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Abstract. The purpose of this study is to develop a model that accurately de-

scribes the dynamics of the daily average temperature in the context of weather 

derivatives pricing. More precisely we compare two state of the art algorithms, 

namely wavelet networks and genetic programming against the classic linear 

approaches widely using in the contexts of temperature derivative pricing. The 

accuracy of the valuation process depends on the accuracy of the temperature 

forecasts. Our proposed models were evaluated and compared in-sample and 

out-of-sample in various locations. Our findings suggest that the proposed non-

linear methods significantly outperform the alternative linear models and can be 

used for accurate weather derivative pricing. 

 

Keywords: weather derivatives, wavelet networks, temperature derivatives, ge-

netic programing 

1 Introduction 

In this paper, we use a Wavelet Neural Networks (WN) and Genetic Programming 

(GP) in the context of temperature modeling and weather derivative pricing. Relative-

ly, recently a new class of financial instruments, known as ‘‘weather derivatives’’, has 

been introduced. Weather derivatives are financial instruments that can be used by 

organizations or individuals as part of a risk management strategy to reduce risk asso-

ciated with adverse or unexpected weather conditions, [1]. Just as traditional contin-

gent claims, whose payoffs depend upon the price of some fundamental, a weather 

derivative has an underlying measure such as: rainfall, temperature, humidity, or 

snowfall. The difference from other derivatives is that the underlying asset has no 

value and it cannot be stored or traded while at the same time the weather should be 

quantified in order to be introduced in the weather derivative. To do so, temperature, 

rainfall, precipitation, or snowfall indices are introduced as underlying assets. How-
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ever, in the majority of the weather derivatives, the underlying asset is a temperature 

index.  

According to [2, 3] nearly $1 trillion of the US economy is directly exposed to 

weather risk. Today, weather derivatives are being used for hedging purposes by 

companies and industries, whose profits can be adversely affected by unseasonal 

weather or for speculative purposes by hedge funds and others interested in capitalis-

ing on those volatile markets. Weather derivatives are used to hedge volume risk, 

rather than price risk. Hence, a model that describes accurate the temperature dynam-

ics, the evolution of temperature, and which can be used to derive closed form solu-

tions for the pricing of temperature derivatives is essential. 

In this study two state of the art algorithms are used, namely WN and GP, in order 

to model the temperature dynamics. WNs were proposed by [4] as an alternative to 

Neural Networks, which would alleviate the weaknesses associated with Neural Net-

works and Wavelet Analysis. In [5], various reasons were presented in why wavelets 

should be used instead of other transfer functions. In particular, first, wavelets have 

high compression abilities, and secondly, computing the value at a single point or 

updating the function estimate from a new local measure involves only a small subset 

of coefficients. WNs have been used in a variety of applications so far, i.e., in short 

term load forecasting, in time-series prediction, signal classification and compression, 

signal denoising, static, dynamic and nonlinear modeling, nonlinear static function 

approximation, [5], to mention the most important and as it was presented in [1], they 

can constitute an accurate forecasting method in the context of weather derivatives 

pricing.  

On the other hand, GP is a nature-inspired algorithm, which uses the principles of 

evolution to find computer programs that perform well in a given task, [6-8]. One of 

the main advantages of GP is its ability to perform well in high-dimensional combina-

torial problems, such as the one of weather derivatives pricing. An additional ad-

vantage of GP is that it is a white-box technique, which thus allows the traders to 

visualize the trees and thus the temperature models. To our knowledge GP was ap-

plied to weather derivatives only in [9, 10]. In addition the proposed GP in [9, 10] was 

used for seasonal forecasting. In contrast in this study a GP is used in order to forecast 

daily average temperatures (DAT) in 3 European cities in which weather derivatives 

are actively traded. 

Using models for daily temperatures can, in principle, lead to more accurate pric-

ing than modelling temperature indices. Daily models very often show greater poten-

tial accuracy than the Historical Burn Analysis or seasonal forecasts, [1, 11], since 

daily modelling makes a complete use of the available historical data. The results 

produced by the GP and WN are compared to two traditional linear temperature mod-

elling methods proposed by [12] and [13]. Our results are compared in 1-day-ahead 

forecast and to out-of-sample forecasts. 

