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1 INTRODUCTION

When studying problems of a homotopical nature, a useful strategy is to reduce to algebra and use
insight there to make deductions in topology. Such a reduction often loses a lot of information,
but in some cases, the homotopy theory of interest can be completely modelled algebraically. For
example, Serre’s theorem shows that the homotopy theory of rational spectra is equivalent to the
category of graded ℚ-vector spaces. As such, one might say that the category of rational spectra is
algebraic. However, there are many different meanings of algebraic in use in the community. One
goal of this project is to clarify the relationship between these different notions.
In this paper, we study several definitions of algebraicity, give some alternative character-

isations of these definitions and moreover explore the relations between them. Furthermore,
we illustrate our results with many examples of interest, arising primarily from chromatic
homotopy theory.

1.1 Notions of algebraicity

Firstly, we give an overview of the different definitions and what behaviour they seek to capture.
We will discuss some examples later on in this introduction.
Given a stable model category , there are many levels on which one can measure how alge-

braic it is. The strictest notion is to require that it is algebraic up to Quillen equivalence; we say
that a stable model category  is algebraic if it is Quillen equivalent to a Chℤ-enriched model
category. This ensures that all higher homotopical information (e.g. Toda brackets) is determined
by algebraic data. If  has a compact generator, then using Morita theory [13, 43] and machinery
from [12], one can establish that  is algebraic if and only if  is Quillen equivalent to modules
over a differential graded algebra (DGA), see Theorem 3.11.
This notion of algebraicity is relatively well established but also technically quite strong, so in

order to get a richer, fuller picture we will weaken this notion to study other kinds of algebraicity.
Instead of requiring that all higher homotopical information is determined by algebra, one can
ask for only the triangulated structure of the homotopy category Ho() to be. This amounts to
asking thatHo() is triangulated equivalent to the derived category of modules over a DGA (or a
DG-category). If this is the case, we say that  is triangulated algebraic.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 3

Any stable model category carries a homotopical enrichment in spectra [27], and therefore,
associated to any two objects𝑋,𝑌 ∈ , there is a homotopymapping spectrum 𝑅Hom(𝑋,𝑌). One
can ask for this homotopical enrichment to be determined in algebra; this amounts to asking that
the action of Ho(Sp) on Ho() factors over the derived category 𝖣(ℤ), see Proposition 4.3. In this
case, we say that has a𝖣(ℤ)-action.This furthermore implies that𝑅Hom(𝑋,𝑌) is an𝐻ℤ-module
for all 𝑋,𝑌 ∈ .
The action ofHo(Sp) onHo() also induces an action of the stable homotopy groups of spheres.

The less complex this action is, the closer to algebra one might consider . One can then examine
the extremal case when the action of 𝜋>0(𝕊) is trivial; in this case, we say that  has a trivial
Ho(Sp)-action.
In the course of studying these notions, we give some alternative characterisations of them.

Some of these characterisations have theoretical value in relating the different kinds of algebraic-
ity as we discuss later in this introduction, but some also give valuable criteria for determining
how algebraic a given example is. For example, if  has a single compact generator, we can
test if a Ho(Sp)-action on Ho() is trivial just on this compact generator, see Proposition 4.11.
Furthermore, we examine to what extent the triviality of an action can be tested against only a
small number of elements in 𝜋>0(𝕊). We confirm this for a special case in Theorem 4.18 and we
conjecture that it holds more generally, see Conjecture 4.13.
Our firstmain result gives some equivalent characterisations of the aforementioned definitions.

For simplicity, in this introduction, we only state the results for the category of modules over a
ring spectrum, and we refer the reader to the relevant sections in this paper for further details and
the more general statements.

Theorem. Let 𝑅 be a ring spectrum.
(i) (3.15) The category 𝑅-mod is algebraic if and only if 𝑅 is weakly equivalent to an𝐻ℤ-algebra as

a ring spectrum.
(ii) (4.3) If the category 𝑅-mod has 𝖣(ℤ)-action, the homotopy mapping spectra Hom𝑅(𝑀,𝑁) are

𝐻ℤ-modules for all𝑀,𝑁 ∈ 𝑅-mod.
(iii) (4.18) If 𝑅 is 𝐸(1)-local at an odd prime 𝑝, then 𝑅-mod has trivial Ho(Sp)-action if and only if

𝑅 ∧𝐿 𝛼1 = 0 where 𝛼1 ∈ 𝜋2𝑝−3(𝐿1𝕊) denotes the Hopf element.
(iv) (4.21) If 𝑅 is an element of a set of ring spectra which detects nilpotence in the sense of

Definition 4.20, then 𝑅-mod has trivialHo(Sp)-action.

One might wonder if it is enough to require that the ring 𝑅 is an 𝐻ℤ-module in part (i) to
detect algebraicity. We show in Theorem 5.14 that this condition is not sufficient, by constructing
a certain endomorphism ring spectrum which is an 𝐻ℤ-module but not an 𝐻ℤ-algebra. More-
over, we use the above theorem to study several examples from chromatic homotopy theory such
as 𝐾(𝑛)-mod and 𝑀𝑈-mod; we refer the reader to Section 5 for the full details, and to Table 1
for a summary of the examples we treat. For now, we give a quick overview of some important
motivating examples.
The simplest (non-trivial) example one might consider is the category of modules over Morava

𝐾-theory 𝐾(𝑛) for some 0 < 𝑛 < ∞, see Section 5.2. Since 𝐾(𝑛)∗ is a graded field, the uni-
versal coefficient spectral sequence collapses, showing that there is a triangulated equivalence
Ho(𝐾(𝑛)-mod) ≃ 𝖣(𝐾(𝑛)∗). This shows that 𝐾(𝑛)-mod is triangulated algebraic. However, this
triangulated equivalence does not preserve higher homotopical information, and one can show
that𝐾(𝑛)-mod is not algebraic, and also that it does not have a 𝖣(ℤ)-action. However, it does have
a trivialHo(Sp)-action by Proposition 4.21. Moreover, we use an obstruction theory in the case of
𝐾(1) to illustrate more directly why it does not have a 𝖣(ℤ)-action.
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4 ISHAK et al.

We study several other examples in detail too. In particular, we study the category 𝐿1Sp of 𝐸(1)-
local spectra and its exotic models, see Examples 5.5, 5.6 and 5.7. If we work at an odd prime, then
Franke [14] as well as Patchkoria and Pstrągowski [32] have shown that the category of 𝐸(1)-local
spectra has an exotic model; that is, a category which is triangulated equivalent to Ho(𝐿1Sp) but
for which there is noQuillen equivalence to 𝐿1Sp. We show that Franke’s exoticmodel is algebraic
in each of the senses described above. However, it is not known whether Franke’s exotic model is
unique; therefore, we also consider how algebraic a general exotic model for 𝐿1Spmust be.
We also provide a detailed study of the category of modules over the endomorphism ring spec-

trum  = Hom𝑘𝑢(𝐻ℤ,𝐻ℤ) where 𝑘𝑢 denotes the connective complex 𝐾-theory spectrum, see
Section 5.5. We show that the ring spectrum  is an 𝐻ℤ-module, but it is not an 𝐻ℤ-algebra,
nor is it weakly equivalent to an 𝐻ℤ-algebra as a ring spectrum. This result is the key to unlock-
ing further counterexamples; for instance, the category of -modules has a 𝖣(ℤ)-action, but is
not algebraic.

1.2 Relating the different notions

As demonstrated by the examples discussed above, there is a surprising amount of subtlety present
in understanding the relations between these different notions of algebraicity. The other main
result for this paper is the following theorem which relates the different notions of algebraicity.

Theorem. Let  be a stable model category.

(i) (4.5 and 5.15) If  is algebraic, thenHo() possesses a 𝖣(ℤ)-action. The converse does not hold.
(ii) (4.10 and 5.10) IfHo() has a𝖣(ℤ)-action, then it also has a trivialHo(Sp)-action. The converse

does not hold.
(iii) (3.14 and 5.10) If  is algebraic, then it is also triangulated algebraic. The converse does not hold.
(iv) (5.5) Being triangulated algebraic does not imply 𝖣(ℤ)-action or trivial Ho(Sp)-action in

general.

For simplicity, we illustrate the above theorem in the following diagram demonstrating which
implications between the different notions hold and which fail. The complexity of this diagram
highlights the importance of reconciling the different types of algebraicity which appear in the
field.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 5

In general, it is extremely difficult to determine whether Ho() is triangulated algebraic.
Schwede’s notion of 𝑛-order [38] can sometimes give a measure to what extent this is not the
case but remains inconclusive for some examples, see Example 5.12. In some cases, there is a gen-
eral machinery to produce a triangulated equivalence to an algebraic model, see Example 5.11,
but failure to apply this machinery does still not rule out the existence of another triangulated
equivalence in general. Therefore, we can only conclude that a characterisation of triangulated
algebraic model categories is likely to remain an open problem for some time.

1.3 Conventions

A object 𝑋 of a triangulated category 𝖳 is said to be compact if [𝑋, −]𝖳 commutes with arbitrary
coproducts. A full triangulated subcategory  of 𝖳 is said to be localising if it is closed under
arbitrary coproducts. An object 𝑋 ∈ 𝖳 is said to be a generator if the smallest localising subcat-
egory of 𝖳 containing 𝑋 is the whole of 𝖳. If 𝑋 is a compact object in 𝖳, then it is a generator
if and only if the corepresentable [𝑋, −]𝖳 detects trivial objects, see, for example, [43, Lemma
2.2.1]. When 𝖳 has a compact generator (rather than a set of compact generators), we say that 𝖳 is
monogenic.
We write Sp to denote a suitable monoidal model category of spectra such as symmetric spectra

or orthogonal spectra. We write 𝕊 for the sphere spectrum.

2 SHIPLEY’S ALGEBRAICISATION THEOREM

In [39], Shipley constructs a passage between ring spectra and differential graded algebras. In
this section, we give a summary of some of the main results of [39] that will be needed in later
sections. Furthermore, we recall the construction of the Eilenberg–Mac Lane spectrum associated
to a DGA, which will be crucial for the rest of this paper.

2.1 Modules, monoids and adjoint lifting

Given a monoidal model category , we denote the category of monoid objects in  by Ring().
Given 𝑆 ∈ Ring(), we write 𝑆-mod() for the category of 𝑆-modules in . If the underlying cat-
egory is evident from the context, we will instead write 𝑆-mod. Similarly, given a commutative
monoid 𝑆 in , we write 𝑆-alg() for the category of 𝑆-algebras in . Under mild hypotheses,
the categories of monoids, modules over a monoid and algebras over a commutative monoid
admit model structures in which the weak equivalences and fibrations are created by the forgetful
functors to , see [40, Theorem 4.1].
Suppose that we have a weak monoidal Quillen adjunction 𝐿 ∶ ⇄  ∶ 𝑅 in the sense of [42,

Definition 3.6]. Since the right adjoint 𝑅 is lax monoidal it preserves monoid objects. Therefore,
by the adjoint lifting theorem (see also [42, §3.3]) for every monoid𝐴 in , the Quillen adjunction
(𝐿, 𝑅) lifts to a Quillen adjunction
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6 ISHAK et al.

between the categories of modules. We note that the functor 𝐿𝐴 is different to the underlying
functor 𝐿. When 𝐿 is strong monoidal, the functor 𝐿𝐴 takes the form

𝐿𝐴(𝑀) = 𝐿(𝑀) ∧𝐿(𝑅(𝐴)) 𝐴

for all𝑀 ∈ 𝑅(𝐴)-mod.

