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Abstract. In this paper, we use wavelet neural networks in order to model a 
mean-reverting Ornstein-Uhlenbeck temperature process, with seasonality in 
the level and volatility. We forecast up to two months ahead out of sample daily 
temperatures and we simulate the corresponding Cumulative Average 
Temperature and Heating Degree Day indices. The proposed model is validated 
in 8 European and 5 USA cities all traded in Chicago Mercantile Exchange. Our 
results suggest that the proposed method outperforms alternative pricing 
methods proposed in prior studies in most cases. Our findings suggest that 
wavelet networks can model the temperature process very well and 
consequently they constitute a very accurate and efficient tool for weather 
derivatives pricing. Finally, we provide the pricing equations for temperature 
futures on Heating Degree Day index. 
 

Keywords: Weather Derivatives, Pricing, Forecasting, Wavelet Networks 

1 Introduction 

Recently a new class of financial instruments -weather derivatives- has been 
introduced. The purpose of weather derivatives is to allow business to insure 
themselves against fluctuations in the weather. According to [1, 2] nearly $1 trillion 
of the US economy is directly exposed to weather risk. Just as traditional contingent 
claims, whose payoffs depend upon the price of some fundamental, a weather 
derivative has its underlying measure such as: rainfall, temperature, humidity or 
snowfall. Weather derivatives are used to hedge volume risk, rather than price risk, 

The Chicago Mercantile Exchange (CME) reports that the estimated value of its 
weather products reached $22 billion through September 2005, with more than 
600,000 contracts traded. This represents sharp rise comparing with 2004 in which 
notional value was $2.2 billion [3]. Moreover, it is anticipated that the weather market 
will continue to develop, broadening its scope in terms of geography, client base and 
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inter-relationship with other financial and insurance markets. In order to fully exploit 
all the advantages that this market offers, adequate pricing approach is required. 

Weather risk is unique in that it is highly localized, and despite great advances in 
meteorological science, still cannot be predicted precisely and consistently. Weather 
derivatives are also different than other financial derivatives in that the underlying 
weather index, like Heating Degree Days (HDD), Cooling Degree Days (CDD), 
Cumulative Average Temperature (CAT), etc. cannot be traded. Mathematical 
explanations of these indices are given in section 4. Furthermore, the corresponding 
market is relatively illiquid. Consequently, since weather derivatives cannot be cost-
efficiently replicated with other weather derivatives, arbitrage pricing cannot directly 
apply to them. The weather derivatives market is a classic incomplete market, because 
the underlying weather variables are not tradable 

The first and simplest method that has been used in weather derivative pricing is 
burn analysis. Burn analysis is just a simple calculation of how a weather derivative 
would perform in the past years. By taking the average of these values an estimate of 
the price of the derivative is obtained. Burn analysis is very easy in calculation since 
there is no need to fit the distribution of the temperature or to solve any stochastic 
differential equation. Moreover, burn analysis is based in very few assumptions. First, 
we have to assume that the temperature time-series is stationary. Next, we have to 
assume that the data for different years are independent and identically distributed. 
For a detailed explanation of Burn Analysis we refer to [4]. 

A closer inspection of a temperature time series shows that none of these 
assumptions are correct. It is clear that the temperature time-series is not stationary 
since it contains seasonalities, jumps and trends [5, 6]. Also the independence of the 
years is under question. [4] show that these assumptions can be used if the data can be 
cleaned and detrended. Although their results show that the pricing still remains 
inaccurate. Other methods as index and daily modeling are more accurate but still 
burn analysis is usually a good first approximation of the derivative’s price. 

In contrast to the previous methods, a dynamic model can be used which directly 
simulates the future behavior of temperature. Using models for daily temperatures 
can, in principle, lead to more accurate pricing than modeling temperature indices. On 
the other hand, deriving an accurate model for the daily temperature is not a 
straightforward process. Observed temperatures show seasonality in all of the mean, 
variance, distribution and autocorrelations and long memory in the autocorrelations. 
The risk with daily modeling is that small misspecifications in the models can lead to 
large mispricing in the contracts. 