The rest of the paper is organized as follows. In Section 2 the various methods for 

forecasting DAT are presented. More precisely in Section 2.1 the linear models are 

presented while in Sections 2.2 and 2.3 the WN and the GP are discussed respective-

ly. The data set is described in Section 3 while in Section 4 our results are presented. 

Finally, in Section 5 we conclude. 



2 Methodology 

According to [1, 14] temperature shows the following characteristics: it follows a 

predicted cycle, it moves around a seasonal mean, it is affected by global warming 

and urban effects, it appears to have autoregressive changes, its volatility is higher in 

winter than in summer. Following [13] a model that describes the temperature dynam-

ics is given by a Gaussian mean-reverting Ornstein-Uhlenbeck (O-U) process defined 

as follows: 

  ( ) ( ) ( ) ( ) ( ) ( )dT t dS t T t S t dt t dB t      (1) 

where ( )T t  is the average daily temperature,   is the speed of mean reversion, ( )S t  

is a deterministic function modelling the trend and seasonality, ( )t  is the daily vola-

tility  of temperature variations and ( )B t  is the driving noise process. As it was 

shown in [15] the term ( )dS t  should be added for a proper mean-reversion towards 

the historical mean, ( )S t . For more details on temperature modelling we refer the 

reader to [1]. 

 

2.1 Linear Models 

Alaton. In [12] the model given by (1) is used where the seasonality in the mean is 

incorporated by a sinusoid function  

 ( ) sin( )S t A Bt C t      (2) 

where   is the phase parameter that defines the day of the yearly minimum and max-

imum temperature. Since it is known that the DAT has a strong seasonality of an one 

year period, the parameter   was set to 2 / 365  . The linear trend caused by 

urbanization or climate changes is represented by A Bt . The time, measured in 

days, is denoted by t. The parameter C  defines the amplitude of the difference be-

tween the yearly minimum and maximum DAT. Another innovative characteristic of  

the framework presented in [12] is the introduction of  seasonalities in the standard 

deviation modelled by a piecewise function. 

Benth. In [13] a mean reverting  O-U process where the noise process is modelled by 

a simple BM as in (1) was suggested. Both seasonal mean and (square of) daily vola-

tility of temperature variations are modelled by truncated Fourier series: 

     
1 1

1 1

( ) sin 2 / 365 cos 2 / 365
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Using truncated Fourier series a good fit for both the seasonality and the variance 

component can be obtained while keeping the number of parameters relative low. The 

above representation simplifies the needed calculations for the estimation of the pa-

rameters and for the derivation of the pricing formulas. Equations (3) and (4) allow 

both larger and smaller periodicities than the classical one year temperature cycle.  

2.2 Wavelet Networks 

In [1] a more complex model was used by applying WNs. As it was shown in [1] the 

solution of model (1) can be written as an AR(1) model: 

 ( 1) ( ) ( ) ( )T t aT t t t      (5) 

where ( )T t  is given by   ( ) ( ) ( )T t T t S t  , a e    and ( ) ( )t a t  .  

Intuitively, it is expected that the speed of mean reversion is not constant. If the 

temperature today is away from the seasonal average (a cold day in summer) then it is 

expected that the speed of mean reversion is high; i.e. the difference of today and 

tomorrows temperature is expected to be high. In contrast if the temperature today is 

close to the seasonal variance we expect the temperature to revert to its seasonal aver-

age slowly. To capture this feature the speed of mean reversion is modelled by a time-

varying function ( )t . Hence the structure to model the dynamics of the temperature 

evolution becomes: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )dT t dS t t T t S t dt t dB t      (6) 

Model (5) is a lineal AR(1) model with a zero constant. Since in our analysis the 

speed of mean reversion is not considered constant but a time-varying function, equa-

tion, (5) can be written as follows: 

 ( ) ( 1) ( 1) ( ) ( )T t a t T t t t      (7) 

where 

 ( ) 1 ( )a t t   (8) 

The impact of a false specification of a , on the accuracy of the pricing of temper-

ature derivatives is significant, [12]. In this section, we address that issue, by using a 

WN to estimate non-parametrically relationship (7) and then estimate a  as a function 

of time. Moreover, previous studies [12, 13, 16-19] show that an AR(1) model is not 

complex enough to completely remove the autocorrelation in the residuals. Alterna-

tively more complex models were suggested, [20, 21]. 

