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Abstract

The ability to accurately age an image of the human face in an automatic and 

rigorous fashion has widespread potential applications. This thesis is concerned 

with the development and testing of a new approach to computerised age progression 

based on a statistical learning procedure.

The thesis begins with an overview of existing methodologies for age progression 

and outlines the need for improved procedures. After a review of the underpinning 

mathematical techniques, the theoretical basis of the new age-progression methodol­

ogy is then presented. In this new approach, age progression is achieved through the 

calculation of optimised trajectories within a model space constructed from a prin­

cipal component analysis of the shape and texture of a training sample of images. 

The statistical framework proposed extends naturally to include both generic and 

person-specific influences on the changes in facial appearance as aging progresses. 

Specific, physiological developmental periods, facial appearance at a previous age 

and the tendency to resemble close relatives are all incorporated into the model.

The methodology is then computationally implemented and tested. Quantita­

tive and perceptual tests both confirm the essential validity and accuracy of the 

techniques. This new methodology demonstrates that near photographic-quality, 

age-progressed images may be obtained based on rigorous scientific principles and 

considerably more quickly than is currently possible using forensic artistry. It is con­

cluded that the algorithms may, in the future, be used to augment or even replace 

the existing artistic methodology.
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Chapter 1

Background

1.1 Introduction

Forensic age-progression of the face is a discipline currently employed by law en­

forcement agencies during investigations into missing persons, often missing chil­

dren. It is used to age an image of a child to predict their probable current facial 

appearance and thereby assist in their recognition and recovery. An age-progressed 

image may also provide the link necessary to establish new information on adult 

cases, for example, in “cold case” murder enquiries or in instances of criminal ab- 

scondment. However, child age-progresions are typically utilised more than adult 

age-progressions because, over a relatively short period of time, the face and skull 

of a child are undergoing such rapid growth and development that a subject may 

be unrecognisable if not seen for even a few months [1], Once adulthood is reached, 

the changes to the face with time are predominantly textural (for example, the 

development of wrinkles) rather than structural.

The Police and other law enforcement agencies, as well as missing persons’ char­

ities, currently rely on the skills of highly trained forensic artists in order to perform

1



CHAPTER 1. BACKGROUND

age-progression. According to the National Missing Persons Helpline r2] in the UK, 

approximately 6-12 age-progressions are carried out by forensic artists per year, 

a relatively low number compared to the demand from families. This represents 

approximately 0.35 per million, only about 1% of the estimated number of very 

long-term missing children1 (see Appendix A).

Although the results obtained from age-progressions carried out by forensic 

artists are visually appealing and plausible, there is no assurance that they are 

scientifically accurate as such approaches have never been subject to systematic 

testing. In addition, the high level of skill required means that the production of 

age-progressed images is time-consuming, typically requiring twenty-four hours* 2 to 

complete [2, 4]. Furthermore, only limited success may be achieved if the images are 

of insufficient quality [5. 6, 7] or if the faces are of unconstrained pose. To effectively 

address these problems and allow a non-specialist to produce accurate, rapid and 

scientifically principled results, a new approach is required.

The work in this thesis outlines such an approach using a rigorous methodology. 

Statistical learning methods are used to construct an abstract model space through 

which aging directions may be calculated from an appropriate sample of training 

data. A primary motive for this approach is an expected increase in speed of pro­

duction which would permit a greater number of age-progressions to be performed 

and hence aid the recovery of more missing subjects than is currently possible. 

Moreover, scientifically principled age-progression might reasonably be expected to 

be more accurate than subjective, artistic methods [8], since the rigorous modelling 

of facial growth might be expected to give more objective results than those of

XA long-term missing child is one who has been missing for more than one year. A very long­
term missing child is classed as one who has been missing for more than five years [3].

2In extreme cases, up to seven days may be required [4].

Catherine Mary Scandrett 2



CHAPTER 1. BACKGROUND

artistic interpretation.

It is hoped that the work introduced herein will eventually be used as a practical 

tool by the Police and missing persons bureaux. Ultimately, the objective of this, 

and of future work, is to produce a semi-automatic, integrated system for facial aging 

in which a user could present to the system a subject image, stipulate the required 

degree of aging and produce a near-photographic quality aged result quickly and 

effortlessly.

Automated age-progression methods could also find a number of commercial 

applications (see Appendix B). Possible examples include the animation and film 

industries to produce aging effects for characters, as a novelty package to give parents 

an insight into how their children may appear in the future and, used in reverse, 

automated age-regression might be used in cosmetic surgery planning to give a 

patient some estimate of their post-operative appearance.

Owing to the wide range of potential applications, not least in the search for 

missing persons, the work presented in this thesis is of potential interest and rele­

vance across many fields and disciplines.

1.2 Thesis Overview

The remainder of this thesis is organised as follows. This chapter describes the back­

ground to the work in terms of the physiology of aging and outlines the currently used 

artistic approaches to age-progression. In addition, scientific methodologies in the 

literature are explored. In chapter 2, the mathematical techniques which underpin 

the novel aging algorithms are discussed. Chapter 3 introduces the theoretical basis

Catherine Mary Scandrett 3



CHAPTER 1. BACKGROUND

for the three new aging algorithms. A simple approach is first presented, based upon 

the average growth and development trends of a peer group sample. To incorporate 

the non-linear nature of aging, a related approach is discussed, constructed upon 

age ranges of known developmental growth periods. Finally, the most sophisticated 

technique is outlined, which allows the incorporation of familial influences as well 

as the appearance of a subject at previous ages to predict the future appearance. 

In chapter 4, the algorithms are implemented computationally and representative 

results displayed and discussed. A quantitative comparison is then made between 

an aged subject and its target. Chapter 5 presents a qualitative assessment of the 

results in terms of human perception. Comparison is also made between the results 

and those obtained from forensic artistry. Chapter 6 provides a summary of the 

thesis and appropriate conclusions are drawn. Finally, future work, based on the 

work described in this thesis, is discussed.

1.3 Chapter Aims

The aim of this part of the chapter is to discuss the current artistic and scientific 

approaches to age-progression such that the key strengths and weaknesses of these 

methodologies are identified. Firstly, the physiology of aging is briefly presented, the 

main stages in facial development are outlined and the distinctions between male 

and female facial features are highlighted. This is to provide an anthropological 

justification and context for the assumptions and procedures of the novel aging 

approaches outlined in later chapters. Artistic techniques for age-progression are 

subsequently discussed to demonstrate the most dominant and popular approaches 

currently in use. Finally, the more rigorous and scientific developments in this 

field are introduced, beginning with the initial work on cardioidal strain [9, 10] and 

concluding by examining the work of Lanitis et al. [11],

Catherine Mary Scandrett, 4



CHAPTER 1. BACKGROUND

1.4 The Physiology of Growth &; Development

According to accepted models in anthropology [12], the human growth and devel­

opment process can effectively be summarised by six stages:

• Infancy — ~0-3 years [12, 13]. Before the age of about three years, all 

children have the same basic rounded face shape. The face appears relatively 

short and wide due to the large brain, which is developmentally precocious 

compared to the face3. The face of the infant grows out from under the 

brain and facial structures grow proportionally for a longer length of time the 

further they are located from the brain case (for example, the mandible grows 

very slowly compared to the eyes, which, like the brain, are developmentally 

precocious and appear large and widely-set on the infant face). The growth of 

the facial features during the period of infancy is determined by other areas 

of physiological development. For instance, the infant has a short nose (with 

a low nasal bridge) because of the diminutive lung size. The nasal region is 

a keystone of facial architecture, a key part upon which other surrounding 

parts are dependent for placement and stability [14], Since the nose is small, 

the forehead is bulbous and upright and the cheekbones are prominent. The 

mandible is small and underdeveloped relative to the rest of the face and 

the ramus is short due to the slow, transient development of the masticatory 

system. The emergence of the teeth has a large effect on the face as the 

infancy stage progresses, leading to the development of the chin (which appears 

incompletely formed in young infants [14, 15]).

• Childhood ~3-7 years, characterised by a constant growth rate. By the age 

of 7, a child’s face has progressed into one of the three types — euryprosopic

3The growth of the cranium is more advanced from infancy to mid-childhood and is closely 
related to the development of the nervous system. Facial growth is, in contrast, independent of 
brain case growth and is related to the development of the pulmonary and masticatory systems.

5Catherine Mary Scandrett
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(round), leptoprosopic (long) or dinaric (combination) [14]. During this period, 

as the body continues to grow at a constant rate, the lung size increases 

and therefore the nose increases in size. Accordingly, the forehead becomes 

gradually more sloping as age increases. In addition, the chin develops further 

and the jaw begins to catch up in size.

• Juvenile — ~7-10 years. During this stage, the rate of growth declines to 

the lowest level since birth (apart from adulthood). As the teeth begin to be 

replaced by the emergence of the adult dentition, the chin develops further, 

the ramus of the mandible becomes enlarged, the masticatory muscles expand 

and the gonial angles become more flared. These factors lead to the whole 

lower face taking on a more U-shaped appearance [16].

• Adolescence — ^10-20 years, where there is an acceleration in the growth 

of almost all skeletal tissue. The cranium, which grows very slowly after early 

childhood, experiences an acceleration in the growth of both head length and 

head breadth. Full maturity in head length, breadth and circumference occurs 

between approximately 10 and 14 years of age in females and between 13 and 

15 years of age in males, [13]. Final head height in both sexes reaches adult 

size at about 13 years of age, [17]. In the face, the growth of most dimensions 

accelerates to reach maximum velocity a few months after the peak velocity in 

stature. Hence, by considering the chronology and velocity of the changes in 

stature, analogies may be drawn to the rate at which the face is also developing. 

Craniofacially, throughout adolescence, the greatest change that occurs is in 

the mandible, which has until this stage, lagged behind the rest of the face in its 

development. It is hence growing faster than any other facial component and 

this may explain why it responds the most at adolescence. In this particular 

facial component, approximately 25% of the total growth in the height of the
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ramus occurs between the ages of 12 and 20 years. The mandible ramus has 

the largest growth spurt of all the facial measurements but the body of the 

mandible also accelerates both in antero-posterior length (from front to back 

of the skull) and in depth from the lower incisor teeth to the point of the 

chin. Therefore, as a result of the spurt, the jaw becomes considerably longer 

in relation to the rest of the front part of the face. It also becomes thicker 

and more projecting in appearance [17]. The growth of the maxilla, directly 

above the upper incisor teeth, also increases slightly in its forward motion so 

that, in total, the prognathism (projection of the jaws, a jutting forward of 

the facial skeleton and jaws) of both the upper and lower jaw increases, with 

the lower jaw more affected than the upper. In addition to these changes, 

the profile of the face becomes straighter with the chin more pointed and the 

incisors of both jaws more upright. There is also acceleration in nose growth 

during the adolescent growth spurt for the majority of children, particularly in 

the antero-posterior direction. This is in contrast to the growth of the cranial 

base (base of the skull) where only 6-7% of the total growth occurs during this 

adolescent period, [18, 19].

The maturation of such facial components is considerably greater in males 

than in females after the age of approximately 13 years [14, 20] (female facial 

development begins to slow markedly after about 13 years of age), indicating 

sexual dimorphism in the face as adolescence proceeds [14, 21], The width 

of the cranial cavity increases more in boys than in girls between the ages 

of 9 and 14 years and they also have a greater increase in soft tissue width 

[18]. For instance, in males, the soft tissues of the nose as well as the nasal 

bone also experience a growth spurt, causing the point of the nose to move 

further forwards and downwards in relation to the rest of the face. This effect
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varies greatly on a individual basis however. In association with the skele­

tal changes that occur in adolescent males, there is also a subtler change in 

musculature and subcutaneous tissue distribution. Males develop less subcu­

taneous fat than females, giving the male a more angular and leaner face than 

its female counterpart. The development of subcutaneous fat in females in 

contrast causes a rounding and softening of the contours of the face and body 

[22]. These changes may be caused by the effects of hormones on the facial 

tissue [19]. Figure 1.1 [19] gives an example of the change in masculine facial 

appearance during adolescence. •

Figure 1.1: Changes in male facial appearance during adolescence. The
mandible becomes longer, thicker and more projecting and there is an increase in 
nose growth. The face also becomes leaner and more angular. Upper subject: a) 
Age 11 years b) Age 12.5 years, c) Age 13.25 years, d) Age 14.5 years, Lower subject: 
a) Age 12 years b) Age 13.75 years, c) Age 14.75 years, d) Age 15.5 years. Image 
courtesy of [19].

• Adult &; Old Age ~20-70 years. The adult stage represents a period 

of homoeostasis with old age characterised by physiological decline [21]. As 

aging progresses, creases may appear across the forehead [5], the eyelids may
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droop, lines may appear around the eyes and mouth [14, 21] and the lips 

may become thinner [23, 24]. Lifestyle effects such as UV exposure, excessive 

alcohol consumption and smoking all serve to accelerate these processes. The 

process of aging in adults is, however, highly individual in nature and none of 

the aforementioned age-related changes are definite.

Figure 1.2 [3] shows an artist’s impression of aging from infancy to old age.

* 'A
\  WQr

Ht* , &

■ w v t
(■ b
• 1 i 9

Figure 1.2: An artistic impression of aging from infancy to old age. There 
is rapid development in infancy followed by an approximately constant growth rate 
in early childhood. The juvenile period between 7 and 10 years is characterised 
by a decline in the growth rate and this is followed by adolescence, where there is 
an acceleration in the growth of almost all skeletal tissue. Adulthood represents a 
period of homoeostasis and, finally, old age is characterised by a drooping of the 
eyelids, wrinkling around the eyes and mouth and a thinning of the lips. Image 
courtesy of [3].
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1.5 Comparing Male and Female Facial Features

The main differences between the facial features of a male and those of a female are 

the following:

The male body is overall of larger dimension than that of the female. As a result 

of this, there is a difference in lung size between the sexes and this means that males 

and females differ in the size and configuration of their noses. Consequently, there 

are differences in other structures of the face since the airway is a fundamentally 

key aspect of facial development, the nasal part of the face strongly influencing 

an individual’s facial form. Owing to the larger lung size, the male usually has a 

proportionally larger nose than his female counterpart. Additionally, the male nose 

also tends to be more protrusive, longer and wider. This leads to the male having 

a more protrusive, sloping forehead and pronounced eyebrow ridges with the female 

correspondingly characterised by a bulbous and upright forehead. Additionally, 

the male appears to have more deep-set eyes with the female eyes appearing more 

forward on the face. The male mandible is also larger than that of the female and 

the angle of the jaw is more acute. The amalgamation of all of the facial features 

render the female face flatter and proportionally wider in appearance than the male 

face. In addition, the female face is usually smaller overall than the male face, with 

a weaker mandible [14]4. These physiological distinctions between the sexes must 

be appropriately treated by any successful age-progression algorithm.

4It is, however, possible for a male face to appear more round and hence embody a more feminine 
appearance. Likewise, a female face may take on more masculine qualities.
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1.6 Artistic Techniques for Forensic Aging of the 

Face

Computerised age enhancement was first, carried out in the 1980s by artist Nancy 

Burson, [25, 26]. Her pioneering approach was based upon knowledge of normal, 

structural bone development with age. To achieve age-progression by a given number 

of years, these average, predictable changes were appropriately applied to the facial 

features. The soft tissue was subsequently aged by adjusting the pixel values to 

reflect the well-documented, average alterations that occur in the skin over time. 

This technique led to the production of the first age-progressed images of missing 

children. Around this time, medical illustrators Scott Barrows and Lewis Sadler 

used craniofacial growth data to produce age-progressed images [5]. Their work 

emphasised the use of quantifiable growth data for people of different age ranges and 

ancestral backgrounds. Using more than forty anatomical landmarks on the face, 

they reviewed the photographs of thousands of children and developed a database 

of facial measurements. They then generalised from this sample to predict the likely 

changes in facial measurements for a subject child to be aged. Later studies involved 

digitised images, whereby the database of training examples was queried to discover 

the change in facial measurements between the current age of a subject and a target 

age.

Building on this early work, artists at the National Center for Missing and Ex­

ploited Children (NCMEC) in the United States currently perform age-progression 

by combining artistic skill with the use of computer software packages [6]. In their 

approach, incorporation of the hereditary traits of aging is considered to be central 

and population influences are only employed in the absence of familial data. A 

current photograph of the subject child is required, along with photographs of the
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biological parents or older siblings at approximately the same age as the target for 

the progression. The goal is to age the child’s face in accordance with the tendency 

for an individual to resemble the appearance of immediate family members. To sim­

ulate normal craniofacial growth, the face of the child is appropriately “stretched” 

using the familial images to estimate the extent required5 — that is, the overall size 

of the face is increased and the size and shape of the features are adjusted. Subse­

quently, the intensity values of equivalent pixels from the child and parental images 

are averaged, in essence permitting the artist to “borrow” the more mature features 

of the reference face to complete the age-progression of the child. A limitation of 

this approach is that sufficiently high quality familial images are often unavailable. 

To complete the final, age-progressed image, many subtle changes must often be 

made artistically, for example, naturally formed creases or wrinkles must be pre­

served to retain the individual’s unique appearance. Figure 1.3 shows an example 

of age-progression performed by artists at the NCMEC.

a) b) c)

Figure 1.3: Artistic age-progressions performed by NCM EC specialists
- a) Original subject, 6 years old, b) Subject artistically age-progressed to 11 

years old, c) Subject artistically age-progressed to 14 years old. Images courtesy of 
http: /  /  www.lynnpolice.org/jesus_delacruz.htm.

In conjunction with the NCMEC, the FACES Laboratory at Louisiana State

5 If no family pictures are available, suitable reference images are used.
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University also perform age-progressions, [4], A similar technique is used to that 

at the NCMEC. with parental and sibling images playing a vital role in addition 

to information about medical conditions that could affect the subject’s appearance. 

The technique also explicitly incorporates quantifiable growth data to predict the 

structural changes typical of specific developmental periods [27] and the face is 

reconstructed to reflect this growth. The resultant image is then “merged” with the 

photograph of the relative — a weighted average is calculated using the intensity 

values of equivalent pixels to experiment subjectively with different combinations 

of features. Good quality, full frontal facial photographs are a pre-requisite for the 

procedure and each age-progression may take up to seven days to complete. The 

technique used is considered to be effective, since it is claimed that the resultant 

age-progressed images play an important role in the recovery of one in every seven 

children reported missing to the NCMEC [4],

The National Missing Persons Helpline (NMPH) in the UK has staff trained 

specifically for child age-progressions6 [2, 28]. A similar technique is effected to that 

of the NCMEC with additional knowledge of the underlying bone structure and 

dentition used to augment the approach. An example of a child age-progression 

performed by the NMPH is given in figure 1.4.

The NMPH also performs age-progression on adult faces. Since the age-related 

changes in an adult are less structural and more dependent on environmental and 

lifestyle factors, the age-progression involves more uncertainty with respect to factors 

such as skin texture, hairstyle and weight. Hence, to effect a realistic age-progression, 

it is useful for an artist to have access to information about the subject’s lifestyle 

habits, such as smoking or alcohol consumption [27] in addition to photographs

6To warrant an age-progression, the child must be at least two years old at the time of disap­
pearance and must have been missing for a period of at least two years.
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Figure 1.4: Artistic age-progressions of children performed by NM PH  spe­
cialists -  a) Original subject, 3 years old, b) Subject artistically age-progressed to 7 
years old, c) Original subject, 2 years old, d) Subject artistically age-progressed to 7 
years old. Images courtesy of http://www.missingpersons.org/unidentified_age.asp.

of family members at approximately the target age. An example of adult age- 

progression is shown in figure 1.5.

a) b)

Figure 1.5: An artistic age-progression of an adult performed
by NM PH  specialists — a) Original subject, 18 years old, b) Sub­
ject artistically age-progressed to 34 years old. Images courtesy of 
http: /  /  www.missingpersons.org/unidentified_age.asp.

In addition to the work of agencies, freelance forensic artists also perform age- 

progression. They apply knowledge of structural bone development as well as infor­

mation from parental images to give an estimate of current appearance, [5, 29, 30]. 

Figure 1.6 [5] depicts an example of such a child age-progression performed by artist 

Karen T. Taylor. Some artists also perform age-progression and regression for more
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commercial applications such as family portraits [31].

Figure 1.6: An example of age progression by freelance artist, Karen T. 
Taylor 5] — a) Original subject at 2.5 years of age, b) Subject progressed to 18 
years of age using knowledge of structural bone development in addition to artistic 
skills, c) Actual appearance of the subject when located at age 18, d) Age-progressed 
image equivalent to image b) but with facial hair added. Images courtesy of [5].

Knowledge of photogrammetry and anthropometry is also used by some experts 

to perform age progression. Police artist Bette Clark [32] and surgeon Leslie G. 

Farkas [13] employ the following method. Firstly, anthropometric measurements on 

the image of the subject face are used to enlarge it to life-size to obtain objective 

facial data at the time of disappearance. Particular anthropometric measurements 

are extracted from the enlarged image and compared to the equivalent measurements 

from the current age population norms (calculated from a representative sample of 

children of the subject’s age, ethnicity and sex). To age the face, the measurements 

are adjusted to reflect an equivalent position relative to the population norms for 

the target age. The proportions of the face are suitably retained to preserve subject
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identity - however, if necessary, the measurements may be modified such that the 

face incorporates physical characteristics associated with those of family members. 

To complete the facial aging, artistic interpretation is required for the soft tissues of 

the skin and features. Figure 1.7 [13, 32] depicts an example of an age progression 

performed in this fashion.

a) b) c)

Figure 1.7: An example of age progression by Police artist, Bette Clark
[13, 32] — a) Original subject at 5 years of age, b) Subject progressed to 8 years of 
age using knowledge of photogrammetry and anthropometry, c) Subject progressed 
to 18 years of age. Images courtesy of [13, 32],

The subjective approaches outlined here generally give visually pleasing and 

realistic results. However, the need for dedicated software to perform both age- 

progression and regression is widely accepted by forensic artists, [2, 33]. The high 

demand from families coupled with the length of time needed to perform each pro­

gression or regression means that the industry would benefit immensely from such a 

tool. Commercial systems already available include the APRIL software [34], which 

utilises learned information from a large training set to age an individual in ac­

cordance with physiology and lifestyle habits. Although the motivation for its use 

is educational, potential forensic applications also exist. However, to date, these 

have not been implemented. The FACE age software, developed by Vision Con­

trol International, has attempted to provide another solution [35]. To develop the 

software, information about typical skull growth in children was used to calculate a
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normal pattern of growth1. Firstly, stable “landmarks” on the face were identified. 

These landmarks refer to positions on the face that remain approximately constant 

throughout the growth process, for example, landmarks around the orbital regions. 

Changes in skull growth were then computed relative to these stable positions over 

time. A skull growth algorithm was then produced to stretch the face of the subject 

according to these landmarks to produce the anatomically correct facial shape, on 

a sliding scale between 1 and 18 years, down to an increment of months. At the 

current time, however, the software is unable to automatically process soft tissue 

growth. Hence, the soft tissue information must be modified artistically using a 

graphics package to approximate growth and development in these features. An 

example of an age-progression performed using the FACE age software is given in 

figure 1.8 [35]. 7

Figure 1.8: An example of age progression using the FACE age software
[35]. The original image (left) depicts a subject who was 8 years old at the time of 
her criminal abduction. The other two images show her age-progressed appearance 
at age 21, with two different hair styles. Figure courtesy of [35].

7This information was obtained from dental records and longitudinal photographic studies of 
male and female Caucasian subjects. Using the acquired data, the information was divided into 
the general facial shapes of round, medium and long such that normal growth could be modelled 
for different facial types.
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There is hence still a need for software that can age both the shape and texture 

of a face in an objective and rigorous manner. As observed by Feik and Glover [36]:

“At present, prediction of the way in which a particular child's face 

will age still relies largely on subjective artistic impressions. However, as 

our anatomical knowledge and understanding improve, the use of scien­

tific and computer modelling techniques should lead to improved results 

in predicting the growth of faces.”
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1.7 Robust Techniques for Facial Aging

In addition to the approaches to age-progression discussed in section 1.6, several 

attempts have also been made to address the problem using more robust, scientific 

means. In this section, the basis for several of the more important techniques is 

outlined.

1 . 7 . 1  G e o m e t r i c  T r a n s f o r m a t i o n s  - C a r d i o i d a l  S t r a i n

Some of the earliest work on the rigorous modelling of growth was pioneered by 

D’Arcy Thompson. He observed that a condition of strain, a result of stress on a 

body, is a direct stimulus to growth itself (Wolff’s Law) [37]. In developing Thomp­

son’s ideas, the first attempts to model 2D craniofacial growth using geometric 

transformations were performed by Pittenger arid Shaw [10. 38]. The most success­

ful transform for modelling growth was found to be cardioidal strain [9, 39] and is 

given in polar coordinates by:

O' =  9

R' =  R{\ -  kcosO) (1.1)

where O' and R' are the post-transform coordinates, 0 and R are the pre-transform 

coordinates and k is a free parameter that may be adjusted as required (see figure 

1.9).

Subsequently, Todd, Mark, Shaw and Pittenger [40] sought to further explore the 

notion of Wolff’s Law and the use of cardioidal strain for modelling facial growth. 

To this end, studies were performed to investigate the effects of gravity on a growing
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head [9]. In this hydrostatic analysis, the head was treated as a fluid-filled, spher­

ical water tank and was assumed to grow in accordance with the exerted pressure, 

the analysis allowing the so-called “revised” cardioidal strain transformation to be 

derived. This may be written as:

O' =  9

R '=  R(1 +  k (l — cos 9)) (1.2)

where the variables have the same meanings as in equation (1.1). Figure 1.9 

[17] shows the effect of applying varying amounts of the revised cardioidal strain 

transformation to the profile of an infant. The transformed profiles appear older as 

successive amounts of the transform are applied.

Figure 1.9: The successive application of the revised cardioidal strain trans­
formation to the profile of a child. The transformation is initially applied to the 
profile of an infant (innermost profile). Successive application of the transformation 
produces profiles which appear older until the outermost profile has the appearance 
of an adult. The origin for the transformations is depicted by O. The figure has 
been adapted from [17].
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To evaluate its use further, Pittenger and Shaw [10] performed comparison ex­

periments between cardioidal strain and an alternative transformation called affine 

shear8. Applied to facial profiles, they found that cardioidal strain had a more pow­

erful and consistent effect than affine shear on estimates of age. This finding was 

reinforced by Mark and Todd [39] who discovered that observers were more sensi­

tive to small growth differences produced by cardioidal strain than to comparable 

differences produced by affine shear when applied to 2D profiles. Mark et al. [41] 

subsequently found that simulated facial growth by cardioidal strain was judged 

as more similar to actual growth, compared to other transformations. Hence, car­

dioidal strain appears to provide a naturally salient depiction of growth. However, 

exact comparisons cannot be made as certain craniofacial changes are not captured 

by growth transformations9.

