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Abstract 
In this paper we use wavelet neural networks to forecast cash money 
withdrawals in different locations in the UK. Cash demand needs to be 
forecasted accurately similarly to other products in vending machines, as an 
inventory of cash money needs to be ordered and replenished for a set period 
of time beforehand. If the forecasts are flawed, they induce costs: if the 
forecast is too high unused money is stored in the ATM incurring costs to the 
institution, similarly, if the ATM runs out of cash, profit is lost and customers 
are dissatisfied. Cash money demand represents a non-stationary, 
heteroscedastic process. The time series exhibits trends, singularities, 
seasonal and irregular structural components of the data as well as causal 
forces impacting on the data generating process. Having limited domain 
knowledge and no information on the causal forces we use wavelet analysis 
to extract the dynamics of the process. In order to evaluate our method we 
produce in-sample and out-of-sample forecasts in 11 different time series. 
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1. Introduction 

Wavelets analysis proved to be a valuable tool for analyzing a wide range 
of time-series and they have already been used with success in image 
processing, signal de-noising, density estimation, signal and image 
compression and time-scale decomposition (Donoho & Johnstone; 1994, 
1998). Wavelet techniques are also used in finance, for detecting the 
properties of quick variation of values (Zapranis & Alexandridis, 2007b). 
Wavelet decomposition is considered a powerful tool for approximation. 
However, the wavelet analysis is limited to applications of small input 
dimension since its constructing wavelet basis of a large input dimension is 
computationally expensive (Zhang, 1997). 

On the other hand neural networks can be used at large input dimension 
problems. Neural networks have the ability to approximate any non-linear 
process with no knowledge and assumptions of the nature of the process. 
However, in neural network framework the initial values of the weights are 
randomly chosen. Random initialization leads to large training times. 
Additionally the network usually converges to a local minimum of a specified 
loss function. Finally, the use of sigmoid networks does not provide any 
information about the network construction. 

Wavelet networks were proposed by Zhang & Benveniste (1992) as an 
alternative to feedforward neural networks hoping to elevate the weakness of 
each method. Wavelet networks are one hidden layer networks that use a 
wavelet as an activation function instead of the classic sigmoid function. The 
activation function can be a wavenet (orthogonal wavelets) or a wave frame 
(continuous wavelets). Wavelet networks are performing excellent in 
predicting nonlinear behaviours (Gao & Tsoukalas, 2001). Wavelets show 
local characteristics hence the hidden units of the wavelet network affect the 
prediction of the network only in a local range. (Postalcioglou & Becerikli, 
2007). 

Wavelet networks have been used in a variety of applications so far. They 
first have been used in static and dynamic input-output modelling (Zhang & 
Benveniste, 1992; Postalcioglu & Becerikli, 2007) and proved that wavelet 
networks need less training iterations. Szu et al. (1992) used wavelet 
networks for classification of phonemes and speaker recognition. Gao & 
Tsoukalas (2001) consider wavelet networks one of the most promising tools 
to solve electricity load prediction problems. Subasi et al. (2005) used wavelet 
networks for classification of electroencephalography (EEG) signals while 
Khayamian et al. (2005) used wavelet networks as a multivariate calibration 
method for simultaneous determination of test samples of copper, iron and 
aluminium.  

In contrast to sigmoid neural networks, wavelet networks allow constructive 
procedures that efficiently initialize the parameters of the network. Using 
wavelet decomposition a wavelet library can be constructed. Each wavelon 
can be constructed using the best wavelet of the wavelet library. These 
procedures allow the wavelet network to converge to a global minimum of the 
cost function. Also starting the network training very close to the solution 
leads to smaller training times. Finally, wavelet networks provide information 
of the participation of each wavelon to the approximation and the dynamics of 
the generating process.  