2.2 Change of rings

Recall that given a map of commutative ring spectra 𝜃∶ 𝑆 → 𝑅, the restriction of scalars
𝜃∗ ∶ 𝑅-mod → 𝑆-mod has a left adjoint 𝜃∗ = 𝑅∧𝑆 — called extension of scalars. Together these
form a strongmonoidal Quillen adjunction, and so given an 𝑅-algebra𝐴 (i.e. a monoid in 𝑅-mod),
there is an induced Quillen adjunction

𝜃𝐴∗ ∶ 𝜃
∗(𝐴)-mod(𝑆-mod) ⇄ 𝐴-mod(𝑅-mod) ∶ 𝜃∗,

where 𝜃𝐴∗ (𝑋) = 𝜃∗(𝑋) ∧𝜃∗𝜃∗(𝐴) 𝐴 as described above.

Lemma 2.1. Let 𝜃∶ 𝑆 → 𝑅 be a map of commutative ring spectra, and let 𝐴 be an 𝑅-algebra. The
adjunction

𝜃𝐴∗ ∶ 𝜃
∗(𝐴)-mod(𝑆-mod) ⇄ 𝐴-mod(𝑅-mod) ∶ 𝜃∗

is a Quillen equivalence.

Proof. Since the restriction of scalars 𝜃∗ reflects weak equivalences, by [21, Corollary 1.3.16], it is
sufficient to show that the derived unit

𝜂𝑀 ∶ 𝑀 → 𝜃∗𝜃𝐴∗ 𝑀

is an isomorphism for all𝑀 ∈ Ho(𝜃∗(𝐴)-mod). Consider the full subcategory ofHo(𝜃∗(𝐴)-mod)
consisting of the objects𝑀 for which the derived unit 𝜂𝑀 is an isomorphism. Since 𝜃∗ and 𝜃𝐴∗ are
both exact, coproduct-preserving functors, the subcategory is localising. The subcategory also
contains 𝜃∗(𝐴) since by definition of 𝜃𝐴∗ , we have

𝜃∗𝜃𝐴∗ (𝜃
∗(𝐴)) = 𝜃∗

(
𝜃∗𝜃

∗(𝐴) ∧𝜃∗𝜃∗(𝐴) 𝐴
)
≃ 𝜃∗(𝐴).

Since 𝜃∗(𝐴) is a generator for 𝜃∗(𝐴)-mod, the localising subcategory  is the whole of
Ho(𝜃∗(𝐴)-mod) as required. □

2.3 Eilenberg–Mac Lane ring spectra associated to a DGA

We can associate to any given DGA  a ring spectrum EML() called the Eilenberg–Mac Lane
ring spectrum associated to. In this subsection, we give a brief summary of the construction of
this ring spectrum. This is based on [39], and we refer the reader there for more details.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 7

Let Ch+
ℤ
denote the category of non-negatively graded chain complexes of abelian groups,

and sAb denote the category of simplicial abelian groups. Let ℤ̃𝑆1 be the reduced free simpli-
cial abelian group on the simplicial circle 𝑆1 = Δ[1]∕𝜕Δ[1], and let ℤ[1] be the chain complex
which contains a single copy of ℤ in degree one. We can form the categories SpΣ(Ch+

ℤ
, ℤ[1]) and

SpΣ(sAb, ℤ̃𝑆1) of symmetric spectra over Ch+
ℤ
and sAb as in [22]. To ease notation, we will denote

these categories as SpΣ(Ch+
ℤ
) and SpΣ(sAb) respectively.

There are Quillen equivalences [39, Proposition 2.10]

(2.2)

which we briefly describe now. The functor 𝑈 is induced by the forgetful functor from simplicial
abelian groups to simplicial sets and has a left adjoint 𝑍. The pair (𝑍,𝑈) is a strong monoidal
Quillen equivalence. The adjunction (𝐿, 𝜙∗𝑁) is a weak monoidal Quillen equivalence and is a
stabilised version of the Dold–Kan correspondence. The right adjoint is given by first applying
the normalisation functor

𝑁∶ sAb → Ch+
ℤ

levelwise, and then restricting scalars along the ring map

𝜙∶ SymCh+
ℤ
(ℤ[1]) → ,

where = 𝑁(SymsAb(ℤ̃𝑆
1)) and Sym ∶  → Fun(Σ,) denotes the free commutative monoid

in the category of symmetric sequences. The functor

𝑅 ∶ Chℤ → SpΣ(Ch+
ℤ
)

is defined by setting (𝑅𝑌)𝑚 = 𝐶0(𝑌 ⊗ ℤ[𝑚]), where 𝐶0 is the connective cover, and ℤ[𝑚] is the
chain complex with a single copy of ℤ in degree 𝑚. This has a left adjoint 𝐷, and the pair (𝐷, 𝑅)
forms a strong monoidal Quillen equivalence.
By taking monoid objects in the Quillen equivalences of (2.2) and applying [42, Theorem 3.12],

one obtains Quillen equivalences.

(2.3)

Taking composites of derived functors in (2.3), we obtain functors

ℍ∶ DGAℤ → 𝐻ℤ-alg and Θ∶ 𝐻ℤ-alg → DGAℤ

defined byℍ = 𝑈𝐿mon𝑐𝑅 andΘ = 𝐷𝑐𝜙∗𝑁𝑍𝑐, where 𝑐 denotes cofibrant replacement in the appro-
priate category ofmonoids. Note that no fibrant replacements are necessary since each of the right
adjoints preserves all weak equivalences.
We now have the necessary background to recall the following important theorem of Shipley.
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8 ISHAK et al.

Theorem 2.4 [39, Corollary 2.15].

(i) Let 𝑅 be an𝐻ℤ-algebra. Then 𝑅-mod(𝐻ℤ-mod) ≃𝑄 Θ(𝑅)-mod(Chℤ).
(ii) Let be a DGA. Then-mod(Chℤ) ≃𝑄 ℍ-mod(𝐻ℤ-mod).

Definition 2.5. The Eilenberg–Mac Lane ring spectrum associated to a DGA  is defined as
EML() ∶= 𝜃∗(ℍ) where 𝜃∗ denotes the restriction of scalars along the unit map 𝜃∶ 𝕊 → 𝐻ℤ.

In particular, if is concentrated in degree 0, the spectrumEML() is the ‘classical’ Eilenberg–
Mac Lane spectrum𝐻 whose homotopy groups are

𝜋0(𝐻) ≅  and 𝜋𝑖(𝐻) = 0 for 𝑖 ≠ 0.

Proposition 2.6. Let 𝜃∶ 𝕊 → 𝐻ℤ be the unit map, and 𝜃∗ denote the restriction of scalars functor
along 𝜃.

(i) Let 𝑅 be an𝐻ℤ-algebra. Then (𝜃∗𝑅)-mod(Sp) ≃𝑄 Θ(𝑅)-mod(Chℤ).
(ii) Let be a DGA. Then-mod(Chℤ) ≃𝑄 EML()-mod(Sp).

Proof. For part (i), by Theorem 2.4, we have 𝑅-mod(𝐻ℤ-mod) ≃𝑄 Θ(𝑅)-mod(Chℤ), and by
Lemma 2.1, we have 𝑅-mod(𝐻ℤ-mod) ≃𝑄 (𝜃∗𝑅)-mod(Sp). The proof of (ii) is similar. □

We end this section by recalling the relationship between 𝐻ℤ-modules and generalised
Eilenberg–Mac Lane spectra in the sense of [6].

Definition 2.7. A spectrum 𝑋 is a generalised Eilenberg–Mac Lane spectrum if 𝑋 is weakly
equivalent (as a spectrum) to ∨𝑖∈ℤΣ𝑖𝐻𝐴𝑖 where each 𝐴𝑖 is an abelian group.

Proposition 2.8 [6, Proposition 5.3]. A spectrum is a generalised Eilenberg–Mac Lane spectrum if
and only if it is weakly equivalent to an𝐻ℤ-module.

Using the previous characterisation of generalised Eilenberg–Mac Lane spectra, one obtains
the following result.

Proposition 2.9. Let be aDGA. The spectrumℍ is a generalised Eilenberg–Mac Lane spectrum.
In other words, there is an equivalence of underlying spectra

ℍ ≃
⋁
𝑖∈ℤ

Σ𝑖𝐻𝐴𝑖,

where 𝐴𝑖 = 𝐻𝑖(), the 𝑖th homology group of.

Proof. The spectrum ℍ is an 𝐻ℤ-algebra and hence an 𝐻ℤ-module, so the claim follows from
Proposition 2.8. □

We emphasise that the equivalence in the previous proposition is of underlying spectra, and is
not an equivalence of ring spectra or𝐻ℤ-algebras.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 9

3 ALGEBRAICMODEL CATEGORIES ANDMORITA THEORY

In this section, we give a definition of algebraic model categories, and then use Morita theory to
give some key characterisations of algebraicity which we will require. We start by recalling the
definition of algebraic model categories, and then recall some tools from Morita theory [12, 43].
We then use these tools to provide several characterisations of algebraic model categories.

3.1 Algebraicity

Recall that given amonoidalmodel category , anothermodel category is said to be a-enriched
model category if the underlying category of  is enriched, tensored and cotensored over  , and
the model structures on  and  are suitably compatible, see [17, §4.3], for instance. We write
 (−,−) for the object of  which gives the enrichment of  over  .

Definition 3.1. A stable model category  is said to be algebraic if it is Quillen equivalent to a
combinatorial Chℤ-enriched model category.

Remark 3.2. It is important to note that any Chℤ-enriched model category is stable by the ana-
logue of [43, Lemma 3.5.2]. As such if  is algebraic, then the combinatorial Chℤ-enriched model
category alg it is Quillen equivalent to is also stable. Therefore, the equivalenceHo() ≃ Ho(alg)
on homotopy categories is necessarily triangulated.

It will also be convenient to set terminology for a weaker notion of algebraicity.

Definition 3.3. Let  be a stable model category. We say that  is triangulated algebraic if its
homotopy categoryHo() is triangulated equivalent to the stable category of a Frobenius category.
If Ho() is compactly generated,  is triangulated algebraic if and only if Ho() is triangulated
equivalent to the derived category 𝖣() of a dg-category by [26, Theorem 3.8].

3.2 Morita theory

Morita theory is a well-known tool to classify stable model categories with a compact generator in
terms of modules over an endomorphism ring spectrum. However, if the stable model category is
algebraic in the sense of Definition 3.1, then it can be classified using an endomorphismDGA.We
start by recalling some key facts about Morita theory from [13, 43], and then use the machinery
developed in [12] to prove Theorem 3.11 which states that if  is an algebraic model category, then
it is Quillen equivalent to-mod for some well-defined DGA.
A model category  is said to be spectral if it is a SpΣ-enriched model category, where SpΣ

denotes the category of symmetric spectra. Recall also that a model category  is said to be pre-
sentable if it is Quillen equivalent to a combinatorial model category [13, Theorem 4.3]. This is
a mild condition on  which is almost always satisfied in practice. Dugger [13, Propositions 5.5
and 5.6] proved that every stable, presentable model category  is Quillen equivalent to a spectral
model category which we will denote by sp.
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10 ISHAK et al.

Definition 3.4. Let  be a stable, presentable model category, and let 𝑋 be a bifibrant object in
. We then define a (symmetric) ring spectrum hEnd(𝑋) by

hEnd(𝑋) = 
sp

SpΣ
(𝑋, 𝑋),

where 𝑋 is a bifibrant object of sp which corresponds to 𝑋 under the Quillen equivalence  ≃𝑄
sp, and sp

SpΣ
(−,−) denotes the enrichment of sp in SpΣ.

Theorem3.5 [43, Theorem3.1.1], [13, Theorem8.1].Let be amonogenic, stable, presentablemodel
categorywith a bifibrant compact generator𝑋. Then is Quillen equivalent to the category ofmodule
spectra over the ring spectrum hEnd(𝑋).

Remark 3.6. As stated, the previous result appears in Dugger [13], but the key ideas go back to
Schwede and Shipley [43]. More precisely, Schwede and Shipley [43, Theorem 3.8.2] show that if
 is simplicial, cofibrantly generated, proper and stable, then it is Quillen equivalent to a spectral
model category sp. Onemay then construct an endomorphism object as in Definition 3.4. On the
other hand, Dugger [13, Propositions 5.5 and 5.6] shows that if  is stable and presentable, then it is
Quillen equivalent to a spectral model category. Dugger’s assumption of stable and presentable is
more appropriate for our purposes since any algebraicmodel category is by definition presentable.