Later studies performed on digital images and three-dimensional busts [42] also 

demonstrated the ability of the cardioidal strain transformation to model growth 

and aging on more complete representations of the human face. However, in similar 

work using 3D faces, Bruce et al. [43] found that many observers could not accu­

rately judge the relative ages of the original and transformed faces. This implies 

that cardioidal strain may not be the most appropriate transformation to embody 

facial aging. In addition, Lanitis et al. [11] compared cardioidal strain with their 

derived aging algorithm. They found that the transformed shapes were more similar 

to the target age prototypes for the aging algorithm than for cardioidal strain. Fi- *

* Affine shear may be described in Cartesian coordinates by:

Y '  =  Y  

X '  =  X  +  Y t t m 9

where Y 1 and X '  represent the coordinates after the transform has been applied, Y  and X  represent 
the coordinates prior to the transform application and 9 is the angle of rotation.

yFor instance, the development of the frontal sinus (a bump above the bridge of the nose that 
enlarges considerably after puberty) and changes in the size and shape of the nose.
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nally, Ramanathan and Chellappa [44] recently demonstrated that cardioidal strain 

provides a perceptually acceptable prediction of facial growth for small age changes 

but a poor prediction for larger changes.

In summary, cardioidal strain as a means of modelling growth has never been 

subjected to quantitative assessment but has only been evaluated in a perceptual 

sense. Furthermore, the transformation is restricted to describing growth in shape 

only. As soft tissue changes cannot be captured, cardioidal strain is necessarily 

limited as a method to accurately model age-progression.

1 . 7 . 2  A g i n g  u s i n g  F a c i a l  C o m p o s i t e s  ( B u r t  &; P e r r e t t ,  1 9 9 5 )

To further the advancements in systematic facial aging begun by the work on car­

dioidal strain, Burt and Perrett [45] employed facial composites to investigate other 

visual cues to age, such as textural changes in the skin. Using an appropriate train­

ing sample, facial shape was modelled by a set of landmark points placed around the 

facial outline and features (see section 2.3). To model the texture, pixel intensities 

were extracted from each face subsequent to the adjustment of the shape to a con­

sistent configuration (see section 2.3.2). Two facial composites (prototypes) were 

then produced in both shape and texture to investigate the notion that changes in 

facial appearance with age can largely be characterised by the average differences 

between young and old faces. These prototypes were calculated as follows:

i=l
(1.3)
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where sy and ty represent the shape and texture prototypes respectively for the 

young age group (25-29 years), sy? and tyi represent the ith shape and texture vectors 

respectively of the young group and N  is the number of young examples. Similarly,

1 M
So =  m E  s°'

i=1

1 A
t° = ¥ E t°?: (1-4)

1=1

where sQ and tD are the equivalent prototypes for the older age group (50-54 

years) and M  is the number of old examples. To calculate the shape and textural 

changes with age, the difference in coordinate values was computed between cor­

responding points on the old and young prototypes and added to the appropriate 

shape or texture vector of subject faces. That is:

s y j  ~  s y j  A  ( s o — s y )
tyj  =  tyj +  (to — ty) (1-5)

where the left hand side represents the aged shape and texture of the j th young 

subject. The age-progression was performed by adding the vector difference between 

the older and younger prototype faces to the subject face. Figure 1.10 [45] depicts 

these transforms in shape and texture (displayed in grey-scale, as in [45]) on an 

example face.

In addition to this work, Burt and Perrett also explored the effect of carica­

turing on age perception. A texture prototype was produced for a population of 

example faces between 20 and 54 years. This was then mapped (see section 2.3.2)
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Figure 1.10: Age transformation of facial shape and texture (Burt and 
Perrett, 1995) a) Original subject, b) Subject transformed using shape dif­
ference calculated from the 25-29 years and the 50-54 years prototype, c) Subject 
transformed using colour (RGB) difference calculated from the 25-29 years and the 
50-54 years prototype, d) Subject transformed according to both shape and colour 
calculations. Images courtesy of [45].

into the shape of the 50-54 prototype and the difference in RGB values between 

corresponding pixels calculated. This may be expressed as follows:

¿ =  t0 - t b (1.6)

where tb is the texture prototype of example faces between 20 and 54 years, 

mapped to shape sQ. Subsequently, to produce a caricature of tQ, the following 

equation was used:

to — tQ +  2<5 (1.7)

where tG represents the caricature. The result of this procedure is given in figure
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1.11 [45]. It was found that observers perceived the caricatured image as older than 

the original image. It was also discovered that transforming both the shape and the 

texture of subject faces, as described initially, significantly increased the perceived 

age compared to shape and texture transformations alone. It was concluded that 

texture contained considerable information about the age of faces.

Figure 1.11: Image caricaturing in texture to investigate cues to facial aging
a) Result of image caricaturing - the RGB difference between the population 

prototype and the 50-54 years prototype is exaggerated and added onto the colour 
values of the latter, b) The 50-54 years prototype. The result is that face a) is 
perceived as older than face b). Images courtesy of [45].

Burt and Perrett’s approach has several limitations. Firstly, they used only full- 

frontal, neutral expression, high resolution images in their analysis. The modelling 

is therefore not robust to any perturbations in head orientation or expression. Ad­

ditionally, this technique is only effective if a sufficient number of images can be 

used to form well-defined prototypes. Finally, this approach uses simply the average 

changes in a population to effect aging. To more accurately model age-progression, 

individual influences such as those of genetics or lifestyle are required.

1 . 7 . 3  A g i n g  u s i n g  C a r i c a t u r e s  ( O ’ T o o l e  e t  a l . ,  1 9 9 7 )

O’Toole et al [46] also performed work on caricaturing the human face, applying 

a standard caricaturing algorithm to 3D laser scans of human heads. They found
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that the process of caricaturing seemed to produce an increase in the apparent age 

of the individual. Results of the caricaturing and its effects are displayed in figure 

1.12 [46]. Further work by O ’Toole et al. [47] on shape-normalised and texture- 

normalised faces10 revealed that these altered faces appeared younger than their 

original counterparts, indicating that psychologically meaningful attributes such as 

age can be successfully modelled in the appropriate face space.

Figure 1.12: Caricaturing of 3D laser scans of human heads to investigate 
perceptual cues to aging. A 3D laser scan of a 27 year old male face (far left) 
is shown, with caricaturing at increased distances from the mean. The faces are 
perceived as increasing in age. Figure courtesy of [46].

The main limitation of the work by O’Toole et al. is that the aging effect 

discovered was incidental upon application of the caricaturing algorithm. There is 

no guarantee that the age-progressions are accurate or reliable and specific amounts 

of aging in years cannot be explicitly applied.

1 . 7 . 4  E s t i m a t i n g  G r o w t h  T r a j e c t o r i e s  ( H u t t o n  e t  a l . ,  2 0 0 3 )

Hutton et al. [48] have investigated computerised aging from a medical perspec­

tive. Their rationale was to produce a model of normal facial growth for the study 

of syndromes or pathologies that cause abnormal growth. Using three-dimensional 

scans of human faces, an aging trajectory for the average individual was determined 

through a high-dimensional shape-space, calculated from dense surface point distri­

10A shape-normalised face refers to a morphing of the texture maps from individual faces onto 
the average head shape. Conversely, a texture-normalised face is created by morphing the average 
texture onto the shape of each individual face.
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bution models [49]. To calculate the average age trajectories (with male and female 

faces treated separately), kernel smoothing11 was used to compute an average face 

for any given age. The aging trajectory through the space was then defined to be 

the path that joins these averages. A face may hence be synthesized at any age 

along this trajectory, as shown in figure 1.13 [48].

f e m a l e

U H  I 'I 'I
m a le

Figure 1.13: Male and female faces synthesized at different ages along the 
aging trajectories in shape-space. The aging trajectory for each gender was 
calculated (from dense surface point distribution models) as the path that joins the 
average face at different ages in the shape model space. Male and female faces may 
then be synthesized at ages 10, 15, 20. 25, 30, 35 and 40. Images courtesy of [48].

Hutton et al. also plotted the male and female aging trajectories in two di­

mensions. They found that, as age increases, the trajectories diverge, correlating 

well with accepted patterns of sexual dimorphism during growth (section 1.5). Ad­

ditionally, they observed that the trajectories appeared approximately linear until 

about age 15, with changes in direction occurring after this point, demonstrating 

that over a lifetime, the change in the shape of the face is distinctly non-linear (see

11 This technique has the effect of interpolating between examples and also averaging out un­
wanted variation between individuals.
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also [12, 13, 14. 19, 17, 18]).

The main limitation with Hutton et al.’s approach is that only shape is considered 

in the aging procedure. As shown by Burt and Perrett [45]. the modelling of textural 

changes is also desirable for the perception of age-progression.

1 . 7 . 5  S e m i - a u t o m a t i c  F a c i a l  A g i n g  ( L a n i t i s  e t  a l . ,  2 0 0 2 )

In perhaps the most rigorous approach to age-progression to date, Lanitis et al. [11] 

used a statistical model trained on appropriate images to simulate facial aging. The 

relationship between the model-based representation of an individual and its age (the 

“aging function” ) was calculated, allowing estimates of age to be made. The aim was 

to define a path within the model space, which explains most of the variation in age. 

Four different aging functions were tested in order to predict the age of a previously 

unseen individual. The so-called “weighted person-specific” aging function, which 

incorporated lifestyle factors as well as appearance (shape and texture) was observed 

to provide the most accurate prediction of age, suggesting that it may be advisable 

to include individual lifestyle factors when defining an aging trajectory through a 

model space.

To simulate the effect of aging on a face, the age of the subject was first estimated 

using the chosen aging function. The model-based description of the subject was 

then adjusted to the required target age. Figure 1.14 [11] shows example results of 

age-progression using this technique.

It was found that:

1. Observers correctly identified whether the age-progressed or regressed image 

was older or younger than the original subject.
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Figure 1.14: Examples of age-progression (Lanitis et al., 2002). To simulate 
the effect of aging on a face, the age of the subject was first estimated using the 
chosen aging function. The model-based description of the subject was then adjusted 
to the required target age — a) Original image, b) Age-progressed image, c) Original 
image at the target age. Figure courtesy of [11].

2. A majority of observers accurately confirmed that the age-progressed or re­

gressed image was of the same identity as the original subject.

3. When using the technique during face recognition tasks, the results showed 

improved classification rates for face recognition as compared to the case where 

age-progression is not performed.

The limitations of the approach taken by Lanitis et al. are as follows. Firstly, the 

model was constructed upon faces in unconstrained poses and expressions. That is, 

identity modes were not separated from those of accidental variation. Hence, dur­

ing the age-progression, an uncontrolled variation may occur in the orientation or 

expression and comparison with the target face may prove problematic. Secondly, 

although lifestyle effects are incorporated, no attempt was made to model the sta­

tistical relationship between the appearance of family members (such as parents
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and siblings). More realistic age-progressed results could be obtained through the 

modelling of such influences.

1.8 Chapter Summary

In this chapter, a discussion of the physiological stages of growth and develop­

ment was made, with particular emphasis placed on the facial changes which occur 

during childhood and adolescence. Artistic and anthropological approaches to age- 

progression were then outlined to examine the techniques in current use by missing 

persons bureaux [2, 4. 6, 28] and freelance artists [5, 29, 30, 31]. Although visually 

plausible results are obtained, the subjective, unverified nature of the techniques 

and the length of time required to complete each age-progression mean that there 

is a recognised need for semi-automatic aging software [36].

Scientific attempts at age-progression have also been presented. Despite the 

advances made by these approaches over subjective methods, several limitations do 

exist: •

• The techniques are not robust to changes in head orientation or expression. 

Uncontrolled variations may occur if attempts are made to age a face at un­

constrained pose or expression, making target comparisons difficult.

• Some approaches model shape only (cardioidal strain, Hutton et al.) and 

therefore do not provide a complete modelling of aging.

• None of the approaches attempt to model effects due to heredity or the previous 

appearance of an individual. These are important factors to consider in age- 

progression.
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The primary aim of this thesis is an attempt to address these problems and de­

velop a more scientifically rigorous approach. The theoretical basis of this method, 

presented in chapter 3, attempts to incorporate the changes in both shape and tex­

ture which are associated with aging. Learned statistical relationships originating 

from the physiology of growth, the genetic tendency of individual facial appear­

ance to resemble that of parents and historical facial development trends are all 

incorporated within the framework of the model. First, however, the mathematical 

structure that underpins this approach needs to be discussed and this is presented 

in the next chapter.
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Chapter 2

Mathematical Modelling of the 

Human Face

In this chapter, the mathematical basis for the age-progression techniques developed 

in this thesis are presented. In particular, the statistical technique of principal 

component analysis (PCA) is described in detail since it is used in the construction 

of the facial models in shape and texture and also permits a compact parametric 

representation of a face. The central role of Singular Value Decomposition (SVD) 

in the derivation of sample principal components is also discussed and the use of 

PCA in shape modelling demonstrated by applying the technique to an example set 

of images. The concept of texture is then introduced, such that facial aging may be 

modelled more completely, and a texture model is constructed using the example 

training set. The technique of Procrustes alignment and the methodology of image 

“warping” are also discussed.
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2.1 Literature Review

Attempts to accurately model the human face and its constituent features using de­

formable models have long been extant in the field of Computer Vision. Specifically, 

PCA has been extensively discussed in the literature since it allows the formation 

of a model that permits only plausible, “legal” facial examples to be produced from 

a training set. Early work by Sirovich and Kirby [50, 51] described the intensity
i

modelling of grey-scale facial images, showing that a face may be represented in 

terms of a low-dimensional coordinate system termed “eigenpictures” — these are 

the eigenfunctions of the covariance matrix of the ensemble of faces. Faces were 

successfully represented in terms of these basis vectors but no attempt was made to 

model facial shape. Since only rudimentary procedures were used to align the faces 

with respect to the eyes, the resulting images represented in terms of eigenpictures 

exhibited blurring since the eigenpictures necessarily averaged over the varying fea­

ture positions. Turk and Pentland [52, 53] performed a similar procedure on facial 

intensity vectors, compactly representing a training sample in terms of “eigenfaces” . 

These eigenfaces were used in the classification of facial images as well as in the 

detection of faces within an image. Recognition experiments revealed that this ap­

proach was robust to changes in illumination but, by inference, was not robust to 

changes in pose or expression. To solve the registration problem, Craw and Cameron 

[54] suggested transforming the shape of each face in a training set to a reference 

shape prior to texture extraction and the application of PCA. They demonstrated 

that this “shape free” transformation improved recognition rates.

For the modelling of shape, Cootes et al. [55, 56] used PCA to describe the modes 

of shape variation in a training set of 2D heart images. In further work. Cootes et al. 

[57, 58, 59, 60, 61] also introduced Active Appearance Models (AAM), in order to 

combine shape and texture information. Using PCA, statistical models were built on
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the shape and grey-level values of a set of training faces and the correlations between 

shape and texture learned to produce a combined model of appearance. Novel, 

photo-realistic faces were produced by adjusting the model parameters, such that the 

synthesized face appeared as close as possible to a given target. The AAM searches 

for faces in previously unseen images by using the difference between the current 

synthesized image and the target image to update its model parameters. The ability 

of A AMs to produce new, plausible examples of a training set has led to novel work 

on image segmentation [62] as well as to the development of emerging technologies 

for the generation of near photo-quality facial composites [63, 64, 65, 66, 67].

The work in this thesis is most closely related to that of AAMs. However, for 

reasons explained in chapter 3, shape and texture are modelled separately. Further­

more, the work herein involves facial synthesis as distinct from the most common 

applications of PCA for face recognition and image searching. The derivation and 

explicit use of PCA for facial modelling is described in the following sections.

2.2 Principal Component Analysis

There are multiple treatments of principal component analysis in the literature, 

[68, 69, 70, 71. 72. 73, 74] and the reader is referred to these for a detailed discussion 

of the technique. This section will outline the derivation of the method in the sample 

case and describe how it may be applied to digital images.

Linear principal component analysis is a statistical technique, which aims to pro­

duce an orthogonal basis from a set of correlated data variables. The new variables 

constituting the orthogonal basis, termed principal components, are related to the 

original data via a linear relationship and are derived in decreasing order of impor-
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tance such that the first principal component accounts for the maximum possible 

variation in the training set [72], From a geometrical perspective, PCA may be 

considered as a rotation to a new set of orthogonal axes whose orientation is such 

that the sum of squared errors (differences) between the actual data points and their 

perpendicular projections onto the first axis is minimised1 (figure 2.1). The first axis 

then represents the first principal component.

Figure 2.1: An example of PCA using artificial 2D data to demonstrate the 
technique from a geometrical perspective. The principal axis (dashed line) 
minimises the sum of the squared differences, Y !iei, between the data and their 
orthogonal projections onto that axis. This maximises the variance of the data with 
respect to the chosen axis.

The technique was first proposed in 1901 by Karl Pearson [75], although it is 

often attributed to Harold Hotelling [76] who proposed it independently in 1933. The 

term Karhunen-Loeve transform has sometimes been used in the context of PCA 

since, in one of its most basic forms, it is identical [77]. However, some variations 

to the method, presented in the pattern recognition literature [78], differ from PCA 

in that they incorporate class information.

1An alternative but entirely analogous statement is that the principal components represent a 
set of orthogonal axes such that the sum of the squared projected lengths of the data variables 
onto the first axis is maximised.
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2 . 2 . 1  P r e l i m i n a r y  D e f i n i t i o n s

Consider a population of random variables, x, where x =  [ X i , . . . ,  X q}T . The mean, 

//,, and covariance matrix, S , of this population are defined as:

h =  E(x) ( 2.1)

and,

s  =  ^ ( {x  -  /« }{x  -  n } T) (2.2)

respectively, where E denotes the statistical expectation. The elements of S , 

denoted by a,;7, represent the covariances between the ith and j th random variables. 

If two components of the data, X, and X r  are uncorrelated, their covariance is zero 

(t7ij =  <7jj =  0). For a sample of n independent observations of x, { x , , . . .  ,x„},the 

sample mean, x, is given by:

x
n '

xfc (2.3)
fc=l

and the sample covariance matrix is given by:

S =  ^ —Y ^ ( x fc- x ) ( x fc- x ) r (2.4)
1 k= 1

where the factor (^zy) is needed to ensure an unbiased estimate of the population

covariance.

2 . 2 . 2  D e r i v a t i o n  o f  S a m p l e  P r i n c i p a l  C o m p o n e n t s

Consider the projection, Zk, of the kth observation, xfc, onto the unit vector, u, 

described by:

Catherine Mary Scandrett 36



CHAPTER 2. MATHEMATICAL BACKGROUND

zk =  uTx fc (2.5)

The aim of PCA is to find the unit vector, such that the projection of all obser­

vations onto it will have the maximum possible variance. If u is determined, subject 

to the constraint uTu =  1, then u is defined as the first principal component of the 

data. For the projection of all observations onto u. the sample variance may be 

written as:

where 2 =  ì  YTj=1 zj- Hence,

(2.7)

var(z) = (uT(x*
1= 1

(2 .8)

Expanding this gives:

Catherine Mary Scandrett 37



CHAPTER 2. MATHEMATICAL BACKGROUND

var(z) =  — —  (ur (xi -  x )(x i -  x )Tu +  . . .  +  ur (x„ -  x )(x„ -  x )Tu) 
n — 1

=  ~ 7^T ((X| -  X)(X! -  X)T +  . . . +  (x„ -  X)(X„ -  X)T) U
n — 1

=  ——  uTX X Tu (2.9)

where matrix X  contains as its columns the mean-subtracted observation vectors, 

{x , — x }. Since the sample covariance matrix is given by S =  ^ X X r , then 

uar(z) =  ur Su. In order to find the first principal component, denoted ui, the 

optimisation problem of maximising the variance, var(z), is solved via a standard 

use of Lagrange multipliers. The cost function may be defined by:

Q =  UiTSui -  A1(u1/ u 1 -  1) (2.10)

where Ai is a Lagrange multiplier (scalar) corresponding to the constraint equa­

tion. Differentiating with respect to Ui and setting to zero gives:

Sui — AiUi =  (S — AiIq) U] =  0 (2.11)

where I9 is the (q x q) identity matrix. Multiplying equation (2.11) from the left 

by u f  and using the constraint equation, iq 7 U| =  1, gives:

Su] =  A| U] =>• u ^ S u j =  Ai (2.12)

This represents an eigenvalue/eigenvector decomposition of covariance matrix, S. 

To ensure that the quantity u ,r Su! is a maximum (as required), A] must necessarily 

be a maximum and represents the largest eigenvalue of S. Correspondingly, Ui 

is the eigenvector corresponding to the largest eigenvalue. The second principal

Catherine Mary Scandrett 38



CHAPTER 2. MATHEMATICAL BACKGROUND

component, u2, is derived similarly, with the additional constraint that u2r u1 =  0. 

This is to ensure that up and u2 are orthogonal and hence statistically uncorrelated. 

The new Lagrange cost function may be given by:

Q =  u2r Su2 -  A2(u2r u2 -  1) -  0u2Tu L (2.13)

where À2 and 0 are the Lagrange multipliers corresponding to the two constraint 

equations respectively. Differentiating with respect to u2 and setting to zero yields:

2Su2 — 2A2u2 — (pui =  0 (2.14)

Multiplying from the left by iif  yields:

UiTSu2 — U!TA2u2 — ^U]TUi =  0 (2.15)

Since u i7 ui =  1 and S is a symmetric matrix, this can be re-arranged as:

0 =  (Sux)r u2 -  A2U]Tu2 (2.16)

However, since Sep =  AiUi and u1r u2 =  0, the following is obtained:

0 =  (Ax -  A2)uiTu2 =  0 (2.17)

Equation (2.14) then reduces to:

Su2 =  A2u2 (2.18)

Hence, (S — A2Ig)u2 =  0, where A2 is the second largest eigenvalue of S and 

u2 is the second largest principal component of X . In general, up to q principal
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components2 may be derived by repeating this process, subject to the condition 

that Uir Uj =  S{j where Sij is the Kronecker delta. Hence, a matrix of principal 

components may be ordered thus:

T T T
U l u 2 • • • u <y

I ! 1
These principal components constitute a multivariate normal distribution and 

describe a hyper-ellipsoid in a multi-dimensional space.

Singular Value Decomposition (SVD)

Fundamental to the calculation of sample principal components is the technique of 

Singular Value D ecom position  ( SV D)  [68]. Consider a matrix X  in mean-deviation 

form (as described in section 2.2.2) of dimension (q x n),  where q <  n. SVD states 

that any matrix, X, may be decomposed as:

X  =  ULVr (2.19)

where U and V  are (q x r)  and (n x r) matrices respectively, where r is the rank 

of X. The columns {u j} of the matrix U form an orthonormal basis for the columns 

of X  whereas the orthonormal columns { v j  of V  span the row space of X . The 

vectors { u ,} are called the left-singular vectors of X  and the vectors {v ,}  are the 

right-singular vectors. L is an (r xr) diagonal matrix and contains the corresponding 

“singular values” along its diagonal. In addition, U r U =  I and V rV  =  I. wdiere I 

is the identity matrix.

2 Since S is of dimension (qxq) ,  it is only possible to derive q principal components where q <  n.
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In PCA, the objective is to find the eigenvectors and eigenvalues of the covariance 

matrix, S =  ^ -¡-X X 7. Hence, multiplying equation (2.19) on the right by X 7 yields:

X X 7 =  (ULV7)(U LV7)7 =  (ULV7)(V L U 7) =  U L2U 7 (2.20)

Hence, to within a scaling factor of calculating the eigenvectors of S yields 

the principal components as the columns of the orthonormal matrix U and diagonal 

matrix L additionally contains the square roots of the eigenvalues. That is,

Ai1/2 •• 0
0 •• . a 1/2

In certain cases (such as the observation of digital images), in which the number 

of pixels greatly exceeds the number of images, q »  n, where q is the number of 

elements of each observation vector (i.e. the number of pixels or landmarks) and n is 

the number of observations (images). From a computational perspective, calculating 

the eigenvectors and eigenvalues of the (q x q) matrix, S, becomes problematic. 

However, it is possible to circumvent this problem by performing the SVD on the 

alternative covariance matrix, S =  ^d_X7X. Multiplying equation (2.19) from the 

left by X 7 gives:

X 7X  =  (ULVt )7 (ULV7) =  (V L U r )(U LV 7) =  V L 2V 7 (2.21)

Hence, the dimensionally smaller, (n x n) matrix, V , is obtained by standard 

eigenvector decomposition and the orthonormal matrix of principal components. U. 

can be achieved via a re-arrangement of equation (2.19):

U =  X V L T 1 (2.22)
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Once the principal components have been found (through decomposition of the 

most appropriate form of the covariance matrix), it is possible to define a matrix 

Z, where Z =  U rX. The columns of Z. {z ¿}, represent the projections of the 

mean-subtracted data onto the orthonormal principal components and lienee give 

the novel representations of the data in a new, multi-dimensional space defined by 

the principal components. Therefore, any original data vector, x ,̂ may be perfectly 

reconstructed from the principal components via:

where m is the number of derived principal components and zj(k) represents 

the kth component of the vector, zj (the projection of the j th example onto all m 

principal components).

Truncation of Principal Component expansion

One of the main aims of PCA is to adequately represent a set of highly correlated 

data as a smaller number of uncorrelated variables. In this way, a reduction in 

dimensionality is achieved whilst the majority of the variance is maintained. Hence, 

the number of principal components to retain, t , must be chosen to achieve this. 

In other words, an optimal value for t must be determined such that the principal 

components may adequately represent an m-variable data set in t < m dimensions 

[69]. This may be performed in several ways, with the simplest being to choose t 

such that a given, required proportion of the variance is explained in the original 

variables. For instance, since > 98% of samples in a normally distributed data set 

lie within ±3  standard deviations of the mean (Chebyshev’s Theorem [79]), 0.98 

may be an appropriate value to choose. Since the SVD conveniently returns the 

principal components in order of decreasing significance, the chosen threshold, T

771

(2.23)
k =  1
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(for example, T  =  0.98), may be set on the cumulative variance and t calculated 

such that the following is satisfied:

T  =  100 (2.24)
¿-7=1 AJ

If all rn components are used, the j th observation in the original data set may 

be reconstructed as in equation (2.23). However, if t < m  components are retained, 

then only an approximate reconstruction may be effected:

t
M +  ukz i(k) (2-25)

k = l

where the terms have the same meanings as in equation (2.23).

2.3 Modelling Shape

The first consideration when modelling shape variation for a set of objects must be 

a formal definition of the concept of shape. This was given by D.G. Kendall [62. 80]:

“Shape is defined as all the geom etrical in form ation  that rem ains 

when location, scale and rotational effects are filtered out from  an ob­

jec t. ”

By this definition, shape is invariant to Euclidean transformations. In this thesis, 

the shape of an object is defined by a point model — a series of landmark points, each 

defining a specific position on the object. Landmarks may generally be classified 

into one of three categories [80], depending upon the rationale for their placement:

1. An anatom ical landmark is point of biological relevance, high saliency and 

correspondence between organisms. They are assigned by an expert and tend 

to occur on the edges of an object, especially where there is a local maximum in
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the curvature of the object’s surface. An example of an anatomical landmark 

is the corner of the eye on a facial image.

2. A m athem atical landmark is a point assigned on an object in accordance with 

some mathematical or geometrical property [81].