Using WNs the generalized version of (7) is estimated nonlinearly and non-

parametrically, that is: 

  ( 1) ( ), ( 1),... ( )T t T t T t e t     (9) 



Model (9) uses past temperatures (detrended and deseasonalized) over one period. 

Using more lags we expect to overcome the strong correlation found in the residuals 

in models such as in [12], [13] and [18]. However, the length of the lag series must be 

selected. For additional details on modelling the temperature using WN we refer to [1, 

5, 22]. 

2.3 Genetic Programing 

While the previous methods are directly using a functional form for their predictions 

(e.g., linear), the GP operates in a different manner. It can evolve different arithmetic 

expressions that can take the form of regression models. This has the advantage of 

flexibility, since different temperature models can be derived for each city that we are 

interested in.  

In this work, a simple GP was used to evolve trees that predict the temperatures of 

a given city over a future period. The function set of the GP contained standard arith-

metic operators (ADD, SUB, MUL, DIV (protected division)), along with MOD 

(modulo), LOG(x), SQRT(x) and the trigonometric functions of sine and cosine. The 

terminal set was composed of the index t representing the current day, 

1  size of training and testing sett   the temperatures of the last three days ( 1)T t  , 

( 2)T t   and ( 3)T t  , the constant π, and 10 random numbers in the range of (-10, 

10). In this study the GP is based on DAT of the three previous days. Similar, struc-

tures were proposed in previous studies, [23]. Nevertheless, our future work will be 

focused on selecting this window dynamically. The details of the GP is summarized 

in Table 11 

Table 1. GP Experimental Parameters 

Parameter Value 

Max initial depth 2 

Max depth 4 

Generations 50 

Population size 500 

Tournament size 4 

Subtree crossover 30% 

Subtree mutation 40% 

Point mutation 30% 

Fitness function  Mean Square Error (MSE) 

Function set  ADD, SUB, MUL, DIV, MOD, LOG, 

SQRT, SIN, COS 

Terminal set Index t corresponding to the current day 

Tempt-1, Tempt-2, Tempt-3 

Constant π 

10 random constants in (-10, 10) 

                                                           
1 These parameters were selected after careful experimental tuning. 



Finally, we should note that traditionally in the GP literature the algorithm is run 

many times and then statistical results are reported, e.g., the average fitness over the 

multiple runs, standard deviation, and the best result. This is done in order to get an 

overall picture of the algorithm's performance. However, because of the fact that the 

other algorithms tested in this paper are producing a single model only, it is not mean-

ingful for our comparative analysis in Section 4 to use average results. Thus, we ob-

tain the best tree in terms of training fitness (per algorithm), and compare it to the 

models produced by the two linear methods and the WN. 

3 Data Description 

For this study DATs for Amsterdam, Berlin and Paris were obtained. Temperature 

derivatives are actively traded in these cities through the Chicago Mercantile Ex-

change (CME). The data were provided by the ECAD2. 

The dataset consists of 4,015 values, corresponding to the DAT of 11 years, (1991-

2001). In order for each year to have equal observations the 29th of February was 

removed from the data. Next the seasonal mean and trend were removed from the 

data. In order to do so, equation (2) was used in Alaton’s method and (3) was used in 

Benth’s and GP methods. In the case of WNs the seasonal mean was captured using 

wavelet analysis, [1]. 

