
Hatton, Leslie (2000) Balancing static and dynamic testing: some observations
from measurement. UNSPECIFIED.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21892/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
invited as part of visiting scientists series, Nokia Research Labs, Helsinki, 2000

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21892/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Title Slide

2000-

"Balancing static and dynamic testing:
Some observations from measurement"

by

Les Hatton

Oakwood Computing, Surrey, U.K. and
the Computing Laboratory, University of Kent

lesh@oakcomp.co.uk

Version 1.2: 09/Mar/2000

©Copyright, L.Hatton, 2000-

OAKWOOD COMPUTING - SURVIVAL AND AVOIDANCE STRATEGIES FOR SOFTWARE FAILURE
.

v. 1.2, 09/Mar/2000 , (slide 1 - 2). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Overview

v Static v. dynamic testing
v Forensic work: patterns in failure
v Wallowing in data

v. 1.2, 09/Mar/2000 , (slide 1 - 3). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Control Process feedback - the
essence of engineering improvement

Process Product

Measure samples
of product for

quality

Feed-back into
Process to
improve it

If you want to improve reliability, measure and
analyse failures.

v. 1.2, 09/Mar/2000 , (slide 1 - 4). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Preparing the ground

Fixing the definitions
– A fault is a statically detectable property

of a piece of code or a design
– A failure is a fault or set of faults which

together cause the system to show
unexpected behaviour at run-time

– A defect or bug is a generic term for
either faults which fail or faults which do
not.

– Fault density is the number of faults
divided by the number of lines of code

v. 1.2, 09/Mar/2000 , (slide 1 - 5). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Preparing the ground

Note that the causal relationship between fault
and failure differs in some standards:-

• IEEE + other sources:
error -> fault -> failure

• IEC 61508, (formerly IEC SC 65A):
fault -> error -> failure

v. 1.2, 09/Mar/2000 , (slide 1 - 6). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Preparing the ground

The basis of measurement is to define the
dependent and independent variables
– Independent variables

u LOC (line of code)
u Time
u Function points

– Dependent variables
u Defect type
u Defect severity

v. 1.2, 09/Mar/2000 , (slide 1 - 7). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

What is a line of code ?

Correlation between two measures
of source lines in C

0

50000

100000

150000

200000

250000

300000

0 100000 200000 300000 400000 500000

Total pre-processed lines

Correlation between two measures of line of code
in systems written in C. The two measures are
executable lines and total number of pre-processed
lines, Hatton (1995).

v. 1.2, 09/Mar/2000 , (slide 1 - 8). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Fault density is a function of
time

Faults
per
1000
lines

DKLOC

Time of testing

Fault density depends on how much the system
has been used, (c.f. HP)

v. 1.2, 09/Mar/2000 , (slide 1 - 9). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

All faults

Those faults
which fail

v. 1.2, 09/Mar/2000 , (slide 1 - 10). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Mean time to fail in Adams
(1984)

Mean time to fail

0

5

10

15

20

25

30

35

1.6 5 16 50 160 500 1600 5000

Years

v. 1.2, 09/Mar/2000 , (slide 1 - 11). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Cost v. detection point

Cost of fixing defects

0

10

20

30

40

50

60

70

80

90

100

R
eq

ui
re

m
en

t
s D

es
ig

n

C
od

in
g

U
ni

t t
es

tin
g

A
cc

ep
ta

nc
e

te
st

in
g

O
pe

ra
tio

n

Low
High

Embedded systems tend to follow the high curve.
Data from Boehm, (1981) and many others.
Note that curve kicks only around coding stage.

v. 1.2, 09/Mar/2000 , (slide 1 - 12). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Overview

v Static v. dynamic testing
v Forensic work: patterns in failure
v Wallowing in data

v. 1.2, 09/Mar/2000 , (slide 1 - 13). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Patterns in failure

There are two complicating factors in the
forensic analysis of software failure

• Exponentially increasing complexity
• Chaotic behaviour

v. 1.2, 09/Mar/2000 , (slide 1 - 14). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Exponentially increasing
complexity

The amount of software in consumer electronic
products is currently doubling about every
18 months.

