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Abstract

This thesis considers the effect of restrictions on insurance risk classification on utilitarian

social welfare and insurance loss coverage. First, we consider two regimes: full risk clas-

sification, where insurers charge the actuarially fair premium for each risk, and pooling,

where risk classification is banned and for institutional or regulatory reasons, insurers do

not attempt to separate risk classes, but charge a common premium for all risks. For

iso-elastic insurance demand, we derive sufficient conditions on higher and lower risks’ de-

mand elasticities which ensure that utilitarian social welfare is higher under pooling than

under full risk classification. Using the concept of arc elasticity of demand, we extend

the results to a form applicable to more general demand functions. Empirical evidence

suggests that the required elasticity conditions for social welfare to be increased by a ban

may be realistic for some insurance markets.

Next, we consider scenarios where the regulator does not ban risk classification, but

instead imposes a price collar, i.e. a limit on the ratio of premiums for high risks relative

to those for low risks. Pooling and full risk classification could be considered as limiting

cases of a price collar. A regulator imposed price collar would force insurers to use partial

risk classification - where some risk-groups might be merged to pay the same premium.

We find that for iso-elastic demand, a price collar can give higher loss coverage than either

pooling or full risk classification, but only if high and low risks have certain combinations

of demand elasticities (both greater than one).

2



Contents

Acknowledgements 1

Abstract 2

1 Introduction 6

2 Literature Review 12

2.1 Equilibrium and Adverse Selection . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Randomness of Risk Preference . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Measure of Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Model Framework 21

3.1 Insurance Demand for a Single Risk-Group . . . . . . . . . . . . . . . . . . 21

3.2 Insurance Market Equilibrium with n Risk-Groups . . . . . . . . . . . . . . 25

3.3 Definition of Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Definition of Loss Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Social Welfare under Pooling and Full Risk Classification 34

4.1 Iso-elastic Insurance Demand . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Varying Demand Elasticities across Risk-Groups . . . . . . . . . . . . . . 39

4.3 Generalised Demand Function . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



4

4.4 Summary and Empirical Comparisons . . . . . . . . . . . . . . . . . . . . . 50

4.5 Relationship between Loss Coverage and Social Welfare Results . . . . . . 52

4.6 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Loss Coverage under Partial Risk Classification 56

5.1 Political, Regulatory and Economic Framework . . . . . . . . . . . . . . . 57

5.2 Loss Coverage under Iso-elastic Demand . . . . . . . . . . . . . . . . . . . 62

5.3 The Case of Two Risk-groups . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Generalisation to n Risk-groups . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions 77

6.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendices 81

Appendix A Expressions for Social Welfare Under Iso-elastic Demand 82

Appendix B Proof of Theorem 1 85

Appendix C Proof of Theorem 3 88

Appendix D Expression for Social Welfare Under General Insurance De-

mand 94

Appendix E Derivations for General Demand Elasticities 98

Appendix F Social welfare when higher risks are fully insured under pool-

ing 101

Appendix G Proof of Theorem 5 107



5

Appendix H Proof of Theorem 6 113

Appendix I Proof of Equation 5.4.25 123

Appendix J Summary of relevant literature 128

J.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

J.2 Equilibrium and Adverse Selection . . . . . . . . . . . . . . . . . . . . . . 129

J.3 Randomness of risk preference . . . . . . . . . . . . . . . . . . . . . . . . . 133

J.4 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

J.5 Measures of Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

J.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 156



Chapter 1

Introduction

Restrictions on insurance risk classification are common in life insurance and other per-

sonal insurance markets. Examples include the ban on gender classification in the Euro-

pean Union, and restrictions in many countries on insurers’ use of genetic test results. The

restrictions are motivated by social objectives such as equality and access to insurance.

But they also induce “adverse selection”, which is usually seen as a bad thing.

Adverse selection arises from the different responses of individuals with high and low

probabilities of loss (“high and low risks”) to the changes in the insurance prices when

restrictions on risk classification are imposed.

An individual’s decision to buy insurance depends on her utility function. As attitude

towards risk varies across individuals, the utility one draws from buying insurance would

also vary. This results in an allocation of individual utilities in a population. In a

population of size N , an allocation of utilities can be represented as an N -dimensional

vector.

A utilitarian social welfare function essentially ranks all possible allocation of utilities

within a population - or simply puts a value against any given N -tuple of utilities. A

fair regulator would aim to achieve an allocation of utilities across the population, which

6
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would maximise the value of social welfare function.

Because high risks have higher probabilities of loss than low risks, it can be argued

that insurance is worth more to the high risks than to the low risks. Stated differently,

the utility of insurance is typically higher for high risks than for low risks, where utility is

a measure of the subjective benefit or worth of insurance to the individual. So from the

perspective of society as a whole, the shift in insurance purchasing from low to high risks

under adverse selection may result in a better allocation of utilities, hence higher social

welfare.

A full appraisal of the outcome depends on the form of individual utility functions;

and also on any weighting scheme we use for the gains in utility by high risks under

restricted risk classification versus losses in utility by low risks, i.e. it depends on the

distributional preferences of low and high risks, captured in the social welfare function

Consider a market with two risk-groups, where risk classification is allowed. In this

market, high-risk individuals would pay higher premiums than the low-risk individuals.

