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ABSTRACT

Proten spin-lattice relaxation times, Tl’ have been measured in
liquid benzene, liquid 1,3,5 trideuterobenzene and liquid bromebenzene,
over a wide temperature range., The Tl'a of these liquids fer a series
of solutions in their respective perdeuterated analogues are alse
reported. The intermolecular and intramelecular centributions te T1
are separated by the technique of extrapelation to zere cencentratien.

An experimental technique for separating the intramelecular dipelar
and spin-rotation contributiens te Tl is discussed for the cases of
benzene and 1,3,5 trideuterobenzene, The results of this separation
are examined critically in the light of independent measurements of
similar parameters, Reliable values for the reorientatienal correlation
time, C4 , are obtained.

An attempt to scparéte out a possible intermelecular spin-rotatien
interaction is discussed,

Approximations for the intramolecular dipolar interaction for a

many spin molecule are discussed. A simple indication of departure from

non-exponential decay is considered and compared with more rigorous theory.
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CHAPTER I

SPIN SYSTEMS

I.1 Introduction

Atomic nuclei which possess both angular momentum and magnetic
moment exhibit resonant absorption of radiofrequency electromagnetic
radiation when placed in a magnetic field,

A nucleus may consist of particles coupled together, so that, for
any particular state, the nucleus possesses a magnetic momen‘t. F} and

angular momentum J, These two vectors may be taken as parallel and

proportional, so that,

where 8 is the gyromagnetic ratio of the mucleus, The energy state
of a pucleus cannot be changed during experiments of miclear magnetic
resonance, S0 F is a constant,

We may define a dimensionless angular momentum operator, the

nuclear spin, I, by

JEren
I° then has eigenvelues I(I+l), Any component of I (e.g.I,) commtes
with _I_2 so that we may specify simltaneous eigenvalues of both I% and Ige
The eigenvalue of Iz, m , may have any of the 2I+1 values I, I-1,
veceesveseney =L,
If we place a macroscopic magnetic moment ,‘4 , with angular

momentum J, in a magnetic field H, , it experiences a torque /s_( A Ho -

The classical equation of motion of the dipole is (Newton's second law)



A &iorg
at = Pabe
or A -y UaHe. (1.1)
e s

Changes in ,5 are perpendicular to both r_A and Hg. Hence the

dipole precesses ebout the direction H,. The interaction energy is

given by E'—?"#'HO.
The equation of motion in a frame of reference rotating at some

frequency, W , may be shown to be [1]

(2F) =8palHos 2].

That is, the equation of motion is unchanged, so long as we write for

Ho an effective field
w
H‘z_ = Ho T 'g .

We now add a magnetic field H; , rotating in phase with rj o« The
resultant magnetic field in the rotating frame is

2 1712
Hog = [(Hov §Y + 11 ]
and it is about this field that r_t will precess. '5 and the

source of Hl now repeatedly exchenge energy as -— rg . Ho is continuously

changing, The greatest exchange of energy occurs when
Ho + % =0
and # precesses about Hj. ;
Thus we observe a resonance phenomenon in our model if we choose
W= E\_Jo = —x Ho .
That is, when the rotating field H; has the so called Larmor rrequimcy

of the dipole concerned, In pracfice, Hj may be applied as a sinusoidal



- } e
alternating field., This may be decomposed into two fields rotating

in opposite directions, The effect of the component rotating in the
direction opposite to r!} is negligible if H| KL Hoeo , as will be
the case from now on [2].

Quantum mechanically we must write for the interaction ‘of a single

nucleus with the field H,, the Hamiltonian
H = o # . Ho
If we chose H, to be along the z axis,

H: -—xt\ HoIz

so that the eigenvalues of this Hamiltonian are

E i —XKHOW\' y» wherem = I, I=1, eceeeesy, =1,
Generally, we have a set of equally spaced energy levels between which
we may expect to induce and detect transitions,
These transitions are induced by means of an applied alternating

magnetic field Hy. We may show that only transitions for which Am= %/

are permitted, So the quantum of energy needed to cause a transition

is given by
'kw :xt\ HO'
or (U= x Ho ..

This is the required angular frequency of H;, as shown earlier, For
magnetic fields of 3,000 to 10,000 gauss, nuclear resonance frequencies
are typically 10 Mc/s.

I.2 Populations Ty and T :

Consider a macroscopic sample containing spins one half, in which



we observe a resonance, figure(l.l)
4 T N-

N+

Figure(1.1)

Let the numbers of nuclei in the m states +%, =% be N, and N_ respectively,
N, the total number of spins, is a constant, but N_ end N, change under
the influence of the alternating field, If the probabilities per unit

time of inducing a transition up or down are given by W* and W*
respectively, the variation of N, is given by

dN+ _ N-W, = N+W4 :

dt
However, from time dependent perturbation theory, we may show [1] »

w = W = W
) ¥

The problem now arises that if we apply no alternating magnetic field,
i.es W=0 , the populations of the levels camnot change, This
is contrary to experience as we know an unmagnetized sample will become
magnetized when placed in a steady field. This corresponds to N, being
larger than N_ , The process of magmtization' thus requires a certain
number of transitions from the upper to the lower energy state, i,e, the

nuclei give up energy. We must postulate a system, in general called

the "lattice" to accept this energy, For example, this might be the Kinetic
energies of the molecules containing the muclei,
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From the thermodynamic point of view, heat flows from the spin
system to the lattice until they are at an equilibrium temperature, T.
The ratio of the populations will then be given by the Boltzmenn factor
(N_) (-AE) a5 (-_xRHo)
L e,xP = F — ),
N+ RT
Thus there is a coupling between the spin system and the lattice capable
of inducing transitions. Let the probabilities per unit time of

( !
transitions up or down be W‘ and W* respectively, The rate equation

is now
dNy _
N. W; N+W4 (1.2
dt
but now the transition probabilities camnot be placed equal, However,
we know in the steady state condition, i,e., when equilibrium magnetization

AN+

has been reached , a'-g = O, . 80 that

N+ /0o W*
The difference from the previous case, of course, is that here the

energy conditions of both the lattice and the spins must allow a transition,

If we put

then equation(I 2) beccmes

- N(Wy = Wp) = n(Wy+ W)

oLt
or d."\:ﬂ_?_’_ﬂ
% v;r Wi 1(1.;) ’ '
where = v - 4 and e = + :
o N[wi-»w@]' Wy Wi)

Solving for n gives



h=n°[l-—exp(-%)] '

so the population difference increases exponentially with a characteristic
time, Ty, called the spin-lattice relaxation time,

From equation (1.2) , the totel rate equation is
dn - —2Wn + No=N

dt L
so in the steady state, N =_No
I+2W T

The rate of absorption of energy, for populations little disturbed from
their equilibrium values, is O\E - h‘kww

At

W »
+2WT

Z
W is proportional to ,H.' » 80 we can increase the power absorbed by

= hohw

the nuclei by increasing W, so long eas ZW-]-,« | « When this condition
is violated the absorbed power levels off, in spite of increasing Hy.
This is "saturation".

The large nuclear concentrations and the small distances between
nuclear spins in bulk matter result in relatively strong spin interactions,
The result is a broadening of the resonance line, as each nucleus sees
the steady field plus the weak fields due to its neighbours, That is,
there is a distribution of resonance frequencies, In a solid the
resonance line is broadened to the extent of several gauss, and the shape
of these lines can often be described by a Gaussian distribution, For
example, the proton resonance line width in polyethylene is about 15 gauss.

In liquids repid molecular motion: tends to average out fields due to
other nuclei and the resonance lines are narrow; in practice usually
determined by the homogeneity of H, across the sample,

The coupling between spins allows energy transfer from one spin to
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another, leading to thermal equilibrium ins:i.de the spin system itself in

a time which is shorter than Ty, This is the spin-spin relaxation time

and is denoted by Tp.

I.3 Relaxation Interactions

Let us now consider some possible relaxation processes, To maintain
absorption in the stationary state there must be some mechanism restoring
equilibrium (the Boltzmann distribution). If the induced nuclear
magnetism is displaced from equilibrium, we must find an interaction
which determines Ty,

The spontaneous emission which usually limits the lifetime of
sn atom in an electronically excited state to 1070 secands, is negligibly
small in the radio frequency region. The coefficient of spontaneous
emission, A, of radiation from a dipole is given by

A= IThy B
c!
where \/) is the frequency concerned and B the coefficient of absorption,
For protons in a field of 10 kilogauss one finds by substitution,
21210725 geconds 'l, which corresponds to a lifetime of 1019 years,

In addition to spontaneous emission we must consider the transitions
. induced by the thermal rediation field. Here we find T2 ].O3 years,
(noting that the wavelength is large compared with the dimensions of the
"black body", i.e. the resonant circuit (3.

Electric forces, which act during atomic or electronic collisions
and to which are attributed many of the macroscopic properties of matter,
do not perturb the nuclear spins, Only an electric field gradient can

interact with a nuclear quadrupole moment as will be discussed later,



o
So we must return to magrxeti:c interactions associated with the nuclear
magnetic moment,

So far the only magnetic field we have considered acting on the
nucleus is the extermally applied field, (Hq+H)),  However, every
nucleus must experience a field due to possible neighbouring nuclear
magnetic dipoles, Taking into account this dipole-dipole interaction

means adding to the Zeeman term in the Hamiltonian for the spins, a term,

= Ty L j_g[x;t\sn -3 T |

5
Y'-.) Y‘ii

213=£j' rj is the vector joining the ith and jth spins,

The dipole-dipole interaction of nuclei at fixed positions leads only
to a broadening of the nuclear energy levels, and hence of the absorption
line, For an interaction to be capable of inducing transitions it must
be time dependent, The only possible time dependent quantity in
equation(1,,)is rijo This is not unexpected; we know of the rapid
motion of molecules in liquids and gases from other sources,

Any time dependent magnetic field at the site of a nucleus may
induce transitions, if it contains the appropriate frequencies in its

Fourier spectrum, More detailed analyses of these interactions follow
in chapter IV,

I.4 The Chemical Shift

We have tacitly assumed that the resonance frequency of a nucleus
is simply a function of its gyromegnetic ratio and the applied fieid.

However, generally, the frequency is also dependent on the molecular
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environment of the nucleus, This is because the molecular electrons
"screen" the nuclei by a very small amount from the applied field, Thus
resonant nuclei in different parts of the same molecule may experience
slightly different resultant steady fields, so a resonant frequency
spectrum is obtained,

The magnetic coupling of the electrons to the nucleus arises from
the magnetic fields originating either from the motion of the electric
charges or from the magnetic moment associated with the electron spin,
The former gives rise to the so called chemical shif'ts; the latter to
Knight shifts in metals and to a coupling between nuclear spins, In

a diesmagnetic or paramagnetic substance the average field a nucleus

experiences owing to the electrons vanishes when H, vanishes, Hence we may

write the resonance frequency es

=] Ho+ AH] '

where AH is the change in the 'field due to the electrons, Ve may

define a field independent chemical shif't S y DY

AH= -8H,
for protons the entire range of‘s covers about 1 part in 105; for
fluorine nuclei, about 6 parts in 10%.

A common example of the chemical shift is the proton spectrum of
ethanol, A low resolution spectrum is shown in figure (1,2). The
peaks are due to absorption by the hydroxyl, methylene, and methyl groups
respectively. 3, and éz are 2,.8 and 4,20 parts per million. With

increased resolution, the spectrum appears as figure (1.3).



Pigure(1.2)

Ho increasing

—7, b A
) L__JA%J\\J_\L‘L 2

Figure(1,3) Ho increasing

e
2

The splittings occur because of interactions between spins of the form
H = t\ )‘1 -J )‘52
where J is the indirect spin-spin coupling constant, in general a

tensor, The effect of a time dependent "J coupling" will be discussed
in Chapter IV,

I,5 An ensemble of non-interacting spins in a steady field

We have shown that for a spin in a steady field H,, the energies

En are

EW\ bt TBr\HQM-



s b I AR
We may denote the corresponding eigenfunctions of the time independent

Schrgdinger equation by Up e For a particular value of m, the
’

corresponding time dependent solution is

Y, (0 = up mesp(~ Ent)

end the most general time dependent solution is

+1
V()

2 Cm U T,m zxp( O (o E)
12N
where - is a constant,

(1.5)

m=~-T

We may calculate the expectation value of any observable of the

system via equation (1,5).  For example, for the x component of the

magnetization
Guwy = | VO pY© at.

Substituting values of‘,lx and 1}’(6 y this is,
“t.( = t\ Ct:. CW\ i IxIW\) ex —L EM‘ -EM] .
& P £ mg\.x (] P[t( ) 6)

were (| Tx|w) = | Upu [y uppat

is a time independent matrix element, Expressions like equation (1,6)
would hold for any operater, and, in general, are tims dependent with
terms oscillating hHarmonically. The possible frequencies are
Ew-Em.
A

Since the matrix elements (n\'\ I-,‘\ W\> are zero unless m'=mt 1,
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the terms in equation (1,6) have an angular frequency of tXHo. Thus

\

< ,Lx(f)> oscillates in time at the classical precessinn frequency.

Now consider equation (1,6) for spin 3,  We have,

</"x(t)>=8¢‘[c*;,_c-y,_( 420 Ix|-4) exp (- iyHot)
+ c_’:,’;c.,z(-%( L.|%) exp (QgHot)]

=23¢\?¢-[¢Z C,l/2<’/2| le"‘;) exp (— (Wo t)]
where we take the real part of the square bracket, But
(4 12[-4) = %

and if we write the coefficients as

C.y=b exp(ip),
<P =ghi ab Re.fexp Cix+ip-iwet) |
or, CRLEYD = ghab cos [o- @ + wot].

