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Abstract

Abstract

Biometric systems are automatic means for imitating the human brain’s ability of 

identifying and verifying other humans by their behavioural and physiological 

characteristics. A system, which uses more than one biometric modality at the same time, 

is known as a multimodal system. Multimodal biometric systems consolidate the evidence 

presented by multiple biometric sources and typically provide better recognition 

performance compared to systems based on a single biometric modality.

This thesis addresses some issues related to the implementation of multimodal biometric 

identity verification systems. The thesis assesses the feasibility of using commercial off- 

the-shelf products to construct deployable multimodal biometric system. It also identifies 

multimodal biometric fusion as a challenging optimisation problem when one considers the 

presence of several configurations and settings, in particular the verification thresholds 

adopted by each biometric device and the decision fusion algorithm implemented for a 

particular configuration. The thesis proposes a novel approach for the optimisation of 

multimodal biometric systems based on the use of genetic algorithms for solving some of 

the problems associated with the different settings. The proposed optimisation method also 

addresses some of the problems associated with score normalization. In addition, the thesis 

presents an analysis of the performance of different fusion rules when characterising the 

system users as sheep, goats, lambs and wolves.

The results presented indicate that the proposed optimisation method can be used to solve 
the problems associated with threshold settings. This clearly demonstrates a valuable 

potential strategy that can be used to set a priori thresholds of the different biometric 

devices before using them. The proposed optimisation architecture addressed the problem 

of score normalisation, which makes it an effective “plug-and-play” design philosophy to 

system implementation. The results also indicate that the optimisation approach can be 

used for effectively determining the weight settings, which is used in many applications for 

varying the relative importance of the different performance parameters.
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Chapter 1

Introduction

1.1 Abstract

This chapter starts by giving a brief overview of the history of biometrics, followed 

by a section, which defines biometrics. This is then followed by a section, which 

introduces a range of personal identification methods then a discussion of the 

general structure of a biometric system and its errors. A brief overview of the 

different biometric technologies is then provided, summarizing the advantages and 

disadvantages of each. The reasons choosing multimodal biometrics systems are 

also presented. Finally, the purpose of the research and the outline of the thesis are 

presented.

1.2 History of Biometrics

Biometrics in its general term is derived from the Greek words bios (life) and 

metrikos (to measure). It is also defined as the statistical measurement and analysis 

of biological observations and phenomena. In the context of system authentication 

the term biometrics means using the body as a “password”.



Chapter 1 Introduction

Biometrics is becoming an interesting topic in computer and network security. 

However, the ideas of biometrics have been around for many years. One of the first 

known cases of humans using biometrics to identify one another was by early 

Chinese merchants [Moenssens71]. Joao de Barros, an explorer and writer, wrote 

that the Chinese merchants used a form of biometrics by stamping children’s palm 

prints and footprints on paper with ink. In doing this, the Chinese found a way to 

distinguish young children from one another. This is one of the earliest known cases 

of biometrics in use and is still being used today.

In the 1890s, Alphonse Bertillion developed ‘Bertillonage’, a method of bodily 

measurement [Rhodes56], He realized that there are certain elements of the body 

that remain fixed, such as the size of the skull or the length of the fingers. His 

system was used by police authorities throughout the world, until it quickly faded 

when it was discovered that some people shared the same measurements and based 

on the measurements alone, two people could get treated as one. After this, the 

police used finger printing, which was developed by Richard Edward Henry of 

Scotland Yard, instead, essentially reverting to the same methods used by the 

Chinese for years [Jain04a].

Although biometrics emerged from its extensive use in law enforcement [George99] 

[Prins98] to identify criminals (e.g., illegal aliens and forensics), it is being 

increasingly used today to establish person recognition in a large number of civilian 

applications [ATMs99].

1.3 What is Biometrics?

Biometrics is the science of using digital technology to identify individuals based on 

the individual's unique physical and/or behavioural characteristics [Jain99]. Physical 

characteristic include fingerprint, facial recognition, retinal and iris scanning, hand 

geometry. On the other hand the behavioural aspects of human beings include voice 

pattern and handwriting.

2



Chapter 1 Introduction

Any of the human physiological and/or behavioural characteristics can be used as a 

biometric characteristic if it satisfies the following requirements:

• Universality, which means that each person should posses the required 

feature characteristics.

• Uniqueness, which indicates that no two persons should have the same 

measured characteristics.

• Permanence, which means that the characteristic should be invariant 

over a period of time.

• Collectability, indicating that the characteristic is readily presentable to 

a sensor and is easily quantifiable.

1.4 Personal Identification Methods

There are two main established types of automatic personal identification methods 

that have been widely used: knowledge-based and possessions-based. Knowledge- 

based methods use ‘‘‘‘something that I  know” for identification such as pin numbers 

and passwords. Possessions-based methods use “something that I  possess” for 

identification such as ID cards and physical keys. The weakness of these two 

methods lies in the fact that knowledge can be forgotten as well as shared, stolen or 

guessed and possessions can be easily lost, forged or duplicated [Miller94], In 

addition, they are unable to differentiate between an authorized person and an 

impostor using the token or the knowledge fraudulently acquired from the 

authorized person [JainOO]. Biometrics, on the other hand, which is “something 

unique about me ” are inherently secure since they are unique features an individual 

has. The science of biometrics is an elegant solution to identifying an individual and 

avoids the problems faced by knowledge-based and possession-based security 

methods. In addition, they are more reliable and more capable of differentiating 

between an authorized person and a fraudulent impostor.

3



Chapter 1 Introduction

1.5 Biometric Authentication Systems

1.5.1 The General Structure of a Biometric System

A biometric system is essentially a pattern recognition system that recognises the 

identity of a person on the basis of a physiological or behavioural characteristic. 

Although the use of each biometric technology has its own specific issues, the basic 

operation of any biometric system is very similar. Figure 1.1(a) and 1.1(b) illustrates 

the enrolment stage and the recognition stage respectively, which represents the 

typical steps of an authentication process.

Enrolment Stage

This stage is performed only once, since it inserts the specific biometric 

characteristic into the system database. This phase either combines the knowledge- 

based method (e.g. PIN or name) with biometrics (e.g. fingerprint) in the case where 

the biometric characteristic will be stored in a central database or combines the 

possession-based method (e.g. smart card) with biometrics (e.g. fingerprint) in the 

case where the biometric characteristic will be stored on a smart card. The first step 

in this stage starts by the user providing either a knowledge-based method or a 

possession-based method depending on the application, then a data capture process 

is performed where the biometric sample of the user is captured using an input 

device. The quality of this sample is crucial for further authentications of the user, so 

the quality of this biometric sample must be particularly checked and the acquisition 

of the biometric sample must be repeated if it is not sufficient. This is the reason 

why this first measurement is normally guided by a supervisor who explains the use 

of the biometric reader.

The biometric sample in its raw format can be expected to contain a lot of noise or 

irrelevant information that needs to be eliminated, so the raw measurements are 

processed and only the important features are extracted and used. This significantly 

reduces the amount of data to be processed and generates a compact but expressive 

representation, called a “template”. The process of feature extraction is not lossless 

and so the extracted features cannot in general be used to reconstruct the biometric 

sample completely.

4
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The generated template must then be stored. Depending on the application, the 

template may be stored in a central database of a biometric system or recorded on a 
smart card issued to the individual.

Figure 1.1(a): Block diagrams of the enrolment stage

Recognition Stage

This phase is repeated at each transaction. During this phase, the biometric device 

captures a current biometric sample of the user to be identified. This sample 

measurement is then processed and the important features are extracted to produce 

the same representation as the template. The resulting representation is then fed to 

the matcher, which compares it against the template obtained during enrolment to 

validate the identity of the individual. This returns a matching score s that quantifies 

the similarity between the input and the database template representations. The final 

step in this stage is based on a predetermined threshold t, where the score s is 

compared with the threshold t to make the final decision. As a result the system will 

make one of the following four possible decisions:

1. A legitimate user (genuine) is accepted; this happens if the score s generated 

from pairs of samples from the same person is higher than or equal to the 

threshold t.
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2. A legitimate user (genuine) is rejected; this happens if the score 5 generated 

from pairs of samples from the same person is lower than the threshold t.

3. An impostor is accepted; this happens if the score s generated from pairs of 

samples from different persons is higher than or equal to the threshold t.

4. An impostor is rejected; this happens if the score 5 generated from pairs of 

samples from different persons is lower than the threshold t.

Depending on the application context, the recognition stage may either be a 

verification mode, an identification mode or a screening mode [Jain04c]:

In the verification mode or sometimes called the “positive identification”, the user- 

input sample is compared against the particular claimed reference template stored in 

the database. It conducts a one-to-one comparison to determine whether the claim is 

true or not. It requires the claimed identity such as a PIN (Personal Identification 

Number), a user name or a smart card to be provided prior to the verification stage.

In the identification mode, the user-input identity is compared with all the templates 

stored in the database in order to find the closest match. It conducts a one-to-many 

comparison to establish a user’s identity (or fails if the subject is not enrolled in the 

system database) without the user having to claim an identity. Thus biometric 

identification is a more complicated, difficult and time-consuming process than 

biometric verification.

The screening mode or sometimes called the “open set identification” determines 

whether a person belongs to a watch-list of identities. The screening watch-list 

consists of a moderate number of identities. The user-input identity is compared 
with all the templates stored in the watch-list database in order to find the closest 

match. In this mode the individual does not make an identity claim, and in some 

cases does not personally interact with the system whatsoever. Examples of the 

watch-list task could be comparing visitors to Parliament against a terrorist database.
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Recognition Stage 

(A) Verification

Accept/Reject

(B) Identification

Database

Accept/Reject

(C) Screening

Accept/Reject

Figure 1.1(b): Block diagrams of the recognition stage
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1.5.2 Biometric System Errors

Any biometric system will suffer from some specific failure and error rates 

occurring at the enrolment stage and the recognition stage, which will affect the 

system performance, and these may be characterised in different ways [JainOl]:

Failure to Enrol (FTE)

This failure rate indicates the percentage of times the user cannot enrol in the 

system. It occurs when the system rejects poor quality templates during the 

enrolment stage.

False Reject Rate (FRR)

This error is the likelihood that a legitimate user (client) is rejected during the 

recognition stage (because the system does not find the user’s current 

biometric data similar enough to the master template stored in the database). 

This error is also known as Type I error. It is defined as:

Number of false reiection
FRR = -----------------------------  (1.1)

Number of client accesses

False Accept Rate (FAR)

This error is the likelihood that an impostor is accepted by the system as being 

a legitimate user during the recognition stage (because the system finds the 

impostor’s biometric data similar enough to the master template of a legitimate 

user). It is also known as Type II error. It is defined as:

Number of false acceptance
FAR = ----------------------------------  (1.2)

Number of impostor accesses
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Equal Error rate (ERR)

This is the point at which the system performs with an equal rate of false 

acceptance and false rejection. This value does not have any practical use it 

only indicates how accurate the device is. For example, if two devices with 

equal error rates of 1% and 10 % then this shows that the first device is more 

accurate (i.e. fewer errors) than the other.

Ideally, a biometric system should produce a zero equal error rate; that is it should 

be able to accept all genuine users and reject all attempted forgeries. However, the 

performance of today’s biometric technologies is far from ideal, despite impressive 

claims by manufacturers. This is due to inaccuracy of the deployed technology, 

inconsistency of the related biometric characteristics and/or skilled forgery.

Figure 1.2(a) and 1.2(b) illustrates the performance of an ideal and a typical 

biometrics system respectively.

(a) (b)

Figure 1.2 (a): The ideal behaviour of biometrics systems 
Figure 1.2 (b): The typical behaviour of biometrics systems
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Figure 1.2 shows that both Type I and Type II errors are functions of the system 

threshold t, if t is decreased to make the system more tolerant to input variations and 

noise, Type II error increases. On the other hand, if t is raised to make the system 

more secure, then Type I error increases accordingly.

1.6 Biometric Technology

There are various biometric technologies that are commercially available. Each has 

its strengths and weaknesses and the choice depends on the application. Before 

giving a brief introduction of the commonly used biometrics, a number of issues that 

need to be considered in a biometric device are addressed and these are 

[Prabhakar03]:

Performance: The overall performance of a system is evaluated in terms of its 

storage, processing time and the achievable recognition accuracy. The size of a 

template, especially when using smart cards for the storage, can be a decisive issue 

during the selection of a biometric system. Also the time required by the system to 

make a recognition decision is important, especially in real-time applications. If the 

processes of using a biometric system are lengthy, they could negatively affect the 

ability of the assets being protected to operate and fulfil its mission. For example 

there are challenges in using biometrics for border security. The use of biometric 

technologies could potentially impact the length of the inspection process. Any 

lengthening in the process of obtaining travel documents or entering a country could 

affect travellers significantly. Delays at the border affect the travellers and result in 

fewer people visiting the country, which might lead to loss in business for a nation. 

Accuracy is critical for determining whether the system meets requirements and in 
practice, how the system will respond. It is defined as the ability of the biometric 

system to discriminate between genuine and false claims of identity [Allgrove99], 

For example, a very demanding authentication system may not tolerate a high degree 

of false acceptance. On the other hand, a credit card user will be annoyed if the 

system keeps on rejecting his genuine transaction.
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Acceptability. User acceptability is a crucial consideration particularly in 

applications involving the general public. It indicates the extent to which people are 

willing to accept the use of a particular biometric identifier in their daily lives. For 

example, some people find biometric technologies difficult, if not impossible, to use. 

Still others resist biometrics because they believe them to be intrusive, inherently 

offensive, or just uncomfortable to use. Lack of cooperation or even resistance to 

using biometrics can affect a system’s performance and widespread adoption. As an 

example, fingerprint technology may not be acceptable by some people because of 

its strong associations with the traditional identification of criminals [Jain99]. On the 

other hand, despite the low level of accuracy of signature verification [Jain99], this 

technique is widely used in document processing due to its high level of user 

acceptance.

Circumvention: This reflects how easily the system can be fooled using fraudulent 

methods. There are several methods for circumventing a system such as forcing 

exception processing built into the system that may not require using a biometric 

[Penny02], Other method is to use verification fraud attempts to circumvent the 

system during the process of verification itself. Examples include forcing an 

individual to verify his identity to gain access, or presenting a facsimile of the actual 

biometric by faking it, or presenting stolen fingers that were chopped off the owner. 

In the latter case, most of the biometric devices available today can differentiate 

between a ‘live’ finger and an amputated one. Different types of biometrics have 

different degrees of difficulty of circumvention and these are summarised by Jain in 
[Jain99],

Cost: The cost of a biometric system is another factor to be considered when 

developing a biometric system. Not only the costs of the technology must be 

considered, but also the costs of the effects on people and processes. Both initial 

costs and recurring costs need to be estimated. Initial costs account for the 

engineering efforts to design, develop, test, and implement the system; hardware and 

software costs; network infrastructure improvements; and additional facilities 

required to enroll people into the biometric system. Recurring cost elements include 

hardware and software maintenance, hardware replacement costs, training of
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personnel to enroll or verify the identities of people in the biometric system, and 

possibly the issuance of token cards for the storage of biometrics.

1.6.1 Commercial Biometric Technologies and their Applications

In this section a brief description of each of the available biometric technologies is 

provided, stating the advantages and disadvantages of each of them and presenting 

some of their typical applications. A detailed description of fingerprint, voice and 

face technologies is provided as they were used in this project.

Biometric applications fall into three main groups [Prabhakar03]: commercial 

applications, such as ATMs, Internet access, e-commerce, cellular phones, computer 

network logins, physical access control, electronic data security, medical records 

management and distance learning. Government applications, such as national ID 

cards, driving licence, passport control, border control and social security and 

forensic applications, such as criminal investigation, corpse identification, terrorist 

identification and missing children.

The commercial applications require positive recognition and may use the biometric 

system either in verification or identification mode. The government and forensic 

applications consist mainly of identification. There are two types of identification 

systems; one type, which is mainly used for government applications, is designed to 

ensure that a person’s biometric information is not present in a database. The 

expected result of this search is a non-match. Comparing a person’s biometric 

information against a database of all who are registered in a public benefits program, 

for example, can ensure that this person is not faking documentation to register 

under multiple identities. The other type, which is mainly used for forensic 

applications, is designed to check whether a person’s biometric information is 

present in a database or not. For example comparing visitors to Parliament against a 

terrorist database results in either a visitor being on the database or not. In this 

section some examples of different applications of each biometric technology is 
provided.
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1.6.1.1 Fingerprint

Fingerprint recognition is one of the oldest biometric techniques. Fingerprints as a 

biometric characteristic are unique (fingerprints of identical twins are different and 

so are the prints on each finger of the same person), highly permanent (the formation 

of a fingerprint which is the pattern of ridges and valleys on the surface of a 

fingertip is determined during the first seven months of fetal development) and 

easily collectable if present (i.e. not damaged, burned etc.) 

[Jain97][Ross03][Uludag04][Maltoni03], However, they have some limitations: the 

performance of the currently available fingerprint recognition systems is affected by 

some environmental conditions (e.g. dirt on the sensor) and occupational factors 

(e.g. manual workers may have a large number of cuts and bruises on their 

fingerprints that keep changing). They are also generally regarded as highly 

unacceptable in some applications and social contexts because of their strong 

associations with the traditional identification of criminals.

Fingerprint Sensing

Based on the mode of acquisition, a fingerprint image may be classified as off-line 

or live-scan. An off-line image is typically obtained by smearing ink on the fingertip 

and creating an ink impression of the fingertip on paper. The inked impression is 

then digitised by scanning the paper using an optical scanner or a high-quality video 

camera. A live-scan image on the other hand, is acquired by sensing the tip of the 

finger directly, using a sensor that is capable of digitising the fingerprint on contact.

There are a number of live-scan sensing devices that can be used to detect the ridges 

and valleys present in the fingertip (ridges are the lines that the fingerprint pattern is 

made off while valleys are the spaces between the ridges). The most common live- 

scan sensing devices are based on optical, capacitive (or silicon) and ultrasound 
sensors [Maltoni03]:

The optical method is the most common method at present. At the centre of the 

optical scanner, a CCD- Camera (charged coupled device) is used [Newham95], A CCD- 

Camera is simply an array of light sensitive diodes called photosites which generate 

an electrical signal in response to light photons. Each photosite records a pixel, a
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tiny dot representing the light that hit that spot. Collectively, the light and dark 

pixels form an image of the scanned finger. An analog-to-digital converter in the 

scanner system processes the analog electrical signal to generate a digital 

representation of this image. In general the finger will be placed on a glass plate and 

the CCD camera takes the picture. The CCD system has an array of LEDs (light- 

emitting diodes) to illuminate the ridges and valleys of the finger.

The optical fingerprint sensors can withstand to some degree temperature 

fluctuations, they are also relatively cheap and they can provide resolutions up to 

500 dpi. However, they suffer from some drawbacks such as the size of the platen, 

which must be of a sufficient size to achieve a quality image. The latent prints 

(leftover prints from previous users) must also be cleaned otherwise they can cause 

image degradation, as severe latent prints can cause two sets of prints to be 

superimposed. Also, the coating and CCD arrays can wear with age, reducing 

accuracy.

The capacitive method is one of the increasingly popular methods. Like the optical 

scanner the capacitive scanner generates an image of the ridges and valleys that 

make up a fingerprint. They are based on the capacitance of the finger. The 

capacitive sensor is made up of one or more semiconductor chips containing an 

array of tiny cells. Each cell includes two conductor plates, covered with an 

insulating layer. The two conductor plates form a basic capacitor, an electrical 

component that can store up charge. The surface of the finger acts as a third 

capacitor plate, separated by the insulating layers in the cell structure and, in the 

case of the fingerprint valleys, a pocket of air. Varying the distance between the 

capacitor plates (by moving the finger closer or farther away from the conducting 

plates) changes the total capacitance (ability to store charge) of the capacitor. This 
capacitance is converted through an analog-to-digital converter into an 8-bit 
grayscale digital image

Capacitive sensors generally produce better image quality, with less surface area, 

than optical sensors. Capacitive fingerprint sensors are integrated into many devices 

such as mobile phones and laptop computers due to its small size. However, due to
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the reduction in the sensor size more care should be taken to ensure that enrolment 

and verification are done carefully. A poor enrolment may not capture the centre of 

the fingerprint, and subsequent verifications are subject to the same type of 

placement. Also, the fingerprint bitmap obtained from the capacitive sensor is 

affected by the finger moisture as the moisture significantly influences the 

capacitance. This means that people with unusually wet or dry fingers have 

problems with capacitive fingerprint sensors since wet fingers produces black 

images whilst dry fingers make the image pale.

Ultrasound technology, though considered perhaps the most accurate of the 

fingerprint technologies, is not yet widely used. The ultrasonic fingerprint sensors 

use ultrasound to monitor the finger surface. The user places his/her finger on a 

piece of glass and the ultrasonic sensor moves and reads the whole fingerprint. It 

measures the distance based on the impedance of the finger, the platen, and air. 

Ultrasound is capable of penetrating dirt and residue on the platen and the finger, 

countering a main drawback to optical technology.

Fingerprint Processing

Fingerprints are not compared and usually are not stored as bitmaps. Fingerprint 

matching techniques can be placed into two categories: minutiae-based and 

matching pattern-based [Prabhakar03a] [Hong88], The Minutiae-based technique 

requires the location of the minutiae to be calculated with respect to the core (see 

Figure 1.3) during the process of feature extraction [Prabhakar03b]. Minutiae are 

individual unique characteristics within the fingerprint pattern that can be defined as 

the discontinuities that interrupt the smooth flow of ridges [FingerScan], Many types 

of minutiae exist such as ridge ending, ridge bifurcation, bridges or islands as shown 

in Figure 1.3. A ridge ending is defined as the ridge point where a ridge ends 

abruptly. A ridge bifurcation is defined as the ridge point where a ridge diverges into 

branch ridges. Bridges is where small ridges join two longer adjacent ridges and 

island is a long ridge occupying a middle space between two divergent ridges.
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Figure 1.3: A Fingerprint Pattern

Although a minutiae-based representation is characterized by representing 

distinctive information about the fingerprint, a reliable automatic minutiae extraction 

can be problematic in low quality fingerprints [JainOl]. This method also does not 

take into account the global pattern of ridges and valleys and it is affected by wear 
and tear.

On the other hand, the pattern matching technique extrapolates data from a particular 

series of ridges. This data is used as the basis during the comparison stage. It 

requires that a segment of the same area be found and compared. Pattern matching 

performs better in the case of anomalies caused by scars, sweat, or dirt as compared 
to minutiae matching.

Fingerprint Applications

Fingerprint technology has been used in the areas of financial transaction and 
network security, examples of its applications include:

The Bank of America in 1999 used fingerprints to give customers access to their 

online banking services [Press99]. Before using the system, the customer enrols his/ 

her fingerprint on a chip attached to a multi-application smart card. During 

authentication the customer places his/her finger on a scanning device attached to a 

personal computer and the software then matches the fingerprint from the scanner
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against the image stored in the smart card in order to make a decision on whether to 

accept or reject the customer.

A number of vendors have developed finger scanners resembling a computer mouse. 

Scanners built into computer keyboards have also been produced [Davies94],

1.6.1.2 Speaker recognition

Speech contains information about the identity of the speaker. A speech signal 

includes also the language that is spoken, the presence and type of speech 

pathologies, the physical and emotional state of the speaker. Often, humans are able 

to extract the identity information when the speech comes from a speaker they are 

acquainted with.

The principle of speaker recognition is to analyse the voice of the user in order to 

store a voiceprint that is later used for recognition. The recording of the human voice 

for speaker recognition requires a human to say something. In other words the 

human has to show some of his/her speaking behaviour. Therefore, voice 

recognition fits within the category of behavioural biometrics. 

[Furui97] [Bimbot97] [Campbell97].

Speaker recognition has several drawbacks; it is not permanent since it changes over 

time due to age, medical conditions (having a cold), emotional state (e.g. stress), etc. 

The performance of voice-based recognition systems is also affected by several 

factors such as the background noise, the quality of the microphone used and the 

variation in tone due to disposition. However, the main advantage of the voice 

technology is that it does not require any special and expensive hardware. A 

microphone is used which is a standard accessory of any multimedia computer. The 

speaker recognition is also not intrusive for users and is easy to use.

Text-dependent vs. Text-independent Speaker Recognition

Speaker recognition systems are classified as text-dependent (fixed-text) and text- 

independent (ffee-text). In text dependent systems, during enrolment the user is 

asked to pronounce a phrase and the voice is then processed and stored in a
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template. During authentication the user is asked by the system to pronounce the 

same phrase. In text-independent systems, during enrolment the system records the 

pronunciation of multiple phrases (e.g. numbers). In the authentication phase the 

system randomly chooses a phrase and asks the user to pronounce it.

The two main advantages of text-independent systems over text-dependent systems 

are: first the user does not have to remember a fixed phrase and second the system 

cannot easily be “spoofed” with the replaying of recordings of the user’s speech.

Speaker Recognition Techniques

There are a few methods that are used for speaker verification. Text-dependent 

methods are usually based on template-matching techniques. In this approach, the 

input utterance is represented by a sequence of feature vectors, generally short-term 

spectral feature vectors. The time axes of the input utterance and each reference 

template or reference model of the registered speakers are aligned using a dynamic 

time warping (DTW) algorithm and the degree of similarity between them, 

accumulated from the beginning to the end of the utterance, is calculated. An 

alternative is to model the statistical variation in the spectral features. This is known 

as Hidden Markov Modeling (HMM), which has shown to outperform the DTW- 

based methods. The Hidden Markov Model (HMM) can efficiently model statistical 

variation in spectral features. Therefore, HMM-based methods were introduced as 

extensions of the DTW-based methods and have achieved significantly better 

recognition accuracies [Naik89],

In text-independent speaker verification, methods that look at long-term speech 

statistics or consider individual spectral vectors as independent of each other have 

been proposed. Examples of these are: the average-spectrum-based method and the 

vector quantization (VQ) methods. The average-spectrum-based method uses a 

weighted ceptral distance measure where the phoneme effects in speech spectra are 

removed by averaging the spectra. In the vector quantization method, VQ codebooks 

consisting of a small number of representative feature vectors are used as an 

efficient means of characterizing speaker-specific features. A speaker-specific 

codebook is generated by clustering the training feature vectors of each speaker. In
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the recognition stage, an input utterance is vector-quantized using the codebook of 

each reference speaker and the VQ distortion accumulated over the entire input 

utterance is used to make the recognition decision.

Speaker Recognition Applications

Speaker recognition has been used in different applications. It has being integrated 

into security systems [Cole95] for online banking, bill payment and electronic 

commerce [SAFLINK99]. Speaker recognition has also made an impact in the penal 

system. This technology has been used for inmates on parole, juvenile inmates, and 

those under house arrest [Dasl],

1.6.1.3 Face

Facial images are probably the most common biometric characteristic used by 

humans to make a personal identification [Jain99]. They are the least intrusive and 

most socially acceptable from the user perspective [Milller94], However, they have 

some limitations: the facial recognition systems are usually very sensitive to 

variation in illumination and to faces with different positions or expressions. They 

also perform poorly when the database size increases and require a large amount of 

storage for the database.

There are two main types of commercial facial recognition systems; the most 

common uses video, while the other uses thermal imaging.

Video face recognition technology analyses the unique shape, pattern and 

positioning of facial features [IBG99]. A video camera is used to capture an image 

from a distance of up to a few feet away from the user. A number of points on the 

face such as the position of the eyes and the mouth are usually mapped out.

On the other hand, the facial thermogram uses an infrared camera to scan a person’s 

face and then digitise the thermal patterns [Ross94], The patterns are created by the 

branching of blood vessels in the face. As the blood is hotter than the tissue 

surrounding it, it radiates heat that can be picked up at a distance.
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Facial Recognition Techniques

There are four common approaches used to identify and verify users [Hsu02], this 

include eigenfaces, automatic face processing, neural network and local feature 

analysis.

Eigenfaces is an MIT technique that utilized two dimensional grayscale images 

representing distinctive characteristics of a facial image [Turk91], Any facial image 

can be represented by combining many (100+) eigenfaces, and it is the coefficients 

representing that combination, which make up the template that is used to determine 

if the presented face is the claimed face. The advantage of this method is its speed 

and efficiency. However, it has problems identifying faces in different levels and 

pose positions.

Automatic face processing uses distances and ratios between common facial features 

[Ponti99], This is the simplest technique and the least robust, and does not tend to be 

used as much as the others. Its advantages are simplicity and it is less affected by 

poor lighting conditions.

Neural Network processing uses the neural network to determine whether the 

presented face features are similar enough to the enrolled face features [Miros99], It 

has the theoretical ability to be very intelligent and adaptive to changes.

Local-feature analysis records the relative locations of as many as 80 prominent 

facial landmarks, such as eyes, eyebrows, mouth, tip of the nose, bridge of the nose, 

and cheekbones [Visionics99]. In operation, the system compares facial features 

from a test subject, along with slight variations to account for changes in expression, 

with a database of these relative distances. Local-feature-analysis systems can also 

accommodate head orientations that vary on either side of a direct frontal image.

Face Applications

The use of video-based face recognition for consumer applications has grown 

considerably in the last few years. Examples of its commercial applications are:
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In America, an ATM system automatically takes a picture every time a customer 

cashes a cheque [ATM99]. The customer first has to enrol in the system, but no 

bank account or driver’s licence is needed. In order to cash a cheque, customers 

enter their Social Security numbers. This information combined with the biometric 

picture, creates a real-time, permanent record of the transaction.

Facial recognition is also used in some casinos as a way of identifying suspicious 

players. A surveillance camera captures an image of the individual’s face and 

compares it to a digitised photo database of “known cheaters”[Beiser99a].