The continuous processes used for modeling daily temperatures usually take a 
mean-reverting form, which has to be descretized in order to estimate its various 
parameters. Previous works suggest that the parameter of the speed of mean 
reversion, α, is constant. The work of [5] indicates exactly the opposite. In addition, α 
is important for the correct and accurate pricing of temperature derivatives, [7]. In  [5] 
the parameter a was modeled by a Neural Network (NN). More precisely wavelet 
analysis was used in order to identify the trend and the seasonal part of the 
temperature signal and then a NN was used in the detrended and deseasonalized 
series. However WA is limited to applications of small input dimension since its 
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constructing wavelet basis of a large input dimension is computationally expensive, 
[8]. In NN framework the initial values of the weights are randomly chosen which 
usually leads to large training times and to convergence to a local minimum of a 
specified loss function. Finally, the use of sigmoid NN does not provide any 
information about the network construction. In this study we expand the work of [5] 
by combining these two steps. To overcome these problems we use networks with 
wavelets as activation functions, namely Wavelet Networks, (WN). More precisely 
we use truncated Fourier series to remove the seasonality and the seasonal volatility 
of the temperature in various locations as in [9]. Next a wavelet network is 
constructed in order to fit the daily average temperature in 13 cities and to forecast 
daily temperature up to two months hoping that the waveform of the activation 
functions of the feedforward network will fit much better the temperature process 
than the classical sigmoid functions. For a concise treatment of wavelet analysis we 
refer to [10-12] while for wavelet networks we refer to the works of [8, 13, 14]. The 
forecasting accuracy from the proposed methodology is validated in a two month 
ahead out of sample window. More precisely the proposed methodology is compared 
against historical burn analysis and the Benth & Benth’s model in forecasting CAT 
and HDD indices. Finally, we extend the work of [5] by presenting the pricing 
equations for future HDD contracts when the speed of mean reversion is not constant. 

The rest of the paper is organized as follows. In section 2, we describe the process 
used to model the average daily temperature. In section 3 a brief introduction to 
wavelet networks is given. In section 4 we describe our data and apply our model to 
real data. In section 5 we discuss CAT and HDD derivatives pricing and finally, in 
section 6 we conclude 

2 Modeling Temperature Process 

Many different models have been proposed in order to describe the dynamics of a 
temperature process. Early models were using AR(1) processes or continuous 
equivalents [7, 15, 16]. Others like [17] and [18] have suggested versions of a more 
general ARMA(p,q) model. [19] have shown, however, that all these models fail to 
capture the slow time decay of the autocorrelations of temperature and hence lead to 
significant underpricing of weather options. Thus more complex models were 
proposed, like an Ornstein-Uhlenbeck process [20]. Also in the noise part of the 
process, the Brownian noise was at first replaced by a fractional Brownian noise and 
then by a Levy process [21]. A temperature Ornstein-Uhlenbeck process is: 

 
( ) ( ) ( ( ) ( )) ( ) ( )dT t dS t T t S t dt t dB tκ σ= − − +                           (1) 

 
where, T(t) is the daily average temperature, B(t) is a standard Brownian motion, S(t) 
is a deterministic function modelling the trend and seasonality of the average 
temperature, while σ(t) is the daily volatility of temperature variations. In [9] both S(t) 
and σ2(t) were modeled as truncated Fourier series: 
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From the Ito formula an explicit solution for (1) can be derived: 

 
( )

1
( ) ( ) ( ( 1) ( 1)) ( ) ( )

tt t u

t
T t s t T t s t e u e dB uκ κσ− − −

−
= + − − − + ∫           (4) 

According to this representation T(t) is normally distributed at t and it is reverting to a 
mean defined by S(t). A discrete approximation to the Ito formula, (4), which is the 
solution to the mean reverting Ornstein-Uhlenbeck process (1), is: 

 

 { } ( ){ }( 1) ( ) ( 1) ( ) (1 ) ( ) ( ) ( 1) ( )kT t T t S t S t e T t S t t B t B tσ−+ − = + − − − − + + −  (5) 

which can be written as: 
    

( 1) ( ) ( ) ( )T t aT t t tσ ε+ = +                                             (6) 

where  

( ) ( ) ( )T t T t S t= −                                                     (7) 
ka e−=                                                            (8) 