Similarly we may show

<"L5(t)> = -gt\ a b sh[ﬂ -‘(5' + wot]

o <t yR(55F)

If we write <ﬁ> - _"-_<}*x> +_._}'<F'3> + _k.<}'(2>

then (#) behaves as a vector precessing about the Ho direction,
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At time t , the orientation may be specified quite arbitrarily by
specifying a, b and(o(-(3) « Of course, this means that spins are not
found only parallel or antiparellel to Hoe Here we may describe an
expectation value for the magnetization which may take up any direction
with respect to the steady field,

Each spin in our ensemble of non-interacting spins will be described
by a wave function; but, in general, it will not be one of the eigenstates,
%) but a linear combination of these states, A particular spin
has a perticular set of valuesof a, b, o and (3 « At t=0, for example,
there will be a distribution of values of (u-(s) , the orientation of the
spin in the x, y plane, However, in equilibrium we kmow thet' the
transverse component of magnetization is zero, That is, there is a
rendom distribution of (x-() . We also know that there is 4 small
induced polarization, so, on av'erage, a> b,

In equation (1,6) we may relabel the complex constants, putting
*

mm e

Cmmt = C

In our particular example,

Conaty = &
Copuyy = b®
Ciyy-y, = ab up[i_(“-(B)]
C-y,_w/z = ab exp[i((s-ﬂ)l
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The C 'y may be considered to be the elements of a complex matrix C .
Of interest is the fact that the diagonal elements are proportional to

the populations of the various states, while the off-diagonal elements

are related to the components of magnetic moment perpendicular to the

steady field.
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CHAPTER II

MEASUREMENT OF RELAXATION TIMES

II,1 Adigbatic Fast Passage

The technique of A.F.P. (adisbatic fast passage) was first
successfully used for the detection of nuclear resonance signals by
Bloch [1] in 1946, It has subsequently been used by meny workers to
measure Tl [2,3,&,5].

From the equation of motion (1,1),writing M for r_& » we have,

d (m2) = dM =
& (M) = 2M 4B o M. u, =0

i,e, the magnitude of the magnetization, \g‘ , is a constant, 1In a
frame rotating with instantaneous angular velocity £ L, the time

dependance of M becomes

N _ yMa(H+ (2.1)
S - ¥ x)

If we select a frame such that the field H is continuocusly aligned along

the z axis, H =H =0, and, expanding equation (2,1) ,

Bﬁ- M,.O. -Myx

After any time t, the change in M, is

‘ t
AM, = M (€)= M, (0) = [M,:.O.b - My n.,] dEl a3
0
If the time veriation of -(7- is sufficiently slow, i.e, if

<< yH
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so tha N OL
et |AM| & ,—-_XH &« M.

Thus if the rotation of H is sufficiently slow, the angle of the
magnetization with the instantaneous direction of H is constant, This
is the adiabatic theofem.

If we hold the main field, H‘ y well off its resonant value, Ho’
the situation in the freme rotating about H, at W, (= YHo) is shown

in fimre (2.1) .

%Ho

Hy(6)-532 ’F ----- Moy Hagf

Hy Pigare (2.1)
L,/
"yt -ewH, , tan@=Lt— %0
3 Hza-)-“ls

and the resultant effective field, Heff’ will be parallel to H,. A

resultant equilibrium nuclear magnetization would be aligned in this



et IS
direction, If Hz( t) is changed from Hz(t) to -Hz(t) uniformly,

(o] 0
H,pp SWeeps from 0=0" te 0=1%0 . If this rotation at all
instants satisfies the adiabatic condition, then the magnetization, Mo,

will follow Heff and itself be turned through 180°, This can also be

effected by a 180° pulse, although here we have the adventage of being able
to measure the induced signal as M, passes through the x,y plane, Also

we see that for linear field sweeps, the eangular velocity of Heff is

not constant, showing the necessity of the integral in equation (2,2)

Physically [6,2] we may imagine Mg precessing about He at a

rate w': 8H¢§§

£f

i

It is reasonable to suppose that if Heff rotates mich more slowly than
this, say w" » Mo will continue to precess and not be "lost", i,.e,
the condition is w'd> W" ; the adiabatic theorem.

The smallest value of He is H, and the largest value of W" is

ff 1
ho_ AHz(6) e AR dHZ(&'),
i al Vo HERE
At

Hence the nearest the inequality comes to being violated is

dt

At any instant the transverse component of M, along the direction H
=Y
2\ 2
is given by My = M(' + 8 >

where 8 = H'LU’) - %
Hi

d
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-/
Thus M_ varies as (I+5z) 2‘, and figure (2,2) shows how this function

varies with 8 . A(I +62)-.12
Io
Pigure (2,2)
0 i,
As -'/1 |
(1+8*) "=

| HE+ [Ha(o) - ]

H,

the line width in figure(2,2) goes to zero as H, goes to zero,

Similarly the line width becomes large as Hl becomes large,

Neglecting other contributions te line broadening, such as an

inhomogeneous Ho’ we see that Hl is a convenient meesure of the line width,

At the passage through resonance there will be a transverse

magnetization equal to the initial value Mo’ 80 long as no relexation
has taken place during the half passage. The condition for this is that

the resonance line is swept through in a time much faster than the

transverse relaxation time, which is '1‘2.

The time spent in resonance is

H.
d H=z(b)

A
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Hence another requirement is -_FI.",I_-‘; <3 A_E_ZEL_{- ) .

The complete condition for A.F.P, is

Hi AHo HZ*
A== 4&30
TaewtNE 3

where the change in Ho, AHO, takes place in time A t.

. The aescription, adiabatic, refers to the fact that a reversal
of M, implies an inversion of the energy levels of the system without
chenge in the populations, If" we pass through resonance from below,
i.e. initially H (t) < H_, then H_,, will be 180° out of phase with H,.
The resulting displayed signal, obtained by comparing the induction

signal and Hl, will be inverted,

II,2, The Spectrometer

A Varian DP60 high resolution/wide line nuclear magnetic resonance
spectrometer provides the main field, Ho, of about 13 kilogauss, and
the radio frequency field at.: 56,4 Mc/s. The magnet power supply is
stabilized by applying a difference voltage to the grids of eight
304 TL power triodes arranged in parallel, The magnet colls are cooled
by circulation of water around a closed circuit, past a heat exchanger
cooled by tap water. A pressure switch ensures that the H.T. line of
the power supply is broken should the pressure of the closed system

drop below a predetermined level, It has been found that only nylon
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reinforced polyethylene tubing is sufficiently strong to withstand the
pressure of the closed system,

A second, field sensitive, stabilizer is also employed. Here
a current, induced in pick-up coils by changes in the actual field of
the magnet is amplified and péxssed through a second set of coils in such
a way as to oppose the original cheange. Thus magnetic field variations
from sources external to the magnet system, such as stray magnetic
fields, moving ferromagnetic objects as well as variations from noise
internal to the system are corrected for. This "super" stabilizer
may be switched on about one hour after the main field, Drift due to
changing temperature is then small, and can be corrected for by the
stabilizer,

A useful facility exists for injecting an artificial constant |
voltage signal into the field sensitive stabilizer, Hence the resonan;:e
signal may be moved back and forth across the oscilloscope trace,

The components of the spectrometer needed to measure T. are shown

1
in the schematic diagram, figure(2,3).

The sample probe cntains, essentially, (a) a radio frequency
transmitter coil, wound as a single wire Helmholtz pair onto the surface
of an insulating cylinder, (b) a three turn receiver coil wound on to

the sample dewar and orthogonal with the first coil, (c¢) a radio
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frequency amplifier, and, (d) a pair of Helmholtz coils for sweeping
H .
°
By adjusting twe "paddles", one containing a cenducting ring, the
other a disc, and by rotating the receiver coil, one is able to reach
minimm r,f, leakage between the transmitter and receiver coils, The

r.f, field, H,, is usually of order 10Onf}., and is measured by a method

ll
propesed by Anderson and LeRoy [7] . This method uses the fact that in

a freme rotating with angular velecity @ , the effective field is

ff o)

and the resonance frequency in this frame is

T GHCHE
One can effectively achieve the "r.f." field required for resenance, by
audio modulation ef the main field Ho‘ At resenance,

2 2,

k)m = (8Ho -w) -+ 8 H| . k2.3)
Thus we may solve for two different values of Ho’ so long as l")m > le 3
This is made manifest by two sidebands appearing, one each side of the

main signal, Frem equation (2.3),
'
H, = %i (w,f‘—x"H.z)h‘

80 the separation sidebands, d, is

d =2 (wm-g*H)">
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]
If one measures d at several frequencies, ()m , and plots d° against

i 9 il
Wy » & straight line is produced with intercept 8 H, at d2= 0.

An exact value of H, is not required in the measurement of T.,

1 .

Tl is measured as follows. On waiting a sufficient time after
switching on Ho, an equilibrium magnetization, l.:o, will be established,
A fast passage with a sweep O Ho = 1.5 gauss produces a narrow absorption
signal of height So' Asduming a linear amplifier, So will be .
proportional to M so long as Hz( t) was sufficiently different from H
for there to have been no transverse component of magnetization before
Passage through resonance. This is cnsured in practice by walting at
one end of the sweep, and passing through resonance near the other end of
the sweep,

A general magnetization p (% M 0) will be inverted by a fast passage
end will produce a signal 5', It will immediately begin to grow back into
the direction Hy» exponentially with characteristic time 'I‘l. If we perform

this fast passage at time t =0, the time dependence of the magnetization

will be as in figure (2.4) .

}

M(t)

Figurc (2.14-) .
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After time t' ’ chosen so that at t= t' N M( t) =M. ) 8 second fast passage

will produce a second signal, equal to S', but inverted with respect to it.

The time dependence of the magnetization shown in figure (2.4) is
given by
2l |
M= (oMY [1 - exp(-E)] - M

After time t , M=)}, and, on solving for T, We find,

t' =
' _|hMo—M' i L o= (2.4)
Mo+ M S0+ 3

In fact any initial magnetization on being subjected to single rapid
passages at intervals of time t' will eventually follow the path A to B
in figure (2,4) This may be seen by drawing the time dependence of
an initial value of M(t), different from M 3 throughout many intervals t'.
The experimental arrangement for producing and automatically timing
the field sweep, A H_, is shown in figure (2.5) .  The audio oscillator
has a continuously varisble output frequency of 10c/s to 33Kc/s. The
counter is arranged to supply the flip-flop with a triggering pulse every
thousand cycles of the oscillator. The output from the counter is not
sufficient to trigger the Servomex sweep, This latter needs a single
voltage step bf %t 50 volts, and this is provided by the bistable flip-flop.
With amplification-, a sweep of 1.5 gauss is obtained from the Servomex
dHz
ot

and & wave form giving uniform is chosen, i,e, a sawtooth,
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AUDIO OSCILLATOR

MUTRHEAD D=695-A

DECADE COUNTER

BISTABLE
FLIP FLOP

D.C. AMPLIFIER

WAVEFORM GENERATOR

SERVOMEX L.F.51.

OSCILLOSCOFPE

I
—
a—

o

Ho SWEEP COILS

o)

Figure (2.5)., Production eof field sweep AH , 3
o
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The procedure for measuring Tl is then as follows. A long
waiting time, say about 6T1, is introduced between complete cycles of
the waveform generator, Resonance is offset from the centre of the
sweep as explained previously, So is measured.

With resonence at the centre of the sweep field, fast passages
are made for half cycles of the waveform generator, separated by waiting
times ¢ - % ia usually chosen to be equal to T,. From equation (244)

. ' ]
we see that for best accuracy, neither So- S nor S itself should be small,

] ]
Thus it is convenient to have S & 71250» e ti= Tye After some time,

]
the signal on each sweep will have a constant megnitude S Substituting

in equation (2,4) gives Ty
Sample temperatures, above room temperature, are achieved by
passing heated air through the probe at constant pressure. An upper
limit of about 280°C was chosen, This represents the maximum current
produced by the probe heater power supply, and is a convenient limit,
_as the probe, glassware and dewars are designed to reach 200°C. Low
temperatures a.re’ reached by passing cold nitrogen gas over the sample,

This gas is produced by boiling off the liquid, and the rate determined

by the current passing through a heater, placed in the liquid nitrogen.

Under the worst conditions, i.e, at high temperatures, the sample

temperature could be held to t 29, The temperature of the heat
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exchange gas was measured after it had passed over the sample, The
difference between this temperature and the temperature of the semple,
measured in .another experiment, was never greater than 0,5°C.  The

temperature gradient over the sample was negligible,

II,3 Sample preparation

The benzene was of 'AnalaR' grade and the bromobenzene of
spectroscopic quality. The perdeutercobenzene, 1,3,5 trideuterobenzex_xe
and penieuterobromobenzene were obtained from commercial sources, and
the stated atomic purities were better than 99,56, 9% and S8%
respectively, All liquids were used without further purification,
They were contained in sample tubes of Pyrex glass of overall length
5 cm, outside diameter 6 mm, and wall thickness 1.5 mm. The actual
liquid sample was a cylinder 1 cm long and 3 mm in diameter., This
volume was separated from the rest of the tube by a small constriction,
as has been shown to be necessary [8] . This is to prevent vapour
molecules from diffusing back into the body of the liquid. These vapour
molecules may not have been exposed to the r.f, field, so their nuclei
may have a different polarization from those in the liquid, The vapour
also has a different Tl‘

The critical filling fraction of a sample tube is about %,

Critical filling ensures that liquid exists right up to the critical



gl
point, and does not completely fill the tube or evaporate before this
temperature is reached, A simple piece of apparatus was constructed

to observe the filling characteristics of each sample up to the critical
point, Thesample is placed in a transparent glass dewar and hot eir
blown over it., A copper-constantan thermocouple, placed on the sample,
measures its temperatures, The liquid meniscus is observed while the
temperature is increased, The temperature at which the meniscus just
disappears is the critical point, In this way the chance of a sample
exploding when fitted into the glassware in the probe is minimized,

Molar fracéions, x, of liquid mixtures were measured by weighing
the constituent liquids as they were added to the sample tubes, An
accuracy of 1%, for x is claimed, Losses by evaporation were negligible
as the sa;rples were frozen between weighing and dfgassi.ng. The total
weight of the sample tube and its contents before and after degassing
was virtually constant, Dissolved atmospheric oxygen was removed by
the technique of "freeze pumpfthaw". Oxygen molecules carry an unpaired
electron whose gyromagnetic ratio is about three orders of magnitude
greater than that for a proton, It will be shown in chepter IV that for

a given set of nuclei undergoing intermolecular dipolar interactions with

non-resonant spins,

T« 4



=2gs
where 8‘: is the gyromagnetic ratio of the non-resonant spins., Thus
the relaxing effect of the oxygen impurity is strong.
A completely greasefree vacuum line was constructed., Greaseless
taps were used (Springhams), Dissolved vacuum grease had appeared
as an impurity in some earlier samples; its presence revealed by an

apparent lowering of T, at high temperatures, The sample tube is

1k
atté.ched to the vacuum line by a clean polypropylene sleeve, The liquid
is frozen and the space above it evacuated and isoclated, On thawing,
the liquid evolves bubbles of dissolved air, The cycle is repeated
several times until there is no increase in pressure due to gas leaving
the liquid, The partial pressure of a gas dissolved in a liquid is
proportional to the partial pressure of that gas on the liquid surface,
That is, a dynamic exchange equilibrium is set up. Exposure to a

bressure of say 7.6 x ]_O.'l"

m of mercury reduces the number of dissolved
air molecules by a factor of 106. For the 'case of mixtures it is
essential to freeze the sample for a considerable time to ensux:e all
vapour is condensed, Otherwise slight fractional distillation might
occur, although the relevant freezing points are close.  Another
reason for preparing the sample the rcquirgd size before degassing was
one of economy. All samples were frozen and finally sealed off under

a pressure not greater than 5 x 10-3mm of mercury, so all measurements

refer to liquids under their own normal vapour pressure,
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CHAPTER III

THE DENSITY MATRIX AND ITS TIME DEPENDENCE

III 1 Introduction

We have seen that for an ensemble of spin one half systems, each
spin has a wave function of the form

w = c'/lu" 4 C—)’ZUZ
where W and u, are the eigenstates of the operator ZIZz with eigenvalues
%+ and =~} respectively, \CJ2_|2 is the probability of occupation of
state U .