Now if  is algebraic, then using [12], we may construct an endomorphism ring spectrum in
simplicial abelian groups denoted as

hEndad(𝑋) ∈ Ring(Sp
Σ(sAb))

for𝑋 ∈  as we now recall. If  is algebraic, it is Quillen equivalent to a combinatorialChℤ-model
category alg. The model category alg is stable, combinatorial and additive by [12, Corollary 6.9]
and therefore is Quillen equivalent to a SpΣ(sAb)-model category ad by [12, Theorem 1.3, §8.2].

Definition 3.7. Let  be an algebraic model category and 𝑋 be a bifibrant object in . We then
define hEndad(𝑋) ∈ Ring(SpΣ(sAb)) by

hEndad(𝑋) = ad
SpΣ(sAb)

(𝑋, 𝑋),

where 𝑋 is a bifibrant object of ad which corresponds to 𝑋 under the Quillen equivalence  ≃𝑄
ad, and ad

SpΣ(sAb)
(−,−) denotes the enrichment of ad in SpΣ(sAb).

Proposition 3.8 [12, Proposition 1.5]. Let  be an algebraic model category and 𝑋 ∈  be a bifi-
brant object. Then the endomorphism ring spectrum hEnd(𝑋) is the Eilenberg–Mac Lane spectrum
associated to hEndad(𝑋), that is,

𝜃∗𝑈(hEndad(𝑋)) ≃ hEnd(𝑋).

In Section 2, we recalled how to construct an Eilenberg–Mac Lane spectrum associated
to a DGA. This construction passes through Ring(SpΣ(sAb)). Therefore, given an object of
Ring(SpΣ(sAb)) such as hEndad(𝑋) as recalled from [12] in Definition 3.7, one may produce a
DGA as we now describe.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 11

Using the functors described in (2.3), one can define functors

ℍ′ ∶ DGAℤ → Ring(SpΣ(sAb)) and Θ′ ∶ Ring(SpΣ(sAb)) → DGAℤ

by ℍ′ = 𝐿mon𝑐𝑅 and Θ′ = 𝐷𝑐𝜙∗𝑁 where 𝑐 denotes cofibrant replacement. We note that ℍ′Θ′ and
Θ′ℍ′ are weakly equivalent to the identity functors since the adjunctions (𝐿mon, 𝜙∗𝑁) and (𝐷, 𝑅)
are both Quillen equivalences [39, Proposition 2.10] as described in Section 2.

Definition 3.9. Let  be an algebraic model category, and 𝑋 be a bifibrant object in . We may
associate a DGA hEnddga(𝑋) to 𝑋, defined by

hEnddga(𝑋) = Θ
′(hEndad(𝑋)).

Proposition 3.10 [12, Proposition 1.7]. Let  be a combinatorial Chℤ-model category whose homo-
topy category is compactly generated. Then for any bifibrant object 𝑋 ∈ , we have hEnddga(𝑋) ≃
Chℤ(𝑋, 𝑋) where Chℤ(−,−) denotes the enrichment of  in Chℤ.

We can now give the aforementioned characterisation of algebraicmodel categories. The reader
may find it helpful to refer to Figure 1 for a schematic of the relations between the different
endomorphism objects before reading the following proof.

Theorem 3.11. Let  be amonogenic, algebraicmodel category, and write𝑋 for a bifibrant compact
generator. Then  is Quillen equivalent to the category of modules over the DGA hEnddga(𝑋).

Proof. We will show that there is a zig-zag of Quillen equivalences given by

 ≃𝑄 hEnd(𝑋)-mod ≃𝑄 𝜃∗ℍ(hEnddga(𝑋))-mod ≃𝑄 hEnddga(𝑋)-mod.

The first Quillen equivalence holds by Theorem 3.5 and the final Quillen equivalence by
Proposition 2.6. Therefore, it remains to justify the second Quillen equivalence. We have

𝜃∗ℍ(hEnddga(𝑋)) = 𝜃
∗ℍΘ′(hEndad(𝑋)) by definition of hEnddga(𝑋)

= 𝜃∗𝑈ℍ′Θ′(hEndad(𝑋)) since ℍ = 𝑈ℍ′ by definition

≃ 𝜃∗𝑈(hEndad(𝑋)) as Θ′ and ℍ′ are inverse equivalences

≃ hEnd(𝑋)-mod by Proposition 3.8,

and hence, the second Quillen equivalence holds. □

F IGURE 1 The various endomorphism objects associated to a bifibrant object 𝑋 in an algebraic model
category  and how they relate to one another.
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12 ISHAK et al.

By combining the previous theorem with Proposition 3.10, one obtains the following
corollary.

Corollary 3.12. Let  be a monogenic, combinatorial, Chℤ-enriched model category, and write 𝑋
for a bifibrant compact generator. Then  is Quillen equivalent to the category of modules over the
DGA Chℤ(𝑋, 𝑋). □

3.3 Detecting algebraicity

We can nowuse theMorita theory results from above to give several criteria for when stablemodel
categories are algebraic. Firstly, we give the following direct consequence of Theorem 3.11.

Theorem 3.13. Let  be a monogenic, stable model category. Then  is algebraic if and only if  is
Quillen equivalent to-mod for a DGA.

Proposition 3.14. Let  be a monogenic, stable model category. If  is algebraic, then it is
triangulated algebraic.

Proof. By Theorem 3.13, if  is algebraic, then  is Quillen equivalent to-mod for a DGA and
the derived equivalence is triangulated since the zig-zag of Quillen equivalences of Theorem 3.11
only passes through stable model categories. Hence,  is triangulated algebraic. □

Theorem 3.15. Let  be a monogenic, stable model category and write 𝑋 for a bifibrant compact
generator. Then  is algebraic if and only if hEnd(𝑋) is weakly equivalent to an 𝐻ℤ-algebra as a
ring spectrum.

Proof. If  is algebraic, then Proposition 3.8 shows that hEnd(𝑋) is weakly equivalent to the𝐻ℤ-
algebra 𝑈hEndad(𝑋) as a ring spectrum. Conversely, if hEnd(𝑋) is weakly equivalent to an 𝐻ℤ-
algebra 𝑅 as a ring spectrum, then

 ≃𝑄 hEnd(𝑋)-mod ≃𝑄 𝑅-mod ≃𝑄 Θ(𝑅)-mod

by Theorems 3.5 and 2.4. The object Θ(𝑅) is a DGA and therefore by Theorem 3.13, it follows that
 is algebraic. □

In the case when  is the category of modules over a ring spectrum, we can give more explicit
versions of the previous results.

Corollary 3.16. Let 𝑅 be a ring spectrum. Then 𝑅-mod is algebraic if and only if 𝑅 is weakly equiva-
lent to an𝐻ℤ-algebra as a ring spectrum. In particular, if 𝑅-mod is algebraic, then 𝑅 is a generalised
Eilenberg–Mac Lane spectrum in the sense of Definition 2.7.

Proof. The category 𝑅-mod is spectral with enrichment in spectra given by Hom𝑅(−,−). There-
fore, the endomorphism object hEnd(𝑅) associated to the compact generator 𝑅 is just 𝑅. The first
claim then follows from Theorem 3.15. As for the second claim, if 𝑅-mod is algebraic, then the
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 13

first part of this corollary tells us that 𝑅 is weakly equivalent to an 𝐻ℤ-algebra and hence an
𝐻ℤ-module, and the result then follows from Proposition 2.8. □

Remark 3.17. It is reasonable to wonder if in Theorem 3.15, it is instead enough to require that
hEnd(𝑋) is an 𝐻ℤ-module (since it is naturally a ring spectrum). In Theorem 5.14, we give an
example which shows that this is false.

4 DETECTING ALGEBRAICITY VIA𝐇𝐨(𝐒𝐩)-ACTIONS

For any stable model category , there is an action of Ho(Sp) on Ho(). In this section, we will
show that being algebraic implies that this Ho(Sp)-action factors over a 𝖣(ℤ)-action. Further-
more, we will consider the notion of a trivial Ho(Sp)-action on Ho() and explore how these
concepts interact.

4.1 Actions of𝐇𝐨(𝐒𝐩) and 𝗗(ℤ)

A useful structure to have on a stable model category  is a tensor with spectra 𝑋 ∧ 𝐴 where
𝑋 ∈  and 𝐴 ∈ Sp, and mapping spectra Hom(𝑋,𝑌) ∈ Sp behaving in a homotopically useful
way. This would mean asking for  to be a ‘spectral’ model category, which is a very strong
assumption. However, it has been shown by [27] that such a structure at least exists up to
homotopy.

Theorem 4.1 [27, Theorem 6.3]. For every stable model category , there is a bifunctor

− ∧𝐿 −∶ Ho() × Ho(Sp)⟶ Ho()

makingHo() a closedmodule category over the stable homotopy categoryHo(Sp) in the sense of [21,
Definition 4.1.6]. For 𝑋 ∈ , we call the right adjoint

𝑅Hom(𝑋,−)∶ Ho() → Ho(Sp)

the homotopy mapping spectrum functor.

This action satisfies the expected properties, such as the following.

∙ The functor − ∧𝐿 − is exact in both variables.
∙ We have 𝑋 ∧𝐿 𝕊 ≅ 𝑋 for all 𝑋 ∈ Ho().
∙ A Quillen functor  ⟶  induces a Ho(Sp)-module functor Ho()⟶ Ho().
∙ In particular, a Quillen equivalence induces an equivalence of Ho(Sp)-modules.

Remark 4.2. If  is itself a spectral model category, then the module structure from above
theorem agrees with the action derived from the spectral structure. This means that if
 is spectral and presentable, then hEnd(𝑋) from Definition 3.4 is weakly equivalent to
𝑅Hom(𝑋,𝑋).
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14 ISHAK et al.

In light of the relationship between algebraicity and 𝐻ℤ-algebras explored in the previous
section, we now explore when the action of Ho(Sp) factors over 𝖣(ℤ).

Proposition 4.3. Let  be a stablemodel category. If theHo(Sp)-module structure fromTheorem 4.1
factors over 𝖣(ℤ), then the homotopy mapping spectra 𝑅Hom(𝑋,𝑌) are𝐻ℤ-modules for all 𝑋,𝑌 ∈
, and hence, are generalised Eilenberg–Mac Lane spectra in the sense of Definition 2.7.

Proof. Firstly, we know by [39, Proposition 2.10] that Chℤ is monoidally Quillen equivalent
to 𝐻ℤ-mod. Thus, having 𝖣(ℤ)-action is equivalent to the Ho(Sp)-action on  factoring over
Ho(𝐻ℤ-mod) as follows. Consider the diagram

By taking right adjoints, this is equivalent to having the following commutative diagram:

where the arrow Ho(𝐻ℤ-mod) → Ho(Sp) is the forgetful functor. Thus, we can see that if the
Ho(Sp)-action factors over a Ho(𝐻ℤ-mod)-action, the homotopy mapping spectra 𝑅Hom(𝑋,𝑌)
are𝐻ℤ-modules for all 𝑋,𝑌 in . The final claim holds by applying Proposition 2.8. □

Remark 4.4. Conversely, by unravelling the definition, to obtain a 𝖣(ℤ)-action one needs the
following.

∙ The homotopy mapping spectra 𝑅Hom(𝑋,𝑌) are𝐻ℤ-modules for all 𝑋 and 𝑌.
∙ The compositionmap 𝑅Hom(𝑌, 𝑍) ∧𝐿

𝐻ℤ
𝑅Hom(𝑋,𝑌) → 𝑅Hom(𝑋, 𝑍) is amap of𝐻ℤ-modules.

