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Abstract. In this paper, we use wavelet analysis to localize in Paris, France, a mean-reverting 

Ornstein-Uhlenbeck process with seasonality in the level and volatility. Wavelet analysis is an 

extension of the Fourier transform, which is very well suited to the analysis of non-stationary 

signals. We use wavelet analysis to identify the seasonality component in the temperature 

process as well as in the volatility of the temperature anomalies (residuals). Our model is 

validated on more than 100 years of data collected from Paris, one of the European cities 

traded at Chicago Mercantile Exchange. We also study the effect of replacing the original 

AR(1) process with ARMA, ARFIMA and ARFIMA-FIGARCH models, and the impact of 

the temperature outliers on the normality of the temperature anomalies. 
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1. Introduction 

 

Since their inception in 1996, weather derivatives have known a substantial growth. The 

first parties to arrange for, and issue weather derivatives in 1996, were energy companies, 

which after the deregulation of energy markets were exposed to weather risk. In September 

1999, the Chicago Mercantile Exchange (CME) launched the first exchange traded weather 

derivatives. In 2004, the notional value of CME weather derivatives was $2.2 billion and 

grew nine-fold to $22 billion through September 2005, with open interest exceeding 300,000 

and volume surpassing 630,000 contracts traded. However, the Over-The-Counter (OTC) 

market is still more active than the exchange, so the bid-ask spreads are quite large. Today, 

weather derivatives are being used for hedging purposes by companies and industries, whose 

profits can be adversely affected by unseasonal weather or, for speculative purposes by hedge 

funds and others interested in capitalizing on those volatile markets. 

A weather derivative is a financial instrument that has a payoff derived from variables such 

as temperature, snowfall, humidity and rainfall. However, it is estimated that 98-99% of the 

weather derivatives now traded are based on temperature. This is not surprising since, it is 

estimated that 30% of the US economy is affected by temperature (CME, 2005). The electrici-

ty sector is especially sensitive to the temperature. According to Li and Sailor (1995) and 

Sailor and Munoz (1997), temperature is the most significant weather factor explaining 

electricity and gas demand in the United States. The impact of temperature in both electricity 

demand and price has been considered in many papers, including Henley and Peirson (1998),  

Peirson and Henley (1994) and  Engle et al (1992). Unlike insurance and catastrophe-linked 

instruments, which cover high-risk and low probability events, weather derivatives shield rev-

enues against low-risk and high probability events (e.g., mild or cold winters).   

Temperature contracts have as an underlying variable, temperature indices such as Heating 

Degree Days (HDD) or Cooling Degree Days (CDD) defined on average daily temperatures. 

A HDD is the number of degrees by which daily temperature is below a base temperature, 

while a CDD is the number of degrees by which the daily temperature is above the base tem-

perature, i.e., Daily HDD = max (0, base temperature – daily average temperature), Daily 

CDD = max (0, daily average temperature – base temperature). The base temperature is usual-

ly 65 degrees Fahrenheit in the US and 18 degrees Celsius in Europe and Japan. HDDs and 

CDDs are usually accumulated over a month or over a season. To calculate then we simply 

add up their daily values for that period.  

The list of traded contracts is extensive and constantly evolving. In Europe, CME weather 

contracts for the summer months are based on an index of Cumulative Average Temperature 

(CAT). At the end of 2005, at CME were traded weather derivatives for 18 US cities
3
, 9 Eu-

ropean cities
4
, 2 Japanese cities

5
, as well as seasonal strip and frost contracts.  

                                                           
3
 Atlanta, Baltimore, Boston, Chicago, Cincinnati, Dallas, Des Moines, Detroit, Houston, Kansas City, 

Las Vegas, Minneapolis-St. Paul, New York, Philadelphia, Portland, Sacramento, Salt Lake City, Tus-

con.  
4
 Amsterdam, Barcelona, Berlin, Essen, London, Madrid, Paris, Rome, Stockholm. 

5
 Tokyo, Osaka. 
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Weather risk is unique in that it is highly localized, and despite great advances in meteoro-

logical science, still cannot be predicted precisely and consistently. Weather derivatives are 

also different than other financial derivatives in that the underlying weather index (HDD, 

CDD,CAT, etc.) cannot be traded. Furthermore, the corresponding market is relatively illiqu-

id. Consequently, since weather derivatives cannot be cost-efficiently replicated with other 

weather derivatives, arbitrage pricing cannot directly apply to them. The weather derivatives 

market is a classic incomplete market, because the underlying weather variables are not trada-

ble. When the market is incomplete, prices cannot be derived from the no-arbitrage condition, 

since it is not possible to replicate the payoff of a given contingent claim by a controlled port-

folio of the basic securities. Consequently, the classical Black-Scholes-Merton pricing ap-

proach, which is based on no-arbitrage arguments, cannot be directly applied. And market 

incompleteness is not the only reason for that; weather indices do not follow random walks 

(as the Black & Scholes approach assumes) and the payoffs of weather derivatives are deter-

mined by indices, which are average quantities, whilst the Black-Scholes payoff is determined 

by the value of the underlying exactly at the maturity date of the contract (European options).  

There are several approaches for dealing with incomplete markets. One of them is to intro-

duce the ‘market price of risk’ for the particular type of the incomplete market, namely a ‘fac-

tor model’, market where there are some non-traded underlying objects. Since, weather deriv-

atives are path depended they are very similar to the average Asian option and similar analyti-

cal pricing approaches can be used in this case too. A characteristic example is the approach 

of Geman and Yor (1993), which used Bessel processes to obtain an exact analytical expres-

sion of the Laplace transformation in time of the option price. 

A pricing methodology for weather derivatives that is widely used in insurance is the actuar-

ial (or insurance) method. It is based on statistical analysis and it is less applicable in con-

tracts with underlying variables that follow recurrent, predictable patterns. Since, this is the 

case for most of the weather derivatives contracts, actuarial analysis is not considered the 

most appropriate pricing approach unless the contract is written on rare weather events such 

as extreme cold or heat.  