• Line-scan TVs have ~250,000 lines of C.
• There are around 200,000 lines of C in a car.
• Most consumer devices, washing-machines

and so on have a few K of software.
• The Airbus A340 and Boeing 777 are totally

dependent on software.

v. 1.2, 09/Mar/2000 , (slide 1 - 15). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Chaotic behaviour

AT & T Jan, Jan 15, 1990:
• Single misplaced line of C in 3 million lines by-

passed network error-recovery code
• For 9 hours, millions of long-distance callers

just heard message “all circuits are busy”
• Reported $1.1 billion loss

v. 1.2, 09/Mar/2000 , (slide 1 - 16). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Anatomy of a $1billion bug

...
switch(message)
{
case INCOMING_MESSAGE:

if (sending_switch == OUT_OF_SERVICE)
{

if (ring_write_buffer == EMPTY)
send_in_service_to_smm(3B);

else
break; /* Whoops ! */

}
process_incoming_message(); /* skipped */
break;

...
}
do_optional_database_work();
...

v. 1.2, 09/Mar/2000 , (slide 1 - 17). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Chaotic behaviour

Cars too ...:
• 22/July/1999. General Motors has to recall 3.5

million vehicles because of a software defect.
Stopping distances were extended by 15-20
metres.

• Federal investigators received almost 11,000
complaints as well reports of 2,111 crashes and
293 injuries.

• Recall costs ? (An exercise for the reader).

v. 1.2, 09/Mar/2000 , (slide 1 - 18). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

The PC picture ...

0.1

1

10

100

1000

10000

W'95 Macintosh
7.5-8.1

NT 4.0 Linux Sparc
4.1.3c

OS

Mean Time Between Failures of various operating systems

v. 1.2, 09/Mar/2000 , (slide 1 - 19). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Useful links

v On software failure:-
– http://www.csl.sri.com/risks.html, (general failures)
– http://www.rvs.uni-bielefeld.de/publications,

(aircraft)
– http://www.bugnet.com/, (PC)
– http://www.oakcomp.co.uk/TechPub.html, (general

failure)

v. 1.2, 09/Mar/2000 , (slide 1 - 20). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Overview

v Static v. dynamic testing
v Forensic work: patterns in failure
v Wallowing in data

v. 1.2, 09/Mar/2000 , (slide 1 - 21). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects occur
historically ?

Looking for properties of defects
– Defects tend to cluster, (in one case 47% of

defects in 4% of modules in IBM’s S/370 OS
– The earlier you find them, the cheaper you

find them

v. 1.2, 09/Mar/2000 , (slide 1 - 22). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects occur
historically ?

Where you find one, you find more, (Pfleeger, (1998))

Defect clustering

0

10

20

30

40

50

60

70

80

90

C
2 C J G

G
2 N T

C
3 W D F

C
1 O

W
1

D
1 P

G
1 L S U Z

O
th

er
s

Component

v. 1.2, 09/Mar/2000 , (slide 1 - 23). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects occur
historically ?

Defect density clustering

0

2

4

6

8

10

12

14

16

18

20

C
2

C
3 P C L

G
2 N J G F W G
1 S D O

W
1

C
4 M D
1 I Z B

Component

Where you find one, you find more.
The effect is even more emphatic when you normalise
against lines of code. (Hatton (1998), Pfleeger, (1998))

v. 1.2, 09/Mar/2000 , (slide 1 - 24). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

The following slides show
distributions of faults and failures
from a number of case studies,
each with an introduction and a
conclusion.

v. 1.2, 09/Mar/2000 , (slide 1 - 25). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

Defect clustering in systems
Introduction:
The following data shows how

defects cluster in systems as a
function of module complexity

Source:
Compton and Whitrow (1990), Moller

and Paulish (1993), Hatton (1997),
Swanton (1996)

v. 1.2, 09/Mar/2000 , (slide 1 - 26). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Failures and component size,
(new and changed)

Size in statements

0

1

2

3

4

5

6

7

8

9

10 30 50 70 90 110

Moller new actual

Moller new pred

Moller chg actual

Moller chg pred

Data from an OS study at Siemens (1993)

v. 1.2, 09/Mar/2000 , (slide 1 - 27). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

What happens for big
components ?

