
Scale1 0.0091 50.68% 0.0112 47.06% 0.0106 53.94% 0.0095 49.20% 

Scale2 0.0062 23.58% 0.0081 24.63% 0.0070 23.45% 0.0066 23.99% 

Scale3 0.0051 15.80% 0.0067 16.74% 0.0054 13.84% 0.0055 16.69% 

Scale4 0.0034 6.94% 0.0047 8.45% 0.0036 6.30% 0.0037 7.31% 

Scale5 0.0022 3.00% 0.0029 3.11% 0.0023 2.46% 0.0023 2.81% 

Total 0.0128 
 

0.0163 
 

0.0145 
 

0.0135 
 

Total Raw 0.0130 
 

0.0166 
 

0.0147 
 

0.0137 
 

 
FTSE 

 
IBEX  

 
MIB 

 
PSI 

 
Scale1 0.0092 52.44% 0.0101 49.88% 0.0090 55.33% 0.0060 43.92% 

Scale2 0.0061 23.04% 0.0070 24.42% 0.0057 22.22% 0.0045 24.74% 

Scale3 0.0050 15.41% 0.0053 13.65% 0.0044 13.34% 0.0036 16.10% 

Scale4 0.0033 6.62% 0.0040 8.05% 0.0029 5.90% 0.0030 11.34% 

Scale5 0.0020 2.49% 0.0028 3.99% 0.0022 3.21% 0.0018 3.91% 

Total 0.0127 
 

0.0142 
 

0.0120 
 

0.0090 
 

Total Raw 0.0129 
 

0.0144 
 

0.0122 
 

0.0093 
  

 
Table 7. Value At Risk (VaR) at different time scales for equally weighted portfolio. In Crisis Period. 
 
 

 
VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR 

 
AEX  

 
ATHEX 

 
CAC  

 
DAX  

 
Scale1 0.0246 51.18% 0.0224 49.49% 0.0258 51.81% 0.0204 49.22% 

Scale2 0.0180 27.47% 0.0164 26.71% 0.0191 28.48% 0.0152 27.33% 

Scale3 0.0125 13.18% 0.0113 12.67% 0.0123 11.78% 0.0109 14.06% 

Scale4 0.0080 5.48% 0.0090 8.01% 0.0087 5.95% 0.0074 6.53% 

Scale5 0.0056 2.69% 0.0056 3.12% 0.0050 1.98% 0.0049 2.85% 

Total 0.0344 
 

0.0318 
 

0.0358 
 

0.0291 
 

Total Raw 0.0351 
 

0.0328 
 

0.0364 
 

0.0297 
 

 
FTSE 

 
IBEX  

 
MIB 

 
PSI 

 
Scale1 0.0223 52.74% 0.0230 54.41% 0.0197 49.49% 0.0178 48.11% 

Scale2 0.0164 28.67% 0.0158 25.72% 0.0145 26.72% 0.0131 25.84% 

Scale3 0.0103 11.23% 0.0113 13.08% 0.0104 13.77% 0.0103 16.14% 

Scale4 0.0071 5.43% 0.0071 5.22% 0.0072 6.61% 0.0068 6.97% 

Scale5 0.0043 1.94% 0.0039 1.57% 0.0052 3.41% 0.0044 2.93% 

Total 0.0307 
 

0.0312 
 

0.0280 
 

0.0257 
 

Total Raw 0.0311 
 

0.0319 
 

0.0287 
 

0.0265 
  

 
 



 
 
Table 8. Value At Risk (VaR) at different time scales for equally weighted portfolio. Post Crisis Period. 