1.6.1.4 Iris

The human iris is unique to each individual and even one’s left and right irises are 

not the same [NeginOO]. Studies showed that the iris remains stable over decades of 

life, making it a very distinct biometric. Iris recognition technology involves the use 

of a camera to capture a digital image of the eye and process it to locate the iris and 

compute the iris code which is then compared with the data collected during 

enrolment. The initial available results on accuracy and speed of iris-based 

identification are promising and point to the feasibility of a large-scale recognition 

using iris information [Mai03][Zhu02], However, the main issue is that iris scanning 

requires a certain amount of user participation since a user must stay still at certain 

spot during the process of data capture. Examples of iris recognition application 

include:

The installation of an ATM (Automatic Teller Machine) that includes iris scans as 

an alternative to passwords or PINs at the Bank United of Texas in may 1999 
[Iris99],

Iris scan cards have been employed by the Schiphol Privium scheme at the 

Amsterdam airport to speed up the passport and visa control procedures. Passengers 

who are enrolled in the scheme insert their card at the gate and look into the camera, 

the camera acquires the image of the traveller’s eye and processes it to locate the iris 

and compute the Iris code which is then compared with the data residing in the card 

to complete the user verification [CNN02],
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1.6.1.5 Signature

Signatures have formed the basis of legal identification in documents and have been 

a means of proof of identity in financial transactions. The main attractiveness of 

signature recognition systems is that it is widely accepted by the public 

[Allgrove99], However, they have several weaknesses: although each person has a 

unique style of handwriting, no two signatures of a person are exactly identical, they 

are a behavioural biometric that change over a period of time and are influenced by 

physical and emotional conditions of the signatories. Further, professional forgers 

may be able to produce signatures that fool the system.

Signature biometrics is often referred to as dynamic signature verification. With this 

technique, the manner in which someone signs is as important as the static shape of 

his/her finished signature. For example the angle at which the pen is held, the time 

taken to sign, the velocity and acceleration of the signature, the pressure exerted and 

the number of times the pen is lifted from the paper all can be measure and analyzed 

as unique behavioural characteristics.

In a signature recognition system, a signature data is captured via a special pen or 

tablet or both. The pen-based method incorporates sensors inside the writing 

instruments while the tablet method relies on sensors imbedded in a writing surface 

to detect the unique signature characteristics. When a person signs his or her name 

on the digitized graphics tablet, the system analyzes the signature dynamics such as 

speed, relative speed, stroke order, stroke count, and pressure. The signature 

dynamics information is then encrypted and compressed into a template.

Despite its user friendliness and lack of invasiveness, signature recognition has not 

yet dominated the market, like other biometric technologies (especially fingerprint 

recognition). Some documented applications include the Chase Manhattan Bank (the 

first known bank to adopt signature recognition technology) and the Internal 

Revenue service for verification purposes in tax returns that have been filed online 

[Das],
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1.6.1.6 Retinal Scanning

The retina scanning is regarded as highly unique since no two persons or even the 

same pair of eyes has the same web of capillaries running through the retina 

[Hill78]. Retina scanning is very accurate and has been used in very demanding 

authentication applications. However, its weakness is that it relies on a relatively 

complicated operation since the technology requires co-operative, well trained and 

patient users to stand close to the device and focus on a target while a low-intensity 

beam of light is shot into the eyeball to record the pattern of veins in the eye. This 

makes it unacceptable by the user. Besides that, due to its high cost and difficult 

sample collections, retina scanning is still highly referred to government use and the 

highest security situations. It has been used in prisons in both Pennsylvania and 

Florida in U.S for making positive identification of prisoners prior to release or 

transfer [Beiser99b].

1.6.1.7 Hand Geometry

Hand geometry systems use an optical camera and light-emitting diodes with 

mirrors and reflectors to capture two orthogonal two-dimensional images of the back 

and sides of the hand.

Hand geometry systems are highly acceptable and have been widely deployed in 

various applications, such as access control and employee attendance applications 

[Sidlauskas88]. The main advantage of hand geometry is that it is not affected by 

dirt, cuts and dryness of the hand. However, it have a few drawbacks, one of which 

is the high possibility of some people having the same hand geometry as in the case 

of identical twins or between the same family members. Other disadvantages include 

the bulky size of the hand geometry devices, which makes them unsuitable for 

certain applications (such as laptop computers) and their expensive cost.

An example of hand geometry application is its use in 1996 Summer Olympic 

Games in Atlanta to identify approximately 150,000 athletes, staff and other 

participants [George96].
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The brief overview given in the previous sections shows that there is not a single 

technology that out-performs all the others in all operational environments and that 

an application must be analysed in detail in order to select the most appropriate 

biometric to adopt. In this sense, each biometric technique is admissible and there is 

no optimal biometric characteristic. For example, it is well known that both the 

fingerprint-based technique and the iris-based techniques are more accurate than the 

voice based technique [Jain99]. However, in a tele-banking application, the voice- 

based technique may be preferred since it can be integrated seamlessly into the 

existing telephone system.

1.6 Limitations of any Unimodal Biometric System

The successful installation of biometric systems in various civilians applications 

does not imply that biometrics is a fully solved problem. Biometric systems that 

operate using any single biometric characteristic have the following limitations 

[Jain04a]:

Non-universality. As mentioned previously a human physiological or behavioral 

characteristic can be used as a biometric characteristic if each person possesses the 

required feature characteristic. In reality this is not possible since there is always a 

subset of users that are unable to enroll in any given system for different reasons. 

For example, people who are mute cannot use the voice system and people lacking 

fingers or hands from congenital disease cannot use fingerprints or hand geometry 

systems. It was recently reported by the National Institute of Standards and 

Technology that some 2% of the population is unable to provide a fingerprint 

sample suitable for enrolment into a typical biometrics system [NISTOO] [Jain04b],

Difficult replacement: In some situations a biometric cannot be easily replaced. If a 

biometric is destroyed as result of a disease, surgery or injury, or stolen, it may not 

be replaced [Schneier99]. With a credit card, the bank can issue the user a new card 

with a new number. But a user has only a limited number of biometrics and they are 

not easy to replace.

24



Chapter 1 Introduction

Easy to spoof. Each biometric is subjected to attacks where an impostor will attempt 

to imitate the biometric characteristic of a legitimate enrolled user in order to 

circumvent the system.

Lack of permanence: The passage of time might give a rise to a situation where the 

biometric data acquired from an individual during authentication may be different 

from that used to generate the template during enrolment and hence affects the 

matching process. This variation may be a result of several reasons such as a 

fundamental change in the way in which the feature was presented to the device 

during authentication or damage to the feature over the period (e.g. scars on the 

finger).

Noisy data: The data captured from a sensor might be noisy or distorted. Noisy data 

is a result of several factors one of which is the faulty or improperly maintained 

sensors (e.g. the accumulation of dirt or previous fingerprints on a fingerprint 

sensor). Another factor is the existence of unfavourable ambient conditions such as a 

poor illumination of a user’s face in a face recognition system. An example of a 

noisy data is a fingerprint with a scar or a voice altered by a cold. This noisy data 

affects the performance of the system and can result in a user being incorrectly 

rejected.

Non-acceptability. Not all biometrics are highly acceptable by the public. For 

example, the fingerprint technology is not always highly acceptable because of its 

strong associations with the traditional identification of criminals, while in some 

countries women are not allowed to reveal their faces. In this case the face 

technology is not a good means of identification.

Intra-class variations are generated when different biometric samples of the same 

feature are generated from the same person [PankantiOl]. This happens when the 

biometric data acquired from an individual during authentication is different from 

the data that was used to generate the template during enrolment thereby affecting 

the matching process. This variation is either caused by the incorrect interaction of 

the user with the sensor or as a result of modifying the sensor characteristics during 

the verification phase. Some intra-class variations are natural, for example two
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signatures of a person are not always exactly identical. Intra-class variation results in 

a user being incorrectly rejected.

1.7 Multimodal Biometric System

Some of the limitations of a unimodal biometric system can be overcome by using 

multiple biometric modalities [Hong99]. This could be by using multiple sensors for 

the same biometric (e.g. optical and solid-state fingerprint sensors), multiple 

representations and matching algorithms for the same biometric (e.g. multiple face 

matchers like PCA and LDA), or multiple biometric traits (e.g. face and fingerprint). 

Using multiple sensors solves the problem of noisy data, but all the other problems 

associated with unimodal biometric systems remain. The multiple representation and 

matching algorithms for the same biometric improves the recognition performance 

of the system. However, all these methods suffer from many of the problems faced 

by unimodal systems. A multimodal biometric system based on different traits is 

expected to be more robust to noise, address the problem of non-availability or 

unreliability of any particular trait in a given situation, the non-acceptability of a 

particular trait for an individual user or user group, improve the matching accuracy 

and provide reasonable protection against spoof attacks. Hence, the development of 

biometric systems based on multiple biometric traits is adopted as a practical 

solution for many recognition applications.

1.8 Purpose of Research

The main aim of this thesis is to investigate the fusion of multimodal biometric 

verification system, which in turn lead to the evaluation of their performance on 

multimodal biometric systems. The evaluation of these systems raises a number of 

problems and challenges. One of which is the insufficient availability of multimodal 

databases representing the features of a large population. Another challenging 

problem is the fusion of the multiple modalities and the question of how should the 

outputs of the verification experts based on individual modalities be combined to 

achieve lower error rates and whether to combine the soft outputs or fuse the hard
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decisions. Finally, the two most challenging problems in fusing multiple modalities 

are score normalization and setting the thresholds of both single experts and the 

fusion rule to achieve lower error rates. These are the principle issues, which will be 

addressed in this thesis.

1.9 Thesis Organization

This thesis consists of nine chapters, which are described, in more details below:

Chapter 1 is an introductory chapter, which sets the scene for the thesis.

Chapter 2 provides a review of research studies in the field of multimodal 

biometric systems regarding the fusion approaches and multimodal 

databases. The chapter gives an overview of the different 

architectures and different levels of data fusion suggesting using the 

parallel architecture and fusing the data at the decision level.

Chapter 3: describes the data collection exercise that was undertaken. The 

chapter describes the biometric devices that were chosen for the 

evaluation and the test protocol used to capture the biometric 

samples.

Chapter 4: describes the database formulated from the exercise that was carried 

out and provides a preliminary analysis of it.

Chapter 5: provides a brief review of the commonly used fusion rules at the decision 
level in multimodal person recognition systems. It also describes the most 

commonly used score normalization methods and proposes a novel 

method of score normalization. The chapter explains the experimental 
set-up used for calculating the error types and provides a comparison 
between the hard and soft decision rules when characterizing the system 
users as lamb, sheep, goats and wolves.
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Chapter 6: gives a general overview of the genetic algorithm and their different

parameters. The chapter discuss the reasons of using genetic 

algorithms in the field of biometric recognition as an optimisation 

technique instead of other techniques.

Chapter 7: proposes a novel approach based on the use of genetic algorithms to

solve problems associated with score normalization and weights/ 

threshold settings.

Chapter 8: summarizes the work presented in this thesis and presents the main

conclusions that have been drawn from the work. The chapter also 

suggests some future research.

1.10 Summary

In this chapter a brief overview of the field of biometrics was provided, 

summarizing the advantages and disadvantages of each biometric and pointing to the 

potential advantages offered by multimodal biometric systems. The chapter also 

presented the purpose of the research and the organisation of the thesis with a brief 

description of each chapter.

The next chapter provides a review of multimodal biometrics systems and states 

their challenges.
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Chapter 2

Multimodal Biometric Systems
Concepts

2.1 Introduction

In this chapter the multimodal fusion approaches and databases that have been 

explored in recent research studies are briefly reviewed. The issues and challenges 

of these fusion techniques are presented and the publicly available medium and 

large-scale multimodal databases are described stating their limitations.

2.2 Information Fusion in Biometrics

As mentioned in the previous chapter, recognition based on any modality alone may 

not be very robust whilst fusing information from a number of different biometric 

modalities may well provide higher and more consistent performance levels.

Information fusion is a term that refers to any area exploiting the combination of 

different sources of information, either to generate one united representational 

format, or to reach a decision [Barvin81]. This includes areas such as: team decision
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theory, integration of multiple sensors, multi-modal data fusion, combination of 

multiple classifiers and distributed decision making.

There are several advantages in using information fusion to reach a decision, such 

as:

• By using complementary information (e.g. fingerprint, audio and video) the 

error rates can be reduced.

• Robustness and reliability. The system is operational even if one or several 

sources of information are missing or malfunctioning.

• Using several cheap sensors rather than one expensive one can reduce the 

cost of implementation.

Since the aim of this research was to combine information from different classifiers 

of multiple biometric devices, different strategies for combining multiple classifiers 

was investigated. There is a large number of combination methods reported in the 

literature [CanutoOO] [Fairhurst97] [Kittler98] [Rahman99] [Xu92], In the following 

sections the architecture/topology of the classifiers and the different levels of 

information fusion are reviewed.

2.3 Multiple Classifiers System Architectures/Topologies

The architecture of a system describes the way the components are organized within 

the system. There are different architectures/topologies for combining classifiers; in 

this section the two basic ones [Dasarathy94] are discussed:

Serial topology

As shown in Figure 2.1, the serial classifier architecture consists of a set of m 

classifiers whose decisions are combined in series or tandem [Roli02]. This 

architecture is well suited to deal with situations where the different classifiers have 

a ternary {accept, reject, undecided} decision scheme [Kamel03]. A scheme in
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which the classifiers cannot decide on the input pattern they are presented with. If 

the current classifier is undecided, information is passed to the next expert in the 

sequence. The inputs represent the feature sets that help the classifiers in making a 

decision. For this serial scenario to be effective, the classifiers have to have a 

varying ability of generalization. This architecture is suitable for combining 

decisions from classifiers with varying ranges of effectiveness and modelling 

sequential decision refining from one sensor to the next.

Input Input

Figure 2.1: The serial multi-classifier architecture

Parallel topology

As shown in Figure 2.2, the parallel classifier architecture consists of a set of m 

classifiers that are consulted in parallel. The decisions of the various classifiers are 

combined in parallel by the combining/fusion module. This architecture is suitable 

for combining decisions or scores from classifiers that are capable of operating 

simultaneously and independently of one another.
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Figure 2.2: The parallel multi-classifier architecture.

There are also hybrid combinations of these two basic schemes that can be used, 

such as parallel-serial or serial-parallel architectures, which are also referred to as 

layered architecture. These combinations are more complex than the previous two 

and fall outside the scope of this work.

The choice between the two basic architectures described was not only based upon 

the descriptions presented above, but also on the following reasons:

1. So far research on multiple classifier systems has principally focused on 

the parallel architecture and it has been extensively applied to the field of 

pattern recognition [Chibelushi99] [Fairhurst97],

2. General methodologies and clear foundations are mostly available for 

parallel architecture.

3. The parallel architecture is less complex than the serial one.

4. As a serious drawback, any serial network is vulnerable to link failure.

Taking into account the descriptions of the basic architectures and the reasons 

mentioned above, a parallel architecture was adopted for this work.
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2.4 Fusion Levels in Biometrics

A biometric system has four important modules. The sensor module that acquires 

biometric data from a user; the feature extraction module processes the acquired 

biometric data and extracts a feature set to represent it; the matching module 

compares the extracted feature set with the stored templates using a classifier or 

matching algorithm in order to generate matching scores; in the decision module the 

matching scores are used either to identify an enrolled user or verify a user’s 

identity.

Multimodal biometric systems that verify a user’s identity are categorised into four 

system architectures according to the strategies used for information fusion 

[RossOl]:

• Fusion at the Sensor Level

• Fusion at the Feature Extraction Level

• Fusion at the Matching Score Level

• Fusion at the Decision Level

That is, the systems are classified depending on how early in the authentication 

process the information from the different biometric sensors is combined. Biometric 

authentication is a chain process, as illustrated in Figure 2.3.

Figure 2.3: The authentication process chain
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Fusion at the feature extraction level stands for immediate data integration at the 

beginning of the processing chain, while fusion at the decision level represents late 

integration at the end of the process.

The following subsections describe each of these levels in detail and a review on 

related research activities.

2.4.1 Fusion at the Sensor Level

In this architecture, Figure 2.4, the raw data streams coming out of different sensors 

are combined. To accomplish this combination there are two main methods, but 

these depend on the application it is used for. For example, the weighted summation 

rule can be used to combine the data from two microphones (to reduce the noise), 

while mosaic construction can be used to generate one image out of images provided 

by several cameras each looking in different parts of the same object [Hong98]. In 

sensor level fusion, the data obtained from the different sensors must be compatible, 

and this may not always be possible (e.g., it may not be possible to fuse face images 

obtained from cameras with different resolution).

Template

Figure 2.4: Fusion at the Sensor level

An extensive literature search did not reveal any significant recent research on this 

fusion strategy. This suggests that fusion at the sensor level is much less preferable 

than the other strategies.
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2.4.2 Fusion at the Feature Extraction Level

In this architecture Figure 2.5, the information extracted from the different biometric 

sensors is encoded into a joint feature vector, which is then compared to an 

enrolment template (which itself is a joint feature vector stored in a database) and 

then a decision is made.

Template

Figure 2.5: Fusion at the feature extraction level

Fusion at the feature level is often difficult because the feature sets used by different 

biometric modalities may either be inaccessible or incompatible. There are two 

methods used for combining the extracted features, but these certainly depend on the 

features themselves. If the features are commensurate, i.e. having a common 

measure, the combination can be achieved by the weighted summation rule. If the 

features are not commensurate then a simple fusion scheme consisting of 

concatenating the feature vector is employed [Brooke94],

Fusion at the feature level has been presented by some researchers such as Luettin, 
Marcel and Sanderson and Kumar.

Luettin in [Luettin97] combined speech and (visual) lip information using feature 

vector concatenation. In order to match the frame rates of both feature sets, speech 

information was extracted at 30 fps instead of the usual 100 fps. In text-dependent 

configuration, the fusion process resulted in a minor performance improvement,
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however, in text-independent configuration, the performance slightly decreased; 

suggesting that feature vector concatenation in this case is unreliable.

Marcel et al in [Marcel02] proposed to use the skin colour as an additional feature to 

the face image. The verification method is based on Multi-Layer Perceptrons. For 

each client, an MLP is trained to classify an input to be either the given client or not. 

The input of the MLP is a feature vector formed by the concatenation of the face 

feature vector with the skin colour vector. The output of the MLP is either a client or 

an impostor. Experiments were carried out on the XM2VTS database and the results 

show good improvement when using the skin colour information.

Sanderson et al in [Sanderson02] evaluated the performance of feature vector 

concatenation fusion and several non-adaptive opinion fusion methods such as the 

weighted summation fusion, Bayesian and SVM post-classifiers, for combining face 

and speech information under the presence of audio noise. Experiments were 

conducted on the VidTIMIT database. The results showed that the performance of 

the feature concatenation fusion approach was relatively more robust than the three 

post-classifier approaches. However, for most SNRs the performance was worse 

than the face expert, suggesting that while in this case feature concatenation fusion 

is relatively robust to the effects of noise, it is not optimal.

Kumar et al in [Kumar03] described a hand based verification system that combines 

the geometric features of the hand with palmprints at the feature and match score 

levels. Experiments were conducted on 100 users. Interestingly, in their 

experiments, fusion at the match score level resulted in a better performance than 

fusion at the feature level.

In addition to the fact that was revealed in the literature suggesting the unreliability 

of feature concatenation, there were two other reasons that limited the use of both 

the data and the feature fusion in this work and these were:-

1. In this work it was desired to explore the use of multiple modalities which 

means it was not possible to fuse the raw data.
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2. Since it was desired to explore the use of commercial off the self-devices the 

information available regarding the algorithms used was inadequate, which 

limited the use of the features.

3. The aim of this work was to separate the design of the specialized classifiers, 

which is very application dependent from the fusion problem.

2.4.3 Fusion at the Matching Score Level

In a multimodal biometric system built on this architecture, Figure 2.6, the feature 

vectors are created independently for each sensor and then compared to the 

enrolment templates, which are stored separately for each biometric trait. Based on 

the proximity of feature vector and template, each subsystem now computes its own 

matching score. These individual scores are finally combined into a total score, 

which is handed over to the decision module.

Fusion at the matching score level is generally preferred due to the ease in accessing 

and combining the scores. Different strategies are used to combine the scores. They 

range from a simple sum rule to sophisticated statistical methods.

Template

Template

Figure 2.6: Fusion at the matching score level
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Fusion at the matching score level has been presented by the majority of researchers 

to enhance recognition accuracy and improve the robustness of the system.

Kittler et al in [Kittler98] proposed a multimodal person verification system using 

three experts: frontal face, face profile and voice. The frontal face expert is based on 

template matching, the face profile expert used a chamfer matching algorithm and 

the voice expert was based on the use of text-dependent person dependent HMM 

models for isolated digits. The outputs of all the three experts were normalized 

scores (scores between zero and one). The authors conducted a comparative study of 

the performance of several combination schemes namely; the product rule, sum rule, 

min rule, max rule and majority voting. By assuming the joint probability 

distributions to be conditionally independent, the outcome of the comparative study 

showed that the sum rule outperformed the other combination schemes with an EER 

of 0.7%.

Jain et al in [Jain99] developed a multimodal biometric system that uses three 

classifiers: face, fingerprint and speech. The scores from the modalities were 

combined using the product rule. Experiments were conducted on a database of 50 

users, which was acquired in a laboratory environment, the results obtained 

demonstrated that the overall system performance improves by integrating multiple 

biometric indicators.

Ross et al combined in [RossOl] the matching scores of three modalities (Face, 

Fingerprint and Hand geometry) to enhance the performance of a biometric system. 

Three different techniques (Sum rule, decision tree, linear discriminant analysis) 

were used to combine the matching scores. Experiments indicated that the sum rule 

with normalized scores resulted in the best performance.

Roli et al. reported in [Roli02] an experimental comparison between fixed and 

trained fusion rules on a multimodal person-identity verification task, involving two 

basic modalities: speaker voice and frontal face image. The experiment used five 

fixed fusion rules (sum, majority vote and three rules based on order statistics
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operators (OS)), and two trained rules (Behavioural Knowledge Space and the 

weighted average method). The experiments were carried out on the XM2VTS 

database. The results showed that the trained rules in particular the weighted average 

method provided significant improvements over the fixed rules when they were 

trained on the test set, this means that the advantages of the trained rules depends on 

the quality and the size of the training set. The results also showed that among the 

trained rules, the weighted average method outperformed slightly the BKS rule, 

while among the fixed rules, the vote rule exhibited good performance. In contrast, 

the effectiveness of OS rule appeared to be poor.

Snelick et al [Snelick03] developed a general testing framework that allows system 

designers to evaluate multimodal biometric systems by varying different factors 

such as the biometric modalities, normalization schemes, fusion methods and sample 

databases. The authors illustrated their testing methodology by evaluating the 

performance of a multimodal biometric system that used face and fingerprint 

classifiers. In this paper several normalization techniques like min-max, z-score, 

median and MAD, and tanh estimators were used to transform the scores into a 

common range. The normalized scores were then combined using fusion methods 

like simple sum of scores, maximum score, minimum score, sum of probabilities 

and product of probabilities. Their experiments showed that the min-max 

normalization followed by the sum rule fusion method provided better recognition 

performance than the other schemes. The results also show that multimodal 

biometric systems out perform single-mode biometric systems.

Wang et al in [Wang03] designed an identity verification system based on the fusion 

of face and Iris data. Two different fusion strategies were used. The first strategy 

computed the weighted and the unweighted sum and compared the result to a 
threshold. The second strategy treated the matching distances of face and iris 

classifiers as a two-dimensional feature vector and used both the fisher’s 

discriminant analysis and the neural network with radial basis function (RBFNN) to 

classify the vector as being genuine or impostor. Results showed that the fusion 

based on the RBFNN produced the highest verification accuracy and that the
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weighted sum rule is the best approach when compared with the sum rule and Fisher 

rule.

The literature revealed an increase in the performance of the system by fusing the 

output scores of the different classifiers, however it highlighted the problem of 

selecting a normalization method that maps these scores into a common interval [0, 

1] before fusing them. The literature also revealed that weighting varies the 

importance of matching scores of each modality, thus increasing the system 

performance.

2.4.4 Fusion at the Decision Level

In this fusion strategy, a separate authentication decision is made for each biometric 

modality. These decisions are then combined into a final vote, as shown in Figure 

2.7:

Template

Template

Figure 2.7: Fusion at the decision level

Fusion at the decision level is too rigid since limited amount of information is 

present at this level. The most common strategies for combining the distinct 

decisions into a final authentication decision are the voting techniques (AND, OR, 

Majority Voting).
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This fusion strategy has been presented by a small number of researchers such as 

Diekmann and Hong.

Dieckmann et al in [Dieckmann97] proposed a decision level fusion scheme, which 

integrates face and voice data that are analysed by three different classifiers: face, lip 

motion and voice. For both cases of recognition (identification and verification) a 

field test was done where 66 individuals participated in it. The decision was made 

when two of three (majority voting) of the classifiers results lead to the same person 

and exceeds a given threshold. The experiments showed that the recognition rate 

using the majority-voting rule is higher than the recognition rate in any single 

modality alone.

Hong et al. presented in [Hong99] ways of combining information from two 

modalities: face and fingerprint images at various levels. Two levels of fusion were 

considered; score-level fusion, where the Bayesian method was used and a decision- 

level fusion, where both the OR and AND rules were used. Experimental results 

showed that the performance of a biometric system was improved by integrating 

multiple biometrics than by using either the finger or the face alone.

The literature revealed that combining the decisions using the voting techniques was 

the preferred method among researchers and that combining multiple modalities 

increase the performance of the system.

Several different names have been given to the mentioned fusion levels by 

researchers. Sanderson et al [Sanderson04] have classified information fusion in 

biometric systems into two broad categories: pre-mapping fusion and post-mapping 

fusion. Silsbee in [Silsbee96] referred to pre-mapping fusion and post-mapping 

fusion as pre-categorical integration and post-categorical integration, respectively, 

while Wark in [WarkOO] referred to the terms as input level or early fusion and 

classifier level or late fusion, respectively. However, in this work it was decided to 

classify the information fusion into two main levels: feature fusion level and 

decision fusion level where the decision fusion is sub-divided into hard decision 

fusion and soft decision fusion. Hard decision fusion is a decision made by the 

system that returns either a 0 (reject) or a 1 (accept), while soft decision fusion is a
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decision made by the system that returns a score that normally lies in the [0,1] 

interval. Figure 2.8 shows the two levels of fusion and the method to accomplish the 

fusion at each level. As previously mentioned the fusion at the feature level was not 

considered for the reasons mentioned earlier, the decision level on the other hand 

was the one used in this work which will be explained in details later in this thesis.

Fusion Type

Sensor Data 
Level

i l
Weighted Mosaic

Summation construction
Rule

Feature Decision
Level Level

Majority AND OR
Voting

▼
Sum
Rule

Figure 2.8: The hierarchy of fusion types

2.5 Multimodal Biometric Databases

One of the important factors in evaluating the performance of automatic recognition 

systems based on the biometric characteristics of individuals, in both identification 

and verification mode, is the availability of a large multimodal biometric database 

acquired under real conditions for testing the algorithms. The main problem 

involved in the development of a multimodal biometric database is the availability
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of a large number of individuals concerned in offering its biometric features. Often, 

the acquisition of the biometric features is accomplished in different moments and in 

different conditions, which suppose high degree of collaborativeness for the 

participants. For that reason, the number of existing public databases for the 

performance evaluation of recognition systems based on multiple biometric 

modalities is quiet limited. At the present there are quiet a few medium and large- 

scale multi-modal databases and these are:

The BT-DAVID (British Telecommunication-Digital Audio-Visual Integrated 

Database) audio-visual database contains full-motion video, showing a full-face and 

a profile view of talking subjects, together with the associated synchronous sound 

[Chibelushi96], It includes audio-visual material from more than 100 subjects 

including 31 clients recorded on 5 sessions spaced over several months. The 

utterances include the English digit set, English alphabet E-set, vowel-consonant- 

vowel syllables, and phrases for the control of a video-conferencing session. The 

scenes include variable scene background complexity and illumination. Portions of 

the database include lip highlighting.

The M2VTS (Multimodal Verification for Teleservices and Security Applications) 

database is another multimodal database that contains audio-visual material from 37 

different subjects [M2VTS]. It provides 5 shots for each person, the shots consist of 

the registration of audio and video of the person counting from 0 to 9 and rotating 

the head in the sequence [0, -90, 0, 90] degrees.

The VidTIMIT database comprises video and audio recordings of 43 volunteers (19 

female and 24 male), reciting short sentences. It was recorded in 3 sessions, with a 

mean delay of 7 days between Session 1 and 2 and 6 days between Session 2 and 3. 

For the audio 10 sentences were chosen from the test section of the NTIMIT corpus 

[Jankowski90] for each person. The first six sentences were assigned to Session 1. 

The next two sentences were assigned to Session2 with the remaining two to Session 

3. The first two sentences are the same for all the volunteers, with the remaining 

eight generally different for each person. For the face, each person performed an 

extended head rotation sequence in each session, which allows for extraction of
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profile and 3D information. The sequence consists of the volunteer moving his/her 

head to the left, right, back to the centre, up, down and finally return to the centre.

Another important resource available nowadays is the extended M2VTS 

(XM2VTS). This database contains audio-visual material from 295 subjects 

[Messer99][Cheung04] taken over a period of 4 months. On each visit (session) two 

recordings (shots) were made. The first shot consisted of speech whilst the second 

consisted of rotating head movements. This database includes high quality colour 

images, 32 KHz 16-bit sound files, video sequences and a 3D Model.

The BANCA database was captured in four European languages: English, French, 

Spanish and Italian in two modalities (face and voice) [BANCA]. For recording, 

both high and low quality microphones and cameras were used [Bailly-Bailliere03]. 

The subjects were recorded in three different scenarios, controlled, degraded and 

adverse over a period of three months. In total 208 people were captured, half men 

and half women.

The MCYT database is a large bimodal database that contains fingerprints and 

signatures of 330 different subjects [MCYT]. It includes a significant number of 

samples of each modality, under different levels of control to cope with the inherent 

variability of each feature at the acquisition process. The fingerprint database 

contains 79200 fingerprint samples acquired from 330 individuals, for each 

individual ten-print fingerprint, 12 samples of each fingerprint are acquired using 

two different sensors (optical and capacitive). The signature database on the other 

hand, contains 16500 signature samples, where 25 client signatures and 25 highly 

skilled forgeries (with natural dynamics) were obtained for each individual. Both on­

line information (pen trajectory, pen pressure and pen attitude) and off-line 

information (image of the written signature) are considered in the database. A full 

description of the algorithms used for enrolment and verification can be found in 

[Ortega-Garcia02] [Ortega-Garcia03].