Another approach for weather derivatives pricing, is performing simulations based on his-

torical data, known as historical Burn analysis. That is, computing the average payoff of the 

weather derivatives in the past n years. The central assumption of this method is that the his-

torical record of weather contracts payoffs gives a precise illustration of the distribution of the 

potential payoffs (Dischel, 1999). If weather risk is calculated as the payoffs standard devia-

tion, then the price of the contract will be P(t) = D(t, T) × (μ ± α × σ), where D(t, T) is the dis-

count factor from contract maturity T to the pricing time t, μ is the historical average payoff, σ 

is the historical standard deviation of payoffs and a is a positive number denoting risk toler-

ance. However, since the weather processes are not stationary and this approach does not in-

corporate forecasts, it is bound to be biased and inaccurate. In fact, the historical Burn analy-

sis is considered as the simplest pricing method in terms of implementation, and the most 

probable to cause large pricing errors. 

In contrast to the previous methods, a dynamic model can be used which directly simulates 

the future behavior of temperature. Using models for daily temperatures can, in principle, lead 

to more accurate pricing than modeling temperature indices. In the process of calculating the 

temperature index, such as HDD, as a normal or lognormal process, a lot of information is 
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lost (e.g., HDD is bounded be zero). On the other hand, deriving an accurate model for the 

daily temperature is not a straightforward process. Observed temperatures show seasonality in 

all of the mean, variance, distribution and autocorrelations and long memory in the autocorre-

lations. The risk with daily modeling is that small misspecifications in the models can lead to 

large mispricing in the contracts. 

The continuous processes used for modeling daily temperatures usually take a mean-

reverting form, which has to descretized in order to estimate its various parameters. Once the 

process is estimated, one can then value any contingent claim by taking expectation of the 

discounted future payoff. Given the complex form of the process and the path-dependent na-

ture of most payoffs, the pricing expression usually does not have closed-form solutions. In 

that case Monte-Carlo simulations are being used. This approach typically involves generat-

ing a large number of simulated scenarios of weather indices to determine the possible 

payoffs of the weather derivative. The fair price of the derivative is then the average of all 

simulated payoffs, appropriately discounted for the time-value of money; the precision of the 

Monte-Carlo approach is depended on the correct choice of the temperature process and the 

look back period of available weather data. 

In this paper, we address the problem of pricing the European CAT options. For this purpose 

we extent the mean-reverting process with seasonality in the level and volatility proposed by 

Benth and Saltyte-Benth (2005) - a generalisation of (Dornier and Querel, 2000). We incorpo-

rate wavelet analysis in the modelling process and we compare the simple AR(1) process with 

ARMA, ARFIMA and ARFIMA-FIGARCH. The fundamental idea behind wavelets is to 

analyze according to scale. Wavelet analysis is an extension of the Fourier transform, which 

superposes sines and cosines to represent other functions. Wavelet analysis decomposes a 

general function or signal into a series of (orthogonal) basis functions, called wavelets, with 

different frequency and time locations. The wavelet analysis procedure adopts a particular 

wavelet function, called a mother wavelet. Temporal analysis is performed with a contracted 

high-frequency version of the mother wavelet, while frequency analysis is performed with a 

dilated, low-frequency version of the same mother wavelet. Because the original signal can be 

represented in terms of a wavelet expansion (using coefficients in a linear combination of the 

wavelet functions), data operations can be performed using just the corresponding wavelet 

coefficients. A particular feature of the analyzed signal can be identified with the positions of 

the wavelets into which it is decomposed. Results of the wavelet transform can be presented 

as a contour map in frequency-time plane (spectrogram), allowing the changing spectral com-

position of non-stationary signals to be measured and compared. As illustrated in Donoho et 

al (1995) the wavelet approach is very flexible in handling very irregular data series. Ramsey 

(1999) also comments that wavelet analysis has the ability to represent highly complex struc-

tures without knowing the underlying functional form, which is of great benefit in economic 

and financial research. In order to capture the seasonality of the volatility of the temperature 

we use a truncated Fourier series. The specific terms of the Fourier series are being selected 

on the basis of the results of a wavelet analysis of the temperature. As we demonstrate here, 

wavelet analysis is very useful in offering guidance as to which terms of the Fourier series to 

select. Our model is validated on more than 100 years of data collected from Paris (from 1900 

to 2000), one of the European cities traded at CME.   

The rest of the paper is organized as follows. In section 2, we describe the process used to 

model the average daily temperature in Paris. In section 3, we give an introduction to wavelet 
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analysis, and examples of its use. In particular, in section 3.1 we compare wavelet analysis to 

Fourier transform, in section 3.2 we describe wavelets and their use in signal decomposition, 

in section 3.3 we describe the reverse process of signal reconstruction, in section 3.4 we give 

an example of analyzing a simulated upward trend with an AR(3) noise component, in section 

3.5 we analyze a Geometric Brownian Motion and in section 3.6 we analyze a simulated 

Ornstein-Uhlenbeck temperature process. Once we have demonstrated, through the examples 

presented in sections 3.4-3.6, the usefulness of wavelet analysis of temperature processes, we 

proceed in section 4, were we calibrate the temperature model for Paris. In section 4.1, we 

perform wavelet analysis of the temperature series. In section 4.2, we estimate and then re-

move from the temperature the linear trend. In section 4.3, based on the results of the wavelet 

analysis we model the seasonality component, we estimate it and then we remove it form the 

temperature. In section 4.4, we model the seasonal residual variance, again using wavelet 

analysis as a guide in forming the corresponding model. In Section 4.5, we estimate a number 

of alternative models to the original AR(1) process, i.e., ARMA, ARFIMA, ARFIMA-

FIGARCH, and we examine the effect of outlier temperature observations, in order to address 

the observed deviations from normality. In section 5, we discuss CAT derivatives pricing and 

finally, in section 6 we conclude. 

