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Abstract 
  

  In this paper we use wavelet neural networks to model and remove the seasonal 
cycle as well as any possible trends, singularities or jumps of the temperature 
process. Moreover, we give a complete framework for structuring and training feed 
forward wavelet neural networks via back-propagation. As we demonstrate here, 
wavelet networks simplify significantly the mathematics of weather derivatives pric-
ing, since no particular functional form is assumed. Our findings suggest that wave-
let networks can model the temperature process very well and consequently they 
constitute a very accurate and efficient tool for weather derivatives pricing.    

 

1. Introduction 
 

Since their inception in 1996, weather derivatives have known a substantial growth. The 
first parties to arrange for, and issue weather derivatives in 1996, were energy companies, 
which after the deregulation of energy markets were exposed to weather risk. In September 
1999, the Chicago Mercantile Exchange (CME) launched the first exchange traded weather 
derivatives. In 2004, the notional value of CME weather derivatives was $2.2 billion and 
grew nine-fold to $22 billion through September 2005, with open interest exceeding 300,000 
and volume surpassing 630,000 contracts traded. However, the Over-The-Counter (OTC) 
market is still more active than the exchange, so the bid-ask spreads are quite large. Today, 
weather derivatives are being used for hedging purposes by companies and industries, whose 
profits can be adversely affected by unseasonal weather or, for speculative purposes by hedge 
funds and others interested in capitalizing on those volatile markets. 

A weather derivative is a financial instrument that has a payoff derived from variables such 
as temperature, snowfall, humidity and rainfall. However, it is estimated that 98-99% of the 
weather derivatives now traded are based on temperature. This is not surprising since, it is 
estimated that 30% of the US economy is affected by temperature (CME, 2005). The elec-
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tricity sector is especially sensitive to the temperature. According to Li and Sailor (1995) and 
Sailor and Munoz (1997), temperature is the most significant weather factor explaining elec-
tricity and gas demand in the United States. The impact of temperature in both electricity de-
mand and price has been considered in many papers, including Henley and Peirson (1998),  
Peirson and Henley (1994) and  Engle et al (1992). Unlike insurance and catastrophe-linked 
instruments, which cover high-risk and low probability events, weather derivatives shield rev-
enues against low-risk and high probability events (e.g., mild or cold winters).   

Weather risk is unique in that it is highly localized, and despite great advances in meteoro-
logical science, still cannot be predicted precisely and consistently. Weather derivatives are 
also different than other financial derivatives in that the underlying weather index (HDD, 
CDD, CAT, etc.) cannot be traded. Furthermore, the corresponding market is relatively illiqu-
id. Consequently, since weather derivatives cannot be cost-efficiently replicated with other 
weather derivatives, arbitrage pricing cannot directly apply to them. The weather derivatives 
market is a classic incomplete market, because the underlying weather variables are not trad-
able. When the market is incomplete, prices cannot be derived from the no-arbitrage condi-
tion, since it is not possible to replicate the payoff of a given contingent claim by a controlled 
portfolio of the basic securities. Consequently, the classical Black-Scholes-Merton pricing 
approach, which is based on no-arbitrage arguments, cannot be directly applied. And market 
incompleteness is not the only reason for that; weather indices do not follow random walks 
(as the Black & Scholes approach assumes) and the payoffs of weather derivatives are deter-
mined by indices, which are average quantities, whilst the Black-Scholes payoff is determined 
by the value of the underlying exactly at the maturity date of the contract (European options).  

There are several approaches for dealing with incomplete markets. One of them is to intro-
duce the ‘market price of risk’ for the particular type of the incomplete market, namely a ‘fac-
tor model’, market where there are some non-traded underlying objects. Since, weather deriv-
atives are path depended they are very similar to the average Asian option and similar analyti-
cal pricing approaches can be used in this case too. A characteristic example is the approach 
of Geman and Yor (1993), which used Bessel processes to obtain an exact analytical expres-
sion of the Laplace transformation in time of the option price. 

A pricing methodology for weather derivatives that is widely used in insurance is the actu-
arial (or insurance) method. It is based on statistical analysis and it is less applicable in con-
tracts with underlying variables that follow recurrent, predictable patterns. Since, this is the 
case for most of the weather derivatives contracts, actuarial analysis is not considered the 
most appropriate pricing approach unless the contract is written on rare weather events such 
as extreme cold or heat.  