Now, consider the effect of banning risk classification on this market. In this scenario,

insurers must charge all risk-groups the same premium - i.e., a pooled premium. If

the market is competitive, this pooled premium would lie somewhere between the risk-

differentiated premiums of two risk-groups. Hence it would become cheaper for high risk

individuals and dearer for low risk individuals to buy insurance. So, it would induce high

risk-groups to buy more and low risk-groups to buy less insurance. As a result there

would be a transfer of utilities from low to high risk-groups. But insurers will be subject

to adverse selection.

Adverse selection, induced by restricting risk classification is usually perceived by

economists as having negative effects on efficiency. In some extreme cases, participation

of low risk-groups in the market may fall to such an extent, that the insurance market

will cease to exist. However in real world such market breakdowns are extremely rare.

But because restrictions also make high-risk individuals better off and low-risk indi-



8

viduals worse off, they also have equity (distributional) effects. Therefore depending on

distributional preferences expressed in the social welfare function, restrictions might either

increase or decrease social welfare. Restricting risk classification - which induces a degree

of adverse selection for the insurer as they have to take on more high risk individuals as

customers - can on the other hand, be desirable from social welfare perspective.

The social welfare function used in the current thesis assumes cardinal and interper-

sonally comparable utilities. In other words, it assumes that utility (or expected utility)

for society as a whole – utilitarian social welfare – can be measured as a weighted sum

(or expectation) of individual utilities over the whole population. Our weighting scheme

for high and low risks assigns equal weights to the utilities of all individuals. This equal-

weights approach is based on the Harsanyi (1955) ‘veil of ignorance’ argument: that is,

behind the (hypothetical) veil of ignorance, where one does not know what position in so-

ciety (e.g. higher risk or lower risk) one occupies, the appropriate probability to assign to

being any individual is 1/N , where N is the number of individuals in society. Alternative

risk classification regimes can then be compared by comparing expected utility in each

regime for the (hypothetical) individual utility-maximiser behind the veil of ignorance.

We use this approach in defining our model and the measures of social welfare and

insurance loss coverage. We assume that insurers compete only on price; for institutional

or regulatory reasons, they do not offer partial cover, nor menus of contracts offering

different levels of cover priced at different rates.

Under the pooling regime, it is intuitive that the equilibrium price – the pooled price

at which insurers break even – will depend on demand elasticities of lower and higher

risk-groups. Another intuition is that pooling implies a redistribution of utilities from

lower risks towards higher risks. The welfare outcome will depend on how we evaluate the

trade-off between the gains and losses of the two types. This research connects and builds

on these intuitions, by establishing sufficient conditions on demand elasticities to ensure

higher social welfare under pooling compared with full risk classification. The conditions

chatterjeei
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encompass many plausible combinations of higher and lower risks’ demand elasticities.

The typically higher utility of insurance to high risks broadly reflects their higher

probability of loss. But utility also incorporates a subjective element of individual risk

preference. Even individuals with the same probabilities of loss can have different sub-

jective attitudes to risk (risk-averse or risk-loving), and so derive substantially different

utilities from insurance. This element of individual risk preference means that the utili-

tarian concept of social welfare, whilst widely used in economics, is not directly observable

by insurance regulators.

Thomas (2008) suggested “loss coverage” as a simpler policy metric for evaluating

risk classification schemes. Loss coverage is defined as the expected losses compensated

by insurance for the population as a whole. It depends only on probabilities of loss, not

individual risk preferences, and so is more directly observable than social welfare.

A comparison between full risk classification and pooling regimes, in the context of

loss coverage was done by Hao et al. (2018). Hao et al. (2019) also showed that if all

risk groups have identical demand elasticities, and follows an iso-elastic demand function,

then loss coverage can be used as a proxy measure for social welfare, because ranking

of risk classification schemes by loss coverage and by social welfare would be identical.

However this relationship between loss coverage and social welfare is not strictly true when

demand elasticities vary across risk-groups or demand functions take more general forms,

other than iso-elastic. As utilitarian social welfare is a more widely targeted objective in

economic policy decisions, this motivates the investigations presented in this thesis.

The present thesis makes two main contributions.

First, we provide a direct evaluation of social welfare under the polar risk classification

regimes of full risk classification and pooling. For iso-elastic insurance demand, we derive

sufficient conditions on higher and lower risks’ demand elasticities which ensure that

utilitarian social welfare is higher under pooling than under full risk classification. Using

the concept of arc elasticity of demand, we extend the results to a form applicable to more
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general demand functions.

Second, we investigate an intermediate regime in between the polar cases, where the

regulator does not ban risk classification but instead imposes a price collar, i.e. a limit on

the ratio of premiums for high risks relative to those for low risks. Pooling and full risk

classification could be considered as limiting cases of a price collar. To obtain analytical

results, it was necessary to use loss coverage, rather than social welfare, as our policy

metric in this part of the thesis. For iso-elastic insurance demand, we derive sufficient

conditions on higher and lower risks’ demand elasticities which ensure that loss coverage

is higher under a price collar regime than under either pooling or full risk classification.