3. A pseudo-landm ark  is a point constructed on an object whose position is dic­

tated by the locations of the anatomical or mathematical landmarks. Pseudo­

landmarks are in general located around the outline of the object or in-between 

anatomical or mathematical landmarks.

Applied consistently across a sample of training images, a set of appropriate 

landmarks can successfully represent the variations over a pattern class3 of shapes 

such as human faces. To achieve this, the landmarking procedure must ensure 

correspondence between the points in each image — that is, if the i th landmark is 

used to annotate a specific point in the j th image, the same landmark must be used 

to define the equivalent point on the kth image. This process is then repeated for all 

images in the training set. Once correspondence is established in this fashion, the 

x  and y coordinates for each landmark point are placed into a data or shape vector, 

where d =  [x\, • • • , x q, y\, • • • , yq}T. Given n training examples, n such vectors are 

generated. Before further analysis is performed, these vectors must be suitably 

aligned to remove the effects of location, scale and rotation in order that object 

shape is described in accordance with the stated definition.

Procrustes Alignment

Procrustes A lignm ent [62, 83] is a shape-preserving procedure designed to remove 

the effects of arbitrary rotation, scaling and offset in a data set — the alignment 

procedure will translate, scale and rotate a shape so as to minimise the sum of the

3 A pattern class is.a family of patterns that share some common properties [82].
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squared distances between the boundary coordinates (landmarks) of the kth shape 

in a training set (X*.) and some reference shape (X r). This is termed minimisation

of the Procrustes distance, Pd , where:

Pd =  [ M i )  ~ x rU)Y +  (Vk(j) ~ VrU)?] (2.26)
3=1

where { x k( j ) ;yk( j ) }  are the x  and y coordinates for the j th landmark on the kth 

shape to be aligned and { x r(j) \ yr( j )} are the x and y coordinates for the correspond­

ing landmark on the reference shape. The alignment procedure can be summarised 

as follows:

1. Compute the centroid (centre of mass) of each point set.

2. Subtract the respective centroid coordinates from each shape to translate its 

centre to the origin.

3. Re-scale each shape to have equal size, that is, their size-shape metric4 must be 

identical. The Frobenius norm is the most commonly used shape-size metric 

and is given by:

S(dk) = [(XkU) -  Xk)2 +  (yk(j) -  yk)2] (2.27)

where x k =  \Y?j=ixk{j) and yk =  -q VkU)- The Frobenius norm is 

typically scaled to unity for all shapes.

4. Rotate each point set to align with the reference shape. The SVD can be used

to determine the appropriate rotation matrix [84]:

'A shape-size metric, S ( d k), is defined as any positive, real-valued function of the shape vector, 
dfc, that fulfils the property: S(adk) = aS(dk) [62]
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u l v t =  X kTX r (2.28)

where,

xfe(l) yk(1) ^r(l) VriX)
, X r =

Xk(q) Vk(q) _ Xr{q) Ur{q) _

The matrix that rotates X fc to X,. can be shown to be:

R  =  V U r (2.29)

An alternative approach [58] is to translate and scale X*. and X r according to 

steps 1-3 and then minimise E  with respect to parameters a and b:

E =  |X,R -  X r (2.30)

That is, to minimise the least squares error between the kth shape rotated by 

matrix R  and the reference shape, where

R  =
a —b 

b a

In practice, an iterative procedure can be followed that allows the sample mean 

to be determined and aligns all training examples to the best estimate of the mean:

1. Choose the first training sample as the first estimate of the mean shape0.

5The first training example is chosen by convention. However, this is arbitrary and any training 
example could be chosen equivalently.
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2. Align all shapes to the mean estimate using Procrustes Alignment.

3. Re-calculate the estimate of the mean from the aligned shapes.

4. Repeat from step 2 if the mean estimate has changed.

This is repeated until there is convergence and no further changes to the mean 

estimate occur. Typically, only two iterations are sufficient for this to Ire achieved.

2 . 3 . 1  F o r m a t i o n  o f  S h a p e  M o d e l

To illustrate the formation of a statistical shape model, we consider an example 

training set consisting of n =  20 RGB images of human lips, the shape of each 

being delineated by q =  68 corresponding landmarks. It is desirable to model this 

distribution such that the shape of any example within the training set may be 

represented compactly and that new, plausible examples may be generated, which 

are similar in appearance to the training examples. To this end, a parameterised 

model is sought of the form of equation (2.23). If the distribution of such parameters, 

zj, can be modelled, new examples similar to d ; can be produced by randomly 

sampling from the learned distribution function.

To perform the PCA, the columns of the data matrix, D. were firstly aligned 

using the Procrustes procedure. The mean data vector, d, was then subtracted from 

every column to give new matrix, D s, so that variation was examined with respect 

to the mean shape. The result is depicted in figure 2.2.

The covariance matrix, S — ^-¡-jD s7 D s (since q > n, see section 2.2.2), was then 

computed. The eigenvectors and eigenvalues of S were calculated via an SVD using 

equation (2.21) and the matrix of orthonormal principal components, Ps, computed
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Figure 2.2: Procrustes alignment of 20 lip shapes. The shape vectors are ini­
tially aligned to the first example in the training set, which represents the initial 
estimate of the mean shape. The mean shape is then recalculated and the process 
repeated until there is convergence and no further changes to the mean estimate 
occur a) Twenty unaligned lip shapes, translated to the origin, b) Procrustes 
alignment of twenty lip shapes. The red shape indicates the mean lip shape calcu­
lated subsequent to the alignment after two iterations.

using equation (2.22). Reconstruction of the data matrix in terms of the principal 

components is given by:

D s =  P SB (2.31)

where B is a matrix of dimension (n x n) whose columns consist of shape model 

parameters, each column containing a vector of coefficients, { b j }, which combine 

the principal components in the correct proportion to effect a perfect reconstruction 

of each data vector, { d ; }. Equation (2.31) may be expressed in vector form as:

dj =  d +  P sbj (2.32)

Conversely, the projection of an example from the training set onto the principal 

components and hence the representation of the j th set of lips in the model space 

may be given by:

bj =  P ,T(d, -  d) (2.33)
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From section 2.2.2 and equation (2.24), only t — 3 principal components need to 

be retained such that 90% of the shape variation in the training set is accounted for 

(figure 2.3).

bp  shape Principal Component Lip shape Principal Component

Figure 2.3: The variance and cumulative variance explained by the shape 
principal components for a training set of 20 lips. The variance associated 
with each shape principal component is shown on the left and the cumulative vari­
ance on the right — > 90% (red line) of the shape variation associated with the 
original data set can be expressed by the first three principal components.

A matrix <4>s may then be defined whose columns constitute these t principal 

components, hence d7 may be well approximated by:

d7 «  d +  4>sbj => bj ~  <hsT(d? — d) (2.34)

By varying the elements of the j th parameter vector, bj, new lip shapes may be 

generated which are not members of the original training set but are statistically 

similar. If the standard deviation of bj is given by a3. limits of ± 3 <jj may be applied 

to the random numbers to ensure that the generated novel shape is a typical example 

from the estimated distribution. In a similar fashion, it is possible to examine the 

modes of variation of the training set — that is, by adding a proportion of the j th
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principal component to the mean shape in increments of 1 standard deviation, the 

variation explained by that principal component is revealed (figure 2.4). This may 

be described as follows:

d /  — d +  (3y/\jPSj (2.35)

where d /  is the shape associated with ¡3 standard deviations of the j th principal 

component, P s? and y/Xj represents this standard deviation.

Subtraction of the mean shape vector from each aligned column of D is a nec­

essary step prior to the application of PCA to ensure the removal of one degree of 

freedom from the analysis — if this is not performed, the first principal component 

will represent the mean of the data and this first mode may be disproportionately 

dominant.
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Figure 2.4: The modes of shape variation for a training set of 20 lip images.
By varying the j th principal component between ±2  standard deviations according 
to equation (2.35) for j  =  1 . . .  4, the variation embodied by the first four principal 
components may be observed. The four rows depict these modes of variation.
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2 . 3 . 2  M o d e l l i n g  T e x t u r e

In order to model an object more completely, we must also consider intensity or 

texture variation. For an RGB image containing q pixels, the texture vector is given 

by the true colour pixel intensities [62]:

t j  J  i r . , t q r , t \ g i ; tqgi flbi » q̂b\ (2.36)

where the subscripts r, g and b denote the true colour red. green and blue values 

respectively.

For texture to be described accurately, it is necessary that each texture map 

is extracted from a consistent shape configuration (arrangement of landmarks). If 

this is not performed, the application of PC A is not possible due to potential in­

consistencies in pixel numbers across the training set. In addition, artificial texture 

variation may occur due to differences in shape thereby preventing the achievement 

of correspondence between texture maps. To address this, a geometric transforma­

tion is required to “warp” each example in the training set to a chosen reference 

shape (typically, the mean).

Geometric Transformations —  Image “Warping”

Image warping is the general process by which one set of intensity or colour values 

(the input image) is mapped into another spatial configuration (the reference or 

base image). The process involves two distinct steps — a geometric transformation 

and a mapping of pixel values. The mapping function must be defined prior to the 

warping procedure and may be, for instance, linear, bilinear or polynomial in nature 

depending upon the desired application. Figure 2.5 depicts the warping process 

schematically, where the landmark points for the input image are given by {x/ ; jji1}
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and the corresponding points for the base image are given by { x B\yB}, where 

* =  1. . . 4.

Base

Figure 2.5: A  schematic representation of image warping — the input coor­
dinates must be transformed to the same spatial configuration as the base image via 
a geometric transformation.

To compute the warp, a bilinear mapping, for example, may be given by:

x B =  a\Xi +  +  a^x/y/ +  a4 (2.37)

y B =  o5x /  +  a6y/  +  +  a8 (2.38)

Solution of equations (2.37) and (2.38) for each set of corresponding points al­

lows the free parameters {aa .. .  a8} to be calculated. In the example in figure 2.5, 

only four landmarks are employed to define the transformation. However, when 

the number of landmarks exceeds the number of degrees of freedom (typically the 

case for more complex shapes), the system becomes over-constrained and global 

transformations are of limited use.

As an alternative approach, Bookstein et al. [85] used thin-plate splines to com­

pute a smooth warp. However, this method is relatively computationally expensive. 

Another approach employs a piecewise methodology, where the mapping function is 

assumed to be locally linear. This local linearity is embodied by joining the image
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landmarks to divide the input and base images into a set of corresponding triangles 

through a process called Delaunay triangulation. For a set of points s in a plane, this 

is the triangulation, DT(s), of s such that no point in s is inside the circumcircle 

of any triangle6 7 [62], That is, the Delaunay triangulation is a triangulation of the 

convex hull of p o i n t s ,  in which every circumcircle of a triangle is an empty circle. 

Equivalently, the Delaunay triangulation of a discrete point set s is the geometric 

dual of the Voronoi tessellation for s [86].

To compute the piecewise affine warp', consider figure 2.6. The input and base 

landmarks are first joined to form corresponding triangles according to Delaunay 

triangulation. A pair of corresponding triangles in the input and base images is 

then selected, denoted t and t! respectively. The triangle vertices are denoted by 

Xj =  [xj, yj]T and x /  =  [x/, y/]T, j  =  1, 2, 3. ft is possible to describe any point, x, 

within i as a linear combination of the triangle vertices:

x 1

2/i
1

x 2

2/2

1

O' X

p = 2/

7 1

where [a , ¡3, j ] T are the coefficients of the x  and y coordinates of the vertices. In 

matrix form, this may be given as:

T a  =  x  (2.39)

The corresponding point in t' may be given by the same linear combination of

6The circumcircle is the unique circle that contains all three vertices of the triangle.
7The piecewise transformation gives a relation between each pixel in the corresponding base and 

input triangles once triangulation is complete, such that the mapping is affine in nature (that is, it 
basically consists of scaling, translation, rotation and skewing) — the transformation is therefore 
rightly referred to as a piecewise affine transformation.
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its triangle vertices. Hence:

X\ x f  X s a x '

y\  V 2 V3 P y '

1 1 1 7 l

In matrix form:

S a  =  x ' (2.40)

Combining equations (2.39) and (2.40), it is possible to calculate the mapping 

between the coordinates of the input triangle and those of the base triangle as:

x ' =  Sq  =  S T -1x  =  M x (2.41)

Hence, to effect a warp, the mapping matrix M  must be computed for every pair 

of corresponding triangles in the input and base images. Equation (2.41) is then 

applied to each and every pixel location within a given input triangle to find the 

corresponding locations in the base. The input pixel values are mapped to these 

calculated positions and the process is repeated for all pairs of triangles to complete 

the warp.

Conceptually, image warping is usually considered in the forward sense, that 

is, as a mapping fromi the input image to the base image. However, in general, 

there is not an exact one-to-one mapping between each pixel in the input and base 

images, hence some of the pixel values in the base image may remain undefined. 

In addition, there exist rounding errors in the computation of the base coordinates. 

These effects combine to produce “holes” or information gaps in the base image. 

Hence, it is often more effective to perform the reverse warp —- that is, to substitute
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x  for x ' and vice versa in equation (2.41) and apply the revised equation to every 

pixel location in a given base triangle. Once the corresponding input locations 

have been computed, the pixel values are transferred to the base and the process 

repeated for all triangle pairs. This reverse-warp ensures that the value of each pixel 

in the base image is defined. However, it does not ensure that the input coordinates 

are mapped to integer values in the base image and an interpolation method is 

required to calculate the base pixel values. The simplest method used is that of 

nearest neighbour interpolation or point sampling, whereby the mapped coordinate 

values are rounded to integer values. More accurate, yet computationally expensive, 

methods include bilinear and bicubic interpolation respectively.

For the training set of n — 20 lip images, the reference shape was chosen to be the 

mean lip shape and each shape was warped to this distribution using a Delaunay- 

based, piecewise affine warp. Pixel values or intensities were then extracted in a 

column-wise fashion from each shape-free image and placed into a texture vector for 

analysis.
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Input Base

Original
images

e

Delaunay
triangulation

Warping from 
input shape to 
base shape

Original image

Figure 2.6: An example of the piecewise, affine warp as applied to face 
images. The input and base landmarks are joined to form corresponding triangles 
according to Delaunay triangulation. Corresponding triangles in the input and base 
images are denoted by t and t' respectively (origins O and O') with the triangle 
vertices depicted by vectors xj and x /, j  =  1,2,3. Point x =  [x,y]T in the input 
triangle may be mapped uniquely onto point x' =  [x!, yr T via the piecewise affine 
warp such that the pixel value of x may be mapped to the position of x'. This 
is repeated for all such triangles in the input and base images such that the final, 
warped image is produced.
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2 . 3 . 3  F o r m a t i o n  o f  T e x t u r e  M o d e l

Upon construction of the texture matrix, D t (whose columns comprise the mean- 

subtracted texture vectors), PC A was applied to this training set in an analogous 

fashion to the shape model. Since the number of pixels, q in an image is generally 

larger than number of images, n, in the training set, the covariance matrix, S. is 

of dimension (n x n) and takes the form: S =  (n^1)D tr D t. This ensures that a 

covariance matrix of a computationally viable size is used. The PCA produces a 

linear model:

tj =  t +  Ptg, (2.42)

where t ? is the j th texture vector in the training set8, t =  4 £^"= 1 1- represents 

the mean texture vector, P t is a matrix of dimension (q x n) (whose columns are the 

orthonormal principal components) and g; is a vector of texture m,odel parameters. 

Alternatively, gj may be viewed as the projection of the texture vector onto the 

principal components and hence provides the representation of the texture vector in 

the model space:

gj =  P tr (t, -  t) (2.43)

Once again, it is possible to truncate the number of principal components to 

explain the required amount of variation. The columns of matrix <J>t contain m 

PCs, where m =  13 to account for 90% of the variance (figure 2.7).

Hence:

tj «  t +  $ tgj  => gj  ~  -  t) (2.44)

8For normalisation purposes, the mean pixel value in a texture vector is sometimes subtracted 
along with the mean texture vector, t, prior to the application of PCA.
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Figure 2.7: The variance and cumulative variance explained by the texture 
principal components for a training set of 20 lips. The variance associated 
with each texture principal component is shown on the left and the cumulative 
variance on the right — 90% (red line) of the texture variation associated with the 
original data set can be expressed by the first thirteen principal components.

Analogous to the shape model, it is possible to produce new, plausible (yet 

artificial) instances of texture by randomly sampling the elements of gj from a 

normal distribution between ±3<jj, where Oj is the standard deviation g; . Some of 

the modes of textural variation are visually examined in figure 2 .8.
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Figure 2.8: The modes of texture variation for a training set of 20 lip 
images. By varying the j th principal component between ±3  standard deviations 
{y/Sj denotes the standard deviation for the j th principal component) according to 
an equivalent equation to (2.35) for j  =  1. . .  4, the variation embodied by the first 
four principal components may be observed. The four rows depict these modes of 
variation.
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2.4 Chapter Summary

In this chapter, the key mathematical methods underpinning the aging algorithms 

have been presented. To emphasise the central function of principal component 

analysis, the technique was formally introduced and its derivation shown in the sam­

ple case. To demonstrate its applicability to the modelling of shape and texture, an 

example training set was employed, consisting of 20 images of human lips. Initially, 

manually placed landmarks were used to delineate the lip shape and Procrustes 

Alignment was employed, prior to the application of PCA, to the mean-subtracted 

shape vectors. To model texture, each shape was first transformed to the mean 

shape using a Delaunay-based piecewise affine warping procedure. PCA was then 

applied to the extracted texture vectors.

In the next chapter, PCA is applied to the modelling of the human face and the 

theoretical basis for the aging algorithms is presented.
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Chapter 3

Theory of Age-Progression 

Algorithms

In this chapter, several related techniques for age-progression are proposed. Initially, 

we discuss some necessary, preliminary image processing procedures. These include 

techniques for pose, expression and illumination compensation, which are employed 

prior to the application of the aging algorithms, to reduce artefacts in the computed 

results. A simple approach to age-progression is first introduced, which relies upon 

the calculation of a “consensus” aging trajectory through the model space, formed 

by weighting each model parameter vector by its age. A face is then age-progressed 

by translation in this direction. A “piecewise” linear approach is then presented, 

which takes better account of the non-linear stages of facial growth and development 

in children (0 to 20 years of age), as described in chapter 1 . To further improve the 

aging technique, a theoretical framework is then described, which enables the incor­

poration of information provided by parental and sibling images. This methodology 

is extended to show how an aging axis may be constructed using the appearance of 

a subject at previous ages.
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3.1 Training Sets and Demographics

Three databases were used in this work.

Database 1 :

This database comprised 42 male Caucasian faces between the ages of 13 and 

33 years and 25 female Caucasian faces between the ages of 14 and 52 years1. The 

database comprised RGB images [87]. captured at a resolution of 3072 x 2048 pixels 

with the subject seated at a distance of 1.5 metres from a six million pixel digital 

camera. The subjects were required to face directly towards the camera to avoid 

potential complications in the aging algorithm due to pose variation and maintain a 

neutral expression to avoid similar problems with unconstrained expression. Images 

were captured in a laboratory without windows, preventing variations in lighting 

conditions due to daylight entering the room. Subjects were illuminated by a single 

fluorescent strip light and the camera flash.

Database 2:

A more extensive training set was acquired [88] to further model facial aging in 

children and teenagers. This was termed Database 2 and comprised 1002 images of 

47 male Caucasian and 35 female Caucasian subjects at a number of ages between 0 

and 69 years. The images in this training database were of variable quality, resolution 

and illumination and the pose and expression of the faces were unconstrained. The 

data comprised a mixture of RGB, grey-scale and sepia images. 658 images were 

suitable for use in the shape model construction — these images consisted of 329 

male faces and 329 female faces between the ages of 0 and 20 years, consistent with 

the accepted biological timespan of childhood and adolescence (section 1.4). Only

1 These were the only available images at the time of performing this work and they were 
therefore used in the construction of shape and texture models, despite the paucity of examples.
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236 male RGB images and 174 female RGB images were used for the construction 

of the texture models, since only these were perceived to be of sufficient quality and 

resolution. These were also the only images with a sufficiently small number of facial 

occlusions (hair, glasses, parts of clothing) for the texture models to be constructed 

viably. Despite the care taken with the selection of the images for inclusion in the 

shape and texture models, the unconstrained nature of the pose, expression and 

illumination of the faces required compensation techniques to be devised. These are 

discussed in detail in section 3.2.

Database 3:

To perform aging on a different racial group, a training set of 250 black chil­

dren’s facial images (250 different subjects) was acquired from the National Center 

for Missing and Exploited Children on-line database [89] (Database 3). Of these 

images, 90 male and 160 female were considered appropriate for the shape model 

with 87 male and 150 female utilised for the texture models. Analogous to the Cau­

casian training set, the images were unconstrained in terms of quality, resolution 

and illumination and in terms of pose and expression of the faces.

3.2 Pose and Expression Compensation

ft is desirable to control the facial pose and expression when aging a face. If a model 

is constructed upon faces containing unconstrained pose or expression, the resultant 

modes of variation will be similarly unconstrained and uncontrolled artefacts may 

be introduced as a subject is age-progressed. To decouple the aging effect from such 

accidental variation, it is desirable to first, compensate for these factors and construct 

a model based upon faces in an approximately frontal pose and neutral expression. 

A face presented to the system would need to be similarly compensated for aging to

Catherine Mary Scandrett 64



CHAPTER 3. THEORY OF AGE-PROGRESSION ALGORITHMS

proceed realistically. In applying such a pose or expression compensation algorithm, 

it is imperative that the identity of the subject is not altered.

A number of approaches to pose and expression compensation have been pre­

sented in the literature. Blanz and Vetter [90] used a 3D training set and learned 

expression transformations between pairs of images belonging to the same subject. 

Once correspondence had been established, changes in expression were mapped onto 

example faces. In similar work, Vetter [91] used a linear object class approach2 to 

show that, for a training set of prototype faces at frontal and rotated views, any 

frontal view may be generated from a single rotated view.

Employing a different approach, Cootes et al. [58, 92] constructed three appear­

ance (combined shape and texture) models of individuals at different head orienta­

tions (full profile, half-profile and frontal). A linear regression was used to learn the 

relationship between the model parameters and orientation angle and the appropri­

ate model then used to synthesize new views at any allowed orientation. To generate 

significantly different views from those used to train the model, a coupled-view ap­

pearance model was produced using pairs of images taken at different orientations. 

The relationship was learned between the model parameters in different views and 

then used to generate alternative views of a subject to allow a frontal view to be 

determined from the corresponding profile. In related work, Gibson et al. [93] 

constructed a multiple-view appearance model based upon faces in frontal and 30° 

rotated views. This model was then used to estimate a missing view of a face when 

another was presented.

In the techniques discussed, the estimation of missing views is only possible

2A linear object class is defined as a 3D object class for which the 3D shape may be represented 
as a linear combination of a sufficiently small number of prototypical objects.
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if a model is constructed upon corresponding frontal and rotated subject views, 

such that the relationship between the two orientations may be learned. Similarly, 

facial expression may only be “neutralised’' if the model is trained upon subject 

faces, possessing both neutral and emotional expressions. In addition, the pose 

or expression is often controlled when selecting images for model training. This 

represents an idealised situation for examining pose and expression and formulating 

compensation procedures. Distinct from this, the work in this thesis requires novel 

methodologies to normalise images of subjects at completely unconstrained pose and 

expression and in which no corresponding images of different views or expressions 

exist for a given individual. The two approaches taken to this are described below.

3 . 2 . 1  N o v e l  p o s e / e x p r e s s i o n  c o m p e n s a t i o n  —  M e t h o d  1

A pose and expression compensation technique was implemented, based upon the 

construction of a statistical shape model (using the technique outlined in section 

2.3). Utilising all 658 faces in Database 2, a linear PCA was applied to the shape 

vectors and the modes of variation were visually examined to assess their influence 

on the facial shape. As implied from [1 1 , 94, 95, 96], the identity, pose and expres­

sion were identifiable as approximately independent modes. This may be observed 

from the first, second and fifth modes of shape variation displayed in figure 3.1. The 

first mode depicts a dominant shaking of the head from right to left with a secondary 

perpendicular (nodding) motion present. The second mode shows an up-down nod­

ding of the head with some slight rotation. Hence, shaking and nodding of the head 

may be considered as approximately independent modes. The fifth mode displays 

the face in a changing expression between a full smile and a serious expression with 

the mouth closed.

We posit the relationship:
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Mode 1
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Figure 3.1: The modes of facial shape variation. The amounts of the first, 
second and fifth principal components of shape were varied between ± 2  standard 
deviations. Mode 1 shows head rotation coupled with minor nodding, mode 2 shows 
a dominant up-down nodding of the head with some slight rotation and mode 5 

depicts changes in facial expression (a full smile to a more serious expression).

dj ~  d +  P id bid +  P plfrpl +  Pp2^p2 +  P ebe (3-1)

where dj is an approximation of the j th example in the training set, d is the 

mean training shape and P id represents the shape principal components related to 

identity. Analogously, P pl, P p2 and P e represent the shape principal components 

related to the two different poses and the expression respectively (figure 3 .1 ), where 

Pid- Ppi, P P2 and P e have approximately mutual orthogonal columns. Similarly, 

bjd, bpi, bp2 and be are the elements of the model parameter vector for the j th example, 

representative of the identity, pose and expression.

Since facial identity is observed to be approximately independent of pose and
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expression, the j th example in the training set may be approximated using equation 

(3.1). Thus, the appropriate model parameters of a subject’s shape vector (bpi, 

bp2 and be, which correspond to the first, second and fifth principal components 

respectively) can be suitably modified. The face may then be reconstructed at the 

desired frontal pose and neutral expression. Figure 3.2 depicts example results of 

this method for pose compensation.
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Figure 3.2: Example results using Method 1 for pose compensation. The
first, second and fifth model parameters of the subject’s shape vector (b\, b2 and b5) 
were suitably modified to reconstruct the face at frontal pose and neutral expression 

-  a) Original image, b) Shape model representation of the face including texture 
map, c) Pose compensated facial representation using Method 1.
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For expression compensation to give plausible results, the facial texture must 

also be altered to account for the possibility of visible teeth [13]. This is achieved 

using a similar compensation method. In order that simply the mouth region was 

altered and not the entire face, a texture model was constructed based solely upon 

the extracted mouth region of each training face. The modes of variation were 

examined and the appropriate principal component coefficients adjusted to modify 

the texture such that the appearance of a closed mouth was adequately captured. 

In both gender cases, examination of the eighth mode of variation between ±2 

standard deviations revealed a closing mouth with minimal changes occurring in lip 

colour. This mode was therefore used to perform mouth texture compensation on 

the necessary faces in the training set. However, it is important to state that the 

mouth is not the only facial region that alters when a person assumes an expression, 

such as a smile. Therefore, to obtain physiologically accurate results using this 

technique for expression compensation, the shape of the cheek region should also 

be altered in order to neutralise the expression. It was, however, not possible to do 

this, owing to the limitations of the point model used to landmark the face3.

To incorporate the closed mouth into the entire face, a Delaunay-based, piece- 

wise, affine transformation was used to warp the closed mouth into the original image 

at the same location as the original mouth. Example results from this procedure 

are shown in figure 3.3.