Another approach for weather derivatives pricing, is performing simulations based on his-
torical data, known as historical Burn analysis. That is, computing the average payoff of the 
weather derivatives in the past n years. The central assumption of this method is that the his-
torical record of weather contracts payoffs gives a precise illustration of the distribution of the 
potential payoffs (Dischel, 1999). If weather risk is calculated as the payoffs standard devia-
tion, then the price of the contract will be P(t) = D(t, T) × (μ ± α × σ), where D(t, T) is the 
discount factor from contract maturity T to the pricing time t, μ is the historical average 
payoff, σ is the historical standard deviation of payoffs and a is a positive number denoting 
risk tolerance. However, since the weather processes are not stationary and this approach does 
not incorporate forecasts, it is bound to be biased and inaccurate. In fact, the historical Burn 
analysis is considered as the simplest pricing method in terms of implementation, and the 
most probable to cause large pricing errors. 
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In contrast to the previous methods, a dynamic model can be used which directly simulates 
the future behavior of temperature. Using models for daily temperatures can, in principle, lead 
to more accurate pricing than modeling temperature indices. In the process of calculating the 
temperature index, such as HDD, as a normal or lognormal process, a lot of information is 
lost (e.g., HDD is bounded by zero). On the other hand, deriving an accurate model for the 
daily temperature is not a straightforward process. Observed temperatures show seasonality in 
all of the mean, variance, distribution and autocorrelations and long memory in the autocorre-
lations. The risk with daily modeling is that small misspecifications in the models can lead to 
large mispricing in the contracts. 

The continuous processes used for modeling daily temperatures usually take a mean-
reverting form, which has to descretized in order to estimate its various parameters. Once the 
process is estimated, one can then value any contingent claim by taking expectation of the 
discounted future payoff. Given the complex form of the process and the path-dependent na-
ture of most payoffs, the pricing expression usually does not have closed-form solutions. In 
that case Monte-Carlo simulations are being used. This approach typically involves generat-
ing a large number of simulated scenarios of weather indices to determine the possible 
payoffs of the weather derivative. The fair price of the derivative is then the average of all 
simulated payoffs, appropriately discounted for the time-value of money; the precision of the 
Monte-Carlo approach is depended on the correct choice of the temperature process and the 
look back period of available weather data. 

In this paper, we address the problem of pricing the European CAT options. For this pur-
pose we extent the mean-reverting process with seasonality in the level and volatility pro-
posed by Benth and Saltyte-Benth (2005) - a generalization of (Dornier and Querel, 2000) 
which is descretized in the form of an AR(1) model. We estimate non-parametrically the tem-
perature process with a wavelet network. We use 10 years of monthly average temperatures in 
Paris, in order to identify the wavelet network and 1 year to validate it. 

Given the temperature model, the first step is to identify and remove from the temperature 
series the (possible) trend and the non-stationary seasonal cycle, hoping that what is left will 
be stationary. This is usually done by modeling the seasonal variations as deterministic and 
the same every year (seasonally stationary). The stochastic variability of the temperature is 
then moved entirely from the seasonal cycle into the residuals.  

In modeling the seasonal cycle deterministically, there are several approaches. The discrete 
Fourier transform (DTF) is considered to be the most accurate, since, in principle at least, re-
moves the seasonal cycle both in the mean and in the variance. For a detailed discussion on 
this subject see Jewson and Brix (2005). However, recently Zapranis and Alexandridis (2006, 
2007a,b) proposed a novel approach in modeling the seasonal cycle which is an extension of 
the DFT approach. As it was shown, wavelet analysis is very useful in offering guidance as to 
which terms of the Fourier series to select. The wavelet decomposition brings out the struc-
ture of the underlying temperature series as well as trends, periodicities, singularities or jumps 
that could not be observed originally (Alaton et al., 2000 and Davis, 2001). However wavelet 
analysis may lead to significant errors since the selection of the terms of Fourier series is done 
by optical examination. To avoid this a new class of neural network, called wavelet networks, 
is used in this paper. 

Wavelet networks proposed by Zhang & Benveniste (1992) as an alternative to feedforward 
neural networks. Wavelet Networks are one hidden layer networks that use a wavelet as an 
activation function instead of the classic sigmoid function. The activation function can be a 
wavenet (orthogonal wavelets) or a wave frame (continuous wavelets). Wavelet networks are 
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performing excellent in predicting nonlinear behaviors (Gao & Tsoukalas, 2001). Wavelets 
show local characteristics hence the hidden units of the wavelet network affect the prediction 
of the network only in a local range. (Postalcioglou & Becerikli, 2007). 

Wavelet networks have been used in a variety of applications so far. They first have been 
used in static and dynamic input-output modeling (Zhang & Benveniste, 1992; Postalcioglu & 
Becerikli, 2007) and proved that wavelet networks need less training iterations. Szu et al. 
(1992) used  for classification of phonemes and speaker recognition. Gao & Tsoukalas (2001) 
consider wavelet networks one of the most promising tools to solve electricity load prediction 
problems. Subasi et al. (2005) used wavelet networks for classification of electroencephalo-
graphy (EEG) signals while Khayamian et al. (2005) used wavelet networks as a multivariate 
calibration method for simultaneous determination of test samples of copper, iron and alumi-
num.  