In equilibrium, for N systems,

My = NC2Y = NYRCT) = Ngng\p*lzw

:NXT'\( lC'/z\z = \ C"’z"->' (3.1)

We shall show later, that
v
; PARN
M= My + LM.':f b Nxt‘ Cyy C-lp
* Lo (302)
Thus unless each coefficient c_:z or c s equals zero, which is
only the case for complete polarization, the equilibrium magnetization

of the sample should have a component at right angles to H , This is
o

not observed experimentally. Thus we must assume ¢4 and ¢
5 _%_ are

different for each spin, and that the average,
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Chc.p = -—-Z c.,zc‘_,,z =0k
Ve may also write the averages,
' Cl/ , F+ and l C'Vzlz = F" s
as the relative populations of the two levels,
We may generalize equation(l,6)for any spin operator Q. Over

the N spin systems the average value of Q will be

@y 42 & nck [y

k-) n,m
or, using a bar to indicate an average,

<Q> Z cxec, (m|Q|n). (3.3)‘

To canpute an observable we need to specify either all the cn's or the

products Cnc:)f ; the latter will be the more convenient, We may

arrange the coefficients c,,c.?f to form a matrix, a representation

of an operator (J , the density matrix for the ensemble of spin

systems,

ice. (n”:lm) = cnc,}f\.

Equation (3,3) becomes,

@ =2 pm)(ml@ln)
= Z (n[pQln)
= _W‘aca((JQ) = —l?ace(Q(a).



g =0 =
Ve notice (nl(:l m) = P
and (m) (;\ n) = ChniCrt
lnlplmd = Gmleln)
or,Jut (’umdt =qu‘(3u,\o\t] = S ((a un)*um AT
which is the condition for (3 to be Hermitian, Also,
Tel (,) Te ( e (1)
where 1 is the unit matrix, therefore,
Te(p) =1
The wave function, \]/k= z CnWn , describing the kth system
will change with time and if thenun' g ere constant, the coefficients c_

are time dependent. If the Hamiltonian of the system is 3{ , the

corresponding Schrédinger equation is,

SR ey
i 2t

t\Zan Fih A Z CatElns

We can pick out the equation for one particular ) by mltiplymé. by u‘);

and integrating. We find,
t‘. :ch(b"}éih>.

n

at
exreiore Cl ¥
Therefore, %( (‘Jlm) (G Ck Cm>

dCm 49 X
ke - MO



| N Ll L
- L5 [ Grek (nllm) - (kI 1) Cck |
=%(k]p}€‘3€(>|n«>-
In operator form, this may be written as

%f = é—\ [(3, }€} (3.4)

This is similar to the equation of motion of an observable except for a

change of sign.

Should }f‘ be independent of time, a solution of equation (3,4) is,
t) = ex (-—_i_ £) plo) ex (.L’}ét ;
ot = xp( =L 1) LoD exp (& %E)
If the u, ere the eigenfunctions of X , then the k,m element of the

time dependent density matrix (3(&) is,

(R|ptod)| m) = j Uy exp (-1.;5.\ %) pl) €Kp(%){&) U AT

*
= j [Q)LP (‘:1.:\‘. }{k> \Lh] (3(0) exp(—i—\-}ﬁt)umdﬁ ;
As }'EU.n = Eh Wn

(k| (9(91 m) = exp[—é—\(Em— Eh)t].(b ] (>(o)] m).
If the spin system is in thermal equilibrium at temperature T, the

populations of the eigenstates are given by the Boltzmann factor, so

that the diagonal elements of (3 are given by

Cm Cn% = exP(:t?E{:-“)

Z




- 35 -
vwhere the partition function, Z= Z, ZXP ( o
_ n
mist be included to ensure v (3"‘ l.
If we write
|Cnlexp (i%n ),
CMC,.,i = | Cw\HCn\ ﬁxp[i(‘xm-‘“n):}.
If the phases X,, are independent of the amplitudes |cn\ , then the
right hand side will average to zero for all terms for which m:ﬁ n.

Hence the off diagonal elements of (3 vanish as we expect for thermal

equilibrium,

III.2 Properties of the density matrix

Let us now consider the calculation of Q from the density matrix,
when the representative set of Q is changed. Suppose we trensform to a

new representation given by

Q= ucw
and1et"4/ Zd 9 0q :

where O"' = Z‘: uhU

But U* (U-,>q,n
Z qu‘ nq,
Z ¢ U

The density matrix in the new representation is given by

(3‘) -IZ d,k*da
=N" ; Z Cﬁ Un) C‘iUM;
n,m
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5 Z (U-‘)im (Jmn Unj.

nm
ma  (=UPU,
fye2 / pl = )
wma Q=T (p'Q) = (U POV QU)
= Te (UT70QU).
When a trace is taken, the order is irrelevant,

SRETH(PQ):

!
Hence the calculation of Q 1is independent of its representation OEL -

For a spin one half system placed in a field, we have seen the

wavefunction may be written

IDE c‘/z“'/,_ﬁ"P(‘é Ep6) + Cy Uy exp (-'EL( E.yt)

= Ci/‘z_ul,zf.)tp(-}_g)-_o_t> + c_‘,iu_:/l e)(P(L_L%J-_q_t).
H = *
ence P“ = Cvzcyl

(J,-z = CVLC?%_e_)cp(—éaJo(:)
and X ;

P21 = c_n,zc.,lexp(cwoe)

so that the explicit form of the density matrix is

aa® abrexp(-(wot)
i Abexp(iwot) bb¥
where we have defined Cy=aexp(ix)  etc., but have

- - neglected the constant phase factors.

The operator for each component of spin % may be represented by a

Pauli operator, e.g.

I7-="5-(<‘>-°|> Ir:a(?é) Ig,:‘/z(f'g)



So ensemble averages of Iz, Ix’ and Iy may be specified by

L. = Tr(eT2) = Y2 (aa¥-b6b6%)
T . T (L) - %[ abfexplivet)+ abesplimat]
fg =T (ply) = yz[ajo*e@(awog)— a*bzxp(gpok-)]

which justify the remarks mede in equation(3,2) .

III.3 The interaction representation

If the Hamiltonian for our spin system consists of a time
independent term, }fo, and a time dependent term 3'€|(k> » the

equation of the density matrix becomes
é%f = t\.‘-[(D, %J}G‘MJ (3.5)

Let us define a quantity (.)' by
P = axp (3 X,E) o' exp (£ %ot 3.6

Substituting (3,6) into (3,5) we have a differential equation for P! .
e e ‘ ; gar :
Altoplterp(1E,0) 22 SN = 1o, Won ]

If we define ){" = C&P (“.é;'){o‘:) 3{\ Z)(P (‘-;-\- }{ol:>

wo find, gf' 3 %[(bu : '}E{U)J.

Hence we have in effect removed the term :)fo o T};e transformation

(
to the new )€ 0 is canonical and is called the interaction representation,



III.4 The correlation function

Consider a time dependent function y(t)., y(t) is a random

function if its velue at any time t is a random yvariable, occurring with

probability p(y,t). The average value of y(t) at time t is,

i = § yply,dy.

If f(y) is a function of y, f(y) is also a random function of t, and

§6 = [ plyO gt dy.

Values of y(t) corresponding to different times are not in general
independent veriables, but show a correlation, We shall consider only
that correlation for two different times, tl and t2. We define the

correlation function, G( tl,tz), of the random function f(y) by,

G(t,2) = [ed4*CEs)

relative to the times tl’t2'

Stationary random functions are independent of time, that is,
independent of the origin in time, We shall deal only with this class
of random function, so that G(t,,t,) depends on t, and t, only through
the difference t,-t.= C .

2]
We may write, -

G = 4 FF e+
= JCCQJC"(*:—D) .

if the behaviour of the function is symmetrical in the past and future,
i.e, GC'C> s G("C)
If £(t) end f(t+ T ) were uncorrelated, we could average each separately,

then, if £(t) =0,
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GLT) = f(D f*¥(t+T) =0-
For T=0, G(o) = [§&) 20

In typical physicel systems, f(t) will be some perturbation varying with
time due to some physicel movement. For example, we shall be interested
in molecular motion in liquids., For times less than some critical time

T, , the "correlation time", the motion may be considered correlated,

f(e)v: {(t +T.).

G(T ) is very small for |T| » Te . The shape of the function will

so that

be as in figure (3,1). G(T)

=

Figure (3.1)

-Cc -C—b-

i

For future reference, let us define a Fourier transform of G(T )
’

J(w) = ijCt)up(—éwt) AT

The inverse relationship is
S . .
&) 2377& Sl Z/X,PCLu)t) o\
~ 00

J(W) may be thought of as the spectral density of G(T ), and will

:
contain frequencies up to the order /T, , as shom in figure ( 3,2),

JW)

Figure (3.2)

| |nw >

w=lI
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As G(O) = Q.n.j J ((A)) dw
-
is independent of T , we see that the area under the spectral density

curve remains fixed as U, varies, Figure (3,3) shows the curves for

three different Cc 'Cc leng

Jw)

Figure (3.3)

It will be found useful to write

G(T) = (L *(&) c(T)

il el
with ¢( T ) of the form, c(T) = e¥Xp ( '-E:>.

a correlation function which is of'ten used for many physical processes,
This may break down for small T , as an exponential correlation function

produces a cusp at the origin, i.e, a sharp change of slope,

ITI.5 The time dependence of the density matrix

By analogy with equation (1,3) the rate of change of the

magneti.fation in the z direction is related to '1‘l by
4% _ Lo-Ty
T
But as I7_ .. T&((:I'z) s where () refers to the spin system under

discussion,

i_\t_[‘rv-(()tz)] - I"‘:;(PE).
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This would suggest that a useful starting point in the derivation of
an equation for '1‘1 is the equation of motion of (3 p

Consider a Hamiltonian [}E o )‘E (.*')] acting on the spin system.
Ko ia the interaction between the spins and H_,end ¥,(6) the

interaction between the spins and random stationary time dependent magnetic
fields, Only the second part of the Hamiltonian will be of interest here
and it will be found useful for the equation of motion of (3 to be

in the interaction representation,
[ - /
i.e. 3‘% = -"[}e‘(.{'>)(—"] (3.7)

where for convenience we have redefined the Hamiltonians, 1In (3.7)

P = 2xp (i Kek) P exp (- ¥ot)
aa M) = exp(CXob) K () exp (- Ko b,
Integrate equation(3,7) from t=0, then

= [ ( (
‘O =p'e) - i S [){ (&), P(E) | dE . (3.8)

7 P AL W
(‘1‘“:') is unknown, but we may find an approximate solution by replacing
it by (3'( O) , its value at t=0, Hence we may make a closer

approximation by an iteration procedure, obtaining a better value of

(a'(b‘) to put in the integrand of(3,8) . Thus

0'(E) -.-(3’(0) il S: [}{:(e')){c'(o)—LS:‘{){:(tu))(}t(oﬂ dt“}] At

+ higher terms
|

tet
R f ) pla]de- &oX:[}ef(e'),[xi(&"))(:(o)]] At "

+ higher terms (3.9)



Equation(3,9) is entirely equivalent to ordinary time dependent
perturbation theory taken to second order, but we are interested in the

*
behaviour of terms QA Qm rather than Q,, and Q,, separately.

Because of the statistical nature of }‘E,(ﬁ we may introduce the new

L
varisble, T = t-t , then, differentiating equation (3,9) , we write

the approximation, 1
ae'- {1/, 0 - | th[x,’m,{)ﬂ'(t-@, ey] G0

We now define a correlation time, 'EC s for the random Hamiltonian }E.UT)

2

which is a time such that for Tc < T |

(O (e+T) >0
and for To> T , '){"({.)){:(€+T> =R0L

/
From equation( 3,0) if ){,“‘) is a random operator, so is P' p

and the observable behaviour of our ensemble of spins will be found by
taking an ensemble average on each side of equation ( 3,10) . For
times, t , longer than T¢ , }éﬂt) . M;(t""t) or (’3/(0) are
uncorrelated, In particular ){:U:) and ()I(o) may be averaged

separately, i.e,

[®i®,p] = [EE®, ] = o

Since we are dealing with stationary perturbations the ensemble average

/ : ,
of }E| u’) is equivalent to a time average, in general we will suppose

the time average to vanish, because of the random nature of }é,/({-> :
We make three further assumptions,
I {
(a) We may replace ()(0) by (3 (€ ) on the right hand side of

equation (3,10) . Over long times, and with short correlation times,
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/ I
0 (£) is very little different from o) (3]
(b) We may extend the upper limit of the integral to infinity,

This is reasonable as contributions to the integral

ft}é.’u))%.’(t-t)dt

for values of T > Uc are negligible.