Upon examination of figures 3.2 and 3.3, the results obtained using Method 1 for 

pose and expression compensation may be judged as reasonably poor and are not as 

perceptually accurate as the results obtained using equivalent artistic compensation

3It would be problematic to place landmarks around the cheek areas since these would likely 
not have good correspondence between images. However, it may be possible, in future work, to 
develop a more sophisticated point model such that these problems may be minimised.
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Figure 3.3: Adjustment of the mouth texture to that of a closed mouth 
using Method 1. The amount of the eighth principal component of mouth texture 
variation was adjusted to alter the mouth texture to that of a closed mouth — a) 
Original face, b) Mouth texture adjusted to that of an approximately closed mouth 
using Method 1 and the resulting texture map incorporated into the whole face.

procedures. In particular,there are problems around the eye areas and face width. 

These problems may be due to the pose compensation as a global technique that 

is applied over the whole face. Better results may be achieved by treating the eye 

area separately, for example, or by allowing the positions of particular features to 

be manually adjusted subsequent to the application of the algorithm. This may 

then allow more perceptually pleasing results to be obtained. There are additional 

problems regarding the expression compensation. As previously aforementioned, 

these issues may be resolved by adjusting other areas of the face (such as the cheek 

area and, furthermore, the eyes) when neutralising a smiling expression.

Catherine Mary Scandrett 71



CHAPTER 3. THEORY OF AGE-PROGRESSION ALGORITHMS

3 . 2 . 2  N o v e l  p o s e / e x p r e s s i o n  c o m p e n s a t i o n  —  M e t h o d  2

In the second approach, the statistical model was constructed using the same un­

constrained data as in Method 1 . A shape parameter vector, compensated for pose 

and expression, was calculated according to:

t>new  — b  +  C T iP i  +  Q 2P 2 +  a 3 e l ( 3 -2 )
where b is the original parameter vector, pi, p 2 and e! are the pose and expres­

sion vectors respectively and ou, a2 and cr3 are the appropriate scalars selected to 

multiply each vector. The pose and expression vectors were computed as follows:

1. Firstly, each training image was scored by an observer using a simple, 5- 

point, discrete scale (-2 to + 2 ) according to the degree of head shaking (left 

or right), nodding (up or down) and smiling (none to broad) they exhibited 

(see Appendix C for a more detailed semantic description of the scale used).

2. The corresponding shape parameter vectors were then weighted by the ap­

propriate score and pose vectors (pi and p2) formed as a sum of these score- 

weighted shape parameters, according to:

n

P; =  (3.3)
i —1

for j  =  { 1 , 2 }. where G is the score for the ith shape parameter vector, b ;, for 

the j th pose (shaking or nodding) and there are n training examples. Similarly, 

the expression vector, ei, was calculated using:

n

ei =  LiH
i= 1

where ipi is the expression score for the ith shape parameter vector.

(3.4)
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3. To alter the pose and expression of a face, scalar multiples of these vectors 

were added to the original shape parameter vector, as given in equation (3.2).

Figure 3.4 depicts example results of this method for pose compensation.

Figure 3.4: Example results using Method 2 for pose compensation. The
pose and expression axes were calculated from score-weighted sums of the shape 
model parameter vectors. Scalar multiples of these axes were then used to adjust 
the face to frontal pose and neutral expression — a) Original image, b) Shape 
model representation of the face including texture map, c) Pose compensated facial 
representation using Method 2.
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Once more, to ensure that expression compensation gives credible results, the 

mouth texture must be appropriately altered in cases where a smile is being neu­

tralised4. To this end, a similar technique to Method 2 was employed. Equation 

(3.5) describes the procedure:

gnew =  g +  7m  (3.5)

where gnew is the vector of texture parameters of the closed mouth, g is the 

vector of original mouth texture parameters and 7  is the scalar factor to multiply 

the expression axis, m, in the correct proportion. The expression axis was calculated 

by a sum of score-weighted texture parameters, where the extracted mouth region 

of each training example was subjectively scored by ± 1  according to the visibility 

of the teeth. Once the texture map had been adjusted to resemble a closed mouth, 

the result was incorporated into the face using an analogous procedure to that of 

Method 1. Example results are shown in figure 3.5.

Upon examination of figures 3.4 and 3.5, the results obtained using Method 2 for 

pose and expression compensation are comparable to those obtained using Method

1. That is, they are perceptually poor, particularly around the eye area and facial 

width. Once more, akin to the discussion of results in section 3.2.1. these problems 

may be negated by treating the eye area independently to the rest of the face or by 

allowing suitable manual adjustment of the appropriate features.

4See section 3.2.1 for an explanation of why consideration of the mouth in isolation may not be 
sufficient to effect an accurate neutralisation of the smiling face.
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Figure 3.5: Adjustment of the mouth texture to that of a closed mouth 
using Method 2. The expression axis was calculated using a sum of score-weighted 
texture parameters and then scalar multiples of this axis used to adjust the texture 
to that of a closed mouth a) Original face, b) Mouth texture adjusted to that 
of an approximately closed mouth using Method 2 and the resulting texture map 
incorporated into the whole face.
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3.3 Texture Compensation

Plausible results are obtained from both methods of pose and expression compen­

sation. hence either may be employed to produce faces of frontal pose and neutral 

expression. However, extraction of the texture map from an original facial image 

unconstrained in pose or expression may produce textural artefacts, which also must 

be compensated prior to texture model construction. In the case of modest head 

rotation of less than 25° to left or right (certainly the most common pose variation 

in Database 2), this was achieved by:

1. Reflecting the texture map about the vertical axis,

2 . Calculating the average shape vector coordinates of the image pair, and

3. Mapping the average texture of corresponding triangles in the Delaunay tes­

sellation of the images. This produces a texture map symmetrical about the 

vertical axis which may then be successfully used in the construction of the 

texture model5. It is important to note that this approach deteriorates as the 

head rotation angle increases beyond approximately 30° or in instances where 

the subject is looking to the extreme right or left.

Figure 3.6 demonstrates this procedure for example faces in Database 2. Figure 

3.7 depicts results demonstrating the failures of the technique in the circumstances 

aforementioned. Texture maps such as these were not included in the texture models 

for aging.

°This compensation procedure may take place prior to or subsequently to any necessary alter­
ation of the mouth texture during expression compensation.
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Figure 3.6: Examples of texture compensation using Database 2. The tex­
ture map is reflected about the vertical axis (exemplified by a red line for the first 
example) and the average texture of corresponding triangles in the Delaunay tes­
sellation of the images is mapped — a) Original face, b) Shape-free texture map 
extracted from rotated face, c) Reflection of shape-free texture map about the ver­
tical axis, d) Result of mapping the average texture of the two reflected images (b 
and c).
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Example 1 Example 3

Figure 3.7: Examples of unsatisfactory results using the texture map com­
pensation. In examples 1, 2 and 3, the result is unsatisfactory due to head rotation. 
In the 4th example, extreme eye movement is responsible for the undesirable result.

3.4 Illumination Compensation

A further issue to potentially affect the texture model is that of non-uniform il­

lumination in the training images. This occurs throughout Database 2 and must 

be necessarily corrected before texture extraction and model construction. Com­

mon methodologies for illumination compensation include histogram matching of 

the non-uniformly illuminated image to that of a well-illuminated image [82, 97], 

homomorphic filtering [82] and region-based gamma intensity correction [98] as well 

as matching the energy (square of the intensity) embedded in the subject images to 

that of an idealised target [99].

The approach taken in this thesis considers image formation in terms of scene 

reflectivity and changes in illumination. For instance, if the response of the imaging 

device is linear then the recorded intensity of the image is given as:

s(x,y)  =  r(x,y) i (x,y)  (3.6)

Catherine Mary Scandrett 78



CHAPTER 3. THEORY OF AGE-PROGRESSION ALGORITHMS

where r(x,y)  represents the scene reflectivity arid i (x,y)  represents the scene 

illumination. The illumination compensation procedure may then be summarised 

as follows:

1 . A “gold standard” image was selected (figure 3.8). which depicts approximately 

uniform illumination.

2. This illumination was considered to vary smoothly (the simplest case) and 

thus was well approximated by a 2D polynomial function of the form pu(x, y). 

Points assumed to have identical reflectivity6 were fitted to the polynomial 

function to form an estimate of the illumination.

3. Equivalent points of equal reflectivity were marked onto a non-uniformly illu­

minated subject image and the points fitted to a polynomial function, p(x,y),  

in a similar fashion to step 2 .

4. At corresponding points, i, on the images, pu(x ,y ) and p(x,y)  were used to 

estimate the intensity values, su(xi,yi) and s(xi,yi) respectively.

5. The ratio of these intensity values was calculated to give the so-called correc­

tion factor, ft =  a{xi,yi)/su{xuyi).

6 . The correction factor was employed to compute the ith corrected pixel value 

in the subject image according to: s'(xi.y.j) =  s(x.i, yi)/f, .

For RGB images, this illumination compensation was performed on the sum of 

the red, green and blue pixel values (the intensity). The calculated correction factor 

was then applied to each of the three colour planes to compute the corrected image.

6Thirty points were marked onto the face, which were assumed to have equal reflectivity. Fea­
tures such as the eyebrows, eyes and lips were avoided due to differences in reflectivity.
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Figure 3.8: The image chosen as the “gold standard” in the illumination 
compensation. The blue markers represent points of assumed equal reflectivity 
across the face. A polynomial is then fitted between the intensity values and the 
(x, y) coordinates of these points to estimate the illumination field. Since the image 
is uniformly lit, the illumination field will be approximately flat.

Figure 3.9 show typical results using this illumination normalisation technique on 

both intensity and RGB images. This process was performed as necessary on the 

images of Database 2 prior to texture extraction and construction of the texture 

models for aging.

3.5 Wrinkle-maps

For the age-progression of adults, an aging model for texture constructed using PCA 

will yield results in which age-progressed subjects are perceived as younger than 

their true age [45]. Because PCA is a linear technique, the calculated components 

are produced by forming weighted averages of the images in the training sample 

(equation (2.22)). This process causes the fine details in the texture maps that 

exhibit low spatial correlation between the training faces (for example, wrinkles,
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Before

Figure 3.9: Illumination compensation on intensity and RGB images. Typ­
ical results of performing illumination compensation using a polynomial to model 
the illumination field the images appear more uniformly illuminated than prior 
to the compensation.

freckles or other blemishes on the skin) to be averaged out. To obtain fully realistic 

aging effects in adults, these high-frequency details require preservation and even 

enhancement. Previous work by Tiddeman et al. [100] involved the decomposition 

of a prototype face (formed by averaging a sample of face images) using a wavelet 

analysis. The high order details were boosted to compensate for the inherent loss of 

high spatial frequency information in the averaging process and an enhanced texture 

prototype produced, which was more representative of the sample textures than the 

original prototype.

In this section, an ad-hoc procedure for enhancing high-frequency information 

is presented. The idea is to extract the fine facial details from a sample face A and 

apply those details to a subject face, B [101].

Let 1̂ 4 be the image corresponding to subject A and let I 4* represent the result

Catherine Mary Scandrett 81



CHAPTER 3. THEORY OF AGE-PROGRESSION ALGORITHMS

of convolving I 4 with an averaging filter kernel, G. If 14* is subtracted from 14 . 

then only the high-frequency details of I4 (for example, wrinkles) will be preserved. 

This procedure is generally referred to as unsharp masking [82]. In this specific 

context, the difference image is termed a “wrinkle-map”, W , where:

W  =  I 4 -  1 /  (3.7)

Alternatively, W  may be obtained by passing image I 4 through a high-pass filter.

3 . 5 . 1  A p p l y i n g  a  w r i n k l e - m a p  t o  a  s u b j e c t  f a c e

Once it has been extracted from image I.4 , it is then desirable to apply the wrinkle- 

map to a subject, B. This is achieved by employing the following equation:

IB' =  ( a - l ) I B* + W , q > 1  (3.8)

where IB* is a smoothed version of image IB‘ (obtained by convolution with an 

averaging filter kernel) and a is a scalar7 8. This equation may be considered as a 

hybrid form of the standard high-boost filtering method commonly used in digital 

image processing (see [82]). In the normal implementation of this procedure, a detail 

image, W , is constructed as in equation (3.7) but using the subject image, I B. This 

is then added to a fraction of the same subject image. IB, using a similar equation to 

(3.8). Equation (3.8) is a modified version of this, where the detail image is formed 

from a different image to that of the subject, namely, image 1 4 .

7Prior to wrinkle-map addition, it is necessary to smooth the subject image to prevent the fine 
structures already present in the subject texture map from being visible through the wrinkle-map 
and producing artefacts.

8In practice, a  «  2 and the filter kernel used to form 14* in equation (3.7) should be small 
enough that only fine details are copied to subject D. If these precautions are not taken, the 
identity of subject D  may be altered upon application of the wrinkle-map.
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The image that results from the application of equation (3.8), IB', contains the 

low and medium spatial frequencies of image In and the high frequencies belonging 

to image I 4 . Figure 3.10 shows the result of applying equation (3.8) to a subject. B. 

and the effect of varying the size of the averaging filter kernel, G, used to produce 1^* 

in equation (3.7). The larger the filter kernel used, the more low/medium frequencies 

are preserved and the wrinkles appear deeper and more numerous. Figure 3.11 shows 

the effect of varying the scalar quantity, a , in equation (3.8). As a increases, the 

proportion of Ig* relative to W  increases and more low-medium spatial frequencies 

are observed in Ib , which account for the greater number of wrinkles (fewer very 

fine wrinkles are observed, which are captured by the high spatial frequencies in W ). 

For ease of implementation, this approach to controlling the degree of wrinkling is 

often used in preference to adjusting the size of the filter, G.

a) Filter size = 4 x 4 b) Filter size = 8 x 8 c) Filter size = 12 x 12

Figure 3.10: An example of wrinkle-map application. A wrinkle-map is gen­
erated from a sample face A and applied to a specific subject face B. As the size of 
the averaging filter used in the creation of the wrinkle-map is increased, more low 
frequency details are preserved and the wrinkles appear more pronounced. Images 
courtesy of [10 1 ].
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a) a = 2, filter size = 8 x 8  b) a = 2.5, filter size = 8 x 8

Figure 3.11: Controlling the degree of wrinkling by varying the scalar, a .
The images show the effect of increasing the scalar quantity, a (which determines 
the relative proportions of the subject face and the wrinkle-map). In practice, the 
amount of wrinkling is controlled in this manner and not by varying the low-pass 
filter kernel size. Images courtesy of [101].

The wrinkle-map does not account for differences in facial type or for individual 

wrinkling patterns. For example, the presence or absence of nasolabial creases is not 

age-related. However, since such creases will be present in any wrinkle-map created 

from a sample face whose facial texture contains them, the creases will be universally 

applied as the wrinkle-map is added to the texture of a given subject. This may 

result in inaccurate wrinkling. For example, the subject in figure 3.10 originally 

had no nasolabial creases. Subsequent to wrinkle-map addition, nasolabial creases 

have been added, resulting in a wrinkled face that may not be indicative of the true 

wrinkling pattern for the subject.

It is possible to apply a chosen wrinkle-map to a localised region of the face to 

preferentially enhance the detail in that part of the face. This is achieved as follows:
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W '  — W o  [ / ? i M forehead  +  / ^ M eyes +  / ^ M mouth] (3 .9 )

where W ' is the modified wrinkle-map, /?i, and /33 are the (empirically chosen) 

weighting components9 that determine the wrinkles appearing in the forehead, eyes 

and mouth regions respectively10 11 and M forehead, M eyes and M rnoutk represent the 

respective binary masks defining these regions. The mask image for each region of 

interest is constructed (figure 3.12) such that each pixel in wrinkle-map W  is mul­

tiplied by the corresponding (weighted) pixel value in the binary mask11. The three 

defined masks are then applied simultaneously to the face such that the wrinkles in 

the region of interest are emphasised to a greater degree than those in the remaining 

regions.

The output image is obtained by substituting W ' from equation (3.9) for W  in 

equation (3.8). Figure 3.13 shows example results of applying the wrinkle-map to 

different regions of the face.

9To ensure plausibility of wrinkling, the weighting component for the selected region is typically 
set to twice the magnitude of the other weightings. For example, if the eye region has been selected, 
then /?! =  2(32 =  /33.

10These are the regions where wrinkling tends to occur as an individual ages [5, 14, 21], section 
1.4.

11 The operator o in equation (3.9) represents a Schur-Hadamard matrix product and indicates 
a pixel-wise multiplication of the wrinkle-map W  with the sum of the weighted binary masks.
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Figure 3.12: Definition of masks for local wrinkle-map application. A mask 
is defined for each region of interest on the face (forehead, eye region, mouth re­
gion) and each mask weighted by a scalar multiple, according to the desired relative 
proportions of wrinkling for the subject face. The wrinkle-map is then multiplied 
in a pixel-wise fashion by a sum of these weighted masks and a new wrinkle-map 
calculated.

Forehead Eye region Mouth region

Figure 3.13: Local wrinkle-map application. The wrinkle-map may be applied 
to local regions of the face by varying the relative proportions of the forehead, eye 
region and mouth region binary masks. The result is more pronounced wrinkling in 
the area of interest and less pronounced wrinkling in the rest of the face.
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3.6 Consensus Age-Progression

The construction of a statistical model of facial appearance within this thesis closely 

resembles that originally outlined by Cootes et al. [57]. However, in contrast to 

Cootes’ model, the model herein retains two distinct parts — a PCA model of 

shape and a PCA model of texture. To assist in the construction of the shape 

model, a specially designed tool was produced [101] (see Appendix D) to increase 

the speed and accuracy of the landmarking. Figure 3.14 displays an example of the 

landmarks, whose coordinates constitute the shape vector of the face for examples 

in Database 1 (see Appendix E for the point model used for Databases 2 and 3).

Figure 3.14: Point model representing the shape of the face. Magenta circular 
markers represent base landmarks and the blue points represent the interpolated 
landmarks, which follow the contours of the facial features (see Appendix D for 
details).

The N  resultant shape vectors were pose and expression compensated (section 

3.2) as necessary12 and consecutively aligned to the mean face shape through an 

iterative Procrustes Alignment (section 2.3). A standard linear PCA was applied

12 Owing to the nature of the training sets, pose and expression compensation were required on 
Databases 2 and 3 only, where necessary. The images in Database 1 were suitably constrained such 
that compensation was not required.
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to the ensemble to extract the modes of variation and the orthonormal principal 

components were computed (via equation (2.20) or (2.21) and (2.22)). The j th 

example of a shape vector within the training set could then be described using an 

equation equivalent to (2.32):

dj =  d +  Psb? (3.10)

where Ps is the matrix of orthonormal shape principal components.

The second part of the face model consists of a PCA model of the facial texture of 

the sample. This model was created by first performing illumination compensation, 

as necessary (section 3.4). Then all training examples were warped to the mean 

shape using an iterative piecewise, affine transform (section 2.3.2) and the RGB 

values were texture compensated as required (sections 3.3) and extracted to form 

an ensemble of shape-normalised, texture vectors. Linear PCA was again applied to 

produce a set of texture principal components. The j th texture vector may be ex­

pressed as a sum of orthonormal principal components using an equation equivalent 

to (2.42):

tj =  t +  p tg j (3.11)

where Pt is the matrix of orthonormal texture principal components.

Crucially, the two sets of model parameters, bj and g y, are relatively compact 

(approximately 30 components for shape and 100 components for texture) and enable 

a given facial appearance to be conveniently visualised as a point in a multidimen­

sional vector space [66].
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To calculate a consensus aging axis in shape, V age, through the model space, 

the following equation was employed:

V  =v age
e L o u  -  w y (b j

E L W - w„
(3.12)

where W 7 and b; are the age (in years) and the vector of shape model parameters 

respectively for the j th subject, 11), is the mean age and ly, is the mean vector of 

shape model parameters. Since, in our specific case, b;, =  0, we have13:

N
V ^ e =  X j W f  -  W ,)b t (3.13)

j = 1

The formation of the aging axis is displayed schematically in a hypothetical 2D 

space in figure 3.15.

Figure 3.15: The formation of the aging axis in shape model space. The
shape vectors, Iq to by. are weighted by their corresponding mean-subtracted ages 
and summed to form the aging axis, V age.

Equation (3.13) indicates that the axis is calculated by weighting the model

13The denominator in equation (3.12) may be discarded since, for practical use, the aging axis 
is normalised to unit length.
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parameters of an individual face by their corresponding, mean-subtracted age. This 

mean-subtraction is considered necessary as follows. The formation of the space 

ensures that the shape model parameter vectors, {b j} ,  are zero-mean and thus, 

that the mean facial shape lies at the origin of the space:

To account for this discrepancy, the aging axis is form,ed by weighting the mean- 

subtracted shape m,odel parameter vector by its corresponding mean-subtracted age.

The aging axis defines the average trajectory through the model space along 

which age increases. Thus, an example face translated in this direction should 

appear older. To proceed, a calibration procedure is first applied to the aging axis 

to produce a unit vector, V age. Appropriate scalar multiples of this vector may then 

be added to the model parameters to age the facial shape by the required number 

of years:

(3.14)

However, this mean shape has a mean age ^  0:

(3.15)

b/  =  bj +  «V, (3.16)

where b j' is the set of aged shape parameters for the j th individual.
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3 . 6 . 1  C a l c u l a t i o n  o f  a g e  s c a l i n g  p a r a m e t e r ,  a

The scalar multiple, a, in equation (3.16) effectively defines the number of years of 

aging and is calculated as follows:

Consider the orthogonal projection, P,, of the ith example in the training set 

(given by the parameter vector b,) onto the axis, V age, given by:

P  i =  (b ,TV age)V age (3.17)

This gives the most accurate estimate of facial shape at age A; =  W, — years. 

Similarly, the j th example of age Aj =  W, — WfJ years has a projection:

P ; =  ( b / V age)V age (3.18)

Thus, the distance in the direction of V age corresponding to (Ai — Aj) years is:

p  _ p  =r > r  j (hi -  b j) r V age V a g e —  Ai — Aj (3.19)

However, this calculation is for just two example faces. Defining:

O'ij -Aï Aj (3.20)

and

A,, (b, -  b j ) r V ;age V age (3.21)

and using all permissible pairs of examples, a  is defined as:

a — M ^  — ------ (3.22)
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where M  is the number of years of aging required and the fraction AlJ

gives one year of aging in terms of displacement along the axis, relative to the origin.

Once the facial shape has been age-progressed according to equation (3.16), the 

vector of aged model parameters, b / ,  may be combined with the shape principal 

components (equation (3.10)) to produce the aged facial shape, d/ .

3 . 6 . 2  S e x u a l  D i m o r p h i s m

Sexual dimorphism in the aging of humans [14. 21] indicates a need to consider the 

two sexes separately. Hence, in the shape model, two aging axes are defined, one 

for each sex sub-space and an individual may be aged according to its respective 

Euclidean distance from these axes (Em representing the Euclidean distance vector 

to the male axis and Ef representing the equivalent vector to the female axis), as 

depicted schematically in figure 3.16. This is necessary so that aging may proceed 

in accordance with both sex influences —- for instance, a male face, by definition, 

will generally have closer proximity to the male axis than to the female (Em < Ef). 

However. Ef may be sufficiently small that the female examples may have an effect 

on the face as it is age-progressed. This may be the case for a male of feminine 

appearance. Hence, the most realistic transformation is effected by employing a 

proportion of each sex axis, where E m and Ef determine the appropriate weights to 

be used. Conversely, the same approach may be necessary to age a more masculine 

female (that is, a female more closely related in appearance to male faces than to 

other females [102, 103]) in the most appropriate fashion.

To age a face in this manner, equation (3.23) is used:

b  /  =  b :j +  a r
Ef

E m + Ef
V m T oif

Em
Em +  Ef V f (3.23)
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v

Male prototype

Female prototype

Figure 3.16: A 2D representation demonstrating a subject’s Euclidean dis­
tance vector in shape space from the male and female aging axes. The
length-normalised male and female aging axes are given by V m and V f respectively. 
The vectors P m and P f represent the male and female prototypes (averages) respec­
tively. with bj representing the j th subject to be aged. The subject is then aged 
according to its relative distance from the male and female axes.

where a m and « /  are the scalar multiples to control the degree of aging (calcu­

lated from an equivalent expression to equation (3.22)) using the length-normalised 

male and female aging axes, V m and V f, respectively. As required, this expression 

reduces to equation (3.16) in the case where Em or Ef is zero.

To calculate Em and Ef, V In and V f are translated to pass through the male and 

female prototypes (or mean facial shapes), P m and Pf, respectively (figure 3.16). 

By enforcing the conditions Em • V m =  0 and Ef ■ V f =  0, Em and Ef may be 

calculated from geometrical considerations:

b j  +  E (3.24)
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bj T- Ep — P f +  /3f V f  (3.25)

Using equation (3.24):

b • V  -  P V
/3m =  1,1 m (3.26)

A11! ■ V m

Hence:

Em — Pm +
b • V  — P VlJj  v m L tn » m

V  • Vv m v m
V m -  b; (3.27)

Similarly, using equation (3.25):

P f =
b;- Vf -  Pf Vf 

Vf • Vf
(3.28)

Additionally:

Ef =  Pf +
b j  • Vf -  Pf • Vf 

V f - Vf
V f b, (3.29)

Once these quantities have been calculated, it is possible to translate a face in 

the most appropriate direction in the shape space according to equation (3.23).

To visually demonstrate the existence of aging directions in the model space for 

male and female faces, the 2nd, 3rd and 4th components of each shape parameter 

vector for two groups of examples (ages 1 and 20 years respectively) are plotted in 

figure 3.17. A clear separation may be seen between the age groups due to clustering 

of individuals of similar age. In reality, the calculated aging axes exist in a high­

dimensional space but this 3D approximation illustrates the principle by which they
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are formed.

Male Female

•too

100 100

53 B2
83 B2

a) b)

Figure 3.17: A 3D illustration of the aging direction in the male and female 
sub-space. The 2nd, 3rd and 4th components of the vector of shape parameters are 
plotted for male (a) and female (b) examples of age 1 (dots) and 20 years (stars). 
The line represents the aging direction, owing to the separation of the age groups 
within the space.

An aging axis for the texture variations was formed in an entirely analogous way 

to equation (3.13). A separate model for each sex was produced to avoid complica­

tions arising from a mixed sex model, such as the appearance of “ghost” facial hair 

on female subjects as aging proceeds. Subjects may then be aged according to the 

texture model as:

where g /  is the vector of aged model parameters, gj is the vector of original

length-normalised, texture aging axis. The vector of aged texture parameters, g / ,  

may then be recombined with the orthonormal principal components via equation 

(3.11). Once aging has proceeded according to both the shape and texture models,

g/  — gj +  aÂ T (3.30)

model parameters for the j th example, at controls the degree of aging and V T is the
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the resultant aged texture map is warped to the aged shape using a Delaunay- 

based, piecewise, affine transformation (section 2.3.2) to produce an output face, 

age-progressed in both shape and texture.