The thesis is structured as follows:

Chapter 2 surveys previous literature and establishes the general rationale behind

our model and highlights its similarities and deviations from the existing literature under

three main headings: equilibrium and adverse selection, randomness of risk preference,

and the measure of social welfare. A more detailed discussion of specific relevant literature

is given in Appendix J

Chapter 3 gives the detailed set-up of our model, including all assumptions, and the

formal definitions of social welfare and loss coverage.

Chapter 4 compares social welfare under the polar risk classification regimes: full

risk classification and pooling. We first consider iso-elastic demand functions, with all

risk-groups having similar demand elasticities. Next, we extend our approach to con-

sider varying demand elasticities across risk-groups. Finally we derive results for general

demand functions.

Chapter 5 compares loss coverage under a price collar, pooling and full risk classifi-

cation. We show that for iso-elastic demands, a price collar can give higher loss coverage

than either pooling or full risk classification, but only if high and low risks have certain

combinations of demand elasticities (both greater than one).

Chapter 6 summarises our conclusions.
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To facilitate the flow of discussion in this thesis, we have moved mathematical deriva-

tions and proofs of theorems in the appendices. However, mathematical derivations and

proofs of theorems are integral parts of this thesis.

The following papers, Chatterjee et al. (2021) and Chatterjee et al. (2023), are based

on the research presented in this thesis.



Chapter 2

Literature Review

The effect of risk classification on insurance markets is a widely researched topic in eco-

nomics and actuarial science. Risk classification has long been preferred by the insurance

industry as a tool for reducing information asymmetry, which is presumed to cause po-

tential market failure via adverse selection.

In economics, the two canonical models for studying information asymmetry and its

effect on insurance markets were developed by Akerlof (1970) and Rothschild and Stiglitz

(1976). Both describe how information asymmetry can lead to a reduction in social

welfare, or even complete market collapse. The assumed nature of insurance contracting

and competition is different in each model, and hence the nature of the inefficiency arising

from information asymmetry is also different (Hendren (2014)). In Akerlof (1970), all

insurance contracts are for the same quantity of cover, and hence insurers compete only

on price; inefficiency arises because lower risks are unwilling to pool with higher risks.

In Rothschild and Stiglitz (1976), insurers compete on both price and quantity of cover,

with different contracts having different price-quantity combinations designed to appeal

only to lower or higher risks; inefficiency arises because lower risks can buy only partial

cover at their actuarially fair price (rather than full cover, which they would prefer if it

12
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were offered).

However, much policy-oriented commentary suggests that in the real world, it is higher

risks, not lower risks, that experience difficulty in obtaining insurance cover, or are priced

out of the market (e.g. European Commission (2010), Joly et al. (2010), Prince (2019)).

Thereby the purpose of insurance as a tool to protect against loss is impaired, as the

individuals most likely to suffer a loss are not protected any more 1. In the present thesis,

we attempt to make a positive case for restricting risk classification, from the perspective

of a policymaker or regulator who wishes to maximise utilitarian social welfare. Insurers

in our model compete on price and only offer contracts with full coverage. Therefore our

setup is closer to Akerlof than to the Rothschild Stiglitz model. We look at conditions

where a full or partial ban on risk classification could make insurance work better and

deliver higher social welfare.

The closest precedent to the present thesis is Hoy (2006), which shows that when po-

tential losses are fixed and the fraction of high-risks in the population is sufficiently small,

then a ban on risk classification will increase utilitarian welfare. Polborn et al. (2006) ob-

tain a similar result in a dynamic model of life insurance, where the quantum of insurance

which an individual can purchase is not fixed, but is subject to a cap.2 Another strand of

literature (e.g. Crocker and Snow (1986), Rothschild (2011)) argues that contract-specific

taxes or partial social insurance are a Pareto-superior means to implement any welfare

improvements achieved by a ban. Notwithstanding these arguments, bans remain of in-

terest because for reasons of political feasibility or administrative convenience, they are

invariably the preferred means in practice.

1This perspective has recently been quantified through the construct of “loss coverage” (Thomas
(2008), Thomas (2017)). The general idea has earlier precedents: Gruber (2019) refers to a parable by
Kenneth Arrow to show how more public information about individual risk could lead to less pooling of
risk, and hence an overall welfare loss for society; the same point was also made by Hirshleifer (1971)

2‘Dynamic model’ here denotes an initial period in which the individual is uninformed about her risk
level and insurance needs, then a second period where she receives information about both, and finally a
third period when she is exposed to risk; she may buy insurance in either the first or second periods.
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To make our case in this thesis, we first establish that a stable market equilibrium

could be reached in a regime with restricted risk classification, i.e. with a pooled premium.

We consider a competitive insurance market where insurers would compete on premium

for identical coverage. We also introduce randomness of choice across customers by in-

troducing a probability distribution of individual risk aversion. This is a departure from

the classical models of Akerlof (1970) and Rothschild and Stiglitz (1976), which do not

consider variations in attitude towards risk. The Rothschild-Stiglitz model also concludes

that a regime with pooled premium could not deliver a stable equilibrium, which differs

from our findings.