In our knowledge, we are the first to implement wavelet networks in temperature derivates 
for CAT future pricing. Our aim is to  use wavelet networks to automatically model and re-
move the seasonality and the possible trends of the temperature. Wavelet analysis can decom-
pose a signal into a series of approximations and details. By examining the decomposed sig-
nal the terms of the seasonal cycle are selected. Wavelet networks on the other hand approx-
imate the original signal and can automatically remove the seasonal cycle from the data. 
While we avoid any errors we lose the information of the structure of the underlying tempera-
ture process. The same amount of information, as in wavelet analysis, can be obtained using 
wavelet networks but it needs heavy computation and time. 

In this paper we use a wavelet network in order to model and remove from our data the sea-
sonal cycle of the temperature as well as any possible trends, singularities or jumps of the 
temperature process. More precisely, the rest of the paper is organized as follows. In section 
2, we describe the process used to model the average daily temperature in Paris. In section 3 
we describe the wavelet network. In section 3.1 we give a brief background in wavelet theory. 
In section 3.2 we describe the structure of wavelet networks. In section 3.3 we present the 
training algorithm for the network. In section 3.4 we present the initialization conditions of 
the network parameters and in section 3.5 the stopping conditions for the training of the net-
work. In section 4 we use wavelet networks to different simulated examples. In section 4.1 we 
examine a static function. In section 4.2 we give an example of analyzing a simulated upward 
trend with an AR(3) noise component, in section 4.3 we analyze a Geometric Brownian. In 
section 5 we apply our model to real data. In section 6 we discuss CAT derivatives pricing 
and finally, in section 7 we conclude. 

 

2. Modeling Temperature Processes 
 
Many different models have been proposed in order to describe the dynamics of a tempera-

ture process. The common assumptions in all these models concerning the temperature are the 
following: it follows a predicted cycle, it moves around a seasonal mean, it is affected by 
global warming, it appears to have autoregressive changes, its volatility is higher in winter 
than in summer. 

Early models were using AR(1) processes or continuous equivalents (Alaton et al., 2002; 
Davis, 2001; Cao and Wei, 2000). Others like Dornier and Querel (2000) and Moreno (2000) 
have suggested versions of a more general ARMA(p,q) model. Cabalero et al. (2002) have 
shown, however, that all these models fail to capture the slow time decay of the 
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autocorrelations of temperature and hence lead to significant underpricing of weather options. 
Thus more complex models were proposed, like an Ornstein-Uhlenbeck process (Brody et al, 
2002). Also in the noise part of the process, the Brownian noise was at first replaced by a 
fractional Brownian noise and then by a Levy process (Benth and Saltyte-Benth, 2005). A 
temperature Ornstein-Uhlenbeck process is: 

 
( ) ( ) ( ( ) ( )) ( ) ( )dT t dS t T t S t dt t dB tκ σ= − − +                                                                      (2.1)                     

 
where, T(t) is the daily average temperature, B(t) is a standard Brownian motion, S(t) is a de-
terministic function modelling the trend and seasonality of the average temperature, while σ(t) 
is the daily volatility of temperature variations. In Benth’s and Saltyte-Benth’s (2005) model 
both S(t) and σ2(t) as a truncated Fourier series: 
 

1 1

0
1 1

( ) sin(2 π( ) / 365) cos(2 π( ) / 365)
I J

i i j j
i j

S t a bt a a i t f b j t g
= =

= + + + − + −∑ ∑                      (2.2)     

 
2 2

2

1 1
( ) sin(2 π / 365) cos(2 π / 365)

I J

i j
i j

t c c i t d j tσ
= =

= + +∑ ∑                               (2.3) 

 
From the Ito formula an explicit solution for (2.1) can be derived: 
 

( )

1
( ) ( ) ( ( 1) ( 1)) ( ) ( )

tt t u

t
T t s t T t s t e u e dB uκ κσ− − −

−
= + − − − + ∫                (2.4)                     

 
According to this representation T(t) is normally distributed at t and it is reverting to a mean 

defined by S(t).  
A discrete approximation to the Ito formula (2.4), which is the solution to the mean revert-

ing Ornstein-Uhlenbeck process (2.1), is: 
 

{ } ( ){ }( 1) ( ) ( 1) ( ) (1 ) ( ) ( ) ( 1) ( )kT t T t S t S t e T t S t t B t B tσ−+ − = + − − − − + + −                   (2.5) 

 
which can be written as: 
    

( 1) ( ) ( ) ( )T t aT t t tσ ε+ = +                                                                    (2.6) 
 
where  

 
( ) ( ) ( )T t T t S t= −                     (2.7) 

 
ka e−=                      (2.8) 

 
In order to estimate model (2.6) we need first to remove the trend and seasonality compo-

nents from the average temperature series. 
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Zapranis & Alexandridis (2007a) used wavelet analysis in order to identify and remove the 
trend and the seasonal component of the daily average temperatures in Paris. Then a neural 
network modelled the seasonal variance of the residuals of eq. (2.6). In a more recent work, 
Zapranis & Alexandridis (2007b) used both wavelet analysis and neural network in order to 
identify the seasonal component and proved that this approach gives better results. 