3 . 6 . 3  A g e - p r o g r e s s i o n  o f  E t h n i c  G r o u p s

To age a subject according to their ethnic heritage, an analogous procedure to 

sections 3.6 and 3.6.2 must be followed. That is, if the shape model is constructed 

from a training set of different ethnicities, aging axes are formed for each of the 

represented ethnic groups. Hence, a White European face (see Appendix F), for 

example, should be aged according to the White European aging direction and a 

Black African according to the Black African aging direction so that an individual is 

age-progressed in the most appropriate manner for their racial group. In addition, 

sex axes are constructed and employed as previously. If a person of mixed ethnic 

heritage is presented, the Euclidean distance vector is calculated from each of the 

appropriate aging axes and the person aged according to these distances using an 

equivalent expression to equation (3.23). To minimise complications in this instance, 

it is necessary to separate the sexes. In an equivalent manner to the formation of 

separate sex texture models, separate ethnic texture models must also be constructed 

for each sex to ensure that aging proceeds realistically14.

14A supplementary texture model, constructed upon both racial groups for each sex, may be 
employed if a subject is of mixed heritage so that age-progression may proceed in an analogous 
fashion to the shape, using the Euclidean distance from each axis.
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3.7 Piecewise Aging

The approach to aging described in the previous section is based upon the assump­

tion that the aging process is inherently linear. However, facial change with time is 

known to occur in a non-uniform fashion [12, 13, 14, 19, 17, 48, 18]. In particular, 

adolescence causes significant changes over a relatively short period of time with 

pronounced differences occurring between the sexes [14, 18, 22] (see sections 1.4 and 

1.5). Bogin [12] identifies four main, developmental periods that occur between the 

ages of 0 and 20 years and describes in detail the changes and rates of growth and 

development occurring during these stages. These four stages are termed Infancy 

(0-3 years), Childhood (3-7 years), Juvenile (7-10 years) and Adolescence (10-20 

years).

To produce a more accurate model for the facial aging of children and teenagers, a 

more comprehensive approach was devised, based upon these known developmental 

stages. In essence, a “piecewise” model, consisting of several linear aging directions, 

was calculated in shape space using faces restricted to specified age ranges. Using 

Database 2, the same facial images used in the model construction described in 

section 3.6 were pose and expression compensated using Method 215. The resulting 

shape vectors were subsequently used to construct a mixed sex, shape model and 

equation (3.13) used to calculate four aging axes corresponding to the physiological 

developmental stages. To demonstrate the formation of these axes and their approx­

imate directions in the model space, the prototype (mean) shape parameter vector 

for each age group was calculated and the 2nd, 3rd and 4th components plotted 

in three dimensions. This was performed for the male and female sub-spaces of 

Database 2 separately and figure 3.18 displays the respective results. The consensus

15Method 2 is arbitrarily used for pose and expression compensation since both Method 1 and 
2 yield comparableresults.
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axis is also shown to illustrate the differences in direction between the piecewise 

and consensus vectors and hence the possibility of a different outcome using this

Figure 3.18: A  3D illustration of the piecewise aging directions in the 
male and female sub-spaces respectively. The 2nd, 3rd and 4th components 
of the vector of prototype shape parameters are plotted for each of the age groups 
in the male (left) and female (right) sub-spaces respectively. The lines depict the 
aging directions for each of the age groups with the consensus axis also given for 
comparison. This illustrates the differences in direction between the piecewise and 
consensus vectors and hence the possibility of a different outcome using the piecewise 
approach.

To understand how aging is achieved using the piecewise model, consider a 2 

year old subject required to be aged by 8 years:

1 . The subject, b*, is aged by 1 year according to the Infancy axis:

where « /  represents 1 year of aging in the direction of the Infancy axis, V i.

approach.

Male Female

b /  — bj +  QqV J
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2. The resultant aged shape from the previous step is then aged by 4 years ac­

cording to the Childhood axis:

b '' =  hi +  a c  V c

where a c  represents 4 years of aging in the direction of the Childhood axis,

v c .

3. Lastly, b " is aged by a further 3 years using the Juvenile axis to produce the 

final shape, h/", aged by 8 years in total using the piecewise approach:

b/" =  hi" T a j V j

where a j  represents 3 years of aging in the direction of the Juvenile axis, V j.

A more sophisticated approach would employ equation (3.23) at each step to 

weight the male and female influences. However, this was not performed owing to 

a paucity of training examples in the formation of the piecewise axes. Therefore, 

examples were age-progressed according to their appropriate sex axes only.

For texture, separate piecewise models were formed for the male and female 

subjects. Piecewise axes were calculated in an equivalent manner to the shape model 

and subjects aged according to the relevant sex model. The resultant aged texture 

maps were then warped to the corresponding aged shapes using a Delaunay-based, 

piecewise, affine transformation as previously.
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3.8 Person-Specific Aging Model

To age a face in the most accurate manner, person-specific factors must also be 

considered in addition to the average tendencies over a peer group sample. Person- 

specific factors include, for example, previous facial development trends for the given 

individual subject (which may reasonably be expected to have some correlation with 

future growth and development patterns) and the facial appearance and development 

of close relations (in particular, parents and siblings), which again may be useful 

predictors for aging [5, 1 2 , 13]. Person-specific factors such as these are ultimately 

biological in origin, but no attempt to build a predictive model based on directly 

measurable biological factors, such as DNA, is currently possible.

In this section, a statistical approach is presented to incorporate such individ­

ual factors. This technique effectively combines statistically derived knowledge on 

these factors, together with the average trends expressed by the model described in 

sections 3.6 and 3.7. The basic philosophy of the approach is to treat the different 

influences as competing directions in the model space. That is, vectors are calcu­

lated for the historical (previous appearance), consensus and parental factors and 

the age-progressed vector computed as a weighted linear combination of these axes. 

Owing to the modelling of all available influences on aging, this more sophisticated 

method may reasonably be expected to produce more accurate results than either 

the consensus or piecewise approaches. The theoretical framework is described as 

follows.

Consider a training sample consisting of facial images of a large number of indi­

viduals at various ages. The aim is to progress a given image from its current age 

yc to a target age, yr- Figure 3.19 (a schematic representation of the model space) 

depicts the groups of faces required for this person-specific transformation, which
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may be summarised as follows:

• Group O contains all faces in the sample at the same current age, yc.

• Group T  contains all faces in the sample at the same target age, y r■ In an 

ideal situation, Groups O and T  will contain faces of the same sex and ethnic 

origin.

• Group /  consists of the predicted appearances (from the previous appearances) 

at the target age, yj- The corresponding true appearances at this age comprise 

group T.

• Group P  consists of parental images of the individuals in group T 16. Group 

P  also contains the preferably same-sex parent of the subject to be aged.

In addition to possessing images of the training subjects at ages yc and yT, it is 

assumed that more than one image is available of each subject at ages < yc. These 

are termed the historical images. Denoting the shape model vectors of the kth such 

image by b k, an average vector (displayed as a unit vector) over a previous time 

period leading up to yc years may easily be calculated as:

where yk is the age of the kth example, ITjt is the mean age of all training 

examples, btl is the set of mean shape parameters and c is the number of historical 

images.

tor), indicating the average direction through the model space in previous years

16Ideally, to allow for the difference between sexes during aging, the parental images will be of 
the same sex as members of group T . However, it may be permissible to use the opposite-sex 
parent if an image of the same-sex one is unavailable.

C

(3.31)

The vector V ; thus functions as the historical trend (termed the historical vec-

Catherine Mary Scandrett 1 0 1



CHAPTER 3. THEORY OF AGE-PROGRESSION ALGORITHMS

i

O • Examples at the current age
T ■ Examples at the target age

f Projected examples at the
target age, predicted from 
individual aging axes

p Parents of target age group

Figure 3.19: Definition of groups in person-specific aging model. Group O 
consists of images at the current age of yc years, group T consists of images at the 
target age of yp years, group I contains the predicted appearance of images in group 
O at the target age and group P  contains parental images of those individuals in 
group T .

for each subject in group O. Calculation of the vector Vi and subsequent nse of 

equation (3.16) enables a prediction to be made of the appearance of each member 

in the training sample at the target age yp, were the historical trend to be faithfully 

followed. Hence, group I  is constructed as each member of group O is advanced to 

the target age using the predictions of the individual historical vectors.

An average vector, V c, for the change between yc and yT years, which represents 

the mean change in facial appearance between the two groups O and T is calculated 

as:
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T
Vc =  ^ ( i / i - W M)(b i - 6 M) (3.32)

l—C

Thus, every example between yc and ijt years is weighted by its mean-subtracted 

age and a sum formed. The direction V c is referred to as the consensus vector.

Finally, the parental vector denoted by V p, is given by the vector difference 

between the subject to be aged, z (from group O) arid its parent at the target age, 

p (from group P ):

V p =  p — z (3.33)

To depict these axes schematically in 2D, consider figure 3.20. In this figure, z 

represents the subject face at the current age (from group O), zh represents z at 

some previous age1' , c is the actual (unknown) appearance at the target age, i is the 

projected appearance at the target age calculated using the historical vector and p 

represents the parent of z. 17

17It is desirable to include as many historical examples as possible in order to calculate a well- 
defined historical vector.
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Figure 3.20: Formation and use of historical, consensus and parental vec­
tors employed for aging a subject - zh represents the subject, z. at some 
previous age, c is the actual (unknown) appearance at the target age, i is the pro­
jected appearance at the target age calculated using the historical vector and p 
represents the parent of z.

3 . 8 . 1  L i n e a r  M o d e l

The age-progressed vector, c, is modelled as a weighted linear combination of V c, 

Vi and V p:

c =  z +  w {V c +  w2Vi +  ic3V p (3.34)

That is, the aged face may be estimated by using a combination of the consensus 

information between the initial and target ages (embodied by V c), the individual in­

formation from the historical images (embodied by Vi) and the parental information 

specific to the subject and its parent at the target age (embodied by V p).

To optimise the estimate of wi, W2 and w%, it is considered that, as far as possible, 

the age-progressed vector, c, should simultaneously satisfy three criteria:
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• It should be a “typical” member of the distribution of faces at the target age

this encompasses the tendency of an individual to follow a prototypical 

trend based on the aging patterns of a relevant peer group of faces of the same 

sex and ethnic origin.

• It should be a “typical” member of the predicted distribution resulting when 

the sample is projected to the target age according to the historical trend 

this utilises the propensity of an individual to continue along an aging direction 

determined by its appearance at previous ages.

• It should be a “typical” member of the distribution produced by considering 

the difference vectors between individuals at the target age (group T) and their 

respective parents (group P), termed the “parent-to-child” distribution this 

describes the predisposition of an individual to resemble close genetic relatives 

such as a parent. The parental information specific to the subject is embodied 

by the parental vector, V p. However, to calculate the weighting, ic3, for this 

axis and therefore a measure of the parental influence on the subject, example 

differences between members of group T  and their corresponding parents in 

group P  are used. This is because it is desirable for the age-progressed vector, 

c, to resemble its parent in the typical manner in which members of the target 

group resemble their parents18.

By considering members of the groups depicted in figure 3.19, it is possible 

to form probability density estimates, which allow precise, maximum-likelihood 

interpretation to be applied to these criteria. The very purpose of PCA is to 

produce model parameters which are independently distributed within the vector

18Further incorporation of person-specific parental influences could reasonably include consider­
ation of the vector difference between the child at the current age and its parent at the same age. 
This could then be used to provide additional person-specific aging.
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space. The multivariate normal distribution for independent variables, denoted by 

y =  [yi, V2 • ■ ■ Vn\ , is given by:

P (y ‘i R y  C y) =  T e x p | - ^ ( y - / / y)r C y“ 1 ( y - / r y)| (3.35)

where A =  — ¡1/21 C y is a diagonal covariance matrix and pLy is the set of 

mean model parameters.

Similarly:

• the target distribution of the model vectors within group T  is denoted Pr(c; p T, CT 

where ¡jlt and C t are the set of mean model parameters and covariance matrix

of group T respectively. This distribution essentially provides the probability 

of the aged vector c belonging to the target age group.

• the target difference distribution, given by the difference vectors between the 

vector of a subject at the target age (group T) and its corresponding predicted 

value at the target age (group /) ,  is denoted Pd (5-Hs- C s), where S =  c -  i 

and fi§ and Cs are the set of mean model parameters and covariance matrix of 

the group respectively. This distribution essentially provides the probability 

of a given difference vector, d. being a suitable difference between a member 

of the target age group T and the equivalent, predicted member in group I, 

determined from the historical vector.

• the parent-to-child distribution, given by the difference vectors between a par­

ent model parameter vector in group P  and its corresponding offspring in 

the target group, T, is denoted p£>(A; /xa ,C a ), where A  =  c — p and 

and C a  are the set of mean model parameters and covariance matrix of the 

group respectively. This distribution essentially provides the probability of a
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given difference vector, A , being a suitable difference between a member of 

the target age group and its parent.

The task is to estimate the free parameters w\, w2 and u>3 in equation (3.34) 

so that c may belong equally to all distributions in a maximum likelihood sense. 

Accordingly, the joint probability (also known as the “likelihood” ) is required, which 

corresponds to the product of the probability density functions, L =  pT(c)pD(6)pD{A)  

The appropriate vector c is then found such that this product is maximised. That 

is, we seek to maximise:

where <j> =  {c -  pLT)TC T *(c -  /zT), 7  =  (S -  Hs)TC 6 ' ( 6  -  fis), k =  (A  -

Maximising the product of the distributions is equivalent to minimising the sum 

of the exponential terms and hence minimising the following cost function:

Substituting our known expressions for pT(c), Pd (S) and pD(A ) into equation 

(3.38) yields:

(3.36)

MA)r C'A1(A  -  / lA ) and k is a multiplicative constant. Taking logarithms:

2 In L = k { 0  +  7  +  k} (3.37)

Q =  ~ 2 \ n L =  -2\n\pT(c)pD(6)pD(A)} (3.38)

Q{wi, w2, w3) =k[(j> +  7  +  k] (3.39)
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To find the optimal solution for c, standard calculus methods are used, taking- 

partial derivatives of Q with respect to W\, w2 and iv3 respectively and setting these 

to zero. We obtain:

= 2VlC T-'(c  -  Mr) + 2V jC j ’ ti -  Mi) + 2V ctCa'(A  -  m a) = 0 (3.40)

Similarly,

dQ
diu2

2 V fC T- 1(c -  /xT) +  2 Y j C 5 \6 -  p s) +  2 V f  C A] ( A  -  /xA) =  0 (3.41)

and:

<90
^  =  2 V jC T- 1(c -  / iT) +  2 V jC 5' 1(<5 -  p*) +  2V J C a ] (A  -  /xA ) =  0 (3.42)

Using equation (3.34) in addition to <5 =  c -  i and A  =  c -  p, solving (3.40), 

(3.41) and (3.42) yields equations of the form:

aw i +  bw2 +  cw3 =  7 i (3.43)

bwi +  dw2 +  ew3 =  72 (3.44)

cwi +  ew2 +  fw 3 =  73 (3.45)

where a =  V jE V c, b =  V^EV;, c =  V)TSVP, d 

f  =  VpEVp and E =  C ^ 1 +  C s 1 +  C A[.

V /E V i, e =  V ; E V :pi
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In addition:

(3.46)

V ctCt - V t -  z) + V TcC j\ iis +  i -  z) +

Y C ? ( p *  +  p - z )

72 =  (3.47)

VrCT- 11 (/iT -  z) + V T C i '(Mi + i -  z) +

VÏC&(Va +  P -  z)

73 = (3.48)

V iC T ‘̂ (MT -  z) +  V jC j'fM i + i -  z) +  

V j C i W + p - z )

Equations (3.43) to (3.48) are the main results of this analysis. The linear equa­

tions (3.43), (3.44) and (3.45) may be solved simultaneously to calculate weighting 

factors uq, w2 and w3 in terms of the known parameters expressed by equations 

(3.46) to (3.48). Equation (3.34) may then be used to produce the age-progressed 

appearance. Shape and texture are treated independently with the final aged texture 

map warped to the aged shape to complete the facial synthesis.
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3 . 8 . 2  H i s t o r i c a l / c o n s e n s u s  a p p r o a c h

In the absence of appropriate parental data, the use of another close relative, such 

as a full-blood sibling, may be permissible to capture any familial influence on 

aging. If no parental or sibling images are available, the age-progression can only 

be modelled with the historical and consensus vectors and equation (3 .3 4 ) reduces 

to a two variable model:

Upon minimisation of an equivalent cost function to (3.39), Q(w i , w2), uq and 

W'2 may be found from the simultaneous solution of two equations:

where, in this instance, a =  V;TEVC, b =  V^EV;, c =  V fE V ; and E =  C T 1 +  

C g 1. In addition:

c = z + w i V c + w ^V  i (3.49)

aw y +  bw-2 =  7 i (3.50)

bw\ +  cw2 =  72 (3.51)

7i — V ^ C T 1 (Mr ~ z) + V jC b  { (fj,s +  i —  z) (3.52)

7 2 - V f C T  1(iiT — z ) +  V f C s  1 {r s  +  i — z ) (3.53)

It is straightforward to show that w\ and w2 are given by:

(3.54)

«72 -  bji (3.55)
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For purposes of comparison, a model based only on the historical axis can be 

considered. This is easily achieved by assigning a value of zero to the consensus 

axis, V c, in equation (3.49), yielding:

c =  z +  ie2V  s (3.56)

where w2 =  72/c , c =  V f Q _1Vi and 72 =  Y ( C s ~ 1{^s +  i -  z).

3 . 8 . 3  A g e - R e g r e s s i o n

The aging techniques described for children may equally well be applied in reverse to 

make a face appear younger than its current age. To achieve such an age-regression, 

the aging coefficients in the models described by equations (3.16), (3.23) and (3.30) 

are set to negative values.

3.9 Chapter Summary

In this chapter, three models of varying sophistication for age-progression were pre­

sented. Each model requires preliminary image processing to be carried out on the 

images prior to model production. Accordingly, two novel methods for pose and 

expression compensation were firstly discussed. Furthermore, to reduce the textural 

artefacts from these procedures, an approach to texture compensation was outlined. 

As a final stage in the pre-processing, a compensation technique for illumination 

was described to allow adjustment of the texture maps to appear more uniformly 

lit.

In the first approach to age-progression, the consensus methodology was outlined 

and the aging axis computed via a weighted sum of model parameter vectors. To 

model the influence of both genders, the Euclidean distance of a subject from each
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gender axis was employed. A more sophisticated approach (accounting for the non­

linear nature of the aging process) was then outlined in the form of the piecewise 

technique, in which four linear axes were constructed based upon the periods of 

developmental growth in children and teenagers. Since the piecewise axes are derived 

from physiological influences, the results obtained may reasonably be expected to 

produce more accurate results than the consensus approach.

Finally, the most comprehensive approach to age-progression was presented to 

incorporate person-specific factors. This accounted for previous facial development 

trends and the tendency of individuals to resemble close (genetic) relatives. A 

theoretical framework was outlined to combine these factors, along with consensus 

information derived from a population. By considering these influences as competing 

directions in the model space, expressions were derived for the optimal amount of 

each component to be added to a subject vector to effect the age-progression.

In the next chapter, the computational implementation of the three age-progression 

algorithms is presented and their accuracy quantitatively assessed.
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Chapter 4

Implementation of 

Age-Progression Algorithms

In this chapter, the approaches outlined in sections 3.6, 3.7 and 3.8 are implemented 

to demonstrate the production of age-progressed images. The results of these pro­

cedures are visually and quantitatively compared with the true appearance at the 

target age (the target image) to assess the degree to which the subject retains its 

unique identity as it is translated through the model space.

To demonstrate the flexibility of the PCA model for age-progression, related 

work on age prediction is presented. The consensus axis is used to predict the 

age of a subject from its respective shape and texture model representation. The 

technique of Fisher Linear Discriminant analysis is then introduced as an alternative 

methodology for age prediction. The results of the two approaches are compared 

and conclusions drawn regarding their relative suitability for the application.
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4.1 Consensus Approach —  Database 1

Figures 4.1 and 4.2 depict typical results of aging example faces from Database 1 

(section 3.1) using the consensus approach. Equation (3.16) was applied in incre­

ments of two years, up to and including twenty years1. This range was chosen to 

examine the effect of both modest and larger amounts of aging. To confirm the 

reversibility of the method, figure 4.3 depicts the results of a typical age-regression 

(section 3.8.3).

Original image +2yrs +4yrs +6yrs +8yrs
age 14yrs

+10yrs +12yrs +14yrs +16yrs +18yrs +20yrs

Figure 4.1: Example result of aging an in-sample male. Face 1.1 (14 years of 
age) is age-progressed by 2 year increments, up to age 34.

lrThe resultant aged faces have been incorporated into the original images to provide context in 
terms of hair, clothing and background. This was achieved by a Delaunay-based warping procedure 
of the aged facial shape and texture patch into the original image at the face location. A standard 
median filter was used to reduce the appearance of the join lines during this process.
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+10yrs +12yrs +14yrs +16yrs ” +18yrs ” +20yrs

Figure 4.2: Example result of aging an in-sample female. Face 1.2 (16 years 
of age) is age-progressed by 2 year increments, up to age 36. The subject was asked 
to hold their hair back from the forehead to prevent partial occlusion of the face.

Original image t2yrs ” -4yrs “ -6yrs *"-8yrs
age 31yrs

-10yrs -12yrs -14yrs -16yrs -18yrs -20yrs

Figure 4.3: Example result of age-regression on an in-sample male. Face 1.3 
(31 years of age) is age-regressed by 2 year increments, up to age 11.
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Each face in figures 4.1 and 4.2 subjectively appears to have increased in age over 

the twenty year period. This is in the opinion of this author only2 and is indicated 

by several well-documented visual cues. For instance, the eyes appear smaller and 

more deeply set with the skin under the eyes appearing thinner and darker [5], the 

lips have become thinner [23, 24] and the lower face has become generally broader. 

Conversely, the age-regression (figure 4.3) results in a face that appears progressively 

younger.

It is important to note that significant visual changes may only be explicitly 

observed for relatively substantial amounts of age-progression or regression (for 

instance, ten or more years). This is because the aging axis is defined using a 

small number of training faces with a marked spread in age -  hence, since the 

axis is relatively well-defined near the end-points, large increments of aging yield 

notable changes to facial appearance. However, since the axis defines an average 

direction through the model space between young adolescents and mature adults, 

age-progression by successive two year increments produces approximately uniform, 

subtle changes. This may be seen in figure 4.1, where the face age-progressed by 

twenty years appears more age-accurate than the face age-progressed by ten years 

(which appears younger, in the opinion of this author3, than its target age of twenty 

four years due to the uniform changes modelled at each two year increment of aging). 

Since, in reality, facial changes with age are non-uniform (particularly in adolescence 

[13, 14, 19, 17]), Database 1 is not considered to be the optimal training set for the 

age-progression of subjects under the age of twenty years. In addition, the consensus 

model itself requires revision in order to more accurately model the aging of children

2There were no additional checks performed on these results. This is because the study per­
formed using Database 1 was an initial feasibility study only to check the basic viability of the 
consensus age-progression approach.

Again, this was not checked with other observers, owing to the purpose of using Database 1 
as a basic check that the consensus approach yielded sensible results.
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and teenagers.

To address these issues, a database was required containing more training exam­

ples at intermediate ages. Owing to the formation of the axis as a weighted sum of 

model parameter vectors, inclusion of such examples would change the axis direction 

in the space (see figure 4.4 for a 2D graphical depiction) and this would allow more 

age-accurate results to be achieved4. In addition, such a training set would permit 

age-progression according to the piecewise approach.

Figure 4.4: Inclusion of examples at intermediate ages changes the direc­
tion of the aging axis. Database 1 contains examples of young adolescents and 
mature adults (left), such that the calculated aging axis allows the average facial 
changes to be computed. However, owing to the formation of the axis as a weighted 
sum of model parameter vectors, inclusion of examples of intermediate age will 
change its direction (right) and its use will produce more accurate results.

4In reality, a database was required containing subjects between 0 and 20 years of age, such 
that the facial changes of childhood and adolescence could be modelled.
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4.2 Consensus, Piecewise &; Historical/Consensus 

Approaches —  Database 2

In the course of this research, an alternative training set, referred to as Database 2, 

was obtained (see section 3.1), containing 658 faces, aged 0 to 20 years. Despite the 

lack of uniformity in these images5, Database 2 was considered more appropriate 

for modelling the age-progression of children than Database 1, owing to the more 

suitable age-ranges therein. Hence, the construction of more accurate aging axes 

was possible (see section 4.1).

To implement the consensus approach on this training set, equation (3.16) was 

applied to example faces. Similarly, analogous equations to (3.16) were applied to 

the same subjects to implement the piecewise model (using the Infancy, Childhood, 

Juvenile and Adolescence axes — see section 3.7). To examine the application of 

the historical/consensus approach, equation (3.49) was employed (see section 3.8.2) 

and, finally, equation (3.56) was used to compare the results obtained using the 

historical approach alone with the aforementioned approaches. Figures 4.5 to 4.7 

display the results from these procedures. Where possible and appropriate, aging 

sequences are displayed, along with the corresponding targets.

°Pose, expression, illumination, resolution and image quality varied considerably as compared 
to Database 1.
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Face 2.1

Face 2.2

Face 2.3

Face 2.4

Face 2.5

Figure 4.5: Example results of age-progression using the consensus, piece- 
wise, historical/consensus and historical approaches respectively. Column 
A): Original image, B) Face aged using the consensus model, C) Face aged using 
the piecewise model, D) Face aged using the historical/consensus approach. E) Face 
aged using the historical direction only, F) Subject at the target age.
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Face 2.6

A B C D E F
Original +4yrs +5yrs +7yrs +8yrs +9yrs

Consensus

Piecewise

Historical/Consensus

Historical only

Target
images

Figure 4.6: Sequential age-progression of an in-sample male using the 
consensus, piecewise, historical/consensus and historical approaches re­
spectively. Column A) Original image, Face 2.6, 7 years old, B) Result of age- 
progression by 4 years, C) 5 years of aging, D) 7 years of aging, E) 8 years of aging, 
F) 9 years of aging. The rows represent the different age-progression methodolo­
gies, with the bottom row displaying the target images for comparison with each 
age-progressed image.
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Face 2.7

A B C D
Original +1yr +3yrs +4yrs

E

+5yrs

Consensus

Piecewise

Historical/Consensus

Historical only

Target
images

Figure 4.7: Sequential age-progression of an in-sample male using the 
consensus, piecewise, historical/consensus and historical approaches re­
spectively. Column A) Original image, Face 2.7, 11 years old, B) Result of age- 
progression by 1 year, C) 3 years of aging, D) 4 years of aging, E) 5 years of aging. 
The rows represent the different age-progression methodologies, with the bottom 
row displaying the target images for comparison with each age-progressed image.

Catherine Mary Scandrett 1 2 1



CHAPTER 4. IMPLEMENTATION OF AGE-PROGRESSION ALGORITHMS

4 . 2 . 1  D i s c u s s i o n

In this author’s opinion, some of the results produced using the approaches presented 

in sections 3.6 to 3.8.2 are plausible and realistic. However, some of the results are 

much poorer, for reasons that will be explained below.