In order to estimate model (6) we need first to remove the trend and seasonality 
components from the average temperature series. The trend and the seasonality of 
daily average temperatures is modeled and removed as in [9].  Next a wavelet neural 
network is used to model and forecast daily detrended and deseasonalized 
temperatures. Hence, equation (6) reduces to: 

 

( )( ) ( 1) tT t T t eϕ= − +                                               (9)                                                  

where φ(●) is estimated non-parametrically by a wavelet network. Hence the 
parameter α is not constant. Once we have the estimator of the underlying function φ, 
then we can compute the daily values of α as follows: 

 

( 1) / ( ) /a dT t dT t d dTϕ= + =                                     (10) 

The analytic expression for the wavelet network derivative  /d dTϕ  can be found in 
[14]. Due to space limitations we will refer to the works of [5, 9] for the estimation of 
parameters in equations (2), (3), (6) and (8). 
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3 Wavelet Neural Networks for Multivariate Process Modeling. 

Here the emphasis is in presenting the theory and mathematics of wavelet neural 
networks. So far in literature various structures of a WN have been proposed [8, 13, 
22]. In this study we use a multidimensional wavelet neural network with a linear 
connection of the wavelons to the output. Moreover in order for the model to perform 
well in linear cases we use direct connections from the input layer to the output layer. 
A network with zero hidden units (HU) is the linear model. 

The network output is given by the following expression: 

 [2] [2] [0]
1

1 1
( ) ( )

m

j j i i
j i

y w w w x
λ

λ+
= =

= + ⋅Ψ + ⋅∑ ∑x x  (11) 

 
In that expression, Ψj(x) is a multidimensional wavelet which is constructed by the 

product of m scalar wavelets, x is the input vector, m is the number of network inputs, 
λ is the number of hidden units and w stands for a network weight. Following [23] we 
use as a mother wavelet the Mexican Hat function. The multidimensional wavelets are 
computed as follows: 

 
1

( ) ( )
m

j ij
i

zψ
=

Ψ =∏x  (12) 

where ψ is the mother wavelet and 

 
[1]
( )

[1]
( )

i ij
ij

ij

x w
z

w
ξ

ζ

−
 (13) 

 
In the above expression, i = 1, …, m,  j = 1, …, λ+1 and the weights w correspond 

to the translation  ( [1]
( )ijw ξ ) and the dilation ( [1]

( )ijw ζ ) factors. The complete vector of the 
network parameters comprises: 

 ( )[0] [2] [2] [1] [1]
1 ( ) ( ), , , ,i j ij ijw w w w w wλ ξ ζ+=  (14) 

 
There are several approaches to train a WN. In our implementation we have used 

ordinary back-propagation which is less fast but also less prone to sensitivity to initial 
conditions than higher order alternatives. The weights [0]

iw , [2]
jw  and parameters [1]

( )ijw ξ  
and [1]

( )ijw ζ  are trained for approximating the target function. 
In WN, in contrast to NN that use sigmoid functions, selecting initial values of the 

dilation and translation parameters randomly may not be suitable, [22]. A wavelet is a 
waveform of effectively limited duration that has an average value of zero and 
localized properties hence a random initialization may lead to wavelons with a value 
of zero. Also random initialization affects the speed of training and may lead to a 
local minimum of the loss function, [24]. In literature more complex initialization 
methods have been proposed, [13, 23, 25]. All methods can be summed in the 
following three steps. 
1. Construct a library W of wavelets 
2. Remove the wavelets that their support does not contain any sample points of the 

training data. 
3. Rank the remaining wavelets and select the best regressors. 
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The wavelet library can be constructed either by an orthogonal wavelet or a 
wavelet frame. However orthogonal wavelets cannot be expressed in closed form. It is 
shown that a family of compactly supported non-orthogonal wavelets is more 
appropriate for function approximation, [26]. The wavelet library may contain a large 
number of wavelets. In practice it is impossible to count infinite frame or basis terms. 
However arbitrary truncations may lead to large errors, [27]. 

In [23] three alternative methods were proposed in order to reduce and rank the 
wavelet in the wavelet library namely the Residual Based Selection (RBS) a Stepwise 
Selection by Orthogonalization (SSO) and a Backward Elimination (BE) algorithm. In 
this study we use the BE initialization method that proved in previous studies to 
outperform the other two methods, [14, 23].  