 

2. Dynamic Modeling of the Temperature Process 

 

Many different models have been proposed in order to describe the dynamics of a tempera-

ture process. The common assumptions in all these models concerning the temperature are the 

following:  

 It follows a predicted cycle.  

 It moves around a seasonal mean. 

 It is affected by global warming.  

 It appears to have autoregressive changes.  

 Its volatility is higher in winter than in summer. 

 

Early models were using AR(1) processes or continuous equivalents (Alaton et al, 2002; 

Davis, 2001; Cao and Wei, 2000). Others like Dornier and Querel (2000) and Moreno (2000) 

have suggested versions of a more general ARMA(p,q) model. Cabalero et al (2002) have 

shown, however, that all these models fail to capture the slow time decay of the 

autocorrelations of temperature and hence lead to significant underpricing of weather options. 

Thus more complex models were proposed, like an Ornstein-Uhlenbeck process (Brody et al, 

2002). Also in the noise part of the process, the Brownian noise was at first replaced by a 

fractional Brownian noise and then by a Levy process (Benth and Saltyte-Benth, 2005). 

Our analysis will be based on the model of Benth and Saltyte-Benth (2005), where the tem-

perature is expressed as a mean reverting Ornstein-Uhlenbeck process, i.e. 

( ) ( ) ( ( ) ( )) ( ) ( )dT t dS t T t S t dt t dB t                 (1)                                                        
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where, T(t) is the daily average temperature, B(t) is a standard Brownian motion, S(t) is a de-

terministic function modelling the trend and seasonality of the average temperature, while σ(t) 

is the daily volatility of temperature variations. Benth and Saltyte-Benth (2005) model both 

S(t) and σ
2
(t) as a truncated Fourier series: 

1 1

0

1 1

( ) sin(2 π( ) / 365) cos(2 π( ) / 365)
I J

i i j j

i j

S t a bt a a i t f b j t g
 

       
       (2)     

2 2

2

1 1

( ) sin(2 π / 365) cos(2 π / 365)
I J

i j

i j

t c c i t d j t
 

   
           (3) 

From the Ito formula an explicit solution for (1) can be derived: 

( )

1
( ) ( ) ( ( 1) ( 1)) ( ) ( )

t
t t u

t
T t s t T t s t e u e dB u   


           (4)                     

According to this representation T(t) is normally distributed at t and it is reverting to a mean 

defined by S(t). The exact specification of models (2) and (3) will be decided based on the 

results of wavelet analysis of the temperature series. 

 

3. Introduction to Wavelet Analysis: Examples of Its Application to Simulated 

Time-Series 

 

3.1.  Fourier Transform and Wavelet Analysis  

 

Wavelet analysis is a mathematical tool used in various areas of research. Especially, during 

the last years wavelets are frequently used in order to analyse time-series, data and images. 

Time-series are represented by local information such as frequency, duration, intensity and 

time-position and by global information such as the mean states over different time periods. 

Both global and local information is needed for a correct analysis of a signal. The Wavelet 

transform (WT) is a generalization of Fourier and windowed Fourier transforms (FT and 

WFT).  

FT breaks down a signal into a linear combination of constituent sinusoids of different fre-

quencies; hence the FT is decomposition on a frequency by frequency basis. However, in 

transforming to the frequency domain, time information is lost. When looking at a FT of a 

signal, it is impossible to tell when a particular event took place. This is a serious drawback if 

the signal properties change a lot over time, i.e., if they contain nonstationary or transitory 

characteristics: drift, trends, abrupt changes, and beginnings and ends of events. These charac-

teristics are often the most important part of the signal, and FT is not suited to detecting them. 

In order to achieve a sort of compromise between frequency and time, FT was expanded in 

Windowed Fourier Transform. WFT uses a window across the time series and then uses the 

FT of the windowed series. This is a decomposition of two parameters, time and frequency. 
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However, since the window size is fixed with respect to frequency, WFT cannot capture 

events that appear outside the width of the window. Many signals require a more flexible ap-

proach that is one where we can vary the window size to determine more accurately either 

time or frequency. 

Wavelet Transform, on the other hand is localized in both time and frequency and over-

comes the fixed time-frequency partitioning. The new time-frequency partition is long in time 

in low- frequencies and long in frequency in high-frequencies. This means that the WT has 

good frequency resolution for low-frequency events and good time resolution for high-

frequency events.  Also, the WT adapts itself to capture features across a wide range of fre-

quencies. Consequently the assumption of stationarity can be avoided.  

In addition, wavelets have the ability to decompose a signal or a time-series in different lev-

els. As a result, this decomposition brings out the structure of the underlying signal as well as 

trends, periodicities, singularities or jumps that cannot be observed originally. Wavelets can 

prove to be a valuable tool for analyzing a wide range of time-series and they have already 

been used with success in image processing, signal de-noising, density estimation, signal and 

image compression and time-scale decomposition. Wavelet techniques are being used in 

finance, for detecting the properties of quick variation of values. 

 

3.2.  Wavelets  

 

A wavelet is a waveform of effectively limited duration that has an average value of zero. A 

wavelet family is a set of orthogonal basis functions generated by dilation and translation of a 

compactly supported scaling function,  (or father wavelet), and a wavelet function, ψ (or 

mother wavelet). The wavelet family consists of wavelet children which are dilated and trans-

lated forms of a mother wavelet: 

 ,

1
a b

t b
t

aa
 

 
  

          (5)

 

where, a is the scale or dilation parameter and b is the shift or translation parameter. The val-

ue of the scale parameter determines the level of stretch or compression of the wavelet. The 

term 1 a normalizes  , 1a b t  . In most cases, we will limit our choice of a and b values 

by using a discrete set, because calculating wavelet coefficients at every possible scale is 

computationally intensive. However, if we choose only a subset of scales and translations 

based on powers of two (the dyadic lattice) then our analysis will be much more efficient and 

just as accurate. We obtain such an analysis from the Discrete Wavelet Transform (DWT). 