In this paper a different approached is adopted. The trend and the seasonality of monthly av-
erage temperatures is modelled and removed by a new class of neural networks, called wave-
let networks. This method combines both the power of wavelet analysis and neural networks. 
Instead of identifying the seasonal component by an optical examination, which may lead to 
wrong conclusions, this is done automatically. Hence, equation (2.6) reduces to: 

 
( )( ) ( 1) tT t T t eϕ= − +                                                                                                          (2.9) 

 
where φ(●) is estimated non-parametrically by a wavelet network and T(t)  now refers to 
monthly average temperatures. 
 

3. Wavelet Neural Networks for Multivariate Process Modeling 
 

3.1 Wavelets for application modeling 

In (Zapranis & Alexandridis; 2007a,b) we give a concise treatment of wavelet theory. Here 
the emphasis is in presenting the theory and mathematics of wavelet neural networks and thus 
we give only the very basic notions of wavelets. Very briefly, a family of wavelets is con-
structed by translations and dilations performed on a single fixed function called the mother 
wavelet. A wavelet ψj is derived from its mother wavelet ψ by the relation: 

 

( ) ( )j
j j

j

x m
x z

d
ψ ψ ψ

−
= =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠                                                                                             (3.1)

 

where its translation factor mj and its dilation factor dj are real numbers (dj > 0).  
  In the context of process modeling applications, the wavelets are determined either, by or-
thogonal wavelet decomposition or, according to space-frequency analysis of the data. Anoth-
er approach is to construct a feedforward wavelet neural network, which serves as a represen-
tation of a family of parameterized non-linear wavelet functions. The translation and dilation 
factors are real numbers and they are considered as network weights.  
  Following Oussar et al (1998) we use as a mother wavelet the Gaussian function: 
   

 ( )
21

2
a

a aeψ
−

= −                                                                                                                   (3.2) 
 
which is a differentiable version of the Haar mother wavelet. Other mother wavelets can also 
be used. 
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FIG. 1. A wavelet feedforward neural network. 
 
 
3.2 The structure of wavelet neural networks 
  
 The structure of a single-hidden-layer feedforward wavelet network is given in figure 1. The 
network output is given by the following expression: 

  
( ) ( )[2] [2] [0]

1
1 1

ˆ
m

j j i i
j i

y w w w x
λ

λ+
= =

= + ⋅Ψ + ⋅∑ ∑x x                                                                           (3.3) 

  In that expression, Ψj(x) is a multidimensional wavelet which is constructed by the product 
of m scalar wavelets, x is the input vector, m is the number of network inputs, λ is the number 
of hidden units and w stands for a network weight. The multidimensional wavelets are com-
puted as follows: 

   
( ) ( )

1

m

j ij
i

zψ
=

Ψ =∏x
                                                                                                              (3.4)

  

where  
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( )

( )

[1]

[1]

i ij
ij

ij

x w
z

w
ξ

ζ

−
=

                                                                                                                     (3.5)
  

  In the above expression, i = 1, …, m,  j = 1, …, λ+1 and the weights w correspond to the 
translation ( ( )

[1]
ijw ξ ) and the dilation ( ( )

[1]
ijw ζ ) factors. The complete vector of the network para-

meters comprises: 

                                                                                     (3.6) 

Here we have to note that the families of multidimensional wavelets preserve the universal 
approximation property that characterize neural networks.    
 
3.3 Training a wavelet network with back-propagation 

The error ep for  pattern p is simply the difference between  the target (yp) and the network 
output (yp hat in the following expression). By squaring and multiplying by ½ we take the 
pairwise error Ep which is used in network training: 

 

( )2 21 1ˆ
2 2p p p pE y y e= − =

                                                                                                    (3.7) 
 
The training minimizes the quadratic cost functional (or loss function):  
 

2

1 1

1
2

n n

n p p
p p

L E e
= =

= =∑ ∑
                                                                                                           (3.8) 

  
  The minimization is performed by iterative gradient-based  methods. In our implementation 
we have used ordinary back-propagation (less fast but less prone to sensitivity to initial condi-
tion than higher order alternatives). The updating of the parameters is performed by the fol-
lowing (delta) rule: 
  

 
( )1 1

1

n
t t t t

t

Lw w w w
w

η κ− −
−

⎛ ⎞∂
= + − + −⎜ ⎟∂⎝ ⎠                                                                             (3.9) 

where η is the learning rate. Also a momentum term, defined by κ, is induced which increases 

the training speed. The learning rate and momentum speed take values between 0 and 1. 