Logarithmic Quadratic

Average size in statements

0

2

4

6

8

10

12

14

16

18

60

10
0

16
0

25
0

40
0

63
0

10
00

20
00

C&W Ada

Moller Columbus

Prediction

v. 1.2, 09/Mar/2000 , (slide 1 - 28). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Failure density and component
size

Average size in statements

0

2

4

6

8

10

12
60

10
0

16
0

25
0

40
0

63
0

10
00

20
00

C&W density data

Moller Columbus

Comparison of Ada and assembler,
Hatton (1997)

v. 1.2, 09/Mar/2000 , (slide 1 - 29). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Failure density and component
size

Defect density v. C function size

0

10

20

30

40

50

60

70

0-20 20-40 40-80 80-160 160-320 > 320

function size in lines

Data from the GNU indent program, Swanton (1996)

v. 1.2, 09/Mar/2000 , (slide 1 - 30). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

The defect density U
curve

For Ada, various assembler, C, C++, Fortran, Pascal and PL/M systems:

Defects per
KLOC

Average component complexity

v. 1.2, 09/Mar/2000 , (slide 1 - 31). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

What happens if you
intervene at the top end ?

There are two ways of restricting the appearance
of complex components:-
– Design / Test intervention whereby test plans

are required to evolve in parallel with the
component

– Complexity metric limits

v. 1.2, 09/Mar/2000 , (slide 1 - 32). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Complexity measurement
limiting

Complexity testing generally includes the
following:-
– Measurement of complexity values such as

lines of code (LOC), cyclomatic or path
complexity

– Identification of the worst 10% of a population
– Using the known properties of the U curve to

exclude this 10%

v. 1.2, 09/Mar/2000 , (slide 1 - 33). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

The defect density U curve -
invasive truncation

In those systems where excessive complexity has been restricted:-

Defects per
KLOC

Average component complexity

v. 1.2, 09/Mar/2000 , (slide 1 - 34). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Complexity measurement
limiting

Complexity measures:-
– Cyclomatic complexity is a count of the number

of decisions plus 1, (in an if else, don’t count the
else. In a switch, don’t count the default).

– The path count is calculated by assuming that
every decision is independent. Sequential
blocks multiply and parallel blocks add.

v. 1.2, 09/Mar/2000 , (slide 1 - 35). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Cyclomatic complexity distributions

0

1

2

3

4

5

6

7

8

90
-1

00

80
-9

0

70
-8

0

60
-7

0

50
-6

0

40
-5

0

30
-4

0

20
-3

0

10
-2

0

0-
10

Percentiles

Unrestricted
Restricted

Note the effectiveness of complexity limiting here (lower curve)
in excluding the dangerous upper end in this experiment

Complexity measurement
limiting

v. 1.2, 09/Mar/2000 , (slide 1 - 36). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Path complexity distributions

0

1

2

3

4

5

6

90
-1

00

80
-9

0

70
-8

0

60
-7

0

50
-6

0

40
-5

0

30
-4

0

20
-3

0

10
-2

0

0-
10

Percentiles

Unrestricted
Restricted

The same complexity limiting is equally successful at controlling
path complexity, improving dynamic testability dramatically.