The wavelet family is taken from a double indexed regular lattice: 

    , , : ,j j

j ka b p kqp j k Z 
       (6)

 

where the parameters p and q  denote the step sizes of the dilation and the translation parame-

ters. For p = 2 and q = 1 we have the standard dyadic lattice: 
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    , 2 , 2 : ,j j

j ka b k j k Z 
       (7)

 

Thus the scaling function   generates for each jZ the sets  ,span ,j j kV k Z , where 

Z denotes the set of integers and 

   2

, 2 2 , ,j j

j k t t k j k    Z
       (8)

 

The basis wavelet functions are usually of the form: 

   2

, 2 2 , ,j j

j k t t k j k    Z
       (9)

 

It follows from above that there is a sequence {hk} (where hk is a scaling filter associated 

with the wavelet) such that  
2

1kh   
and 

   
0

2 2 -k

k

f t h f t k




 
        (10)

 

where  is normalized so that   1t dt



 .  

When {hk} is finite, a compactly supported scaling function is the solution to the above dila-

tion equation. The wavelet function is defined in terms of the scaling function as: 

   
0

2 2k

k

t g t k 




 
        (11)

 

where   0t dt



  and  

1 11
k k

kg h
   is a wavelet filter. 

Then  ,span ,j j kW k Z  is the orthogonal complement of Vj in Vj+1, j Z . 

Over the years a substantial number of wavelet functions have been proposed in the litera-

ture, i.e., Daubechies, Symlet, Coiflet, Biorthogonal, Meyer, Battle-Lemarie, Morlet, Mexican 

Hat, etc. 

 

3.3.  Signal Reconstruction 

 

Representing a signal as a function T(t), the Continuous Wavelet Transform (CWT) of this 

function comprises the wavelet coefficients C(a,b), which are produced through the convul-

sion of a mother wavelet function ψ(t) with the analyzed signal T(t): 

   ,
t b

C a b T t dt
a






 
  

 


        (12)
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The wavelet coefficients are localized in time and frequency. We term approximations the 

high scale, low frequency components and details the low scale, high frequency components. 

Given the wavelet coefficients we can perform continuous synthesis of the original signal: 

   2

1 1 1
,

t b
T t C a b dadb

K a aa


 

 

 
    

 
 

     (13)

 

The DWT of the signal function comprises the wavelet coefficients C(j,k), which are pro-

duced through the convulsion of a mother wavelet function ψj,k(t) with the analyzed signal 

T(t): 

     ,, j kC j k T t t dt




 
        (14)

 

Thus, the discrete synthesis of the original signal is: 

     ,, j k

j Z k Z

T t C j k t
 

         (15) 

At each level j, we build the j-level approximation aj, or approximation at level j, and a dev-

iation signal called the j-level detail dj, or detail at level j. We can consider the original signal 

as the approximation at level 0, denoted by a0. The words approximation and detail are justi-

fied by the fact that a1 is an approximation of a0 taking into account the low frequencies of a0, 

whereas the detail d1 corresponds to the high frequency correction. For detailed expositions 

on the mathematical aspects of wavelets we refer to, for example (Mallat, 1999),  

(Wojtaszczyk, 1997) and (Daubechies, 1992). 

 

3.4.  Analyzing a Simulated Signal: Upward Trend plus an AR(3) Noise Component 

 

So far, wavelets have being used in a variety of applications such as signal de-noising, den-

sity estimation, variance-covariance estimation and signal compression.  Wavelets are able, as 

it has already been mentioned, to capture changes and events in time-series that are not direct-

ly observable. For example, suppose that the signal ( )T t  consists of a deterministic underly-

ing component ( )t  and a noise part ( )t : 

( ) ( ) ( )T t t t            (16)
 

Wavelets are capable of extracting the underlying signal ( )t . The de-noising can be 

achieved by using the appropriate threshold  (Donoho and Johnstone, Minimax estimation via 

wavelet shrinkage, 1998; Donoho and Johnstone, Ideal spatial adaptation by wavelet 

shrinkage, 1994) in one of the various available algorithms (such as the hard or soft threshold-

ing or the methods described in  Gao (1997) and  Breiman (1996). 

In this example the signal consists of an upward trend plus a colored noise. The colored 

noise is produced by an AR(3) process: 
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FIGURE 1. Simulated time-series which consists of an upward trend plus an AR(3) noise component. 

 

 

 

FIGURE 2. Simulated time-series which consists of an upward trend plus an AR(3) noise component 

and the corresponding denoised signal (solid smooth line). 

 

 

 

( ) -1.5 ( -1) - 0.75 ( - 2) - 0.125 ( -3) 0.5 ( )z t z t z t z t t       (17)
 

where ( )t  are i.i.d. N(0,1). 
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FIGURE 3. Signal (s), approximations (aj) and details (dj) of the wavelet decomposition of a simulated 

time-series which consists of an upward trend plus an AR(3) noise component. 

 

 

 

The upward trend is produced by an upward slope, as follows: 

/ 500 ( )    t<500
( )

1 ( )            t 500

t z t
t

z t



 

         (18)

 

As it can be observed in the figure 1, the signal seems like noise. None inference can be 

drawn for its characteristics. 

Wavelets, using the soft thresholding method, succeeded to remove the noise and extract the 

denoised signal, which is depicted as a solid smooth line in figure 2. 

Afterwards, the Daubechies 7 wavelet at level 8 was used in order to decompose the signal. 

As we can see in figure 3, wavelet transform succeeded to remove the noise starting from the 

first detail. A good representation of the de-noised signal starts to appear in the third ap-

proximation. 
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FIGURE 4.  A geometric Brownian motion (1000 steps) with a jump in volatility at t = 500, where the 

initial volatility σ1 = 0.5 doubles to σ2 = 1.The dotted smooth line represents the exponential upward 

trend (horizontal axis in thousands).  