All the above methods are used just for the initialization of the dilation and 
translation parameters. Then the network is further trained in order to obtain the 
vector of the parameters 0w w=  which minimizes the cost function. 

4 Modeling and Forecasting CAT and HDD indices 

In this section real weather data will be used in order to validate our model. The data 
set consists of 4015 values, corresponding to the average daily temperatures of 11 
years (1995-2005) in Paris, Stockholm, Rome, Madrid, Barcelona, Amsterdam, 
London and Oslo in Europe and New York, Atlanta, Chicago, Portland and 
Philadelphia in USA. Derivatives on the above cities are traded in CME. In order for 
each year to have equal observations the 29th of February was removed from the data. 
Finally, the model was validated in data consisting of 2 months, January – February, 
of daily average temperatures (2005-2006) corresponding to 59 values. Note that 
meteorological forecasts over 10 days are not considered accurate.  

The list of traded contracts in weather derivatives market is extensive and 
constantly evolving. However over 90% of the contracts are written on temperature 
CAT and HDD indices. In Europe, CME weather contracts for the summer months 
are based on an index of CAT. The CAT index is the sum of the daily average 
temperatures over the contract period. The average temperature is measured as the 
simple average of the minimum and maximum temperature over one day. The value 
of a CAT index for the time interval [ ]1 2,τ τ  is given by the following expression: 

2

1

( )T s ds
τ

τ∫                                                        (15) 

 
where the temperature is measured in degrees of Celsius. In USA, CME weather 
derivatives are based on HDD or CDD index. A HDD is the number of degrees by 
which daily temperature is below a base temperature, while a CDD is the number of 
degrees by which the daily temperature is above the base temperature,  
 
i.e., Daily HDD = max (0, base temperature – daily average temperature),  
 
       Daily CDD = max (0, daily average temperature – base temperature).  
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The base temperature is usually 65 degrees Fahrenheit in the US and 18 degrees 

Celsius in Europe. HDDs and CDDs are usually accumulated over a month or over a 
season. At the end of 2008, at CME were traded weather derivatives for 24 US cities2, 
10 European cities3, 2 Japanese cities4 and 6 Canadian cities5. 

Table 1 shows the descriptive statistics of the temperature in each city for the past 
11 years. The mean and standard deviation HDD represent the mean and the standard 
deviation of the HDD index for the past 11 years for a period of two months, January 
and February. For consistency all values are presented in degrees Fahrenheit. It is 
clear that the HDD index exhibits large variability. Similar the difference between the 
maximum and minimum is close to 70 degrees Fahrenheit in average for all cities 
while the standard deviation of temperature is close to 15 degrees Fahrenheit. Also for 
all cities there is kurotsis significant smaller than 3 and with exceptions of Barcelona 
Madrid and London there is negative skewness. 

Table 1. Descriptive Statistics of temperature in each city 

Mean St.Dev Max Min Skewness Kurtosis Mean HDD std. HDD 

Paris 54.38 12.10 89.90 13.80 -0.04 2.50 1368.40 134.95 

Rome 60.20 11.37 85.80 31.10 -0.04 1.96 1075.00 121.52 

Stockholm 45.51 14.96 79.20 -5.00 -0.09 2.33 2114.36 197.93 

Amsterdam 51.00 11.00 79.90 12.20 -0.18 2.54 1512.07 189.05 

Barcelona 61.56 10.59 85.70 32.60 0.09 2.03 899.23 102.75 

Madrid 58.61 13.84 89.80 24.90 0.17 1.94 1262.56 128.53 

New York 55.61 16.93 93.70 8.50 -0.15 2.08 1783.44 207.13 

London 52.87 10.03 83.00 26.70 0.02 2.36 1307.11 98.80 

Oslo 41.47 15.65 74.60 -8.70 -0.31 2.50 2404.53 236.19 

Atlanta 62.18 14.52 89.60 13.70 -0.45 2.25 1130.75 121.19 

Chicago 50.61 19.40 91.40 -12.90 -0.25 2.17 2221.33 211.89 

Portland 46.80 17.36 83.20 -3.70 -0.22 2.22 2382.04 192.47 

Philadelphia 56.02 17.13 90.50 9.50 -0.19 2.03 1766.98 211.65 
 

                                                 
2 Atlanta, Detroit, New York, Baltimore, Houston, Philadelphia, Boston, Jacksonville, Portland, 

Chicago, Kansas City, Raleigh, Cincinnati, Las Vegas, Sacramento, Colorado Spring, Little 
Rock, Salt Lake City, Dallas, Los Angeles, Tucson, Des Moines,  Minneapolis-St. Paul, 
Washington, D.C..  