Complexity measurement
limiting

v. 1.2, 09/Mar/2000 , (slide 1 - 37). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Complexity measurement
limiting

Complexity limiting notes:-
– It doesn’t seem to matter which complexity

metric you use to do this, they are currently very
crude

– It should be used at either end because of the
U-curve effect.

v. 1.2, 09/Mar/2000 , (slide 1 - 38). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

Defect clustering in systems
Defects are not spread equally as
a function of component size.
They tend to cluster

Conclusion:
– Use defect clustering to guide

inspection and testing strategies
– Use complexity metric limits

v. 1.2, 09/Mar/2000 , (slide 1 - 39). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

Statically detectable fault
Introduction:
The following slides show the distribution of

statically detectable inconsistencies and
widely-known faults in C and Fortran 77

These were measured using purpose built
tools exploiting the knowledge base of such
behaviour

Source:
Hatton (1995)

v. 1.2, 09/Mar/2000 , (slide 1 - 40). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

The logical argument

v We will establish the following chain of
reasoning:-
– Known fault modes exist in programming

languages
– They appear regularly in user’s code
– These faults fail with a certain frequency

v. 1.2, 09/Mar/2000 , (slide 1 - 41). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Sources of information

v Sources of information on problematic
behaviour in languages come from two
sources:-
– The committee’s work, (formally identified

problem areas). Approximately 300 items.
– Experience in the world at large through news

groups, comp.lang.c, the Obfuscated C
competition and so on, (informally identified
problem areas). Approximately 400 items.

v. 1.2, 09/Mar/2000 , (slide 1 - 42). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Problems with programming
languages

The need for subsetting programming languages

Scope of Standard
language

Subset of
well-defined
features

Extensions
Subset of
allowed features

v. 1.2, 09/Mar/2000 , (slide 1 - 43). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Formally identified problem
areas

v Let us consider C. The following areas of C
are problematic:
– At standardisation in 1990 (197 items)

u Unspecified behaviour
u Undefined behaviour
u Implementation-defined behaviour
u Locale-specific behaviour

– Since standardisation (119 items)
u Defect Reports

v. 1.2, 09/Mar/2000 , (slide 1 - 44). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Examples reported by user
community

v There are approximately 400 known. They are
usually well-defined but misleading.
Examples:
– Returning the address of a local from a

function.
– Assignment in a conditional

if (a = b)

– Relational equality in an assignment
a == b;

– Spare semi-colons:
if (a == b); { ... }

v. 1.2, 09/Mar/2000 , (slide 1 - 45). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Fault frequencies in C
applications

W
ei

gh
te

d
fa

ul
ts

 p
er

 1
00

0
lin

es
.

0

5

10

15

20

25
G

ra
ph

ic
s

G
en

er
al

El
ec

-e
ng

D
es

ig
n

Sy
st

em

C
on

tro
l

D
at

ab
as

e

G
ra

ph
ic

s

Pa
rs

in
g

Pa
rs

in
g

In
su

ra
nc

e

U
til

iti
es

U
til

iti
es

U
til

iti
es

C
on

tro
l

C
om

m
s

C
om

m
s

Average
of 8

Data like this is extractable using tools such as the Safer C Toolset,
(http://www.oakcomp.co.uk)

v. 1.2, 09/Mar/2000 , (slide 1 - 46). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Fault frequencies in Fortran 77
applications

W
ei

gh
te

d
fa

ul
ts

 p
er

 1
00

0
lin

es
.

0

5

10

15

20

25
ge

ne
ra

l

el
c-

en
g

Ea
rth

Sc
i

pa
rs

in
g

C
ad

C
am

C
he

m
M

od

Ea
rth

Sc
i

el
c-

en
g

fld
-e

ng

m
ch

-e
ng

m
ch

-e
ng

nu
c-

en
g

nu
c-

en
g

op
er

-r
s

C
ad

C
am

th
e-

ph
ys

G
eo

de
sy

A
er

os
pa

ce

ge
ne

ra
l

Average
of 12

Same application area
one at 140 / KLOC and one
at 0 / KLOC

v. 1.2, 09/Mar/2000 , (slide 1 - 47). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