 

 

 

 The noise is present in all details, but its effect halves as we move from lower to higher de-

tails. Wavelet transform also succeeded in distinguishing the breakpoint with good precision. 

 

3.5.  Analyzing a Geometric Brownian Motion 

 

Many financial pricing models are based on the Geometric Brownian Motion. A GBM is 

produced by the following model: 

   
21

( )
20

T T

X t X e
   


        (19)

 

A simple GBM depends on the mean μ and the volatility σ, so it is essential to know whether 

and when, one or both parameters change. Here we examine, if wavelet analysis can be used 

to capture changes in the parameters of the GBM model (a simulated path of a GBM process 

is represented in figure 4). 

The volatility of this path changes at t = 500 (0.5) from σ1 = 0.5 to σ2 = 1. After applying the 

Daubechies 8 wavelet at level 8 the decomposition in figure 5 shows clearly the de-noised 

signal at approximation 8 (a8), which is the 
xe  function. The wavelet decomposition also cap-

tured the volatility change with a very good precision. In particular, d1 and d2 reflect the in-

crease of the random part of the GBM at t = 510, while it actually doubles at t = 500, i.e., 

2 12T T   
         (20)
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FIGURE 5. Time-series (s), approximations (aj) and details (dj) of the wavelet decomposition, of the 

wavelet decomposition of a geometric Brownian motion with a jump in volatility. 

 

 

In the next section we examine the wavelet decomposition of an artificial temperature time-

series. Climate time series are far more complex than the previous simple examples, since 

many parameters change both in scales and in time. The following section’s simulated tem-

perature time–series includes jumps, singularities, trends, periodicities, as well as model and 

parameter changes.  

 

3.6.  Analyzing a Simulated Ornstein-Uhlenbeck Temperature Process 

 

Lau and Weng (1995) examined the monthly Northern Hemisphere Surface Temperature for 

the period January 1854 – July 1993 using wavelet analysis. They reported that the tempera-

ture has three main frequency branches: inter-annual (2-5 yrs), inter-decadal (10-12 yrs, 20-

25yrs and 40-60 yrs) and century (~180 yrs) scales. 
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By taking into account Lau and Weng’s findings, we created an artificial time-series with 

the properties of a real one, spanning 200 years. We constructed an equation that models the 

trend and seasonality with their intensity varying across the time horizon.  

In doing so, first we needed a component that expresses the global and urban warming. 

Many papers confirm a linear upward trend during the last years. Hence, we added the linear 

component a bt to the last 25 years of the 200 year period.  

The temperature on the same date every year is expected to be the same. A sine with period 

of one year represents the seasonal mean temperature, i.e.,  

sin(2πt / 365)                         

Lau et al. [16] confirmed seasonalities in the temperature series with a period greater than 

one year. As a result a cycle with a period of 5 years is present, meaning that every 5 years we 

have a warm or a cold year, i.e.,  

sin(2πt / (5365))                    

In addition, we chose the above cycle to disappear for a period of 20 years. In other words, 

this cycle affects the temperature for the first 95 years, then it disappears for the next 20 years 

and then it is present again for the last 85 years of the temperature series. 

The forth component of the model is a cycle with a 10 year period, which affects the tem-

perature in a different way. Every 10 years the temperature is very high in the summer and 

very low in the winter or exactly the opposite (low in the summer and high in the winter). 

This is represented by the following component: 

    1 sin 2π / 10 365 sin 2π / 365t t                              

This cycle affects the whole temperature series (200 years). Lastly, we added a cycle that af-

fects the temperature in the same way the 5 year cycle does. However, this cycle’s period 

changes from 40 years to 60 after the first 80 years. This is represented by the following com-

ponent:  

  

  

sin 2π / 40 365       t 80 years

sin 2π / 60 365       t > 80 years

t

t

  




                              

After adding all these components the Ornstein-Uhlenbeck temperature process (1) be-

comes: 

       

     
0 1 1 2 3

2 4 3 4

( ) sin 2π / 365 sin 2π / 5 365 sin 2π / 10 365

            sin 2π / 40 365 sin 2π / 60 365

S t a bt a a t d a t a t

d a t d a t

        

   
(21)

 

where  

1

0      95 yrs 115 yrs

1       otherwise

t
d

 

         (22)
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FIGURE 6. Time-series (s), approximations (aj) and details (dj) of the wavelet decomposition, of a 

simulated Ornstein-Uhlenbeck temperature process. 

 

 

 

2

1      80 yrs

0      otherwise

t
d



          (23)

 

3

1      >80 yrs

0      otherwise

t
d


          (24) 

By substituting 0 by t-1 in equation (4) we get: 

  ( )

1
( ) ( ) ( 1) ( 1) ( ) ( )

t
t u

t
T t S t T t S t e u e dB u   


           (25)

 

This model was used in order to produce a signal similar to a real temperature time-series. 

The simulated data consisted of 72,000 values (200 years of daily temperature data). The val-

ues of the model parameters are the following: 
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0.4a  , 0.00002b   

0 7a  , 1 8a  , 2 2a   , 3 2a  , 4 2a   

0.198k  , 200 yearst   

2 4I  , 
2 4J   

4c  , 1 0.94c  , 2 0.39c    

The Discrete Wavelet Transform was used in order to examine if wavelet analysis can cap-

ture all the characteristics of this artificial time-series, such as the upward trend and the four 

cycles, the properties of these cycles and when these properties are changing. 

The decomposition of the artificial time-series was produced by the Daubechies 12 wavelet 

at level 12 and it is presented in Figure 6. All approximations and details produced by the de-

composition are presented here.  