∙ The unit map 𝕊 → 𝑅Hom(𝑋,𝑋) factors over𝐻ℤ.
∙ For 𝑓∶ 𝐴 → 𝐵 in , the inducedmaps of spectra 𝑅Hom(𝑋, 𝑓) and 𝑅Hom(𝑓, 𝑌) are𝐻ℤ-module
maps.

We now show that algebraic model categories have a 𝖣(ℤ)-action.

Proposition 4.5. Let  be an algebraic model category. Then the Ho(Sp)-module structure factors
over 𝖣(ℤ).

Proof. Without loss of generality, we may assume that  is a Chℤ-model category rather than just
Quillen equivalent to one, as Quillen equivalences induce isomorphic Ho(Sp)-module structures
on the respective homotopy categories. As  is a Chℤ-model category by assumption, Ho() is a
closed 𝖣(ℤ)-module, so the claim follows. □
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 15

Corollary 4.6. AQuillen functor𝐹∶  ⟶  between algebraicmodel categories induces a functor
Ho()⟶ Ho() of closed 𝖣(ℤ)-module categories, that is, the diagram

commutes.

4.2 Trivial actions

The action of the stable homotopy category induces an action of the stable homotopy groups𝜋∗(𝕊)
on the morphism groups in Ho()

𝜋∗(𝕊) ⊗ [𝑋, 𝑌]

∗ ⟶ [𝑋,𝑌]∗

given by 𝛼 ⊗ 𝜑 = 𝜑 ∧𝐿 𝛼. Note that the stable homotopy groups act from the left, see [41, Con-
struction 2.4], and that the action is associative and unital. We can describe this action explicitly
using mapping spectra.

Lemma 4.7. Let 𝜑 ∈ [𝑋, 𝑌]
𝑘
, and 𝛼 ∈ 𝜋𝑖(𝕊), 𝑖 ⩾ 0. Then 𝛼 ⊗ 𝜑 ∈ [𝑋,𝑌]𝑖+𝑘 is adjoint to the

element

𝛼 ◦𝑓 ∈ 𝜋𝑖+𝑘(𝑅Hom(𝑋,𝑌)),

where 𝑓 ∈ 𝜋𝑘(𝑅Hom(𝑋,𝑌)) is adjoint to 𝜑.

Proof. Write ∧ instead of ∧𝐿. By adjunction, we have that

𝜋𝑘(𝑅Hom(𝑋,𝑌)) ≅ [Σ
𝑘𝑋, 𝑌] ,

so 𝜑 ∈ [Σ𝑘𝑋, 𝑌] then corresponds to an element 𝑓 ∈ 𝜋𝑘(𝑅Hom(𝑋,𝑌)). Thus,

𝜑 ∧ 𝛼 ∈ [Σ𝑖+𝑘𝑋, 𝑌] .

By adjunction, this element 𝜑 ∧ 𝛼 corresponds to an element

𝛼 ⊗ 𝑓 ∈ 𝜋𝑖+𝑘(𝑅Hom(𝑋,𝑌)).

Let us now specify what this element 𝛼 ⊗ 𝑓 is. The adjunction isomorphism gives us

𝜑 = 𝜖 ◦ (𝑋 ∧ 𝑓)∶ Σ𝑘𝑋
𝑋∧𝑓
\\\\→ 𝑋 ∧ 𝑅Hom(𝑋,𝑌)

𝜖
\→ 𝑌,
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16 ISHAK et al.

where 𝜖 is the counit. The element 𝛼 now acts on 𝜑 as

𝜑 ∧ 𝛼 = (𝜖 ◦ (𝑋 ∧ 𝑓)) ∧ 𝛼

= 𝜖 ◦ ((𝑋 ∧ 𝑓) ∧ 𝛼)

= 𝜖 ◦ (𝑋 ∧ (𝛼 ◦𝑓)).

The second equality comes from the fact that the action is central in the sense that

(𝜑2 ◦𝜑1) ∧ 𝛼 = (𝜑2 ∧ 𝛼) ◦𝜑1 = 𝜑2 ◦ (𝜑1 ∧ 𝛼).

Furthermore, the last equality uses the associativity of the action ∧; however, we have to let 𝛼 act
on 𝑓 from the left rather than the right in the last step.
By the same construction, we see that 𝜖 ◦ (𝑋 ∧ (𝛼 ◦𝑓)) is also adjoint to 𝛼 ◦𝑓. Therefore, we can

conclude that

𝛼 ◦𝑓 = 𝛼 ⊗ 𝑓

as claimed. □

Corollary 4.8. Let 𝛼 ∈ 𝜋𝑖(𝕊) for 𝑖 > 0. If the mapping spectrum 𝑅Hom(𝑋,𝑌) is a generalised
Eilenberg–Mac Lane spectrum in the sense of Definition 2.7, then 𝛼 ⊗ 𝑓 = 0 for 𝑓 ∈ [𝑋, 𝑌]∗ .

Proof. If 𝐸 is an Eilenberg–Mac Lane spectrum (i.e. a spectrum with homotopy groups concen-
trated in one degree), then 𝛼 ◦𝑓 = 0 for any 𝛼 ∈ 𝜋𝑖(𝕊), 𝑖 > 0 and 𝑓 ∈ 𝜋∗(𝐸) because of degree
reasons. Therefore, the same is true if 𝐸 is a wedge of suspensions of Eilenberg–Mac Lane
spectra. □

Given a non-zero 𝑓 ∈ [𝑋, 𝑌] and 𝛼 ∈ 𝜋𝑖(𝕊), one sees that 𝛼 ⊗ 𝑓 = (𝛼 ⊗ id𝑋) ◦ (id𝕊 ⊗ 𝑓).
Therefore,𝛼 ⊗ 𝑓 = 0 if and only if𝑋 ∧𝐿 𝛼 = 𝛼 ⊗ id𝑋 = 0. As such, the previous corollary suggests
the following definition.

Definition 4.9. We say thatHo(Sp) acts trivially onHo() if for all𝑋 ∈ Ho() and 𝛼 ∈ 𝜋𝑖(𝕊), 𝑖 >
0, we have 𝑋 ∧𝐿 𝛼 = 0.

We now record how trivial action relates to a 𝖣(ℤ)-action and to being algebraic.

Corollary 4.10. If theHo(Sp)-action onHo() factors over a𝖣(ℤ)-action, thenHo(Sp) acts trivially
onHo(). In particular, if  is an algebraic model category, thenHo(Sp) acts trivially onHo().

Proof. By Lemma 4.7, the action of 𝜋∗(𝕊) on mapping objects is given by precomposition with
the adjoint maps. If the Ho(Sp)-action factors over 𝖣(ℤ), this means that the mapping spectra
are products of Eilenberg–Mac Lane spectra by Proposition 4.3, and thus, by Corollary 4.8, the
action is trivial. If  is algebraic, then it has 𝖣(ℤ)-action by Proposition 4.5, so the second claim
follows. □
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 17

We can reduce the definition of trivial action to testing on a compact generator.

Proposition4.11. Let be amonogenic, stable, presentablemodel categorywith a bifibrant compact
generator𝐺. ThenHo(Sp) acts trivially onHo() if and only if𝐺 ∧𝐿 𝛼 = 0 for all 𝛼 ∈ 𝜋𝑘(𝕊), 𝑘 > 0.

Proof. Since  is stable and presentable, it is Quillen equivalent to a spectralmodel category by [13,
Propositions 5.5 and 5.6]. As Quillen equivalences induce equivalent Ho(Sp)-module structures,
we may without loss of generality assume that  is spectral.
By Morita theory (cf. Theorem 3.5), we have a Quillen equivalence.

Now let 𝑋 ∈ . Since Quillen equivalences induce equivalent Ho(Sp)-module structures, we
have 𝑋 ∧𝐿 𝛼 = 0 if and only if SpΣ(𝐺, 𝑋) ∧𝐿 𝛼 = 0.
Since 𝐺 ∧𝐿 𝛼 = 0 by assumption, we also have

hEnd(𝐺) ∧𝐿 𝛼 = SpΣ(𝐺, 𝐺) ∧
𝐿 𝛼 = 0.

But SpΣ(𝐺, 𝑋) ∧ 𝛼 is a retract of SpΣ(𝐺, 𝑋) ∧ SpΣ(𝐺, 𝐺) ∧ 𝛼, as the spectrum SpΣ(𝐺, 𝑋) is amod-
ule over SpΣ(𝐺, 𝐺). This implies that 𝛼 also acts trivially on SpΣ(𝐺, 𝑋) and therefore on 𝑋, as
required. □

As well as reducing to checking trivial actions on a compact generator of Ho(), it is natu-
ral to ask whether or not we can reduce to checking just a small number of elements of 𝜋∗(𝕊).
By [8], the whole of 𝜋∗(𝕊) is ‘generated’ by the elements of Adams filtration 1 using multipli-
cation and higher Toda brackets: every 𝜃 ∈ 𝜋∗(𝕊) that is not a Hopf element can be written as
a higher order Toda bracket of matrices with values in (smaller degrees of) 𝜋∗(𝕊). Consider-
ing localisation at each prime separately, for 𝑝 = 2, the elements of Adams filtration 1 are the
Hopf elements 2 ∈ 𝜋0(𝕊), 𝜂 ∈ 𝜋1(𝕊), 𝜈 ∈ 𝜋3(𝕊) and 𝜎 ∈ 𝜋7(𝕊). For odd primes, the only ones are
𝑝 ∈ 𝜋0(𝕊), 𝛼1 ∈ 𝜋2𝑝−3(𝕊).
This suggests the following definition.

Definition 4.12. We say that Ho(Sp) acts essentially trivially on Ho() if for all 𝑋 ∈ Ho() and
𝛼 ∈ 𝜋𝑖(𝕊), 𝑖 > 0, of Adams filtration 1, we have𝑋 ∧𝐿 𝛼 = 0. By the analogue of Proposition 4.11, if
 is monogenic, this is equivalent to 𝐺 ∧𝐿 𝛼 = 0 for a compact generator 𝐺, and 𝛼 ∈ 𝜋𝑖(𝕊), 𝑖 > 0,
of Adams filtration 1.

We make the following conjecture relating essentially trivial actions with trivial actions. We
prove a special case of this as Theorem 4.18.

Conjecture 4.13. Let  be a stable model category. ThenHo(Sp) acts trivially onHo() if and only
ifHo(Sp) acts essentially trivially onHo().

Remark 4.14. One might think that the above conjecture can be proved using Cohen’s theorem.
However, this method fails mainly because of how the indeterminacy of 𝑛-fold Toda brackets
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18 ISHAK et al.

behave. More precisely, Cohen’s theorem [8, Theorem 4.2] says that if 𝜃 ∈ 𝜋∗(𝕊) is not a Hopf
element, then there is a Toda bracket of the form

⟨𝑓1, 𝑓2, …𝑓𝑛⟩
containing 𝜃, where

𝐺1
𝑓1
\\→ 𝐺2

𝑓2
\\→ ⋯

𝑓𝑛
\\→ 𝐺𝑛+1,

𝐺1 and 𝐺𝑛+1 are spheres and the other 𝐺𝑖 are wedges of spheres. In particular, the 𝑓𝑖 can be rep-
resented as matrices with entries in 𝜋∗(𝕊) of degree strictly less than that of 𝜃. We then have that

𝑋 ∧𝐿 𝜃 ∈
⟨
𝑋 ∧𝐿 𝑓1, 𝑋 ∧

𝐿 𝑓2, …𝑋 ∧
𝐿 𝑓𝑛

⟩
.