Finally, BIOMET is a large database that contains five different modalities: audio, 

face images (3 cameras), hand image, fingerprint and on-line signature. For the face 

images, a camera prototype designed to suppress the influence of the ambient light,
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a 3D acquisition system prototype, and a standard digital camera were used. Three 

different sessions, with three and five months spacing between them, were realized. 

For the video sequences and face images, the persons were asked not to take off 

their glasses. The number of persons participating in the collection of the database 

was 131 for the first session, 106 for the second, and 92 for the last one. The 

proportion of female and male subjects was balanced in all sessions. 10% of people 

enrolled were students (with a mean age of 20), others' age varies from 35 up to 60 

years.

Most of the research that has been done on multimodal biometric system was carried 

out mainly on the M2VTS database and the XM2VTS database. The multimodal 

biometrics experiments mentioned in [Duc97] [Duc97a] [Jourlin97] [Kittler98] 

[Ben-Yacoub98] [Pigeon99] [Kittler02] [Messer99] [BengioOl] [Bengio02] have all 

been carried out over these two databases.

The BT-DAVID and the M2VTS are medium size databases. The VidTIMIT 

database apart from its medium size it is not publicly available, it is only licensed for 

employees of IDIAP. The XM2VTS is a large database, however, it was not possible 

to use it for two reasons, first because the controlled recording environment was not 

realistic enough compared to the real world situations, such as making a transaction 

through an ATM in a variety of surroundings and second because the database 

consist of audio and video material and it was desired to evaluate the performance of 

a system with more than two biometric modalities. The BANCA is also a large 

database, however, it was not used because it was not available at the start of this 

research and also because it consists of two modalities (face and voice) and as 

mentioned it was desired to evaluate the performance of more than two biometric 

modalities. The MYCT is a large database but it will be publicly available in 
January 2005. The BIOMET on the other hand, is a large database with multiple 

modalities. The reason for not using it is because it was not available at the start of 
this research.
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2.6 Summary

A review of research studies in the field of multimodal biometric systems has been 

presented regarding the fusion approaches and the multimodal biometric databases. 

The literature demonstrated that the overall performance of the system can improve 

by integrating multiple biometric systems than by using a single biometric alone. A 

brief overview of the fusion approaches used in combining multimodal biometric 

system revealed the obvious preference of combining multiple biometric at the 

decision level (both the score level and the decision level) than combining them at 

the feature level. The literature also highlighted the problem of selecting a 

normalization method that maps the output scores of different classifiers into a 

common interval [0,1] before fusing them.

An overview of the publicly available medium and large-scale multimodal databases 

was provided and the reasons for not using them in this work were presented.

The next chapter describes the data collection exercise that was undertaken at the 

University of Kent as part of this research.
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Data Collection Exercise

3.1 Introduction

As stated previously the limited number of available multimodal biometric databases 

for evaluation introduced the idea of developing a multimodal biometric database. In 

this chapter a data collection exercise to acquire data from a range of biometric 

devices was undertaken. The chapter also describes the biometric devices that were 

chosen for the evaluation. A description of the test protocol used to capture the 

biometric samples and to evaluate a set of biometric measurements is also presented.

3.2 Biometric Devices Selection

Biometrics encompasses a wide range of techniques based on a variety of physical 

or behavioural personal characteristics [Fitzegerald89] [Miller94], Examples of 

physical characteristics are face, fingerprints and hand geometry. Typical 

behavioural characteristics are voice and hand-written signature dynamics.

Biometrics systems based on physical characteristics are generally more intrusive 

than behavioural-based systems. However, the latter are more error-prone than the 

former owing to the time variations exhibited by behavioural characteristics. Beside
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temporal variation considerations, other factors affecting the selection of either 

physical or behavioural characteristics are cost, size, user-friendliness and reliability 

of the data capture equipment [BWG02]. None of the two categories of biometric 

characteristics wins on all fronts, as a result, the choice of either approach is often 

application-driven. It was decided to combine the use of physiological and 

behavioural biometric for grater quality, thus we chose to use the three modalities: 

fingerprints, face and voice [WaymanOO]. Fingerprint modality was chosen for its 

long track record of reliability, face and voice modalities were chosen for the fact 

that these are part of the natural human messaging modalities [Brunelli95], and their 

hardware are cheap (microphone and camera), to the extent that some of them are 

offered as standard accessories of personal computers and workstation.

After selecting the modalities to be used, the next step was to look into the suitable 

systems available in the market. The aim was to find relatively cheap commercial 

off-the-shelf, user-friendly and reliable software. This is because using stated system 

successfully would demonstrate the usefulness of multimodal approach. After a long 

investigation it was decided to use the following software as shown in Table 3.1

Table 3.1 The software used for the project

Modality Software
Face Facelt
Voice VeriVoice

Fingerprint SecuGen

Facelt was chosen for its ranking as the world’s most advanced face recognition 

engine, Verivoice was chosen because it was freely provided by the vendors to be 

used in this research and Secugen was chosen for its user-friendliness and simple 

way of usage. The description and operation of each of the software used is given 
below.
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3.2.1 Facelt

Facelt is developed by Visionics Corporation [Visionics]. At the time of this 

research it was claimed to be a highly commercial face recognition engine. Its 

software development kit can be used to perform both face identification (1-to-many 

searches) and face verification (1-to-l matching).

The system works by analysing particular features of the face, such as the distance 

between the eyes and the nose, and the shape and location of the cheekbones 

[Visionics]. Skin colour and gender are not factors in the process, and the 

technology is designed to compensate for glasses, hats and beards.

Figure 3.1: Facelt SDK detects human faces 
by finding the area enclosed by the circle

The enrolment process is quick and fairly simple, it lasts about 12 seconds. Users 

pose in front of the camera until the window on the computer screen shows an 

acceptable image of the entire face. Then the process of capturing the images for 

enrolment begins. During this phase, users are instructed to vary the angle of the 

face slightly. The camera rapidly takes nine images and displays each of them in the 

enrolment window. The size of each template is quiet large, which is roughly 

between 3 to 4 kilobyte. The system then creates a facial template and enrolment is 

complete.
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Figure 3.2: The face enrolment process

Face identification and verification is carried out based on the degree of similarities 

between the tested template of the user and his reference templates stored in the 

database. The process of verification lasts about 10 seconds. The decision threshold 

can be varied depending on the required degree of accuracy

The main advantage of Facelt software over other face recognition engines is that it 

allows for tests of “liveness” of its captured images. This is particularly important in 

order to avoid false acceptance by attempts to use still photographs presented in 
front of the video camera.

3.2.2 VeriVoice

The VeriVoice software development kit is used for user verification, which is based 

on 1-to-l matching [Verivoice]. It operates based on voice recognition and is 

designed particularly for access control applications, such as access to financial 

databases, computer networks, research facilities and other controlled environments.

VeriVoice software is restricted to text dependent samples. The enrolment process 

lasts about 3 minutes. The software prompts the user to repeat 12 different samples 
read from the given predefined texts. One reference template of size 16 Kbytes is 

then derived from the information provided by the twelve captured samples for each 

user.

In the verification process, the user is prompted to repeat a string of random digits. 

The software then prompts a score stating whether the person has passed or failed 

the process. This verification process takes less than one second.
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The advantage of this software is that prompting for a randomly generated sequence 

of numbers during the verification process enhances security by eliminating hacking 

with digital recorders.

3.2.3 SecuGen

SecuGen software development kit is a biometric tool based on fingerprint 

recognition using minutiae matching [Secugen]. It is capable of performing both 

user identification and verification tasks.

The software can only be used with its own mouse, which has a fingerprint platen on 

its left side where the user places his/her thumb as illustrated in the figure below

Figure 3.3: SecuGen EyeD Mouse

In the enrolment process, the user places his/her thumb on the mouse. The device 

sensor scans the user’s finger and captures the live, 71 Kbytes fingerprint image. A 

series of algorithms developed by SecuGen extracts minutiae points from the image 

and converts the data into a unique mathematical template. This unique template, 

which is 400 bytes long, is then encrypted and stored to represent the user.

For verification, an enrolled user states a claimed identity (i.e. enters a user ID) and 

places his/her finger on the device sensor. A new fingerprint image of the user is 

captured. Minutiae data is extracted from the fingerprint and converted into a 

template. This template is then compared to the user's pre-enrolled template for a 

match. If the templates match, the user is verified positively. This process takes 

roughly about one second.
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This software has two advantages. Firstly, fingerprint images are never stored. When 

a fingerprint is captured, only a portion of the minutiae are sampled and then 

processed by an extraction algorithm and converted into a secure template. After the 

template is formed, the fingerprint image is deleted. All fingerprints are used in the 

form of templates enrolment and matching. Secondly, Fingerprint images cannot be 

reconstructed from minutiae or templates. The minutiae sampled from a fingerprint 

do not have enough information to recreate an image of the fingerprint. 

Additionally, minutiae cannot be extracted from a template because the 

mathematical conversion from minutiae to template is irreversible. As a final 

measure of security, templates are secured using advanced encryption to prevent 

data from being “hacked”.

3.3 Test Protocol

After selecting the biometric devices to be used, the next task was to define a test 

protocol for conducting technical testing in order to capture biometric samples from 

a set of users and to evaluate the set of biometric measurements. It was decided to 

use the emerging guidelines in “Best Practices in Testing and Reporting 

Performance of Biometric Devices” [BWGOO] for the data collection exercise.

The first step was to decide whether the biometric authentication would be 

verification or an identification process. Due to the biometric software devices, the 

verification process was chosen.

To form the basis for developing an appropriate test protocol that specifies the 

appropriate environmental controls, volunteer selection and test size, the choice of 
an evaluation type had to be determined. There are three basic types of evaluation of 
biometric systems [PhillipsOO] [BWGOO] [Court03]:

• Technology evaluation: The goal of this evaluation is to compare 

competing algorithms from a single technology. Testing of all algorithms is 

carried out on a standardised database collected by a “universal” sensor.
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Nonetheless, performance against this database depends upon both the 

environment and the population in which it is collected.

• Scenario evaluation: The goal of this evaluation is to determine the overall 

system performance in a prototype or simulated application. Testing is 

carried out on a complete system in an environment that models a real-world 

target application of interest. Each tested system will have its own 

acquisition sensor and so will receive slightly different data. Care is required 

that the data collection across all tested systems is in the same environment 

with the same population.

• Operational evaluation: The goal of this evaluation is to determine the 

performance of a complete biometric system in a specific application 

environment with a specific target population.

Since the principal goal of this research was to evaluate and test the biometric 

modalities in an environment that models a “real-world” application rather than 

testing algorithms or determining the performance of a biometric system on a 

specific application with a specific population, the scenario evaluation was chosen 

for the exercise.

3.4 Modelled Scenario

The scenario modelled for the exercise is that of verification in which a single 

attempt is matched against a single stored template. The use of each biometric 

technology has its strengths and weakness depending upon the application in which 

it is used. Although each use of biometric is clearly different, some striking 

similarities emerge when considering applications as a whole. All applications can 

be partitioned according to at least seven categories. [Wayman98] [Wayman99] 

[EWA01]. The seven categories that suited the exercise are identified and these are:
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Cooperative users versus Non-cooperative

This refers to the behaviour of the deceptive user (impostor). In “verification” 

applications, the user claims an enrolled identity; this means that the deceptive user 

is cooperating with the system in an attempt to be recognized as someone s/he is not. 

This is called “cooperative” application. In “identification” application, the user 

makes no claim to identity, thus requiring the search of the entire enrolled database. 

This is called “non-cooperative” application.

Overt versus Covert

If the user is aware that a biometric identifier is being measured, the use is overt. If 

unaware the use is covert.

Habituated versus Non-habituated

This applies to the intended users of the application. Users presenting a biometric 

trait on a daily basis are considered habituated. Users who have not presented the 

trait recently are considered “non-habituated”.

Attended versus Non-attended

This refers to whether the use of the biometric devices during enrolment will be 

supervised and guided by a supervisor or not.

Standard versus Non-standard environment

If the application will take place indoors at standard temperature and other 

environmental conditions, particularly where lighting conditions can be controlled, it 

is considered a “standard environment “application. Outdoor systems are considered 

“non-standard environment” applications.

Public versus Private

This refers to the users of the system if they are members of the general population 

(public) or employees (private).
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Open versus Closed Usage

If the system will be required to exchange data with other biometric systems run by 

other management, then it is open. Otherwise, it is closed.

The exercise to be undertaken is classified as a cooperative, overt, supervised, 

non-habituated, standard environment, public, closed application. Cooperative 

because those wishing to defeat the system will attempt to be identified as someone 

already in the system. It is overt because all volunteers will be aware that they are 

required to give a biometric measure during enrolment and verification transactions. 

It is supervised and in a standard environment because collection of the biometrics 

will take place in a normal office environment and under the supervision of a 

supervisor. It is non-habituated because the separation between enrolment and 

verification transaction is one to two months, so the level of habituation will be quite 

low. It is public because the trial is open to 200 volunteer from different gender and 

different age. It is closed because we will not exchange the biometric information 

gathered with any other systems.

3.5 Device Set-up

Before recruiting people for the exercise a set up of the devices was necessary. As 

already mentioned the enrolment and testing procedure was to be conducted indoors 

in a standard office environment (3m by 4m room) designated as the “biometrics 

laboratory”. Figure 3.4 shows the distribution of the biometric devices within the 

biometrics laboratory. As can be seen from the figure, two PC machines are used, 

One supporting the fingerprint device and the other supporting both the voice and 
the face devices.
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Blue
background

Entrance

3 m

Figure 3.4: Layout of the biometric devices within the biometric laboratory

Both PCs were Pentium III with 256 MB RAM and a 20 GB of hard disk space. For 

face enrolment and verification a standard webcam camera was placed on the PC to 

capture human faces. A plain blue background was placed behind the sitting subject. 

The decision threshold of the Facelt software ranges from 0.0 to 10.0. The 

manufacturer default value 8.7 was set for the trial.

For voice enrolment and verification a desktop microphone was used to capture 

voice samples from users. Speakers were also used in order to read out instructions 

to users. The decision threshold of the VeriVoice software ranges from -1476 to 

323. For enrolment and verification the manufacturer’s default value 0 (zero) was 

set.

The Fingerprint decision threshold ranges from 0 to 9. For enrolment and 

verification it was set to its manufacturer default value 5.

All vendor recommendations regarding positioning, illumination and background 

noise were taken into consideration. Some pre-trial tests using the testing team were
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carried out to determine environmental and other factors that may cause problems 

and to find solutions to these problems.

3.6 Volunteer Crew

After setting up the devices and testing them, a call for volunteers was issued. To 

encourage the volunteers to participate, a modest payment was offered to each. All 

those responding were invited to participate [Mansfield02], though some withdrew 

when they could not attend an appointment for enrolment. A further call was issued 

to achieve slightly over 200 participants and finally we managed to recruit 221 

volunteers for the exercise. The age and gender profile is shown in Figure 3.5

S 50 *-*
i  40 
o
> 30

H -o
«5 20
E 10
3
= 0

18-24 25-34 35-44 45-54 55-64 65+

E Female 
■ Male
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Figure 3.5: Age and gender of volunteer crew

This volunteer crew were recruited mainly from students and staff at the university 

of Kent as well as some volunteers from the city of Canterbury. It is a mix of people 

working in different environments some accepting the technology and others not and 

it is a mix of students, workers, housewives and retired people.

Before enrolment, participants were informed of the purpose of the exercise, what 

was required of them, and what information will be collected and stored as well as a 

brief description of the biometric modalities that will be collected. The main aim of 

informing the participants before the enrolment was to ensure participants the
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intention of the project and help the participant to understand the project. Each 

participant was also required to give written consent (see appendix A) to 

participation and to supply brief personal information to assist in the data analysis.

3.7 Enrolment

On arriving at the “biometric laboratory”, the supervisor provides the volunteer with 

a brief explanation of the capture process, which normally takes a few minutes. The 

aim of doing so is to make the volunteer aware of the enrolment process and also to 

allow the volunteer to recover to his/her normal state if s/he had cold fingers (when 

cold outside) or was out of breath (hurried to make their appointment).

Each volunteer was allocated a PIN for the trial. To avoid the possibility of the 

volunteer mistyping their PIN and producing another valid PIN, the ISBN error- 

detection scheme was used [MansfieldOla] [Mansfield02]. The 4-digit PINs abed 

have the property that 4a+3b+2c+d is exactly divisible by eleven. This detects all 

single digit errors and transportations. From the available PINs, the set used was as 

widely spaced as possible, in the range 1000-9999, giving robustness against more 

complex typing errors. This set was stored in the biometric devices allowing the 

system to provide feedback if a wrong PIN was entered.

During the enrolment phase, each volunteer would use his/her PIN when attempting 

to enrol on each biometric system under test and up to three enrolment attempts per 

device was permitted. If the subject fails to enrol on any of the devices after three 

attempts then it is regarded as “Failure to Enrol “. Once the subject has successfully 

enrolled, s/he was asked to verify against his/her stored template to check if the 

subject can be reliably verified. Three attempts at verification were made whether 
the subject fails or passes any of them.

The order of enrolment on the devices being tested was randomised. However, in 

order to avoid keeping the participant moving around the test site, the order of 

enrolment was chosen in a way that the biometric modalities of each PC machine
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would follow the order. For instance, if the first biometric modality is voice, 

automatically the second modality is face and finally fingerprint.

At the end of the session each volunteer was informed about the second session and 

its procedure.

3.8 Test Data Collection

This session was done at least 30 days after the first session. During this session 

subjects were required to enter the same PIN used during enrolment and follow the 

verification process. They were required to make three attempts to verify against 

their previously created template. Every attempt, even the ones that failed, were 

reported and saved, along with the user details.

The order of verification on the devices being tested was randomised and not 

correlated with the order of use on the previous session.

Overall this data collection exercise took almost 6 months; it started in November 

2001 and finished in May 2002

3.9 Summary

In this chapter we described a data collection exercise that was undertaken at the 

University of Kent as part of this research. In this exercise both the physiological 

and behavioural biometrics were used, the fingerprint was chosen for its reliability, 

the voice and face for their low-cost hardware and high acceptability. The data 

collection protocol was linked to a scenario-testing regime and was developed 

within the emerging guidelines for best practice in biometric testing.

The next chapter provides some preliminary analysis on the multimodal database 

that was collected.
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The Multimodal Database and Some 

Preliminary Analysis

4.1 Introduction

This chapter starts by describing the database resulting from the data collection 

exercise that was carried out. A preliminary analysis of the database is provided, 

which provides an initial overview of the performance and viability of the three 

different modalities when considered as individual options.

4.2 The Multimodal Database

The database contains in addition, to the biometric information, basic personal and 

demographic information provided by the participant. The database consists of 221 

individuals as previously shown in Figure 3.5 of whom 45 % are females and 55 % 

are males. Their ages range from 18 years to 65 years and above. The database 

contains all the information concerning both enrolment and verification; the 

enrolment date and the attempts to achieve it, as well as the verification date, the
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successful and failure attempts were all noted. A sample of the database entities is 

shown in appendix (B).

4.3 Preliminary Analysis of the Database

In this section a preliminary analysis of the performance of the modalities adopted is 

presented. The analysis focuses mainly on performance comparisons between 

verification based on single individual biometric modalities and approaches, which 

exploit the opportunity to collect authentication data from more than one biometric 

source. In this analysis the modalities were combined using the AND rule, which 

will be exploited more later in this thesis. It is important to emphasise that the 

analysis presented here does not, in itself, provide a complete picture, since the 

focus was entirely on Type I verification errors. Nevertheless, the results presented 

are important in that they provide clear quantitative estimates of the performance 

potentially achievable in a real practical scenario with typical users and using 

commercially available devices. It should be noted that the analysis provided is an 

initial observation in respect of the data gathered. It should also be noted that the 

results through out this thesis are presented with a 95 % confidence level calculated 

as described in [Mansfield02] [Wayman99a] [Shen97], The formulas used are 

presented in Appendix (C).

4.3.1 Failure to Enrol

Some users may experience problems at the enrolment stage itself, perhaps because 

of unfamiliarity with the acquisition infrastructure, or difficulty in generating sample 

data (e.g. an image of sufficient quality for accurate processing, and so on) 

[BWGOO], The failure to enrol rate was estimated as the proportion of volunteers 

who could not be enrolled under the pre-determined enrolment policy described in 

the previous chapter, which permits the volunteer up to three attempts to enrol 

successfully. Failure to enrol after the three failed attempts was regarded as final 

failure to enrol and no further attempts were made.
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To indicate the effectiveness of the proposed multimodal systems in overcoming the 

deficiencies in any single modality for any particular potential enrolee, three 

experiments were carried out.

Experiment 1: Failure to enrol in single modalities

Table 4.1 shows the percentage of subjects who failed to enrol successfully with 

respect to each of the three biometric devices [Bengio02],

Table 4.1: Failure to enrol rates for each modality

Modality
Failure -to- enrol rate (%)

Fingerprint Voice Face
Error rates 2.7 ±2.1 10.0 ±4.0 1.4 ± 1.5

The table shows a considerable variability in the extent to which a satisfactory 

enrolment can be achieved. The Fingerprint and Face biometrics generated a 

relatively small failure to enrol rate, but the Voice modality proved significantly less 

reliable in achieving satisfactory enrolment.

Experiment 2: Failure to enrol in dual modalities

If failure to enrol for a multimodal system is defined as the situation where a subject 

fails to enrol on both devices in the chosen combination, then for each possible 

combination of two biometric modalities (Fingerprint/Voice, Fingerprint/Face, 

Voice/Face) the failure to enrol rates are as shown in Table 4.2.

Table 4.2: Failure to enrol for dual modalities

Modality
Failure -to- enrol rate (%)

Fingerprint / 
Voice

Fingerprint / 
Face

Face / 
Voice

Error rates 0.9 ± 1.2 0.0 0.0
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The table shows an improvement in the performance that occurs as a result of the 

availability of more than one modality, and it shows that the weakness in one 

modality can be compensated by the strength of another.

Experiment 3; Failure to enrol in three modalities

Table 4.3 shows the percentage of subjects who failed to enrol successfully in all 

three biometric devices.

Table 4.3: Failure to enrol rates for three modalities

Modality
Failure to enrol rate (%)
Fingerprint, Voice & Face

Error rates 0.0

Indeed, moving to a three-modality system showed the failure to enrol rate drop to 

zero. This is a powerful indicator of the value of a multimodal system in overcoming 

the deficiencies in any single modality for any particular potential enrolee.

4.3.2 Results Obtained from Analysing the Sessions

As previously mentioned, each volunteer took part in two separate data collection 

sessions, the first involving enrolment on each of the devices under test together 

with a post-enrolment verification check. Each volunteer undertook three 

verification attempts at this session. A second session was undertaken at least one 

month later where three additional verification attempts were carried out using the 

enrolment templates generated at the first session.

In this section, two different situations that were raised from these sessions are 

presented and these are:
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4.3.2.1 The Time-based Changes in Biometric Data

The passage of time may give rise to a situation where, while having successfully 

enrolled and verified at an initial session, re-testing at a later date results in a 

verification failure (for example, because of damage to the finger in the intervening 

period, or a change in the way in which the finger was subsequently presented to the 

capture device, and so on). The time-based changes in biometric data was 

investigated by considering the proportion of subjects who, after a satisfactory 

enrolment and verification in the first session, failed to verify identity in all three 

attempts at the second.

Three different experiments were carried out to investigate the effect of time-based 

changes in biometrics when using multiple modalities.

Experiment 1: Failure rates in single modalities

Table 4.4 shows the failure rates with respect to each of the three biometric devices.

Table 4.4: Failure rates for each modality

Modality
Failure to verify rates (%)

Fingerprint Voice Face
Error rates 14.0 ±4.6 1.4 ± 1.5 26.7 ± 5.8

These results also show the considerable variability across the available devices. The 

voice biometric provides, by a significant margin, the most stable performance, 

while the face biometric performs relatively poorly, generating a failure rate almost 
twice that of the fingerprint modality.

These results suggest that, while the voice system might present some difficulties at 

enrolment (cf. Table 4.1), the performance returned is much more stable than for the 

other modalities once a satisfactory enrolment has been achieved.
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Experiment 2: Failure rates in dual modalities

The verification failure rate when a combination of two modalities is adopted refers 

to the situation where successful verification based on at least one of the modalities 

in the chosen combination has not been achieved, then for each possible 

combination of two biometric modalities (Fingerprint/Voice, Fingerprint/Face, 

Voice/Face) the failure rates are as shown in Table 4.5.

Table 4.5: Failure rates for dual modalities

Modality
Failure to verify rates (%)

Fingerprint / 
Voice

Fingerprint / 
Face

Face / 
Voice

Error rates 0.5 ±0.9 3.6 ±2.5 0.0

Clearly, a significant improvement in performance is evident in the multiple 

modality scenario. The failure rates were reduced dramatically (cf. Table 4.4) by 

using a dual modality system, with the error rate falling to zero for the Voice/Face 

combination. This sharply contrasts with failure rates of as much as 27 % when a 

single modality is adopted.

Experiment 3: Failure rates in the three modalities

The verification rate is defined as a failure to satisfactorily verify identity in all three 

modalities tested. Table 4.6 shows the failure rate in all three modalities

Table 4.6: Failure rates for three modalities

Modality
Failure to verify rates (%)
Fingerprint, Voice & Face

Error rates 0.0

Indeed, using three modalities reduced the error rate to zero. The experiments above 

suggest that although one modality may change dramatically over time, it is unlikely 

for two or more modalities to do the same.
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4.3.2.2 The Goat Phenomenon

The “goats” are the proportion of people who generate inherently unstable data with 

respect to a particular biometric in a system and who consequently may have a high 
risk being falsely rejected by the system [Plamondon89]. Goats may therefore need 

to be excluded from a system or treated as special cases in some way. The goat 

phenomenon was investigated by determining the proportion of subjects who after a 

satisfactory enrolment failed to verify identity in all attempts both at the first and the 

second session. Three experiments were carried out to investigate whether an 

individual could be a “goat” in more than one biometric system.

Experiment 1: Goats in single modalities

Table 4.7 shows the goats probability with respect to each of the three biometric 

devices.

Table 4.7: Goats in each modality

Modality
Goats (%)

Fingerprint Voice Face
Error rates 4.1 ±2.6 0.0 1.8 ± 1.8

The voice system seems less vulnerable to instability (no goats identified) than 

either of the other two modalities.

Experiment 2: Goats in dual modalities

Goats in a combination of two modalities refers to the proportion of people who had 

a satisfactory enrolment, but failed to verify identity on each of the modalities in the 

chosen combination, then for each possible combination of two biometric modalities 

(Fingerprint/Voice, Fingerprint/Face, Voice/Face) the goats are as shown in 
Table 4.8
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Table 4.8: Goats in dual modalities

Modality
Goats (%)

Fingerprint / 
Voice

Fingerprint / 
Face

Face / 
Voice

Error rates 0.0 0.0 0.0

It was noticed that the “goats” that get through one type of biometric system, are not 

the same as those who cause a problem with another system. Table 4.8 showed that 

it was extremely unlikely that an individual, whose fingerprints are read 

inaccurately, for example, would also have a voiceprint that is hard to recognize.

Experiment 3: Goats in the three modalities

Table 4.9 shows the goats probability in the three biometric devices.

Table 4.9: Goats in the three modalities

Modality
Goats (%)

Fingerprint, Voice & Face

Error rates 0.0

The experiments demonstrated that “goats” exist in every biometric system, but an 

individual who is a “goat” in one biometric is unlikely to be also a “goat” in a 
different one.

4.3.3 Exploitation of Re-try Strategies and Learning Effects

To exploit the effects of re-try strategies, two types of experiments were carried out. 

In both experiments the issues related to multiple enrolment attempts and their 

effects on error rates were considered, since it is usual to allow more than one such 

attempt in initiating the exploitation of a biometric-based system.
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4.3.3.1 False Rejection Rate as a Function of the Number of Enrolment Attempts

For each type of biometric technology there is an associated learning curve. The 

more often a user accesses a particular biometric device and the more practised the 

user becomes, the less likely it will be that the machine will fail to recognise that 

person [BWG02], This is because the user has grown more consistent in presenting 

his/her biometric feature. In this experiment the effects of multiple enrolment 

attempts on the false rejection rate were explored. This was done by determining the 

proportion of subjects who failed to verify identity either in the first or in the second 

session with respect to the enrolment attempts. In Table 4.10, 1st enrolment attempt 

refers to the portion of subjects who were successfully enrolled in the first attempt, 

2nd enrolment attempt refers to the portion of subjects who after having problems 

enrolling in the 1st attempt was successfully enrolled in the 2nd attempt and 3rd 

enrolment attempt refers to the portion of subjects who had problems enrolling in 

the 1st and 2nd attempt, but were successfully enrolled in the 3rd attempt. Table 4.10 

shows the results obtained from this experiment.

Table 4.10: False rejection rate as a function of enrolment attempts

Attempt
False rejection rate (%)

Fingerprint Voice Face

1st enrolment attempt 10.9 ±4.1 0.9 ± 1.2 31.2 ± 6.1

2nd enrolment attempt 9.5 ±3.9 0.5 ±0.9 1.4 ± 1.5

3rd enrolment attempt 2.7 ±2.1 0.0 0.5 ± 0.9

It was noticed that as the number of attempts to achieve a successful enrolment 

increases, the false rejection rate decreases. This shows the positive effect of 

“training during use” associated with this type of activity.
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4.3.3.2 Failure to Enrol as a Function of the Number of Enrolment Attempts

Although “failure to enrol” in the previous sections was regarded as failure to enrol 

in all three attempts, in this experiment we considered the “failure to enrol” as the 

failure to enrol with respect to enrolment attempts. In Table 4.11,4.12 and 4.13, 1st 

enrolment attempt refers to the portion of subjects who had problems enrolling in 

the first attempt, but were successfully enrolled in the 2nd, the 2nd enrolment attempt 

refers to the portion of subjects who had problems enrolling in both the 1st attempt 

and the 2nd attempt, but were successfully enrolled in the 3rd and 3rd enrolment 

attempt refers to the portion of subjects who had problems enrolling in all three 

attempts and no further attempts were made. Table 4.11 shows the results obtained 

from this experiment.