(¢) We may neglect higher order terms in the approximation for ()’(t-),

This is valid for short Tc , as higher order terms fall off as T.[3] .

Hensei o Q0! - -§wd’5[){:(Q}Q:(t’t),e'((—)] (3.0

at
L2 ()4 is now the average density matrix, That the ensemble average
of }é: u-) vanishes amounts to assuming that 3@: L’c) does not produce a
frequency shift [1,2] .

In general, equation (3.11) may be expressed in more useful form

1t et (RS
%)= ; ESVD A
(q)

where the A(q) are spin operators and the F random functions of time,

The Hermitian properties of the Hamiltonian are maintained by making the
-4) ;
= - pl%

convention

AGD) A(‘L) f

and

The operators A( a) are transformed to the interaction representation by

A@_ oy (WA Tep(- ¥o® = ?—L\f;)exp(t"«)?)t)-

Substituting in equation (3,11) and noting that specifically time

dependent terms average to unity, we have



s W s

ép_ Z[ [ 2 (acej} C (t)axp(—éw;”-c}o\t

a)d
wheve . /G (T)i=RE (D) F"“(wm.
At frequency CJ;,‘L) the spectral density of F( a) is ,
00
4>\ - T (4. N
L) = | " e ) 4
F'ina.lly the so called maste" equation is

£ ___ ZJ( (¢>>[A~¢) [ ) ']]

For a particular type of perturbation the J's and A's have to be
calculated in detail, In the next chapter we shall consider all sources

of time dependent fields which could cause nuclear relaxation,
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CHAPTER IV

CONTRIBUTIONS TO SPIN-LATTICE RELAXATION,

IV.1. The anisotropic chemical shift interaction

It has been mentioned that there exists a coupling between the main

field Ho and a spin I, of form

-gh Ho AL T
A is the chemical shift tensor whose components have definite values in
the fraﬁxe of the molecule, The tracg of this tensor,

Ay + Az ¥ Ay = 38,

is seen as a small frequency shift, given by,
Aw = b w,

where Wy is the Larmor frequency.

The off-diagonal elements of A are dependent on the molecular
orientation and can cause relaxation whenever there is molecular motion,

It may be shown [1] that the relaxation times T, and T, due to
this interaction are proportional to Ho2 » 80 the field dependence of the
relaxation times should enable this contribution to be recognised,

A physicai picture of the interaction may be introduced as follows.,
The magnetic field at the site of a mucleus is given by

Hh; ("D-)Ho

where (° represents the shielding., If this quantity is anisotropic it



L W

has different values for different orientations of the molecule with

respect to Ho. So Hn is time dependent through molecular reorientation,

Ivo2 Indirect in-spin J ¢ 1 .

The first evidence of this interaction came with the discovery of
field independent splittings in high resolution spectra, as in the case
of ethyl alcohol given in section (I.L). This coupling is via the

electron spins,

The Hamiltonian is of the form

;= & 1..3. L;
The isotropic part of the coupling tensor, J, may be measured from high
resolution spectra, If J is time dependent, through for example, exchange
processes or isomeric changes, its anisotropic part can cause relaxation,

In this case the correlation time of the interaction would depend
on the exchange rate, However, for most substances J is small, and as the
relaxation rate due to this contribution depends on J £ [1] y it may be
neglected in the presence of stronger interactions, Moreover, in
the liquids studied experimentally in this work, there is no evidence
of exchange, Another pgesible relaxing effect occurs if the nuclei

under investigation. are J coupled to another group which has a very short

relaxation time,
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IV.3 Electric Quadrupole interactions.

So far we have considered only the magnetic interactions of the
micleus with its surroundings, However, we must consider the possibility
of electric fields reorienting the nucleus. That such an effect is possibl
is easily seen );ay considering a nucleus with a non spherically symmetric
charge distribution, For example, the nucieus might be slightly prolate,
The electrostatic energy of the nucleus then depends on the nuclear
orientation with respect to the neighbouring charges, both nuclear and
electronic, If the positions of the neighbouring charges are time
dependent, through, for example, molecular motion, the energy changes
of the mucleus may well equal those needed for transitions between its
magnetic energy levels, So relaxation will occur, and we have the
apparent anomaly of an electric interaction causing magnetic transitions,

Alternatively, we may consider the muclear electric quadmpole moment

interacting with an electric field gradient.
The quadrupole interaction is observed only for those nuclei with
I>%. Nuclei with I<} have no electric quadrupole moment,

The contribution to the relaxation time of a spin 1 nucleus, from

the quadrupole coupling is(13] ,

2 : =
:’"Tq - 21+ )(e_r_\ﬂv_@) (- (1)

where rl is an assymetry parameter, Q the nuclear quadrupole moment and qQ
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the electric field gradient at the nuclear site, This electric field
gradient is fixed in the molecule and (g is the correlation time
associated with the reorientational motion of a vector along this gradient,

um for liquids, for spins greater thaﬁ one half, the quadmpplo
interaction is dominant and others may be neglected, For example, as the
total charge on a molecule is zero, the intermolecular electric field
gradients are likely to be small, For polar liquids this may not be true,
but the intermolecular contribution is still usually small,

That intramolecular quedrupolar interactions dominate magnetic
interactions may be shown as follows, Calculated relaxation times for
magnetic interactions only are much longer than t hose actually measured,
For example, for relaxation of deuterons in perdeuterobenzene by magnetic

interactions only, one calculates Tls,: 3x 104 seconds, Experimentally

T,% 5 seconds. Also, the deuteron relaxation time in perdeuterobenzene

is unchanged by dilution in benzene [2]. Thus, not only are magnetic

interactions insignificant, intermolecular quadrupdle interactions are shown

to be negligible also,

IV.4k Interactions with par etic urities, Wall relaxation .
The magnetic dipole moment of a paremsgnetic ion, or any particle
containing en unpaired electron spin, such as an oxygen molecule, is about

three orders of magnitude greater than a nuclear moment, Dipolar
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interactions are thus considerably stronger. A trace of paramagnetic
impurity can dominate relaxation processes, In general, the diffusion
coefficient of an impurity will be different from that of the host molecule.
The more rapidly the impurity diffuses, the more nuclear spins will it
encounter and the greater will be its relaxing effect,

The most common impurity of this type, for the liquids to be
discussed, is dissolved atmospheric oxygen. Proton and fluorine nuclear
relaxation times are reduced from order 20 seconds to order 3 seconds
when the samples are exposed to the atmosphere,

It has been suggested that the percentage of the molecules in a
sample tube making collisions with the walls of the tube per unit time,
m'be large enough to affect '1‘1. The cause could be a change in
co@lation time, i,e, the fate of motion, or interactions with the walls,
D.W.G, Smith, of this laboratory, has measured proton Tl' 8 for simple
liquids held in large sample tubes also containing many thin walled glass
capillary tubes., The increase in area of glass in contact with the

liquid did not affect '1'1.

IV.5 Dipole-dipole interactions

The nuclear magnetic dipolar interaction mentioned previously is

time dependent through two distinct types of motion. The intramolecular
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dipolar interaction depends only on the reorientational motion of the
vector joining two nuclei in the same molecule, The intermolecular
dipolar interaction depends on the length and direction of the vector
joining muclei in different molecules. To a small degree changes in this
vector will be due to reorientational motion,

This int.eraction will now be considered in greater detail,

The Hamiltonien for the dipolar interaction between spin I and spin 8

is ﬁ}ed =_t7-81875[;[;3§ ! 3(!:. I)(‘f .5.)].

Y

We write the spins in terms of their components, Ix’ Iy and Iz, and put

I+ = Ix+ in

the raising and lowering operators respectively. Also we express the
Cartesian coordinates given by r , in terms 61‘ the spherical coordinates,

v,8,Y . Ve may now write the Hemiltonian in the well known form

[7]" #’}Gd;——‘xl%t\z [A+E>+C+D+E+F]

where, A= I‘Z 52. (| = 300529)

Bi= 2;"[14-5—"'1 S](l-SCos o)
C = %[Lj + IZ_S+] Sin® cos® exp(~iip)
= --3—['[_57_+ 1z S_] Sin®cosH exP(Ltp)



o _%_ Top S sinzeexp(—ai.np)

s _% 1_ S_ sinf@exp(Riy)-

We have made contact with equation (3,12) as the dipolar Hamiltonian

can now be written, 1 J-(:d = % F(4) A(4)

where F(O) ot | — 360529
Y\3
F() = §h®cosf exp i)
3
F@ = sin’@ exp(-RLY)
rs

and A(O) = a -% Iz Sz+ "5(1'4_5_4‘ I—S+)]
K = a.[ I; 5 + I+SZ]

A(") = '5-"0.14. S+

where (O = -%8185h .

We assume isotropic random motion for the orientation of the vector r , 80

the correlation function becomes

FYE *az) = 6o

2% dm)(w) =S

o0

Gm(‘c) exp(-WT)dT.
00

Now replace (_)i by (3'— (3:, in equation (3.13) . (D‘o is the

equilibrium density matrix, The total magnetization in the z direction
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is (Iz" sz). We operate on (Iz+ Sz) by both sides of equation (3,13)
and take the trace, thus,

4[Te5]- -4 T oh[a [#

— - - + -

We must expand the commutator, noting that the contributions from the

terms with q = O are zero, as

(K, L+S,] =o0-

Eventually we find for like spins [1],

| 0%[1_;—51] = ‘%84*\2 I(I‘*’)[J, (w1) + Js (zwr)][Isz-(IﬁSl)o].

But we know the equation of '1'1 is

1o4S2: - ( T3+52)s
T

;‘%(Iz-" Sz) =

therefore, by comparison,
)
= %g""v\"I(IJ«D[J, (wg) 4+ I, (Zw:>] (4.2,)

for the dipole-dipole interaction of two like spins. The generalization
to interactions with several pairs of like spins, provided their motion

is not correlated, is given by,
S (k) (k)
£ - 3¢ (13 [J7 W + Jy (200)].

In a similar way we may celculate T,, using (Ix+ Sx) in place of (Iz + Sz)

and find [1] , for like spins, -
% = g4 L(I+0[ 2 J, () + U wed+ 30, (wr)].
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If the same short correlation time is assumed for all the random quantities

concerned, we can ahm[l] ’

: — g, |gmy ,
Jesdiiedinse |B Salecanlk syt alsBi v =nd il 4.
On cajculating '1‘2 for interactions between unlike spins in a similar
manner, we find [1], for all other things being equal,

]/Tz likQ = 2 ))'4-‘ | MOV Prra . O ;
Ty unlike 2

i.e, nonresonant spins are 1} times less efficient for causing relaxation

than resonant spins, In particular for proton-proton and proton-deuteron

interactions,
A5

i ‘%(g'?)z ) (1.3)
Ty T (Ip+) :

where the symbols have obvious meanings,

We need now to express the spectral densities J(W) in terms of the
macroscopic parameters of the motion of the liquid molecules, That is,
in introducing liquid theory, we need to find a model to approximate
molecular behaviour, We assume the intramolecular distance r is fixed,
which will be the case for the rigid molecules considered experimentally
later, Molecular vibrations are the main means o;‘ changing internuclear
distances, but they are not effective for nuclear relaxation as the

relative change in distance is too small and the correlation time of the

motion is too short,
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We will first consider interactions between two like spins in
the same molecule, This is the intramolecular dipolar interaction, and
the time dependence is introduced solely through the rotation of the
molecule, A basic assumption is that the motion of the molecules is
Brownian, that is, the motion of spheres of radius a diffusing in a medium
of viscosity rl .

The probsbility, f(e,ce) = Jf (1) , of finding a fixed axis of the
_sphere in the solid angle Sin® dedkp .ia given by the ordinary

diffusion equation,

- ait f(@) - DafD) ()

where the diffusion constent, D= %‘T + The damping term (3 for
rotation of a macroscopic sphere in a viscous medium was calculated
by Stokes as -(3: 817'1/0— .

A solution of equation (L.4) may be written as a series of

spherical harmonics, YE n, 0 LeCey
)

} = Z CL,MYF,,W\.(Q)'

o,m
If at t= O, the sphere is in the position (), ,

B el )

and we find an expression for the coefficients

* -
= Vi (W exp ( z‘:’i)
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where .CL = aJ%,_ R(Q"H)
We need now the correlation function,
C-(T) = FX)F (L)

This may be shown to be[l] A

&(T —ES‘S F (ﬂ)F(ac\)fCﬂ) ALL dLlo. (4e5)

* The random functions F(l) and F( 2) are given in terms of the normalized

spherical harmonics by

F) = r"i/:g" \(2)‘(_(2_),
F200y - r-/%lf Yot

From equation (4e5 ) ,

) = v Cexp( ”'H)

IH
. GP(T)= 20 exp(
So,
td LS e
Jw)=L £ i )= d
( ) vo IGsz.Ci vé |5 T -Cd

From equation (4,2) we have, finally, for the relaxation time for two

spins undergoing random isotropic Brownian reorientation with a dipolar

interaction,
T R+ am
—rlin'l‘\m 5 V" l+w?* T4 I+ w?Th

For rapid molecular motion, as is encountered in the liquids to be
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considered later, W Lp& | , so,

T MMhaaoRe 'y

—

-rl intva Z yé

Taq
for spins 3, For a molecule containing several protons we may write

' =3 “"l:\z'z| "
- Bk ~ d (146)
T/ intva Zg ) 2

for the ith nucleus, r, 3 is the distance betw-éen the ith and jth nucleus,
This is equivalent to assuming the interactions additive, i,e., no
c;orrelation. However, Fenzke [ 3] has calculated T inAtra:for L
spin system and finds that equation (4,6) is a good approximation,

The time dependence of the dipolar interaction between nuclei in
different molecules may be produced by the relative translation of the
two molecules and again Brownian motion is assumed to be responsible for
the Pourier spectrum, We will now consider this problem, ‘

W6 nbsd 4o caléurste. . FLE) F*(t"" T) for spins in a spherical
shell between r end r + dr around the relaxing spin, The mean square
displacement in any direction of a macroscopic particle in time t is
given by [L] A

¥i=(DE.