It would then be the goal to prove that 𝑋 ∧𝐿 𝜃 = 0 if 𝑋 ∧𝐿 𝛼 = 0 for all Hopf elements 𝛼 by
induction on degree. At 𝑝 = 2, assuming that 𝑋 ∧𝐿 𝜂, 𝑋 ∧𝐿 𝜈 and 𝑋 ∧𝐿 𝜎 are all trivial, one can
quickly prove that 𝑋 ∧𝐿 𝜃 = 0 for all 𝜃 in degrees 1 to 7. (At odd primes, the situation is even sim-
pler.) Thus, induction tells us that 𝑋 ∧𝐿 𝜃 is an element of a Toda bracket whose entries are zeros
and powers of 𝑝. As such, this Toda bracket contains zero. Sadly, this is not enough to conclude
that𝑋 ∧𝐿 𝜃 itself has to be zero, as a long bracket as above can still have non-trivial indeterminacy.
(For example, the bracket < 2, 0, 0, 2 > in Ho(Sp) contains 𝜂2.)

4.3 Detecting trivial actions

In this section, we give three criteria for checking whetherHo(Sp) acts trivially onHo(). Firstly,
in some cases, we can detect trivial Ho(Sp)-action already from homotopy groups.

Lemma 4.15. Let 𝑅 be a ring spectrum and 𝜄 ∶ 𝕊⟶ 𝑅 its unit map. If 𝜄∗ ∶ 𝜋∗(𝕊)⟶ 𝜋∗(𝑅) is zero
in positive degrees, thenHo(𝑅-mod) has trivialHo(Sp)-action.

Proof. Let 𝜇∶ 𝑅 ∧𝐿 𝑅⟶ 𝑅 be the multiplication map of 𝑅. By Proposition 4.11, we want to check
that 𝑅 ∧𝐿 𝛼 = 0 for 𝛼 ∈ 𝜋𝑘(𝕊), 𝑘 > 0. We have

id ≃ 𝜇 ◦ 𝜄 ∶ 𝑅 ≅ 𝑅 ∧𝐿 𝕊⟶ 𝑅 ∧𝐿 𝑅⟶ 𝑅

by definition. Therefore, for 𝛼 ∈ 𝜋𝑘(𝕊), 𝑘 > 0, 𝑅 ∧𝐿 𝛼 ≃ 𝑅 ∧𝐿 (𝜇 ◦ 𝜄 ◦𝛼) ≃ 𝑅 ∧𝐿 (𝜇 ◦ 𝜄∗(𝛼)), which
is zero by assumption. □

Corollary 4.16. Let 𝑅 be a ring spectrum with 𝜋𝑘(𝑅) torsion-free for 𝑘 > 0. Then Ho(𝑅-mod) has
trivialHo(Sp)-action. □

Corollary 4.17. For 𝑅 = 𝑀𝑈, 𝐵𝑃, 𝐸(𝑛), 𝐾𝑈 and their connective covers, Ho(𝑅-mod) has trivial
Ho(Sp)-action. □

Our second criterion gives a positive answer to Conjecture 4.13 in the case when the homotopy
mapping spectra are 𝐸(1)-local at an odd prime.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 19

Theorem 4.18. Let  be a stable model category for which the homotopy mapping spectra
𝑅Hom(𝑋,𝑌) are 𝐸(1)-local for all 𝑋 and 𝑌 in , for some fixed odd prime 𝑝. If 𝛼1 ∈ 𝜋2𝑝−3(𝐿1𝕊)
acts trivially, thenHo(Sp) acts trivially onHo().

Proof. If the homotopy mapping spectra are all 𝐸(1)-local, then the action of Ho(Sp) on Ho()
factors over the 𝐸(1)-local stable homotopy category Ho(𝐿1Sp) [2, Theorem 7.8], and we write
[𝐴, 𝐵]𝐿1Sp for morphisms in Ho(𝐿1Sp). Therefore, it is sufficient to show that Ho(𝐿1Sp) acts
trivially on Ho(), because the action of the stable homotopy groups factors as

By assumption, 𝑋 ∧𝐿 𝜃 = 0 for all 𝜃 ∈ 𝜋𝑖(𝐿1𝕊), 𝑖 = 1, … , 4𝑝 − 6 as the only non-trivial homo-
topy in this range is the group 𝜋2𝑝−3(𝐿1𝕊) = ℤ∕𝑝, which is generated by 𝛼1. We have short exact
sequences of the form

0⟶ 𝜋𝑖+1(𝐿1𝕊)∕(𝑝)⟶ [𝑀, 𝐿1𝕊]𝑖 = [𝑀, 𝕊]
𝐿1Sp

𝑖
⟶ Γ𝑝(𝜋𝑖(𝐿1𝕊))⟶ 0,

where𝑀 denotes the mod 𝑝 Moore spectrum and Γ𝑝𝐺 the 𝑝-torsion of an abelian group 𝐺. For
degree reasons, these short exact sequences take the form

0⟶ 0⟶𝐺⟶𝐺⟶ 0 or 0⟶ 𝐺⟶𝐺⟶ 0⟶ 0

in low degrees. Therefore, we can conclude that [𝑀, 𝕊]𝐿1Sp
𝑖

= 0 in degrees 0 ⩽ 𝑖 ⩽ 2𝑝 − 5. In addi-
tion, [𝑀, 𝕊]𝐿1Sp

2𝑝−4
is generated by 𝛼1 ◦ pinch, and [𝑀, 𝕊]

𝐿1Sp

2𝑝−3
is generated by an element 𝐴 with

𝐴 ◦ incl = 𝛼1.
We have a 𝑣1-self map 𝑣1 ∶ Σ2𝑝−2𝑀 → 𝑀 which is an isomorphism in 𝐸(1)-homology as𝑀 is

rationally trivial. Therefore, there is a commutative diagram.

We have that [𝑀, 𝕊]𝐿1Sp
𝑖

= 0 in degrees 0 ⩽ 𝑖 ⩽ 2𝑝 − 5; therefore, the top arrow is zero in those
degrees. In degree 2𝑝 − 4, we have that

𝑋 ∧𝐿 (𝛼1 ◦ pinch) = (𝑋 ∧
𝐿 𝛼1) ◦ (𝑋 ∧

𝐿 pinch) = 0 ◦ (𝑋 ∧𝐿 pinch) = 0

by assumption. In degree 2𝑝 − 3, we have 𝑋 ∧𝐿 𝐴 = 0 as by our previous calculation, 𝑋 ∧𝐿 𝐴 is
zero if and only if 𝑋 ∧𝐿 𝛼1 is, because precomposition with the inclusion map induces an isomor-
phismon the relevant homotopy groups. Thus, all in all, the top arrow is zero for 0 ⩽ 𝑖 ⩽ 2𝑝 − 3. As
the left-hand arrow is an isomorphism, the bottom arrow has to be zero tomake the diagram com-
mute. Iterating this step implies that𝑋 ∧𝐿 𝜃 = 0 for all 𝜃 in the non-negative degrees of [𝑀, 𝕊]𝐿1Sp.
Altogether, we have that 𝑋 ∧𝐿 − acts trivially on the mod 𝑝 parts of 𝜋𝑖(𝐿1𝕊), 𝑖 ≠ 0, and also the
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20 ISHAK et al.

rational parts of 𝜋𝑖(𝐿1𝕊), 𝑖 ≠ 0, which are trivial. Therefore, 𝑋 ∧𝐿 𝜃 is zero for all 𝜃 ∈ 𝜋𝑖(𝐿1𝕊),
𝑖 ≠ 0 as desired. □

Remark 4.19. A similar argument shows that this is also true for the negative degree elements;
indeed, the bottommap is zero for 𝑖 + 2𝑝 − 2 ⩾ 0, so the topmap is also the zeromap in this range
and iterating this gives the claim. It is not necessary for the proof of Theorem 4.18 as we only
require the claim for positive degrees, but we leave this here in case of a trivial 𝜋∗(𝐿1𝕊)-action
being required for future results.

Let us now turn to another source of examples of trivial action.

Definition 4.20. A set of ring spectra {𝑅𝑖}𝑖∈𝐼 detects nilpotence if a map 𝑓∶ Σ𝑘𝐴⟶ 𝐴 inHo(Sp)
for a finite spectrum 𝐴 is nilpotent if and only if 𝑅𝑖 ∧𝐿 𝑓 is zero for all 𝑖.

Proposition 4.21. Let {𝑅𝑖}𝑖∈𝐼 be a set of ring spectra which detects nilpotence. Then Ho(𝑅𝑖-mod)
has trivialHo(Sp)-action for all 𝑖.

Proof. By Proposition 4.11, Ho(𝑅𝑖-mod) has trivial Ho(Sp)-action if and only if 𝑅𝑖 ∧𝐿 𝜃 = 0 for
all 𝜃 ∈ 𝜋𝑖(𝕊), 𝑖 > 0. Nishida’s nilpotence theorem [28] shows that all positive degree elements of
𝜋∗(𝕊) are nilpotent and the claim follows. □

We will use the previous lemma to discuss examples relating to Morava 𝐾-theory and complex
cobordism in the next section.

5 EXAMPLES AND APPLICATIONS

In this section, we explore trivial actions and algebraicity in various examples arising in stable
homotopy theory. Firstly, we explore the case of 𝐸(1)-local spectra together with exotic models for
it, and then, we turn to other examples arising from chromatic homotopy theory.
Most of the examples we are dealing with are 𝑝-local stable model categories in the sense that

the action of Ho(Sp)-action factors over the 𝑝-local stable homotopy category Ho(Sp(𝑝)). In this
case, one sees that  has a trivial Ho(Sp)-action if and only if the positive degree elements of
𝜋∗(𝕊(𝑝)) act trivially. Similarly,  has an essentially trivialHo(Sp)-action if and only if the element
𝛼1 ∈ 𝜋2𝑝−3(𝕊) acts trivially (𝑝 > 2), or if the Hopf elements 𝜂, 𝜈 and 𝜎 act trivially (𝑝 = 2).

5.1 𝑬(𝟏)-local spectra and exotic models

In this section, we study our algebraicity results in the case of 𝐸(1)-local spectra 𝐿1Sp and exotic
models for it. Recall that a stable model category  is said to be an exotic model for 𝐿1Sp if it is not
Quillen equivalent to 𝐿1Sp but does carry a triangulated equivalence as in the proposition below.

Proposition 5.1. LetΦ∶ Ho(𝐿1Sp)
∼
\→ Ho() be a triangulated equivalence that is not derived from

a Quillen functor, and let 𝑝 > 2. ThenHo(Sp) acts essentially trivially onHo().
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 21

Proof. By [36, Proposition 6.7],𝑋 ∧ 𝛼1 = 0 for𝑋 = Φ(𝐿1𝑆0). As𝑋 is a compact generator ofHo(),
the claim follows from Proposition 4.11. □

Remark 5.2. One might imagine that Theorem 4.18 can be applied in the previous corollary to
deduce thatHo(Sp) acts trivially onHo(). However, [36] shows that the mapping spectra in any
exotic model are not 𝐸(1)-local.

Note that the existence of such a triangulated equivalence Φ for odd primes has been shown
by [14, 31, 32] (the latter two papers correcting some gaps in the former). Next, we recall the def-
inition of Franke’s exotic model for 𝐸(1)-local spectra; we refer the reader to [3, 14, 37] for more
details. We then turn to examining the exotic model in more detail with regard to algebraicity.
Given a Grothendieck abelian category , a self-equivalence 𝑇∶ →  and an integer 𝑁, a

twisted chain complex (of period𝑁) is a chain complex 𝑋 ∈ Ch() together with an isomorphism
𝛼𝑋 ∶ 𝑇𝑋 → Σ𝑁𝑋. A map of twisted chain complexes 𝑓∶ 𝑋 → 𝑌 is a chain map which is compat-
ible with the specified isomorphisms 𝛼𝑋 and 𝛼𝑌 . We denote this category by Ch(𝑇,𝑁)(). There is
an adjunction.