The one-year cycle, which is used in the model to express the annual temperature seasonal-

ity, is clearly captured in the first seven approximations and in the 8
th
 detail. Approximation 

a12 succeeds in capturing the long cycle of the time-series and its change of period. It is clear, 

that the period of the signal changes at t = 3. This is reflected by a sine wave whose period at 

point 29,260 changes from 40 to 60 years. Wavelet decomposition captured perfectly in detail 

d8 a product of two sinusoids, with periods of 1 and 10 years, respectively. This product ex-

presses the exact effect that the ten-year cycle has in temperature. Details d10 and d11 reflect 

the 5 year seasonal effect. This cycle is inactive for a period of 20 years (95
th
 – 115

th
 ). In both 

d10 and d11 the starting point of the inactive period is situated with very good approximation at 

the 97
th
 year. Detail d10 also captures correctly the duration of this period, while in d11 the in-

activity period is significantly larger than 20 years. 

The visible upward slope, which appears at the end of each approximation, reflects the up-

ward trend present in the last 25 years of the time-series. Wavelet analysis captures this 

change in the model approximately at point 62,000 (172 years). Finally, the lower details (d1 

and d2) reflect the noise part of the time-series.   

We repeated the wavelet analysis this time using the Continuous Wavelet Transform. How-

ever, since the CWT demands excessive amounts of computer power, even for small datasets, 

we used monthly average temperatures. The data consisted of 2,400 points. The Mexican hat 

wavelet function was used. This wavelet usually gives better results than other wavelets using 

fewer scales. The results of the CWT are presented in Figure 7. 

In figure 10 higher scales should represent cycles of long period. Scales higher than 70, cap-

ture the long cycle of the time-series and its change of period. This is reflected by a sine wave 

whose period around the 1,000
th
 observation changes from 40 to 60 years. The visible upward 

slope, that appears at the end of the coefficients line, reflects the upward trend, present in the 

last 25 years of the time-series. This effect is also visible at Figure 12. 
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FIGURE 7. Continuous wavelet transform of a simulated Ornstein-Uhlenbeck temperature process. 

 

 

 

FIGURE 8.  Approximations a13, a4 and a11 of the continuous wavelet decomposition, of a simulated 

Ornstein-Uhlenbeck temperature process. 
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FIGURE 9. Daily average temperature data distribution statistics for Paris, France for the period 1900-

2000. 
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Scales between 8 and 22 reflect the 5 year seasonal effect. This cycle is inactive for a period 

of 20 years (95
th
 – 115

th
). In all scales both the starting and ending point of the inactive period 

is found with very good approximation. 

As we can see in Figure 8, the wavelet decomposition captured perfectly in scale between 1 

and 8, a product of two sinusoids, with period 1 and 10 years, respectively. This product ex-

presses the exact effect that the ten year cycle has in temperature. Finally, the 1
st
 scale reflects 

the noise part of the time-series. This scale captures both the effect of the noise and of the ten 

year cycle. 

 

4. Calibration of Temperature Model  

 

4.1.  Wavelet Analysis of Temperature in Paris 

 

In this section real data will be used in order to derive the characteristics and dynamics of 

temperature. The analysis will be focused in one specific location, i.e., the city of Paris, 

France. The data consists of 36,865 values, corresponding to the average daily temperatures 

of 101 years (1900-2000) as measured in the city of Paris. In Figure 9, we can see the descrip-

tive statistics for the data. 

For the decomposition of the average daily temperature time-series the Daubechies 11 

wavelet at level 11 was used. In Figure 10, we can see all the approximations and details of 

the decomposed time-series.  
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FIGURE 10. Daily temperature time-series (s) for Paris, France, approximations (aj) and details (dj) 

produced by the wavelet decomposition. 

 

 

 

It becomes clear from observing the first seven approximations (a1 to a7) and the detail d8 

that there exists a cycle with a period of one year, as it was expected. Approximation a11 cap-

tures a long cycle with a period of 13 years. Also, in the same approximation an upward trend 

is observed through the whole period. Detail d8 also captures a product of two sinusoids, with 

a period of 1 and 7 years respectively. Details d10 and d11 reflect a 4-year and an 8-year sea-

sonal effect, respectively. As we can see, both effects are intensive between t = 1-8,000 and t 

= 20,000-36,865, while the effects between t = 8,000-20,000 are weak. Detail d9 represents a 

cycle with period close to 2 years. The visible upward slope, which appears at approximations 

a8-a11, reflects the upward trend. The results of wavelet analysis indicate that an upward trend 

exists throughout the whole period. Finally, the lower details (d1 and d2) reflect the noise part 

of the time-series. A closer inspection of the noise part reveals seasonalities, which will be 

extracted later on. 
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FIGURE 11. Fitting a trend to the average daily temperature data in Paris for the period from 1900 to 

2000. 

 

 

4.2.  Estimating the Linear Component 

 

A discrete approximation to the Ito formula (4), which is the solution to the mean reverting 

Ornstein-Uhlenbeck process (1), is: 

    )()1()()()1()()1()()1( tBtBttStTetStStTtT k      (26) 

which can be written as: 

)()(~)(
~

)1(
~

tttTatT          (27) 

where  

)()()(
~

tStTtT           (28) 

)()(~ tat             (29) 

kea            (30) 

In order to estimate model (27) we need first to remove the trend and seasonality compo-

nents from the average temperature series. 

Firstly, we quantified the upward trend indicated by the results of the wavelet analysis by 

fitting a linear regression to the temperature data. The regression was statistically significant 

with intercept 4.379810
-5

 and slope 10.723. The upward trend is depicted in figure 11. Sub-

tracting the trend form the original data we obtain the de-trended temperature series. 
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FIGURE 12. The seasonal component of the average daily temperature data in Paris. 