If we assume the equation holds for microscopic particles, i,e, molecules,
we may use' it to define a time, "Cl y taken for a molecule to diffuse

a distance d, the molecular diameter.

T'= A |
) (4s7)
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'C' is a convenient measure of the rate of molecular translation and
is called the translational correlation time, Of course, the choice
of distance, d, is arbitrary, but convenient in that we may imagine
molecular positions to be correlated so long as changes in position are
less than the molecular size,

Again we suppose the diffusion equation to be adequate in
describing molecular motion. We follow a derivation by Torrey [5].

The solution of the equation,

9 = DA
atvf (O 5.
mere f(6,0)= 8(C-R)

]C(r,rc,,k) = (‘Zwrbt)-zlzexp[ ) ] (4.8)

8Dt
Equation (4.8) is the probability that two molecules a distance r, apart

at time t= 0, will be a distance r apart at t=t,
The correlation function for each of the three functions F(o) ’

F(l) or P(z) is [1] ’

¥*
G-(’C) = o(m NJS‘ Y?..m(ﬂo) ’\(‘Lm(-n-) 5’(“’,*2, t} d%(’o dsY‘ (o)

rod v
i : o i . 487
poere o= ?—g y X = %7:—5“ )y oy = _'_5_a'

In equation (4.,9) r and r, may not go below a lower limit d, the
distance of closest approach for molecules., By expanding the integrand

into Bessel functions, we may show {17,



00 fy
J( )= N [ Ja (W] ] (4410)
aD 0 MS' | + w*T¢
w4 dZ

where, for mathematical convenience, we have defined T, = L= .'D
2

Hence we have another, equally valid, expression for the translational

correlation time,

For simplicity we make the assumption, realized in the liquids

to be discussed later, that molecular motion is rapid, i,e,

T« |/L«?o'

Equation (4,10) is classical, and we may show [1] that,

J(W) J() l‘5 o\D
wm Jy= 3E0 5 U= BT

so from equation (4,2) , for the intermolecular dipolar interaction

between like spins,

B Wiy AT N T(T+) i

. BaD
Tl mter
Hubbard [6 ] has made a correction for the effect of rotation on

the intermolecular interaction, He allows for the nuclei not being at
the centre of a spherical molecule, A smaller distance of closest

approach is also possible, He finds, for spins 3,

%7 B ol o Ju

where b is the distance of the nuclei from the centre of the molecule,

2
In terns of T, = A%, this s,

2D
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1 - 240 un[ 23 é)’- by
A *‘\30.\.3)-%0 3(4. +o.|€(a +""]tt- (4413)

IV.6 Relaxation by the spin-rotation interaction.

This interaction is between nuclear magnetic moments and magnetic
fields produced at the positions of the nuclei by rotation of the molecule,
Molecules are distributions of electric charge and their rotations cause
time depem_lent magnetic fields due to the time dependence of their angular
velocities,

The interaction was first considered for relaxation in hydrogen gas
[7] . The effect of the molecular collisions is greater on the
rotational angular momentum, J, then on the spins, J 1s sensitive to
the strong electric forces acting during a collision. Spins of one half,
at least, are sensitive only to the much weaker magnetic fields, Recently
it was realized that this interaction is important also for liquids,
particularly near the critical point [8].

Consider a molecule, with moment of inertia I about a given axis,
rotating ebout that axis with angular velocity W ., The magnetic ;
field produced by rotation at the site of the ith nucleus will be
proportional to W .  Let this field be Hr( t). It will be time

dependent through the time dependence of W 5

The interaction Hamiltonian for the nucleus is,



H}{'Sr: _}'{'i'ﬁr (e ‘JRXE He(+) (a14)
o Hoo= [T Hr, + TyHe, + To bry |
Z "3[%. L, He ta5 [ Hep t I’*’-Hrl]‘

Writing }ESY‘ in the expansion used before,

F @) (ay)

and making the following identities,

A(o) =12 F) = -§Hry )
A\(]) i I_‘, F(') = --lz-.\&Hp_ f (l+015)
Aizaids | Ei= oo ¥Helin i)

Operating on I_ by equation (3,13) eand taking the trace,gives,

R T I A

where w'° )= 04 W=y and HEDEE 5
W=YHo-
Substituting equation (4.15) into equation (4e16) gives

%EI_Z = "chw)-\—;{[]‘)[l'\') 11]]((3‘— ()’O)}
o))

2 (W0
vhere J.(u»‘:%j H‘-_‘_(\')Hr_(t-i-t)e)i;)(-i.wt) dT
where the bar denote; the time average, But,

Hf'+ HV- » %Hrz

and if
we assume the correlation function for Hr(t) is exponential with
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time constant C sr s 1.€,

LA
HAE He (62T = Ll exp (S0 )

we have . J(W) % Hrz tsr

T, is given by the equatlon, a IZ = Izo -1 C4
d.t T

So from equation (L,14) Wwe have,

‘ 2 2——;‘ ;
T = 3¢ Heo Tsr s (1a8)

We wish now to make contact with the usual form of the interaction, between
a nuclear spin I, and the molecular angular momentum, J.
e it = s o U ()
where c¢ is the spin-rotation constant, in general a tensor quantity,
By comparing equations (4,1)) and (4,19) , we find,

2
(98:_,) - (4.20)

Both ¢ and J have their frame of reference fixed in the molecule, and,

2 2 A 2

(C J) x sz + ng Uk’& o CZZ\JZZ
— — — —
For a sphere, \Jxx:- J&w = J,_z_ = ’5 L)z'

Also we write To =hd.
although the assumption of quantized rotation must be regarded as an

approximation,

Assuming equipartition of energy among three degrees of freedom,

-;—_—Iow’ =-'%kT
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Also ¢ may be written in terms of its diagonal elements,

2
C?. = C:.L)L-‘_ ng + Ca'

Pinally, from equation, (4.18) ,

\ 2 T,kT 2 L 2
Tisrd ta e (Coix+ Cyy+ C2a) T

From equation (4.20) ,

He? —M;IC’ (cxxt Chy* Cz2)
3Ry
TG

80 the mean square fluctuating field Hr2 depends on a quantity =

and not 02 glone, This is confirmed for the cases of protons in H2 and

HD and for deuterons in HD and D2. We expect H : to be the same in

w1.
z2 1

0
8 2
252
IocC
been measured for these cases [9] and Y T s in the appropriate

all four cases and that is also constant, In fact c2 has

units, equals 13,000, 12,900, 13,500 and 13,700 respectively,
Hubbard [10] has made a more rigorous caléulation, beginning only

with the interaction

)’Es_w 3 —IE‘:.)

He finds, for a sphericel molecule,

I 125 IobT(Z & 2
—r = - Gl C:> T gy (4.21)
T b 2

where C | = Cypy = Ci‘)fj Gy = Czv .

A necessary condition for equation (4.21) to hold is that, Csp < iyl
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It seems quite plausible that a molecule in a liquid should undergo

many collisions and hence many changes in its angular velocity, before
it can reorient by an asppreciable amount, For a gas t sy is an
average time between collisions, and T 4 is likely to be the same
order'of magnitude,

Brown, Gutowsky and Shimomura [11] have derived a model for
the spin-rotation interaction in liquid CHFCl,. Here the molecule is
postulated to make a sudden jump from one orientation to a new
uncorrélated orientation at a random moment, Thus the spin-rotgtion
field at the nucleus is "pulsed", The pulses are separated by an

average time td, . Let the length of the pulse be A and let

A

us write _— = .
’ -Cd %

For a gas, q is of order unity. For a liquid, q is a measure of the
"quenching" of molecular rotation in a liquid,

Let us consider a molecule in a liquid rotating with angular velocity
W, , about a fixed axis, After time Tsr suppose it has turned
through an angle ©;, , then,

91 =W, Csr
After another average time -CSr » With angular velocity (Jg it

will trace out an angle,
92_ = wz-cSr'
Hence we may write, after some time t,



L

: £

In time t, there will on average be n changes in L) , where N = Tor®

Y - feBabo

Hence the mean total square angle of rotation is

Z ¢t = 0 = Z w; n(Tse)
7

n

= wz t ‘C Sr
When the orientation of the molecule has changed appreciably, say by

one redian, t = L 4_
[

P et

and -Cdts‘r"’ to3
=)
tut, + T2 = +RT

by equipartition, if only one axis is allowed. Thus,

I
-tol Cor = ﬁ

If rotation is allowed about any axis, ©? is increased by a factor

—_ 3
two or three. Also -zl:Iowl-:—,'_hT
kAT
2o thatht wCO o s = BT where ©<N<Q (4 27

A derivation guch as this is not at all rigorous, but the result agrees
with a more precise calculation made by Hubbard,[loJ +« He states n = 6.

From equation (),22) we see that T has an opposite temperature
dependence to T4 . Correspondingly T, _ has an opposite
temperature dependence to Tl intra dipolar ®® has been found

experimentally in meny liquids [8, 12, 13, 1, 15] .
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CHAPTER V.
RESULTS
V.l Introduction

Measurements of the proton spin-lattice relaxation time kb S

ll
liquid benzene, liquid 1, 3, 5 trideuterobenzene and liquid bromobenzene

are reported, (?igtu'es 5.1,5.2 and 5.3). Also shown are proton T.'s
for various solutions of known concentration of these liquids in their
perdeuterated analogues. x is the molar fraction of the protonated
molecule, We discuss the results of a search for a possible
intermolecular spin-rotation effect.
Benzene was chosen because it has been .the subject of many N,M.R,
investigations [1, 2, 3, 7, 12] It is a relatively simple
"classicel" liquid, with well known properties, 1, 3, 5 trideuterobenzene
is virtually identical to benzene in its common physical and chemical
properties, but its nuclear magnetism is changed radically, and in a
simple manner, Bromobenzene has a similar arrangement of protons to
benzene, but we expect the motion of its larger molecules to be different,
For benzene and 1, 3,5 trideuterobenzene and their solutions,
measurements were made fram the lowest possible supercooled temperature
to just below the critical temperature, Measurements on bromobenzene
and its solutions were made from the supercooled liquid to sbout 609,

The reasons for the low upper 1limit will ©be discussed later, All
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relaxation times are plotted on a logarithmic scale against 103/'1‘
where T ia the absolute temperature. This tends to produce a straight
line plot for dipolar interactions, the most common relaxing mechanism,
especially at lower temperatures. An explanation may be given as
follows. We normally write Tl {Gtar in terms of a translational

diffusion coefficient D, Stokes has derived an expression for D in

terms of the liquid viscosity "L > 158,

Dt RIS (ol
cran,
If this expression holds for microscopic particles,
T

— O

-T-|\n+zr & N

The determination of the reorientational correlation time, L d , is

closely related to the problem encountered in the theory of Debye of

dielectric dispersion in polar liquids. He finds [4] a correlation

3
4-Tir, &
Th =
D R

Here the function whose correlation time is required is ¢ps© °

time,

The angular factors of the spacial functions F(O), F(l), F(z),
encountered in nuclear relaxation belong to the spherical harmonic Y;,_(G,LP),
whereas C0S0 belongs to Y,(O,LP) . The correlation time of YP.(Q’LP)

for a sphere in a viscous iiquid s [5],
8T rLas
LL+DRT




Hence we have the relationships,

R 4—1rrLa3
A= = md Ty = ik (5.2)

Thus T T, L
I irva "

The viscosity may often have an exponential temperature dependence
expressed empirically as,

E

17 oo (5F)
where AE is the so called activation energy, and is independent of
temperature, Activation energy may be supposed to represent a potential
barrier to some sort of motion, in this case, diffusive motion, So,
T o ZAE 4 (InT =lnno)-
RT

It may be shown that variation of (‘hT- In Q«‘) will be slow compared |

A€
with RT o - Thus,

InT; o = -

As the protonated liquids are successively diluted, the average inter
proton distance is increased and the corresponding proton dipolar
interaction decreased, For benzene and 1, 3, 5 trideuterobenzene it
is noticed that for strongly diluted samples at higher temperatures, a

more obvious turn over or maximum in T, is obtained. Short 'rl's are
often the result of imarit;es, but this must be discounted here due to
the care taken in semple preparation, Tl's may also be artificially

shortened by exchange between the liquid and veapour phases, The vapour,
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above the liquid surface, is mostly out of the r.f. field, Also its
relaxation time is short. It is hoped that exchange has been minimized
by using sample tubes which have a very narrow constriction between the
liquid end vepour [6]. Proton-deuteron exchange, important in other
systems [7], .is not likely here, Proton relaxation times at room
temperature are unchanged by prolonged heating near the critical point.

The maxima could be due to an unexpected behaviour of the dipolar
interaction, However the temperature dependence of viscosity for benzene
shows no such irregulerity. It is assumed that viscosity of 1, 3,5
trideuterobenzene behaves.in the same way.,

This leaves the explanation that as we progressively reduce the
inter dipolar interaction another interaction becomes relatively more
important, This new interaction must have an opposite temperature

dependence to the dipolar interaction, and is surely the spin-rotation

interaction [8,9] .

V.2 Benzene

The results for benzene and solutions of benzene in perdeuterobenzene
are shown in figure (5.1). vFor the pure liquid there is a slight -
deviation from the straight line at higher temperatures, as has been noticed
previocusly [6]. As x is reduced the point at which the deviation becomes

obvious occurs at lower temperatures., For none of the samples is a
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distinct meximum seen,

5 i i
Pigure (5.4) shows a typical plot of 1/1‘1 experimental 282inst

molar fraction, x, at 20%.

The relaxation time in a mixture is,

| =
L et X $oadX (5.3)

Tl % Tl inta TI inter H-H T\ ke H-D

where Tl Ay is the relaxation time due to a;l intramolecular
interactions. Tl inter H=H is the intermolecular relaxation time for
pure bengene. T inter HeD is the relaxation time of protons in a
bengzene molecule entirely surrounded by perdeuterobenzene molecules.
Being sble to add the transition probabilities, 1/T,, in equation (5,3)
presupposes that the corresponding interactions are uncorrelated.

Tl inter N8 and .Tl inter H=D are certainly not independent; they
have the same correlation time, Also, intermolecular interactions
are contributed to, in small part, by rotations.