3 Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Paris, Rome, Stockholm, Oslo. 
4 Tokyo, Osaka. 
5 Calgary, Montreal, Vancouver, Edmonton, Toronto, Winnipeg. 
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Next we forecast the two months, 59 days, ahead out-of-sample forecasts for the 
CAT and cumulative HDD indices. Our method is validated and compared against 
two forecasting methods proposed in prior studies, the historical burn analysis (HBA) 
and the Benth’s & Saltyte-Benth’s (B-B) model which is the starting point for our 
methodology. 

Table 2 shows the relative (percentage) errors for the CAT index of each method. 
It is clear that the proposed method using WN outperforms both HBA and B-B. More 
precisely the WN give smaller out-of-sample errors in 9 out of 13 times while it 
outperforms B-B in 11 out of 13 times. It is clear that the WN can be used with great 
success in European cities where the WN produces significant smaller errors than the 
alternative methods. Only in Oslo and Amsterdam WN performs worse than the HBA 
method but still the forecasts are better than the B-B. In USA cities WN produces the 
smallest out of sample error in three cases while HBA and B-B produce the smaller 
out of sample error in one and two cases respectively. Observing Table 1 again, we 
notice that when the temperature shows large negative skewness, with exception of 
New York, Portland and Philadelphia, the proposed method is outperformed either by 
HBA or by B-B. On the other hand in the cases of Barcelona and Madrid where the 
skewness is positive the errors using the wavelet network method are only 0.03% and 
0.74% and significant smaller than the errors produced by the other two methods. 
Table 3 shows the relative (percentage) errors for the HDD index of each method. The 
results are similar. 

Finally we examine the fitted residuals in model (6). Note that the B-B model, in 
contrast to the wavelet network  model, is based on the hypothesis that the remaining 
residuals follow the normal distribution. It is clear from Table 4 that only in Paris the 
normality hypothesis marginally accepted. The Jarque-Bera statistic is slightly higher 
than 0.05. In every other case the normality test is rejected. More precisely the Jarque-
Bera statistics are very large and the p-values are close to zero. Hence, alternative 
methods like wavelet analysis, must be used to capture the seasonal part of the data, 
[5]. 

Table 2. Relative errors for the three forecasting models. CAT index. 

Errors HBA B-B WNN 
Paris 10.63% 8.34% 7.12% 
Rome 4.49% 4.39% 3.93% 
Stockholm 10.34% 9.47% 9.29% 
Amsterdam 7.40% 8.60% 8.55% 
Barcelona 1.46% 0.19% 0.03% 
Madrid 7.18% 2.10% 0.74% 
New York 10.63% 9.02% 8.76% 
London 7.99% 6.07% 5.75% 
Oslo 2.87% 5.62% 4.53% 
Atlanta 2.21% 1.83% 2.58% 
Chicago 15.55% 10.22% 10.90% 
Portland 14.02% 8.87% 8.32% 
Philadelphia 8.45% 5.95% 5.92% 
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Table 3. Relative errors for the three forecasting models. HDD index. 

 HBA B-B WNN 
Paris 14.77% 11.58% 9.88% 
Rome 9.94% 9.71% 8.70% 
Stockholm 7.09% 6.49% 6.37% 
Amsterdam 9.57% 11.13% 11.06% 
Barcelona 4.50% 0.57% 0.10% 
Madrid 12.00% 3.51% 1.24% 
New York 15.86% 13.45% 13.07% 
London 12.52% 9.51% 9.01% 
Oslo 1.64% 3.20% 2.58% 
Atlanta 5.71% 4.74% 6.67% 
Chicago 15.45% 10.15% 10.82% 
Portland 11.05% 6.99% 6.56% 
Philadelphia 12.11% 8.53% 8.49% 