The partial derivative of the cost function with respect to a weight w is given by: 

 

( )ˆ ˆ ˆ
ˆ

ˆ
p p p p p

p p p
p

E E y y y
y y e

w y w w w
∂ ∂ ∂ ∂ ∂

= = − − = −
∂ ∂ ∂ ∂ ∂

                                                                   (3.10) 
 
The equivalent expression for the cost functional is: 

( ) ( )( )[0] [2] [2] [1] [1]
1, , , ,i j ij ijw w w w wλ ξ ζ+=w
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1 1

ˆn n
p pn

p
p p

E yL e
w w w= =

∂ ∂∂
= = −

∂ ∂ ∂∑ ∑
                                                                                              (3.11)

 

 
The partial derivatives of the output of the network with respect to the bias term, the direct 
connections, the translation parameters and the dilation parameters are given by the following 
equations: 
 
 partial derivatives w.r.t. the bias term 

 

[2]
1

ˆ
1py

wλ+

∂
=

∂                                                                                                                          
 (3.12) 

 
partial derivatives w.r.t. the direct connections 

 

( )[2]

ˆ
1,...,p

j
j

y
j

w
λ

∂
= Ψ =

∂
x

                                                                                               
(3.13) 

 
partial derivatives w.r.t. the translation parameters 

 

( ) ( )
( )
( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )

[1] [1]

[2]
1 [1]

( )

[2]

1[1]
( )

ˆ ˆ

1          '

          '

ijp p j ij

j ijij ijij

j j ij mj
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j
j ij mj

ij

zy y z
w z wz

w z z z
w

w
z z z

w

ξ ξ

ζ

ζ

ψ

ψ

ψ ψ ψ

ψ ψ ψ

∂∂ ∂Ψ ∂
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∂ ∂Ψ ∂ ∂∂

−
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

x
x

                                                              (3.14) 

 
partial derivatives w.r.t. the dilation parameters 

 

( ) ( )
( )
( )

( )
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( ) ( ) ( )

( ) ( ) ( )

[1] [1]

[2]
1 [1]
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ˆ ˆ

1          '

          '
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j
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w
z z z

w

ξ ξ

ζ

ζ

ψ

ψ

ψ ψ ψ

ψ ψ ψ

∂∂ ∂Ψ ∂
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∂ ∂Ψ ∂ ∂∂

−
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x
x

                                                              (3.15) 

 
where the derivative of the mother wavelet is
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( ) ( ) ( )
21

22' 1ijzij
ij ij

ij

z
z e z

z
ψ

ψ
−∂

= = −
∂                                                                                      (3.16) 

3.4 Initialization of the network parameters 
 
In contrast to neural networks using sigmoid functions selecting initial values of the dilation 

and translation parameters randomly may not be suitable (Oussar et al.; 1998). A wavelet is a 
waveform of effectively limited duration that has an average value of zero and localized 
properties. Moreover, the selection of initial values are important because it affects the speed 
of training and approximation to the global or local minimum (Postalcioglu & Becerikli; 
2007). Zhang & Benveniste (1992) propose the following initialization for the translation and 
dilation parameters. 

 

( ) ( )[1] 0.5 i iijw N Mξ = +                                                                                                         (3.17) 

( ) ( )[1] 0.2 i iijw M Nζ = −
                                                                                                       (3.18) 

 
where Mi and Ni are defined as the maximum and minimum of input xi

 

 

( )
1,...,

maxi ipp n
M x

=
=                                                                                                                 (3.19) 

( )
1,...,

mini ipp n
N x

=
=                                                                                                                  (3.20) 

 
Although, more complex initialization methods have been proposed, (Oussar & Dreyfus, 
2000) the previous heuristic method is simple and efficient. The initialization of the direct 

connections  and the weights  is less important and they are initialized in small ran-

dom values between 0 and 1. 
 
3.5 Stopping conditions for training 

 

The weights , and   and parameters  and  are trained for approximating 

the target function. When one of the following criteria is met - the cost function reaches a 
fixed lower bound or the variations of the gradient or the variations of the parameters reaches 
a lower bound or the number of iterations reaches a fixed maximum, whichever is satisfied 
first – the training is stopped. 
 

4. Examples of Wavelet Networks Applications to Simulated Time-Series 
 
4.1 Analyzing a static function. 

 

[0]
iw [2]

jw

[0]
iw [2]

jw ( )
[1]

ijw ξ ( )
[1]

ijw ζ
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So far, wavelets have being used in a variety of applications such as signal de-noising, den-
sity estimation, variance-covariance estimation and signal compression. Wavelets are able, as 
it has already been mentioned, to capture changes and events in time-series that are not direct-
ly observable.  

 

FIG. 2. Nonlinear static model and approximation obtained by a W.N. (red line). 
 