(5.3)

It is also helpful to note that if  is monoidal with unit object 𝟙, then (under some mild
hypotheses) the category Ch(𝑇,𝑁)() is isomorphic to the category of ℙ𝟙-modules in Ch().
Fix an odd prime 𝑝. Franke’s exotic model for 𝐸(1)-local spectra is the category of twisted chain

complexes of period 1 over the abelian category = 𝐸(1)∗𝐸(1)-comod, of comodules over the flat
Hopf algebroid 𝐸(1)∗𝐸(1). We denote this category by Fr1,𝑝. This category admits several model
structures, see [3] for details. Firstly, Fr1,𝑝 admits an injective model structure and this presents
the homotopy theory of interest. As such, we will refer to Fr1,𝑝 with the injective model structure
as ‘Franke’s category’. However, the injective model structure is not monoidal in general (nor
Chℤ-enriched), and so for our purposes, we are interested in the quasi-projectivemodel structure,
which is Quillen equivalent to the injective model structure as well as amonoidal model category.
We briefly recall the construction of the quasi-projective model structure as in [3, §6] now.
The category Ch(𝐸(1)∗𝐸(1)-comod) admits a relative projective model structure in the sense

of [7] by taking the projective class generated by the dualisable 𝐸(1)∗𝐸(1)-comodules, see also [23]
for more details. This can be right-lifted along the adjunction (5.3) to produce the relative pro-
jective model structure on Fr1,𝑝. This model structure has fewer weak equivalences than the
quasi-isomorphisms, so it does not present Franke’s exotic model. Instead, left Bousfield localis-
ing the relative projective model structure on Fr1,𝑝 produces the quasi-projective model structure,
in which the weak equivalences are the quasi-isomorphisms.

Proposition 5.4. Franke’s category Fr1,𝑝 is an algebraic model category.

Proof. Firstly, the underlying category of Fr1,𝑝 is locally presentable by [1, Theorem 5.5.9] as
Ch(𝐸(1)∗𝐸(1)-comod) is locally presentable. The quasi-projective model structure on Fr1,𝑝 is
cofibrantly generated by construction, and hence is combinatorial. We write Hom(−,−) for the
internal hom in Fr1,𝑝 and note that this also provides the enrichment in Chℤ via the forgetful
functor. Now, let 𝑖 ∶ 𝐴 ↪ 𝑋 be a cofibration and 𝑝∶ 𝐸 ↠ 𝐵 be a fibration in the quasi-projective
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22 ISHAK et al.

model structure on Fr1,𝑝. We must show that

Hom(𝑖∗, 𝑝∗)∶ Hom(𝑋, 𝐸) → Hom(𝑋, 𝐵) ×Hom(𝐴,𝐵) Hom(𝐴, 𝐸)

is a fibration in Chℤ which is moreover acyclic if either 𝑖 or 𝑝 is acyclic.
Since the quasi-projective model structure on Fr1,𝑝 is monoidal by [3, Corollary 6.7], we have

that Hom(𝑖∗, 𝑝∗) is a quasi-projective fibration which is acyclic if either 𝑖 or 𝑝 is. By definition,
Hom(𝑖∗, 𝑝∗) is also a quasi-projective fibration in Ch(𝐸(1)∗𝐸(1)-comod) which is acyclic if either
𝑖 or 𝑝 is. It follows that it is also a fibration in the relative projective model structure which is
acyclic if either 𝑖 or 𝑝 is, since the quasi-projective model is a left Bousfield localisation of the
relative projective model. Any fibration (resp., weak equivalence) in the relative projective model
is a surjection (resp., quasi-isomorphism) by [23, Proposition 2.1.5]. Therefore, Hom(𝑖∗, 𝑝∗) is a
surjection which is a quasi-isomorphism if either 𝑖 or 𝑝 is acyclic, as required.
We have now shown that the quasi-projective model structure on Fr1,𝑝 is combinatorial, Chℤ-

enriched, and isQuillen equivalent to the injectivemodel structure. Therefore, the injectivemodel
structure on Fr1,𝑝 is indeed algebraic. □

Wenow summarise the relationships between the various versions of algebraicity studied above
for 𝐸(1)-local spectra and Franke’s category.

Example 5.5 (𝐸(1)-local spectra). Consider the category of 𝐸(1)-local spectra at a fixed prime
𝑝 ⩾ 3. Since there is a triangulated equivalence Ho(𝐿1Sp) ≃ Ho(Fr1,𝑝), one sees that 𝐿1Sp is
triangulated algebraic. As

𝐻𝔽𝑝 ∧ 𝐿1𝕊 ≃ 𝐿1(𝐻𝔽𝑝) ≃ 0

(see [20, §5.2]), 𝐿1𝕊 is not an𝐻ℤ-module. If it were, then by Proposition 2.8,

𝐿1𝕊 ≃
⋁
𝑖∈ℤ

Σ𝑖𝐻𝜋𝑖(𝐿1𝕊),

and therefore, smashing with𝐻𝔽𝑝 could not be trivial as, for example, 𝜋2𝑝−3(𝐿1𝕊) = ℤ∕𝑝. It then
follows fromCorollary 3.16 and Proposition 4.3 that 𝐿1Sp is neither algebraic nor has 𝖣(ℤ)-action.
Finally, Ho(Sp) does not act trivially on Ho(𝐿1Sp) as 𝛼1 acts non-trivially.

Example 5.6 (Franke’s exotic model Fr1,𝑝). Consider Franke’s exotic model Fr1,𝑝 for 𝐸(1)-local
spectra at an odd prime. This is algebraic by Proposition 5.4, and hence is triangulated alge-
braic, has 𝖣(ℤ)-action and has trivial Ho(Sp) action by Proposition 3.14, Proposition 4.5 and
Corollary 4.10 respectively.

Example 5.7 (General exotic models for 𝐸(1)-local spectra). Finally, we consider the case of a
general exoticmodel for𝐿1Sp at an odd prime; that is, we consider a stablemodel categorywhich
has a triangulated equivalence Φ∶ Ho(𝐿1Sp) → Ho() that is not derived from a Quillen functor.
The existence of Φ shows that  is triangulated equivalent to Franke’s category Fr1,𝑝 and hence
 is triangulated algebraic. Proposition 5.1 shows that  also has essentially trivialHo(Sp)-action.
Unlike the case of Franke’s exotic model described in Example 5.6, we do not know whether an
arbitrary exotic model of 𝐿1Sp is algebraic or has a 𝖣(ℤ)-action.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 23

5.2 Morava 𝑲-theory

In this example, we consider the category of 𝐾(𝑛)-modules. We work at some implicit prime 𝑝.
Let 𝐾(𝑛) denote the Morava 𝐾-theory spectrum for 0 < 𝑛 < ∞. We see that 𝐾(𝑛) is not an𝐻ℤ-

module since𝐻𝔽𝑝 ∧ 𝐾(𝑛) ≃ 0 [33, Theorem 2.1(i)]; if𝐾(𝑛)were an𝐻ℤ-module spectrum, then its
underlying spectrumwould be awedge of suspensions of𝐻𝔽𝑝 by Proposition 2.8, and in particular
𝐻𝔽𝑝 ∧ 𝐾(𝑛) would be non-trivial.
Since {𝐾(𝑛)}0⩽𝑛⩽∞ detects nilpotence by [24, Theorem 3], the homotopy category of mod-

ules over the 𝑛th Morava 𝐾-theory 𝐾(𝑛) has a trivial action of the stable homotopy category by
Proposition 4.21. However, we just noted (and will calculate explicitly for 𝑛 = 1 later in this sub-
section) that for 0 < 𝑛 < ∞ that 𝐾(𝑛) is not an 𝐻ℤ-module. Therefore, by Corollary 3.16 and
Proposition 4.3, we see that 𝐾(𝑛)-mod is neither algebraic, nor has a 𝖣(ℤ)-action. This illus-
trates that being algebraic and having 𝖣(ℤ)-action are both stronger properties than having trivial
Ho(Sp)-action.
We also know that

𝜋∗ ∶ Ho(𝐾(𝑛)-mod)⟶ 𝖣(𝐾(𝑛)∗)

is a triangulated equivalence. This is because 𝐾(𝑛) is a ‘field’ in the sense that all modules
over 𝐾(𝑛) are equivalent to a wedge of suspensions of 𝐾(𝑛) itself [34], while, on the other side,
the analogue holds for a differential graded module over 𝐾(𝑛)∗. Of course, 𝐾(𝑛)∗-mod is alge-
braic, whereas we just illustrated why 𝐾(𝑛)-mod is not, which, in particular, means that they
are not Quillen equivalent, as pointed out by [41, Remark 2.5]. The triangulated equivalence
Ho(𝐾(𝑛)-mod) ≃ 𝖣(𝐾(𝑛)∗)makes 𝐾(𝑛)-mod triangulated algebraic.
We can see the extent to which 𝐾(1)-mod fails at being algebraic in the following obstruc-

tion theory.
Given a spectrum 𝐸, we would like to examine if there is a map from an Eilenberg–Mac Lane

spectrum 𝐴 with the correct homotopy groups to 𝐸. There is always a map from the respective
Moore spectrum to 𝐸. An Eilenberg–Mac Lane spectrum is constructed from a Moore spectrum
by attaching cells, and we can see whether an already existing map from a CW-spectrum to 𝐸 lifts
over the CW-spectrumwith new cells attached. Note that we are just consideringmaps of spectra,
not ring maps.
In more detail, we would like to see if there is a map

Σ𝑖𝐻(𝜋𝑖(𝐸))⟶ 𝐸

inducing a𝜋𝑖-isomorphism. If there is such amap for all 𝑖, then it assembles to aweak equivalence⋁
𝑖∈ℤ

Σ𝑖𝐻(𝜋𝑖(𝐸))⟶ 𝐸.

Without loss of generality, let 𝑖 = 0 and define 𝐴 ∶= 𝐻(𝜋𝑖(𝐸)). Then 𝐴 = colim𝑘𝐴(𝑘), where 𝐴(1)
is the 𝜋0(𝐸)-Moore spectrum, and 𝐴(𝑘+1) is obtained from 𝐴(𝑘) via attaching (𝑘 + 1)-cells to kill
the 𝑘-homotopy groups of 𝐴(𝑘). In other words, we have the exact triangle⋁

𝜙∈𝜋𝑘(𝐴
(𝑘))

Σ𝑘𝕊
∨𝜙
\\→ 𝐴(𝑘) ⟶ 𝐴(𝑘+1) ⟶

⋁
Σ𝑘+1𝕊.

We can always construct a map 𝐴(1) ⟶ 𝐸, via the following.
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24 ISHAK et al.

Let 𝐺 = 𝜋0(𝐸). Then 𝐴(1) is the Moore spectrum𝑀𝐺, constructed via an exact triangle⋁
𝕊

𝜌
\→

⋁
𝕊⟶ 𝐴(1) = 𝑀𝐺⟶

⋁
Σ𝕊,

where the first wedge of sphere runs over the relations in 𝐺 and the second wedge over the
generators, see [5, Example 7.4.7]. We extend this to a diagram

where g runs over the generators of 𝜋0(𝐸) = [𝕊, 𝐸]. By construction, 𝑓0 ◦ 𝜌 = ∨g ◦ 𝜌 = 0.
Therefore, the dotted arrow exists, and we have a map 𝑓1 ∶ 𝐴(1) ⟶ 𝐸.
If we have a map 𝑓𝑘 ∶ 𝐴(𝑘) ⟶ 𝐸, then this extends to a map 𝑓𝑘+1 ∶ 𝐴(𝑘+1) ⟶ 𝐸 if and only if

the composite ⋁
Σ𝑘𝕊

𝜑=∨𝜙
\\\\\→ 𝐴(𝑘)

𝑓𝑘
\\→ 𝐸

is zero. Therefore, the obstruction for the existence of 𝑓𝑘 lies in

𝜑∗[𝐴(𝑘), 𝐸] = {𝑓 ◦𝜑 ∣ 𝑓 ∈ [𝐴(𝑘), 𝐸]}.