Experiment 1: Failure to enrol in single modality

Table 4.11 shows the failure to enrol rate on each of the biometric systems with 

respect to the enrolment attempts.

Table 4.11: Failure to enrol rate as a function of enrolment attempts in single modalities

Attempt
Failure to enrol rate (%)

Fingerprint Voice Face

1st enrolment attempt 28.5 ± 6 29.4 ± 6 4.1 ±2.6

2nd enrolment attempt 7.7 ±3.5 16.3 ±4.9 2.3 ±2

3rd enrolment attempt 2.7 12.1 10.014 1.4 ± 1.5

The results demonstrate why multiple attempts are generally necessary in practice 

and, especially, show how a much poorer performance would be recorded if only a 

single enrolment attempt was allowed. A clear message here is the illustration of the 

positive effect of “training during use” associated with this type of activity.
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Experiment 2: Failure to enrol in dual modalities

The failure to enrol rate when a combination of two modalities is adopted is defined 

as a failure to complete a satisfactory enrolment process on both of the available 

devices. Table 4.12 shows the performance characteristics for dual modalities.

Table 4.12: Failure to enrol rate as a function of enrolment attempts in dual modalities

Attempt
Failure to enrol rate (%)

Fingerprint / 
Voice

Fingerprint / 
Face

Face / 
Voice

Is' enrolment attempt 10.4 ±4.0 0.9 ± 1.2 0.9 ± 1.2

2nd enrolment attempt 2.3 ± 2.0 0.0 0.0

3rd enrolment attempt 0.9 ± 1.2 0.0 0.0

Experiment 3: Failure to enrol in the three modalities

Table 4.13 shows the failure to enrol in the three modalities with respect to 
enrolment attempts.

Table 4.13: Failure to enrol rate as a function of enrolment attempts in all three modalities

Attempt
Failure to enrol rate (%)
Fingerprint / Voice / Face

1st enrolment attempt 0.5 ±0.9

2nd enrolment attempt 0.0

3rd enrolment attempt 0.0

It was noticed that as the number of modalities increases more attempts are required 

to achieve a successful enrolment on all of them together.
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4.3.4 Effects of Biometrics on Each Other

The experiments carried out in the previous sections supported the intuitive 

assumption that the combination of multiple modalities improves performance by 

providing more information for making identity decisions. On the other hand, a 

different intuition suggests that if a strong modality is combined with a weaker one, 

the resulting decision environment is in a sense averaged, and the combined 

performance will lie somewhere between that of the two modalities conducted 

individually (and hence will be degraded from the performance that would be 

obtained by relying solely on the strongest one) [DaugmanOO], To investigate the 

second suggestion and to see the effect of different modalities on each other and 

their effect on the performance of the system, three experiments were undertaken. In 

these experiments the proportion of subjects who had a successful enrolment and 

verified identity on both sessions were computed.

Experiment 1: Successful subjects in single modality 

Table 4.14 shows the performance of each of the modalities

Table 4.14: Successful subjects in single modality

Modalityr
Successful subjects (%)

Fingerprint Voice Face
Error rates 78.3 ±5.4 88.7 ± 4.2 67.4 ± 6.2

Although the voice system has presented some difficulties at enrolment (cf. Table 

4.4), its overall performance is much better than the other two modalities. The face 

biometric performed poorly during verification (c.f. Table 4.5), which affected its 
overall performance.

Experiment 2: Successful subjects in dual modalities 

Table 4.15 shows the performance of dual modalities
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Table 4.15: Successful subjects in dual modality

Modality
Successful subjects (%)

Fingerprint / 
Voice

Fingerprint / 
Face

Face / 
Voice

Error rates 70.6 ± 6.0 54.8 ± 6.6 60.2 ± 6.5

It was noticed that when using a relatively strong biometric such as the voice, with a 

relatively weak biometric (in the sense of their overall performance) such as the 

face, the resulting performance is even less than the average of both biometrics 

together.

Experiment 3‘ Successful subjects in three modalities

Table 4.16 shows the successful subjects in all three modalities.

Table 4.16: Successful subjects in three modalities

Modality
Successful subjects (%)

Fingerprint, Voice & Face

Error rates 51.1 ±6.6

Since the table above summarises the performance of the system used, it explains 

the effect that biometric performance has on each other. The voice system 

performed the poorest during enrolment while the face the poorest during 

verification. This difference in performance affected the overall performance of the 

system and hence resulting in the conclusion that sometimes a strong biometric is 

better alone than in combination with a weaker one.

4.3.5 Factors that Influenced the Enrolment Process

The following list is some of the user factors observed by the supervisor during the 

data collection exercise that affected the performance and resulted in enrolment 

failure. The factors can be categorised as physiological, behavioural, appearance and 

job related. It is important to emphasise that these factors are just the supervisor’s
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observations and that no further investigation has been done on them. The enrolment

failure factors for each biometric is also provided in this section

4.3.5.1 Fingerprint Biometric

User physiology

• Failure due to dry and cracked fingers.

• Most of the women’s failure was due to either their long or narrow fingers. 

Long fingers made it difficult to position the finger and the same applied to 

narrow fingers, where it was difficult to place the finger in the centre of the 

device sensor.

• Men with large fingers had difficulty in positioning their finger, which 

resulted in enrolment failure.

• Women with long fingernails had difficulty in adjusting their finger; their 

nails were covering the sensor.

• Left handed people found it difficult to use the Fingerprint device, since that 

the fingerprint platen of the device was on its left side.

User behaviour

• Most of the failures were due to placement; the fingerprint device did not 

have a frame that limits the positioning of the finger.

• Failures due to sweaty (e.g. tensed person) or cold fingers (coming from cold 

weather) subjects were advised to dry their fingers with a piece of cloth and 
to wait till their fingers were warm.

User job

• People with jobs that require using mainly their fingers (e.g. cleaners) find it 

more difficult to enrol.

• Failure due to the unfamiliarity of people with technology.
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4.3.5.2 Voice Biometric

User Physiology

• Old people with hearing problems and sight problems found it difficult to 

read the sequences on the screen that resulted in misreading the sequences.

• Failure due to sight problems; people could not see the sequence on the 

screen and were not able to memorize it, so they ended up mixing it.

• Individuals that suffer from dyslexia had some problems in reading the 

sequences.

User behaviour

• Failure due to frustration of not being accepted by the system, which resulted 

in change of tone.

• Failure due to positioning; people were insisting in getting closer to the 

microphone that resulted in producing echo while speaking.

• Failure due to tension; people were sometimes tense throughout the trial.

• Repeating the sequences either quickly or too slowly resulted in a failure. 

Speaking quickly sounded as if the person was mumbling, while speaking 

too slow the time slot for each sequence was finished before the person 

finished the sequence.

User job

• Failure due to the unfamiliarity of people with technology.

• Failure due to previous activity in working in radio or TV, people tend to 

vary their tone while reading the sequences, which resulted in a failure.
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4.3.5.3 Face Biometric 

User behaviour

• As mentioned in the previous chapter, the enrolment process required the 

user to vary the angle of the face slightly. Failure was due to people tilting 

their head so quickly that their face was hardly captured by the software.

• Failure due to people looking at the screen instead of the camera.

User appearance

• Failure due to wearing shaded glasses, coloured frames or very thick glasses 

that obscured the eyes.

4.3.6 Factors that Influenced the Verification Process

The following list is some of the user factors observed by the supervisor during the 

trial that affected the performance and resulted in verification failure. The factors are 

very similar to that affected the enrolment process. The verification failure factors 

for each biometric is provided in this section

4.3.6.1 Fingerprint Biometric

User physiology

• Failure due to dry and cracked fingers.

• Most of the women’s failure was due to either their long or narrow fingers. 

Long fingers made it difficult to position the finger, the same applied to 

narrow fingers it was difficult to place it in the centre of the device sensor.

• Men with large fingers had difficulty in positioning their finger, which 

resulted in enrolment failure.

• Women with long fingernails had difficulty in adjusting their finger; their 

nails were covering the sensor.
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• Left handed people found it difficult to use the Fingerprint device, since that 

the fingerprint platen of the device was on its left side.

User behaviour

• Most of the failures were due to placement; the fingerprint device did not 

have a frame that limits the positioning of the finger.

• Failures due to sweaty (e.g. tensed person) or cold fingers (coming from cold 

weather) subjects were advised to dry their fingers with a piece of cloth and 

to wait till their fingers were warm.

4.3.6.2 Voice Biometric

User Physiology

• Old people with hearing problems and sight problems found it difficult to 

read the sequences on the screen that resulted in misreading the sequences.

• Failure due to sight problems; people could not see the sequence on the 

screen and were not able to memorize it, so they ended up mixing it.

• Failure due to cold that affected the voice.

4.3.6.3 Face Biometric

User behaviour

• Majority of the failure was due to the fact that people during enrolment were 

looking at the screen and during verification were looking at the camera and 

vice versa.

User appearance

• Failure due to different hair style/colour that altered the face appearance
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4.4 Discussion

A number of interesting points may be drawn from the initial analysis of the 

performance of the three commercial devices (fingerprint, voice and face) gathered 

in Chapter 3. The results in this chapter are based on the information extracted from 

the data collection exercise (a sample is shown in appendix (B)). According to the 

experimental results of this study, the failure-to-enrol rate reduces when using more 

than one modality, thus supporting the idea that using multiple biometric modalities 

increases the performance of the system. The experiments also showed that the 

performance of a single modality may change significantly over time, but it is 

unlikely for more than two modalities to do the same. On investigating the “goats” 

phenomenon, the experiments demonstrated that “goats” exist in every biometric 

system, but an individual who is a “goat” in one biometric modality may not be also 

a “goat” in a different one. Exploiting the effects of re-try strategies and learning 

effects showed that the false rejection decreases as the number of attempts to 

achieve a successful enrolment increases. It also showed the necessity of multiple 

enrolment attempts in practice in order to improve the performance of the system. 

On increasing the number of biometric modalities the results showed that more 

attempts are required to achieve a successful enrolment on all modalities together 

thus demonstrating the problem of non-universality in biometrics as not all users are 

able to enrol in all three biometric modalities. The results also showed the difference 

in performance of each of the biometrics can affect the overall performance of the 

system on using a specific combination scheme (AND rule) and that one poorly 

performing biometric modality can degrade the overall performance of the system. 

Finally, some common factors, observed by the supervisor during the data collection 

exercise, influenced both the enrolment and verification process suggesting that if 

those factors could be reduced an improvement in the system could be achieved.

4.5 Summary

This chapter has presented our initial results and observations in respect of the data 

gathered from our large-scale trial to assess the interaction of a cross-section of the 

general public with a small set of different biometric modalities.
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The data gathered, and the initial observations presented here, provide a preliminary 

overview of the performance and viability of three different biometric modalities 

when considered as individual options. It should be noted that the results are based 

on three specific commercial devices, though it is to be expected that the 

conclusions drawn are indicative of the general trends of the modalities considered.

The next chapter provides a general overview of information fusion and describes 

the different architectures and levels for combining multiple classifiers. The purpose 

of the following chapter is to decide the architecture and level at which the three 

different modalities collected (fingerprint, voice and face) will be combined.
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Chapter 5

Decision Fusion for Multi-Modal 
Biometric Systems

5.1 Introduction

This chapter investigates multi-modal biometric systems using the fusion 

architecture and fusion level that was chosen in Chapter 2. This chapter starts by 

giving a review of the research in the field of multimodal person recognition using 

fusion rules at the decision level. An explanation of the experimental set-up used for 

calculating the error types is then provided and a comparison between the hard 

decision and the soft decision fusion rules is presented. The hard and soft fusion 

rules are also used when characterising the system users as sheep, goats, lambs and 

wolves. The multimodal database collected in Chapter 3 is used for the experiments.

5.2 Contributions of the Decision Fusion Rules

The decision fusion rules that were described in chapter 2 have been used in the 

field of multimodal person recognition. This section provides a review of the 

commonly used fusion rules at the decision level.
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Chibelushi et al have proposed in [Chibelushi93a] to integrate acoustic and visual 

speech for speaker recognition. The combination scheme used was a simple sum 

rule. The author has also combined in [Chibelushi93b] information from still face 

profile images and speech using a form of weighted summation fusion. The results 

showed that when using optimal weights, the ERR was reduced compared to when 

using each of the speech or the face profile expert alone.

Jourlin et al used a form of weighted summation fusion to combine the opinions of 

two experts: a speech expert and a lip expert [Jourlin97], Using optimal weights, 

fusion led to better performance than using the underlying experts alone.

Dieckmann et al used the majority-voting scheme to integrate two biometric 

modalities (face and voice), which were analysed by three different experts: (static) 

face, (dynamic) lip motion and (dynamic) voice [Dieckmann97].

Kittler et al integrated two modalities (face and lip) for personal identity recognition 

[kittler97]. Three different combination rules were used such as the product rule, 

majority voting rule and the sum rule. The results confirmed the benefits of 

integration and the predicted behaviour of the majority voting and averaging 

integration strategies, which outperformed the product rule combination.

Kittler et al proposed a multimodal person verification system using three experts: 

frontal face, face profile and voice [Kittler98], The outputs of the three experts were 

soft decisions (scores between zero and one). The best combination results were 

obtained from a simple sum rule.

Hong et al. presented ways of combining information from two modalities: face and 
fingerprint images at various levels [Hong99]. Two levels of fusion were 

considered; score level fusion, where the Bayesian method was used and a decision 

level fusion, where both the OR and AND rules were used. Experimental results 

showed that the performance of a biometric system was improved by integrating 

multiple biometrics.
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Ben-Yacoub et al investigated the benefits of classifier combination for a 

multimodal system for personal identity verification [Ben-Yacoub99], The system 

used frontal face images and speech. Results showed that by using the linear 

weighted scheme and a Support Vector Machine (SVM) classifier there was a 

significant reduction in the total error rate.

Ross et al combined the matching scores of three traits (Face, Fingerprint and Hand 

geometry) to enhance the performance of a biometric system [RossOl], Three 

different techniques (sum rule, decision tree, linear discriminant analysis) were used 

to combine the matching scores. Experiments indicated that the sum rule resulted in 

the best performance.

Shakhnarovich et al proposed person identification based on face and gait cues 

[Shakhnarovich02]. The different combination rules that were used are max, min, 

sum and product rules. Experimental results showed that the sum rule outperformed 
the other rules.

This brief review of the fusion rules used at the decision level reveals that for 

combining soft decisions the sum rule outperforms other combination rules which 

supports the idea of adopting and using this rule in this study. Several researchers 

have also used the majority-voting rule, which is also adopted in this study.

5.3 Experimental Setup

As mentioned in Chapter 3, in the data collection process, each volunteer took part 

in two separate data collection sessions, the first involving enrolment on each of the 

devices under test together with a post-enrolment verification check where each 
volunteer undertook three verification attempts. A second session was undertaken at 

least one month later where three additional verification attempts were carried out 

using the enrolment templates generated at the first session. The experiments carried 

out in this chapter focused mainly on the three verification attempts undertaken at 

the second session, as it was desired to consider any time-based changes that occur 

in the biometric data.
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Before starting the experiments, both the corpus and the database collected were 

examined and the group of people who had the following errors were discarded: -

• The group that failed to enrol in any of the biometric devices, this is because 

no templates were generated for them.

• The group that had blank or corrupted images in any of the three attempts of 

the second session due to entering a PIN but moving on before a proper 

image is captured.

• The group that had templates but did not have biometric samples due to the 

fact that they failed to attend the second session.

After discarding these groups the resulting database consisted of 147 subjects, each 

having a template generated by each of the biometric devices and having all three 

samples acquired in the second session.

In general and depending on the data available, three different data sets are needed 

for each classifier. The first data set is called the training set and is used by the 

classifier to model the different persons. The second data set is called the validation 

set and is used to fine-tune the classifier, for instance by calculating the decision 

thresholds. The third data set is called the test set and it is used to test the 

performance of the classifier. For the experiments carried out in this chapter, a 

simple experimental protocol was used. In this protocol the first enrolment session 

and the three verification attempts performed in the second session were used in the 
following manner:

The first enrolment session was used for training the individual classifiers. This 

means that each access has been used to model the respective client, yielding 147 

different client templates for each modality.

Since it was decided to use the default verification threshold assigned by the vendors 

of each biometric system then there was no need to have a validation set. The three 

accessed attempts from each person that was undertaken at the second session were 

used to test the classifiers. This was done by matching each single client sample
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access with his own reference template generating 147 clients, then a cross 

comparison (all samples compared to all templates except the matching one) was 

used to establish the impostor distribution [0 ’Gorman98] generating 147 x 146 = 

21462 impostor accesses. This process was applied to every attempt in the second 

session yielding three testing sets.

Table 5.1 shows an example of the cross comparison matrix with the N “genuine” 

scores shown in bold on the diagonal of the matrix and N (N-l) “impostor” scores 

above and below the main diagonal. For simplicity, the subjects are represented by 

the alphabets A, B and C. The genuine scores are generated by matching the 

verification access sample of each subject with his own template. For example the 

verification sample of subject A is matched with its own template, the same process 

is applied for both subjects B and C. On the other hand, the impostor scores are 

generated by comparing all the verification access samples to all the templates 

except the matching one, i.e. for example, for subject A, all the verification samples 

(B and C) are compared with its template, except its own sample. The same process 

is applied for both subject B and C.

Table 5.1: Cross comparison matrix showing classifier scores for N=3

^^\Samples
Templates^\

A B c

A 50 40 30

B 70 60 20

C 10 0 3

To illustrate Table 5.1, lets consider the threshold to be set to 40, the genuine scores 

on the diagonal show that both subjects A and B are accepted by the system since 

their scores are equal to or higher than the pre-specified threshold and that subject C 

is falsely rejected by the system for having a score lower than the threshold. The 

impostor scores in the upper and lower triangle show that the sample presented by 

subject B for verification is falsely accepted by the system as being of subject A and
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that the sample presented by subject A is falsely accepted by the system as being of 

subject B since both have scores higher than or equal to the pre-specified threshold.

As already mentioned, for each verification attempt a cross comparison matrix was 

constructed and used as a test set and since each subject performed three verification 

attempts, three testing set were produced. These three testing sets were used in the 

experiments carried out in this chapter, which are explained more in the subsequent 

sections. It should be noted that the results are presented with a 95 % confidence 

level calculated as described by [Mansfield02], The formulas used are presented in 

Appendix (C)

5.4 Combining Classifiers Decisions

Combining classifiers decisions is normally the process of combining soft or hard 

decisions given by different classifiers. As it was mentioned earlier in Chapter 2 it 

was decided to classify the hard and soft decisions as two separate sub-level of the 

decision level [PrabhakarOl]. The classifiers in either case can be of the same type 

but working with different features (e.g. fingerprint and voice), heterogeneous 

classifiers working with the same features, or a hybrid of the previous two, which is 

the scope of this work, since the classifiers were heterogeneous working with 

different features (fingerprint, voice and face).

5.4.1 Hard Decision Level

A hard decision is a decision made by the system that returns either a 0 or a 1. In an 

ensemble of classifier the hard decision from each classifier can be combined using 

voting techniques.

Voting Techniques

Voting techniques are classical empirical techniques where the global decision rule 

is obtained by fusing the hard decisions made by m biometric modules 

[Kuncheva02][Alkoot99]. These techniques are sometimes referred to as A>out-of m 

voting techniques, where k relates to the number of classifiers that have to decide on
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the identity claimed by a person [Teoh04], For some values of k, particular decision 

fusion schemes are obtained:

1. k = 1. This is called the OR rule. The identity claim is accepted if at least one 

of the m classifiers decides that the person under test is a client.

2. k - m .  This is called the AND rule. The identity claim is accepted only if all 

the m classifiers decide that the person under test is a client.

3. k = (m + 1) / 2. This is called the Majority Voting rule. It is a concession 

between the two previous rules.

5.4.2 Soft Decision Level

A soft decision is a decision made by the system that returns a score that lies in the 

[0, 1] interval. The soft decision from each classifier can be combined using the 

Summation rule.

Sum rule

This method is the simplest combination strategy and it has been widely used as a 

combination scheme in pattern recognition. In this method, the scores from the 

classifiers are summed in combined using [Chibelushi93b] [Duc97],

M

i=1

(5.1)

Where S, is the score from the i-th classifier, w\ is the corresponding weight in the

M
[0,1] interval, with the constraint ^  wf =1 and M  is the number of classifiers used.

i = i

This method can either be non-confidence based (simple sum) - same weights for all 

the classifiers -  or confidence based (weighted sum) - different weights for the
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classifiers, assuming a confidence measure is assigned to the classifiers. This 

approach is also known as Linear Opinion Pool.

Before applying this fusion rule the raw scores of the different classifiers must be 

first normalized, where they are mapped into a common range [0, 1]. The score 

normalization is an essential step because the scores of the individual classifiers may 

suffer from one or both of the following problems:

• The scores of the individual classifiers may be heterogeneous, that is, one 

classifier may output a distance measure while another may output a 

similarity measure.

• The scores of the individual classifiers may have different numerical 

ranges. For example, one classifier may output scores in the range [0, 1] 

and another in the range [100, 1000] this will result in the second classifier 

eliminating the contribution of the first one if the scores are fused without 

any normalization.

The individual classifiers used in this work suffered from both problems. The scores 

obtained from the face and the voice modalities were distance scores and those 

obtained from the fingerprint modality were similarity scores. The individual 

classifiers also had different numerical ranges, the voice modality score ranges from 

-1476 to 323, the face modality score ranges from 0 to 10 and finally the fingerprint 

modality score ranges from 0 to 9. It should be noted that the score ranges of both 

the fingerprint and face modalities were provided by the vendors of the devices, 

while the voice modality score range was estimated from using a dataset. This shows 

the necessity of score normalization into a common domain before combining them. 

Figure 5.1 shows the conditional distribution of genuine and impostor scores for 

voice, face and fingerprint modalities.

It should be noted that the y-axis for all the graphs showing the conditional 

distribution of genuine and impostor scores of the fingerprint modality was adjusted 

to start from (-10) for better viewing of the graph.
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Figure 5.1: Conditional distribution of genuine and impostor scores for voice, face and fingerprint
respectively
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5.4.2.1 Normalization Methods

In this section two of the most commonly used normalization methods in the field of 

biometrics are explored. These are the min-max and the z-score. A new method is 

also proposed.

Min-Max method

This method is best used if the maximum and minimum values of the scores 

produced by the classifier are known [Jain99a][Indovina03][Snelick03] 

[Marcialis02], In this case, the minimum and maximum scores are shifted to 0 and 1, 

respectively.

c . S - S ^  (5.2)
°  norm ^  _  n

^  max ^  min

Where

Snorm '■ is the normalized score 

S : is the raw classifier score

Sniin : is the minimum score from the set S of all the scores of that classifier 

5'max : is the maximum score from the set S of all the scores of that classifier
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Figure 5.2: Conditional distribution of genuine and impostor scores after Min-Max normalization for
voice, face and fingerprint respectively
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This method is highly sensitive to the boundaries (maximum and minimum values) 

in the data. Figure 5.5 shows the distribution of fingerprint, voice and face scores 

after performing this normalization method. The figure shows that the Min-max 

normalization transforms all the scores into a common range largely and retains the 

overall original shape of the score distribution except for a scaling factor. Although 

this method produced the same distribution of scores as the original one, this may 

not be considered since the maximum and minimum values for the voice modality 

had to be estimated from a data set, which suggests that these values may change on 

a different matching set.

Z-score method

This is the most commonly used normalization technique, it is calculated by using 

the arithmetic mean and standard deviation of a given data [Lu04] [Kholmatov03] 

[Cheung04] [AuckenthalerOO]. The normalized scores are given by

Where

c _ S ~iU
^  norm

G

u  norm : is the normalized score

S : is the raw classifier score

: is the arithmetic mean

<7 : is the standard deviation

This method is highly sensitive to the arithmetic mean and the standard deviation 

values. Figure 5.3 shows the distribution of fingerprint, voice and face scores after 

performing this normalization method. The figure shows that the Z-score 
normalization largely retained the overall original shape of the score distribution for 

both the voice and face modalities but not the finger modality. It also fails to map 

the scores of the different modalities into a common numerical range. This method 

is not considered to be robust since both the arithmetic mean and the standard 

deviation are calculated from a certain data set, which might change if calculated on 

a different one and the fact that it does not map the scores of the different modalities 

into a common numerical range makes it undesirable for the experiments.
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Figure 5.3: Conditional distribution of genuine and impostor scores after Z-score normalization for
voice, face and fingerprint respectively
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Adaptive Logarithmic method

The proposed method compares the raw scores to a predefined threshold usually 

given by the vendors. This method will keep all values below the threshold under 

0.5 and all those above the threshold above 0.5. In this way the scores will be 

mapped in the range [0,1]

Snorm

e X p  (S-Threshold)

1 + exp'5-7“ )

(5.4)

Where

Snorm : is the normalized score 

S : is the raw matcher score

Threshold: is the default threshold of the biometric device.

This method is highly sensitive to the threshold, which is normally provided by the 

vendors. Figure 5.4 shows the distribution of fingerprint, voice and face scores after 

performing this normalization method. The figure shows that the proposed 

normalization method largely retains the original shape of the score distribution with 

a scaling factor as well as it transforms the scores of the different modalities into a 

common numerical range. This method is considered to be almost accurate since it 

does not require the calculation of certain parameters from a data set as the previous 

two methods.
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Figure 5.4: Conditional distribution of genuine and impostor scores after adaptive logarithmic
normalization for voice, face and fingerprint respectively
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5.5 Scenarios for Accessing a System

A user accessing a system could be either a legitimate user or an impostor 

attempting to defeat the system. Since, it was desired to calculate the likelihood that 

a legitimate user (client) is rejected by the system (FRR) and the likelihood that an 

impostor is accepted by the system during verification as being a legitimate user 

(FAR). An explanation is presented of how these errors are calculated using the 

different fusion rules. In this section, two different cases are discussed:

It should be noted that the multimodal database collected in Chapter 3 from the three 

commercial devices (fingerprint, voice and face) is used for the experiments in this 

chapter.

5.5.1 Genuine Users

This is the case where the user of the system is a legitimate user trying to access the 

system, this user will either be accepted by the system in the case where the decision 

fusion rule results in an overall accept decision or rejected by the system in case the 

overall verification decision made is a reject. The rejection of this user gives rise to 

one of the two main errors -false rejection error-. In the following two subsections 

an explanation is provided of how this error is calculated for both the hard and soft 

decision fusion.

Figure 5.5: Genuine user
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5.5.1.1 Hard Decision Fusion

A hard decision is a decision made by the classifier that returns either accept or 

reject, in other words a 1 or a 0. Since, the output of the classifiers of the three 

modalities (fingerprint, voice and face) used in this project were scores, the default 

thresholds specified by the vendors of the different biometric devices were assigned 

to each classifier such that if the genuine matching score is higher than or equal to 

the pre-specified threshold an accept or a 1 is returned, and if the genuine matching 

score is lower than the pre-specified threshold a reject or 0 is returned. These 

decisions are then combined using the following three methods:

5.5.1.1.1 AND Fusion

In AND fusion [Kittler98], the identity claim of a user is accepted only if all the 

classifiers decide that the person under test is a client, that is, if the outputs returned 

by the classifiers in all three modalities is a 1 (accept). Hence, a user is falsely 

rejected if the output returned by the classifiers is a 0 in any single modality.

5.5.1.1.2 Majority Voting

In majority voting [Dieckmann97], the identity claim of a user is accepted if the 

majority of the classifiers decide that the person under test is a client, that is, if the 

output returned by the classifiers in any two modalities out of the three is a 1 

(accept). Hence, a user is falsely rejected if the output returned by the classifiers is a 

0 in any two modalities.

5.5.1.1.3 OR Fusion

In OR fusion [Kittler98], the identity claim of a user is accepted if at least one of the 

classifiers decides that the person under test is a client, that is, if the output returned 

by the classifiers in any single modality is a 1 (accept). Hence, a user is falsely 

rejected if the output returned by the classifiers is a 0 in all three modalities.
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5.5.1.2 Soft Decision Fusion

A soft decision is a decision made by the system that generates a score that normally 

lies in the range [0,1]. As already mentioned, the output of the classifiers of the three 

modalities (fingerprint, voice and face) used in this project were scores, so they may 

be combined using the following rule:

5.5.1.2.1 Sum Rule

In the Sum Rule [RossOl], the scores from the classifiers are summed as shown in 

Equation 5.1, where the summed scores are then compared to a pre-specified 

threshold to reach the verification decision of whether accepting or rejecting the 

user. The identity claim of a user is accepted if the summed score of all three 

classifiers is higher than or equal to the assigned pre-specified threshold. Hence, a 

user is falsely rejected by the system if the summed score of all three classifiers is 

lower than the pre-specified threshold.

5.5.2 Impostors

This is the case where the user of the system is an impostor attempting to defeat and 

access the system as being a legitimate user, this user will either be accepted by the 

system as a legitimate user in the case where the decision fusion rule results in an 

overall accept decision or rejected by the system in case the overall verification 

decision made is a reject. The acceptance of this user gives rise to one of the two 

main errors - false acceptance error-. In the following two subsections an 

explanation is provided of how this error is calculated for both the hard and soft 
decision fusion.
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Figure 5.6: Impostor user

5.5.2.1 Hard Decision Fusion

As stated previously, a hard decision is a decision made by the system that returns 

either accept or reject, in other words a 1 or a 0. The output impostor scores of the 

classifiers of the three modalities (fingerprint, voice and face) used in this project 

were transformed into hard decisions (0, 1) using the same method described in 

section 6.4.1.1. The three combination methods used in this section are the same as 

the ones used in section 6.4.1.1. However, the scenario presented is different.