 
On the other hand, neural networks have the ability to model non-linear processes without 

any assumption of the underlying function that produces the signal. In this section it is shown 
that the combination of these two methods, wavelet networks, have better results than neural 
networks or wavelet transform alone. 

As a first example a static model given by (4.1) is being used. In  there are 2 break-
points as well as changes in the function that are hard to model. This example proposed first 
by Zhang & Benveniste (1992). As shown in that paper wavelet networks can produce a bet-
ter approximation of the function  than a neural network with sigmoid activation func-
tion or a wavelet decomposition. Moreover it was shown that wavelet networks need less pa-
rameters to estimate, less training time and less hidden units than the neural networks and the 
wavelet transform. 

 

     
[ ]
[ ]

( )( ) [ ]0.05 0.5

2.186 12.864                         10, 2

( ) 4.246                                          2,0

10 sin 0.03 0.7    0,10x

x x

f x x x

e x x x− −

⎧− − ∈ − −
⎪⎪ ∈ −⎨
⎪

+ ∈⎪⎩

                                                   (4.1)          

 
The function  and the approximation produced by the wavelet network is shown in 

figure 2. A wavelet network with 10 hidden units and 1 hidden layer was used which corres-
ponds to a network with 32 parameters. The mother wavelet is given, as in the rest of the pa-
per, by the first derivative of a Gaussian function as shown in (3.2) 

( )f x

( )f x

( )f x
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First, the data x transformed into the [-1,1] domain. For the training procedure a set of 200 
uniformly sampled points used. The learning rate chosen to be 0.1 and the momentum term 
0.3.  

 
 

 

FIG. 3. Synthesized Signal. 
 
 

 

FIG. 4. The input x and the bias term. 
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FIG. 5. Outputs of each hidden unit. 
 

 

 
 
 

 

FIG. 6. Simulated time-series which consists of an upward trend plus an AR(3) noise component. 
 
 
The training of the network stopped when the mean square error was less than the maxi-

mum error threshold, 0.0001. It is clear that wavelet networks succeeded in  approximating 
(4.1). 

Figures 4 show the influence of the bias term and input x to the network output while figure 
5 show the output of each hidden unit. In figure 3 the synthesized signal of figures 4 and 5 
can be found. 

4.2 Analyzing a Simulated Signal: Upward Trend plus an AR(3) Noise Component 
 
Next, suppose that the signal  consists of a deterministic underlying component ( )tϕ  

and a noise part : 
 

( ) ( ) ( )T t t tϕ ε= +                                                                                 (4.2)         
 
In this example the signal consists of an upward trend plus a colored noise. The colored 

noise is produced by an AR(3) process: 

 
( ) -1.5 ( -1) - 0.75 ( - 2) - 0.125 ( - 3) 0.5 ( )z t z t z t z t tε= + +                                 (4.3) 

 

( )T t
( )tε
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where  are i.i.d. N(0,1). 
 

 

FIG. 7. The denoised signal of the simulated time-series which consists of an upward trend plus an 
AR(3) noise component. 

 
 
The upward trend is produced by an upward slope, as follows: 

 
/ 500 ( )    t<500

( )
1 ( )            t 500
t z t

t
z t

ϕ
+⎧

= ⎨ + ≥⎩                      (4.4) 

 
As it can be observed in the figure 6, the signal seems like noise. None inference can be 

drawn for its characteristics. 
As shown by Zapranis & Alexandridis (2006) wavelets are capable of extracting the under-

lying signal ( )tϕ . This was done using a discrete wavelet transform. In contrast, in this paper 
a non-orthogonal wavelet frame given by (3.2) is used. 

Wavelets networks succeeded to remove the noise and extract the denoised signal, which is 
depicted as a solid smooth line in figure 7. A network with 2 hidden units was used, which 
implies that the number of estimated parameters is 8. The learning rate was selected to be 0.1 
and the momentum term was selected to be 0.3. The wavelet network not only were able to 
extract the de-noised signal but also succeeded in distinguishing the breakpoint with good 
precision.  

 
4.3 Analyzing a Geometric Brownian Motion 

 
Many financial pricing models are based on the Geometric Brownian Motion. A GBM is 

produced by the following model: 

( )tε
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( ) ( )
21( )

20
T T

X t X e
μ σ σε− +

=                    (4.5) 

 

FIG. 8.  A geometric Brownian motion (1000 steps) with a jump in volatility at t = 500, where the ini-
tial volatility σ1 = 0.5 doubles to σ2 = 1.The smooth line represents the exponential upward trend  cap-
tured by the wavelet network.  

 
A simple GBM depends on the mean μ and the volatility σ, so it is essential to know 

whether and when, one or both parameters change. Here we examine, if wavelet networks can  
approximate the exponential underlying function and if they can capture changes in the pa-
rameters of the GBM model (a simulated path of a GBM process is represented in figure 8). 