 



 

In this paper, in the context of a mean reverting process, we use wavelet 
neural networks to forecast cash money withdrawals in different locations in 
the UK. Cash demand needs to be forecasted accurately similarly to other 
products in vending machines, as an inventory of cash money needs to be 
ordered and replenished for a set period of time beforehand. If the forecasts 
are flawed, they induce costs: if the forecast is too high unused money is 
stored in the ATM incurring costs to the institution, similar, if the ATM runs out 
of cash, profit is lost and customers are dissatisfied. Cash money demand 
represents a non-stationary, heteroscedastic process. The time series 
exhibits, trends, singularities, seasonal and irregular structural components of 
the data as well as causal forces impacting on the data generating process.  

Having limited domain knowledge and no information on the causal forces 
we use wavelet analysis to extract the dynamics of the process. Wavelet 
Transform (WT) is localized in both time and frequency and overcomes the 
fixed time-frequency partitioning, (Daubechies, 1992). The time-frequency 
partition is long in time in low- frequencies and long in frequency in high-
frequencies. This means that the WT has good frequency resolution for low-
frequency events and good time resolution for high-frequency events.  Also, 
the WT adapts itself to capture features across a wide range of frequencies. 
Consequently the assumption of stationarity can be avoided, (Mallat, 1999).  

In order to evaluate our method we produce in-sample and out-of-sample 
forecasts in 11 different time series. 

The rest of the paper is organized as follows. In section 2, the data are 
described. In section 3 the cash money withdrawals modeled non-
parametrically using a wavelet neural network. A wavelet analysis is used in 
order to remove the noise and the outliers from the original time-series. The 
independent variables used for the network training were extracted from 
wavelet analysis. Then in-sample and out-of-sample forecasts presented. 
Finally, in section 4, we conclude. 

 
 

2. Time-series description 
 
 
The time series provided originate from different cash machines at 

different, randomly selected locations within England and are not related. All 
time series start on March 18, 1996 and run until March 22, 1998, providing 
two years of daily data. The data provided by the Neural Network Association 
and first presented in the NN5 competition. 

In this section the properties of the time-series are discussed. Observing 
Figure 1 someone can conclude that time evolution of cash money 
withdrawals are similar to temperature simulation used in weather derivative 
pricing and electricity load. Cash money demand represents a non-stationary, 
heteroscedastic process. The volume of cash money withdrawals shows 
strong evidence of seasonality. As it is shown in next section there are 
multiple overlying seasonalities, local trends and structural breaks. Other 
parameters that affect cash money withdrawals are the reoccurring holiday 
periods, regional special events that occur in different time periods and with 
different magnitude and bank holidays which affect differently each ATM. A 
closer inspection on the data reveals outliers and missing values. The 

 



 

dynamics of the time-series, such as seasonality, trends or volume, are 
changing over time. 

 
 

Figure 1: Cash demand from four different ATMs. 
 

 
 
It is clear that the driving forces are different for each ATM. Since the only 

available information is the level of the cash money withdrawal each day, we 
use wavelet analysis to extract the underlying process of each ATM. Wavelets 
have the ability to decompose a signal or a time-series in different levels. As a 
result, this decomposition brings out the structure of the underlying signal as 
well as trends, periodicities, singularities or jumps that cannot be observed 
originally. In this study we use the Daubechies wavelet family that proved to 
perform better than other wavelet families, (Daubechies, 1992).  

In (Zapranis & Alexandridis; 2007a,b) we give a concise treatment of 
wavelet theory. Here the emphasis is in presenting the theory and 
mathematics of wavelet neural networks and thus we give only the very basic 
notions of wavelets. Very briefly, a family of wavelets is constructed by 
translations and dilations performed on a single fixed function called the 
mother wavelet. A wavelet ψj is derived from its mother wavelet ψ by the 
relation: 
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where its translation factor mj and its dilation factor dj are real numbers (dj > 
0).  

In the context of process modeling applications, the wavelets are 
determined either by orthogonal wavelet decomposition or according to 
space-frequency analysis of the data. Another approach is to construct a 
feedforward wavelet neural network, which serves as a representation of a 
family of parameterized non-linear wavelet functions. The translation and 
dilation factors are real numbers and they are considered as network weights. 

 
In bibliography two mother wavelets are suggested the Gaussian derivative    
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and the second derivative of the Gaussian the so-called “Mexican Hat” 
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Following Zhang (1994) we use as a mother wavelet the Mexican Hat 
function. Other mother wavelets can also be used. 