A priori, the historical/consensus approach is expected to Ire the most accurate 

method since it incorporates person-specific information in addition to trends from 

a peer group. However, in practice, this is often not the case. Due to a paucity 

of historical examples, the historical axis may not be well-defined and therefore 

may not allow accurate prediction of a subject’s future appearance. This effect can 

be seen particularly in figure 4.5, face 2.5, image d. In addition, if the historical 

images are of varying quality and captured under different illumination conditions, 

the problem is compounded and the historical path through the model space will 

again be poorly defined. This may lead to inaccuracies in the age-progression of 

the texture, as can be seen in figure 4.5, face 2.4 and 2.5, image e. In conclusion, 

reliable results may only be achieved using this method if a sufficient number of 

good quality historical images are available.

Similarly, the piecewise approach is expected to produce more accurate results 

than the consensus approach since the axes are constructed upon known physiologi­

cal growth stages. However, the piecewise axes may also l>e poorly defined compared 

to the consensus axis due to the relative sparsity of training examples. Hence, the 

results obtained using this methodology may not be as reliable or as visually pleas­

ing as counterpart results achieved using the consensus approach (in figure 4.5, face 

2.5, compare image c with image b).

Owing to the consistently plausible nature of the consensus results, superficial
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examination6 would seem to imply that this approach is the most appropriate to 

use for age-progression. However, if a larger number of suitable training examples' 

was available, the piecewise approach should be employed in preference, owing to its 

more rigorous modelling of the non-linear nature of aging. More importantly, where 

suitable individual information (such as numerous historical, parental and/or sibling 

images) is available, this should always be additionally incorporated to ensure that 

aging proceeds in accordance with person-specific influences.

To visually assess the accuracy of the approaches, the results were compared to 

the target images using the author’s perception and were found to be broadly similar, 

particularly for the consensus approach. However, owing to the diverse nature of 

the training images in terms of image type, resolution and non-uniform illumination, 

these comparisons were not straightforward. Additionally, despite careful efforts to 

neutralise pose and expression (see sections 3.2.1 and 3.2.2), perfect compensation 

was not possible, further exacerbating the problem of comparison with target faces. 

The results of quantitative comparisons over a sample of images will be given in 

section 4.3.

4.3 Quantitative Assessment of the Results

4 . 3 . 1  S h a p e  c o m p a r i s o n

To obtain an objective measure of the accuracy of the age-progressed images, a

quantitative comparison was made between them and their corresponding target

images, beginning with a shape comparison, as follows:

6The term “superficial examination” is used to indicate the conclusions drawn upon initial 
examination of the results and comparison of the results from the different techniques. In these 
circumstances, the consensus approach appears to produce the most plausible results.

Tdeally images of uniform illumination and high resolution containing faces at frontal pose and 
neutral expression.
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1. The root mean square error (RMSE) was calculated between the shape vec­

tor of an age-progressed subject ( d aged) and the aligned shape vector of the 

corresponding target face,8 ( d tar), according to:

where each shape vector comprises q elements.

2. An equivalent equation to (4.1) was used to compute the RAISE, e0, between 

daged and the shape vector of a variety of other faces at the target age, known 

to be of different identity ( d other)- These faces were chosen to be all examples 

in the training set (Database 2) at the target age, which were of the same sex 

as the age-progressed subject but of different identity, such that a variety of 

different subject faces were included9.

3. The calculated value, et. was compared with each obtained value of e0.

For the preservation of subject identity throughout the age-progression, et should 

be consistently smaller than eG. To determine whether this was the case, the rank 

of et in relation to each e0 was plotted. This is given in figure 4.8.

8For this calculation to be effected, an initial pose and expression compensation (see sections 
3.2.1 and 3.2.2) of the target face was necessary to orient its shape vector to frontal pose and 
neutral expression. The age-progressed face automatically appears in this orientation due to initial 
pose and expression compensation prior to application of the desired aging algorithm.

9This may have included some examples that were of similar appearance to the true target face. 
However, it is hoped that the effect of this was minimal, owing to the inclusion of many other, 
non-similar examples.
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Rank of e t compared to each eo (shape comparisons) for subjects age-progressed 
according to the consensus, piecewise, historical/consensus and historical approaches

Graph 1 -  Faces 2.1 to 2.5

2.1 2.2 2.3 2.4 2.5

Face Number

Graph 2 - Face 2.6 Graph 3 - Face 2.7

No. of yrs aging No. of yrs aging

Figure 4.8: Graphical results of the rank of et in relation to each eQ (shape 
comparisons) for faces 2.1 to 2.7. Graph 1 relates to the age-progressed images 
depicted in figure 4.5 (faces 2 .1 to 2.5). Similarly, Graphs 2 and 3 relate to the 
sequences of age-progression displayed in figures 4.6 (face 2.6) and 4.7 (face 2.7) 
respectively. The dashed line represents a rank equal to unity (the ideal rank of et 
compared to each ea).
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Prom examination of figure 4.8, it may be observed that there is generally a 

smaller RMSE between d aged and d tar than between d aged and d other -  that is, 

in general, et < ea and the calculated rank is low. Hence, the faces aged using the 

models are closer in shape to the corresponding target faces than to other faces of 

different identities at the target age within the limits of this study and a number of 

uncontrollable factors. We broadly conclude that the faces successfully retain their 

identity throughout the age-progression.

Certain anomalous results in figure 4.8 may be explained as follows. The RMSE 

is a simple, global measure of the difference between shape vectors in which all 

landmarks in the point model (used to construct the shape model) are treated with 

equal weight. Some landmarks have weak correspondence across the sample and 

the RMSE metric does not provide an exact discernment between facial shapes. 

For example, the corners of the eyes have very high inter-subject correspondence 

whereas certain landmarks around the jaw-line do not. These particular landmarks 

may cause unduly high RMSE values to be calculated. Secondly, the faces are pose 

and expression compensated where necessary (see sections 3.2.1 and 3.2.2), prior to 

the calculation of the RMSE values. This process introduces error into the shape 

vectors since perfect compensation to frontal pose and neutral expression is not 

possible. This will affect accurate calculation of the RMSE. Thirdly, as explained 

in previous sections, the aging axes (in particular, the piecewise and the historical 

axes) may not be sufficiently well-defined to give accurate results for age-progression. 

Therefore, the value of et in such cases might be artificially high.
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4 . 3 . 2  T e x t u r e  c o m p a r i s o n

Comparison of the age-progressed or regressed texture map with a target face is a 

non-trivial task, owing to the large variations within the training set, with respect 

to illumination, noise, resolution and image type. Figure 4.9 illustrates this point 

by displaying a series of images for one subject, taken from the training set.

Figure 4.9: A sequence of training images at different ages for one sub­
ject. These images demonstrate the non-uniformity of the images in Database 2, in 
which the illumination, noise, resolution and image type vary significantly. These 
factors mean that textural comparisons of an age-progressed face with its target are 
problematic.

In an attempt to address this problem and to facilitate comparisons between 

the age-progressed face and its corresponding target, the following procedure was 

carried out:

1. Each training image was cast to grey-scale and the texture maps extracted 

(section 2.3.2).

2. A normalisation procedure was applied to produce a mean pixel value of zero 

and a standard deviation of unity. That is, for each image, I, containing q 

pixels, { I , . . . / , } :

(4.2)
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(4.3)

The image, I, was then normalised by applying the following equation to each 

pixel:

for i =  { 1 . . .  <7} pixels. The normalised image was therefore given in vector 

form by:

This procedure was implemented to ensure that each texture map had the 

same global statistics in terms of intensity (mean) and contrast (standard 

deviation).

3. The statistical texture models were reconstructed and the aging axes defined 

using an equivalent equation to (3.13).

4. Analogous to the shape comparisons, the RMSE, et, was computed between 

each aged texture vector (tage(i) and its appropriate target texture vector (ttar) 

using an equivalent equation to (4.1).

5. The RMSE, eG, was computed between taged and other real faces at the target 

age (t0ther) to compare with the error computed in Step 4.

6 . Finally, the correlation coefficient (pt) was calculated between taged and ttar, 

according to equation (4.6):

jn  _  (J i /;) (4.4)
a

(4.5)
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Pt =
t Tiuaged Ltar

v (ta g e d  fa g ed )(ftar  ttar)
(4.6)

An equivalent equation was then used to calculate the correlation coefficient, 

p0, between taged and tother. This was to determine whether the texture map 

of the aged face was more highly correlated with the target face than with test 

faces.

To examine the results of these procedures, the rank of et in relation to each eQ 

was plotted. In a similar fashion, the rank of pt was plotted in relation to each p„. 

These results are depicted in figures 4.10 and 4.11.
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Rank of e; compared to each eo (texture comparisons) for subjects age-progressed 
according to the consensus, piecewise, historical/consensus and historical approaches

Graph 1 -  Faces 2.1 to 2.5

Graph 2 - Face 2.6 Graph 3 - Face 2.7

No. of yrs aging No. of yrs aging

Figure 4.10: Graphical results of the rank of et in relation to each eQ (tex­
ture comparisons) for faces 2.1 to 2.7. Graph 1 relates to the age-progressed 
images depicted in figure 4.5 (faces 2 .1 to 2.5). Similarly, Graphs 2 and 3 relate to 
the sequences of age-progression displayed in figures 4.6 (face 2.6) and 4.7 (face 2.7) 
respectively. The dashed line represents a rank equal to unity (the ideal rank of et 
compared to each ea).
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Rank of p( (correlation coefficient) compared to each po for subjects age-progressed 
according to the consensus, piecewise, historical/consensus and historical approaches

Graph 1 -  Faces 2.1 to 2.5

Face Number

Graph 2 - Face 2.6 Graph 3 - Face 2.7

Figure 4.11: Graphical results of the rank of p t (correlation coefficient be­
tween taged and ttar) in relation to each p 0 for faces 2.1 to 2.7. Graph 1 

relates to the age-progressed images depicted in figure 4.5 (faces 2.1 to 2.5). Simi­
larly, Graphs 2 and 3 relate to the sequences of age-progression displayed in figures 
4.6 (face 2.6) and 4.7 (face 2.7) respectively. The dashed line represents a rank equal 
to unity (the ideal rank of pt compared to each p0). In this calculation, a lower rank 
indicates a higher value of pt compared to each pQ, which is desirable.
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In general, there is a smaller RMSE between taged and ttar than between tage(1 

and t0ther - that is, et < ea and the computed rank is low. Within the limits of this 

study, this broadly implies that a face retains its identity in texture as aging proceeds. 

However, this conclusion must be taken in context with the fact that the low rank 

does not occur for all examples and is not consistent across all approaches. This is 

the result of implicit textural variations within the training set (such as non-uniform 

illumination and disparity of image resolution), which cannot be compensated for. 

Therefore, in a quantitative sense, it is unclear to what extent a face will successfully 

retain its identity in texture as it is age-progressed. Furthermore, although a larger 

correlation coefficient is observed between taged and ttar than between taged and 

tother for some individuals (pt > pG). this is not a consistent trend. This finding fur­

ther implies that additional tests are necessary (for example, perceptual tests, which 

will be discussed in section 5.1) to establish the consistency of subject appearance 

once an aging algorithm has been applied.

4.4 Age prediction —  Fisher Linear Discriminant

A related aspect to the work on age-progression is that of age prediction — that is, 

prediction of the age of a subject from the shape and/or texture space representation. 

A primary motivation is to use automatic face recognition (AFR) algorithms to 

determine the age of children and young adults. Although it is unlikely that absolute 

determination of age could be made using AFR. evidence to support the likely age 

range of a child might be useful as part of systems to limit the supply of age-related 

goods or services to entitled persons, or to refute a claimed age in the case of persons 

attempting to enter a country. Work related to this is that of age classification. 

Kanno et al. [104] used Neural Networks to perform classification of young male 

faces into one of four age groups, based upon their facial shape. Additionally, Ueki
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et al. [105] presented age-group classification of facial images under different lighting 

conditions using 2DPCA10 and Linear Discriminant Analysis (LDA).

In this section, the technique of the Fisher Linear Discriminant (FLD) for age 

prediction is examined and its use for this purpose compared with that of the previ­

ously derived consensus aging axis. Discriminant analysis differs from PCA in that 

the latter seeks directions that are efficient for representation whereas the former 

seeks directions that are efficient for discrimination [107]. That is, PCA finds the 

directions of maximum variance to represent a data set efficiently — however, these 

directions are not necessarily effective for discrimination and classification. The goal 

of classical discriminant analysis is to find a line onto which the data set may be 

projected, whose orientation is such that the projected samples are well separated 

into distinct classes. Consider a set of n d-dimensional samples {x i .. .  x „ }, where 

it is desirable to separate the samples into two distinct classes, uj\ and u)2 (the class 

labels), containing n\ and n2 samples respectively. If a matrix, X , containing the 

samples {x , . . .  x „ }  on its columns, is defined as:

X  =
X \\ * * * X n l

% ld  ’  * * %nd

then the dot product may be calculated between the matrix X  and a new vector

w:

y =  w TX  (4.7)

where the projected set of n samples {y x . . .  yn} is divided into the subsets Y\ 

and Y2, which correspond to the classes u>\ and u>2. Geometrically, if ||w|| =  1 ,

10Two-dimensional PCA is based on 2D image matrices rather than ID vectors [106].
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each yi is the projection of the corresponding X* onto a line of unit length in the 

direction of w. If the samples labelled u\ approximately comprise one cluster while 

those labelled comprise another, the aim of the analysis is to find the line w in 

such an orientation that the projections {?/*} are maximally separated. Figure 4.12 

depicts the results of projecting example 2D data samples onto the line w, drawn 

at two different orientations.

Figure 4.12: Classification of example 2D data. The same set of data points 
is projected onto two different lines in the directions marked w. The figure on the 
right shows greater separation between the red and black projected points (recreated 
from [107]).

To find the direction of w, a measure of the separation between the projected 

points is calculated. This is given by the difference between the sample means. If 

m, is the d-dimensional sample mean given by m, =  4- X, then the sample

mean for the projected points is given by:

-0.5
IHM » »—»♦ M  M—►

n>
— — 1  > t  •—  ►

w

(4.8)
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This is the projection of the sample mean, m,, onto w. It follows that the 

distance between the projected means is:

\rhi -  rh.21 =  |wT(mi -  m 2)| (4.9)

To obtain good separation of the projected data, the difference between the 

means needs to be large relative to the standard deviation for each class. Instead of 

forming sample variances, the sca tter  for the projected samples is used and is given 

by:

¿ i2 =  -  ™ i )2 (4.10)
y£Yi

The sum i i 2 +  s22 is called the total within-class sca tter of the projected samples. 

The F ish er L inear D iscrim inant thus employs that linear function w TX  for which 

the criterion function,

j, \ \mi 
J (w ) =  —

m 2\

Sl +  S2

is a maximum. It can be shown (see [107]) that this criterion function may be 

equivalently written as:

J(w) =
WTSBW

(4.11)w 7 Su'W

where S,b is termed the between-class sca tter m atrix and is given by SB =  (mi — 

m2)(m1 — m2)r . In addition. represents the within-class sca tter m atrix and 

is given by SM/ =  Si +  S2, where the scatter matrix for each class is given by 

s* = E xe^P t -  m*)(x  -  mi)T.

The vector w that maximises J(w) in equation (4.11) can be shown to be [107]:
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w =  S^1 (m! — m 2) (4.12)

Hence, w is obtained for Fisher’s linear discriminant — the linear function yield­

ing the maximum ratio of between-class to within-class scatter. This is the line of 

maximum separation between the two classes of data.

To demonstrate the use of FLD as a classifier, the PCA shape parameters cal­

culated from a male sample in Database 2 (section 3.1) were selected. Examples 

at the ages of one and twenty years were extracted (termed the “young” and “old” 

groups respectively) and the FLD line, w, calculated according to equation (4.12). 

The examples were then projected onto the line via equation (4.7). This process 

was duplicated for equivalent young and old female groups. Finally, the process was 

repeated using the PCA texture parameters11 of the same male and female subjects. 

Figure 4.13 depicts the projections of each set of parameters onto the calculated 

FLD line. For shape, the two groups are easily separated (a and b). Hence, ex­

amples may easily be classified as belonging to one of the two groups. Conversely, 

for texture, there is weaker differentiation between the two groups (c and d) and 

therefore classification on the basis of texture is more problematic. This is not un­

expected since facial changes between the ages of one and twenty years are more 

predominantly structural (shape-related) than textural, therefore discrimination lre- 

tween individuals at these ages is expected a priori to be more successful in shape 

than in texture. This difficulty in classification for texture is compounded by the 

unavoidable differences in the texture maps in terms of illumination, image quality 

and resolution despite efforts to standardise them by using the normalised grey-scale 

images.

11 where the texture parameters were calculated from a PCA of normalised grey-scale texture 
maps (see section 4.3.2).
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SHAPE

a)

■+----»-*-*--M----♦------------♦--------♦+■
Fisher Linear Discriminant line, w

b)

Ml

TEXTURE
d)

Figure 4.13: Projection of shape and texture model parameters onto the 
FLD line. This yields good separation for the shape case (a) male, b) female), 
where the young group is shown in blue and the old group in red. For the texture 
(c) male, d) female), the separation is poorer and the two groups cannot be easily 
classified.
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4 . 4 . 1  A g e  p r e d i c t i o n  u s i n g  c o n s e n s u s  a g i n g  a x i s  a n d  F L D

To examine the differences between the consensus aging axis and the FLD line, a 

revised consensus aging axis, V age, was first calculated via equation (3.13) using 

only the one and twenty year old examples. This axis and the FLD line may both 

be used to predict the age of a subject from its shape or texture parameters. This 

was achieved as follows. Firstly, the mean projection of the young age group in 

shape onto the revised consensus aging axis was calculated according to equation 

(4.13). This mean projection lies directly on the axis.

^  =  -  £  [B T v age V age (4.13)
¿=1

where n is the number of young examples and B v is the ith shape parameter 

vector in the young age group, that is, the ith column of the matrix:

&ii
B y _

1 1 q

h i

bnq

Similarly, the mean projection of the old age group onto the axis was calculated 

using:

He =  - £ [ B ° 'TŸim ' L age V age (4.14)
i= 1

where m is the number of old examples and B 0 is the matrix of shape parameter 

vectors for the old age group. To find the mean projection of the two groups onto the 

FLD line, w, equivalent equations to (4.13) and (4.14) were employed by substituting 

w for V age.

From these values, the mean projection onto each axis of every year of age

Catherine Mary Scandrett 138



CHAPTER 4. IMPLEMENTATION OF AGE-PROGRESSION ALGORITHMS

between one and twenty years was also computed12. The age of an out-of-sample 

example was then predicted by projecting onto the axis and determining the mean 

to which it lay closest geometrically. This was performed for all shape vectors using 

the aging axis and FLD line as independent age predictors. The mean predicted 

age was then calculated for each year of aging between one and twenty years (figure 

4.14) and the equivalent analysis performed for the texture models.

12Although the aging axis and FLD have both been calculated using only examples of one and 
twenty years, hypothetical means for each age in between may be calculated by using the projected 
means of the young and old age groups.
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Figure 4.14: Predicting age from the model parameters by employing the 
aging axis and the FLD line. The mean predicted age calculated using the aging 
axis (blue points) and the FLD line (red stars) is plotted against the actual age for 
the male and female shape parameters (a and 1>) and for the male and female texture 
parameters (c and d) respectively.
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The graphs in figure 4.14 show the following. Firstly, for the male and female 

shape model parameters (graphs a and b), the mean predicted age obtained using 

both the consensus aging axis and the FLD line is consistently higher than the 

actual age for the majority of examples. This may be due to the paucity of one 

and twenty year old examples used to construct the aging axis and the FLD line. If 

more examples were available for inclusion, the aging axis and FLD line would be 

more well-defined and this may therefore allow a higher degree of accuracy for age 

prediction. In addition, the fact that each example face has been pose and expression 

compensated prior to any attempt at age prediction may have introduced error into 

the shape parameter vector such that its age could not be accurately predicted.

For the male texture model parameters (graph c), there is no persistent trend 

to the age prediction using either the aging axis or the FLD line. However, for the 

female texture model parameters (graph d), the mean predicted ages are consistently 

higher than the actual ages for both approaches for the majority of examples. These 

observations imply that neither approach is particularly successful for the task of 

age prediction for male and female textures. Analogous to the results in shape, 

this may be due to a paucity of examples used to construct the aging axis and the 

FLD line. Additionally, the unconstrained nature of the texture maps in terms of 

illumination (despite compensation efforts), image quality and resolution may have 

compounded the inability of either approach to accurately perform age prediction.

To assess which approach was superior13, the frequency of the smallest errors in 

age prediction was recorded for each approach, for each of the mean predicted ages 

(1-20 years). The results are given in Table 4.1.

13It must be noted that, as discussed above, neither approach performed outstandingly.

Catherine Mary Scandrett 141



CHAPTER 4. IMPLEMENTATION OF AGE-PROGRESSION ALGORITHMS

Frequency o f  sm allest error
Fisher Linear Discriminant Consensus axis

Shape — male 11 9
Shape female 14 6
Texture male 3 17

Texture female 12 8

Table 4.1: The frequency of the smallest error in age prediction for each approach 
(FLD and consensus aging axis), out of a total of 20 age predictions (the rows sum 
to 20).

Calculated y 2 value Standard y 2 value
Shape male 0.25

Shape - female 3.25 5%: y 2 =  3.84
Texture male 9.85 1%: =  6 M

Texture - - female 0.85 0.1%: y 2 =  10.83

Table 4.2: Values of y 2 calculated under the assumption that the null hypothesis is 
true. These values are compared against standard y 2 values to determine whether 
it is possible to reject the null hypothesis.

To determine the statistical significance of these findings, a null hypothesis was 

postulated that the probability of accurate age prediction is equal for the two ap­

proaches. A standard chi-squared statistic was calculated14, where the expected 

variable, E, =  N/2 if the null hypothesis is true (N  =  20 since there are twenty 

mean predicted ages). The results of this analysis and standard y 2 results [79] at 

varying significance levels are given in Table 4.2.

From these values, the null hypothesis cannot be resolutely rejected at any of the 

given significance levels in the case of the male and female shape model parameters, 

since the calculated y2 values are less than the standard values. This indicates that 

age prediction is comparable using the FLD line and the aging axis. However, the

14See chapter 5, section 5.1 for a description of the chi-squared test and the associated equation, 
(5.1).
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largest error in prediction is smaller using the FLD line than using the aging axis 

(4.13 years compared to 4.6 years), indicating that the FLD line could be used in 

preference for age prediction.

The results from the shape calculations may be explained as follows. If the FLD 

line and the aging axis lie in a similar direction in the model space, the age prediction 

will give similar results for both approaches. This is expected for the shape since 

the two age groups (one and twenty years) are well separated in the model space, 

owing to the craniofacial changes that occur between one and twenty years of age. 

Hence, a priori, the FLD line and the aging axis were expected to produce similar 

results for age prediction.

However, for texture, since fewer changes occur between one and twenty years 

than in shape, the groups are not expected to be well separated and, therefore, the 

FLD line to compute optimal classification may be in a different direction to the 

aging axis. This means that different age prediction results would be expected using 

the different approaches. Age prediction using texture may be further compounded 

by inconsistencies in illumination and image quality. From Table 4.2, it is possi­

ble to reject the null hypothesis15 at the 0.01 significance level for the case of the 

male parameters. Therefore, it is possible to conclude that the probability of the 

null hypothesis being correct is 1% or less and that there is a significant difference 

between the observed and expected values in the chi-squared test. This indicates 

that age prediction is more accurate for the aging axis approach than for the FLD 

approach. However, for the female parameters, it is not possible to reject the null 

hypothesis at any significance level and, therefore, the approaches are comparable 

for age prediction.

15The null hypothesis can be rejected in favour of the alternative hypothesis that one approach 
is more accurate than the other for age prediction.
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4.5 Chapter Summary

In this chapter, the results of implementing the novel aging algorithms were pre­

sented and discussed. A restricted sample of images was first used to test the 

consensus approach and the basic validity of the method was confirmed. However, 

due to the insufficiency of this data for modelling aging in children and teenagers, 

a more comprehensive database of images was instead employed and the consensus, 

piecewise and historical/consensus approaches were applied. In general, satisfactory 

results were produced. The reasons for unsuccessful age-progressions and artefacts 

were also discussed.

To quantitatively assess the performance of the algorithms, a measure of the 

error between the age-progressed face and the target face was computed and an 

equivalent calculation subsequently performed using other faces at the target age 

(known to be of different identity). It was found that subjects were more similar in 

both shape and texture to the target face than to the alternative faces, indicating 

that identity is successfully retained upon application of the aging algorithms.

Finally, the Fisher Linear Discriminant was employed for the task of age predic­

tion and its performance compared against the use of the consensus aging axis. It 

was found that the FLD line and the consensus axis were statistically comparable as 

age predictors. However, the largest error in prediction was smaller using the FLD 

line, indicating that this approach could be preferentially used.

In the next chapter, human perceptual evaluations of the age-progression algo­

rithms are presented. To assess the suitability of the algorithms to replace or aug­

ment artistic age-progression methods, typical results are also compared to those 

produced by professional forensic artists.
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Chapter 5

Evaluation of Age-Progression 

Algorithms

In addition to the quantitative analysis of the age-progressed results presented in 

chapter 4. it is important to consider human perceptual measures as a means of as­

sessing their reliability and accuracy. Indeed, human perception must be considered 

the most important measure since the generated images would, in reality, be used 

in forensic scenarios by human beings. To this end, a series of perceptual tests is 

described, in which participants were required to estimate the age of a face and to 

then match the aged face to its target.

To demonstrate the value of pursuing novel approaches to age-progression, the 

results are contrasted, both visually and quantitatively, with images that have been 

age-progressed using artistic methods. Comparable results would indicate that the 

algorithms could be employed as a replacement for (or as a supplement to) forensic 

artistry. However, owing to the increase in speed of image production, a greater 

number of age-progressions could be performed for missing children (a primary mo­

tive of the work presented in this thesis).
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Finally, to demonstrate the applicability of the algorithms to real-world scenarios, 

a number of commissions were undertaken from the media and from forensic artists. 

The production of age-progressed results from supplied images is a good test of the 

approaches since the ultimate aim is to apply them to genuine forensic cases.

5.1 Perceptual Tests

A group of observers unfamiliar with the age-progressed subjects were asked to 

examine the age-progressed results and perform tasks, based on their perception of 

the images. This is essential since, in real-life applications, human beings will make 

the judgements on the age-progressed images. To this end. a series of perceptual 

tests was designed and uploaded to the internet. The tests remained on-line for 

a period of approximately four months and observers were repeatedly required to 

perform two basic tasks:

1. To estimate the age of a presented subject face to the nearest year.

2. To match the subject face to one of six presented target faces, based on the 

extent of perceived similarity.

Figures 5.1 and 5.2 depict examples of both elements of the test. A subject 

face, age-progressed using either the consensus, piecewise or historical/consensus 

approach, was presented and the observer required to estimate its age to the nearest 

year and type this into the box provided. The observer was then required to match 

the face to one of six presented in the face pool and again type their answer into 

the given box (a whole number between 1 and 6 , corresponding to the face, which 

they considered to be the closest perceptual match to the age-progressed face). One 

of these face pool examples was the true appearance of the subject at the target
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age (the target face) and the other five were foil faces. These foils were chosen at 

random from an appropriate sub-sample of the training set (Database 2). That is, 

from a sub-sample of the same sex and target age as the age-progressed subject. 