The volatility of this path changes at t = 500 from σ1 = 0.5 to σ2 = 1. After applying the 
wavelet network the approximation in figure 4 shows clearly the de-noised signal (smooth 
line), which is the  function. Zapranis & Alexandridis (2006) showed that the wavelet de-
composition also captured the volatility change with a very good precision. Observing figure 
9 we conclude on the same result. It is clear that the increase of the random part of the GBM 
is clearly reflected near t = 510, while it actually doubles at t = 500, i.e., 

 

2 12T Tσ ε σ ε=                     (4.6) 

 
In this paper we have shown that wavelet networks work better than the classical neural 

networks or the wavelet transform. We applied wavelet networks in monthly average temper-
atures in order to remove the seasonal component and any possible trends from the data. The 
main advantage of this method is that wavelet networks remove the seasonal component (2.2) 
and the seasonal variance (2.3) automatically in one step. This method avoids any wrong con-
clusions by the optical examination of the wavelet analysis proposed by Zapranis & Alexan-
dridis (2007b). The drawback is that we lose information of the dynamics of the temperature.  

 

xe
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FIG. 9.  The change in volatility after the original signal removed by a wavelet network. 
 
 
 

  
 

 

 
FIG. 10.  Decomposition of wavelet analysis (top) and wavelet network (bottom). 

 
Figure 10 shows the decomposition of wavelet analysis and wavelet network. Wavelet anal-

ysis decompose the signal in a series of approximations and details. On the other hand, wave-
let networks produce only one output an. If a second wavelet network used in the remaining 
signal (d1+ d2+…+dn) approximation n-1 can be obtained. The rest approximations and de-
tails can produced by repeating the same methodology. It is clear that this method is much 
more time consuming and computational heavy. 

 

S    d1+ d2 +…+dn 

   an    a2 

…   d1 

  an 

  d1+ d2  

S    a1 

   d1 

  a2 

  d2 

…    an 

  dn 
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5. Weather Data 
 
In this section real time weather data will be used in order to select and validate our model. 

The data consists 3650 values, corresponding to the average daily temperatures of 10 years 
(1991-2000) in Paris, France. The 29th of February was removed from the data. Then the cu-
mulative monthly average temperatures were calculated, resulting to 120 values. Finally, the 
model was validated in data consisting of 1 year of daily average temperatures (2000-2001). 

The most important step in model selection is to select the correct number of hidden units. 
Zapranis & Alexandridis (2007b) used wavelet transform in order to identify the dynamics of 
the seasonal component of the temperature. Then a neural network with 10 inputs (the differ-
ent parts of the seasonal component), one hidden layer, one bias term and 10 hidden units es-
timated. The number of parameters  to estimate is 121. In this paper, the wavelet network 
consists of one input, x1, representing the average temperatures, one hidden layer, one bias 
term and one output. In wavelet network framework in order to have the same number of es-
timated parameters, a network with 40 hidden units must be estimated. Instead, we train the 
wavelet network for different numbers of hidden units. Then, we validate the different models 
and we select the one that gives the smallest out-of-sample mean square error. More precisely 
we train our wavelet network with hidden units varying from 25 to 80. Our experience sug-
gests that larger models will overfit the data while smaller models are not strong enough. 

Previous works suggests that weather forecasts beyond 10 days are not accurate. Similar, for 
averaging periods, monthly or seasonal forecasts must be used. Bigger periods induce signifi-
cant errors. Figure 12 shows the out-of-sample mean square error for 1,3,6,9 and 12 months.  

In this section a wavelet network with learning rate 0.1 and momentum 0.3 was used. The 
mother wavelet function is given by (3.2) which is the first derivative of a Gaussian function. 

Using a wavelet network with 30 hidden units for 1 month forecast, the mean square error is 
0.0000672 while the network with 55 hidden units is very large, 2.3498. For 3 months fore-
cast a wavelet network with 50 hidden units gives the smallest error, 0.0677. Smaller models 
give acceptable results. For 30 hidden units the mean square error is 0.1653. The network 
with 35 and hidden units give a large error, 1.6397 and 0.8150 respectively. 

For 6 months ahead, the wavelet networks with 25 and 30 hidden units give the best fore-
casts. The mean square errors are 0.6202 and 1.1293 respectively, and they are significant 
smaller than any other model (e.g. 50 hidden units, error 2.0621). 

For larger periods of forecasts the mean square error increases significantly. For 9 months 
forecast the best model is, again, the one with 30 hidden units and the mean square error is 
7.1502. The smallest out-of-sample mean square error for 12 errors is 9.6706 and corresponds 
to 30 hidden units while the second smallest mean square error is 12.5488, 50 hidden units. 