The structure of a single-hidden-layer feedforward wavelet network is given 
in Figure 2. The network output is given by the following expression: 
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  In that expression, Ψj(x) is a multidimensional wavelet which is constructed 
by the product of m scalar wavelets, x is the input vector, m is the number of 
network inputs, λ is the number of hidden units and w stands for a network 
weight. The multidimensional wavelets are computed as follows: 
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In the above expression, i=1…m, j = 1…λ+1 and the weights w correspond to 

the translation ( ( )
[1]
ijw ξ ) and the dilation ( ) factors. The complete vector of 

the network parameters comprises: 
( )
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Here we have to note that the families of multidimensional wavelets 
preserve the universal approximation property that characterizes neural 
networks. For detailed exposition wavelet networks we refer to, for example 
Zhang et al. (1992), Oussar et al. (2000), Oussar et al. (1998) and Zhang 
(1997). 
 

Figure 2: The structure of a Wavelet Neural Network. 
 

 
 

 
3. Methodology 

 
Each series consists of data ranging from 18 of March 1996 until 22 of 

March 1998 resulting in 735 values. In order to overcome the data 
inconsistencies discussed earlier data is splitted in two groups according to 
the weekday of withdrawals. For example the Thursday, 2nd of January 1997 
will be matched with the first Thursday of 1998, 1st of January.  Each series is 
splitted in two vectors y1 and y2 where y1 contains the observations from 
Tuesday 19 March 1997 until Monday 17 March 1997 and y2 contains the 
observations from Tuesday 18 Match 1997 until Monday 16 March 1998. Both 
y1 and y2 have 364 data points. The first and the last six values of each time-

 



 

series were not used. Next the vector y is formed where y is the average of y1 
and y2.   

The missing data and the outliers lead to misleading average values. 
Hence the corresponding observation removed from vector y. Figure 3 shows 
the average values of the first ATM. For simplicity we will refer only to the third 
ATM. The analysis and results for the rest of the time-series are similar. 

 
Figure 3: Average cash demand. 

 

 
 
Next we use  wavelet analysis in order to extract the underlying dynamics. 

Figure 4 shows the wavelet decomposition. The Daubechies 7 at level 7 
wavelet was used. The wavelet transform decomposes the original signal into 
seven details and one approximation. It is clear that the approximation (a7) 
captures the seasonality of one year that is also clear in Figures 1 and 3. The 
lower detail catpures the noise part of the original signal. Perfoming a single 
sample Kolmogorov-Smirnov goodness-of-fit hypothesis test at d1 the p-
value=0.056 leading to the acceptance of the hypothesis that d1 follows a 
standard normal N(0,1) distribution at significanse level of 5%. In d2 the 
weekly seasonality is shown which is also clear in Figure 4. Details 3, 4, 5 and 
6 capture seasonalities that originaly cannot be observed. For exampple, at d6 
as seasonalityof two months is captured. However its effect is stronger in the 
beginning of the year and fades later on. If the two months seasonality is 
ignored forecasts in the beginning of the year will be understimated. Similarly, 
if the seasonality considered constant, forecasts at the end of the year will be 
overestimated. In d2 and d3 at days 45 and 287 two large spikes are shown 
representing an outlier or a jump at the time-series. These values if included 
will affect the network train and consequently the forecasts. 

So far wavelets used to denoise the original signal and to extract the 
dynamics of the underlying cash withdrawals process of each ATM. Next the 
wavelet decomposition is used as an input to the wavelet neural network. First 

 



 

the data were rescaled to [-1,1] domain and were transformed according to 
equation (2.6). The vector y contains the target values.  

 
Figure 4: Wavelet decomposition and the original signal. 

 

 
 
One of the most crucial steps is to identify the correct topology of the 

network. A network with less hidden units than needed will not be able to 
learn the underlying function while selecting more hidden units than needed 
the network will overfit the data – the network will learn part of the noise. In 
order to select the correct network we use the cross-validation criterion. 