In our analysis, the four methods will be used in order to model and then forecast 

detrended, deseasonalized DATs. This procedure is followed in order to avoid possi-

ble over-fitting problems of the WN and the GP in the presence of seasonalities and 

periodicities. Then, the forecasts are transformed back to the original temperature 

time-series in order to compare the performance of each algorithm. 

The objective is to accurate forecast two temperature indices, namely Heating De-

gree Day (HDD) and Cumulative Average Temperature (CAT). Temperature deriva-

tives are commonly written on these two temperature indices.   

4 Results 

In this section our proposed models will be validated out of sample. Our methods are 

validated and compared against two forecasting methods proposed in prior studies, 

the Alaton’s and Benth’s models. The four models will be used for forecasting out-of-

sample DATs for different periods. Usually, temperature derivatives are written for a 

period of a month or a season and sometimes even for a year. Hence, DATs for 1, 2, 

3, 6 and 12 months will be forecasted. The out-of-sample period corresponds to the 

period of 1st January – 31st December 2001 and every time interval starts at 1st Janu-

ary of 2001. Note that the DATs from 2001 were not used for the estimation of the 

parameters of the four models. Next the corresponding HDDs and CAT indices will 

be constructed. 

                                                           
2  European Climate Assessment & Dataset project: http://eca.knmi.nl 



The predictive power of the four models will be evaluated using two out-of-sample 

forecasting methods. First, we will estimate out-of-sample forecasts over a period and 

then 1-day-ahead forecasts over a period. The first case, in the out-of-sample fore-

casts, today (time step 0) temperature is known and is used to forecast the temperature 

tomorrow (time step 1). However, tomorrow’s temperature is unknown and cannot be 

used to forecast the temperature 2 days ahead. Hence, we use the forecasted tempera-

ture at time step 1 to forecast the temperature at time step 2 and so on. We call this 

method the out-of-sample over a period forecast. The second case, the 1-day-ahead 

forecast, the procedure is as follows. Today (time step 0) temperature is known and is 

used to forecast the temperature tomorrow (time step 1). Then tomorrow’s real tem-

perature is used to forecast the temperature at time step 2 and so on. We will refer to 

this method as the 1-day-ahead over a period forecast. The first method can be used 

for out-of-period valuation of a temperature derivative, while the second one for in-

period valuation. Naturally, it is expected the first method to cause larger errors. 

In the USA, Canada and Australia, CME weather derivatives are based on the 

HDD index. A HDD is the number of degrees by which the daily temperature is be-

low a base temperature, i.e. 

 

     0,    –    Daily HDD max base temperature daily average temperature   

  

The base temperature is usually 65 degrees Fahrenheit in the U.S. and 18 degrees 

Celsius in Europe and Japan. HDDs are usually accumulated over a month or over a 

season. The accumulated HDD index over a period 
1 2[ , ]   is given by 

 

  
2

1

max ( ),0HDD c T s ds



    (10) 

  

Similarly, the CAT index indicates the cumulative average temperature over a 

specified period. Hence, over a specified period 1 2[ , ]   the CAT index is given by 

 

 
2

1

( )CAT T s ds



    (11) 

 

Since we are studying 3 cities and 2 indices for 5 different time periods using two 

forecasting schemes, the four models are compared in 60 datasets. Our results are 

very promising. In the 1-day ahead forecasts the WN outperformed the alternative 

methods in 18 cases out of the 30. The Benth methods gave the best results 8 times 

while the GP in only 4. On the other hand in out-of-sample forecasts the GP outper-

formed the other methods in 12 cases out of 30 while the WN was best model in only 

4 cases. Due to space limitations the results of the 1-day ahead forecasts for one 

month (1-31 January 2001) for the HDD index are presented in Table 2. The results 

for the remaining datasets are similar and are available from the authors upon request. 

In total the WN had the best predictive performance in 36.67% of the samples while 

the GP and Benth’s method both in 26.67% and Alaton’s model in only 10%. A 



summary of the results is presented in Table 3. More precisely, Table 3 shows the 

number of samples in which each method outperforms the others, i.e. has the best 

predictive accuracy. Percentages are reported in parentheses. 