In particular, if all those cosets are trivial, then we have the desired map 𝑓∶ 𝐴⟶ 𝐸.
Now let us examine𝜑∗[𝐴(𝑘), 𝐸] in the case of𝐸 = 𝑅Hom(𝑋,𝑋), where𝑋 is a compact generator

of the stable model category . The map 𝑓𝑘 ◦𝜑 is adjoint to the map 𝐹 ◦ (𝑋 ∧𝐿 𝜑), where

𝐹 = 𝜖 ◦ (𝑋 ∧𝐿 𝑓𝑘) ∈ [𝑋 ∧
𝐿 𝐴(𝑘), 𝑋]

is adjoint to 𝑓𝑘 and

𝜖∶ 𝑋 ∧𝐿 𝑅Hom(𝑋,𝑋)⟶ 𝑋

is the counit of the adjunction. Therefore, we can say that the obstruction for the existence of

𝑓𝑘+1 ∶ 𝐴
(𝑘+1) ⟶ 𝑅Hom(𝑋,𝑋)

lies in

(𝑋 ∧𝐿 𝜑)∗
(
[𝑋 ∧𝐿 𝐴(𝑘), 𝑋]

)
.

For 𝑅Hom(𝑋,𝑌), the obstructions lie in

(𝑋 ∧𝐿 𝜑)∗
(
[𝑋 ∧𝐿 𝐴(𝑘), 𝑌]

)
.

Therefore, by Corollary 4.8, we have the following.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 25

Proposition 5.8. If there is a 𝖣(ℤ)-action onHo(), then

(𝑋 ∧𝐿 𝜑)∗
(
[𝑋 ∧𝐿 𝐴(𝑘), 𝑌]

)
= 0

for all 𝑘.

Example 5.9. Let us return to our example of Morava 𝐾-theory and  = 𝐾(1)-mod. As noted at
the beginning of the section, we areworking𝑝-locally.Wewould like to use the obstruction theory
to construct a map

𝐴 = 𝐻ℤ∕𝑝⟶ 𝐸 = Hom𝐾(1)(𝐾(1), 𝐾(1)) ≅ 𝐾(1).

As 𝐾(1) is not an Eilenberg–Mac Lane spectrum, we will see exactly where this fails. Note that
𝐾(1)∗ = 𝔽𝑝[𝑣1, 𝑣

−1
1
] with |𝑣1| = 2𝑝 − 2, so, in particular, 𝜋0(𝐾(1)) = ℤ∕𝑝, which is generated by

the unit 𝜄 ∶ 𝕊⟶ 𝐾(1). By the method described earlier, we have the following commutative
diagram, in which𝑀 is the mod-𝑝Moore spectrum.

The long exact sequence of homotopy groups tells us that the next non-trivial homotopy group
of𝑀 is

incl∗ ∶ 𝜋2𝑝−3(𝕊)
≅
\→ 𝜋2𝑝−3(𝑀),

so 𝜋2𝑝−3(𝑀) ≅ ℤ∕𝑝 is generated by incl ◦𝛼1. Furthermore, with regard to the obstruction theory,
we have that

𝑀 = 𝐴(1) = 𝐴(2) = ⋯ = 𝐴(2𝑝−3).

To work out the next obstruction, we look at the following diagram.

As we have that 𝜋2𝑝−3(𝐾(1)) = 0, the map 𝜄 ◦ incl ◦𝛼1 is zero for degree reasons, and the dotted
map 𝜄 exists. The next step of the obstruction is to investigate the existence of the dotted arrow in
this diagram.
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26 ISHAK et al.

To find out what 𝜄 ◦ (∨𝜙) is, we need to know 𝜋2𝑝−2(𝐴(2𝑝−2)). We apply the long exact sequence
of homotopy groups to the exact triangle defining 𝐴(2𝑝−2) and obtain

𝜋2𝑝−2(Σ
2𝑝−3𝕊)

(incl ◦𝛼1)∗
\\\\\\\\\→ 𝜋2𝑝−2(𝑀)

𝐹∗
\\→ 𝜋2𝑝−2(𝐴

(2𝑝−2))
𝐺∗
\\→ 𝜋2𝑝−2(Σ

2𝑝−2𝕊)
(incl ◦𝛼1)∗
\\\\\\\\\→ 𝜋2𝑝−3(𝑀).

Clearly, the first term of this sequence is trivial, so 𝐹∗ is an injection.
The long exact sequence of homotopy groups tells us that 𝜋2𝑝−3(𝑀) ≅ ℤ∕𝑝 is generated by

incl ◦𝛼1, so the final map of the previous sequence has kernel 𝑝ℤ, which is also the image of 𝐺∗.
Again, we use the long exact sequence of homotopy groups to find out that

pinch∗ ∶ 𝜋2𝑝−2(𝑀)⟶ 𝜋2𝑝−3(𝕊)

is an isomorphism, and we know that 𝜋2𝑝−3(𝕊) ≅ ℤ∕𝑝 is generated by the element 𝛼1. Therefore,
𝜋2𝑝−2(𝑀) ≅ ℤ∕𝑝 is generated by an element 𝑥 with pinch ◦𝑥 = 𝛼1. As

𝛼1 = pinch ◦ 𝑣1 ◦ incl

by [36, Section 6.2], we have that 𝜋2𝑝−2(𝑀) is generated by 𝑣1 ◦ incl.
As 𝐹∗ is an injection, we know that 𝐹 ◦ 𝑣1 ◦ incl ≠ 0. Thus, we need to calculate 𝜄 ◦𝐹 ◦ 𝑣1 ◦ incl.

By construction, 𝜄 ◦𝐹 = 𝜄. By [34, Lemma 6.1.4], we have that 𝜄 ◦ 𝑣1 = 𝑣1 ◦ 𝜄, so

𝜄 ◦𝐹 ◦ 𝑣1 ◦ incl = 𝜄 ◦ 𝑣1 ◦ incl = 𝑣1 ◦ 𝜄 ◦ incl = 𝑣1 ◦ 𝜄.

This is precisely the generator of 𝜋2𝑝−2(𝐾(1)) and hence not trivial. Therefore, the obstruction to
extend 𝜄 to𝐴(2𝑝−1) is non-zero, andwe arrive at the expected result that there is no non-trivial map
from𝐻ℤ∕𝑝 to 𝐾(1); thus, revisiting the result that 𝐾(1) is not an Eilenberg–Mac Lane spectrum.
In particular, the category of𝐾(1)-modules does not carry a𝖣(ℤ)-action. An analogous calculation
holds for 𝑘(1) instead of 𝐾(1).
It is a subject for future research to see if the obstruction theory can be exploited further to

determine the level of algebraicity of some other examples.

We now summarise the key findings of this section in the following example.

Example 5.10. For any 0 < 𝑛 < ∞, the Morava 𝐾-theory spectrum 𝐾(𝑛) is not an 𝐻ℤ-module,
and therefore, the category 𝐾(𝑛)-mod is neither algebraic nor has 𝖣(ℤ)-action. However, there is
a triangulated equivalence Ho(𝐾(𝑛)-mod) ≃ 𝖣(𝐾(𝑛)∗)making 𝐾(𝑛)-mod triangulated algebraic.
The category𝐾(𝑛)-mod also has trivialHo(Sp)-action. On the other hand, the category𝐾(𝑛)∗-mod
is algebraic. As such, the triangulated equivalence on homotopy categories between 𝐾(𝑛)-mod
and 𝐾(𝑛)∗-mod cannot be lifted to a Quillen equivalence.

5.3 Further examples from chromatic homotopy theory

In this subsection, we explore some other examples, which arise from the work of [29–32].
In general, it is difficult to establish whether a model category is triangulated algebraic, if

it is not already algebraic itself. In other words, we are looking for model categories with an
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 27

algebraic ‘exotic model’, like those from the Franke-style machinery. In the rest of this sub-
section, we explore some more triangulated algebraic examples arising in chromatic homotopy
theory.

Example 5.11. From [32, Corollary 8.3], there are triangulated equivalences between each of the
following model categories and an algebraic model category. Note that these are all corollaries
from the same general theorem, which gives a triangulated equivalence betweenHo(𝑅-mod) and
𝖣(𝜋∗(𝑅)) under certain conditions on 𝜋∗(𝑅) related to sparseness and global dimension. Since
these have different behaviour with regard to the action of Ho(Sp), we split up these examples
into three types.

(1) 𝐸(1)-local examples:
∙ 𝐸(1)-modules for 𝑝 > 2, 𝜋∗(𝐸(1)) = ℤ(𝑝)[𝑣1, 𝑣−11 ], |𝑣1| = 2𝑝 − 2;
∙ 𝐾𝑂(𝑝)-modules for 𝑝 > 2, 𝜋∗(𝐾𝑂(𝑝)) = ℤ(𝑝)[𝑣, 𝑣−1], |𝑣| = 4;
∙ 𝐾𝑈(𝑝)-modules for 𝑝 > 2, 𝜋∗(𝐾𝑈(𝑝)) = ℤ(𝑝)[𝛽, 𝛽−1], |𝛽| = 2.
For a ring spectrum𝑅, the homotopymapping spectra of𝑅-modules are, of course,𝑅-modules
themselves and as such, they are also 𝑅-local spectra [33, Proposition 1.17(a)]. A spectrum is
𝐾𝑈(𝑝)-local if and only if it is 𝐾𝑂(𝑝)-local if and only if it is 𝐸(1)-local [33, Theorem 8.14]. As
such in each of these examples, the homotopy mapping spectra are 𝐸(1)-local, and hence, the
category has trivial Ho(Sp)-action by Theorem 4.18 since 𝛼1 acts trivially for degree reasons.

(2) Examples via nilpotence:
∙ modules over connectiveMorava-𝐾-theory 𝑘(𝑛) for 0 < 𝑛 < ∞with 𝑝𝑛 > 2, where 𝑘(𝑛)∗ =
𝔽𝑝[𝑣𝑛], |𝑣𝑛| = 2𝑝𝑛 − 2.

We claim that the set {𝑘(𝑛)}0⩽𝑛⩽∞ detects nilpotence and therefore each 𝑘(𝑛)-mod has trivial
Ho(Sp)-action by Proposition 4.21. In order to show this, we will prove that a set {𝑅𝑖} of ring
spectra detects nilpotence if for all 0 ⩽ 𝑛 ⩽ ∞, there exists an 𝑖 such that 𝐾(𝑛)∗(𝑅𝑖) ≠ 0. The
argument for this is a slight modification of that of [24, Proof of Corollary 5]. Let 𝑓∶ Σ𝑘𝐴 → 𝐴

be a map of finite spectra. Since 𝐾(𝑛) is a field, 𝐾(𝑛) ∧ 𝑅𝑖 is a wedge of suspensions of 𝐾(𝑛),
and therefore, if 𝑅𝑖 ∧𝐿 𝑓 = 0 for all 𝑖, it follows that𝐾(𝑛) ∧𝐿 𝑓 = 0 for all 𝑛. Since {𝐾(𝑛)}0⩽𝑛⩽∞
detects nilpotence by [24, Theorem 3] it follows that 𝑓 is nilpotent, and hence that {𝑅𝑖} detects
nilpotence. Since 𝑘(𝑛) ∧ 𝐾(𝑛) ≄ 0 [33, Theorem 2.1(e)], the previous criterion coupled with
Proposition 4.21 shows that 𝑘(𝑛)-mod has trivial action.

(3) Other examples:
∙ 𝐸(𝑛)-modules for 2𝑝 − 𝑛 > 3, where 𝜋∗(𝐸(𝑛)) = ℤ(𝑝)[𝑣1, … , 𝑣𝑛−1, 𝑣𝑛, 𝑣−1𝑛 ], |𝑣𝑖| = 2𝑝𝑖 − 2;
∙ modules over the truncated Brown–Peterson spectrum 𝐵𝑃⟨𝑛⟩ for 2𝑝 − 𝑛 > 4, 𝐵𝑃⟨𝑛⟩∗ =
ℤ(𝑝)[𝑣1, … , 𝑣𝑛], |𝑣𝑖| = 2𝑝𝑖 − 2.

By Corollary 4.17, these examples have trivial Ho(Sp)-action.