In v-fold cross-validation from our initial training sample, of length n, we 
create ν random sub-samples without replacement, , of size m, where 

 and m<n. Here a 10% fold of the original training sample was used. 
Next the sub-samples  are removed one by one from the original sample 

 and a network is trained on the remaining data. Then the trained network 
is evaluated, on the removed sample, using the prediction risk measure. The 
network is evaluated using the averaged square errors function. The 
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procedure is repeated for each hidden unit and the network with the smallest 
prediction risk is selected. Figure 5 shows optimal the number of hidden units 
selection and the prediction risk for the selected time-series.  

Figure 5: Cross-Validation 
 

 
 

Table 1 shows the topology for all 11 time series while Figure 6 shows the 
original and the fitted data. It is clear that the network was able to learn the 
underlying process very well. Moreover as presented in Table 2 the POCID 
and IPOCID are 83.47% and 69.14% meaning that the network can predict 
the movement in changes of the cash money withdrawals. The MAE is only 
0.97 when the maximum observation is 15.98 and the minimum is 1.86. 
Finally, performing a Kolmogorov-Smirnov goodness-of-fit hypothesis test we 
accept the hypothesis that the error follows a standard normal N(0,1) 
distribution. This means that the wavelet neural network acted as a second 
filter producing a denoised forecast. 

The next step is to produce out-of-sample forecasts. However the real data 
will be not available since the fall of 2008, hence we are not able to evaluate 
our method yet. Figure () shows the out-of-sample forecasts for the next 62 
days. 
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Table 1: Networks Topology 
 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 
H.U.1 2 2 1 1 5 1 1 1 6 6 2 

 
1 H.U.=Hidde
 

n Units. 

Figure 6: Original and fitted data. 

 
4. Conclusions 

 
 In this study a novel forecasting  

nalys
method presented. We used a wavelet

a is in order to decompose 11 different time series. The decomposition 
extracted the driving dynamics of the underlying process that leads the cash 
money withdrawals in the form of details and an approximation. Wavelet 
analysis was able to successfully capture and remove the noise from the 
original signal. In addition wavelet analysis indicated observations that should 
be removed from the training sample of the network. The remaining details 
and the approximation comprised the training sample to the wavelet network. 
Using the driving dynamics as inputs, results to a smaller network topology 
and less training time. Finally, in-sample and out-of-sample forecasts 
presented. 

 
 
 
 

 



 

Table 2: Error Criteria. 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

 

Md E1 A 0.8293 3.  4819 2. 6 332 4.6460 1.6819 3.0509 2.7363 2.  2972 3. 6 719 1.9585 2.2251 
MAE2 0.9741 4.5818 3.0056 5.16 4 2.1778 3.9237 3.4423 2.8428 4.2804 2.4858 2.6070 8

MaxAE3 3.9331 20.7510 12.400 19.1574 13.3056 15.5776 17.7972 12.5829 20.8330 11.1435 17.1659 
RMSE4 1.2245 0.3021 3.8119 6.2624 2.8759 5.0256 4.3710 3.6277 5.4708 3.2974 3.3644 
NMSE5 0.1740 0.3021 0.2912 0.3104 0.2418 0.3528 0.3860 0.3319 0.2285 0.1222 0.2654 
MSE6 1.4994 33.8928 14.5312 39.2181 8.2709 25.2575 19.1060 13.1603 29.9304 10.8731 11.3198 

MAPE7 14.62% 33.13% 18.23% - 14.94% 29.76% 32.62% 19.7130 19.74% 12.86% - 
8 13.81% 25.87% 16.95% SMAPE 28.23 14.17 24.75 17.77  18.28 12.17 21.63% % 23.68% % 32 % % % 

POCID9 83.47% 86.22% 79.33% 80.71% 85.67% 83.74% 87.05% 89.80% 89.80% 88.70% 83.19% 
IPOCID10 69.14% 67.&6% 66.66% 66.66% 79.06% 65.84% 65.84% 72.72% 77.13% 68.87% 72.72% 
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Figure 7: Forecasts 
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