5.5.2.1.1 AND Fusion

In AND fusion [Kittler98], the identity claim of an impostor is accepted as being 

that of a legitimate user only if all the classifiers decide that the person under test is 

a client, that is, if the outputs returned by the classifiers in all three modalities is a 1 
(accept). In other words, a false acceptance occurs if an impostor was successful in 

impersonating a legitimate user in all three modalities.

5.5.2.1.2 Majority Voting

In majority voting [Dieckmann97], the identity claim of an impostor is accepted as 

being that of a legitimate user if the majority of the classifiers decide that the person

97



Chapter 5 Decision Fusion For Multi-Modal Biometric Systems

under test is a client, that is, if the output returned by the classifiers in any two 

modalities out of the three in the proposed system is a 1 (accept). In other words, a 

false acceptance occurs if an impostor was successful in impersonating a legitimate 

user in any two modalities.

5.5.2.1.3 OR Fusion

In OR fusion [Kittler98], the identity claim of an impostor is accepted as being that 

of a legitimate user if at least one of the classifiers decide that the person under test 

is a client, that is, if the output returned by the classifiers in any single modality is a 

1 (accept). In other words, a false acceptance occurs if an impostor was successful in 

impersonating a legitimate user in any single modality.

5.5.2.2 Soft Decision Fusion

As previously stated, a soft decision is a verification decision made by the system 

that normally generates a score generated in the range [0,1]. Since, the output of the 

classifiers of the three modalities (fingerprint, voice and face) used in this study 

were scores, they were combined using the following rule:

5.5.2.2.1 Sum Rule

In the Sum Rule [RossOl], the impostor scores generated from the cross comparison 

are summed as shown in Equation 5.1, where the summed scores are then compared 

to a pre-specified threshold to reach the verification decision of whether the system 

will accept the impostor as being a legitimate user or reject him. The identity claim 

of an impostor is accepted as being a legitimate user if the summed score of all three 

classifiers is higher than the assigned pre-specified threshold.

5.6 Decision Fusion Error Rates

Both the genuine scenario and the impostor scenario described in the previous 

sections are used in this section to calculate the two main performance measures of 

the multimodal system; the false accept rate and the false reject rate. In this section 

an example of a building access control application is considered where the user
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approaches an access point, insert his PIN number and provides live biometric data 

to the sensors installed. The sensors compare and match the data given by the user to 

the data present on the database and the system gives a decision of either accept or 

reject access for that particular individual. All users are given a maximum of three 

attempts to provide their correct biometric data to gain access. The decision made by 

the system to accept or reject an individual depends on the fusion method used. For 

this application two scenarios are considered:

The first scenario considers the user approaching the access point to be a legitimate 

user. The user provides his live biometric data for gaining access, but for some 

reason the system fails to recognize him. A second attempt is made by him to 

provide his correct biometric data and if the user still fails to be recognized by the 

system, a third and final chance is given to him. If the user fails to be recognized by 

the system after the third attempt then access is denied for that user.

The second scenario considers the user approaching the access point to be an 

impostor trying to spoof the system and gain access to the building. If the impostor 

fails to be recognized by the system, a second attempt is given to him to provide his 

biometric data and if he fails to be recognized by the system at that attempt, a third 

and final chance is given to him. Failing to be recognized by the system after the 

third attempt, the impostor is denied from accessing the building.

Considering the two scenarios mentioned, in the following subsections both the false 

reject rate (FRR) and the false accept rate (FAR) are calculated for different fusion 

methods. The three testing sets that were generated in Section 6.3 from the three 

accessed attempts undertaken at the second session of the data collection exercise 

are used to calculate the error rates, since each data set is regarded as an attempt to 
gain access.

It should be noted that whenever FRR in (2nd attempt) is mentioned it refers to the 

group of genuine users who failed to be recognised by the system at the first attempt 

and were given a second chance to provide their correct biometric data. While, the 

FRR in (3rtJ attempt) refers to the group of genuine users who failed to be recognised 

by the system at the first and second attempts and were given a third chance to
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provide their correct biometric data. On the other hand, the FAR in (2nd attempt) 

refers to the group of impostors who failed to be recognised by the system at the first 

attempt and were given a second chance to provide their biometric data. While, the 

FAR in (3 rd attempt) refers to the group of impostors who failed to be recognised 

by the system at the first and second attempts and were given a third chance to 

provide their biometric data.

5.6.1 Performance of Hard Decision Fusion Methods

In this section both the false reject rate (FRR) and the false accept rate (FAR) are 

calculated for the different hard decision fusion methods. The three testing sets are 

regarded as the three attempts provided by the system to gain access.

5.6.1.1 AND Fusion

In AND fusion, a decision is reached only when all the classifiers agree about it. 

AND fusion is mainly useful in situations where one would like to detect the 

presence of an event, with a low false acceptance bias, which means having a high 

FRR% and low FAR %. Table 5.2 shows the FRR and FAR when using this 

decision fusion method on the data gathered from the three commercial devices 

(fingerprint, voice and face).

Table 5.2: Error rates for AND fusion

Attempts
1st attempt (%) 2nd attempt (%) 3rd attempt (%)
FRR FAR FRR FAR FRR FAR

Error rates 59.2 ± 7.9 0.0 47.6 ± 8.1 0.0 44.9 ± 8.0 0.0

5.6.1.2 Majority Voting

One of the simplest methods for combining classifiers is the majority voting 

strategy. In this method [Dieckmann97], a consensus is reached on the decision by
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having a majority of the classifiers declaring the same decision. Table 5.3 shows the 

FRR and FAR when using this decision fusion method

Table 5.3: Error rates for majority voting

Attempts
1 attempt (%) 2 attempts (%) 3 attempts (%)

FRR FAR FRR FAR FRR FAR

Error
rates 20.5 ± 6.5 0.05 ± 0.2 12.8 ± 5.4 0.07 ± 0.27 8.1 ±4.4 0.08 ±0.31

The downside to this approach is that an odd number of classifiers is required to 

prevent ties, which means that this approach would not be used if only two 

modalities were to be combined.

5.6.1.3 OR Fusion

In OR fusion [Kittler98], a decision is made as soon as one of the classifiers makes a 

decision. OR fusion is mainly useful where one would like to detect the presence of 

an event with a low false rejection bias, which means having a low FRR% and high 

FAR %. Table 5.4 shows the FRR and FAR when using this method.

Table 5.4: Error rates for OR fusion

Attempts
1 attempt (%) 2 attempts (%) 3 attempts (%)

FRR FAR FRR FAR FRR FAR

Error
rates 2.1 ±2.3 3.6 ± 14.12 0.7 ± 1.3 4.9 ± 19.21 0.0 5.8 ±22.7

It can be concluded that as the number of attempts increases the false reject rate 

(FRR) decreases and the false accept rate (FAR) increases. It was also noticed that 

although the OR rule had the best performance over the AND rule and majority
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voting rules its main disadvantage is that it can only be used in applications which 

requires low security since it has the highest FAR.

5.6.2 Soft Decision Fusion Methods

As noted previously, a soft decision is a decision made by the system that generates 

a score. Since the three modalities (fingerprint, voice and face) used in this study 

had different score ranges, a normalization step was necessary to map all the raw 

scores from the different matchers into a common range [0, 1] before combining 

them in the fusion stage. The adaptive logarithmic method proposed in the previous 

chapter was used to map the different scores of the three modalities into a common 

range [0,1].

5.6.2.1 Sum Rule

As previously stated, in the sum rule the scores from the different classifiers are 

summed. The summed score is then compared to a pre-specified threshold to reach a 

verification decision of whether to accept or reject the user [Duc97] [Kittler98] 

[RossOl], Table 5.5 shows the results of the error rates when setting the pre­

specified threshold to 0.5 and assigning equal weights to each modality.

Table 5.5: Error rates for the sum rule

Attempts
1 attempt (%) 2 attempts (%) 3 attempts (%)
FRR FAR FRR FAR FRR FAR

Error rates 31.3 ±7.5 0.0 23.1 ± 6.8 0.0 19.0 ±6.3 0.0

It was noticed that the majority-voting rule and the OR rule in the hard decision 

fusion performed better than the sum rule in the soft decision fusion in reducing the 

false reject rate (FRR) while both the sum rule and the AND rule performed well in 

reducing the false accept rate (FAR).

102



Chapter 5 Decision Fusion For Multi-Modal Biometric Systems

5.7 Characterising Individual System Users

In biometric systems it is important to know not only what works and to what extent 

it works, but also to be aware of the causes of errors, i.e. what does not work and 

why [Pankanti02]. The characterization of individual users that contribute to the 

overall biometric recognition system errors has received little attention.

Bolle et al. [BolleOO] suggested in his evaluation techniques for biometrics-based 

authentication systems that some measures to characterize the target population 

should be given.

Doddington et al [Doddington98] showed that the error rates vary across the 

population. It has led to the jocular characterization of the target population as being 

composed of “sheep” and “goats”. In this characterization, the sheep for whom 

authentication systems perform reasonably well, are well behaved and dominate the 

population, whereas the goats, though in a minority, tend to determine the 

performance of the system through their disproportionate contribution of false reject 

errors. Like targets, impostors also have barnyard appellations, which follow from in 

homogeneities in impostor performance across the population. Specifically there are 

some impostors who have unusually good success at impersonating many different 

targets. These are called “wolves”. There are also some targets that are easy to 

imitate and thus seem unusually susceptible to many different impostors. These are 

called “lambs”.

The overall performance of any biometric system can be improved if some of the 

most difficult individuals (e.g. the “goats”, the hard to match subjects) were to be 

excluded. Detecting theses individuals for whom the system performs poorly and 
dealing with them will result in an increase in the system performance.

In this section the four different terms that characterize the system users are 

measured using the data gathered in Chapter 3 to investigate their effects on the 

performance of a multimodal biometric system.
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Table 5.6 shows a sample of the cross comparison matrix that was used to measure 

the four terms that characterize the system users. The subjects of the system are 

represented by the letters of the alphabet A, B, C, D. Templates refer to the subjects’ 

enrolment templates and Samples refer to the verification sample provided by the 

subject. Sjj represent the scores obtained from matching the samples against the 

templates, where i represent the rows and j the columns. The scores Sij (where i=j) 

on the diagonal determine whether a user is a sheep or goat. This is determined by 

means of an appropriate threshold. On the other hand, the scores Sy (where i*j) 

above and below the diagonal may indicate the presence of a wolf or a lamb, which 

are determined by means of an appropriate threshold.

Table 5.6: Characterising Individual User Matrix

'"'■'■\Samples
Templates''\

A B c D

A s„ S|2 Sl3 S]4
B S21 S22 s23 S24
C S31 S32 S33 S34
D S41 S42 S43 S44

For clarification consider Table 5.7. The scores presented in the cross comparison 

matrix were generated in the same way as in Table 5.1, that is, the scores on the 

diagonal are generated by matching the verification sample of each subject with his 

own template, on the other hand, the scores above and below the main diagonal are 

generated by comparing all the verification access samples to all the templates 
except the matching one.
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Table 5.7: Example of Characterising Individual User Matrix

^^^Samples
Templates'""^

A B C D E

A 70 10 2 20 6
B 54 60 5 15 52
C 52 32 80 2 10
D 35 8 19 30 56
E 7 5 3 1 20

In this example consider the threshold to be set to 50, considering the scores on the 

diagonal, the scores for subjects A, B and C are higher than the pre-specified 

threshold which means that they performed reasonably well and were accepted by 

the system. These subjects are referred to as the sheep of the system. While, both 

subjects D and E are referred to as the goats of the system each having a score lower 

than the pre-specified threshold. On the other hand, the scores above and below the 

main diagonal show that the sample of subject A (when compared to the templates 

of the other subjects) was accepted by the system as being of both subjects B and C 

since the scores obtained were higher than the pre-specified threshold with values 54 

and 52 respectively and that the sample of subject E (when compared to the 

templates of the other subjects) was accepted as subjects B and D since the scores 

obtained were higher than the pre-specified threshold with values 52 and 56 

respectively. Both subjects A and E are referred to as the wolves of the system since 

their samples are strong enough to successfully impersonate other subjects. Subjects 

B, C and D are referred to as lambs since their templates were easily imitated by 

different impostors such as A and E.

As it was previously suggested, knowing the causes that affect the performance of 

the system and dealing with them could result in an improvement in the system 
performance.

In the next subsections an investigation is provided based on the data gathered in 

Chapter 3 on the performance of the well-behaved majority, which are the sheep of 

the system and the troublesome minorities, which are the goats, wolves and lambs of
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the system. Some proposed ways of reducing the troublesome users is also 

investigated.

5.7.1 The Sheep

Sheep are the group of subjects that dominate the population and for which 

authentication systems perform reasonably well. The performance of the system 

depends on the proportion of sheep in the system since, the higher is the proportion 

of sheep, the lower is the proportion of goats and hence, the lower is the false reject 

rate (FRR) which is an important factor in the system performance. Table 5.8 shows 

the proportion of users who represent the sheep measured in each modality. Table 

5.9 shows the proportion of users who represent the sheep of the system measured 

under the different decision fusion rules.

The proportion of sheep measured under the different decision fusion rules in 

Table 5.9 were evaluated as follow:

In the AND rule the group of subjects who were referred to as sheep in all the three 

modalities (fingerprint, voice and face) were calculated, in the majority voting rule 

the group of subjects who were referred to as sheep in any two modalities were 

measured and in the OR rule the group of subjects who were referred to as sheep in 

any single modality were calculated.

Table 5.8: Proportion of sheep in each modality

Modality
Sheep of the system (%)

Fingerprint Voice Face
Total 72.1 ± 7.2 81.6 ±6.3 63.9 ±7.8

Table 5.9: Proportion of sheep under the decision fusion mles

Fusion Rule
Sheep of the system (%)

AND rule Majority Voting OR rule Sum rule
Total 40.1 ±7.9 83.7 ± 6.0 95.9 ± 3.2 68.7 ±7.5
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From Table 5.8, the voice modality seems to have the highest proportion of sheep 

among the three modalities. It was also noticed that when comparing the proportion 

of sheep found in each single modality with the proportion of sheep found under the 

different decision fusion rules there were more sheep when using either the majority 

voting rule or the OR rule than there were when using any single modality. This 

suggests that using more than one modality increases the proportion of sheep and 

hence decreases the false reject rate (FRR) of the system. It was also realised that 

when comparing the results of the hard decision fusion with that of the soft decision 

fusion, both the majority-voting rule and the OR rule in the hard decision fusion 

performed better in increasing the proportion of sheep in the system than the sum 

rule in the soft decision fusion. The results also demonstrates that among the fusion 

rules the AND rule seem to decrease the proportion of sheep in the system thus 

increasing the false reject rate (FRR) of the system.

5.7.2 The Goats

Goats are the group of subjects whose pattern of activity when interfacing with the 

system varies beyond the specified range allowed by the system, and who 

consequently may be falsely rejected by the system. The goats decrease the 

performance of the system; the higher is the proportion of goats in the system the 

higher is the false reject rate. Since, it was desired to calculate the proportion of 

users who are consequently falsely rejected by the system, three attempts were 

considered for each modality such that the user is regarded as a goat if he is falsely 

rejected by the system in all three attempts. Table 5.10 shows the proportion of users 

who represents the goats, measured in each modality. Table 5.11 shows the 

proportion of users who represents the goats of the system measured under the 
different decision fusion rules.

The proportion of goats measured under the different decision fusion rules in 

Table 5.11 were evaluated as follow:

The AND rule measured the group of subjects who were goats in all the three 

modalities (fingerprint, voice and face), the majority voting rule measured the group
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of subjects who were goats in any two modalities and the OR rule measured the 

group of subjects who were goats in any single modality.

Table 5.10: Proportion of goats in each modality

Gender
Goats of the system i%)

Fingerprint Voice Face
Total 15.6 ±5.9 3.4 ±2.9 36.1 ±7.8

Table 5.11: Proportion of goats under the decision fusion rules

Fusion Rule
Goats of the system (%)

AND rule Majority Voting OR rule Sum rule
Total 44.9 ± 8.0 8.1 ±4.4 0.0 19.0 ±6.3

It was observed from Table 5.10 that the voice modality had the lowest proportion 

of goats among the three modalities. Comparing Table 5.10 and Table 5.11 suggests 

that using multiple modalities decreases the proportion of goats in the system and 

hence increases the performance of the system since the proportion of goats found 

under the different decision fusion rules were less than the proportion of goats found 

in each modality alone with the exception of the AND rule. Comparing the results of 

the different fusion rules demonstrated that both the majority-voting rule and the OR 

rule in the hard decision fusion performed better in decreasing the proportion of 

goats in the system than the sum rule in the soft decision fusion. Finally, the results 

showed that the AND rule seems to increase the proportion of goats in the system 

thus decreasing the performance of the system.

5.7.3 The Lambs

Lambs are the group of subjects who are exceptionally vulnerable to impersonation. 

The lambs affect the performance of the system, the higher is the proportion of 

lambs the less secure is the system since it means that either the users have a
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relatively weak biometric data that can be impersonated by others or the impostors 

impersonating them have a strong biometric data. Both cases affects the 

performance of the system by increasing the false accepts rate (FAR) which is 

another important factor in the system performance. Table 5.12 shows the 

proportion of users who represents the lambs, measured in each modality. Table

5.13 shows the proportion of users who represents the lambs of the system measured 

under the different decision fusion rules.

The proportion of lambs measured under the different decision fusion rules in Table

5.13 were evaluated as follow:

In the AND rule the group of subjects who were lambs in all the three modalities 

(fingerprint, voice and face) were calculated, in the majority voting rule the group of 

subjects who were lambs in any two modalities were measured and in the OR rule 

the group of subjects who were lambs in any single modality were measured.

Table 5.12: Proportion of lambs in each modality

Gender
Lambs of the system (%)

Fingerprint Voice Face
Total 0.0 70.7 ± 7.4 48.3 ± 8.1

Table 5.13: Proportion of lambs under the decision fusion rules

Gender
Lambs of the system (%)

AND rale Majority Voting OR rale Sum rale
Total 0.0 5.4 ± 3.7 86.4 ± 5.5 0.0

Table 5.12 shows that the fingerprint modality is the most secure system among the 

three modalities used in this work with a no lambs in the system. It also shows the 

voice modality being is the most vulnerable modality to impersonation among the 

three. Comparing Table 5.12 and Table 5.13 shows that the proportion of lambs
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present in each single modality is more than the proportion of lambs present when 

using the different fusion rules (with the exception of the OR rule) which supports 

the idea that combining multiple modalities improve the performance of the system. 

Table 5.13 illustrates that a user can be a lamb in a single modality (shown in the 

OR rule) or a lamb in two modalities (shown in the majority voting rule) but cannot 

be a lamb in three modalities (shown in the AND rule). It was realised that the sum 

rule in soft decision fusion resulted in an elimination of the lambs from the system.

5.7.4 The Wolves

Wolves are the group of subjects that are successful at impersonating others. The 

wolves decrease the performance of the system, the higher is the proportion of 

wolves in the system, the higher is the false acceptance rate (FAR) and the less 

secure is the system. A user impersonating others can have two possible 

explanations either the user have a strong biometric data or the impersonated 

subjects have a weak biometric data. Table 5.14 shows the proportion of users who 

represents the wolves, measured in each modality. Table 5.15 shows the proportion 

of users who represents the wolves of the system measured under the different 

decision fusion rules.

The proportion of wolves measured under the different decision fusion rules in 

Table 5.14 were evaluated as follow:

The group of subjects who were wolves in all the three modalities (fingerprint, voice 

and face) were calculated by the AND rule, the group of subjects who were wolves 

in any two modalities were calculated using the majority voting rule and the group 

of subjects who were wolves in any single modality were calculated using the OR 
rule.

110



Chapter 5 Decision Fusion For Multi-Modal Biometric Systems

Table 5.14: Proportion of wolves in each modality

Gender
Wolves of the system (%)

Fingerprint Voice Face
Total 0.0 53.0±8.0 44.0± 8.0

Table 5.15: Proportion of wolves under the decision fusion rules

Gender
Wolves of the system (%)

AND rule Majority Voting OR rule Sum rule
Total 0.0 6.1 ±3.8 71 ± 7.3 0.0

Table 5.14 shows that the fingerprint modality is the most secure modality among all 

three, the fact that there were no wolves at all means that it was difficult to 

impersonate the biometric data of any user. Combining multiple modalities increase 

the performance of the system since it is quite difficult to impersonate a user in more 

than one modality. Table 5.14 and 5.15 show that the proportion of wolves under 

different decision rules (with the exception of the OR rule) is less than the 

proportion of wolves in each single modality. It can be seen that both the AND rule 

in the hard decision fusion and the sum rule in the soft decision fusion eliminated 
the wolves from the system.

5.7.4.1 Types of Wolves

As previously mentioned, the wolves decrease the system performance and cause the 

existence of lambs in the system. Knowing the wolves and their types can help in 

dealing with them and hence increase the system performance. In this section four 

types of wolves are proposed, which are divided into the following categories: -

1. Type A

A user impersonating only one subject in a single modality

2. Type B

A user impersonating two or more subjects in a single modality
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3. Type C

A user impersonating only one subject in two modalities simultaneously

4. Type D

A user impersonating two or more subjects in two modalities simultaneously

Type A and Type B are grouped together since both of them are dealing with a user 

impersonating others in a single modality while Type C and Type D are grouped 

together both dealing with a user impersonating others in two modalities 

simultaneously. Investigating if a user could impersonate others in more than two 

modalities was not considered since the results from Table 5.15 showed that no 

wolves were found in all three modalities. Table 5.16 shows the wolves of Type A 

and Type B. Table 5.17 show the wolves of Type C and Type D.

Table 5.16: Proportion of wolves of Type A and B

Type of wolves
Wolves in the system (%)

Fingerprint Voice Face

Type A 0.0 17.7 ±6.2 7.5 ±4.3

Type B 0.0 34.0 ± 7.7 36.0 ±7.8

It was striking to realize that the proportion of users who had the ability to 

impersonate two or more subjects (Type B) is more than the proportion of users who 
had the ability to impersonate only one subject (Type A). There are two possible 

explanations for this, either the subjects who have been impersonated {lambs) have a 

weak biometric data (for example due to template ageing) or the users who are 

impersonating others {wolves) have a very strong biometric data which enables them 

to impersonate more than one person. Table 6.16 also showed that the fingerprint 

modality is more secure than the other modalities with no wolves of Type A or Type 

B being present.
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Table 5.17: Proportion of wolves of Type C and D

Type of wolves
Wolves in the system (%)

Fingerprint & 
Voice

Voice & 
Face

Face & 
Finger

Type C 0.0 5.413.7 0.0

Type D 0.0 0.7 1 1.3 0.0

Wolves Type C and Type D are “stronger” wolves since they have the ability of 

personating other subjects in two modalities simultaneously. In Table 5.17 it can be 

seen that in any combination of two modalities including the fingerprint modality, 

the result was an elimination of the wolves. This shows that the fingerprint modality 

is very robust and combining it with any other modality will increase the 

performance and security of the system. This table also shows that there were wolves 

that were able to impersonate two different subjects in two modalities (face and 

voice) simultaneously.

5.8 Discussion

A number of interesting points may be drawn from the above analysis regarding the 

combination of multiple modalities using the decision fusion rules. The results in 

this chapter are based on the comparison between the performance of the hard 

decision fusion rules (AND rule, OR rule and majority voting rule) and the 

performance of the soft decision fusion rule (sum rule). It is also based on 

investigating the effect of characterising the individual users as sheep, goats, lambs 
and wolves. According to the experimental results of this study, the false reject rate 

(FRR) of the system is reduced more by using the majority-voting rule and the OR 

rule in the hard decision fusion than by using the sum rule in the soft decision 

fusion, whereas the false accept rate (FAR) of the system is reduced to zero by using 

only the AND rule in the hard decision fusion and the sum rule in the soft decision 

fusion. A general conclusion can be drawn that the sum rule in the soft decision 

fusion performed better than the hard decision fusion rules for the present system
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since it reduced the false accept rate (FAR) to zero and the false reject rate (FRR) to 

a level which is acceptable for many applications.

Considering the characterization of the individual users as sheep, goats, lambs and 

wolves and their effect on the performance of the system, several conclusions may 

be made. Considering initially the users who were characterized as being the sheep 

of the system, the results illustrated that the higher is the proportion of sheep in the 

system the better is the performance since it results in a reduction in the FRR. On 

the other hand, the results showed that the goats decrease the performance of the 

system since they lead to false reject and the less is the proportion of goats the better 

is the performance of the system. Lambs and wolves decrease the performance of the 

system since they lead to false accept. The less is the proportion of lambs and wolves 

the better is the performance of the system. Bearing in mind theses result, the three 

modalities (fingerprint, voice and face) adopted in this study were analysed. The 

fingerprint modality seemed to outperform the other two modalities by having a 

relatively low proportion of goats (15.6 %) and a zero number of lambs and wolves 

in its system. Although the voice modality had the lowest proportion of goats among 

the three modalities it also had the highest proportion of lambs and wolves, which 

suggest that the voice modality is the most vulnerable to impersonation among the 

three modalities. The face modality showed the worst performance among the three 

modalities by having the highest proportion of goats and almost 50 % of the users 

were lambs and wolves

The study of the effects of the hard decision fusion rules (AND rule, OR rule and 

majority voting) and the soft decision fusion rule (sum rule) on the characterization 

of the users as sheep, goats, lambs and wolves suggests that the AND rule eliminates 

the lambs and wolves, but increase the proportion of goats in the system. On the 

hand, the OR rule appear to decrease the proportion of goats, but increases the lambs 

and wolves in the system. The majority voting seems to outperform the AND rule 

and the OR rule in providing an almost acceptable proportion of goats, lambs and 

wolves. The sum rule seems to have both the benefit of the AND rule in diminishing 

the lambs and wolves and that of the majority voting in reducing the goats to an 

acceptable number.
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The intuitive assumption that combining multiple modalities increases the 

performance of the system, was supported by the fact that the results obtained by 

fusing the different modalities, under the different decision fusion rules were better 

than when using single modalities. The fusion of multiple modalities proved to 

reduce the proportion of lambs, goats and wolves in the system thus increasing the 

performance of the system.

5.9 Summary

In this chapter a comparison between the performance of hard decision fusion and 

soft decision fusion in multimodal biometric systems was made. The results showed 

that the hard decision fusion outperformed the soft decision fusion in reducing the 

false reject rate, while the soft decision performed equally well as the AND rule in 

reducing the false accept rate (FAR) to zero. The effect of characterizing the 

individual users as sheep, goats, lamb and wolves on the performance of the system 

was investigated and different types of wolves were proposed. The experimental 

results suggested that the performance of the system could be improved if the 

proportion of lambs, goats and wolves are reduced.

The next chapter provides a general overview of genetic algorithms (GAs) and 

proposes exploiting it for optimising the performance of multimodal biometric 
recognition systems.
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Chapter 6

Introduction to Genetic 
Algorithms

6.1 Introduction

This chapter starts by giving a general overview of the genetic algorithms (GAs) and 

their different parameters. The reasons behind using genetic algorithms as an 

optimisation technique instead of other alternatives is then provided. Finally, a 

description of some application areas for GAs is provided and a proposal for 

exploiting them in the field of biometric system optimisation is presented.

6.2 What are Genetic Algorithms?

Genetic Algorithms were first proposed by John Holland in the 1960s and further 

developed by Holland and his students and colleagues at the University of Michigan 

in the 1960s and 1970s [Holland75]. GAs are adaptive heuristic search algorithms 

based on the evolutionary ideas of natural selection and genetics. The basic 

techniques of GAs are designed to simulate processes in natural systems necessary 

for evolution, especially those that follow the principles first laid down by Charles 

Darwin in his concept of “Survival of the Fittest” since, in nature, competition 

among individuals for scanty resources results in the fittest individuals dominating
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over the weaker ones. GAs typically maintain a constant-sized population of 

individuals (‘chromosomes’), which represent samples from the space to be 

searched [Davis91]. Each individual is evaluated on the basis of its overall fitness 

with respect to some pre-specified functionality and across some particular 

application domain. New individuals (samples from the search space) are produced 

by selecting high performing individuals to produce ‘offspring’ which retain many 

of the features of their ‘parents’. The result is an evolving population, which exhibits 

progressively improved fitness with respect to the given functionality (‘goal’). 

Figure 6.1 outlines the key features of a typical genetic algorithm. A population of 

individual structures is initialised and then evolved from generation t to generation 

t+1 by repeated applications of fitness evaluation, selection, crossover and mutation 

[Dixon78], In the following sections a description of each of these parameters is 

given in details [Goldberg89],

t — 0; /* Initial Generation */ 

Population Initialise (/);

Fitness Evaluation (t);

Repeat

t = t + 1; /* Next Generation V 

Selection (t);

Crossover (t);

Mutation (t);

Fitness Evaluation (t); 

Reinsertion (t);

Until best individuals meets criterion;

Figure 6.1: A Simple Genetic Algorithm
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6.2.1 Population Representation

Genetic algorithms operate on a population of strings [Back93]. Each string “also 

called chromosome’'’ represents one possible solution in the searching space for a 

particular problem [Rawlins91]. Each chromosome represents a set of parameters 

called genes where each gene corresponds to a feature of the problem and has its 

own position in the chromosome, which is called locus. Each gene is encoded by a 

given number of allele. The allele can be represented by binary, real number or other 

forms and its range is usually defined by the problem specified. Chromosomes are 

represented by different encoding types depending on the problem being explored. 

In this section we will discuss the different types of encoding of theses 

chromosomes.

6.2.1.1 Binary Encoding

Binary encoding is the most commonly used representation of chromosomes in 

Genetic algorithms [Bramlette91], In this type of encoding, the chromosomes 

consist of a string of 0’s and l ’s. Each chromosome consists of “genes”, with each 

gene being represented by a number of alleles (i.e. 0,1). Figure 6.2 shows the 

individual structures in the population

Alleles

Figure 6.2: Chromosome with binary encoding

Each bit in the string can represent some characteristic of the solution or it could 

represent whether or not some particular characteristic was present.
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Although binary encoding has several advantages, such as its relative simplicity and 

its ability of generating many possible chromosomes, even with a small number of 

genes, its main drawback is that it is often not a natural way of representation for 

many problems and sometimes corrections must be made after crossover and/or 

mutation.