By drewing graphs of type figure (§5..4) at different temperatures,

extrapolating to zero x, and noting

T
X

1l inter H - D -2l
1l inter H = H
we may calculate the variations of '1'1 TP and '1‘1 Pra iy with temperature,

This is shown in figure (5.5). The correctness of these graphs depends
on the essumption that the type and rate of molecular motion of benzene

molecules is unaltered by deuteration or on dilution in perdeuterobenszene,



T
This is very plausible as the parameters of the liquids which are
dependent on molecular motion are very similar., It has been shown that
the deuteron releaxation time at constant temperature for solutions of
perdeuterobenzene in benzene is independent of molar fraction [10].
Thus fd_ is independent of moler fraction., It is reasonable to assume
the same for L¢ .

The increase in viscosity of benzene on deuteration is about 47 at
5°C[11], and this has been taken into account in calculating the results
shown in figure (5.5). The effect is strongest at lower temperatures
but barely affects Tl inter® This change of viscosity has been
measured at only three temperatures and figure(5,f)shows an estimate of
how [ il:ﬁ"_l_)_‘o_ - | ] chenges with temperature. These are likely to

TeoHe :
be different from the true curves by a very small amount,

The temperature dependences of T, , .. . and T, ey figure (5.5) ,
are widely different. Tl P rises nearly linearly with an
activation energy of 3.0 koal.Mole™ . Ty intra Fi8€8 less sharply
with an activation energy of 1.2 ¥oal:Mole T, Thase figures agree
with previous measurements made over a small range in temperatm;e, [12] .
However at higher temperatﬁres T1 Gyitria exhibits a possible shallow

maximum, Certainly the deviation from the straight line is considerable,

At about 190°C. the two contributions to '1'1 are equal,

The errors shown in figure (5.,8) are calculated as follows,
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The best line is drawn for l/'I‘1 V. x by the method of least squares.
The mean deviation is calculated and these limits-used to define lines

with extreme slopes, The difference between intercepts is 2e where e

is the error in ]./T1 x=0"°

; RT
From equation (4,11) , putting D= &wan, , for spins 4
N
e Spiana o "(-ﬂ’—— (5.4)
T} inter Bk d 7 )

and in figure (5,7) we show the effect of removing the temperature
dependence of the three quantities on the right hand side, and
normalizing to 25°C, The effect of the viscosity is by far the greatest,

T r("L,T,N), that is with constent 1) ,T and N, varies less than

1 inte

T but falls with increasing temperature. T, inter(rL’N) is constant

1 inter
almost to the critical point. Also shown is T, inter(D’N) over the range
for which D is available [13]. Another way of looking at this is to

note that the activation energies of self diffusion and viscosity are
3,1 and 3.2 keal.,Mole © respectively. It is perheps not surprising to
find close sgreement with T, , . (sctivation energy 3.0 kcal.Mole™)
as all these processes depend on translational motion, This suggests

T is predominantly due to translational motion,

1 inter
In the Hubbard equation for '1'1 e (equation 4,22)we use for

d the value obtained from the close packing of spheres and the known

density at the melting point, This gives 4 = 5,888, Also a = &/2
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end b = 2,478, Ve calculate, T, , . .= 35 sec. at 25°C, This is
in reasonsble agreement with the experimental value of 27 sec,considering
the far from spherical shape of the molecule and the .appmximations used
to calculate d,

In inte grating equation (4, 9 we have assumed a uniform radial
distribution function for the molecules. That is, the integrand in
equation (4.9) should be miltiplied by a term g(r), which we define
as glr) =0 r<ad

glr) =1 r2d,
In general the radial distribution function, g(r), is not simple [15].
Ideally one wouid like to evaluate equation (4,9) using the experimental
velues of g(r), but no experimental values are available for benzene,
However, one may calculate g(r) with some confidence [16]. The use of
a more realistic radiel distribution function results in the lowering
of the calculated T, by about 15% [16,17].  Thus with this correction
we calculate ‘1‘l = 30 sec,

Prom equation (4,13) the translational correlation time, T}, is
100 x 10712 gec., but this is very sensitive to the value of the doubtful

quantity d.

Since protons in benzene are near the periphery of the molecule

it might be appropriate to consider each interaction with nuclei .

in other molecules as independent. The distance of closest approach



would now be that appropriate to a hydrogen atom in a molecule, i,e, the

ven der Waals distance, d = 2.’4.2. The appropriase formula for Tl R

T, nter B aD

where Ns is the number of spins per unit volume, This gives
Tl intes ™ 18 sec, at 2‘5°C., which is in as good agreement with
experiment as that deduced from equation (24..13). The corresponding
correlation time, -Ct' a8 15 x 10—12900. The motion concerned is
modulation of the neighbouring proton distance rather than the inter-
molecular distance and so is faster than Tt .

Comparison between experimental and theoretical values of '1‘1 Al

is not possible up to the critical temperature, as the value of D is not

known over the whole temperature range,

We assume our derivation of equation (4,16) is valid over the whole
temperature range. The deviation of T; , ... from a st;-aight line to a
possible flat maximum then suggests that the reorientational correlation
time, T, , decreases, becomes constant and increases with te'mperature.
This is physically not plaﬁsible as we expect molecular motion to quicken
considerably over the large temperature range concerned, Incidentally,

it has been pointed out that arguments of this sort break down for ethane

(18] . In the drastic change from solid ethane to the liquid, T, remains
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constant, However, this molecule is not rigid and internal rotations
may change considerably on melting. 'I‘l for bengene changes

discontimuously through the melting point. We may suppose then that

the maximum in '1'1 e is due to the spin-rotation interaction, as
discussed previously [6,8] .

We write,

| |
| 2 = = e (545)
T‘ 'mh’a T\ lVdVA d TI A

where Tl ntrard is the dipolar part of the intra molecular relaxation
time,

For spherical molecules the spin-rotation contribution to T. is

1

given by

IRT t | pt
%Srzé .:-\2. (ZCL’\L Cu)tgw- (5.6)

We also use the Hubbard relationship

= )
éET (5.7
Then from equations (5.5), (5.6),(5,7) and (4.6),
7 2 ~6 AL

I s e T ( Z‘_ Yij ><ZCL4 (’u> B (5.8
T T ¢

1SY 1 inkra A
which is a constant, indcpgndent of temperature, for a given molecule,

—Cd tgr =

Prom equation (5.8) a necessary condition is that the slopes of Pyt

and T a? against the temperature, are equal and opposite, Also,

1 intra

at the maximum of Tl s

Tise = 1) jiva 4 - ZT: iwhva (5.9)



from which B is obtained, Equation(5,9)is not wholly independent of
(5.8) but depends on the two slopes being equal and opposite over the .

region of the maximum, We may solve equations(5.8) and(5.9) for

, shown in figure (5.8).  Both T and

Tl intra d and Tl sr 1 intra d

Tl - have straight line plots not demanded by the equations, The

activation energy of Tl infra a is now 1,84 kcal.Mole-l, in excellent

L

agreement with the deuteron Tl activation energy of 1,86 kcal.Mole
heavy benzene 119,20]. The activation energy for Rayleigh light
scattering (that is, from electrons bound in the molecule and which
depends on molecular reorientation through the reorientation of the optical
polarizability tensor) is 1.35 keal.Mole™: [21].

For deuteron quadrupolar relaxation the spin-lattice relaxation

time is given by,

‘ 7L
'-;TQ 7 %(eng) Tq

where Q is the electric field gradient at the site of the nucleus

concerned, TQ is a correlation time corresponding to reorientation
of a vector parallel to this gradient.

For isotropic reorientation,

Ta = Gl
Prom the deuteron relaxation time in perdeuterobengzene [20] we may

A
calculate the quadrupale coupling constant, C_’:_@_(_P =200 )20/5
= .
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This quantity has also been measured, independently, from the splitting
of the broad line N.M.,R, spectrum in solid perdeuterobenzene, as 193 kc/s
[227. It is not likely that the coupling constant changes on freezing,
Q is an intramolecular pérameter and will depend on molecular size and
configuration, Thus we have good agreement and T, , calculated from
Tl intra d is confirmed over a large temperature range,

In figure(5.9) is shown the variation of the various correlation times
with temperature, Also shown is an independent measurement of T4 found
from Reman broadening effects [23] . At 25°C., _Col. < T¢. This is
consistent with the relative magnitudes of the activation energies, One
is tempted to use the symmetry of the molecule to explain these differences
in correlation time and activation energy and to imagine easy reorientation
about the hexad axis. At higher temperatures, Lsr approaches T4 as
has been noticed for other liquids [6 ]. The Hubbard relation
is rigorously true only for T’SV & -Cd.' Let us assume for lack of; further
information that it remains true even if T KT e With the value of
T : calculated from 't;,\ via equation (5.7) , We may find a value
for (7- Ci-*- C,’[) from equation (5.6) .
ve rina  (2ci+ci) = (38 kels):

This is a large value; although benzene is a moderately large molecule,
¢ can be measured for only a few molecules as the splitting of the spectrum

in a molecular beeam experiment has to be completely resolved, The
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interaction, however, does cause line broadening from which the quantity
(ZC_L+ C“) may be found, In general this does not give a good
estimate of (2C [+ Cj ) , since C| and C|  may be of different
sign. Ramsey [_2&] estimates (Z.Ci"' C{f)< | . for benzene, This
discrepancy may well be a manifestation of the fact that we are using
equation (5,6) for a non-spherical molecule, It has been found
for other non-spherical molecules that the factor 6 in equation (5,7)
should be replaced by a factor of order unity (7, 25]. A large =S
of the apin-rotg.tion constant may suggest that the factor 6 is too large

for benzene. .

Ve3. 1, 3, 5 trideuterobenzene

The experimental proton relaxation times for 1, 3, 5 trideutero-

bengene (C6H ) eand for solutions of trideuterobenzene in perdeutero-

D
33
benzene are shown in figure (5,2) . Here the maxima in Tl are well

defined and also move towards lower temperatures in increasing dilution,

That protons are not intramolecular nearest neighbours is reflected in

the long Tl' 8,

1

For a sample of protonated molar fraction x, the measured T

~

-_ll_—:‘ = —‘— + X _‘__ \‘-3(.
‘x -T; it —rl infev H-> 3H+3D _T‘,‘M{BV H->¢D

(o)
end a typical plot, at 20°C, of /T, _ v. x is shown in figure (5.10)

(5.10)



e 79 -
Tl inter H3H:3D is the intermolecular contribution in pure C6H3D3 and

Tl inter He€D is the intermolecular interaction for a C6H3D3 molecule

entirely surrounded by molecules of 0606.

Equation (5,10)may be rewritten,

s = =+ X = +

T, x —nin'h‘a ' —rl-irﬂWH-'SH —rlmTEY‘ H-3D ~T—I For H- 6D

=X

where Tl inter H-3H is the relaxation time for interactions between

protons. '1‘1 inter H=3D is due to the interaction between protons and

deuterong .’mCGHBIJ3 molecules, But,

-—

| infey H-6D b2 I inkey H-3D

as a group of three deuterons in a molecule will have the same inter-

molecular interaction with a proton whether they be on a CGD6 molecule or

a CGH}DJ molecule, Thus, |

T;I. Tim‘m Tinf&Y‘H—BH Tmhr H-3D

We solve for Tl Antre and '1'1 Sttt noting that,

1 inter H - ®

Tl inter H - 3H
and present their temperature dependence and errors, calculated as

= 2,

previously discussed, in figure (5.11) .
As before, the variationsof the two contributions are widely
different, Ty inter rises sharply with an activation energy of

-1
3.0 keal.Mole . T, intra is virtually constant within experimental
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error, but may exhibit a very shallow maximum,

Using the argument given previously, we do not expect L4 to
remain constant over this extreme temperature range, as implied by the
T m‘n curve, The best line through the experimental points exhibits

a maximum of LOO sec. at about 70°C, Calculating a value of B as before

we may decompose this curve into the two components T and

1l intra d

T, gp+ 8 shown in figure (5012) « Again each line is straight, within

experimental error, not demanded by the equations. ‘1'1 1atea 4 rises
with activation energy 1.9 kcal.Mole'l. At 2500., Tl intra a = 500 sec,
'1‘1 o is larger than that found for benzene, The increase ranges from
20% at room temperature to 8% near the critical temperature,

At 2500_ we may calculate a value for '1‘1 inteas 4 for CGH3D3 using
a value of rd_ obtained from '.l‘l e a for 0656 at the same temperature,
It is likely that molecular reorientation is only slightly changed on
trideuteration, We must add the proton-deuteron, proton-proton
intramolecular interactions, assuming that internuclear distances remain
unchanged on deuteration. The proton-deuteron interaction is marginally
the stronger. !

We calculate at 25°C., Ty 4o s = 1440 sec. That is, more

than a factor two greater than the measured value,

Setting aside questions of errors in Ty intra g let us consider

possible causes of relaxation other than the expected proton-deuteron,



proton=proton interactions. The calculated relaxation time is so long

that a small interaction, normally neglected, may be important, Worthy

of consideration is the dipolar interaction between protons and carbon 13

o)

nuclei which have 8 = 0,67 x 10Lt gausa-lsec. and I = 3, The natural

sbundance of C'> is only 1.1% but the short length of the H<C bond (1.08%)
makes the intramolecular contribution significant, Thus 1,1% of the
protons in a sample of C6H}D3 will, in addition to interactions with other

protans and deuterons,experience relaxation due to the nearest neighbour

C13 nucleus, This small minority of protons will have short T.'s and the

1

remaining 98,97 will have longer Tl's. If one could measure the intra-

molecular contribution directly, one would expect to see non-exponential

decay.

In a sample of 100 C6H3D3 molecules, the magnetization of slowly

relaxing protons varies as

c 2
M, = %CI[I = -'ti:,' + Z-%._-'-‘z 2 ]

For the rapidly relaxing protons,

M"l :: ”'[I‘— -E + _t?' —‘o-'clc]
']T” Z'WMZ
So the actual decay seen 1;,

Mo o IDO[I - t(“%‘.')«.';l',.)«t. ..... ]

and the apparent relaxation time is given, to the first approximation, by,
igpolCE |
- / I
T T T
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For C6HBD} we now calculate, Tl intrara® 1000 sec.