In almost all cases a large spike is clear when a model with 35 hidden units is used. The er-
ror is very large in all cases. This is happening probably because the wavelet network finds a 
local minimum instead of a global one. This is happening because of the initialization of the 
weights. Different initial conditions for the weights will give a results similar to the models 
with 60 and 70 hidden units. A better approach is to estimate the wavelet network for a large 
number of different initial conditions for each number of hidden units. This method guaran-
tees that wavelet network will find the global minimum solution. 

Examining figure 12 we conclude that the best model is a wavelet network with 30 hidden 
units since it has the best accuracy combining the smallest complexity.  
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FIG. 11.  Real time data and model output (green line) 
 
 

 

FIG. 12.  Out-of-Sample Mean Square Error For 1,3,6,9 and 12 months forecast. 
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Such a network corresponds to 92 parameters and it is significant smaller that the neural 
network used by Zapranis & Alexandridis (2007b). Figure 11 represents the monthly average 
temperature and the fitted model output for a wavelet network using 30 hidden units. 

 

6. Temperature Derivatives Pricing 
 
   The list of traded contracts in weather derivatives market is extensive and constantly evolv-
ing. In Europe, CME weather contracts for the summer months are based on an index of Cu-
mulative Average Temperature (CAT). The CAT index is the sum of the daily average tem-
peratures over the contract period. The average temperature is measured as the simple average 
of the minimum and maximum temperature over one day. Recall, that in this paper T(t) 
represents monthly average temperatures. Hence, the value of a CAT index for the time inter-
val [τ1,τ2] is given by the following expression: 
 

2

1

( ) ( )
t

T t h t
τ

τ=
∑                                                                                                                             (6.1) 

 
where h is the number of days of month t and the temperature is measured in degrees of Cel-
sius. The time period of the CAT index is monthly or seasonal. In USA, CME weather deriva-
tives are based on Heating Degree Days (HDD) or Cooling Degree Days (CDD) index. A 
HDD is the number of degrees by which daily temperature is below a base temperature, while 
a CDD is the number of degrees by which the daily temperature is above the base tempera-
ture,  

 
i.e., Daily HDD = max (0, base temperature – daily average temperature),  
       Daily CDD = max (0, daily average temperature – base temperature).  
 
   The base temperature is usually 65 degrees Fahrenheit in the US and 18 degrees Celsius 

in Europe and Japan. HDDs and CDDs are usually accumulated over a month or over a sea-
son. To calculate then we simply add up their daily values for that period. For the two Japa-
nese cities, weather derivatives are based on the Pacific Rim index. The Pacific Rim index is 
simply the average of the CAT index over the specific time period. At the end of 2006, at 
CME were traded weather derivatives for 18 US cities3, 9 European cities4, 2 Japanese cities5, 
as well as seasonal strip and frost contracts.  
 Our aim is to give a mathematical expression for the CAT future price. It is clear that the 
weather derivative market is an incomplete market. Cumulative average temperature contracts 
are written on a temperature index which is not a tradable or storable asset. In order to derive 
the pricing formula, first we must find a risk-neutral probability measure Q~P ,where all as-
sets are martingales after discounting. In the case of weather derivatives any equivalent meas-

                                                            

3 Atlanta, Baltimore, Boston, Chicago, Cincinnati, Dallas, Des Moines, Detroit, Houston, Kansas City, 
Las Vegas, Minneapolis-St. Paul, New York, Philadelphia, Portland, Sacramento, Salt Lake City, Tuc-
son.  
4 Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Paris, Rome, Stockholm. 
5 Tokyo, Osaka. 



20 

 

ure Q is a risk neutral probability. If Q is the risk neutral probability and r is the constant 
compounding interest rate then the arbitrage free future price of a CAT contract at time 

 is given by:   

 

                                                                     (6.2) 

 
and since  is  adapted we derive the price of a CAT futures to be 

 

                                                                                     (6.3) 

 
T(t) is the output of the wavelet network and it is known : 

 

                                                                  (6.4)
 

 

                                                                               (6.5)
 

 
 

7. Conclusions and Further Work 
 
In this paper we have used a wavelet network in order to model and remove the seasonal 

cycle as well as any possible trends, singularities or jumps of the temperature process. More-
over, we have given a complete framework for structuring and training feed forward wavelet 
neural networks via back-propagation. Our findings suggest that wavelet networks can model 
the temperature process very well and consequently they can be used for predicting the CAT 
index. As we have shown, applying wavelet networks simplifies significantly the mathematics 
of weather derivatives pricing, since no particular functional form is assumed.   
   Our initial results are very promising. However, an explicit formulation that connects the 
structure of the wavelet network to the ordinary wavelet decomposition would increase sig-
nificantly the information that we can extract from the trained network. Furthermore, a com-
plete statistical framework for model selection and identification, specifically designed for 
this type of networks, would add impetus to their successful everyday use in the context of 
application modelling and specifically weather derivatives pricing. These two topics consti-
tute the main focus of our future work. 
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