 

Table 4. Normality test for the B-B residuals 

 Jarque-Bera P-Value 
Paris 5.7762 0.054958 
Rome 170.12339 0.001 
Stockholm 60.355 0.001 
Amsterdam 44.6404 0.001 
Barcelona 685.835 0.001 
Madrid 69.52 0.001 
New York 53.91428 0.001 
London 11.66163 0.003947 
Oslo 37.272738 0.001 
Atlanta 403.0617 0.001 
Chicago 44.329798 0.001 
Portland 21.91905 0.001 
Philadelphia 89.54923 0.001 

5 Temperature Derivative Pricing. 

So far, we modeled the temperature using an Ornstein-Uhlenbeck process [9]. We 
have shown in [5] that the mean reversion parameter α in model (6) is characterized 
by significant daily variation. Recall that parameter α is connected to our initial model  
with a e κ−=  where κ is the speed of mean reversion. It follows that, the assumption 
of a constant mean reversion parameter introduces significant error in the pricing of 
weather derivatives. In this section, we give the pricing formula for a future contract 
written on the HDD index that incorporate the time dependency of the speed of the 
mean reversion parameter. The corresponding equations for the CAT index already 
presented in [5].  

The CDD, HDD indices over a period 1 2[ , ]τ τ are given by 
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( )2

1

max ( ),0HDD c T s ds
τ

τ
= −∫                                    (16) 

( )2

1

max ( ) ,0CDD T s c ds
τ

τ
= −∫                                    (17) 

 
Hence, the pricing equations are similar for both indices.  

First, we re-write (1) where parameter κ, now is a function of time t, κ(t).  
 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t S t t dB tκ σ= + − +                     (18) 

From the Ito formula an explicit solution can be derived: 

 

( )0 0 0
( ) ( ) ( )

0
( ) ( ) (0) (0) ( ) ( )

t t s
tu du u du u du

T t S t e T S e s e dB s
κ κ κ

σ
−∫ ∫ ∫= + − + ∫     (19) 

 
Note that ( )tκ  is bounded away from zero. 

Our aim is to give a mathematical expression for the HDD future price. It is clear 
that the weather derivative market is an incomplete market. Cumulative average 
temperature contracts are written on a temperature index which is not a tradable or 
storable asset. In order to derive the pricing formula, first we must find a risk-neutral 
probability measure Q~P, where all assets are martingales after discounting. In the 
case of weather derivatives any equivalent measure Q is a risk neutral probability. If 
Q is the risk neutral probability and r is the constant compounding interest rate then 
the arbitrage free future price of a HDD contract at time 1 2t τ τ≤ ≤  is given by:   
 

( )2
2

1

( )
1 2max 0, ( ) ( , , ) | 0r t

Q HDD te c T d F t
ττ

τ
τ τ τ τ− − ⎡ ⎤Ε − − =⎢ ⎥⎣ ⎦∫ F     (20) 

and since HDDF  is tF  adapted we derive the price of a HDD futures to be 
 

( )2

1
1 2( , , ) max 0, ( ) |HDD Q tF t c T d

τ

τ
τ τ τ τ⎡ ⎤= Ε −⎢ ⎥⎣ ⎦∫ F                 (21) 

 
Using the Girsanov’s Theorem, under the equivalent measure Q, we have that  
 

( ) ( ) ( )dW t dB t t dtθ= −                                  (22) 
 
and note that ( )tσ  is bounded away from zero. Hence, by combining equations  (18) 
and (22) the stochastic process of the temperature in the risk neutral probability Q is: 
 

( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t s t t t dt t dW tκ σ θ σ= + − + +       (23)                                  
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where θ(t) is a real-valued measurable and bounded function denoting the market 
price of risk. The market price of risk can be calculated by historical data. More 
specifically θ(t) can be calculated by looking the market price of contracts. The value 
that makes the price of the model fits the market price is the market price of risk. 
Using Ito formula, the solution of equation (23)  is: 
 

( )0 0 0

0 0

( ) ( ) ( )

0

( ) ( )

0

( ) ( ) (0) (0) ( ) ( )

          ( ) ( )

t t s

t s

tu du u du u du

tu du u du

T t S t e T S e s s e ds

e s e dB s

κ κ κ

κ κ

σ θ

σ

−

−

∫ ∫ ∫= + − +

∫ ∫+

∫

∫
 (24)                            

 
By replacing this expression to (21) we find the price of future contract on HDD 
index at time t where 1 20 t τ τ≤ ≤ ≤ . Following the notation of [28] we have the 
following proposition. 
 