Modelling the attitude towards risk is already a growing area of interest in economics.

However, results from laboratory based methods of estimating risk preference are often

inconsistent with real life decisions based on risk (see Charness et al. (2020)). Therefore

estimating risk preference from empirical data obtained from market as opposed to lab-

oratory based experiments, remains the preferred approach for economists. Barseghyan

et al. (2018) reviewed an array of risk preference models using field data. Our model

follows a similar approach as we assume an underlying risk preference model which would

reveal itself via an observable characteristic of the market, viz. demand elasticity.

Finally, we consider an acceptable measure of social welfare. As a consequence of

introducing a distribution of risk preference, in our model individuals would have a distri-

bution of utility functions. A potential drawback of such a model is that the existence of a

handful of individuals who derive unusually high utility for any given level of wealth could

distort the measure for social welfare. To overcome this issue, we normalise the absolute

value of derived utility to a scale of [0,1] and use the expected utility of an individual

as the measure of social welfare. The approach is equivalent to relative utilitarianism,

proposed by Dhillon and Mertens (1999) as a measure for a social welfare function.

In the next three sections we establish the rationale behind our model, its similarities

and deviations from the existing literature on insurance risk classification in terms of:
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• equilibrium and adverse selection;

• randomness of risk preference; and

• measure of social welfare.

A more detailed discussion on specific relevant literature is given in appendix J.

2.1 Equilibrium and Adverse Selection

In one of the most influential and cited works on insurance market, Rothschild and Stiglitz

(1976) argued that an equilibrium would not exist under pooled premium. The authors

developed a simple 2 risk-group model to show that a stable equilibrium cannot include

a contract offering pooled premium for different risk-groups. The authors argue that it

incentivises insurers to deviate from a pooled premium contract, hence a pooled premium

contract can never be part of a stable equilibrium. A similar result would follow, even

where the model is modified to include a continuous distribution of risk exposure.

The Rothschild-Stiglitz model assumes all individuals to be risk averse. It also as-

sumes that every individual possesses full knowledge of her own risk exposure and behaves

accordingly. Due to risk aversion, every individual would be willing to pay more than their

fair premium. However, in reality attitude towards risk varies across individuals. In re-

cent literature on estimating risk preferences, probability distortion models are often used

to explain the consumer behaviour, (see Barseghyan et al. (2013)). This distortion could

result from the individual’s attitude towards risk or her perception about her own risk

exposure. Whatever be the underlying reason, faced with the decision of buying insur-

ance, in practice, an individual does not therefore always behave the way Rothschild and

Stiglitz (1976) predicted. In our model, we assume individuals to be aware of their risk

exposure. But we introduce heterogeneity in terms of attitude towards risk across indi-
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viduals where everyone does not necessarily have to be risk averse. This leads to different,

but realistic results.

In addition, the Rothschild-Stiglitz model examines the stability of the market equi-

librium in a single period where each individual would buy insurance based on their private

knowledge of risk exposure. It does not consider the scenario where the insurer can with-

draw loss-making contracts from the market. For the details of the Rothschild-Stiglitz

equilibrium concept please see Appendix 2.1. The argument, that a pooled premium

contract cannot be part of a stable equilibrium, could therefore be re-evaluated under a

different concept of equilibrium.

By using the concept of dynamic equilibrium over multiple periods Wilson (1976),

argued that in all scenarios the market will iteratively reach a stable equilibrium. If

in period n the equilibrium contract is a pooled contract, one insurer could potentially

benefit by offering a new contract targeted only at low risks in period n+1; but it will not

do so if it anticipates that the response of other insurers will be to withdraw the pooling

contract, thus nullifying the advantage the one insurer gains by offering the new contract.

Therefore we can also say that in long run the market would achieve a stable equilibrium

where insurers would earn zero expected profit. This characterizes an insurance market

with perfect competition with no entry or exit barrier for insurers.

Finally, the Rothschild and Stiglitz (1976) paper does not make any detailed observa-

tion on social welfare. Hoy (2006) used the Rothschild-Stiglitz model to conclude that if

the high-risk population proportion is lower than a threshold where separating equilibrium

is not achievable, it might be possible to deliver higher welfare by pooling the risks and

let market achieve Wilson equilibrium. For low enough proportion of high-risk population

this is certain to deliver higher social welfare (see Appendix J.4). In the present thesis we

derive conditions where a regulator-induced pooled premium could unambiguously (i.e.

irrespective of the proportion of high-risk individuals in the population) deliver a higher

social welfare.
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2.2 Randomness of Risk Preference

A principal departure of this thesis from all those just cited above is that rather than as-

suming all individuals have the same utility function, we assume a distribution of utility

functions (not necessarily all risk-averse) across individuals who have the same proba-

bilities of loss. The probability distribution of utility function captures the underlying

distribution of risk preference across the individuals.