6.2.1.2 Permutation Encoding

Permutation encoding is normally used in ordering problems, such as the travelling 

salesman problem (TSP), or task ordering problems [Lucasius92], In this type of 

encoding, chromosomes are represented by strings of numbers that represent a 

position in a sequence. Figure 6.3 shows the chromosome with permutation 

encoding.

Figure 6.3: Chromosome with permutation encoding

In the TSP each number would represent a city to be visited.

The main drawback of this type of encoding is that sometimes corrections must be 

made after crossover and/or mutation to leave the chromosome consistent (e.g. 

having a real sequence of the cities to be visited in the travelling salesman problem).

6.2.1.3 Value Encoding

Direct value encoding is used in problems where some more complicated values 

such as real numbers are used. The use of real-valued genes in GAs is claimed by 

Wright [Wright91] to offer a number of advantages in numerical function 

optimisation over binary encoding. Efficiency of the GAs is increased, as there is no
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need to convert chromosomes into a binary representation before each function 

evaluation; and less memory is required as efficient floating-point internal computer 

representations can be used directly [Michalewicz92], In this type of encoding, 

every chromosome is a sequence of some values. These values, apart from being 

real numbers, can sometime be characters such as A, B or any labels such as “back, 

left”. Figure 6.4 shows the chromosome with value encoding.

Figure 6.4: Chromosome with value encoding

Value coding is a good choice for some special problems where the use of binary 

coding for these problems would be difficult, such as finding weights for a neural 

network where the real values in the chromosomes represent weights in the neural 

network. However, for this encoding it is often necessary to develop some new 

crossover and mutation operations specific for the problem.

6.2.2 The Objective and Fitness Function

The objective function is used to provide a measure of how individuals have 

performed in the problem domain [Whitley93], In the case of a minimization 

problem, for example, the fit individuals will be those, which have the lowest 

numerical values of the associated objective function. This raw measure of fitness is 

usually used as an intermediate stage in determining the relative performance of 

individuals in a genetic algorithm. Another function, the fitness function, is used to 

transform the objective function value into a measure of relative fitness [De 

Jong75], thus:
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n * ) = g ( f ( x ) )  (6.i)

where / i s  the objective function, g  transforms the value of the objective function to 

a non-negative number and F  is the resulting relative fitness. The two common 

transformation processes will be described in the following subsection.

6.2.3 Selection

Selection is the stage where the individuals of the population compete among each 

other to become parents of the next generation [Blickle95]. The fitter the member of 

the population the more likely it is to produce an offspring. There are many different 

types of selection operators. One common approach always selects the “fittest” 

solution and discards the worst, but there are hundreds of variants of this scheme 

[Goldberg89] [Baker85], None is right or wrong in absolute terms. In fact, some will 

perform better than others depending on the problem domain being explored.

The first step in the selection stage is to transform the objective function value into a 

measure of relative fitness as mentioned in the previous subsection. This is 

performed either by:

• Fitness Scaling or

• Fitness Ranking

Fitness Scaling: -

This transformation method was suggested by Goldberg in [Goldberg89]. In this 

method the objective values of a population is scaled into a fitness measure by using 

the following linear transformation

f ' = a f  + b (6.2)

w here/is the objective value of an individual , a is a positive scaling factor if the 

optimisation is for maximizing and negative if it is for minimizing. The offset b is
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used to ensure that the resulting fitness values are non-negative and/  is the resulting 

scaled fitness value of an individual.

To maintain a certain relationship between the maximum fitness individual in the 

population and the average population fitness, the following constraint equations are 

used:

f ^ = f avg*Cs (6.3)

L s = f avg (6-4)

where /  is the scaled maximum fitness, f '  is the scaled average fitness of the

population, f avg is the average objective value of the population and Cs is a scaling 

constant that specifies the expected number of copies of the best individual in the 

next generation. Increasing Cs will increase the selection pressure (bias towards best 

individual and quicker convergence), decreasing Cs will decrease the selection 

pressure. The linear coefficients a and b are calculated from the given constraint 

equations.

Using linear scaling, the expected number of offspring is approximately proportional 

to that individual performance As there is no constraint on an individual’s 

performance in a given generation, highly fit individuals in early generations can 

dominate the reproduction causing rapid convergence to possibly sub-optimal 

solutions. Similarly, if there is a little deviation in the population, then scaling 

provides only a small bias towards the most fit individual.

Fitness Ranking: -

This transformation method was suggested by Baker in [Baker85]. This method 

overcomes the reliance on an extreme individual. Ranking introduces a uniform 

scaling across the population and provides a simple and effective way of controlling 

selective pressure [Whitley89]. (Selective pressure indicates the probability of the 

best individual being selected compared to the average probability of selection of all 

individuals). In this method individuals are sorted in order of their objective values 

and then reproductive fitness values are assigned according to rank [Back91]. The
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fitness assigned to each individual depends only on its position in the individuals 

rank and not on the actual objective value. The fitness of individuals in the 

population is calculated as:

Fitness(Pos) = 2 -  SP + 2(SP - 1 )(Pos -1) /(TV -1) (6.3)

Where TV is the number of individuals in the population, Pos is the position of an 

individual in this population (least fit individual has Pos =1, the fittest individual 

Pos = TV) and SP is the selective pressure normally in the range [1.0-2.0].

Lets take the following example, where a single chromosome has an objective value 

far in excess of the others, which means that the other chromosomes will have very 

few chances to be selected. The fitness ranking is better in these cases than the 

fitness scaling approach, it will operate by ranking the population and then assigning 

each chromosome a fitness value from this ranking. The worst will have fitness 1, 

second worst 2 etc. and the best will have fitness N (number of chromosomes in 

population). This provides a chance for all the chromosomes to be selected. Table

6.1 and 6.2 shows the objective values and fitness values (after applying the fitness 

ranking method) of four chromosomes respectively

Table 6.1 :Objective values of individuals

Chromosome A 1
Chromosome B 2
Chromosome C 6
Chromosome D 10

Table 6.2: Fitness values of individuals with SP =1.5

Chromosome A 0.5
Chromosome B 0.83
Chromosome C 1.16
Chromosome D 1.5
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Figure 6.5 shows how the situation changes after applying the ranking method.

□  Chromosome A 
■  Chromosome B
□  Chromosome C
□  Chromosome D

Situation before ranking

□  Chromosome A 
■  Chromosome B
□  Chromosome C
□  Chromosome D

Situation after ranking

Figure 6.5: Rank-based fitness assignment

The drawback of this method is that it can lead to slower convergence, because the 

best chromosomes do not differ so much from other ones.

The actual selection is performed in the next step where parents are selected 

according to their fitness. The two main selection methods are described in the 

following subsections.
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6.2.3.1 Roulette Wheel Selection

Roulette Wheel Selection is the most commonly used selection technique 

[Goldberg89]. It can be regarded as allocating each of the population members a 

Pie-shaped slice on a roulette wheel, with each slice proportional to the member’s 

fitness value. Selection of a population member to be a parent can then be viewed as 

a spin of the wheel, with the winning population member being the one in whose 

slice the roulette spinner ends up. Although this selection procedure is random, each 

parent’s chance of being selected is directly proportional to its fitness. The least fit 

members will gradually be driven out of the population [Bin Azhar02]. Figure 6.6 

illustrates the idea of the roulette wheel and it is obvious from this example that 

Chromosome 3 has a good chance of being selected more than once, and this shows 

that the stronger chromosomes will begin to dominate, eradicating the weaker ones 

from the population.

6.2.3.2 Universal Stochastic Sampling

Universal Stochastic Sampling (USS) is a single-phase sampling algorithm with 

minimum spread and zero bias [Baker87]. Bias is defined as the absolute difference 

between an individual’s actual and expected selection probability. Zero bias 

indicates that an individual’s selection probability equals its expected number of 

trials. Spread is the range in the possible number of trials that an individual may

Pointer

□  Chromosome 1 

HChromosome2

□  Chromosome3

□  Chromosome4

Figure 6.6: Roulette Wheel Selection

125



Chapter 6 Introduction to Genetic algorithm

achieve. Instead of the single selection pointer employed in roulette wheel method, 

USS uses N equally spaced pointers, where N is the number of selections required. 

The population is then shuffled randomly and a single number is generated, num. 

This indicates the position of the first pointer. The N individuals are then chosen by 

generating the N pointers spaced by 1/N, [num, num+lfN,...,num+ (N-l)/N] and 

selecting the individuals whose fitness span the positions of the pointers. The 

number of copies that an individual gets is equal to the number of pointers that lie 

within the corresponding slot. As individuals are selected entirely on their position 

in the population, USS has a zero bias [Mitchell96], Figure 7.7 illustrates the idea of 

the USS. In this example there are four chromosomes, so there will be four pointers, 

after spinning the wheel chromosome D will have two copies since there are two 

pointers within its slot, both chromosome B and chromosome C will have one copy 

each and chromosome A will have none.

□  Chromosome A 
■  Chromosome B
□  Chromosome C
□  Chromosome D

Figure 6.7: Universal Stochastic Sampling

6.2.4 Genetic Operators

Selection alone cannot introduce any new individuals into the population, i.e., it 

cannot introduce new points in the search space. These are generated by genetically 

inspired operators, of which the most well known are crossover and mutation 

[Spears98].

126



Chapter 6 Introduction to Genetic algorithm

The crossover and mutation operators are the most important part of a genetic 

algorithm and are the main influence on the performance of the algorithm 

[Muhlenbein95]. Usually, there is a predefined probability of procreation associated 

with each of these operators. Traditionally, these probability values are selected such 

that crossover is the most frequently used, with mutation being resorted to only 

relatively rarely. This is because the mutation operator is a random operator and 

serves to introduce diversity into the population. The kind of operator to be applied 

to each member of the gene pool is determined by random choice based on these 

probabilities. Of the two operators, mutation involves only a single parent and 

results in the creation of a single offspring. The crossover operator involves two 

parents and generates two offsprings.

6.2.4.1 Crossover

Crossover is not usually applied to all pairs of individuals selected for mating 

[Bremermann62]. A random choice is made, where the likelihood of crossover is 

applied. If crossover is not applied, offspring are produced simply by duplicating the 

parents. In this subsection we will describe the different types of crossover 

operators.

Single point Crossover

Single point crossover is the simplest form of crossover. It operates by randomly 

selecting a single cutting point in the two selected parents’ chromosomes, resulting 

in the production of two “head” segments and two “tail” segments. The tail 

segments are then swapped over to produce two new full-length chromosomes 

[Muhlenbein95], The two offspring each inherit some genes from each parent. 

Figure 6.8 illustrates the single point crossover.
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Parent A

Parent B

Offspring 1

Offspring 2

11001011 

11011 111 

11001 111

11011 Oil

Figure 6.8: Single point crossover

Multi-point Crossover

This crossover operator was first introduced by De Jong in [De Jong75]. It involves 

the division of the original string parents into m cut-points, and then the bits 

between successive crossover points are exchanged between the two parents to 

produce two new offspring. This process is illustrated in Figure 6.9.

Parent A

Parent B

Offspring 1

Offspring 2

110 01011

110 111 11

11 0 01111

110 110 11

Figure 6.9: Multi-point crossover (m=3)

The idea behind multi-point crossover, is that the parts of the chromosome 

representation that contribute most to the performance of a particular individual may
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not necessarily be contained in adjacent sub strings [Booker87]. Further, the 

disruptive nature of multi-point crossover appears to encourage the exploration of 

the search space, rather than favoring the convergence to highly fit individuals early 

in the search, thus making the search more robust [Spears91],

Uniform Crossover

This crossover operator was introduced by Syswerda in [Syswerda89], It does not 

use cut-points but instead creates offspring by using a crossover mask, which is 

created at random. The parity of the bits in the mask indicates which parent will 

supply the offspring with which bits. The following example illustrates the process, 

Consider the following two parents, crossover mask and resulting offspring:

P l=  1 0 1 1 0 0 0 1 1 1

P2= 0 0 0 1 1 1 1 0 0 0

Mask = 0 0 1 1 0 0 1 1 0 0

Ol = 0 0 1 1 1 1 0 1 0 0

02= 1 0 0 1 0 0 1 0 1 1

Here, the first offspring, 01, is

corresponding mask bit is 1 or the
produced by taking the bit from PI if the 

bit from P2 if the corresponding mask bit is 0.

Offspring 02 is created using the inverse of the mask or, equivalently, swapping PI
and P2.

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias 

associated with the length of the binary representation used and the particular coding 

for a given parameter set. This helps to overcome the bias in single-point crossover 

towards short substrings without requiring precise understanding of the significance 

of individual bits in the chromosome representation.
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Intermediate Recombination

This crossover operator is used when given a real-valued encoding of the 

chromosome structure [Miihlenbein93], It is a method of producing new 

chromosomes around and between the values of the parent chromosomes. Offspring 

are produced according to the rule:

Offspring -  a.Parent, + Parent2 (1 -  a) (6.3)

where a  is a scaling factor chosen uniformly at random over some intervals, 

typically [-0.25, 1.25]. Each variable in the offspring is the result of combining the 

variables in the parents according to the above expression with a new a  chosen for 

each pair of parents genes. In geometric terms, intermediate recombination capable 

of producing new variables within a slightly larger hypercube than that defined by 

the parents but constrained by the range of a  as shown in Figure 6.10

<N<Dao
0

•  o
o o 

o  • o

Area o f possible offspring

Parents

Offspring

Genet

Figure 6.10: Geometric effect of Intermediate Recombination

6.2.4.2 Mutation

Mutation operates by randomly changing one or more alleles of a selected individual 

and it acts as a perturbation operator to allow for inserting new information into the 

population [Whitley95]. Mutation is considered as a background operator with a 

very low probability of application. The role of mutation is often seen as providing a
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guarantee that the probability of searching any given string will never be zero and 

acting as a safety net to recover good genetic material that may be lost through the 

action of selection and crossover. The example below illustrates the effect of 

mutation on different chromosome representations:

Bit inversion For binary representation, bits positions are chosen randomly and 

corresponding bit values negated (0 becomes 1 and 1 becomes 0).

Before Mutation After Mutation

1 0 1 1 0 1

î  Î
Mutation points

> 1 1 1 0 0 1

Order changing For permutation representation, mutation is done by picking

two alleles at random and moving one so that it is next to the other.

Before Mutation After Mutation

1 2 3 4 5 6 7
■ I >

1 2 5 3 4 6 7

▲ ▲

Mutation points

Value representation For value representation, a small number is added or 
subtracted from selected values

Before Mutation After Mutation

3.4 4.2 4.6 6.4 3.2 r  ! > 3.4 4.2 4.7 6.4 3.2
A

Mutation point
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With non-binary representations, mutation is achieved by either perturbing the gene 

values or random selection of new values within the allowed range. Wright in 

[Wright91] and Janikow in [Janikow91] demonstrated how real-coded GAs might 

take advantage of higher mutation rates than binary-coded GAs, increasing the level 

of possible exploration of the search space without adversely affecting the 

convergence characteristics.

6.2.5 Reinsertion

Once a new population has been produced by selection and recombination of 

individuals from the old population, the fitness of the individuals in the new 

population is determined [Belew97], If fewer offspring are produced than the size of 

the original population, then the offspring have to be reinserted into the old 

population. Similarly, if not all offspring are to be used at each generation or if more 

offspring are generated than needed a reinsertion scheme must be used to determine 

which individuals should be inserted into the new population. There are different 

schemes of reinsertion such as: -

Pure reinsertion: In this scheme, the number of offspring produced is as many as the 

parents and all parents are replaced by the offspring.

Elitist reinsertion: In this scheme, the offspring produced is less than the parents and 

the worst parents are replaced.

Fitness-based reinsertion: In this scheme, more offspring are produced than needed 

for reinsertion and only the best offspring are reinserted.

Pure reinsertion is the simplest reinsertion scheme. Every individual lives one 
generation only. This scheme is used in the simple genetic algorithm. However, it is 

very likely, that very good individuals are replaced without producing better 

offspring and thus, good information is lost.

Elitism reinsertion dictates that the old parent individuals will be pooled together 

with the new offspring individuals and then the ranking of all individuals will be 

performed according to their fitness value. The best-fitted individuals, selected from
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the pool, will substitute the old parent population. This technique guarantees 

survival of the best adapted individuals but also hinders evolution if these apparently 

well-adapted individuals approach a local optimum instead of the global one.

The fitness-based reinsertion dictates the ranking to be performed only on the 

offspring population of individuals and the best out of these to substitute the least fit 

parent. However, with every generation some new individuals are inserted. It is not 

checked whether the parents are replaced by better or worse offspring. Because 

parents may be replaced by offspring with a lower fitness, the average fitness of the 

population can decrease. However, if the inserted offspring are extremely bad, they 

will be replaced with new offspring in the next generation. Thus, this selection 

procedure might lose well adapted parent individuals but it provides also the power 

to leave local optima in search for the global optimum.

6.2.6 Termination of the Genetic Algorithms

Since genetic algorithms are stochastic iterative processes that are not guaranteed to 

converge, a termination condition must either be specified as some fixed, maximal 

number of generations or as the attainment of an acceptable fitness level 

[Banzhaf99].

6.3 Comparison of Genetic Algorithms with Other Techniques

Most research into GAs has concentrated on finding empirical rules for getting them 

to perform well. There is no accepted “general theory” which explains exactly why 
GAs have the properties they do. Nevertheless, several hypotheses have been put 

forward which can partially explain the success of GAs. Holland’s Schema theorem 

[Holland75] was the first rigorous explanation of how GAs work. According to 

Goldberg [Goldberg89], the power of the GAs lies in their ability to find good 

building blocks.
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Any efficient optimisation algorithm must use two techniques to find a global 

maximum: exploration to investigate new and unknown areas in the search space, 

and exploitation to make use of knowledge found at points previously visited to help 

find better points. These two requirements are contradictory, and a good search 

algorithm must find a tradeoff between the two. The general optimization algorithms 

fall under three categories: Enumerative schemes, deterministic algorithms and 

stochastic algorithms. A brief description of some of the most commonly used 

deterministic and stochastic algorithms is provided as follow:

Random Search

The brute force approach for difficult functions is a random search. These 

techniques do not use any knowledge gained from previous results [Holland75], 

Points in the search space are selected randomly, or in some systematic way, and 

their fitness is evaluated. The best optimum values are recorded when discovered 

while performing random walks on the problem space. This is a very unintelligent 

strategy and is rarely used by itself

Gradient methods

A number of different methods for optimising well-behaved continuous functions 

have been developed which rely on using information about the gradient of the 

function to guide the direction of search [Bunday94], If the derivative of the 

function camiot be computed, because it is discontinuous, for example, these 

methods often fail. Such methods are generally referred to as hillclimbing. They can 

perform well on functions with only one peak, but on functions with many peaks, 

they suffer from the problem that the first peak found will be climbed, and this may 

not be the highest peak. Having reached the top of a local maximum, no further 
progress can be made.

Iterated Search

Random search and gradient search may be combined to give an iterated 

hillclimbing search. Once one peak has been located, the hillclimb is started again, 

but with another, randomly chosen, starting point. This technique has the advantage
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of simplicity, and can perform well if the function does not have too many local 

maximum points. However, since each random trial is carried out in isolation, no 

overall picture of the domain is obtained. As the random search progresses, it 

continues to allocate its trials evenly over the search space. This means that it will 

still evaluate just as many points in regions found to be of low fitness as in regions 

found to be of high fitness.

Enumerative

These techniques are the simplest, they work within a finite search space, or at least 

a discretized infinite search space [Goldberg89]. The algorithm then starts looking at 

objective function values at every point in the space, one at the time.

Simulated annealing

This is essentially a modified version of hill climbing. Starting from a random point 

in the search space, a random move is made [Rutenbar89], If this move takes us to a 

higher point, it is accepted. If it takes us to a lower point, it is accepted only with 

probability p(t), where t is time. The function p(t) begins close to 1, but gradually 

reduces towards zero, the analogy being with the cooling of a solid. Initially 

therefore, any moves are accepted, but as the "temperature" reduces, the probability 

of accepting a negative move is lowered.. Like the random search, however, 

simulated annealing only deals with one candidate solution at a time, and so does 

not build up an overall picture of the search space. No information is saved from 

previous moves to guide the selection of new moves.

It can be noticed that both the enumerative and random search methods are not 

efficient when the search space is significantly large or the problem is significantly 
difficult. The gradient methods are inadequate if the search space is noisy (one with 

numerous peaks). Gradient methods also depend upon the existence of derivatives or 

well-defined slope values. But, the real world of search is fraught with 

discontinuities, vast multimodal noisy search spaces. The iterative search does not 

perform well if the function has too many local maximum points. The simulated 

annealing deals only with one candidate solution at a time, and so does not build up 

an overall picture of the search space.
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Although genetic algorithms take the systematic convergent properties of gradient 

searches and combine them with the generalization and simplicity of randomised, 

iterative and enumerative searches, this approach differs from these search methods 

in that:

• Genetic algorithms work with a coding of the parameter set, not the 

parameters themselves.

The natural parameter set of the optimisation problem must be coded as a 

finite length string of symbols over a finite alphabet. GAs exploit coding 

similarities in a very general way; as a result they are largely unconstrained by 

the limitation of other methods (e.g. continuity of a function, or the existence 

of a derivative function).

• Genetic algorithms use probabilistic transition rules based on fitness rather 

than using deterministic rules.

Genetic algorithms do not use simple random search but rather use probability 

as a guide toward likely improvement.

• Genetic algorithms use an objective function information, not derivatives or 

rather auxiliary knowledge

Gradient search, for example, require derivatives (calculated analytically or 

numerically) in order to climb the current peak. GAs are blind. They only 

require payoff values associated with individual strings. GAs attempt to 

develop broadly based schemes by ignoring auxiliary information.

• Genetic algorithms search from a population of points, not a single point. 

Moving point to point in search spaces that are multimodal (that have many 

optimum points) is a perfect prescription for locating false peaks. GAs on the 
other hand work form a rich database of points simultaneously, climbing 

many peaks in parallel, thereby reducing the probability of finding a false 

peak (weaker local minimum/maximum points) as compared to point-to-point 

methods.
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6.4 Application Areas of Genetic Algorithms

Genetic Algorithms (GAs) in various forms have been applied to many scientific 

and engineering problems, including the following:

• Automatic Programming: GAs have been used to develop computer programs 

for specific tasks [Koza93] and to design other computational structures such 

as cellular automata [Mitchell93] and sorting networks [Hillis90],

• Economic Models: GAs have been used to model processes of innovation, the 

development of bidding strategies and the emergence of economic markets 

[Brian Aurther93] [Holland91]

• Immune System Models: GAs have been used to model various aspects of the 

natural immune system, including somatic mutation during an individual’s 

lifetime and the discovery of multi-gene families during evolutionary time 

[Cellada92] [Farmer86],

• Ecological Models: GAs have been used to model ecological phenomena such 

as biological arms races, host-parasite co-evolution, symbiosis and resource 

flow in ecologies [Lindgren93] [Taylor89]

• Population Genetics Models: GAs have been used to study questions in 

population genetics, such as “ under what conditions will a gene for 

recombination be evolutionary viable?” [Bergman92] [Fogel90]

• Interactions between evolution and learning: GAs have been used to study 

how individual learning and species evolution affect one another [Ackley92] 
[Belew90] [Fontanari90],

• Models of Social Systems: GAs have been used to study evolutionary aspects 

of social systems, such as the evolution of cooperation, the evolution of 

communication and trail-following behaviour in ants [Axelrod86] [Wemer92] 

[Collins92]
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•  Optimisation: GAs have been used in a wide variety of optimisation tasks, 

including numerical optimisation and combinatorial optimisation problems 

such as circuit design and job shop scheduling [De Jong75]

• Machine and Robot Learning: GAs have been used for many machine- 

learning applications, including classification and prediction tasks. GAs have 

also been used to design neural networks, to evolve rules for learning 

classifier systems or symbolic production systems and to design and control 

robots [Belew92] [Holland86] [Davidor91].

Genetic algorithms, apart from their generally high computational cost, have been 

shown to be able to out-perform conventional optimisation techniques of difficult, 

discontinuous, multimodal and noisy functions, which makes the GA an attractive 

choice to be used in the field of biometric recognition, since that the search space in 

this field is fraught with discontinuities and vast multimodal noisy spaces.

Several research studies have already used genetic algorithms in the field of 

biometric recognition.

In 1991, Caldwell and Johnson created a system that was used to help witnesses 

reconstruct facial depictions of criminals [Caldwell91]. The system had a large 

library of basic facial features, which contained images of noses, foreheads, ears, 

etc. The system uses a 35 bit binary string to encode the features and creates an 

initial population of 20 strings (faces). The witness then rank each face (from 0 to 

9), and these scores serve as the fitness value. Then a new generation is created 

using selection, crossover and mutation.

In 1996, Bala et al addressed the problem of crafting visual routines for eye 

detection from real grey-level facial imagery using a hybrid method that integrates 

genetic algorithms and decision trees [Bala96j. The experimental results reported 

demonstrated the feasibility of the approach in terms of feature selection and the 

corresponding eye detection.
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In 1997, Bala et al introduced a hybrid method that integrates genetic algorithms and 

decision tree learning in order to evolve useful subsets of discriminatory features for 

recognizing complex visual concepts [Bala97], A Genetic Algorithm was used to 

search the space of all possible subsets of a large set of candidate discrimination 

features, which were then evaluated by using the decision-tree learning algorithm. 

The experimental results reported, using both satellite and facial image data, 

indicated that learning does indeed help evolution in several important ways. The 

error rates on the underlying classification tasks were observed to decrease 

significantly when learning and evolution were allowed to dynamically interact.

In 1998, Liu and Wechsler integrated GAs for capturing the non-accidental 

spatiotemporal properties (‘regularities’) called Optimal Projection Axes (OPA) for 

face recognition by searching through all the rotations defined over whitened PCA 

subspaces [Liu98]. Evolution was driven by a fitness function defined in terms of 

performance accuracy and class separation (‘scatter index’). Accuracy indicates the 

extent to which learning has been successful so far, while the scatter index gives an 

indication of the expected fitness on future trials. Experimental results showed that 

when using a large data set (1107 facial images from the US army FERET database) 

it resulted in a recognition of 92 % when compared with other methods (eigenfaces 

(87 %) and MDF (86 %).

It is apparent that all the previous contributions in the field of biometric recognition 

have focused on using GAs in a mono-modal biometric system and have all focused 

on using the genetic algorithm techniques at the feature level.

6.5 Summary

In this chapter an introduction to genetic algorithms and a discussion of the different 

operators that influence their performance was provided. A comparison between 

GAs and other optimisation techniques was also presented declaring the advantages 

that GAs have over the alternatives. Finally a description was provided of some 

application areas of GAs, especially in the field of biometric-based recognition of
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individuals. The literature showed that most researchers have used GAs in mono- 

modal biometric systems and at the feature level.

The next chapter proposes the use of genetic algorithms (GAs) in multi-modal 

biometric system and demonstrates how they might have a valuable role to play at 
the decision level.
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Chapter 7

Optimising Multimodal Person 
Recognition

7.1 Introduction

In this chapter a proposed approach for the optimisation of a multimodal person 

recognition system based on the use of genetic algorithm is described. Several 

experiments are performed involving the effects of both hard decision fusion rules 

and soft decision fusion rules on the performance of the system. The experiments 

also illustrate the important role that the proposed approach plays in system 

optimisation by solving problems associated with score normalization and weights/ 

threshold settings.

7.2 Performance Measurements of Biometric Systems

As previously mentioned in Chapter 1, the overall performance of a system can be 

evaluated in terms of its accuracy. Measuring the accuracy is critical for determining 

whether the system meets its requirements and, in practice, how the system will 

respond in a variety of situations [Golfarelli97], It is traditionally characterised by 

two error statistics: false reject rate (FRR) and false accept rate (FAR). A false reject
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occurs when a system rejects a valid identity; a false accept occurs when a system 

incorrectly accepts a claimed identity as valid when it is not. In a perfect biometric 

system, both error rates would be zero. Unfortunately, biometric systems are not 

perfect. However, as shown by the study of binary hypothesis testing [Van Trees68], 

either of the two (FAR, FRR) can be reduced to an arbitrarily small value by 

changing the decision threshold, but with the drawback of increasing the other one. 

A unique measure can be obtained by combining these two errors into the total error 

rate (TER) or its complementary, the total success rate (TSR) [MartinOO], In this 

chapter, the total error rate (TER) is the key factor in all the experimental results.

TER = FRR + FAR (7.1)

TSR = 1-TER (7.2)

Most biometric person verification systems return a score indicating the likelihood 

that the user is a genuine client or an impostor. Selecting a threshold over which 

scores are considered to indicate genuine clients instead of impostors can modify the 

relative performance of FAR and FRR. A typical threshold chosen is the one that 

reaches the equal error rate (EER), where FAR = FRR [Pierrot98]. Note that EER 

and TER, while similar, are different concepts: EER is often used to select a 

threshold but cannot be used to measure the performance of a system on unknown 

data, while TER can be used to measure this performance. This can be explained by 

the fact that the threshold selected on one dataset for FAR=FRR will not give the 

same ERR on an unknown data while the same threshold can be applied to an 

unknown dataset to measure its TER.

In order to achieve an effective comparison of the performance of different 

biometrics systems each with a different threshold range, a description independent 

of threshold scaling is required [Bengio04], The ROC Curve and the DET Curve are 

used for evaluating the overall performance of a system while eliminating the 

threshold parameter. The ROC Curve has been taken to denote either the Receiver 

Operating Characteristic [Centor91] [Hanley89] [Egan75] or alternatively, the
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Relative Operating Characteristic [Swets73]. It is usually used for pattern or signal 

detection systems where the false accept rate (FAR) is plotted -on the x-axis- against 

the Genuine Accept Rate (GAR) -on the y-axis-. The Detection Error Trade-off 

(DET) Curve on the other hand [MansfieldOlb], plots the FAR -on the x-axis- 

against the FRR -on the y-axis- giving uniform treatment to both types of error, a 

logarithmic scale for both axes is then used to spread out the plot to better 

distinguish the performance of the different systems [Mansfield 02].