To ensure that the target face was not more distinctive than the foil faces, all 

faces were cast to grey-scale and normalised according to the procedure outlined in 

section 4.3.2. Presentation of the images in a consistent format aimed to prevent 

observer bias towards a particular face pool member based on textural similarities 

between the subject and face pool images. In addition, all faces were pose and 

expression compensated to frontal pose and neutral expression (using method 2 

outlined in section 3.2.2) to prevent any possible cues to identity being perceived 

through particular characteristic expressions.

In total, fourteen aged subjects were presented to each observer (a total of 376 

observers) -  however, analysis of all subjects was not required to ensure optimal 

concentration. The observers were required, however, to examine the same subject 

face aged according to the different approaches (consensus, piecewise and histori- 

cal/consensus respectively).
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A.

Estimate the age of this face:

Which of the faces below most 
closely matches this face in 
appearance? ---------

Figure 5.1: Perceptual tests of the aging algorithms. Example of a page pre­
sented to an observer as part of the on-line perceptual tests of the aging approaches.
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B.

Estimate the age of this face:

Which of the faces below most 
closely matches this face in 
appearance? ---------

4. 6.

Figure 5.2: Perceptual tests
page presented to an observer 
approaches.

of the aging algorithms. A further example of a 
as part of the on-line perceptual tests of the aging
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5 . 1 . 1  R e s u l t s  —  T a s k  1

In the first instance, the mean predicted age was plotted against the actual age. 

This was performed for each of the three aging approaches described in sections 3.6. 

3.7 and 3.8.2. The plots are given in figure 5.3.

Consensus Aging Piecewise Aging Historical/Consensus Aging

Actual age Actual age Actual age

a) b) c)

Figure 5.3: Graph of mean observer predicted age against actual age. The
observers predicted the age of each subject face and the mean predicted age was 
calculated. This was performed for subjects aged according to the consensus (a), 
piecewise (b) and historical/consensus (c) approaches respectively.

The mean predicted ages are observed to be systematically higher than the actual 

ages for all three techniques. However, there is a maximum error of no more than 

±5 years. In addition, the mean error in age prediction (Table 5.1) has a maximum 

value of 2.70 years (the piecewise approach).

To put these results into a meaningful context, it is important to consider the 

innate ability of the observers in estimating age from ordinary photographs. There 

have been many psychological studies performed to this effect [108, 109, 110, 11 lj 

as well as more recent studies in automatic verification of identity across age- 

progression [112]. The findings of the psychological studies must be considered 

when assessing and explaining the results of Task 1 (described previously) to pre­
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vent under- or over-estimation of their importance. For example, it has been shown 

that the accuracy of age estimation by humans is very low, approximately 30% [111]. 

Therefore, the results of Task 1 are unsurprising and may be due to innate human 

difficulties in judging age.

Conversely, other studies have shown age estimation to be very robust to image 

distortions [109]. Therefore, it is unlikely that the unconstrained quality of the age- 

progressed images had a negative effect on the ability of the observers to perform 

age estimation. This suggests other factors may have been responsible for the errors, 

in addition to the previously discussed natural human difficulties in assessing facial 

age. One particular factor could be that the ability to judge age has been shown 

to be dependent on the racial group of the observer and that of the subject face 

[108]. That is, observers are able to more accurately judge the ages of subjects in 

their own racial group than the ages of subjects in other racial groups. This finding 

may impact the results of Task 1 since the age-progressed subjects presented to the 

observers were all of White European origin. Since the test was presented in a web- 

based format, it is conceivable that not all of the observers were themselves members 

of this racial group and may therefore have been innately unable to perform accurate 

age estimation. This could have affected the mean predicted ages calculated from 

all observer data.

Finally, it has been demonstrated that training can improve age estimation ac­

curacy [110]. Since the observers described in this thesis were given no training, this 

may have affected their ability to accurately judge the ages of the age-progressed 

subjects.

To compare the age estimation of the observers across the three age-progression
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Approach p (years) ep
Consensus 1.42 1.81
Piecewise 2.70 3.11

Historical /  Consensus 2.57 2.95

Table 5.1: Calculation of the mean error in age prediction (/r) and the RMSE 
between the mean predicted age and the true age (ep) for each approach.

approaches, the RMSE (ep) was calculated between the mean predicted ages and the 

true ages for each approach (Table 5.1). The lowest value is observed for the con­

sensus approach, indicating that this methodology gives more age-accurate results 

than do the other approaches, in agreement with the quantitative tests (section 4.3). 

This is confirmed by observation of the smallest mean error in age prediction for the 

consensus approach. Furthermore, perception of age is more accurate for faces aged 

using the historical/consensus approach than for those aged in a piecewise fashion 

(concluded from the smaller p and ep values for the former compared to the latter). 

This is encouraging since it implies that the use of historical images provides more 

perceptually accurate results than employing a piecewise model constructed on a 

peer group sample alone.

5 . 1 . 2  R e s u l t s  —  T a s k  2

The results of the face pool identification are given in Table 5.2. The expected 

number of correct matches due to chance, E, is given for each subject as well as 

the observed number of correct matches, O. For the majority of subjects, E > O. 

However, for some subjects, notably Faces 2 and 13, E is comparable to O and this 

may indicate that the observers were only matching the subject face to the target 

with a probability comparable to chance. The significance of these results is assessed 

in a chi-squared test, described below. In addition, the results will be examined with 

respect to psychological studies on the recognition of unfamiliar faces.

Catherine Mary Scandrett 152



CHAPTER 5. EVALUATION OF AGE-PROGRESSION ALGORITHMS

Subject N um ber N E O
Consensus Piecewise Hist. /Cons.

1 2 11 35.17 86 75 -

2 196 32.67 59 44 40
3 180 30 84 107 42
4 186 31 170 167 160
5 196 32.67 133 97 -

6 212 35.33 1 1 1 121 -

7 210 35 89 71 37
8 213 35.5 160 155 -

9 216 36 140 132 147
10 223 37.17 182 186 -

11 228 38 126 123 134
12 232 38.67 126 75 -

13 223 37.17 57 51 41
14 224 37.33 185 155 -

Table 5.2: Observed number of correct matches (0 ) for each subject face in the 
face pool identification task for each of the three age-progression approaches. The 
number of observers for each subject is given by the column titled N. The expected 
number of correct matches due to chance (N/6 ) is given by the column titled E.
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To analyse the significance of the results from the image-matching task, a stan­

dard chi-squared statistic was calculated:

where k is the number of cases. For this task, k =  2 since the outcome for each 

observer is either a correct (i =  1 ) or an incorrect (i =  2 ) match of the aged face to 

its target1. The null hypothesis may then be stated as follows:

H0: The observed number of correct matches (Cfi) is no greater than the number 

expected to occur due to chance (the expected variable, £ j).

Hence, in equation (5.1), Ol is the observed variable — that is, the number of 

correct or incorrect matches for a subject, out of a total of N  observations. Finally, 

Ej is the expected variable — that is, the expected number of correct or incorrect 

matches. Since there are six potential targets for each aged face, E\ =  N/6 (correct 

matches) and E2 =  5N/6 (incorrect matches).

Therefore, if 0\ is significantly greater than £ j, the null hypothesis can be re­

jected. This significance is determined by comparing the calculated y 2 value with a 

standard value at the required significance level [79]. Table 5.3 displays the calcu­

lated y 2 values for each subject face in addition to the standard y 2 values for one 

degree of freedom at significance levels of 0.05, 0.01 and 0.001.

1 Since k = 2, the system has (k — 1) = 1 degree of freedom. Therefore, equation (5.1) contains 
the Yates correction for continuity in the subtraction of 0.5 from the (O i—E i) value. This correction 
factor prevents overestimation of statistical significance in the case where there is only one degree 
of freedom.

k
(5.1)
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Subject N um ber Calculated  y 2 values Standard  y 2 values
Consensus Piecewise Hist./Cons.

1 87.03 53.25 -
2 24.84 4.45 2.00
3 115.21 237.46 5.64
4 744.33 701.44 651.18
5 367.35 152.03 -

6 192.74 256.02 - 5%: x 2 =  3.84
7 98.75 43.62 0.1 1 %; x 2 =  6 64

8 521.15 480.03 - 0 .1 %: y 2 =  10.83
9 358.23 305.07 411.38

10 674.17 707.24 -

11 242.70 232.11 298.29
12 234.90 40.77 -

13 12.28 5.89 0.44
14 697.73 442.52 -

Table 5.3: Calculation of the y 2 value for each age-progressed subject face based 
on the numbers of expected and observed correct matches to the target face. In 
addition, the standard y 2 values are shown at significance levels of 0.05, 0.01 and 
0.001 respectively for one degree of freedom.
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Upon examination of the results in Table 5.3. the null hypothesis may be legiti­

mately rejected at the chosen significance level of 0.001 for the majority of subjects 

age-progressed according to the consensus and piecewise approaches. This implies 

that, for these methodologies, an individual will successfully retain its identity as it 

is age-progressed. In addition, the y 2 values are greater for the consensus approach 

than the piecewise approach, indicating once more the perceptual validity of the con­

sensus technique. For the liistorical/consensus approach, the null hypothesis cannot 

be resolutely rejected in general and hence a subject does not retain its identity as 

convincingly as in the other approaches.

These results, however, must be considered in light of findings in psychology re­

lating to the innate human ability to recognise unfamiliar faces, since the observers 

in the study were all unfamiliar with the age-progressed subjects and members of the 

face pool. If the psychological data is not taken into account and a baseline estab­

lished for the recognition of unfamiliar faces then it is possible that the significance 

of the results of Task 2. as previously described, might be misinterpreted. It has 

been shown that observers unfamiliar with target individuals perform very poorly 

in recognition experiments using poor quality video footage [113]. In this study, 

Burton et. al. found that a group of unfamiliar observers found it more difficult to 

distinguish between target faces they had encountered before in an experiment and 

those they had not, compared to the case for a group of familiar observers. This 

implies that human beings have an innate inability to recognise unfamiliar faces and 

this may help to explain the imperfect results of Task 2.

Other studies have shown that, while recognition rates are still poor, person 

identification can tolerate large discrepancies in image finality between the images 

to be matched [114], This implies that discrepancies between the image quality of
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the age-progressed subjects and those of the face pool in Task 2 should not have 

impeded the image matching procedure. Other studies of image quality in face 

recognition include those by Kemp et al. [115] and Pike et al. [116], who found 

that recognition rates of unfamiliar observers was still very low, even when using 

high quality images, such as those printed onto a credit card. Furthermore, results 

obtained by Bruce et al. [117] also emphasise the difficulties of unfamiliar face 

matching. In their study, observers were shown high quality video of unfamiliar 

target subjects and then asked to identify the same targets from an array of high 

quality photographs. The error rate was high, of the order of 25%. Hence, even 

if high quality imagery had been available for Task 2, the recognition rates of the 

correct target from the face pool may not have been improved.

Other psychological studies have shown similar results on face recognition. Roark 

et al. [118] found that familiarising subjects with high resolution images or videos of 

faces was sufficient to improve recognition from low resolution, whole-body images. 

This implies that familiarity with a target face is important for recognition.

Recent work by Megreya and Burton [119] showed that there are large individ­

ual differences on unfamiliar face matching, concluding that unfamiliar faces are 

processed for identity in a qualitatively different way than are familiar faces.

These studies all describe the base level for the recognition of unfamiliar faces 

as very low. Hence, it is unsurprising that errors in recognition occurred in the 

results of Task 2. Despite these errors, age-progressed images produced using the 

consensus and piecewise approaches were correctly matched to the target at a rate 

significantly above chance in the majority of cases, implying that the subject face has 

retained its identity throughout the age-progression. Errors in the target matching
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of faces age-progressed according to the historical/consensus approach could be due 

to innate human difficulties in face recognition. However, the errors could also be 

caused by inaccuracies in the age-progression due to a paucity of historical examples 

(see discussion of results in section 4.2.1).

5.2 Comparison with Forensic Artist results

The work presented in this thesis is intended to be complementary to (or a po­

tential replacement for) the artistic age-progression techniques currently used for 

missing persons investigations. As such, it is necessary to compare the results from 

the novel approaches with such artistically aged images. Images of missing chil­

dren were obtained from the National Center for Missing and Exploited Children 

(NCMEC) on-line database [89] and age-progressed using the consensus and piece- 

wise approaches. The results were then assessed, both visually and quantitatively, 

by comparison with the artistically produced progressions, which are also available 

from the database. Figure 5.4 depicts the results of the age-progression, with the 

artistic progressions shown alongside.
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Face 1

Face 2

14yrsold +4yrs

Face 4

Figure 5.4: Comparison with artistic age-progressions. The results from the 
consensus and piecewise approaches are compared to the resultant images from the 
forensic artistry technique. Column A) Original image, B) Subject aged according 
to the consensus approach, C) Subject aged according to the piecewise approach, 
D) Age-progressed image produced by a forensic artist.

14 yrs old +6 yrs +6yrs
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From examination of figure 5.4, it is clear that the consensus and piecewise 

techniques produce age-progressed images which are perceptually similar (in the 

opinion of this author) to those of the artistic approach. However, to determine 

the most appropriate method to use, the results from all approaches would ideally 

require comparison with the true face at the target age. Since the test images used 

were those from real missing persons enquiries, the target face is not available and 

therefore such comparisons may not be drawn.

Quantitatively, the RMSE (ea) was calculated (using an equivalent equation to 

(4.1)) between the shape vector of the age-progressed face ( d aged) and that of the 

artistically aged face ( d art). This was then compared to the RMSE (e0) calculated 

between d aged and alternative target faces, known to be of different identity ( d other). 

In general, ea < eQ for both rigorous techniques. This may be observed from figure 

5.5, in which the rank of ea in relation to each ea is plotted. The result implies 

that statistically rigorous age-progression produces results more similar in shape 

(and, arguably, in identity) to the artistically aged face than to other target faces of 

different identity. This in turn indicates that the aging procedures herein produce 

broadly similar results to the work of forensic artists although, encouragingly, the 

procedures are much less time-consuming and require no artistic skill.

The rationale behind the use of unfamiliar faces in the comparison of the rigorous 

and artistic approaches to age-progression is as follows. It was desirable to perform 

as realistic and as fair a study between the rigorous and artistic approaches as possi­

ble. Hence, genuine missing children were selected and the artistic age-progressions 

that had already been produced and published on-line were found. These were then 

used in a comparison test with the age-progressed results produced using the rig­

orous approaches to assess the degree of perceptual similarity between them and,
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hence, the potential to supplement the work of forensic artists with that of the work 

presented in this thesis. An improvement to this comparison approach could be 

to have a sample of observers assess the images to determine perceptual similarity, 

such that the sole reliance on the opinion of one individual (this author) could be 

avoided. A further improvement could be made using a familiar observer group. 

That is, performing an age-progression on a subject from some previous age up to 

the current age using the approaches outlined in this thesis and commissioning a 

forensic artist to produce an equivalent age-progression subjectively. A group of 

observers known to the subject (for example, family members) could then be asked 

to view the images and comment on their perceptual similarity to the subject’s cur­

rent, known appearance. This may allow a more meaningful comparison to be made 

between the rigorous and artistic methodologies.
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Rank of ea compared to each e o (shape comparison) for subjects age- 
progressed according to the consensus and piecewise approaches

Face Number

Figure 5.5: Graphical results of the rank of ea in relation to each eG. The
RMSE was calculated between d aged and d art (ea) and between d aged and d other 

(e0). The rank of ea in relation to each eQ is plotted for Faces 1 to 4, aged according 
to the consensus and piecewise approaches. The dashed line represents a rank equal 
to unity (the ideal rank of ea compared to each e0).

5 . 2 . 1  R e s u l t s  f r o m  D a t a b a s e  3  u s i n g  C o n s e n s u s  A p p r o a c h  

t o  A g i n g

To extend the rigorous aging approaches and to further test their flexibility, a sample 

of 250 black children’s faces was obtained from the NCMEC on-line database [89] 

(this sample was termed Database 3). Statistical shape and texture models were 

constructed using this sample as described in sections 2.3.1 and 2.3.3 and example 

subjects age-progressed by defining a consensus axis. Comparisons were then per­

formed between the results and available artistic progressions, in a similar way to 

those presented in section 5.2.
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Face 1

9 yrs old +7 yrs +7yrs

A B C

2 yrs old +6 yrs +6yrs

3 yrs old +11 yrs +11yrs 14 yrs old +3 yrs +3yrs

7 yrs old +11 yrs +11yrs 9 yrs old +4 yrs +4yrs

Face 4

Figure 5.6: Comparison with artistic age-progressions for Database 3. The
results obtained from consensus age-progression are compared to the resultant im­
ages from the forensic artistry technique. Column A) Original image, B) Subject 
aged according to the consensus approach, C) Age-progressed image produced by a 
forensic artist.
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The age-progression of both the male and female examples gives plausible results 

(figure 5.6). In addition, the results are perceptually comparable (in the opinion of 

this author) to those achieved using the forensic artistry techniques, once more im­

plying that the use of the consensus approach may be considered as a real alternative 

to the artistic approach. The results from the RMSE analysis also add credence to 

this since, in general, the RMSE value between d aged and d art (ea) is lower than 

between d aged and d other (eG). This may be concluded from figure 5.7.

Rank of e s compared to each eo (shape comparison) for subjects from 
Database 3 age-progressed according to the consensus approach

Figure 5.7: Graphical results of the rank of ea in relation to each eG for 
Database 3. The RMSE was calculated between d aged and d art (ea) and between 
daged and d other (e0). The rank of ea in relation to each ea is plotted for Faces 1 

to 8 , aged according to the consensus approach. The dashed line represents a rank 
equal to unity (the ideal rank of ea compared to each eQ).
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5.3 Chapter Summary

In this chapter, the results obtained from the age-progression algorithms were eval­

uated by implementation of perceptual tests, in which observers were required to 

match an age-progressed face to one of six targets. An hypothesis test revealed that 

the probability of matching the age-progressed subject to the correct target with the 

recorded success rate on the basis of chance was negligible. These findings imply a 

perceptual plausibility for the age-progressed results using these methodologies.

Since the work in this thesis is intended to supplement or replace forensic artistry, 

the results from the consensus and piecewise approaches were compared against 

artistic age-progressions. Subsequent qualitative and quantitative assessment showed 

similarities between the results, implying that the algorithms may reasonably be em­

ployed for forensic age-progressions, with equivalent results to artistry achieved more 

quickly.

In the next chapter, appropriate conclusions about this work are drawn and 

future work is discussed.
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Chapter 6

Summary & Conclusions

In this thesis, new methods have been introduced for the rigorous age-progression or 

regression of digital facial images. Principal component analysis provides the model 

space and the methods rely on identifying paths or trajectories within the space us­

ing rigorous statistical methods. Several models have been presented. The consensus 

and piecewise methods rely on average developmental trends to predict growth pat­

terns for the age-progression of missing children. In addition, the theoretical basis 

for an extension of these models to include person-specific factors, such as historical 

and familial correlations, has been outlined and implemented computationally. This 

statistical framework is quite general and can, in principle, be extended to include 

other influences such as lifestyle effects. Since plausible, near photo-quality results 

are obtained over short time-scales, the presented methods are proposed as a re­

placement for (or a supplement to) the currently used forensic artistry techniques, 

which are time-consuming to implement and subjective in nature. A summary and 

conclusions on the work presented in this thesis is given. Suggestions for future work 

are then suggested in the final section.

166



CHAPTER 6. SUMMARY & CONCLUSIONS

6.1 Summary

This thesis began by highlighting the need for a new approach to facial age-progression 

for the purpose of aging missing persons. The limitations of the currently used artis­

tic techniques were discussed in terms of the level of artistic skill required and the 

length of time typically needed for completion. The concept of a statistical learning 

model as a more rigorous methodology was briefly introduced to address these is­

sues such that age-progressed images could be produced quickly and accurately by 

a non-specialist. Since the proposed model is constructed upon the analysis of real 

facial images, it was expected a priori that the results would be more objective and 

reliable than the artistically produced equivalent.

In the first chapter, the artistic [2, 4, 6 , 29, 30] and anthropologically-based 

[5, 13, 32] approaches to age-progression were presented to give an overview of the 

techniques currently used in practice. Previous scientific approaches [9, 10, 11. 45, 

46] were then outlined and their limitations discussed. For example, no attempt has 

been made in existing work to rigorously model the tendency of an individual to 

resemble its close genetic relatives, which is considered an important influence for 

age-progression. In addition, the models are not robust to variations in pose and 

expression. Hence, a need was identified for a more comprehensive system.

Chapter 2 provides the necessary mathematical background to the new tech­

niques developed in this thesis. The techniques of PC A. geometric transformations 

(warping) and the construction of shape and texture models were discussed in depth 

and details of their computational implementation provided through an illustrative 

application.

In the first half of chapter 3, the necessary pre-processing steps for the aging
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algorithms were discussed, namely pose and expression normalisation techniques 

as well as compensation procedures for texture and illumination. In the second 

half of the chapter, the initial approach to age-progression, the consensus method, 

was presented and the aging axis derived. To theoretically improve the accuracy 

of such an approach, a piecewise technique was described, where the axes were 

constructed upon smaller, physiologically relevant age-ranges. Finally, a more so­

phisticated theoretical model was presented, incorporating parental influences and 

previous developmental trends in addition to consensus information.

Chapter 4 presents the results of the application of all three of the aging models 

expounded in chapter 3. Results were compared to the target images, both visually 

and through a quantitative assessment of their similarity in terms of the root mean 

square error. Finally, in chapter 5, psychological tests were employed to assess the 

perceptual validity of the results. The results were also compared against equivalent 

images produced by professional forensic artists.
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6.2 Conclusions

The conclusions that may be drawn from the work outlined in section 6.1 are as 

follows:

Firstly, the results from the aging algorithms were found to give broadly com­

parable results to those from forensic artistry after a visual and quantitative assess­

ment. Since these results may be achieved in a more time-efficient fashion and with 

a higher throughput, it is reasonable to consider the novel algorithms as techniques 

that may supplement the forensic artistry approach. Secondly, the techniques de­

scribed in this thesis are based upon the rigorous statistical analysis of real facial 

images as opposed to artistic interpretation. The results are therefore more objective 

in nature. However, the results are not always accurate or plausible, owing to the 

paucity of training examples used to construct the models and the unconstrained 

nature of the training images in terms of illumination, image quality and resolution. 

Thirdly, the algorithms provide more flexibility than the artistic approach, owing to 

the pose and expression estimation techniques incorporated into the models. It must 

be noted, however, that the compensation techniques outlined in this thesis do not 

always work well compared to artistic interpretation. Finally, artistic skill is only 

required to add cosmetic detail to the results produced by the algorithms, therefore 

a non-specialist may easily produce reasonably plausible, near photographic-quality 

age-progressed or regressed images.

A further conclusion that may be drawn from the results is that the age-progressed 

subject appears to successfully retain its identity as it is translated through the 

model space. This may be concluded from quantitative comparison of the aged face 

with its target and from the results of the perceptual tests since, in the majority of 

cases, the aged face was successfully matched to its correct target.
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Finally, from both the quantitative and qualitative assessments, the consensus 

approach was found to be the most reliable and accurate method for age-progression 

using the limited data available for this work. However, the piecewise and histor­

ical/consensus methodologies cannot be discounted since both may produce more 

reasonable results upon collection of a larger and more appropriate training set.

6.3 Future work

A number of directions for future work are suggested:

• Collection of a more extensive training set. High resolution images of indi­

viduals between 0 and 20 years of age would allow more accurate piecewise 

axes to be constructed. Such a training set should incorporate individuals of 

many races, together with high quality parental and sibling images, allowing 

the person-specific model to be implemented more fully.

• Collection of lifestyle and health information for individuals in the training 

set. This would allow these influences on aging to be modelled in the person- 

specific approach.

• Dedicated software development with a Graphical User Interface. This would 

allow systematic testing of the accuracy and efficacy of the novel algorithms for 

age-progression since many images could be produced rapidly for evaluation.

• Age-related changes in facial proportions are well-documented in anthropology 

[13]. By taking detailed measurements on the original facial images and on the 

corresponding results obtained from the aging algorithms, the extracted facial 

proportions could be compared against known effects. This could then be 

used to determine whether the modelled changes are consistent with physical 

growth and development.
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• More extensive perceptual testing. To attach greater statistical significance 

to the results from the perceptual tests, a greater number of observers would 

be required to participate. In addition, results from the age-progression of a 

different racial group should be presented to the observers in a set of analogous 

tests.

• Extension to three-dimensional models. This would allow the growth of fea­

tures to be more easily identifiable and may produce more accurately aged 

results from a perceptual perspective. In addition, the age-progressed face 

could be rotated, which might aid recognition.

• Adult aging. Employing a more detailed point model for the landmarking 

procedure may allow the shape of adult facial features to be more accurately 

modelled during age-progression. For example, incorporating features such as 

aging lines around the mouth and eyes into the point model [120] is expected 

to permit improved reliability in the aging of adult faces.

• Increased realism. To more accurately model the textural details captured by 

the high spatial frequencies (for example, wrinkles, blemishes), a measure of 

“complexion” might reasonably be added to the PCA model of texture. This 

might include a local measure of entropy (statistical measure of randomness) 

to indicate the inherent smoothness of the skin. This would allow features of 

the skin, which exhibit low spatial correlation between subjects, to be included 

in the model rather than added as an overlay (wrinkle-map), subsequent to 

the age-progression.

A time-efficient and rigorous age-progression system to potentially supersede the 

currently used artistic methodologies was the central motivation behind the work 

presented in this thesis. To address the issues highlighted in the literature, three 

approaches of increasing complexity and flexibility were presented. In particular, this
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thesis has contributed a person-specific approach, which statistically models previous 

appearance trends in addition to those of a peer group sample. The theoretical 

extension to include the tendency of an individual to resemble its parents or siblings 

is straightforward, as is the incorporation of lifestyle factors. Additionally, the 

algorithms provide greater flexibility than other approaches to age-progression, in 

terms of the pose and expression compensation techniques. Finally, the increase in 

speed afforded by the algorithms means that a greater number of age-progressed 

images could be produced than is currently practical, using artistic techniques. It is 

hoped that this may eventually greatly contribute to the search for missing persons.
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In order to determine how a system for age-progression may help in the search for 

missing children, it is vital to consider exactly what constitutes a missing child and 

the dynamics that exist in such a situation. A marketing study [3] was performed 

in order to assess the demand and requirements for an age-progression system with 

respect to missing children. The findings of the study are given herein.

For the purposes of considering missing children, a child is defined as an indi­

vidual who is less than 18 years of age. It is generally accepted that the number of 

children reported missing each year is much fewer than the number who go missing 

in actuality. Instead of considering numbers in absolute terms, it is necessary to 

make an assessment of how many children are considered to be long-term, missing. 