Proposition 1. The HDD future price for 1 20 t τ τ≤ ≤ ≤  is given by 

( )2 2

1 1
1 2

( , )( , , ) max ( ) | ( , )
( , )HDD Q t

m t sF t c T s ds v t s ds
v t s

τ τ

τ τ
τ τ

⎛ ⎞⎡ ⎤= Ε − = Ψ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
∫ ∫F  (25)                                      

where, 
( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )
s s u

t t t
sz dz z dz z dz

t
m t s c S s e T t e u u e du

κ κ κ
σ θ

−∫ ∫ ∫= − − − ∫     (26)

2 ( ) 2 ( )2 2( , , ) ( ) ( )
s u

t t
sz dz z dz

t
v t s x e u u e du

κ κ
σ θ

−∫ ∫= ∫                (27) 
 
and ( ) ( ) '( )x x x xΨ = Φ +Φ where Φ is the cumulative standard normal distribution 
function. 
 
Proof. From equation (21) and (24) we have that: 

( )2

1
1 2( , , ) max ( ) |HDD Q tF t c T s ds

τ

τ
τ τ ⎡ ⎤= Ε −⎢ ⎥⎣ ⎦∫ F  

and using Ito’s Isometry we can interchange the expectation and the integral 

( ) ( )2 2

1 1

max ( ) | max ( ) |Q t Q tc T s c T s ds
τ τ

τ τ
⎡ ⎤Ε − == Ε −⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫F F  

T(s) is normally distributed under the probability measure Q with mean and variance 
given by: 

[ ] ( ) ( ) ( )
( ) | ( ) ( ) ( ) ( )

s s u

t t t
sz dz z dz z dz

Q t t
E T s S s e T t e u u e du

κ κ κ
σ θ

−∫ ∫ ∫= + + ∫F  

[ ] 2 ( ) 2 ( )2( ) | ( ) ( )
s u

t t
sz dz z dz

Q t t
Var T s e u u e du

κ κ
σ θ

−∫ ∫= ∫F  
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Hence, ( )c T s− is normally distributed with mean given by ( , )m t s and variance given 
by 2 ( , )v t s and the proposition follows by standard calculations using the properties of 
the normal distribution.                                                                                                

6 Conclusions 

This paper proposes and implements a modeling and forecasting framework for 
temperature based weather derivatives. The proposed method is an extension of the 
works proposed by [5] and [9]. Here the speed of mean reversion parameter is 
considered to be a time varying parameter and it is modeled by a wavelet neural 
network. It is proved that the waveform of the activation function of the proposed 
network provides a better fit of the data. 

Our method is validated in a two month ahead out of sample forecast period. 
Moreover the relative errors produced by the wavelet network are compared against 
the original B-B model and historical burn analysis. Results show that the wavelet 
network outperforms the other methods. More precisely the wavelet network 
forecasting ability is better than the B-B and HBA in 11 times out of 13. Finally 
testing the fitted residuals of B-B we observe that the normality hypothesis is rejected 
in almost every case. Hence, B-B cannot be used for forecasts. Finally, we provided 
the pricing equations for temperature futures of a HDD index derivative when α is 
time depended. 

The results in this study are preliminary and can be improved. More precisely the 
number of sinusoids in equations (2) and (3) in B-B framework, representing the 
seasonal part of the temperature and the variance of residuals, are chosen according to 
[9]. Alternative methods can improve the fitting in the original data. Hence a better 
training set is expected for the wavelet network and more accurate forecasts. 

Another important aspect is to test the largest forecasting window of each method. 
Meteorological forecasts of a window larger than 10 days considered inaccurate. 
Hence, it is important to develop a model than can accurately predict daily average 
temperatures in larger windows. Also, this analysis will let us use the best model 
according to the desired forecasting interval. 
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