In order to compare the performance of the different biometric modalities used in 

this project, which are fingerprint, voice, and face, the DET curve was used. Figure

7.1 shows the DET curves for the each of the modalities used in this project

Figure 7.1: Detection error trade-off: FAR vs. FRR

The lower and further left on the graph that an operating point occurs, the better the 

performance can be considered [Martin97], with the origin representing the 

“perfect” performance. Figure 7.1 shows that the voice system had the best
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accuracy, followed by the fingerprint and finally the face system. The graph shows 

that the fingerprint is the most secure modality against spoofing among the other 

modalities with a false accept rate of zero.

The DET curves can also be plotted for the different decision fusion rules. Figure

7.2 (a) and 7.2 (b) shows the DET curves plotted for the soft decision fusion 

methods and the hard decision fusion method respectively. The DET curves plotted 

were performed through an exhaustive search.

It should be noted that the scores used in plotting the DET curves for the different 

decision fusion rules were the raw un-normalised scores of each modality, except for 

the sum rule, where the scores used were normalized by using the normalization 

method proposed in Chapter 5, as the raw un-normalised scores of each modality 

could not be used in this case.

Soft Decision Fusion 
(A) Sum Rule

Figure 7.2 (a): Soft decision fusion methods
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Hard Decision Fusion 
(A) AND Rule

(B) OR Rule
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Figure 7.2 (b): Hard decision fusion methods
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From the plotted DET curves it can be concluded that improving the performance of 

a single biometric system by searching for the optimal verification threshold that 

lowers both its FAR and FRR and thus resulting in a low TER might not be a 

difficult task, but as the number of biometric modalities increases the search space 

becomes more complex and determining the optimal verification threshold of the 

individual modalities under different decision fusion rules becomes almost 

impossible. Furthermore, having to normalise the scores before combining them 

using the sum rule reduces the dimensionality of the space thus resulting in 

inaccurate recognition rates [Altinacy03].

In the next section a more formal approach for the optimisation of a multi-modal 

biometric identity verification scenario is proposed that solves the problem 

associated with threshold settings.

7.3 An Approach to Optimising Multimodal Configurations

The specific approach proposed here adopts an optimisation technique based on the 

use of genetic algorithms (GAs) [Kuncheva93]. The empirical approach adopted 

uses the raw un-normalised “scores” generated by each of the biometric devices in 

the system, offering an effective “plug-and-play” design philosophy to system 

implementation. Figure 7.3 shows the proposed optimising architecture that 

integrates genetic algorithms and the different decision fusion rules for solving the 

problem associated with threshold settings.

In the next section a detailed description of the proposed optimising architecture is 
provided.
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Modality Settings

Figure 7.3: The optimising architecture

7.4 Description of the Optimising Architecture

The architecture consists of two main components, the genetic evolution module and 

the evaluation module. In the following paragraphs a description of each component 

is given in detail. This architecture was implemented by using the genetic algorithm 

toolbox provided in [GA Toolbox].

7.4.1 The Genetic Evolution Module

The genetic evolution module is responsible for generating a population of 

individuals (Chromosomes) and applying the genetic operators to them depending 

on their fitness, as will be described later in this chapter.
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7.4.1.1 Chromosome Representation and Genetic Operators

Each chromosome generated has ‘N +l’ genes, where N is the number of modalities 

used in the system. Each of the N genes represents a local threshold to which that 

particular modality is set for the verification process. These local thresholds are 

represented in Figure 7.4 by T j ,  where i =1 to N. The ‘N +l’ th gene represents the 

global threshold associate with the decision fusion rule. This global threshold is 

represented in Figure 7.4 by Tg. As previously explained in Chapter 6, the 

chromosomes are represented by different encoding types depending on the problem 

being explored. In this work the value encoding type was used, since the thresholds 

of the different modalities used in this project were all real values. Figure 7.4 shows 

the chromosome representation.

Chromosome

Gene

Figure7.4: General chromosome representation

The different genetic operators that were described in the previous chapter were 

used in this study as follows:

For selection, where the individuals of the population compete among each other to 

become parents of the next generation, the roulette wheel selection technique was 

used. This technique was chosen because the selection procedure is biased to the 

member with the highest fitness value. For crossover, where new individuals are 

introduced into the population, intermediate recombination was used. This method 

was used because of its ability in dealing with chromosomes represented by real­

valued encoding. For mutation, where new information is inserted into the 

population by randomly changing one or more genes of a selected individual, the 

function for the mutation of real-valued population was used as described in the 

genetic algorithm toolbox used [GA Toolbox]. For reinsertion, the fitness-based 

reinsertion scheme was used, where the offspring are selected for reinsertion
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according to their fitness. The offspring with the higher fitness replace the less fit 

ones.

7.4.2 The Evaluation Module

The evaluation module is responsible for providing fitness feedback for each 

chromosome produced by the genetic evolution module. This fitness feedback is 

expressed as a function to be minimized where:

Fitness Function = Global Total Error Rate (7.3)

Global Total Error Rate = Global False Accept Rate + Global False Reject Rate (7.4)

The Global Total Error Rate (GTER), is calculated by fusing the local decisions of 

the biometric modalities under a specific decision fusion rule and thus creating a 

global decision from which the GFAR and GFRR, and hence the GTER, are 

calculated.

The decision fusion module uses either the hard decision fusion rules or the soft 

decision fusion rules.

7.5 Operation of the Optimising Architecture

In the previous section the components of the optimising architecture were 

described. In this section the operation of the proposed algorithm is presented, as 

illustrated in Figure 8.5. The operation commences by the genetic evaluation module 

generating an initial population of random chromosomes. Each chromosome 

represents the local threshold of each modality and the global threshold associated 

with the decision fusion rule used. Each chromosome generated is then passed to the 

evaluation module where the fitness function is calculated producing the GTER, 

given the thresholds and the fusion rule. When all chromosomes have been 

evaluated they are sent back to the genetic evolution module (GEM) where they are
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ranked in a descending order using the fitness ranking method (described in the 

previous chapter), with the most fit chromosome having the lowest GTER and the 

least fit chromosome having the highest GTER. The genetic evolution module 

(GEM) then performs the genetic operations: selection, crossover, mutation and 

reinsertion, producing a new generation of chromosomes that are passed to the 

evaluation module for fitness evaluation. This process is repeated until the number 

of generations (100) is achieved.

Figure 7.5: Flowchart of the optimising architecture
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7.6 Experimental Methodology

The optimising architecture described in the previous sections was implemented 

using the genetic algorithm toolbox in [GA Toolbox], For the genetic evolution 

module (GEM) a constant population size of 100, a crossover rate of 0.6 and a 

mutation rate of l/(number of genes) were used, as described in the genetic 

algorithm toolbox [GA Toolbox], Each chromosome consisted of four genes, three 

representing the local thresholds of the three modalities used in this work 

(fingerprint, voice and face) and the fourth representing the global threshold 

associated with the decision fusion rule. All chromosomes representations used real 

values as previously stated.

The testing methodology operates in the following manner. Since GAs are stochastic 

algorithms, it is difficult to formally specify convergence criteria. As the fitness of a 

population may remain static for a number of generations before a superior 

individual is found, the application of conventional termination criteria becomes 

problematic. A common practice was used where the GA is terminated after a pre­

specified number of generations. The experiments, which are reported here, were 

terminated after 100 generations in a single run. The choice of having a single run 

with a large population of 100 chromosomes instead of using multiple independent 

runs with a smaller population was based on the conclusion made by Cantu-Paz in 

[Cantu-Paz03] that states “A single run with the largest population possible reaches 

a better solution than multiple independent runs. Similarly, a single large run reaches 

the global solution faster than multiple independent runs”. After the GA is 

terminated the chromosomes with the lowest TER were selected. It is possible for 

the chromosomes to present more than one optimal solution in this search space. If 

multiple solutions yield the same TER, any one of the resulting solutions can be 

selected as a final solution. In such a case, the chromosome having the threshold 

values closer to the default ones was preferred since it was desired to know to what 

extent must the thresholds be tuned from their original value to achieve the 

minimum TER.
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7.7 Experimental Results

The ultimate goal for any biometric system is to make authentication decisions. 

However, the actual decision making process, specifically the setting of decision 

thresholds, has often been neglected in the field of biometrics. Making these 

decisions has often been dismissed as an unchallenging problem to be addressed 

during application development. However, in real operational systems, the problem 

has been found to be very challenging. The thresholds, for any realistic field 

deployment and eventual independent operation, have to be set up ahead of time 

during enrolment, (i.e., a priori,). The alternative is setting the thresholds a 

posteriori using the information available from the aggregate similarity scores 

recorded during the matching process. In this work, the default threshold set by the 

vendors of the biometric modalities used in this project was regarded as the a priori 

threshold since they were set up during the enrolment process in the data collection 

exercise. Alternatively, the a posteriori threshold is estimated using the proposed 

optimising architecture.

For estimating the a posteriori threshold and carrying out different experiments, 

three different data sets from the collected database were used for training, 

validating and testing the proposed approach; according to the following criteria.

The enrolment session was used for training the individual classifiers. This means 

that each access has been used to model the respective client, yielding 147 different 

client models, as previously mentioned.

The first access from each person in the second enrolment session was used for 

validation. This was done by matching each single client sample access with his own 

reference model, generating 147 clients. Then a cross comparison was used to 

establish the impostor distribution [0 ’Gorman98] generating 147 x 146 = 21462 

impostor accesses, as explained in Chapter 5. This data set was used by the 

optimising architecture to search for the optimal local and global thresholds.

The second access from each person in the second enrolment session was used for 

testing the thresholds calculated from the validation set.
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Two configurations were considered for calculating the total error rate (TER). 

Figure 7.6(a) and 7.6 (b) shows these, designated configuration I and configuration 

II respectively.

Configuration I

In this configuration, the validation set is used by the proposed optimising 

architecture to tune the thresholds of the biometric modalities, as will be described 

later in this chapter. The minimum total error rate (TER) generated by the tuning of 

the thresholds (a posteriori thresholds) on this dataset is recorded and compared 

with the TER computed when using the a posteriori thresholds on the testing set.

Dataset 1 Dataset 2 Dataset 3
Training Validation Testing

Figure 7.6 (a): Configuration I for computing the TER

Configuration II

In this configuration the a priori threshold, set by the vendors of the biometric 

modalities was used in the testing set to compute the total error rate (TER).

Dataset 1 Dataset 2
Training Testing

Figure 7.6 (b): Configuration II for computing the TER

In this section the results obtained from using the a priori and the a posteriori 

thresholds are compared. It should be noted that all the experiments carried out in 

this section used the scenarios described in Chapter 5 to calculate both the false 

reject rate (FRR) and the false accept rate (FAR) for the different fusion rules.
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7.7.1 Hard Decision Fusion Rules

As previously mentioned the hard decision fusion rule are combined using the three 

rules; AND, OR and majority voting. For these experiments each chromosome 

consists only of three genes, each representing the local threshold of the three 

modalities used in this project (fingerprint, voice and face) as shown in Figure 7.7

T p in g e rp r in t T y o i c e T p a c e

Chromosome

Gene

Figure 7.7: Chromosome representation for hard decision fusion

This is because when using the hard decision fusion rules such as AND, OR or 

majority voting, no global threshold is involved; the FAR, FRR and TER are 

calculated only from the local thresholds of the biometric modalities as 

demonstrated in Figure 7.8. The results from the different fusion rules are presented 

in the following subsections.

Figure 7.8: E valua tion  o f  T E R  using  h a rd  dec is ion  fusion
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7.7.1.1 AND Fusion

In AND fusion, for a user to be accepted as a genuine client, all the classifiers must 

agree. That is, the score of each single modality must be greater than its pre­

specified local threshold. The AND fusion rule is mainly used in high security 

access applications where a main concern is break-ins, and hence the system 

operates on a low FAR at the expense of a high FRR [Jain99], Figure 7.9 shows the 

minimum TER plotted after every generation for the AND fusion.

Figure 7.9: Minimum TER vs. Generation for AND fusion

Figure 7.9 illustrates the reduction of the total error rate (TER) over the 100 

generations with the AND rule being used. As can be observed from Figure 7.9, a 

minimum TER of 30.62 % (computed when the thresholds were chosen on the 

validation set), was obtained after tuning the local threshold of each modality. It can 

also be seen that the TER remained constant after the 10th generation. The thresholds 

computed from the validation set were then used on the test set to compute the total 
error rate (TER).
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Table 7.1 compares several results; it compares the TER obtained when using the a 

priori thresholds, the resulting TER after setting the a posteriori thresholds on the 

validation set and the TER obtained when using the a posteriori thresholds 

computed on the test set. In addition to that the table includes the results obtained 

from carrying an exhaustive search. Although this method is not sufficient for 

complex problems, it was done only on this experiment to compare its performance 

with the optimizing method proposed.

Table 7.1: Comparison between the a priori threshold and the a posteriori threshold results for the 
AND mle

Rule
used

Settings used Local Thresholds Total Error Rate (%)

Finger Voice Face FRR FAR

a priori Threshold 5 0 8.7 57.1 0.0

AND
Fusion

a posteriori Threshold 
(Validation set)

3 -262 6.8 30.62 0.0

a posteriori Threshold 
(test set)

3 -262 6.8 34.0 0.0

The table shows an expected reduction of 40.5% in the TER if the local threshold of 

each biometric modality is tuned from its default setting (a priori threshold) by 

using the optimisation architecture proposed. It is also seen that the TER from the 

validation set (30.62 %) was better than the TER (34.0 %) obtained when using the 

a posteriori threshold on the test set.

A simple experiment was carried out using the exhaustive search method with an 

increment step of 0.01 since it was decided that the results would be up to 2 decimal 

points. Although this method is not sufficient for complex problems, it was done 

only on this experiment to compare its performance with the optimizing method 

proposed. Figure 7.2 shows the results obtained from the exhaustive search.
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Table 7.2: The exhaustive search results

Method used Local Thresholds Total Error Rate (%)

Exhaustive serach

Finger Voice Face FRR FAR

3 -262 6.8 30.62 0.0

The table showed that the exhaustive search provided similar results to the 

optimising method proving that the optimising method is efficient. It should be 

noted that the exhaustive search was not done on other experiment.

1.1.1.2 O R  F u sio n

In OR fusion, for a user to be accepted at least one of the classifiers must indicate 

that the person is a genuine client. That is, the score of at least one single modality 

must be greater than the pre-specified local threshold.

Figure 7.10 shows the minimum TER plotted after every generation for the OR 

fusion.

Figure 7.10: Minimum TER vs. Generation for OR fusion
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Figure 7.10 shows a decreasing total error rate (TER) over the 100 generations with 

the OR rule being used. From Figure 8.10 it can be seen that the minimum total error 

rate obtained after tuning the local threshold of each modality on the validation set 

was 3.2 %. It can also be observed that the TER remained constant after the 20th 

generation. The thresholds computed from the validation set were then used on the 

test set to compute the TER.

Table 7.3 presents three different results; it presents the TER obtained when the a 

priori threshold is used on the testing set, it also presents the TER obtained when the 

a posteriori thresholds is set on the validation set and finally it presents the TER 

obtained when using the a posteriori thresholds computed on the test set.

Table 7.3: Comparison between the a priori threshold and the a posteriori threshold results for the 
OR rule

Rule
used

Settings used Local Thresholds Total Error Rate (%)

Finger Voice Face FRR FAR

a priori Threshold 5 0 8.7 4.1 3.8

OR
Fusion

a posteriori Threshold 
(Validation set)

3 -262 6.8 2.0 1.2

a posteriori Threshold 
(test set)

3 -262 6.8 4.8 1.3

Table 7.3 illustrates that if the local thresholds of the biometric modalities are re­
calibrated from their default settings (a priori threshold) by using the optimisation 

architecture proposed, a reduction of 22.8 % in the TER occurs. From Table 7.2 it is 

seen that using the a posteriori threshold on the validation set give better results than 

when using the same a posteriori threshold on the test set.
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7.7.1.3 Majority Voting

In majority voting fusion, for a user to be accepted, the majority of the classifiers 

must agree that the person is a genuine client. That is, the scores of any two 

modalities out of the three (in our current scenario) must be greater than their pre­

specified local thresholds. Figure 7.11 shows the minimum TER plotted after every 

generation for the majority voting rule.

Figure 7.11: Minimum TER vs. Generation for majority voting fusion

Figure 7.11 shows a decreasing total error rate (TER) over the 100 generations with 

the majority voting rule being used. Figure 7.11 illustrates that the minimum TER 

that can be attained after various tuning of the local thresholds of the modalities 

(using the proposed method) is 7.1 %. It is seen that the TER remained constant 

after the 30th generation. The a posteriori thresholds that were computed on the 

validation set were used on the test set to compute the TER.

Table 7.4 provides three results computed from the experiments. It provides the TER 

obtained when using the a priori thresholds, the TER attained after setting the a 

posteriori thresholds on the validation set, and the TER obtained when using the 

computed a posteriori thresholds on the test set.
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Table 7.4: Comparison between the a priori threshold and the a posteriori threshold results for the 
majority rule

Rule
used

Settings used Local Thresholds Total Error Rate (%)

Finger Voice Face FRR FAR

Majority
Voting
Fusion

a priori Threshold 5 0 8.7 15.6 0.02

a posteriori Threshold 
(Validation set)

3 3 7.18 6.1 1.0

a posteriori Threshold 
(test set)

3 -262 6.8 7.5 1.1

Table 7.4 shows that a reduction of almost 50 % in the total error rate (TER) is 

expected to occur if the local thresholds of the biometric modalities used here are 

tuned slightly from their a priori thresholds by using the proposed optimisation 

architecture. The results also show that the TER computed on the validation set was 

better than the TER computed on the test set.

It can be concluded that the majority voting approach had the highest expected 

reduction in the TER with a slight tuning of the thresholds compared with both the 

AND rule and the OR rule.

Table 7.5 summarises the results obtained from the different hard decision fusion 
rules

Table 7.5: Comparative performance of the different hard decision fusion methods

Fusion

Method

a priori Threshold a posteriori Threshold 

(Validation set)

a posteriori Threshold 

(Test set)
FRR FAR TER FRR FAR TER FRR FAR TER

AND 57.1 0.0 57.1 30.6 0.0 30.6 34.0 0.0 34.0

OR 4.1 3.8 7.9 2.0 1.2 3.2 4.8 1.3 6.1

Majority

Voting
15.6 0.02 15.26 6.1 1.0 7.1 7.5 1.1 8.6
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Table 7.5 shows that the total error rate (TER) computed on the validation set was 

always better than the TER computed on the test set in all the hard decision fusion 

methods. This is due to the fact that the validation set was used as a training set in 

tuning the local thresholds of the biometric modalities as well as a testing set in 

computing the TER, which results in an overestimation of the performance. This is 

due to the fact that the proposed optimising architecture will generate the best results 

for the same data set it have been trained on.

7 .7 .2  S o f t  D e c is io n  F u s io n

As previously defined, a soft decision is a decision made by the system that 

generates a score that normally lies in the range [0,1]. Since the biometric modalities 

used in this project had different score ranges, the proposed optimising architecture 

was used to solve the problem of combining the different scores using the sum rule 

without having to actually nonnalise the scores. Figure 7.12 shows the method used 

for computing the FAR, FRR and hence TER when using the sum rule. The W,- 

(where i = 1 to 3) represent the weights assigned to each biometric modality.

Figure 7.12: Evaluation of TER using soft decision fusion
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7.7.2.1 Sum Rule

In the sum rule, a user is accepted if the summed score of the three biometric 

modalities is greater than the pre-specified global threshold (Tg). Two experiments 

were undertaken to evaluate this approach and both are based on the structure shown 

in Figure 7.12.

Experiment 1

In this experiment the raw scores of the biometric modalities were used and equal 

weights were assigned to each modality. For this experiment each chromosome 

consists of one gene only, representing the global threshold (Tg) as shown in 

Figure 7.13 . Although this experiment is a simple one it does show the flexibility of 

the optimising method in dealing with small problems and extending it to larger 

ones.

Chromosome

Gene

Figure 7.13: Chromosome representation for summation mie

Figure 7.14 shows the minimum TER plotted after every generation for the sum 

rule. It shows the variation in the total error rate (TER) over the 100 generations as 

the sum rule was used. From Figure 7.14 the results show that a minimum TER of 

11.76 % was attained on the validation set after tuning the global threshold (Tg) by 
using the proposed optimising architecture. It was also shown that the TER 

remained constant after the 5th generation. The global thresholds computed on the 

validation set were used on the test set to compute the TER on that data set.
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Figure 7.14: Minimum TER vs. Generation for summation rule

Table 7.6 shows the results obtained when using the a posteriori threshold on the 

test set.

Table 7.6: Results obtained when using the optimisation method

Threshold False Reject False Accept

2.58 8.16% 1.66%

It was observed that in this experiment the TER (9.82 %) computed on the test set 

was better than the TER computed on the validation set (11.76 %) when using the 

sum rule.

Experiment 2

In this experiment the raw scores of the different modalities were weighted in order 

to vary the importance of the matching scores of each biometric modality [Jain02], 

For this experiment each chromosome consists of four genes, three representing the 

weights for each biometric modality and one representing the global threshold for
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the sum rule as shown in Figure 7.15. This fusion rule is often called weighted 
summation rule.

F in g erp rin t 'W  V o ice w Face T g
_____ ^

Chromosome

Gene

Figure 7.15: Chromosome representation for weighted summation rule

Figure 7.15 shows the minimum TER plotted after every generation for the weighted 

summation rule. It shows that a minimum TER of 4.56 % was reached on the 

validation set after tuning the global threshold (Tg) by using the proposed 

optimising architecture. The graph shows that the TER remained constant after the 

15th generation. The weights and the global threshold computed on the validation set 

were used on the test set to compute the TER.

Figure 7.16: Minimum TER vs. Generation for the weighted summation rule
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Table 7.7 shows the results obtained when using the a posteriori threshold computed 

by using the proposed optimising architecture on the test set.

Table 7.7: Results obtained for the weighted summation rule

Weights
Threshold FRR FAR

W1 W2 W3

0.48 0.03 0.49 4.14 7.5 % 1.2 %

Table 7.7 shows that the voice modality was the least weighted; this can be 

explained by the fact that the problem of computing the total error rate (TER) is a 

minimization problem, (that is, computing the minimum TER) and since the voice 

modality had the largest range of scores among the other modalities a small weight 

had to be assigned to it to minimize the TER during computation. It was also 

observed that the total error rate (TER) computed on the validation set was better 

than the TER computed on the test set.

7 .7 .3  H y b r id  D e c is io n  F u s io n

It was decided to perform some further experiments using a hybrid fusion method 

combining the majority voting rule in the hard decision fusion scenario and the sum 

rule in the soft decision fusion. The choice of the majority voting rule was based on 

its highest performance in reducing the TER among the other hard decision fusion 

methods. The approach adopted used the raw scores generated by each of the three 

biometric modalities of interest here. Figure 7.17 shows the hybrid architecture used 

to compute the TER. Three experiments were undertaken in this part of the 

investigation, based on the structure shown in Figure 7.17.
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Figure 7.17: Evaluation of TER using Hybrid decision fusion

The experiments carried out for both the hard decision fusion and the soft decision 

fusion used the scenarios described in Chapter 6. The experiments in this section 

(the hybrid decision fusion) applied the following criteria in calculating the FAR and 

the FRR. If the user accessing a system is a legitimate user, then the identity claim 

of this user is accepted: first, if the scores of any two of the biometric modalities are 

greater than their pre-specified local threshold and second if the summed score is 

greater than the pre-specified global threshold. Hence, a legitimate user is falsely 

rejected by the system in two cases: first if the scores of any two of the biometric 

modalities are lower than their pre-specified local threshold and second if the scores 

of any two of the biometric modalities are greater than their pre-specified local 

threshold, but the summed score is less than the pre-specified global threshold. On 

the other hand, if the user accessing a system is an impostor trying to spoof the 

system, then the claimed identity of this user is accepted as being that of a legitimate 

user if the scores of any two of the biometric modalities are greater than their pre­

specified local threshold and if the summed score is greater than the pre-specified 
global threshold.

Experiment 1

In this experiment the local thresholds of the biometric modalities were set to the 

default values (a priori thresholds) given by the vendors of the biometric devices, 5 

for the fingerprint, 0 for the voice and 8.7 for the face. The majority voting rule was

1 6 6



Chapter 7 Optimizing Multimodal Person Recognition

applied, where the scores from at least two modalities must pass their local 

thresholds and then the proposed optimising architecture is used to compute both the 

best weights and the global threshold that minimises the TER. For this experiment 

each chromosome consists of four genes, three representing the weights for each 

biometric modality and one representing the global threshold for the sum rule as 

shown in Figure 7.18.

Chromosome

Gene

Figure 7.18: Chromosome representation for the hybrid method

Figure 7.19 shows the minimum TER plotted after every generation for the hybrid 

fusion. The graph shows that the minimum TER that could be attained by adjusting 

the weights and tuning the global threshold was 20.5 %. It also shows that this TER 

remained constant after the 15th generation. The weights and the global threshold 

computed from the validation set were then used to compute the TER on the test set.

Figure 7.19: Minimum TER vs. Generation for the hybrid fusion
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Table 7.8 shows the results obtained when using the computed a posteriori threshold 

on the test set.

Table 7.8: Results from using the a posteriori threshold on the test set after optimisation

Weights Threshold2 FRR FAR
W1 W2 W3
0.28 0.02 0.70 3.6 17.7% 0.02 %

The results showed that the TER computed using the a posetriori threshold on the 

test set are better than the TER computed on the validation set.

Experiment 2

In this experiment equal weights were assigned to each biometric modality. The 

proposed optimising architecture was used to compute both the local thresholds of 

each of the biometric modalities and the global threshold. For this experiment, each 

chromosome consists of four genes, three representing the local threshold of the 

biometric modalities and one representing the global threshold for the sum rule as 

shown in Figure 7.20.

Chromosome

Genes

Figure 7.20: Chromosome representation for the hybrid method

Figure 7.21 shows the minimum TER plotted over the 100 generations for this 
experiment. From the graph it was observed that the minimum total error rate 

computed was 13 % and that this value remained constant after the 30th generation. 

The computed local and global thresholds from the validation set were used to 

compute the TER on the test set.
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Figure 7.21: Minimum TER vs. Generation for the hybrid fusion

Table 7.9 shows the results of using the a posteriori threshold on the test set

Table 7.9: Results obtained after optimising the thresholds

Biometrics
Threshold2 FRR FAR

Finger Voice Face
3 -2 7.54 2.58 10.2 % 1.0%

The TER computed on the test set is seen to be better than the TER computed on the 
validation set.

Experiment 3

In this experiment the proposed optimising method was used to compute the best 

weights, the local thresholds of the biometric modalities and the global threshold 

that minimises the TER. For this experiment, each chromosome consists of seven 

genes, three representing the weights for each modality, another three representing 

the local thresholds of the biometric modalities, and one representing the global 

threshold for the sum rule as shown in Figure 7.22.
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^ ^ F i n g e r p r i n t Wvoice Wface ^ F i n g e r p r i n t Tvoice t ^ F a c e Tg
K

Chromosome

Gene

Figure 7.22: Chromosome representation for the hybrid method

The experiment showed that the minimum TER that was computed by tuning the 

thresholds and adjusting the different weights was 7.1 % as shown in Figure 7.23 

and that this value remained constant after the 30th generation. The thresholds and 

the weights computed on the validation set were used to compute the TER tested on 

the test set. The TER obtained by using the computed a posteriori threshold on the 

test set is shown in Table 7.10.

Figure 7.23: Minimum TER vs. Generation for the hybrid fusion

Table 7.10: Results obtained for the hybrid method

Weights Threshold 1 Threshold2 FRR FAR
W1 W2 W3 Finger Voice Face
0.38 0.02 0.60 3 3 7.2 3.26 9.5 % 1.2 %
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In this experiment the TER computed on the validation set was better than the TER 

computed using the a posetriori threshold on the test set.

Table 7.11 summarises the results obtained from the different experiments.

Table 7.11: Comparative performance of the soft and hybrid decision fusion methods

Rule Used
Experiment

undertaken

a posteriori Threshold (%) 

(Validation set)

a posteriori Measure (%) 

(Test set)

FRR FAR TER FRR FAR TER

Sum Rule
Experiment 1 10.2 1.6 11.8 8.2 1.7 9.9

Experiment 2 3.4 1.2 4.6 7.5 1.2 8.7

Hybrid

Rule

Experiment 1 20.4 0.1 20.5 17.7 0.02 17.72

Experiment 2 12.2 0.8 13.0 10.2 1.0 11.2

Experiment 3 6.1 1.0 7.1 9.5 1.2 10.7

Table 7.11 shows that in the sum rule the results obtained from experiment 2 are 

better than the results computed from experiment 1. This is due to the fact that 

weighting was used in experiment 2. Weighting varies the importance of matching 

scores of each biometric modality, thus increasing the system performance. It was 

also observed that when using the hybrid rule, the performance is better when both 

the local thresholds of the biometric modalities and the global threshold are tuned 

(as in experiment 2) rather than when adjusting the weights and tuning the global 

threshold (as in experiment 1). The system performs even better if the weights are 

adjusted and both the local and the global threshold are tuned as in (experiment 3). 

The results also showed that in some experiments the TER in the test set was better 

than the TER computed on the validation set. This often happens if the test set is a 

well-behaved dataset, meaning that the verification samples provided by the users on 
that dataset were good samples.