Let us consider relaxation caused by intermolecular dipolar
interactions with protonated impurities in CGHBDS and C6D6. In the
former case the interaction is extrapolated to zero, at x = O, In the
latter, our O D, was better than 99% pure; whether this is atomic or
molar purity is immateriel to the intermolecular interaction, It is
interesting to consider the effect of a 0,05% impurity of CglHg in C,Dq.
(The smallest emount detectable by mass spectroscopic means is 0,1% L26).
This alters the derived T, , . = line as shown in figure(533)increasing

most strongly at lower temperatures, The derived T

T) intra 1 intra 4

now has activation energy 1.7 kcal.uole'l but equals 620 sec, at room
temperature.

13

Intermolecular interactions with C™~ nuclei are negligible due

to the increased distance of closest approach.

If 06H3D3 contains as impurity a benzene derivative with adjacent
protons, then its apparent T, , . .. will be shortened, Part of its
signal will be provided by rapidly relaxing protons. An analysis by the
manufacturers gave 99.5% chemical purity, for CGHSDb » by vapour phase
chromatography., Mass spectroscopy gave 95.8% dy, 3.0% d,, L.2% 4,.
Isomers camnot be detected by mass spectroscopy so it is reasonable to

expect a significant percentage of protons to have protons as nearest

neighbours, However, the effect on the calculated '1‘1 1ntraid will still
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be no more than about 107, The final difference between experiment

and theory for Tl inbenia cannot be explained,

V.4 Bromobenzene,

The experimental proton Tl's for bromobenzene’ and for solutions
of bromobenzene in perdeuterobromobenzene are shown in figure (5, 3).
The lower temperature limit is the supercooled liquid freezing point.
The upper temperature limit @rb the onset of anomalous lowering of the
Tl values, The results are wholly consistent with a permanent chemical
change occuring with prolonged heating, In some cases a brown deposit
on the walls of the sample tube was noticed, After heat damage,
relaxation times are shortened over the whole temperature range, A
similar effect has been hogioed for deuteron T's in CDBr [27).
The temperature range for the sample x = 0,19 is limited due to the
poor signal to noise ratio, (about 6:1).

The experimental lines show no tendency to curve. One may expect

a possible spin-rotation interaction to be small for a heavy molecule

far from its critical temperature (39700.).

For molar fraction x, the measured relaxation time, 'rl x* is
given by,
10 I -+ X Ll + :

Tlx Tinfra -Tl—lnhrH-H T\‘m’feru—b _I-l-iner-Br
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where the symbols have obvious meanings, A typical plot of 1,/'1‘1 E:
against x is shown in figure (5.14) « The isotope Br79 has
L -1 «l 81
§ = 0.67 x 10" gauss sec, = and is 50,57 ebundant, Br — has
¥ =0.12x lOb’ gmss-laec."l end is 49.4% abundant., Using an average

value for 8" , one can show,

T inter H-Br = 771 inter HeD

and soO T1 inter HeBr may be neglected, The small contribution from

bromine in the intramolecular interaction may also be neglected, In

figure (5.19is shown the temperature dependence of ‘1'1 e and Tl inter®
No correction is made for increase in viscosity on deuteration., No
viscosity measurements are available for CGDSB"’ The percentage increase
in mass and moment of inertia on deuteration for this molecule is much
smaller than for the previous two cases, and it is likely that the
viscosity effect can be safely neglected. '1'1 et re and Tl {itew both

1

rise linearly with activation energy 2.7 kcal.Mole -, The deuteron 2

in C6D5Br has been measured over the same temperature range [ZOJ , and

within experimental error en identical activation energy has been found,
That T1 inter 2nd ':1 Intie have the same temperature dependence is in
direct contrast with the previous two cases, An explanation based on
the asymmetry of the molecule is plausible but verification depends on

more measurements on asymmetric molecules,

Figure (5,15)also shows the effect on T, intey ©f holding; density
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constant, T, inter(N); density and viscosity constant, T, inter(N’ ns
and density, viscosity end temperature constant, T, inter(N’ l’l )

All these "corrections" are normalized to -56%,
Averaging over the intramolecular proton-broton distances, we

4
calculate, = = 63%l0 Tqy.

I infva

So that T, varies fi'on 24 x 10"1'2 sec, at -56°C. to Lok x 10’12”0, at

60°., as shown on figure (5,16) together with T calculated from equation
(4L.,13) « Also shown is the dielectrio relaxation time Tp. , reduced by
a factor 3, for bromobenzene, extrapolated to zero concentration in

carbdn tetrachloride [28] ¢ Unfortunately, this solute-solvent system

is likely to give a value for T:D different from that in the pure liquid,

V.5 The Intermolecular Spin-Rotation Interaction.

We cannot calculate Lir for benzene from equation (5,6) Y
i.e, independent of""C'oL , as the spin-rotation constant for this molecule
has not been measured, although Remsey L 24 ] claims it to be less then
(1 ke/ 5)2. Thus we ~carmg;t examine experimentally the muner:li.cal factor
e L e g B R = (__j%%r (5.11)
as has beer; done for exampie for HC1 [25].

At the maximum of 'I'1 intra’ ™ have

= 2T

N itrad % T e 1 intral™Xe),
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which gives the value for 'rl b least dependent on the Hubbard

relationship, although the assumption of equal and opposite slopes for

T and T

1" e 1 intra 4° °VeF the range of the meximum, is still necessary,

Using the values of T calculated in this way for water and ammonia,

1l sr

it has been found that the numerical factors for these molecules are
0.5 and 1.4 respectively [9] .

Using a value of T,.from equation (5.,11), we calculate a value
of (3.8 kc/a)2 for the spin rotation constant for ‘bmene. If this
figure is too large, it suggests that a larger numerical factor should
be used in the Hubbard relationship, For example if

1o
Ty Tse = g7 (512

we find(?.CI-i- C':') K (15 1«3/:)2, which may be a more reascnable
value, It is difficult to attach any great importance to the
correctness of equation (5.12), beceuse if it were true, T, > T, , which
violates Hubbard's basic u@tim.

A second possibility is that if the Hubbard relationship is correct
and if our value for (2. 03_4- CE) is too large we may have mrlooi:ad a

contribution to the relaxing mechanism, For mobile 1liquids, i,e, those

for which W Te &1,

= interaction x correlation time,
1 experimental

For a given experimental '1‘1 our calculated correlation time is too large
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if the interaction is too small, The interaction of interest will
have correlation time Tqw o One such interaction is the inter-
molecular spin-rotation interaction, This is due to time dependent
magnetic fields at a nuclear site produced by the rotational motion
of neighbouring molecules. It has been considered for HCl and is
probably negligible in this case L 25 ] . We seek to show the existence
of this interaction experimentally. For protons in benzene the intra-
moleculer spin-rotation interaction is relatively small even at high
temperatures, so we expect the corresponding intermolecular interaction
to be small also., However, for fluorine relaxation in perfluorobenzene,
spin-rotation plays an important role even at room temperature [6,8 J,
This liquid exhibits a well defined maximum, At lower 'i:emperaturea
the relasetion is dominated by the dipolar, and at higher temperatures
by the spin-rotation interaction, If this latter is wholly intra-
molecular, reducing the jntermolecular interaction by dilution in the
usual way will result in increased Tl'a only at the lower temperatures,

The most suitable available solvent liquids were benzene and
perdeuterobenzene, Several solutions of perfluorobenzene in these
liquids were made, However, it was found that the mixtures have
freezing points well above either of the two constituents, revealing

a strong interaction between the constituent molecules, This effect

has been noticed previously [30] and is probably due to strong hydrogen
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bonding, For same liquids, e.g. perfluorobenzene and mesitylene, this
bonding is so strong that a solid "complex" may be crystallized out of
the mixture, It has been pointed out that there is no spectroscopic
evidence, e,g. optical absorption, for the existence of this "complex" in
the liquid mixture [31]. This is certainly true for high reeolufion
N.M,R, One finds th‘at the proton spectra for pure benzene and a benzene
perfluorobenzene mixture are identical [ 32]., .

Fluorine relaxation times, up to the critical temperature, for
perfluorobenzene and for solutions in benzene and perdeuterobenzene are
shown in figure (5.17% Results for perfluorobenzene are identical with
those obtained previaualy[B] « For the solution of CGPe in 0686. with
fluorinated molar fraction, xp = 0.5, the fluorine '1'1 follows the pure
liquid Tl up to about 120%C. 11 At higher temperatures it is appreciebly
longer. This is approximately the reverse of the temperature dependence
expected if the spin-rotat@ interaction is wholly intramolecular,

For the solution, Xp = 0,22, the fluorine Tl is longer over the whole
temperature range. For the case x, = O. 26, far perfluorobenzene in
perdeuterobenzene, Tl is shorter at lower temperatures than the same
benzene solution; another anomaly,

Obviously the effect of the molecular "complex" interaction is
considerable and one camot expect to solve the initiael problem, However,

these results may be explained crudely by considering a model for the
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complex molecule, The maximum melting point of the mixtures (23,7°C.)
occurs with molar ratio 1:1. This clearly demonstratea- the existence
of a 1:1 molecular counpiu. If we assume only one molecule of each
type is involved, then the most likely configuration is thatt with least
. potential energy. This will be for a "sandwich" with fluorine and
hydrogen a1‘:'om.s as close as possible, For the molar ratio 1:1, the
maximum number of complex molecules is likely and the greatest effect
will be measured, One would expect -ﬂ;e correlation times for these
large molecules to be long, so that T, is shortened. (This could also
be the result of increased nuclear interaction within the complex),
This is observed for Xp = 0.5, For the solution with Xp = 0.22, the
ratio of numbers of complex to benzene molecules is 338 and one would
expect the effective correlation times to be shorter than for the case
Xp = 0u5e

The corresponding proton Tl's are shown in figure (5,18), The

same general explanation may be given for these measurements,

CHAPTER V. REFERENCES

[1] Blicharski, J.S. Acta Phys, Polon, 22, 521, 1962
[2] Mitchell' Row., Eimer’ u’ J.Chem. Phy&. 3—3.' 86’ 1960
[3] Powles, J.G,, Neale, D,J, Proc. Phys.Soc, _7_8_, 377, 1961

(4] Debye, P, "Polar Molecules", Dover., 1945



(51

(61
7]
(8l

19

L10]
ta1d
L12]

(13]

[14]

[15]

[16]
[17]
8]
(19]
20]

(21]

Bloembergen, N,, Purcell, E.},, Pound R,V,,
Phys.Rev, 73, 679, 19.8
Green, D.K., Powles, J.G. Proc,Phys,Soc, Eé.’ 87, 1965
Smith,D,¥.G,, Powles, J.G, Molecular Phynics.‘g, 239, 1064,
Powles, J.G., Green DK, Physics Letters, 3, 134, 1962
Powles, J.G. Berichte der Bunsengesellschaft, 67, 328,
67, 328, 1963

Bonera, G,, Rigamonti, A, J «Chem,Phys, k2, 175, 1965
Dixon, J.A., Schiessler,R,W, J.Chem,Phys, _5_8 » 430, 1954,
Bonera,G., Rigamonti, A, J.Chem.Phys. 42, 171, 1965
Rathbun, R,E,, Babb, A.L, J.Phys.Chem, 65, 1072, 1961
Abragam,A, , "Principles of Nuclear Magnetism",

0.UP. 1960  Page 302,
Egelvstaff,P.A. » Schofield,P. Contemporary Physics, _6_, 274, 1965,

Tbid 6, 453, 1965

Oppenheimer, I,, Bloom, M, Can.,J. Phys, 39, 845, 1961

Muller, B,H, Physics Letters, 22, 123, 1966
Private conmmication, B.H, Muller,
Woessner, D., . J.Chem,Phys. 40, 2841, 1964

Powles, J.G., Rhodes, M,, Strange, J.H,,
Molecular Physics (To be published).
Vuks, M.P., Atakhodzhaev, A.K,,  Optika y Spektroskopia,

5, 51, 1958



' "91"

22. Phillipﬂ, 'ODO ’ Rmell, J.ci ] Melby, L‘Ro [

J .Chel'.n.Phy*l. _l&’ 2551 ’ 196‘&

23 Atakhodzhaev, A.K,, Vuks, M,PF,

Ukranian J.Phys, 8, 762, 1962

24 Ramsey, N.F. American Scientist, _lﬁg, 509, 1961

25 Krynicki, K., Powles, J.G, Proc.Phys.Soc, 86, 549, 1965,

26 Paigley, H.M, National Physical Laboratory. Private Communication
27 Rhodes, M., + Private communication, |
28 Le Fevre,R.J.W., Sullivan,E,P.A, J.Chem,Soc, 2873, 1954,

29 Smith, D.W.G., Ph,D, thesis. London, 1966,

30 Patrick, C.R.,, Prosser, G.S,, Nature, 18_7, 1021, 1960

31 Patrick, C.R., Private commmnication,

32 Chuck,R. Private commnication,



-92-

(1°6) samBtg
8°1 0°2 2°z "2 9%z ¢ . 82 0°¢ ¢ Tk 9% 8¢

SANOOZS NI ' NOTOBI



- 93 -

(2°6) sanBrg

Jo 00¢

7

‘H°D

Jo 001

8¢ (4% g€

° (s23s)l]

Jo

1

0¢

0S

00t

g

00€




“ Ol w

(€°G) smBra

0°¢

Do 09,

e 8'€
o
18°Q°0,/4QH°D

Do:0

Jo 0G-

0¢




- 95 -

0°1

L*0

(7°G) sanBtyg

°X *NOIIOVYHS ¥VION QELIVNOIO¥d

9°0

6*0

%°0

¢%0

¢*0

T*0

T

7

38
- (oms) Tant

oo

EO°0

To*o

0°0

90°0



=951

(6°G) smBta

072 2rz w2 9°2 8°z 0°¢ 2°¢ e 9°¢ m..n

- 0lp) /0T —

Jo3ut 1

SINOOS NI 'd NOJOud



INCREASE OF VISCOSITY WITH DEUTERATION.