This term refers to children who have been missing for more than one year. A very 

long-term missing child is classed as one who has been missing for more than five 

years. These are the categories who would require or benefit from age-progression 

techniques, since it is reasonable to assume that their faces may have altered due 

to processes of growth and development during these time periods. From obtained 

NISMART-2 data1, it is estimated that the rate of recovery for missing children 

is greater than 99%, with long-term missing children representing less than 1% of

National Incidence Studies of Missing, Abducted, Runaway and Thrownaway Children October 
2002 reports, which are based on missing episodes in North America during 1999.
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cases. This represents approximately 111 children per one million children in the 

population.

Of these 111 children, it is estimated that approximately 80% are runaways or 

throwaways. It is assumed that in some of these cases, there will be no desire 

for reconciliation and in such circumstances there w'ould be no need of a forensic 

age-progression tool. However, it is estimated that in approximately 50% of cases, 

the parent is likely to seek reconciliation and hence age-progression may indeed aid 

them in their search. From these assumptions, it can be stated that about 55 children 

per million are considered long-term missing and sought for, with such cases likely 

to benefit from an age-progression tool. For validation, the NISMART-2 figures 

can be cross-referenced with two other sources. Figures from PACT (Parents and 

Abducted Children Together) in 2000-2001 estimate that there were 546 cases of 

trans-national child abduction. Since these cases are termed trans-national, it is 

reasonable to assume that they are long-term missing children cases. For a child 

population of approximately 22 million in the United Kingdom, these figures may 

be estimated to represent about. 25 cases per million. Additionally, the Canadian 

Case Summary of 2004 Missing Children Reports document reported 358 parental 

abductions. Canada has an estimated child population of 10 million, giving an 

estimate of long-term missing children at 36 cases per million. The results from 

these three independent sources are of the same order of magnitude. Given that less 

than 1 % of missing children are classified as long-term missing, this lends credence 

to the accuracy of the estimates.

The key weakness of the analysis of long-term missing children cases is that there 

are no available data on the recovery rates of these children beyond one year. It 

is estimated that of the approximately 55 children per million who are long-term
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missing and sought for, about 50% of these will become very long-term missing. 

This gives roughly 30 very long-term and sought-for missing children per million 

who would benefit from an age-progression tool.
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Age-progression has been used in commercial applications in the media and has 

recently been employed in advertising, most notably by insurance company Norwich 

Union as depicted in Figure B.l.

Figure B.l: Commercial use of age-progression in advertising. The first 
image (far left) is of the subject to be aged and the fourth image (far right) is 
that of her mother. The middle images are an age-progressed version of the subject 
and an age-regressed version of the mother (Norwich Union advert, courtesy of 
http: /  /  news.bbc.co.uk/1 /hi /  magazine/4360482.stm).

The first image (far left) is of the subject to be aged and the fourth image (far 

right) is that of her mother. The middle images are an age-progressed version of the 

subject and an age-regressed version of the mother1.

1 Although Norwich Union failed to disclose the exact nature of the aging technique used, the 
author speculates that appropriate adjustments were made to the shape and texture of the facial 
images to produce intermediate incarnations of both subjects.
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The BBC have also used age-progression in their programmes, principally in 

their broadcast entitled “Honey, we’re killing the kids” from 2005/6 [121]. Figure 

B.2 shows examples of such facial age-progressions. To achieve the results, knowl­

edge of craniofacial development and growth statistics for an appropriate population 

are used. Lifestyle choices are incorporated by adjusting the components of the face 

to reflect known, long-term physiological effects of habits such as smoking and un­

healthy eating.

a) b)

Figure B.2: The use of age-progression for education in the me­
dia. Age-progression may be used to demonstrate the effects of an unhealthy 
lifestyle for future appearance — a) Original subject, b) Subject age-progressed 
in accordance with current unhealthy lifestyle habits. Images courtesy of 
http://www.bbc.co.uk/bbcthree/tv/killing_the_kids/pilot.shtrnl.
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Appendix C

In order to perform pose and expression compensation using Method 2, the following 

subjective scale relating to semantic descriptions of pose and expression was used 

by an observer to score the faces in a training set.

Attribute 1 —  Head shaking:

• +2 — Head rotated fully to the left, partial occlusions of some features possible 

(approximately +30° rotation)

• +1 — Head rotated slightly to the left (between approximately +10 and +20° 

rotation)

• 0 Head in approximately frontal view (approximately 0° rotation)

• -1 — Head rotated slightly to the right (between approximately -10 and -20° 

rotation)

• -2 Head rotated fully to the right, partial occlusions of some features pos­

sible (approximately -30° rotation)

Attribute 2 —  Head nodding:
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• +2 Head pointed fully downwards (approximately +30° pitch)

• +1 Head pointed slightly downwards (between approximately +10° and 

+ 20° pitch)

• 0 Head in approximately frontal view (approximately 0° pitch)

• -1 — Head pointed slightly upwards (between approximately -10° and -20° 

pitch)

• -2 — Head pointed fully upwards (approximately -30° pitch)

Attribute 3 —  Face smiling:

• +2 -  Very broad smile with an open mouth, both rows of teeth visible

• +1 — Broad smile, upper row of teeth visible

• 0 Smile with closed mouth, no teeth visible

• -1 — Neutral expression

• -2 — Mouth down-turned

APPENDIX C. DISCRETE SCORING SCALE FOR METHOD 2 POSE
COMPENSATION
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The landmarking tool is based upon a least squares polynomial fitting procedure, 

where one or more polynomial line segment (s) was used to describe the shape of 

each facial feature. The shape of each polynomial line segment was determined via 

a set of control points, { x ,y } ,  with the purpose of finding the n degree polynomial 

in x  that best fits y in a least squares sense. This provides a smooth curve, y(x), 

that can be manipulated manually by the user to follow the contour of a given 

feature. The least squares problem may be written in terms of the Vandermonde 

matrix, V  - an [(n +  1 ) x (n +  1 )] matrix where the j th column vector is the vector 

[aq-7-1, x2J_1, ■ • • , x J ~ l}T for j  =  1 • • • n +  1 :

Vp — y — y (D.i)

or, in matrix form:

1  X \  X \ 2  ■ rr  n
• X \ Pi V \

1  X 2  x22 ■
ry, U  

# ^ 2 P2 V 2

1 xn xn2 ■ . r  7 1  
, L n

. Pn+1 . U n + 1

The elements of V  are powers of x 1 and the coefficients that constitute p may
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be determined by least squares methods. Vector y contains the ^-coordinates of the 

control points. The order of each polynomial curve was set according to the nature 

of each feature — for example, some features exhibit more curvature than others 

and are therefore more accurately represented by a higher-order polynomial curve. 

The two end points of each line segment are classified as anatomical landmarks 

because they were positioned at salient points on the feature boundary (e.g. at each 

corner of the eye). Pseudo landmarks for each feature were obtained by sampling 

the coordinates of equidistant points along the interpolated curve. The number of 

these interpolated landmarks (between the control points and along the polynomial 

curves) was determined by the length of the curve section and its shape. Control 

points may be positioned by using the left mouse button to ‘click and drag’ such 

that the curve follows the contour of a particular feature. In addition, the zoom 

function may be used to examine a chosen feature in greater detail, such that the 

landmarks may be placed in the most accurate positions possible. The following 

describes the landmarking procedure in greater depth for completeness and depicts 

the graphical user interface designed to guide a user through the semi-automatic 

landmarking procedure:

1. Upon activating the load file push button, the user selects an image file from 

a listbox. This then appears in the work area located on the right hand side 

of the interface.

2. Firstly, the user is required to locate three landmarks; at the outer corner of 

the left eye1, at the outer corner of the right eye and at the base of the nose. 

After the third point has been located, the remaining landmarks are automat­

ically placed in their approximate positions. This is achieved by computing 

the transformation required to map the three landmarks, contained in the pre-

Mhe convention used here is that left refers to the left hand side of the displayed face from the 
perspective of the user, i.e. not the subject’s left eye.
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viously determined mean face shape, to the initial three landmarks located by 

the user. The computed transformation is then applied to mean face shape as 

a whole, providing an affine transform that defines the preliminary positions 

of all the points in the face shape.

3. The landmark points control a set of spline curves (also plotted) that delineate 

the perimeter of the internal facial features and the head itself.

4. Landmarks can subsequently be moved from their approximate positions to 

their correct locations using a ‘click and drag’ technique, whereby the user 

selects a landmark point via the left mouse button and drags it to its correct 

position, holding the left button down during the procedure. When the left 

mouse button is released, the spline curve(s) associated with the translated 

point is redrawn, updating the face shape in response to the user’s action (see 

figure D .l). Selected or active landmarks and their associated spline curves 

are plotted as red graphics objects, whereas the inactive landmarks and spline 

curves are plotted in blue. When a spline curve becomes active, its description, 

e.g. chin, appears in a frame on the left hand side of the interface. This is 

particularly helpful when adjusting landmarks around the mouth, where there 

are many spline curves that could otherwise become confused. Landmarks 

that define the end of one spline curve and the beginning of another connected 

curve are referred to as base landmarks and are plotted as magenta circles, 

distinguishing them from the ordinary landmarks plotted in either red or blue.

5. For landmarking purposes the images are displayed at full resolution (2048 x 

3072 pixels, 300dpi). Regions of the face can be enlarged using the zoom 

mode push button located under the image. When the zoom mode is set to 

on, placing the mouse cursor over a region of interest in the face image and 

clicking the left mouse button will enlarge that area, making it easier to place
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landmarks/spline curves accurately. Selecting the zoom mode button again 

allows the user to exit zoom mode and return to the standard landmarking 

mode.

6 . Once the user is satisfied that all the spline curves are correctly located, the 

face shape can be saved using the save file pushbutton on the left hand side of 

the interface. Depressing the save file button starts an interpolation process 

whereby pseudo-landmarks are generated that lie at equidistant positions along 

a spline curve. Spacing of the pseudo-landmarks for each curve section is 

predetermined on an empirical basis according to the likely curvature of the 

section. For instance, the perimeter of the mouth exhibits a higher degree 

of curvature than the boundary of the head, hence the densities of pseudo- 

landmarks in curve sections delineating the mouth are relatively high. Pseudo­

landmarks are saved to a MATLAB ‘ .mat’ file, as are the original landmarks, 

which are required if the saved shape is to be reloaded for modification in the 

future.

Figure D.l depicts the graphical user interface designed to guide a user through 

this semi-automatic landmarking procedure.
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Template image 
showing correct position 
o f  landmarks Step 1

Instruction box to guide 
user through landmarking 
process

Loads file to be landmarked

Saves landmarks to file T
Zoom  to enlarge specific features

Least-squares polynomial 
fitting procedure 
estimates curves to 
represent facial features

Step 2

Blue objects represent 
in a c t iv e  control points and 
curve sections

Red objects display 
a c t iv e  control points 
and curve sections

Magenta markers indicate base 
landmarks associated with one or 
more curve sections

'Click and drag1 procedure to move 
points corresponding to positions o f  
features

Figure D.l: The use of the Graphical User Interface for facial shape delin­
eation. The GUI is designed to guide a user through the steps of the semi-automatic 
landmarking procedure for a face. Step 1 indicates the initial estimate for the posi­
tions of the curve sections using the least-squares fitting procedure. Step 2 displays 
the results once the ‘click and drag’ procedure has been initiated to move the points 
to produce correspondence with the facial features. The example face is deliberately 
shown at low contrast to enhance the appearance of the landmarks.
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Database 2 comprises a training set of faces between the ages of 0 and 20 years, con­

sistent with the accepted biological tirnespan of childhood and adolescence (section 

1.4). Many images comprise faces which are partially occluded, specifically by the 

subject’s hair. In particular, the forehead and ears are most commonly occluded. 

Since any landmarks used to delineate these regions must be considered unreliable, 

a new point model was employed (figure E .l), in which the forehead and ears were 

excluded. This ensured that only reliably placed landmarks were included in the 

shape model. This point model was also used for Database 3.
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Figure E.l: New point model for use with Databases 2 and 3. The occluded 
features of the forehead and ears are excluded such that only those features capable 
of yielding reliable landmarks are included in the shape model.
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The term “race” is usually defined as in [5] — “one of the major zoological subdi­

visions of mankind, regarded as having a common origin and exhibiting a relatively 

constant set of physical traits, such as pigmentation, hair form, and facial and bodily 

proportions.” When considering race from this biological perspective as opposed to 

a cultural one, there are three traditionally accepted major racial groups Cauca­

soid (European-derived), Negroid (African-derived) and Mongoloid (Asian-derived). 

These three groups exhibit unique facial characteristics and, as such, growth and 

development with time may proceed differently for the individuals contained therein. 

Figure F.l [5] depicts the lateral view of a skull for each of the three racial groups 

to demonstrate the facial differences between them.

Figure F.l: The unique structure of the skulls of different racial groups.
The skulls of the Caucasoid, Negroid and Mongoloid races are shown — a) Caucasoid 
(European-derived) skull, b) Negroid (African-derived) skull, c) Mongoloid (Asian- 
derived) skull. Images courtesy of [5].
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From figure F.l, individuals of the Caucasoid race tend to exhibit a flat face with 

longer and narrower nasal openings than those of the Negroids and Mongoloids. In 

addition, the skin is usually light in colour. The Negroid skull typically exhibits a 

pronounced projection of the lower face with wider and shorter nasal openings than 

the Caucasoids and Mongoloids. The bridge of the nose is also broader and flatter 

and the mouth broader with fuller lips. The eyes of Negroid individuals tend to be 

wider set than those of the other groups. The skin colour varies on a continuum 

from light to dark brown. In the Mongoloid skull, the face appears flat with a short 

cranial vault or distance from front to back. The width of the mouth and nasal 

openings are typically between those of the equivalent features in the Caucasoids 

and Negroids.
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The longer-term objective of the work presented in this thesis is to produce a semi­

automatic, integrated system for facial aging, presented in a Graphical User Interface 

(GUI) format. This would allow a user (from the Police or missing persons’ bureaux) 

to achieve a rigorously age-progressed image for use in investigations. As such, no 

artistic or specialised computer skills would be required to quickly and effortlessly 

produce an age-progressed face1. Figure G.l shows a flow diagram indicating the 

functionality of such a GUI for age-progression and regression.

xSee Appendix B for a discussion of other potential uses for the proposed GUI.
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Type of additional images supplied:

1 biological O  1 biological ) 2 biological 1 older full J  2 older full
parent of same parent of parents sibling of same siblings of same
gender different gender gender gender

1 older full 
sibling of 
different 
gender

2 older full 
siblings of 
different 
gender

C 2 older lull History images. Ages:
siblings, one 
of each gender

"Thank you for supplying the information -  we are

Add glasses, change 
hairstyle if desired

“ Aging the face, please wait...

Aged image warped into original image & displayed next to original image i

Print final, aged image

Some influence 
removed &  face 
aged again eg. 
Male face with 
female sibling -  
remove sibling 
influence due to 
gender disparity 
possibly causing 
unrealistic aging

Figure G.l: Flow diagram depicting the functionality of the proposed GUI.
Such a system would allow a user to age a face in a rigorous manner quickly and 
effortlessly. The ethnic groups and images of particular relatives are for illustrative 
purposes only and may be changed or supplemented as required.
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The functionality of the GUI may be outlined as follows:

1. The subject image is scanned into the system. Once the scan is complete, 

two buttons appear: “Scan another?” and “Scans complete” . If there are 

available history images, parental and older sibling images to scan, the user 

clicks the former button until all scans are completed. Once “Scans complete” 

is depressed, the user is asked to select, via a set of radio buttons, whether the 

subject image to be aged is grey-scale or RGB2.

2. Next, the user is asked to select the racial group of the subject to be aged using 

radio buttons (as many racial groups as possible in different training sets for 

example, White Caucasian, Black African, Black Caribbean, Indian. Chinese). 

There should also be the option to depress more than one radio button for 

individuals of mixed race. Once racial selection has been made, the user is 

asked to select the gender of the subject to be aged, again from radio buttons. 

Once this is completed, the user is asked to type the current age of the subject 

(to the nearest whole year) into a box.

3. The user is then asked to indicate the type of additional images supplied -  

for instance, parental, sibling and historical images. If historical images are 

selected, the user is then asked to type the ages of the images, to the nearest 

whole year, into a series of boxes. All of the information supplied by the user 

(from steps 1 to 3 inclusively) is saved for future use in the program.

4. The subject face then appears on the screen with instructions on how to ap­

ply the landmarks to delineate facial shape (a condensed version of the steps 

outlined in Appendix D). The user then landmarks the face, following these in­

structions. There is a button for a “Start again” option if the user is unsatisfied

2If the subject image is grey-scale, the parental/sibling/history images must also be grey-scale. 
An equivalent statement may be made for an RGB subject image, such that the type of the image 
is consistent across all images.
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with the results. Once the user has completed the landmarking successfully, 

the “OK” button may be depressed.

5. Once “OK” is clicked on the previous step, a wait-bar comes up displaying: 

“Processing and saving information, please wait...” . The landmark coordinates 

are placed into a data vector and the file is saved. The data vector is also 

aligned to the mean of the training data (the appropriate training data used 

depending upon which racial group was selected in step 2. Both genders are 

included in the training set for the shape model3). The face is then warped 

to the mean shape and the texture vector extracted. All information is saved 

without the necessity for the user to be aware of the procedures taking place.

6 . The next step involves pose and expression compensation of the shape vector. 

The subject face appears again and the user is instructed to use sliders to 

alter the face until it appears at frontal pose and neutral expression with the 

mouth closed and no teeth visible. There are sliders to control head rotation, 

nodding, tilting and smiling. Each time the slider is moved and a new shape 

is produced, the texture of the face is warped to the new shape. The sliders 

are greyed-out so it is only possible to use one at a time and view the effects 

on the face gradually. At each stage (each time the user moves to a different 

slider), the shape vector is saved.

There is also a slider to make the teeth invisible if they are visible once the 

smile has been normalised4 Once the user is satisfied with the results, the

3The exception to this may be in the case whereby a person of mixed racial heritage is presented 
to the system — to minimise complications, it may prove useful to separate the genders for the 
shape model as well as for the texture.

4Each time the slider is moved, the mouth is incorporated back into the face and the whole 
texture map including the new mouth is warped to the latest saved shape produced by the other 
sliders. Hence, the whole face and the effect of the slider is visible to the user.
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“OK" button may be depressed. Alternatively, the “Start again” button may 

be clicked to start the pose and expression compensation procedure once more. 

Once “OK" is clicked, the user is asked whether the face requires any further 

improvement. If “N” is clicked, the texture is extracted and saved. If “Y ” 

is depressed, the texture map is normalised (via the reflection technique of 

section 3.3) and then extracted and saved.

7. The new pose/expression compensated face appears on the screen and the user 

is asked to type the required amount of aging into a box. The button named 

“Age the face” may then be depressed and a wait-bar appears, displaying the 

phrase “Aging the face, please wait...” .

The program then uses all of the saved information (type of image, racial 

group, gender, current age of subject, presence of parental, sibling and/or 

history images) in order to age the face in shape and texture. The aged texture 

is then warped to the aged shape. For example, if the user had indicated that 

the subject was a five year old white male to be aged by five years and that 

also present was an image of his father, older sister and history images at ages 

1, 3 and 4, the program would do the following. Firstly, the white training set 

would be selected (containing both male and female faces) for the Procrustes 

alignment phase and the pose/expression compensation phase. For the aging, 

the male sub-space of the white training set would be used and the history 

images used to form the historical axis, with this then used to predict the 

appearance of the subject at the target age of ten years. The consensus axis 

is formed by considering all male subjects in the current age group and target 

age group. The parental axis is formed between subject child and parent 

with a child-to-parent distribution formed using the training set. A similar
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sibling axis is formed between the child and his sister. Again, a child-to- 

sibling distribution may be formed by considering the males in the current age 

group who have sisters available for use0. The maximum likelihood analysis is 

then performed and the subject aged according to all influences appropriately.

If a mixed race person was presented for aging, it would be necessary to have 

two consensus axes, one for each racial group. For example, if a person of 

mixed white/black race was presented, a consensus axis would be formed from 

the current and target age groups for the white faces and a similar consensus 

axis for the black faces. Along with the other influences, the face would then 

be aged according to these racial consensus axes. In this situation, it would 

be beneficial to have images of both parents.

8 . The aged result is then displayed on screen (warped into the original image, 

as described in section 4.1) adjacent to the original image. If the user is 

satisfied with the aged appearance, the “Y ” button is depressed and there 

would then be the option of adding a different hairstyle (difficult with the 

current training set, Database 2) and/or glasses if necessary (cosmetic details). 

If “N” is depressed, aging could proceed again, this time in a slightly different 

manner. For instance, if the subject is male and the available parental image 

is male but the sibling is female, the subject could be aged again excluding 

the sibling influence (if there is a gender discrepancy such as this, this should 

perhaps be the first influence to be removed for the aging to proceed once 

more). Once the user is satisfied with the outcome, cosmetic details such as 

hairstyle and glasses could be added to complete the age-progressed image.

5This description of using the algorithm for aging assumes very extensive training sets with 
parents and siblings of the subjects in the training set available for usage.
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For any semi-automatic age-progression system to be considered viable, it must 

demonstrate the ability to age a face reliably for real-world applications. A commis­

sion was made by the BBC to produce extreme age-progressed images of particular 

celebrities for use in a television programme. The images provided were added to 

Database 1 and the models recalculated and employed to perform age-progression 

on the subjects using the consensus approach. Figure H.l depicts the results of 

aging the faces of Richard Hammond (Face 1 ) and Charlotte Church (Face 2) by 

large increments.
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Figure H.l: Age-progression for use in the media. The consensus approach was 
used to perform sequential age-progression on example celebrity faces, provided by 
the BBC, for use in a television programme. The original age of Richard Hammond 
(Face 1 ) is approximately 35 years and the original age of Charlotte Church (Face 
2) is approximately 18 years.
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From observation of figure H.l, it is clear that the faces have aged yet still retain 

the subject’s unique identity. However, owing to effects outlined in section 3.5 (such 

as the smoothing of wrinkles and other high-frequency detail in the texture), the 

appearance of the age-progressed faces does not appear consistent with the degree 

of aging applied. Hence, in these cases, the addition of a wrinkle-map is necessary 

subsequent to the age-progression. Figure H.2 depicts the effect of this procedure 

for subject faces aged by fifty years. From this, it is clear that wrinkle-map addition 

causes the face to appear older and more consistent in appearance with the specified 

amount of aging* 1. However, the presence of artefacts in the age-progressed image of 

Face 2 is notable and may be explained as follows. Firstly, in the original image, the 

hair is partially occluding the forehead, right eye and eyebrow. Since these textural 

aberrations are not well-modelled by the rest of the training set, age-progression of 

the texture map produces artefacts in these facial regions. Additionally, the target 

ages for the progressions were 85 years for Face 1 and 68 years for Face 2. Since 

these ages extend beyond the range of the training set, extrapolation beyond the 

data may also have produced artefacts.

1The effect is less pronounced for Face 1 than for Face 2. This is because the original Face
1 image already contained high-frequency detail, which may have reduced the visual effect of the 
wrinkle-map.
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a) b)

Figure H.2: Consensus age-progression with wrinkle-map addition. Age- 
progression using the consensus model alone produces results which appear younger 
than the target age due to the smoothing of wrinkles and other high-frequency detail 
in the texture. The addition of a wrinkle-map produces more age-accurate results 

- a) Original image, b) Result of fifty years of aging using the consensus model 
with wrinkle-map addition.

As a further example of a real-world application, Beyond International Ltd. pro­

duction company [122 ] requested an age-progressed image of the presenter for their 

television programme, "Beyond Tomorrow” . The consensus aging algorithm (trained 

on Database 1) was applied and the resultant image combined with a wrinkle-map. 

Figure H.3 [101] depicts the results of this procedure. Some artistic manipulation 

of the hair (the addition of grey streaks) has been applied.
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f

Figure H.3: Age-progression with and without wrinkle-map addition for a 
real-world application in the media — a) Original image of Hayden Turner, 
presenter for “Beyond Tomorrow” television programme for Beyond International 
Limited, b) Result of age-progression using the consensus model, c) Result of age- 
progression using the consensus model with wrinkle-map addition.

H . 0 . 1  F o r e n s i c  a r t i s t  c o m m i s s i o n

The ideas and some of the work presented in this thesis have been discussed with 

forensic artist Cathy Charsley of the Metropolitan Police. Subsequently, a request 

was made for an age-progression using the novel techniques for comparison with 

her own artistically produced image. Two attempts were made. In the first, the 

consensus axis (V age) only was initially employed to age the face. Since an image 

of the subject’s brother was provided, a second attempt was made, in which the 

following equation was employed:

where as is the appropriate scalar multiple for the required degree of aging in

b b T  ( I c Oic \ age T  0 , a aV .s (H.l)

the direction of the sibling axis, V s. This may be calculated using:
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V s =  bs -  b (H.2)

where bs is the vector of shape model parameters for the sibling and b is the 

equivalent vector for the subject. The coefficients f3c and 0S were used to weight 

the influence of the consensus and sibling axes appropriately and, in the absence of 

sufficient pairs of blood relatives in the training sample, their values were determined 

through subjective experimentation. Appropriate values were found to be: 0C =  1 

and 0a =  0 .2 .

Figure H.4 depicts the results of the age-progression using both approaches2. 

From inspection, the use of the empirical consensus/sibling approach produces more 

perceptually accurate results than does the consensus approach alone. That is, the 

consensus/sibling result appears closer in appearance to a “typical” member of the 

target age group than does the consensus result. Indeed, the consensus result ap­

pears perceptually younger than the target age. There may be several reasons for 

this, as follows:

1 . The consensus axis is formed by effectively weighting the model parameter 

vectors of the training set by their respective ages, according to equation (3.13). 

However, since some training examples may appear older or younger than 

their true age, these discrepancies may cause an age-progressed subject to 

be perceived similarly. Therefore, it may be more appropriate to weight the 

parameter vectors by their perceived ages.

2. The prototype for each age may not be sufficiently well-defined for accurate 

age-progression to proceed due to training images which are unconstrained in

2The artistic age-progression could not be displayed due to denied permission by artist Cathy 
Charsley on the basis of privacy for the missing child’s family.
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quality and resolution. If the training set contained a larger number of high 

resolution images with limited artefacts, more accurate prototypes could be 

calculated and a more well-defined aging axis computed. This would lead to 

the production of more accurate progressions.

3. The incorporation of the aged face into the original image may cause it to be 

perceived as younger than the target age. This is because the image contains 

the original ears, hair and clothing, which are important external cues to age. 

Incorporation into an alternative image (for example, the sibling image) could 

therefore permit more accurate age-perception of the face. This is the case in 

figure H.4, where image g appears older than image e.

These observations about perceived age reinforce the notion that familial influ­

ences must be modelled, where possible, for a more realistic age-progressed result 

to be achieved.
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d) e) f) g)

Figure H.4: Age-progression of a missing subject using the consensus ap­
proach and an empirical consensus/sibling approach a) Original 2 year 
old subject, b) Row 1 — age-progression by 10 years using consensus approach, Row 
2 — age-progression using consensus/sibling approach, c) Row 1 — original subject, 
Row 2 — 9 year old sibling, d) Equivalent to b with original hair, ears and clothing, 
e) Equivalent to d with join line blended artistically, f) Equivalent to d with sibling 
hair, ears and clothing, g) Equivalent to f with join line blended artistically.
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