This assumption leads to qualitatively different results from simpler models, through

two mechanisms. First, utility functions determine individuals’ insurance purchasing de-

cisions, which determine the insurance demand curve and hence the equilibrium price of

insurance when all risks are pooled. Second, utility functions determine the expected

utilities which individuals assign to their outcomes given an insurance price.

In the recent past, there has been a focus on estimating risk preferences of individ-

uals based on field data. An extensive survey of literature on this topic is available in

Barseghyan et al. (2018). To estimate risk preference from field data, researchers often

looked at the demand curve for a product, such as insurance, whose outcome is random,

against the price of the product. Each individual’s demand for product would depend

on her expected utility, which in turn depends on her risk preference, at a given price.

Hence the demand function can be inverted to reveal the probability distribution of risk

preference. We followed a similar approach in our study. The probability density function

we have used for risk preference translates into an iso-elastic demand function, which has

been generalised subsequently to any form of demand function.

Similar to the concept of “willingness to pay” in Einav and Finkelstein (2011), where

the consumer pays a risk premium in addition to the fair premium, in our model an in-

dividual could pay higher than her fair premium. Einav and Finkelstein (2011) model

is based on a framework similar to Akerlof, where insurers only offer full coverage and

compete on price. Though the authors recognize variation in risk preference across in-
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dividuals, they did not treat risk preference as a random variable independent of risk

profile. In Appendix J.4 Figure J.5 (and J.6), reproduced from Einav and Finkelstein

(2011), describes a scenario where risk aversion only decreases (or increases) with risk

exposure. The present thesis goes beyond this scenario by allowing for random variation

in risk preferences across individuals. We show that for some plausible parameterisation

of risk preferences, a regulator can maximise social welfare by banning risk classification.

Risk preferences of individuals cannot be directly observed and therefore we need a

“proxy measure” for risk preference. Collective risk preference for a given group of people

with similar risk exposure, could be revealed by the group’s aggregate demand against

varying price. Therefore, in our model, risk preference is revealed by price sensitivity.

An individual’s price-sensitivity can be caused by external factors, e.g. her financial

condition. But through her response to price changes, an individual would reveal her

attitude towards risk. Price sensitivity is measured by demand elasticity and is often

observable from the empirical studies of the insurance market. Therefore, it can be useful

for regulators for prescribing policies.

2.3 Measure of Social Welfare

A social welfare function translates individual choices to a social choice representing the

aggregate of individuals. In the words of Arrow (see Sen (2017), p. 271) it would map

“the vector of utilities of individuals into a [collective] utility”. Arrow (1963) defined a

social welfare function as a functional relation specifying one social ordering R for any

n-tuple of individual orderings Ri for each person, i.e. R = f(Ri).

The individual orderings could be derived from a personal utility function. However

with the utility function that assigns a cardinal value of utility to an individual, we face

a problem of interpersonal comparability. Even if the individual utilities are normalised

to a scale of [0,1], it can be shown to break the axiom for the Independence of Irrelevant
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Alternative (IIA) (see Sen (2017), p. 144). IIA states that as long as individual preferences

remain the same over a subset of social states, the social choice from that particular subset

should also remain the same. IIA plays a central role in defining an Arrow social welfare

function, as Arrow concentrated on understanding the voting paradox. But as his famous

Impossibility Theorem shows, no rank-ordering social welfare function could satisfy all

the axioms simultaneously.

However, by weakening IIA and defining an alternative set of axioms, it is possible

to construct an alternative social welfare function. In “Relative Utilitarianism”, Dhillon

and Mertens (1999), presented such an alternative axiomatic framework, under which

a sum of normalised individual von-Neumann-Morgenstern utility functions satisfy the

conditions of a good social welfare function. It assumes that individuals with identical

risk preferences and risk profile would derive same utility out of insurance at a given

price. Hence inter-personal utilities are comparable. Normalising individual utilities to

the range [0,1] also ensures that the social welfare measure cannot be influenced by a

so-called “utility monster”, i.e. an individual who derives more utility than all other

individuals combined (see Bailey (1997), Nozick (1974)).

In the present thesis, we follow an approach similar to Dhillon and Mertens (1999)

in assigning utility to individuals. Our measure of social welfare is expected utility given

the distributions of loss probabilities and risk preferences in society, but evaluated behind

a hypothetical veil of ignorance which screens off knowledge of the decision maker’s own

loss probability and preferences. In our model, individuals know their own risk exposure.

Loss probabilities of different risk-groups, as well as the distribution of risk preferences

across the population are also common knowledge.

This thesis is also related to Hao et al. (2018) which proposes ‘loss coverage’, defined

as expected losses compensated by insurance for the whole population, as a criterion for

comparing risk classification schemes. Loss coverage has the advantage that it depends on

observable quantities, whereas utilitarian social welfare depends on unobservable utility
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functions.

Hao et al. (2019) showed that for iso-elastic insurance demand where the elasticity is

same for all risk-groups, loss coverage can be used as a proxy measure for social welfare,

as it always gives the same ranking of different risk classification schemes. But for other

demand specifications, the ‘common ranking’ property of loss coverage and social welfare

may not hold. The present thesis therefore focuses on direct evaluation of utilitarian

social welfare, and derives sufficient conditions on demand elasticity for social welfare to

be higher under pooling than under full risk classification.