The adoption of the hybrid method (as shown in Table 7.11) generates a higher TER 

than both the sum rule and the majority voting rule (as shown in Table 7.5)
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1.1.4 Normalized-Sum Fusion

A further more complicated experiment was carried out in this section to explore the 

flexibility of the optimizing method in searching a larger space. It was decided to 

use the optimizing method to search for the parameters that normalising the scores 

before summing them. Figure 7.27 shows the normalised-sum method used to 

compute the TER. Two experiments were carried out in this section.

Using a general form of the Adaptive logarithmic method described in Chapter 5

S-Threshold ( 7 . 1 )

exp c
° « o r m  ( S-Threshold ^

1 + exp c

Where

Snorm : is the normalized score

S : is the raw matcher score

Threshold: is the threshold of the biometric device.

C : denotes the left and right edges of the region in which the function is linear, i.e. 

it exhibits linear characteristics in the interval (Threshold ± C). Figure 7.24 shows 

an example of the normalizing method, where the scores in the [0, 9] range are 

mapped to the [0, 1] range using Threshold = 5, C = 1.

Figure 7.24: N orm alisa tion  m ethod  (th resho ld  (t) =5, C =  1)
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This method transforms the scores into the [0, 1] interval. But, it requires careful 

tuning of the parameters (Threshold (t) and C) to obtain good efficiency. In general, 

the threshold is chosen to be some value falling in the region of overlap between the 

genuine and impostor score distribution, and C is made equal to the extent of 

overlap between the two distributions toward the left and right of the threshold (t), 

respectively as shown in Figure 7.25. This normalization scheme provides a linear 

transformation of the scores in the region of overlap, while the scores outside this 

region are transformed non-linearly.

Figure 7.25: Distribution of genuine and impostor scores.

Changing the threshold (t) and the parameter (C) affects the way the scores are 

transformed into the region [0, 1] and hence changes the shape of the genuine and 

impostor distribution and trying to tune them for efficient results becomes difficult. 

When C becomes larger most of the scores are linearly transformed while the 

smaller C becomes less score are linearly transformed and the steeper is the slope as 
shown in Figure 7.26.
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C is small C is large

Figure 7.26: transformation of scores into the range [0, 1]

Figure 7.26 shows the transformation of scores in the range [0, 1] when tuning the 

parameter C and fixing the threshold (t). The figure shows that increasing the 

parameter C does not normalize the scores into the range [0, 1] and hence a fine 

tuning of C is needed for efficient results.

Figure 7.27 shows the normalised-sum method used to compute the TER, two 

experiments were carried out to tune the thresholds and the parameter C for each of 
the biometric modalities.

Figure 7.27: Evaluation of TER using normalized-sum fusion
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Experiment 1

For this experiment, each chromosome consists of seven genes, three representing 

the local thresholds of the biometric modalities, another three representing the C 

parameter for each modality and one representing the global threshold for the sum 

rule as shown in Figure 7.28. For this experiment equal weights were assigned for 

each modality.

^ F in g e rp rin t Tyoice Trace ^ F in g e rp rin t Cvoice ^ F a c e L

Chromosome

Gene

Figure 7.28: Chromosome representation for the normalized-sum fusion

Figure 7.29 showed that the minimum TER computed by tuning the thresholds and 

the parameter C was 6.68 % and that this value remained constant after the 20th 

generation. The thresholds and the weights computed on the validation set were used 

to compute the TER tested on the test set. The TER obtained by using the computed 

a posteriori threshold on the test set is shown in Table 7.11.

Figure 7.29: M in im um  T E R  vs. G enera tion  fo r the n o rm alized -sum  fusion
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Table 7.12 shows the results obtained by using the optimising method to tune the 

different parameters

Table 7.12: Results obtained for the normalised summed fusion

Threshold 1 C parameter Threshold2 TER
Finger Voice Face C Finger

n̂
 Voice ^ F a c e

7 280 9 3.3 76.5 6.7 0.31 4.92 %

Table 7.11 shows that by tuning the thresholds of each modality and adjusting the 

parameter C, the performance of the system improves compared to when using it 

without normalizing the scores as shown in Table 7.5.

Experiment 2

In this experiment, each chromosome consists of ten genes, three representing the 

local thresholds of the biometric modalities, another three representing the C 

parameter for each modality, three more representing the weights assigned for each 

modality and one representing the global threshold for the sum rule as shown in 

Figure 7.30.

Fingerprint Voice Face ^Fingerprint
f
'-'V oice C p a c e w„,TT Fingerprint ^ v o i c e TT Face T*g

Gene

Figure 7.30: Chromosome representation for the normalized-sum fusion
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Figure 7.31: Minimum TER vs. Generation for the normalized-sum fusion

Figure 7.31 shows the minimum TER plotted over the 100 generations for this 

experiment. The graph show that the minimum total error rate computed was 2.47 % 

and that this value remained constant after the 35th generation. The computed 

parameters from the validation set were used to compute the TER on the test set.

Table 7.13 shows the results obtained by using the optimising method to tune the 

different parameters

Table 7.13: Results obtained after normalising the different parameters

T h resh o ld  1 C p a ram ete r W eig h ts T h resh o ld 2 T E R

F in g e r V oice F ace ^F in g er ^V o ice C fa c e W finger W v o ic e W p ace 0 .4 0 3 . 0 %

7 -1 5 1 .2 6 .2 6 4 .2 -4 2 .9 3 .2 6 0 .2 0 .2 0 .6

Table 7.13 shows that by adjusting the different parameters, the performance of the 

system improves even better compared with the results obtained from Table 7.7
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The experiments that have been carried out in this chapter explored the power of 

using genetic algorithm. Genetic algorithm provided a flexible structure where it can 

be used to search a small space of only one gene as shown in Figure 7.13 as well as 

a large space with up to 10 genes as shown in Figure 7.30. In addition to that, the 

experimental results of this study showed that in all the decision fusion methods 

used, the minimum TER was attained between the 5th and the 35lh generation which 

means that the genetic algorithm provides the optimum results in a less 

computational time when compared with other search method such as the exhaustive 

search which will take between 100 iteration for one gene to 4*1020 iterations for 10 

genes before reaching the optimal solution. Another advantage that genetic 

algorithms have over other search methods is its ability of finding several solutions 

which provides the same result; this gives flexibility in choosing the best result for 

the problem. The experiments showed that genetic algorithm solved two of the main 

problems in the multimodal biometric field which are the setting of the thresholds 

and the normalization of scores.

7.8 Discussion

A number of interesting points may be drawn from the different experiments that 

were undertaken. The results reported in this chapter are based on testing the 

proposed optimising architecture and investigating its performance when using the 

different fusion rules. According to the experimental results of this study, the 

majority voting rule in the hard decision fusion methods had the highest expected 

reduction in the total error rate (TER) among the other rules and this was achieved 

by only tuning the local thresholds slightly from their a priori adjustment. The 

experimental results also showed that in all the hard decision fusion methods the 
total error rate (TER) computed on the validation set was better than the total error 

rate (TER) computed by using the a posteriori thresholds on the test set. This can be 

explained by the fact that using the same data set for both training and testing results 

in overestimating the performance of the system. Comparing the hard decision 

fusion results obtained when using the a priori thresholds with the one generated by 

using the proposed optimising method showed that the a posteriori thresholds 

obtained by using the proposed optimising method resulted in an improvement in the
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optimising architecture solved the problem associated with threshold setting by 

tuning the local thresholds of the biometric modalities.

The experimental results also showed that the proposed optimising architecture not 

only solved the problem of threshold setting, but also the problem of score 

normalization by combining the raw scores of the biometric modalities using the 

sum rule without having to normalise the scores beforehand. In addition, the 

optimising architecture solved the problem associated with weight setting as it was 

able to adjust the weights when using the weighted summation rule and increase the 

system performance. The results also showed that by tuning the different parameters 

of the normalizing function increases the system performance. The results showed 

that the weighted sum rule perfonned better than the sum rule, proving that varying 

the relative importance of the matching scores of each biometric modality increases 

the system performance.

Comparing the hybrid decision fusion results with that of the majority voting and the 

sum rule showed that both the majority voting and the sum rule performed better 

alone than when combining them.

Considering the number of generations required to reach the optimal solution 

(minimum TER), the experimental results of this study showed that in all the 

decision fusion methods used, the minimum TER was attained between the 5th and 

the 30th generation. The experiments also showed that the optimal solution is found 

much sooner if the space to be searched is smaller, such as in the case of finding the 

optimal weights, as they lie in the range [0, 1], However, if the space is large, as in 

the case of finding the thresholds, more generations are required to reach the optimal 
solution.

It can be concluded that the proposed optimising architecture solved the problems 

associated with threshold settings. This clearly demonstrates a valuable potential 

strategy that can be used to set the a priori thresholds of the different biometric 

devices before using them. The proposed optimising architecture solved the problem 

of score normalisation, which makes it an effective “plug-and-play” design 

philosophy to system implementation. It also solved problems associated with
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weight settings, which is used in many applications for varying the relative 

importance of the different parameters used.

7.9 Summary

In this chapter a proposed approach for the optimisation of a multimodal person 

recognition system based on the use of genetic algorithm was described. Several 

experiments were undertaken to test the proposed optimising architecture and to 

investigate its performance when using the different possible fusion rules. A hybrid 

decision fusion rule was also explored which combines the majority voting and the 

sum rule. The experimental results showed that the proposed approach could play an 

important role in system optimisation by, for example, determining system 

parameters, which reduce the total error rate. A further benefit of this approach is its 

ability in resolving some of the problems associated with score normalization in 

setting weights/thresholds.

The next chapter presents a summary of the work carried out in this thesis and 

suggests some further work for the future.
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Chapter 8

Conclusions and Further Work

8.1 Introduction

This chapter summarises the work presented in this thesis and presents the main 

conclusions that have been drawn from the work. It also provides some suggestions 

for future research. First, a summary of each chapter is provided as a separate 

section.

8.1.1 Chapter 2: Multimodal Biometric System Concepts

This chapter presented a review of research studies in the field of multimodal 

biometric systems concerning possible fusion approaches and the multimodal 

databases. The literature review emphasised combining multiple modalities and 
showed that the overall performance of the system can improve by integrating 

multiple biometric systems rather than by using a single biometric alone. In this 

chapter the different architectures for combining classifiers were described from 

which the parallel architecture was chosen to be adopted in this work. Four different 

levels on which the data can be fused were discussed: the sensor data level, the 

feature level, the matching score level and the decision level. A brief overview 

describing these fusion approaches in combining multimodal biometric system
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revealed the obvious preference of combining multiple biometrics at the decision 

level (both the matching score level and the decision level) compared with 

combining them at the sensor and the feature level, and this made the fusion at the 

decision level the main focus of this work In this chapter the decision fusion level 

was divided into two sub-levels; a hard decision level, where the scores combined 

used voting techniques, and a soft decision level, where the scores combined used 
the summation rule.

The literature also revealed some of the challenges that play an important role in 

enhancing the performance of multimodal biometric systems, such as the choice of a 

normalization method that maps the output scores of different biometric modalities 

into a common interval [0,1] before fusing them (see, for example, Snelick in 

[Snelick03]).

The literature also showed that one of the important factors in evaluating the 

performance of automatic recognition systems and in fusing multiple modalities is 

the availability of a large multimodal biometric database acquired under real 

conditions for testing the algorithms. An overview of the publicly available medium 

and large-scale multimodal databases was provided. These databases were not used 

in this study for various reasons such as their unavailability at the start of this 

research, their modest size and the fact that some of them consist only of two 

biometric modalities where it was preferred in this study to evaluate the performance 

of a system with more than two biometric modalities.

The focus of this study was therefore to detennine methods and ways of solving 

some of the important problems and challenges, which the literature survey had 

identified.

8.1.2 Chapter 3: Data Collection Trial

In this chapter the problem of the unavailability of a large multimodal biometric 

database acquired under real conditions to be used for testing different algorithms 

was solved by developing a multimodal biometric database to be used in this work. 

This chapter described the data collection exercise that was undertaken at the
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University of Kent as part of this project. Three biometric modalities were collected 

in this project: fingerprint, voice and face, using commercially available devices 

(with verification thresholds set mid range according to manufacturers’ 

specifications). Fingerprint was chosen for its high reliability, voice and face for 

their low-cost hardware and high user acceptability. The data collection protocol that 

was followed was linked to a scenario-testing regime and was developed within the 

emerging guidelines for best practice in biometric testing.

The data collection exercise involved collecting biometric samples from 221 

volunteers (45 % females and 55% males) with an age range from 18 years to 65 

years and above. The data collection protocol adopted required that each volunteer 

undertake two separate data collection sessions, the first involving enrolment on 

each of the systems adopted (up to three enrolment attempts per device were 

permitted), together with a post-enrolment verification check. Each volunteer 

undertook three verification attempts at this session. A second session was 

undertaken at least one month later where three additional verification attempts were 

carried out using the enrolment templates generated at the first session. This data 

collection exercise continued for almost 6 months, starting in November 2001 and 

finishing in May 2002.

8.1.3 Chapter 4: The Multimodal Database and Some Preliminary Analysis

In this chapter a preliminary analysis on the collected multimodal database was 

provided. The analysis focused mainly on perfonnance comparisons between 

verification based on single individual biometric modalities and approaches, which 

exploit the opportunity to combine data from multiple biometric modalities. The 
analysis focused mainly on Type I verification errors (FRR). Several experiments 

were reported in this chapter to estimate the performance of the system achieved 

with typical users and using commercially available devices.

The experiments reported in this chapter investigated several factors that affected 

the performance of the system, such as the failure to enrol rate, the time-based 

changes in biometric data and the “goat” phenomenon. The experiments also
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exploited the effects of re-try strategies and learning effects. Finally, a list of some 

of the users-related factors which were observed by the supervisor during the trial 

that influenced both the enrolment process and the verification process was provided

A number of interesting points were drawn from the different experiments that were 

carried out. According to the experimental results of this study, the failure to enrol 

rate reduces when more than one biometric modality is used. The experimental 

results also showed that the performance of a single modality might change 

dramatically over time, although it is unlikely for two or more modalities to do the 

same. It was also demonstrated that “goats” exist in every biometric system and that 

an individual who is a “goat” in one biometric modality is unlikely to be also a 

“goat” in a different one. Finally, exploiting the effects of re-try strategies and 

learning effects showed how training reduces the error rates and improves the 

system performance.

8.1.4 Chapter 5: Combining Multimodal Biometric System using Decision 

Fusion.

In this chapter a brief review of research studies of the most commonly used fusion 

rules at the decision level revealed that for combining soft decisions the sum rule 

outperformed other combination rules, which supported the idea of adopting and 

using this rule in this study. Regarding hard decisions, the AND and OR rule seem 

to be the dominating rules. The review also revealed that most of the research that 

used majority voting rule used it in combining soft decisions, though in this study it 

was used also to combine hard decisions. The chapter also presented the two most 

commonly used score normalisation methods and proposed a novel method for score 
normalisation.

In this chapter a set of experiments were carried out to compare the performance of 

the hard decision fusion methods (AND, OR and majority voting) with that of the 

soft decision fusion method (sum rule). The experiments were also based on 

investigating the effect of characterising the individual users as sheep, goats, lambs 

and wolves on the performance of the system.
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The comparative analysis showed that the hard decision fusion rules especially the 

majority voting and the OR rule, outperformed the soft decision fusion rules in 

reducing the false reject rate (FRR) whereas the soft decision fusion method (sum 

rule) outperformed the hard decision fusion methods with the exception of the AND 

rule in reducing the false accept rate to zero. From the results, a general conclusion 

was drawn that the sum rule in the soft decision fusion performs better than the hard 

decision fusion method for the present system since it reduced the FAR to zero and 

the FRR to a level, which is acceptable for many applications.

The characterisation of individual users as sheep, goats, lambs and wolves and their 

effect on the performance of the system has been considered by several researchers 

such as [Doddington98] [Pankanti02], However, none of these has considered 

analysing what effects the different fusion rules have on sheep, goats, lambs and 

wolves. In this chapter the comparative analysis that was carried out on the effects of 

the hard decision fusion methods (AND, OR and majority voting) and the soft 

decision fusion methods (sum rule) on the characterisation of the users as sheep, 

goats, lambs and wolves determined that the AND rule eliminates the lambs and 

wolves, but increase the proportion of goats in the system. This is in contrast with 

the OR rule, which decreases the proportion of goats and increases both the number 

of lambs and wolves in the system. The majority voting approach performed better 

than both the AND rule and the OR rule in providing a relatively low proportion of 

goats, lambs and wolves. On the other hand, the soft decision fusion method (sum 

rule) diminished the lambs and wolves from the system and provided a relatively 

low proportion of goats.

In this chapter four different types of wolves were proposed and different 

experiments were carried out to investigate their effect on the system performance

9.1.5 Chapter 6: Introduction to Genetic Algorithm

In this chapter an introduction to genetic algorithms and the different operators that 

influence their performance was provided. A comparison between genetic 

algorithms and other optimisation techniques was presented in order to illustrate the
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advantages that genetic algorithms have over other approaches. The chapter also 

presented some application areas of genetic algorithms particularly in biometric- 

based recognition of individuals. An overview of the research studies showed that 

most of the research applied genetic algorithms in mono-modal biometric systems 

and at the feature fusion level.

8.1.7 Chapter 7: Optimising Multimodal Person Recognition

In this chapter an approach to the optimisation of a multimodal person recognition 

system based on the use of genetic algorithms was proposed. The proposed 

optimising architecture played an important role in resolving some of the problems 

associated with score normalisation in setting weights/thresholds. The experiments 

performed in this chapter aimed at setting the threshold and weights that provide a 

minimum total error rate (TER) when using the different decision fusion rules. The 

experiments in this chapter were carried out using a constant population size of 100, 

a crossover of 0.6 and a mutation rate of (1/ number of genes) as described by the 

genetic algorithm toolbox.

Several points were drawn from the different experiments that were carried out. The 

experimental results of this study showed that in the hard decision fusion methods 

the majority voting had the highest expected reduction in the TER, which was 

achieved by slightly tuning the local threshold from their a priori settings. The 

results also showed that in the hard decision fusion methods the a posteriori 

thresholds computed by using the proposed optimising method improved the 

performance of the system more than when using the a priori thresholds. This shows 

that the proposed optimising method particularly addressed the problem associated 
with threshold settings in the hard decision fusion methods.

The proposed optimising method evenly addressed the problem of score 

normalisation by combining the raw scores using the sum without having to 

normalise them beforehand. The problem associated with weight setting was also 

solved by the proposed optimising method by adjusting the weights when using the 

weighted summation rule.
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8.2 Suggestions for Future Work

Some suggestions are proposed here for future work. Although the experiments were 

carried out on a database that contains three biometric modalities (fingerprint, voice 

and face), it is suggested that an investigation should be carried out using a larger 

database with more than three modalities such as the BIOMET database.

In Chapter 5 different types of wolves were proposed. A useful area for further study 

is to investigate issues concerning these wolves such as the reasons of their existence 

and whether their existence is a result o f the biometric devices used or their 

possession of some distinctive features, their average age and gender and whether a 

male could be a wolf and spoof a female template and vice versa. A suggestion is to 

test wolves on different biometric devices.

Finally, the proposed optimising method was used at both the score and the decision 

level. An important area of further study is to explore the use of similar optimisation 

techniques for the fusion o f multiple modalities at the feature level and to investigate 

the effects on the overall system performance.

8.3 Summary

The main objective of this project was to investigate the fusion of multimodal 

biometric verification systems and to evaluate their performance. A multimodal 

biometric database that consists of fingerprint, voice and face modalities was 

gathered for this purpose. The multiple modalities were fused both at the score and 

the decision level to support a system that can meet challenging and varying 

requirements. Some issues related to the implementation o f multimodal biometric 

system was also addresses such as the setting of the verification thresholds adopted 

by each biometric device. The main achievements of this work are summarized as 

follow:

1. The development o f a multi-modal database for use in person verification 

experiments.
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2. The proposal of a novel method for score normalization.

3. A comparative analysis of the performance of different fusion rules when 

characterizing the system users as sheep, goats, lambs and wolves

4. The proposal of a novel approach for the optimization of multimodal biometric 

systems based on the use o f genetic algorithms for solving problems 

associated with weights/thresholds settings and score normalization.
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Appendix A

Data Collection Information

A.l Introduction

This appendix presents the data sheets used during the data collection exercise. As 

previously mentioned in Chapter 3 each volunteer took part in two separate data 

collection sessions, the first involving enrolment on each o f the biometric devices 

together with a post-enrolment verification check of three attempts. In the second 

session three additional verification attempts were carried out using the enrolment 

templates generated at the first session. In this appendix the data sheets that were 

used in both sessions are provided. The data sheets include a brief personal 

information of each volunteer, a written consent form for participation, some 

comments that were written by the supervisor during the data collection and the 

results of enrolment and verification in each session.
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A Personal Information Data Sheet

N am e:................................................................

O ccupation:.........................................................

Phone:......................................  Consent Form

E -m ail:...................................

Trial Details

ID/PIN Number: 

Gender:

Male Female

Age:

18-24 25-34 35-44

45-54 55-64 65+

Features:

Glasses Contact Lenses Beard

Moustache Other feature
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B Consent Form

Department of Electronics 
University of Kent

CONSENT FORM

Please ticlc

1. I confirm that I have read and understood the Information 
for Project Volunteers for the above project

2. I understand that my participation is voluntary and that I 
am free to withdraw at any time, without giving reasons.

3. I consent to my biometric data being collected during 
the trial and stored electronically.

4. I understand that this data will only be used for the 
purposes of evaluating performance of biometric 
techniques and devices, by the Department of Electronics 
at the University of Kent.

5. I agree to take part in the project as a volunteer.

6. I understand that the advertised honorarium will only 
be paid on completion of the two measurment sessions. 
The payment will be made by cheque.

Name of Volunteer Date Signature

PLEASE BRING YOUR COMPLETED CONSENT FORM WITH YOU ON 
YOUR FIRST VISIT.

2 1 2



A ppend ix  A

C Data Sheet for Enrolment and Verification in the First Session

PIN

NAME:

ENROLMENT VERIFICATION

Failure to Failure to System Atitempts
SYSTEM match Acquire rejection OK

1 2 3

FINGERPRINT

VOICE

FACE

213
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D The Supervisor Observations on the First Session

Comments on

Problems with Fingerprint:

Enrolment:

Verification:

Problems with Voice:

Enrolment:

Verification:

Problems with Face:

Enrolment:

Verification:

214
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E Data Sheet for Verification in the Second Session

Date : 

PIN : 

Name:

SYSTEM
Verification Atl empts

Comments
1 2 3

FINGERPRINT

VOICE

FACE

2 1 5
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Appendix B

Database Entities

B.l Introduction

This appendix presents a sample of the supplementary data collected at the time of 

the data collection exercise that was carried out to obtain biometric samples and 

scores. The preliminary analysis provided in Chapter 4 is based on this database. In 

this appendix a sample of the database is provided with a description of each 

parameter.

B.2 Description of the Database

In this section a description of the different parameters of the database is provided. 

The sample o f the database provided consists of 10 subjects as shown in Table B. 1.

PIN: represents the personal identification number given to each subject.

Gender: refers to the gender of the subject.

Age: refers to the age range of the subject.

Date of 1st visit: refers to the date of the first session attended by the subject.

Finger (FTE): refers to the number of attempts the subject failed to enrol in the 

fingerprint modality (max of 3 attempts allowed).



B
A ppendix

P IN G e n d e r A g e
D ate  o f 1st 

v is it
F in g er (F TE ) V o ic e  (F TE ) F a c e (F T E ) F in g e r (F T V ) V o ic e  (FTV ) F a c e (F T V ) D a te  o f 2nd  

v is it
F in g er
(F T V 2)

V o ic e
(F T V 2 )

F ace  (F TV 2)

1082 Male 55-64 26/11/2001 2 attempts 3 attempts 2 attempts 1 attempt 24/01/02 2 attempts not enrolled 3 attempts

1236 Female 55-64 2 attempts 24/01/02 3 attempts

1147 Male 45-54 23/01/02

1481 Male 25-34 1 attempt 8/3/2002 1 attempt 3 attempts

1503 Female 35-44 2 attempts 26/02/02

1597 Male 18-24 4/3/2002

1090 Female 65+ 1 attempt 3 attempts 24/01/02 1 attempt 2 attempts

1600 Male 55-64 24/01/02 2 attempts

1902 Female 35-44 2 attempts 23/01/02 1 attempt

1112 Male 65+ 27/11/2001 1 attempt 1 attempt 3 attempts 1 attempt 15/01/02 2 attempt 1 attempt 2 attempts

T a b le  B .l :  Table of supplementary data used in generating the preliminary analysis provided in Chapter 4
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Voice (FTE): refers to the number of attempts the subject failed to enrol in the voice 

modality (max of 3 attempts allowed).

Face (FTE): refers to the number of attempts the subject failed to enrol in the face 

modality (max of 3 attempts allowed).

“ 1 attempt” in (FTE): means that the subject had problems enrolling in the specified 

modality in the first attempt but was successfully enrolled in the second attempt.

“2 attempts” in (FTE): means that the subject had problems enrolling in the 

specified modality in both the first and the second attempt but was successfully 

enrolled in the second attempt.

“3 attempts” in (FTE): means that the subject had problems enrolling in the 

specified modality in all three attempts.

“blank space” in the FTE means that the subject had no problems enrolling in the 

specified modality.

Finger (FTV): refers to the number of attempts the subject failed to verify in the 

fingerprint modality.

Voice (FTV): refers to the number of attempts the subject failed to verify in the 

voice modality.

Face (FTV): refers to the number of attempts the subject failed to verify in the face 

modality.

“ 1 attempt” in (FTV): means that the subject had problems verifying in the specified 

modality in the first attempt but was successfully verified in the second attempt.

“2 attempts” in (FTE): means that the subject had problems verifying in the 

specified modality in both the first and the second attempt but was successfully 

verified in the second attempt.

“3 attempts” in (FTE): means that the subject had problems verifying in the 

specified modality in all three attempts.

“blank space” in the FTV means that the subject had no problems verifying in the 

specified modality.
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Date of 2nd visit: refers to the date of the second session attended by the subject.

“ 1 attempt” in (FTV2): means that the subject in the second session had problems 

verifying in the specified modality in the first attempt but was successfully verified 

in the second attempt.

“2 attempts” in (FTV2): means that the subject in the second session had problems 

verifying in the specified modality in both the first and the second attempt but was 

successfully verified in the second attempt.

“3 attempts” in (FTV2): means that the subject in the second session had problems 

verifying in the specified modality in all three attempts.

“blank space2 in the FTV2 means that the subject in the second session had no 

problems verifying in the specified modality.

“not enrolled” means that the subject was not enrolled in the first session and as a 

result no enrolment template was generated that could be used for verification in the 

second session.
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Appendix C

Confidence Interval Estimation for
Biometric Data

C.l Introduction

This appendix presents the method adopted for calculating the confidence intervals 

of the error rates determined in this thesis.

C.2 Estimation of the Uncertainty in Measured Error Rates

The variance is a statistical measure of uncertainty and it is used in estimating the 

confidence intervals. In this section the formulas and methods for estimating the 

variance of performance measure is provided as suggested by [BWG02],

The estimation of the variances in the measured error rates followed the equation 

given by Bickel in [Bickel98] since it is used in the cases where a cross comparison 

was used to establish the impostor distribution and where the error rate vary across 

the population, that is, when different subjects have different individual false reject 

rates and different subject pairs have different individual false accept rates.
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C.2.1 Variance Estimation of False Reject Rate

The formulas presented in this section were used to estimate the variance of the false 

reject rate as well as the failure to enrol rate. The variance was estimated using the 

following equation, the derivation of this estimate can be found in [Snedecor67],

a =  PV~P)
7 7 - 1

(C .l)

where

P = ~ Y . ai

n : Number of enrolled volunteers.

a, : Count of false reject for 7th volunteer.

p\ Observed false reject rate.

cr: Estimated variance of observed false reject rate.

(C.2)

C.2.2 Variance Estimation of False Accept Rate

The formulas presented in this section were used to estimate the variance of the false 

accept rate. The variance was estimated using the following formula as given by 

Bickel in [Wayman99a] [Wayman99b].

where

1a  = ■
n 2 ( 7 7  - 1 ) 2

T,(cj +di)2- - q 2
7 7

q =
77(77 - 1)

(C.3)

(C.4)

7 7 : Number of enrolled volunteers.

bif. Count of false accept for 7th volunteer again st/h template. 

cf. Count of false accepts against/h template by any volunteer.

2 2 1
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dj. Count of false accepts by zth volunteer against any template

q\ Observed false accept rate.

cf :Estimated variance of observed false reject rate.

C.3 Confidence Intervals Estimation for FRR and FAR

Confidence interval is commonly known as the margin of errors. The statistical term 

“ confidence interval” is defined as the probability that the true parameter is within 

the interval that surrounds the estimate of the parameters FRR and FAR.

Under the assumption o f normality, 100(1-a) % confidence bound on the observed 

error rates are given by

E ± z{\-~)4^ (C.5)

where

a s
z(l ) : indicates the number of standard deviations from the origin required to

ct
encompass (1 -  —) % of the area under the standard normal distribution. 

For a=5 % that is for a 95 % confidence limits the value is 1.96. 

represents either the false reject rate or the false accept rate depending on 

what is calculated.

is either the estimated variance of the observed false reject rate or the 

estimated variance o f the observed false accept rate depending on what is 

calculated.

E:

o '

Often when this formula is applied, the confidence interval reaches into negative 

values for the observed error rates. This is due to the non-normality of the 

distribution of the observed error rates.

2 2 2
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C.4 Confidence Intervals for Proportions

The formulas presented in this section were used to estimate the confidence intervals 

for the proportion of sheep, lambs, goats and wolves. The confidence interval is 

estimated using the following formula as suggested by Spiegel in [Spiegel90],

P ± z ( l - - )cr P ( l - P )
N

(C.6)

where

cc
z( 1 -  —): indicates the number o f standard deviations from the origin required to

CC
encompass (1 -  —) % of the area under the standard normal distribution. 

For a=5 % that is for a 95 % confidence limits the value is 1.96.

N  : Number of enrolled volunteers.

P: Observed proportion o f sheep, lambs, goats or wolves.

2 2 3
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