 

 

4.3.  Estimating the Seasonal Component 

 

The results of the wavelet analysis also indicated that the seasonal part of the temperature 

takes the following form: 

1 1 2 2

3 3 4 4

5 5 6 6

sin(2π( ) / 365) sin(2π( ) /(2 365))

      sin(2π( ) /(13 365)) (1+sin(2π(t )/(7 365)))sin(2π /365)

      sin(2π( ) /(8 365)) sin(2π( /(4 365))

ts a b t f b t f

b t f b f x

b t f b t f

     

     

      (31) 

The estimated parameters of the above model are given below: 

a = -0.0001        

b1 = -8.0214, b2 = -0.1459, b3 = -0.1421, b4 = 0.1741, b5 = 0.2262, b6 = -0.0223 

f1 = -71.4571,  f2= 78.09, f3=-166.1663,  f4 = 787.5860, f5 = 598.1549, f6 = 64.5991 

Figure 12 depicts the seasonal component of the temperature data for the first 10 years. The 

mean of the residuals is -1.5887e-008 and the standard deviation of the residuals is 3.4153.  

Next we de-seasonalized the temperature series by removing the seasonal component S(t) 

(see figure 12).  

Using the de-trended and de-seasonalized temperature series we estimated the parameters of 

the model (27), which is an AR(1) process with zero constant. The model statistics are being 

present in table 1. We observe that the mean reversion parameter a = 0.7978 is statistically 

significant and that the constant C is very close to zero, as expected. The above value of a 

corresponds to k = 0.2259 in the original continuous-time dynamics model (1). 
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TABLE 1.  AR(1) model statistics of the de-trended and de-seasonalized Paris average daily data for 

the period 1900 to 2000. 

Variable Coefficient St. Error t-statistic prob. 

C -0.000989 0.053039 0.018650 0.9551 

AR(1) 0.797796 0.003140 254.0516 0.0000 

R-squared 0.636484        Mean dependent var -0.000118 

Adjusted R-squared 0.636475        S.D. dependent var 3.415235 

S.E. of regression 2.059150        Akaike info criterion 4.282518 

Sum of squared residuals 156298.5        Schwarz criterion 4.282980 

Log likelihood -78933.37        F-statistic 64542.19 

Durbin-Watson statistic 1.764986        Prob. (F-statistic) 0.000000 

Inverted AR Roots .80   

      

 

FIGURE 13. Distribution statistics of the residuals of the AR(1) model. 
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4.4.  Modeling the Seasonal Residual Variance 

 

The distributional statistics of the residuals of the AR(1) model, described by equation (27), 

are given in figure 13. We observe the presence of a negative skewness (-0.024913) and a 

positive kurtosis (3.277200). From the value of the Jarque-Bera statistic (Bera and Jarque, 

1981), i.e., 121.8394, we conclude that there exists a significant deviation from the normal 

distribution.  
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FIGURE 14. ACF for the residuals of the AR(1) model of the de-trended and de-seasonalized Paris 

average daily data. 

 

FIGURE 15. ACF of the squared residuals of the AR(1) model of the de-trended and de-seasonalized 

Paris average daily data. 

 

 

In figures 14 and 15 we can see the autocorrelation functions of the residuals of the AR(1) 

residuals and of the squared AR(1) residuals, respectively. The autocorrelation of the residu-

als is significant for the several first lags, while the autocorrelation of the squared residuals 

indicates a time dependency in the variance of the residuals.  In figure 15, we can clearly ob-

serve a seasonal variation. 
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FIGURE 16. Wavelet decomposition of the variance of the residuals σ(t). 

 

  

Since, for the residuals e(t) of the AR(1) is true that )()(~)( 2 ttte  , where ε(t) are i.i.d. 

N(0,1), we can extract the variance )(~ 2 t  as follows: Firstly, we group the residuals in 365 

groups, comprising 101 observations each (each group corresponds to a single day of the 

year). Then, by taking the average of the squares of each group we obtain )(~ 2 t . 

From (29) it is true that: 

2

2

2 )(~
)(

a

t
t


           (32) 

where a = 0.7978. 
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FIGURE 17. Empirical variance and fitted variance )(~ 2 t . 

 
 

In deciding which terms of a truncated Fourier series to use in order to model the variance 

σ
2
(t) (its empirical values are being computed using equation 32), we performed a wavelet 

analysis. The wavelet decomposition is presented in figure 16. As we can observe from ap-

proximation a7 and details d4, d5, d6, d7, there exist five cycles within σ
2
(t). The one-year, the 

half-year, the 1/4 of a year, the 1/9 of a year and the 1/18 of a year cycles. We model accor-

dingly the variance σ
2
(t), as follows: 

2

0 1 2

3 4 5

1 2

3 4 5

( ) sin(2 / 365) sin(4 / 365)

sin(8 / 365) sin(18 / 365) sin(36 / 365)

cos(2 / 365) cos(4 / 365)

cos(8 / 365) cos(18 / 365) cos(36 / 365)

t c c t c t

c t c t c t

d t d t

d t d t d t

  

  

 

  

   

  

 

 
  (33) 

The values of the estimated parameters of model (33) are:  

c0 = 4.2398, c1 = 0.4324, c2 = -0.2641, c3 = 0.0557, c4 = 0.0843, c5 = -0.0131,  

d1 = 0.5610, d2 = 0.6195, d3 = 0.0326, d4 = 0.0161, d5 = -0.0421. 

The empirical values of the variance of the residuals (365 values) together with the fitted va-

riance )()(~ 222 tat   , can be seen in figure 17.  We observe that the variance takes its high-

est values during the winter months, while it takes its lowest values during early Autumn.  
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FIGURE 18. ACF of the squared residuals of the AR(1) model after dividing out the volatility function 

)(~ t from the regression residuals. 

 

 

The standard deviation of the residuals is 0.6035, while the standard deviation of the re-

maining noise part is 1.0003 and its mean is 0.0018. In figure 18, we can see the autocorrela-

tion function of the squared residuals of the AR(1) process after dividing out the volatility 

function )(~ t from the regression residuals. We observe that the seasonality has been re-

moved, but there is still autocorrelation in the first few lags. Moreover, since the Jarque-Bera 

statistic is 67.6 with a p-value of 0.000000, we have to reject the hypothesis of normal distri-

bution.  