Chapter 3

Model Framework

In this chapter, we develop a framework to evaluate utilitarian social welfare under dif-

ferent risk classification regimes. In Section 3.1, starting from individual insurance pur-

chasing decisions, we develop insurance demand for a single risk-group as a function of

premium. In Section 3.2, demand from different risk-groups constitutes an insurance

market, where perfect competition yields different equilibria under different risk classifi-

cation regimes. In Section 3.3, we formulate utilitarian social welfare for a given market

equilibrium. Finally, in Section 3.4, we formally define loss coverage.

3.1 Insurance Demand for a Single Risk-Group

Typical theories of insurance demand assume that all individuals know their own proba-

bilities of loss and have a common utility function. Given an offered premium, individuals

with the same probabilities of loss then all make the same purchasing decision. This does

not correspond well to the observable reality of many insurance markets, where individ-

uals who appear to have similar probabilities of loss often make different decisions, and

21
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substantial fractions of the population do not purchase insurance at all.1 This section

gives a theory of insurance demand which accommodates the possibility that not all in-

dividuals with the same probabilities of loss make the same decision. Key assumptions

which distinguish our model from other common models are highlighted at the points

where the need for each assumption arises.

First, we consider demand from the perspective of a single individual. Suppose that

an individual has wealth W and risks losing an amount L. The individual is offered

insurance against the potential loss amount L at premium π (per unit of loss), i.e. for a

payment of π L.

Assumption 1 (Non-satiation). The individual’s utility function u(w), is increas-

ing as a function of wealth, w, and differentiable, so that u′(w) > 0. The individual

knows his own utility function.

Note that in Assumption 1, no restriction is placed on the second derivative u′′(w),

which may have either sign; we do not require that all individuals are risk-averse (i.e.

u′′(w) < 0). We will show later that this departure from typical models generates the

partial take-up of insurance in our demand function.

Assumption 2 (Full-cover contracts). Insurance is offered in a full-cover contract

which is standardised across all insurers, who compete only on price. Insurers do not

offer partial cover or other contract menus.

We justify Assumption 2 by noting that separation via contract menus is not possible

in some important markets, such as life insurance, which have non-exclusive contracting.

1For example, in life insurance, the Life Insurance Market Research Association (LIMRA) states that
57% of US households have some individual life insurance (LIMRA (2019)). The American Council of
Life Insurers states that 138m individual policies were in force in 2018 (American Council of Life Insurers
(2019, p66)); the US adult population (aged 18 years and over) at 1 July 2019 as estimated by the US
Census Bureau was 255m.
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It is also often not salient to practitioners in other markets where restrictions on risk

classification apply.2

If the probability of loss is µ, the individual will choose to buy insurance if:

u(W − π L) > (1− µ)u(W ) + µu(W − L). (3.1.1)

Since certainty-equivalent decisions do not depend on the origin and scale of a utility

function, it is convenient to define a normalised utility function as follows:

us(w) =
u(w)− u(W − L)

u(W )− u(W − L)
, for (W − L) ≤ w ≤ W. (3.1.2)

This normalisation ensures that us(W−L) = 0 and us(W ) = 1, so that for all individuals,

the normalised utilities at the ‘end-points’ are the same. It also preserves the curvatures of

utility functions, and hence individual risk preferences and insurance purchasing behaviour

remain unchanged. For now, the normalisation is just a matter of convenience, but we

shall later state it as an assumption in Section 3.3, where it will be needed for our measure

of social welfare.

Applying this normalisation (Equation 3.1.2) to Equation 3.1.1, the criterion becomes:

us(W − π L) > (1− µ). (3.1.3)

From this point onwards, we use ‘utility’ to mean the normalised utility, us(w), unless

the context requires otherwise.

Next, we consider demand from the perspective of an insurer. The insurer observes

a group of individuals comprising a risk-group, who all have the same probability of loss.

2Economists often postulate that insurers use menus of deductibles or other contract features as
screening devices to separate high and low risks (e.g. Rothschild and Stiglitz (1976)). But most actuarial
pricing textbooks make no reference to this concept (e.g. Gray and Pitts (2012), Friedland (2013), Parodi
(2014)), and instead interpret deductibles as a device to limit moral hazard and the administrative costs
of handling small claims.
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The insurer knows the common probability of loss µ for all members of the risk-group.

The individuals are, however, heterogeneous in terms of their utility functions, which the

insurer cannot observe.

Assumption 3 (Heterogeneous utility functions). Utility functions are hetero-

geneous across individuals, and unobservable by insurers.

Hence for any risk-group, the insurer observes µ, π and possibly each individual’s

W and L, but not their utility functions. So from the insurer’s perspective, given a

premium π, the utility of insurance of an individual chosen at random from this risk-

group, us(W − π L), is unobservable and we denote it by the random variable: UI (the

subscript I indicates insurance), which depends on W , L and π.