Data derived from CAA CDIS

0
0.5

1
1.5

2
2.5

3
3.5

4

Average
dynamic
testing

Thorough
dynamic
testing

This study shows that statically detectable faults do in fact fail
during the life-cycle of the software.

v. 1.2, 09/Mar/2000 , (slide 1 - 48). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?
Conclusions on safer subsetting:
– We can prove the following:

u There is a class of defect in programming languages
which to a significant extent is statically detectable,
widely reported and entirely avoidable

u This class of defect evades conventional testing to the
extent of around 8 residual defects per 1000 lines of
code

u A significant percentage of this class of defect fails
during the life-cycle of the code but we are not able to
predict which faults fail, so we must remove them all.

– Engineer education and tool support is
crucial to the control of this class of defect.

v. 1.2, 09/Mar/2000 , (slide 1 - 49). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Do languages improve with
time ?

v Things get worse with time. The following
areas of C are problematic because the
committee could not agree:
– At standardisation in 1990 (197 items)
– At re-standardisation in 1999 (366 items)

v By comparison, C++99 contains the words:-
– Undefined, 1825 times
– Unspecified, 1259 times.

v. 1.2, 09/Mar/2000 , (slide 1 - 50). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Why languages can’t improve

ADD NEW
FEATURES

Re-
standardise

language

Recognise poor
features

Feedback
crippled by
backwards

compatibility

Using the model of control process feedback, we see that
the feedback stage is crippled by the “shall not break old
code” rule or “backwards compatibility” as it is more
commonly known.

v. 1.2, 09/Mar/2000 , (slide 1 - 51). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

Statically detectable fault
Static analysis suffers from a noise problem

u When sometimes its a fault and sometimes not, for
example:-

if (a = b)
instead of
if (a == b)

u In this case, if we warn of all transgressions those
statements which are OK will tend to hide those
which are not from the programmer. The ‘signal’ is
hidden by the noise.

u Some form of filtering is necessary, to maximise the
likelihood of positive detection, for example a safer
subset standard.

v. 1.2, 09/Mar/2000 , (slide 1 - 52). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects
occur historically ?

Statically detectable fault
We do not know in advance which statically

detectable faults will fail, but on average a
significant percentage will

Conclusions:
– Source code should not be released with

any statically detectable fault
– Learn about the fault modes of your

language
– Beware of the static noise problem

v. 1.2, 09/Mar/2000 , (slide 1 - 53). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Conclusions

The view from data:-
– Static testing v. dynamic testing

u Efficient static testing via inspections with semi-automated
tool support has a dramatic beneficial effect on software
reliability and production cost

– Tool support
u Automation should and can support:-

– The best static fault detection possible
– Education of engineers on difficult language areas
– Manual code inspections
– Dynamic checking
– Simple complexity control

v. 1.2, 09/Mar/2000 , (slide 1 - 54). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

More information ...

For more information on safer subsets,
static testing, downloadable technical
publications and tools and other links, you
are invited to browse our site:-

http://www.oakcomp.co.uk/

v. 1.2, 09/Mar/2000 , (slide 1 - 55). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Bibliography
• Bach, R. (1997) “Test automation snake oil”, 14th annual conference on Testing Computer

Software, Washington, USA
• Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold.
• Brettschneider, (1989) “Is your software ready for release ?”, IEEE Software, July, p. 100-108
• Fagan, M.E. (1976) “Design and code inspections to reduce errors in program development”, IBM

Systems Journal, 15(3), p. 182-211.
• Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chapman and Hall.
• Genuchten, M. v. (1991). Towards a Software Factory. Eindhoven.
• Gilb, T. & Graham D. (1993) Software Inspection, Addison-Wesley
• Grady, R. B. and D. L. Caswell (1987). Software Metrics: Establishing a Company-Wide Program.