Furthermore, we were interested in statistically ranking the 4 algorithms. We thus 

run the non-parametric Friedman test, with the Holm’s post-hoc test [24, 25]. For the 

out-of-sample tests the WN ranked first with an average ranking of 2.13, then the GP 

and Alaton rank with 2.33, and lastly Benth had a ranking of 3.19. Holm’s test found 

that WN was significantly better than the remaining 3 algorithms, and also that the GP 

was significantly better than Benth (at 5% level, where the p-value of the algorithm is 

compared and found lower than the critical value of the Holm’s test). Similarly, the 

ranks for 1-day-ahead tests, the rankings are as follows: 1. WN (1.46), 2. GP (2.50), 3. 

Alaton (2.83), 4. Benth (3.19). Holm’s post-hoc test showed again that the WN is 

significantly better than all other 3 algorithms, at 5% significance level. Lastly, we 

were interested in ranking the 4 algorithms under all 60 datasets tested in this paper 

(we thus merged the out-of-sample and 1-day-ahead results into a single table). The 

best overall rank was obtained by WN (1.80), with the GP ranked second with an 

average rank of 2.41. Alaton and Benth were ranked third and fourth, respectively, 

with average ranks of 2.58 and 3.20. Holm’s post-hoc test also showed that the WN’s 

ranking is significantly better than all other 3 algorithms. In addition, the test showed 

that the GP’s ranking is significantly better than Benth’s. 

Table 2. Day ahead comparison for a period of 1 month using the HDD index and the relative 

percentage errors. 

HDD/1month Real Historical Alaton Benth WN GP 

Amsterdam 463.6 449.5 460.4 458.3 463.8 464.3 

Berlin 522.4 517.9 524.8 523.0 523.8 524.7 

Paris 378.6 394.7 381.3 379.9 380.2 384.8 

Relative Percentage Errors 

Amsterdam   0.69% 1.14% 0.04% 0.14% 

Berlin   0.46% 0.11% 0.27% 0.43% 

Paris   0.72% 0.35% 0.41% 1.63% 

Real and historical HDDs for the period 1 January – 31 January 2001 and estimated HDDs using 

the Alaton’s, Benth’s and the two proposed (WN and GP) methods. The second panel corresponds 

to the relative absolute percentage errors. 

5 Conclusions 

The previous analysis indicates that our results are very promising. Modelling the 

DAT using WNs enhanced the predictive accuracy of the temperature process. The 

additional accuracy of the proposed model will have an impact on the accurate pricing 

of temperature derivatives. In addition, the GP performed very well in the out-of-



sample forecasting method which is very useful for pricing weather contracts before 

the temperature measuring period. 

Our results are preliminary and additional analysis must be contacted. First, the 

proposed methodologies must be tested in more locations. Second, an extensive anal-

ysis of the residuals must be contacted in both in-sample and out-of-sample sets. An 

understanding of the dynamics that govern the residuals will provide additional in-

formation of the validity of the proposed models. The space limitation of this paper 

prevents us from doing so. Other potential future work could be to further improve the 

GP models. At the moment, a simple GP was used. However, such GPs are open to 

criticisms of effective model generalization. A way of tackling this can be by using 

ensemble learning techniques. We aim to do this next. Also as it was mentioned earli-

er, the GP is currently based on DAT of the three previous days. Our goal is to allow 

this window to be changed dynamically through GP operators. We believe that this 

could lead to even more effective models. 

 Nevertheless, our preliminary results indicate that the proposed methods can mod-

el the dynamics of the temperature very well and they can constitute an accurate 

method for temperature derivatives pricing. 

Table 3. Predictive performance of the four methods 

 1-day-ahead Out-of-sample Total 

WN 18 (60%)  4 (13%) 22 (36.6%) 

GP 4 (13%) 12 (40%) 16 (26.7%) 

Alaton 0 (0%) 6 (20%) 6 (10.0%) 

Benth 8 (27%) 8 (27%) 16 (26.7%) 

The number of datasets that each method has the best predictive accuracy. Per-

centages are reported in parentheses. 
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