So the insurer can at most observe the proportion of individuals who choose to buy

insurance at a given premium π. We call this a (proportional) demand function and define

it as:

d(π) = P [UI > (1− µ) ] . (3.1.4)

Clearly, 0 ≤ d(π) ≤ 1 and d(π) is non-increasing in π (for a given value of µ) as increasing

π decreases the utility of insurance for all individuals.

Assuming d(π) to be differentiable, the (point price) elasticity of insurance demand,

is defined as:

ε(π) = −∂ log d(π)

∂ log π
(3.1.5)

which implies that demand can also be expressed as

d(π) = τ exp

[
−
∫ π

µ

ε(s) d log s

]
(3.1.6)

where τ = d(µ) is the fair-premium demand for insurance.
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3.2 Insurance Market Equilibrium with n Risk-Groups

Suppose a population consists of n distinct risk-groups with probabilities of loss given

by µ1, µ2, . . . , µn. For convenience, we assume 0 < µ1 < µ2 < . . . < µn < 1. Let the

proportion of the population belonging to risk-group i be pi, for i = 1, 2, . . . , n.

Now let the occurrence of a loss event for an individual chosen at random from the

whole population be represented by the indicator random variable, X, taking the value

of 1 if a loss event occurs; and 0 otherwise. Then X, conditional on risk-group i, is a

Bernoulli random variable with parameter µi.

Suppose insurers charge premiums (per unit of loss) π1, π2, . . . , πn for the risk-groups

i = 1, 2, . . . , n, respectively. For brevity, we use the notation π = (π1, π2, . . . , πn) to denote

the premium regime under consideration. Define Π to be the premium which would be

chargeable to an individual chosen at random from the population, if that individual

purchased insurance. Then Π, conditional on risk-group i, takes the value πi.

From insurers’ perspective, the insurance purchasing decision of an individual chosen

at random from the whole population can be represented by the indicator random variable

Q, taking the value of 1 if insurance is purchased; and 0 otherwise. Then Q, conditional

on risk-group i, is a Bernoulli random variable with parameter di(πi), where di(πi) is the

demand for insurance within risk-group i at premium πi (based on the model developed in

Section 3.1). Then for an individual chosen at random from the population, the expected

premium income is E [QΠL ] and the expected insurance claim is E [QXL ].

We then need an assumption about the nature of insurance market competition and

equilibrium, which we state as follows.

Assumption 4 (Competitive equilibrium). Risk-neutral insurers have a common

technology to classify diversifiable risks, with zero transaction costs. Competition

between insurers leads to zero expected profits in equilibrium.
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Assumption 4 implies the following equilibrium condition under the premium regime

π, where E(π) is the expected profit:

E(π) = E [QΠL ]− E [QXL ] = 0. (3.2.1)

3.3 Definition of Social Welfare

We define social welfare, S(π), for a particular premium regime π, as the expected utility

of an individual selected at random from the entire population, i.e.:

S(π) = E [QUI + (1−Q) [ (1−X)UW +X UW−L ] ] , (3.3.1)

where UW and UW−L are random variables denoting the utilities at individuals’ initial

wealth, W , and at their wealth after loss event, (W −L), respectively. In Equation 3.3.1,

the ‘Q’ term is the random utility if insurance is purchased, and the ‘(1−Q)’ term is the

random utility if insurance is not purchased.

In Section 3.1 we noted that certainty-equivalent decisions do not depend on the

origins and scales of utility functions, and therefore the insurance decision for all indi-

viduals could be framed using normalised utility functions, irrespective of their different

individual non-normalised utility functions. This was not a model requirement, but just

a convenient normalisation.

However, this argument cannot be directly extended to Equation 3.3.1, because the

utilitarian concept of social welfare does depend on the actual magnitudes of individuals’

utilities at different levels of wealth. But without any normalisation, Equation 3.3.1 is

susceptible to being dominated by a ‘utility monster’ who derives more utility from a given

level of wealth than all other individuals combined (see Bailey (1997), Nozick (1974)). This

makes it unsuitable for policy purposes. So in our measure of social welfare, we use the
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normalised utilities in Equation 3.1.2, as stated in the following assumption.

Assumption 5 (Relative utilitarianism). Social welfare is expected normalised

utility for an individual selected at random from the population. The normalisation

uses us(W ) = 1 and us(W − L) = 0, while preserving the shape of individual risk

preferences at intermediate amounts of wealth.

This “expectation of 0–1 normalised utilities” definition of social welfare can also

be justified as the unique solution of (a slightly weakened version of) the Arrow (1963)

axioms for a social welfare function (as shown in Dhillon and Mertens (1999), who call

our approach “relative utilitarianism”).3

Using Assumption 5, Equation 3.3.1 simplifies to:

S(π) = E [QUI + (1−Q) (1−X) ] . (3.3.2)

For many insurances, insurance premiums are typically relatively small compared to

an individual’s wealth.4 We assume that the premium π L is ‘small’ in the following

technical sense.

Assumption 6 (Small premiums). All individuals’ utility functions are such that

for small premium amounts πL (compared to initial wealth W), the second and higher-

order terms in the Taylor series of expansion of us(W − πL) can be ignored as negli-

gible.