All of the above examples are triangulated algebraic. However, in each case, 𝑅 is not a generalised
Eilenberg–Mac Lane spectrum (see [29, Appendix A] for details), and hence, by Corollary 3.16 and
Proposition 4.3, none of the above are algebraic nor have a 𝖣(ℤ)-action.

5.4 Complex cobordism

In this section, we consider the example of the complex cobordism spectrum𝑀𝑈, and investigate
what kinds of algebraicity𝑀𝑈-mod enjoys.
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28 ISHAK et al.

Example 5.12. Since {𝑀𝑈} detects nilpotence by [11, Theorem 1], it follows from Proposition 4.21
thatHo(𝑀𝑈-mod) has trivialHo(Sp)-action. (Alternatively, this also follows fromCorollary 4.17.)
One sees that 𝑀𝑈-mod is not algebraic by Corollary 3.16; if 𝑀𝑈 were an 𝐻ℤ-algebra, then any
𝑀𝑈-module would be an 𝐻ℤ-module by restriction of scalars but this fails, for example, for
𝐾(𝑛), see Example 5.10. One can also see that 𝑀𝑈-mod does not have a 𝖣(ℤ)-action as follows.
The homotopy mapping spectrum Hom𝑀𝑈(𝑀𝑈,𝐾(𝑛)) ≃ 𝐾(𝑛) is not an 𝐻ℤ-module, and so by
Proposition 4.3, the action of Ho(Sp) does not factor over 𝖣(ℤ).
To the best of the authors’ knowledge, whether or not𝑀𝑈-mod is triangulated algebraic is an

open question. Schwede has introduced the 𝑛-order of a triangulated category as an invariant; the
𝑛-order of a triangulated algebraic category is infinite [38, Theorem 2.1], but the converse need
not hold. The category Ho(𝑀𝑈-mod) has infinite 𝑛-order [38, Example 1.8], so this invariant is
not conclusive in this example.

5.5 Endomorphisms of𝑯ℤ over 𝒌𝒖

In this section,we explore an interesting examplewhich shows (amongst other things) that having
a 𝖣(ℤ)-action is weaker than being algebraic.
Let 𝑘𝑢 denote the connective complex 𝐾-theory spectrum, and recall that 𝑘𝑢∗ = ℤ[𝛽] where 𝛽

is the Bott element in degree 2. By killing homotopy groups, there is a ring map 𝑘𝑢 → 𝐻ℤ. Note,
moreover, that 𝐻ℤ is a compact 𝑘𝑢-module since it is equivalent (as a 𝑘𝑢-module) to the Koszul
spectrum

𝑘𝑢∕∕𝛽 = cof ib(Σ2𝑘𝑢
𝛽
\→ 𝑘𝑢).

In this example, we consider the endomorphism ring spectrum  = End𝑘𝑢(𝐻ℤ). Before we
can discuss what types of algebraicity the category of -modules enjoys we require some
preparatory results.
There is a ring map 𝑐∶ 𝑘𝑢 → End (𝐻ℤ) adjoint to the action map of 𝑘𝑢 on 𝐻ℤ, called the

double centraliser.

Lemma 5.13. The map 𝑐∶ 𝑘𝑢 → End (𝐻ℤ) is an equivalence; in the language of [10, §4.16], the
map 𝑘𝑢 → 𝐻ℤ is dc-complete.

Proof. The double centraliser may be identified with the 𝛽-completion Λ𝛽(𝑘𝑢) of 𝑘𝑢 [9] (also
see [18, §6.C]), so it suffices to show that 𝑘𝑢 is 𝛽-complete. There is a spectral sequence [16, 3.3]

𝐸2𝑠,𝑡 = 𝐻
𝛽
𝑠 (𝑘𝑢∗)𝑡 ⟹ 𝜋𝑠+𝑡(Λ𝛽(𝑘𝑢)),

where 𝐻𝛽∗ (𝑘𝑢∗) denotes the local homology groups of 𝑘𝑢∗ at the ideal (𝛽) in the sense of [15].
Since the coefficient ring ℤ of 𝑘𝑢∗ = ℤ[𝛽] is in degree 0 and 𝛽 is in degree 2, one sees that ℤ[𝛽]
agrees with the power series ring ℤ[[𝛽]] by comparing homogeneous parts. As such, 𝑘𝑢∗ = ℤ[𝛽]
is 𝛽-adically complete, and thus, the local homology groups are

𝐻
𝛽
𝑠 (𝑘𝑢∗) =

{
𝑘𝑢∗ 𝑠 = 0

0 otherwise
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 29

by [15, Theorem 4.1]. Therefore, the spectral sequence collapses at the 𝐸2-page to show that 𝑘𝑢 is
𝛽-complete, and hence, that 𝑐 is an equivalence. □

Using the previous lemma, we now show that while the endomorphism ring spectrum  is an
𝐻ℤ-module, it is not an𝐻ℤ-algebra.

Theorem 5.14. The endomorphism ring spectrum  = Hom𝑘𝑢(𝐻ℤ,𝐻ℤ) is an 𝐻ℤ-module, but is
not weakly equivalent to an𝐻ℤ-algebra as a ring spectrum.

Proof. There is a ring map𝐻ℤ →  which is adjoint to the map𝐻ℤ ∧𝑘𝑢 𝐻ℤ → 𝐻ℤ. This gives 
the structure of an𝐻ℤ-module by restriction.
We now suppose that  is an 𝐻ℤ-algebra and produce a contradiction. If  were an 𝐻ℤ-

algebra, then End (𝐻ℤ) would also be an 𝐻ℤ-algebra. If this were the case, then we would have
a commutative diagram

since 𝕊 is initial. As 𝑐 is an equivalence by Lemma 5.13, this would mean that the unit map of
𝑘𝑢 factors over 𝐻ℤ, which is false as [𝐻ℤ, 𝑘𝑢] is zero in degree zero. This is well known but
for completeness, we recall the argument in Lemma 5.16 below. As such,  cannot be weakly
equivalent to an 𝐻ℤ-algebra as a ring spectrum. □

We now turn to relating the above observations to algebraicity statements.

Example 5.15. Consider the 𝐻ℤ-cellularisation of 𝑘𝑢-modules which we denote by
Cell𝐻ℤ(𝑘𝑢-mod). This is sometimes called the right Bousfield localisation at 𝐻ℤ and denoted
by 𝑅𝐻ℤ(𝑘𝑢-mod). The homotopy category of this model category is the localising subcategory
Loc𝑘𝑢(𝐻ℤ) of 𝑘𝑢-modules generated by 𝐻ℤ, and 𝐻ℤ is a compact generator for it [19, Corollary
2.6]. By Morita theory, we have a Quillen equivalence

Cell𝐻ℤ(𝑘𝑢-mod) ≃𝑄 mod- ,

see [9, Theorem 2.1] and [4, Theorem 8.7]. Since  is spectral with enrichment given by
Hom (−,−), we have hEnd() =  . Since  is not weakly equivalent to an 𝐻ℤ-algebra as a
ring spectrum by Theorem 5.14, we see that Cell𝐻ℤ(𝑘𝑢-mod) and mod- are not algebraic by
Theorem 3.15.

We now show thatmod- (and hence Cell𝐻ℤ(𝑘𝑢-mod)) has a 𝖣(ℤ)-action. There exists a ring
map 𝜃∶ 𝐻ℤ →  adjoint to the map 𝐻ℤ ∧𝑘𝑢 𝐻ℤ → 𝐻ℤ. The category Ho(mod-) is enriched,
tensored and cotensored over itself, and hence is enriched, tensored and cotensored over 𝖣(ℤ) via
extension and restriction of scalars along the ring map 𝜃, see [35, 3.7.11], for instance. Therefore,
mod- has a 𝖣(ℤ)-action. This shows that the converse to Proposition 4.5 is false, because we
have found a model category with 𝖣(ℤ)-action which is not algebraic. Furthermore, we can also
see from Corollary 4.10 thatmod- has a trivial Ho(Sp)-action.
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30 ISHAK et al.

We have also computed the homotopy groups of  , but they do not satisfy the hypotheses
of [29–32] regarding global dimension and sparseness, so we cannot draw any conclusions about
whether or notmod- is triangulated algebraic at this stage.
We finish this example with a lemma we needed for Theorem 5.14.

Lemma 5.16. The group [𝐻ℤ, 𝑘𝑢]0 is trivial.

Proof. Firstly, we note that the connective cover functor is right adjoint to the inclusion of the full
category of connective spectra into spectra. Thus,

[𝐻ℤ, 𝑘𝑢]∗ = [𝐻ℤ,𝐾𝑈]∗ = 𝐾𝑈
∗(𝐻ℤ),

which is of course 2-periodic. There is a short exact sequence

0 → Ext1
ℤ
(𝐾𝑈−1(𝐻ℤ), ℤ) → 𝐾𝑈0(𝐻ℤ) → Homℤ(𝐾𝑈0(𝐻ℤ), ℤ) → 0,

see [25], so we need to calculate 𝐾𝑈∗(𝐻ℤ). We note that 𝐿𝐾𝑈𝐻ℤ = 𝐻ℚ [20, Proposition 5.2], so

𝐾𝑈∗(𝐻ℤ) = 𝐾𝑈∗(𝐿𝐾𝑈𝐻ℤ) = 𝜋∗(𝐻ℚ ∧ 𝐾𝑈),

which is ℚ in even degrees and zero in odd degrees. Putting this into the previous short exact
sequence yields that [𝐻ℤ,𝐾𝑈]even = Homℤ(ℚ,ℤ) = 0 and [𝐻ℤ,𝐾𝑈]odd = Ext1ℤ(ℚ, ℤ). □

5.6 Summary of our findings

In this subsection, we summarise the main findings of this paper. Figure 2 shows a summary of
how the different notations of algebraicity relate, and Table 1 recaps the properties of the various
examples studied.

F IGURE 2 Summary of the relations between different notions of algebraicity. The implications which hold
are in black, whereas those that fail are in red.
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LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES 31

TABLE 1 Summary of examples.

Category Algebraic 𝗗(ℤ)-action
Triangulated
algebraic

Trivial
action

Essentially
trivial action Ref.

𝐿1Sp (𝑝 > 2) ✗ ✗ ✓ ✗ ✗ 5.5
Franke’s exotic model for
𝐿1Sp (𝑝 > 2)

✓ ✓ ✓ ✓ ✓ 5.6

General exotic models for
𝐿1Sp (𝑝 > 2)

?© ?© ✓ ?© ✓ 5.7

𝐾(𝑛)∗-mod ✓ ✓ ✓ ✓ ✓ 5.10
𝐾(𝑛)-mod (0 < 𝑛 < ∞) ✗ ✗ ✓ ✓ ✓ 5.10
𝐸(1)-mod (𝑝 > 2)
𝐾𝑂(𝑝)-mod (𝑝 > 2)
𝐾𝑈(𝑝)-mod (𝑝 > 2)

✗ ✗ ✓ ✓ ✓ 5.11

𝑘(𝑛)-mod
(0 < 𝑛 < ∞ and 𝑝𝑛 > 2)

✗ ✗ ✓ ✓ ✓ 5.11

𝐸(𝑛)-mod (2𝑝 − 𝑛 > 3)
𝐵𝑃⟨𝑛⟩-mod (2𝑝 − 𝑛 > 4) ✗ ✗ ✓ ✓ ✓ 5.11

𝑀𝑈-mod ✗ ✗ ?© ✓ ✓ 5.12
Cell𝐻ℤ(𝑘𝑢-mod) ✗ ✓ ?© ✓ ✓ 5.15

It is hard to imagine that the implication from trivial action to triangulated algebraic does hold,
but the authors could not find a counterexample at the moment. The same applies to the implica-
tion from𝖣(ℤ)-action to triangulated algebraic. Of course, if the dotted implication in the diagram
does hold, then 𝖣(ℤ)-action would imply triangulated algebraic.
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