 
VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR 

 
AEX  

 
ATHEX 

 
CAC  

 
DAX  

 
Scale1 0.0156 43.55% 0.0270 49.40% 0.0188 46.04% 0.0148 43.36% 

Scale2 0.0123 27.36% 0.0212 30.54% 0.0150 29.31% 0.0123 29.67% 

Scale3 0.0098 17.40% 0.0138 12.84% 0.0109 15.40% 0.0094 17.38% 

Scale4 0.0067 8.05% 0.0087 5.12% 0.0070 6.42% 0.0059 6.81% 

Scale5 0.0045 3.64% 0.0056 2.11% 0.0047 2.83% 0.0038 2.78% 

Total 0.0236 
 

0.0384 
 

0.0277 
 

0.0225 
 

Total Raw 0.0239 
 

0.0389 
 

0.0280 
 

0.0229 
 

 
FTSE 

 
IBEX  

 
MIB 

 
PSI 

 
Scale1 0.0132 44.52% 0.0173 41.94% 0.0187 47.07% 0.0156 45.63% 

Scale2 0.0108 29.47% 0.0150 31.52% 0.0146 28.89% 0.0130 31.48% 

Scale3 0.0080 16.50% 0.0110 17.07% 0.0107 15.52% 0.0086 13.81% 

Scale4 0.0050 6.50% 0.0068 6.57% 0.0068 6.16% 0.0055 5.67% 

Scale5 0.0034 3.01% 0.0045 2.90% 0.0042 2.36% 0.0043 3.41% 

Total 0.0198 
 

0.0267 
 

0.0273 
 

0.0231 
 

Total Raw 0.0200 
 

0.0270 
 

0.0276 
 

0.0234 
  

Table 9. Value At Risk (VaR) at different time scales for equally weighted portfolio. Forc Crisis Period. 
 

 
VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR 

 
AEX  

 
ATHEX 

 
CAC  

 
DAX  

 
Scale1 0.0164 54.29% 0.0345 46.37% 0.0187 51.22% 0.0135 45.67% 

Scale2 0.0114 26.37% 0.0264 27.10% 0.0141 29.15% 0.0113 31.93% 

Scale3 0.0084 14.35% 0.0176 12.08% 0.0100 14.63% 0.0082 17.01% 

Scale4 0.0042 3.61% 0.0142 7.85% 0.0050 3.63% 0.0036 3.32% 

Scale5 0.0026 1.38% 0.0130 6.60% 0.0031 1.36% 0.0029 2.07% 

Total 0.0223 
 

0.0507 
 

0.0262 
 

0.0200 
 

Total Raw 0.0226 
 

0.0523 
 

0.0266 
 

0.0204 
 

 
FTSE 

 
IBEX  

 
MIB 

 
PSI 

 
Scale1 0.0120 55.63% 0.0210 47.04% 0.0227 48.94% 0.0132 41.30% 

Scale2 0.0083 26.64% 0.0167 29.95% 0.0174 28.93% 0.0108 27.82% 

Scale3 0.0055 11.86% 0.0125 16.64% 0.0131 16.37% 0.0081 15.65% 

Scale4 0.0032 4.02% 0.0062 4.12% 0.0064 3.87% 0.0067 10.57% 

Scale5 0.0022 1.85% 0.0046 2.26% 0.0045 1.89% 0.0044 4.66% 

Total 0.0161 
 

0.0306 
 

0.0324 
 

0.0206 
 

Total Raw 0.0163 
 

0.0313 
 

0.0331 
 

0.0211 
  

 
 



 
Table 10. Value At Risk (VaR) at different time scales for equally weighted portfolio. All Crisis Period. 
 

 
VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR VaR 

Contribution 
to VaR 

 
AEX  

 
ATHEX 

 
CAC  

 
DAX  

 
Scale1 0.0175 49.69% 0.0231 48.76% 0.0194 50.37% 0.0154 47.35% 

Scale2 0.0129 27.14% 0.0175 28.05% 0.0146 28.46% 0.0119 28.24% 

Scale3 0.0094 14.46% 0.0118 12.85% 0.0099 13.26% 0.0088 15.51% 

Scale4 0.0061 6.01% 0.0086 6.76% 0.0066 5.84% 0.0056 6.29% 

Scale5 0.0041 2.71% 0.0063 3.58% 0.0039 2.07% 0.0036 2.62% 

Total 0.0248 
 

0.0330 
 

0.0273 
 

0.0224 
 

Total Raw 0.0253 
 

0.0338 
 

0.0277 
 

0.0228 
 

 
FTSE 

 
IBEX  

 
MIB 

 
PSI 

 
Scale1 0.0155 51.09% 0.0180 49.04% 0.0173 49.17% 0.0140 46.30% 

Scale2 0.0116 28.23% 0.0137 28.14% 0.0129 27.52% 0.0109 28.02% 

Scale3 0.0078 12.79% 0.0099 14.82% 0.0094 14.71% 0.0080 15.13% 

Scale4 0.0052 5.72% 0.0061 5.70% 0.0060 5.90% 0.0056 7.28% 

Scale5 0.0032 2.17% 0.0039 2.30% 0.0040 2.70% 0.0037 3.27% 

Total 0.0218 
 

0.0257 
 

0.0246 
 

0.0206 
 

Total Raw 0.0220 
 

0.0262 
 

0.0251 
 

0.0212 
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