Englewood Cliffs, N.J., Prentice-Hall.
• Graham, D. (1995) “A software inspection (failure) story”, EuroStar’95, London, November
• Hatton, L. et. al. (1988). “SKS: an exercise in large-scale Fortran portability”, Software Practice

and Experience.
• Hatton, L. (1995) “Safer C: Developing for High-Integrity and Safety-Critical Systems. McGraw-

Hill, ISBN 0-07-707640-0.
• Hatton, L. (1997) Re-examining the fault density - component size connection, IEEE Software,

March-April 1997.
• Hatton, L. (1997) The T experiments: errors in scientific software, IEEE Computational Science &

Engineering, vol 4, 2
• Hatton, L. (1998) Does OO sync with the way we think ?, IEEE Software, May/June 1997
• Hatton, L. (2000) “Software failure: avoiding the avoidable and living with the rest”, Addison-

Wesley, to appear in 2000.
• Humphreys, W. (1995) “A discipline of software engineering”, Addison-Wesley, ISBN 0-201-

54610-8

v. 1.2, 09/Mar/2000 , (slide 1 - 56). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Bibliography

• IEC 61508 (1991). Software for computers in the application of industrial safety-related systems.
International Electrotechnical Commission: Drafts only - cannot yet be referenced.

• Knight, J. C., A. G. Cass, et al. (1994). Testing a safety-critical application. International
Symposium on Software Testing and Analysis (ISSTA'94), Seattle, ACM.

• Kolawa, A. (1999) “Mutation Testing: a new approach to automatic error detection”, StarEast ‘99,
Orlando, May 1999

• Liedtke, C, and Ebert, H. (1995), “On the benefits of reinforcing code inspection activities”,
EuroStar’95, London

• Leveson, N. (1995). “Safeware: System Safety and Computers.” Addison-Wesley, ISBN 0-201-
11972-2.

• Littlewood, B. and L. Strigini (1992). “Validation of Ultra-High Dependability for Software-based
Systems.” Comm ACM to be published:

• McCabe, T. A. (1976). “A complexity measure.” IEEE Trans Soft. Eng. SE-2(4): 308-320.
• Mills, H.D. (1972) “On the statistical validation of computer programs”, IBM Federal Systems

Division. Gaithersburg, MD, Red. 72-6015, 1972
• Myers, G. J. (1979). The Art of Software Testing. New York, John Wiley & Sons.
• Nejmeh, B. A. (1988). “NPATH: A measure of execution path complexity and its applications.”

Comm ACM 31(2): 188-200.
• Parnas, D. L., J. v. Schouwen, et al. (1990). “Evaluation of Safety-Critical Software.” Comm ACM

33(6): 636-648.

v. 1.2, 09/Mar/2000 , (slide 1 - 57). Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Bibliography

• Pfleeger, S and Hatton L. (1997) “How well do Formal Methods work ?”, IEEE Computer, Ian
1997.

• Pfleeger, S. (1998) “Measurement and testing: doing more with less”, ICTCS’98, Washington.
• Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G. (1997) “An experiment to assess the cost-

benefits of code inspections in large scale software development”, IEEE Transactions, 23(6), p.
329-345

• Roper, M. (1999) “Problems, Pitfalls and Prospects for OO Code Review”, EuroStar’ 99,
Barcelona, November

• Veevers, A. and A. C. Marshall (1994). “A relationship between software coverage metrics and
reliability.” Software Testing, Verification and Reliability 4(1): 3-8.

• Vinter, O. and Poulsen, P-M (1996) “Improving the software process and test efficiency”, ESSI
Project 10438, http://www.esi.es/ESSI/Reports/All/10438

• Warnier, J. D. (1974). Precis de logique informatique: les procedures de traitement et leurs
donnees. H.E. Stenfert Kroesse.

• Woodward, M. R., D. Hedley, et al. (1980). “Experience with path analysis and testing of
programs.” IEEE Transactions 6(3): 278-286.