 

4.5.  Dealing with Non-Normality 

 

The findings of Benth and Saltyte-Benth (2005) for the Copenhagen temperature series are 

very similar. Although, they did not use wavelet analysis to calibrate their models, they had 

managed to remove seasonality from the residuals, but their distribution proved to be non-

normal. They suggested that a more refined model would probably rectify this problem, but 

they did not proceed in estimating one. In an earlier paper regarding Norwegian temperature 

data, Benth and Saltyte-Benth (2004) suggested to model the residuals by a generalized 

hyperbolic distribution. However, as the same authors comment the inclusion of a non-normal 

model leads to a complicated Levy process dynamics.  

In this paper we eastimated a number of alternatives to the original AR(1) model. In 

particular we estimated an an ARMA(3,1) model, a long-memory homoscedastic ARFIMA 

model and a long-memory heteroscedastic ARFIMA-FIGARCH model.  
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FIGURE 19. Q-Q plot of the residuals of an ARMA(3,1) model. 

 

 

 

FIGURE 20. Q-Q plot of the residuals of an ARFIMA model. 
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FIGURE 21. Q-Q plot of the residuals of an ARFIMA-FIGARCH model. 

 
 

As we can see in the respective Q-Q plots of the residuals in figures 19, 20 and 21 the 

hypothesis of normality has to be rejected. The Jarque-Bera statistic is above 91 for the 

ARMA(3,1) model, above 94 for the ARFIMA model and above 114 for the ARFIMA-

FIGARCH model. All three models, represent an improvent on our original AR(1) process. 

Although, the long-memory processes improve the value of the Jarque-Bera statistic, the most 

appropriate model seems to be the ARMA(3,1) model, which corresponds to the smallest 

Jarque-Bera statistic. 

However, the distribution of the residuals still deviates from normality. The next thing we 

tried was to assess the impact of outliers to the original AR(1) model. We formed the differ-

ences of today’s average temperature from yesterday’s average temperature and then we iden-

tified the dates corresponding to the differences with a value greater than plus or minus 3.5 

standard deviations. In total, we identified 40 outlier temperature observations, which were 

then set equal to the average value of the temperature for that particular day, calculated from 

101 years of data. This time the results were surprisingly good. The skewness is -0.005, the 

kurtosis 3.04 and the Jarque-Bera statistic has fallen to only 3.77.  

Concluding, although the AR(1) model probably it is not the best model for describing 

temperature anomalies, increasing the model complexity (ARMA, ARFIMA, ARFIMA-

FIGARCH) and thus the complexity of theoretical derivations in the context of weather 

derivative pricing does not seem to be justified.  
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FIGURE 22. Distributional statistics for the residuals of the AR(1) model, after adjusting the outliers 

to the average temperature for the particular day, calculated from 101 years of data. 
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FIGURE 23. Q-Q plot of the residuals of the original AR(1) model and for the AR(1) model after ad-

justing the outliers to the average temperature for the particular day, calculated from 101 years of data. 

 

5. Monte-Carlo CAT Derivatives Pricing 

 

The CAT index for time interval [τ1,τ2] is given by the following expression: 

2

1

( )d



                                                                (34) 

If Q is the risk neutral probability then the future price of a CAT contract at time t will be:   
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1 2( ) ( , , ) | 0
r t

Q CAT te d F t F





         

         (35) 

and 

2

1
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


      

  
        

(36)                 

The stochastic process for the temperature is: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )dT t ds t t T t s t dt t dW t                         (37) 

where ( )t  is a real-valued measurable and bounded function. The solution to this equation 

is:  

  ( ) ( )

0 0
( ) ( ) (0) (0) ( ) ( ) ( )

t t
t t u t uT t s t T s e u e du u e dW u                (38) 

By replacing this expression to (34) we get: 

  
2 2

2 1

1 1

1( ) ( ) (0) (0)d s t dt T s e e
 

 
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                          

                     
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
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             (39)
 

                      
2

2 1

1 1 2

( ) ( )1

[0, ] [ , ]
0

( ) 1 ( ) 1 ( ) ( )
t tt e t e t dW t


   

           

The future price of a CAT contract 1 2( , , )CATF t   at time 1t   is: 

  
2

2 1

1

( ) ( )1

1 2 1 2( , , ) ( ) ( ) ( ) ( , , )
t t

CATF t s t dt T t s t e e t


   


              (40) 

where 1 2( , , )t   is given by the expression: 

   
2 1

2 1( ) ( )1 1

1 2( , , ) ( ) 1 ( ) 1
u u

t t
t u e du u e du

 
                   (41)

 

Since 1 2( , , )CATF t    is an additive Gauss process, we can compute at time t the price of a 

call option that expires at τ and has strike price K. For 1t     is : 

2

,( ) 2
1 2( ) ( ( , , ) ) ( )

2

d
tr t

CATC t e F t d e
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where: 
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2 2

, 1 2: ( , , )t
t

u du

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1 2( ) ( )1

1 2( , , ) : ( ) ( )
t tt e e t             

 

6. Conclusions 

 

In this paper, we have used wavelet analysis to identify the seasonality component in the 

temperature process as well as in the volatility of the residuals, for the average daily tempera-

ture in Paris. The temperature anomalies, however, deviated to some extend from normality. 

To rectify this problem, we estimated a number of alternatives to the original AR(1) model. In 

particular we estimated an ARMA(3,1) model, a long-memory homoscedastic ARFIMA 

model and a long-memory heteroscedastic ARFIMA-FIGARCH model. However, none of 

these alleviated the problem. At list in this case, increasing the model complexity and 

consequently the complexity of theoretical derivations in the context of weather derivative 

pricing does not seem to be justified. Next we studied the impact of the temperature outliers. 

We found that adjusting to average values a small number of outliers resolved the problem, 

which highlights the importance of pre-processing the temperature data. 
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