%

-97-

0 10 80 120 160 200 240

' TEMPERATURE °C




(L°G) aamBrg

{1 L .Eu

sjuT 1 1

9°e

¥ T

g°2 0°¢

(Logy™¥F T

5 0%

985 8°¢

00T 7]

0,0

SANODES NI T4 NOIOWd



.99 -

0°2

(g°6g) aamBrd

n*2z 9°2 87 O~ 2% ifre 9%, 8¢

Y T ‘g T v L 1

.m..OF ) a\no._” e

BJIJUT
P a..nu..

SINOOHS NI I NOZOWA



« 100

0°z 2°z
() 1/, 01—

e

b

141

9*¢

T°0 1

*0ds z.[OI X INIL NOILVIHHHOD




w 101 =

]

o°1

ey

8°0

n..o

x ‘NOIIOVHS ¥VION QAIVNOIOSd

'

(o1°g) samBtrd

$°0

o)

%°0

¢°0

2c*o

T1°0

{ +00%0

1 so0*0

1 ¢°0

1 910°0

{ 0z0%0

1 =eo*0




=102 -

(%) &/ 0T —»

0°e

c’e h°e

9%

SANOOES NI & NOIOud



- 103 -

(21°6) eamBta
HIAMO v _H,\MOHIIY
L} L] 1 L} LI L L} ? ] 1]
0°2 222 % 437 9°2 g8°z 0°¢ 2°¢ °¢ 9°¢

SONODES NI '3 NOIOWd



- 104 =

(§1°G) sInITd

- (%) I/ 0T—>
0°2 2°2 °2 9°2 8°2g 0°¢ 2°¢ % 9°¢

L

| ! \J | i

9% ur £ypamdmy I,
%G00 Sumumsse P38 TIOTRD

(21°G) aamByy
103 SY

\ | ]

&

SANOOHS NI '3 NOIOHI

g



(%1°G) samBra

*X ‘NOTJOVHA ¥VION QEIVNOIOWd

- 105 =

r T v T T 7

- : : €0°0

0°1 6°0 8°0 L°0 9°0 ¢*0 50 £°0 ¢°0 1°0

1 0*0

b 8‘0

A

l0*°0

1 80°0

1
(- (388) “i/T



2°¢ 9°¢

8*%

] L L]

(z¢ \P.ZV da3ut T

I
2

o
N

SANOOES NI Im NOLO¥A



CORRELATION TIME x 102 SEC.

- 107 -

I [ [ el [l L 1

1-0».8 l&-o’%— )‘*02 L"'O 5'8 306 3024-
—~—107/1 (%)

Pigure (5.16)



50

o% 100%C 200%
T T T
X C}P.
l}oo 505 3‘0 205
——10°/7 (%)L
Figure (5.17)
() CGFG/ CeHg x, = 0.22,
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(Experimental points omitted for clarity),
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CHAPTER VI

VI, 1. Non exponential decay,

For two identical spins one half at a fixed distance r in a molecule
undergoing isotropic reorientational motion, the recovery of Mz is

exponential with time constant given by,

MesXr - exp()

where _:-—:‘ _—.?.84-#\2-(_4’\1\) (w°> + 4 J (2 wo)} S (:641)

Q

This is the only interaction which produces pure exponential relaxation,
For the simple case of an exponential correlation function,

equation (6,1) becomes,

L = gk faTa) = A

where T 4 is the reorientational correlation time,

The exact result for three equivalent spin one half nuclei at the
vertices of an equilateral triangle is a non exponential decey [1] .
The decay is the sum of two exponentials, one with a much longer ;im
constant than the other, For four spins placed at the vertices of a
tetrahedron , the exact result also gives a non exponential decay, the
sum of three exponentials. The approximation to one exponential is very
close, These results depend slightly on WoTd , but it would be very

difficult to detect the departure from exponentiality experimentally,
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For a general system of N spins in a molecule, without considering

an explicit form for the relaxation, we may write,

A Mol Mo oy
dt "'{( ZJ )'

The Taylor expansion is,
' 2
Mz(0) + tMzlo) + it—, M5 (o)t .0

Mylt) = M
M2(0) . t* Mzlo)
=Mo(0)] ] +t i e ]
M )[’ Mz(0) 2 M=2(0)
We writ 5 MZ(O} -+
e 8 — =
Mz (o) i (6.2)
and MZ(O) = ._l_-
M2(0) -rl’ &
Then if ('I‘l)2 = Tl' 2, at least up to terms in t2, the decay of M, is
exponential,

The expectation value of the magnetization in the 2z direction is,

(MY = Te [ p(OM]
where /\D( £) is the demsity matrix of the system, Similarly we have
M (o) = Tr [(3(0) M= ]
M, (o) = T [plod)Mz2] (6.3)
and f\.ﬂz(o) = Te [(3(0) M2 ] -
Thus in principle, from th? time dependence of the density matrix, it is

possible to calculate T, and '1"1 from equation (6,2), Recently Fenzke [2]

has given an approximate solution for the problem of up to six spins at

fixed distances, He calculates T, and T';° via equation (63) amd
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defines a quantity,

' 2
C = 1/T12 i (]"/Tl) (6.4)

(1/1,)?

as a measure of the departure from true exponential decay for Mz, for
the molecule considered, Hubbard's are the only exact results on which
- equation (6.,4) may be tested.

However, we shall show that Fenzke's results may be gpprdximted
to by assuming that the total dipolar interaction is equal to the sum of
constituent pair interactions, This implies that all pa;i.r interactions
are independent, We know, of course, that the time dependence of these
interactions are correlated, in fact they share the same correlation
function,

Thus any pair interaction, ij, gives a contribution to the decay

-b
of mucleus i of, Af réj !

So for i, the total interaction is
-6

U = A f Z v

T il
and the decay of M, is approximated by axp(-t/'rl), as all decays of
like nuclei in the same molecule by intramolecular dipolar interactions
are observed to be exponential experimentally,

Consider a spin, i, interacting with two other spins j and k.

Let rij > Tyype

For the ij interaction, the magnetization, l!z, of i will vary as



-113 -
. 4 e
Ml LJ"MO[‘*-T:—"_E_-E_Z 5 en exih ¢ ]v
For the ik interaction,
— t tz o~ ‘e ve o @
Mz ik = Mo[ | T T ]
and T' < 1Ty

The observed decay will be,

1
t(l ! ) Gl |
= - | = A —]  — a— pails S
i M°[ -2 rw) g (3 ws)
So we may define our approximate C, for this case, by,
| (__»_ AR T sl
ist "i -1—‘1 T"lz -r. 'T"I
i | fi\Z
(t*v)
If nuclei are equivalent with respect to internuclear distances, i,e,

4.

r etc., C'= O, This would be the case for the 3 and 4 spin

15%0 Sk
systems discussed previously, The exact value of C (Fenzke's value) is
very small for these cases,

In table 6,1 are shown comparisons of C and C' for proton spin
systems in various species of deuterated benzene. Only proton-proton
intramolecular interactions are considered, C' follows C remarkably

well,

CHAPTER VI, REFERENCES

1  Hubbard, P.S,  Phys.Rev. 109, 1153, 1958; 111, 1746, 1958

}fﬁ' 650, 1962

2  Penszke,Von D, Annalen der Physik, 16, 281, 1965
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Benzene Molecule Type

(Positions of protons 1'/T1 v C ¢
around the ring) (forw,Ty=1)
1,2,3,4,5,6 2,09 0 0,028
1,2,3,ky5 1.67 0,081 0,101
1,2,3,4 1.54 0.097 0.124
1,2,3,5 1,06 0.411 0.437
1,2,4,5 1.05 0 0,017
1:2,3 1.38 0.11 0,128
1,2,k 0.70 0.429 0.457
1,3,5 0,07 0 0.007 e
1,2 1.0 = (o) 0
1,3 0,04 0 0
1,4 0.02 0 0
Table (6.1)

» 1/T, is normalized to this value,
we All 'J.'1 values agree with Fenzke,
wee Hubbard's value for WeTy << | is 0,0031. This agrees

with Penzke for W, Ty K| .



- 115 -

SUMMARY AND CONCLUSION

We have seen that the technique of separating the intermolecular
and intramolecular contributions to nuclear spin-lattice relaxation in
liquids by measurements on solutions in neutral liquids is successful,
The success depends on there being a suitable "identical" neutral liquid
aveilable and the proton-deutron substitution scems the only one likely
to be of use for some time, The technique has the advantage that it
removes all intermolecular interactions without ambiguity and all
intramolecular interactions remain, Thus the splnerotation interaction
can be seen, An alternative technique could be, for example, to measure
the deuteron T1 of a perdeuterated liquid, and, from the appropriate
quadrupole coupling constent, calculate CTd, o Thus ™) yntra a £O°
the equivalent protonated molecule could be found, Subtraction from the
measured proton ‘1‘1 would then give Tl inter® However, this technique
gives only dipolar intramolecular int‘g.ractions, and depends on knowing

the quadrupole coupling constant which is known for relatively few molecules,

Benzene We may have confidence in the correctness of the

separation of the contributions to proton relaxation in benzene for the

following reasons.

(a) The activation energy of T, , . . . agrees with the

activation energy for the deuteron 'I'1 in perdeuterobenzene, We have
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advanced reasons for believing that these two parameters depend on
the same rate process.

(v) ~ The reorientational correlation time, T4 , calculated
from Tl intra d gives a good value for the quadrupole coupling constant
for perdeuterobenzene,

() Tl inter D28 epproximately the temperature dependence
one would expect from equation (5.,4). We expect Nt (N"L'T) to
be independent of temperature, In fact L e (N,rl,'l‘) decreases by
only a factor 2 over the entire liquid range. Tl ri e changes by a
factor of about 30.

(D,N) agrees with T

« (N,rL,T) but has greater

1 inter 1 inter

experimental error. This suggests that equation (5.1) is a good
approximation for D in terms of VL and T, but that N, can be measured
more accurately than D,

The only check on the correctness of the derived '1‘1 . values is to
substitute into equation (4.21), Here we need both the spin-rotation
constant and the spin-rotation correlation time, This latter can only
be found, via the Hubbard relationship, equation (5.7), from T, .
Thus our check is not ind;petﬁmt. Alternatively we may calculate a

value for the spin-rotation constant from equation (4.21). The

discrepancy between this value, (3.8 kc/a)z, and that of Ramsey,
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(1 hc/l)z, is large, and is not fully understood,
1,3,5 trideuterobenzene, For 1,3,5 tri;leuterobenzene we make the

following remarks,

(a) The activation energy for T g 2@rees with that for

1 intra
benzene within experimental error,

(v) Within experimentsl error the actuel values of T agree

l ar

with those for benzene as expected,

(¢) The values of T calculated using T4 of benzene

1l intra 4
are larger than the experimental velues by a factor 2,

(d) The reorientational correlation time is the same for benzene
and 1,3,5 trideuterobenzene as, at room temperature, the deuteron Tl's for
these liquids are equal [1], It is reasonsble to assume that the
quadrupole coupling constant is the same for deuterons in either molecule,

(e) In figure (5.11) the pecked line shows the temperature
dependence of 2 Tl inter for benzene, The agreement with Tl taben for
1,3,5 trideuterobenzene is close, The effect of tl;e intermolecular
Mndmtem interaction in 1,3,5 trideuterobenzene is small,

(b) and (e) g.ve some confidence in the correct’ness of the separation,
(a) suggests that we have overlooked an interaction with correlation time

f

-Cd_ ¢ no explanation can be given,
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Bromobenzene Previous reports of the temperature dependence of Tl for
bromobensene show a marked lowering of T, above about 20°C [2,3]. This
same effect has been noticed for our experiments, although hez:e, this
lowering is permanent, 'No detailed explanation can be given, The
experimental results shown in figure (5.3) are reproducible, The following

observations give confidence that the experimental separation of T

1l intra d
and Tl ke is correct,
(a) At 25°C the dielectric correlation time for bromobenzene is
12 x 10"'12 sec, [ 4], We calculate from T at the same temperature,

1l intra d

12

- T
Cdw L5 x 10 sec, - Thus there is good agreement between D/s and

T, as expected,
(b)  The activation energy for dipolar rotation (averaged over
a temperature range of 1% to 55°C) for bromobenzene is 2,65 Kcal.mole’l.
[5] . This agrees well with the activation energy for Tl ] which
-1

is 2,7 Kcal.mole ~,

(o) The dependence of T

1 inter on density, viscosity and

temperature is approximately as expected from equation (5.4)., As for
benzene, the contri'bufion from viscosity provides the greatest temperature
dependence, We expect T, , . . (N,rL,T) to be independent of temperature.
In fact, over the temperature range -56°C to +40°C, Ty 4 o . (N, 1,T)
increases by a factor of about 1,2 while '1‘1 Kk increases by a factor

of about 6,
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Bengene, Perfluorobenzene mixtures. The experimental results for these
mixtures are difficult to intei'pret unless detailed knowledge of the
motion and structure of the "complex" molecules is available, Also
of interest are the ’1'l values below room temperature, However it was
not possible to supercool these mixtures, It is reasonable to claim
that the existence of the complex in the liquid phase has been

demonstrated,

3
4T
IRT
of megnitude for both benzene and bromobenzene over the temperature

Agreement between T, and -Cc‘L (: ) is within an order

renges of experimental results. One is tempted to make "corrections" to

3
| 4T :
the expression td= 3 k'}ra' in an attempt to reach better agreement,

Gierer and Wirtz [ 6 ] have shown, in a simple but physically
plausible argument, that for molecular rotation in pure liquids one
should use a "microviscosity", rlm , rather than the macroscopic shear
viscosity VL . They show rlm-_ o-lbrL . Hence, using rL m » We would
have better agreement between T, and t‘;‘_ for benzene, but worse
agreement for bromobenzene, Thus it would seem quite unprofitable to
make "corrections" to quantities whose derivations may contain many
approximations, and which my be evaluated by substituting quantities

with large errors, such as l.3 . Such "corrections" must wait until a

more comprehensive 1list of values of T d 1s aveilable,
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Similarly close comparisons between 'C¢ and T, are likely
to be unfruitful as physical pictures of these parameters are difficult
to draw from their definitions. For example, it may be very mislesding
to assign a definite angle of jump to T, or a definite distance of

flight for -Ct ;
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