It is important to highlight here that we are not suggesting that the curvatures of

individuals’ utility functions are unimportant in general. Assumption 6 only requires

3There is nothing sacrosanct about this particular normalisation, but it has been used many times in
the economics literature (for some recent examples see Segal (2000), Sobel (2001), Pivato (2008)), and
seems well suited to the insurance context.

4There are some notable exceptions, such as health or life insurance at higher ages, or life insurance
with a savings element, and our analysis will not apply in these cases.
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that for small premium amounts π L, the utility function us(w) over the short interval

(W − π L,W ) can be approximated by a straight line.

Wealth

U
til

ity

A

B

C

D

W−L W − πL W

0

1 − µ

1

Figure 3.1: Intuition for γ = Lu′s(W ) as an index of risk preferences .

To illustrate the effect of Assumption 6, Figure 3.1 shows normalised utility functions

over the range (W−L,W ) for four hypothetical individuals with different risk preferences.

The straight diagonal line from us(W − L) to us(W ) through point C represents a risk-

neutral individual. The concave curves through points A and B each represent risk-averse

individuals and the convex curve through pointD represents a risk-loving individual.5 The

role of utility functions’ slopes and curvatures, over the range (W−L,W−π L) to portray

individual risk preferences, is evident in the four distinctive curves and also in the relative

differences in the values of us(W − π L). Assumption 6 says that, for small π L, each

5Although ‘risk-loving’ or ‘risk-seeking’ are the usual stylised descriptions, it might be more appropri-
ate to characterise this phenomenon as ‘risk-neglecting’.
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individual’s utility curve over the short interval (W − π L,W ) can be approximated by a

straight line.

From Equation 3.1.3, an individual’s decision rule for purchasing insurance is:

us(W − π L) > (1− µ). (3.3.3)

Using Assumption 6, the left-hand side of Equation 3.3.3 can be evaluated as:

us(W − π L) ≈ us(W )− π Lu′s(W ) = 1− π Lu′s(W ), as us(W ) = 1. (3.3.4)

Now, if we define γ = Lu′s(W ), then the approximation in Equation 3.3.4 becomes:

us(W − π L) ≈ 1− πγ. (3.3.5)

Then for a given individual, the decision rule in Equation 3.3.3 can be written as:

γ <
µ

π
. (3.3.6)

The quantity γ = Lu′s(W ) can be interpreted as a risk preferences index, in the sense

illustrated in Figure 3.1. The straight diagonal line, representing a risk-neutral individual,

has a slope of 1/L, giving the index γ = Lu′s(W ) = 1. The concave curves through

points A and B representing risk-averse individuals have lower slopes u′s(W ) than for the

straight diagonal line, and hence the index γ = Lu′s(W ) < 1 for risk-averse individuals.

For the convex curve through point D, representing a risk-loving individual, an analogous

geometric intuition confirms γ = Lu′s(W ) > 1. Provided that Assumption 6 holds, the

index γ = Lu′s(W ) is then sufficient to characterise an individual’s risk preferences at

wealth (W − π L).

As an example, consider the special case of power utility function us(w) = wγ, with



30

W = L = 1. The parameter γ fully characterises an individual’s risk preferences. For this

particular example, Assumption 6 implies that for small premium π:

us(1− π) = (1− π)γ ≈ 1− π γ, as us(1) = 1 and u′s(1) = γ. (3.3.7)

And for this specific power utility example, the decision rule then becomes:

us(1− π) > (1− µ)⇔ (1− π γ) > (1− µ)⇔ γ <
µ

π
, (3.3.8)

reproducing the same general decision rule as obtained in Equation 3.3.6.

Note that in accordance with the decision rule in Equation 3.3.3, insurance is pur-

chased if us(W − π L) > (1−µ): so in this illustration, A purchases, B is indifferent, and

C and D do not purchase. The variation across individuals in utility functions drives the

partial take-up of insurance (i.e. d(π) < 1) in our model.

Since insurers cannot observe individuals’ utility functions (Assumption 3), γ is not

observable and appears to be sampled randomly from some underlying random variable

Γ with distribution function FΓ(γ). Following on from Equation 3.3.6, the (proportional)

insurance demand function in Equation 3.1.4 can be expressed as:

d(π) = P [UI > (1− µ) ] ≈ P
[

Γ <
µ

π

]
. (3.3.9)

By applying Taylor series approximation as in Equation 3.3.5, the utility of a random

individual, who is insured (identified by the indicator variable Q), is (1− Π Γ), where Π

is the random variable representing the premium charged for this individual.

Therefore the Equation 3.3.2 can now be approximated by:

S(π) ≈ E [Q (1− Π Γ) + (1−Q) (1−X) ] , (3.3.10)

= E [Q (X − Π Γ) ] +K, (3.3.11)
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where K = E[1−X] does not depend on the premium regime under consideration.

The development to this point accommodates the possibility that potential loss amounts

L can vary across individuals. But to obviate the need to model this variation in this

thesis, we make our next assumption:

Assumption 7 (Fixed potential loss amount). For all individuals, the potential

loss amount L is the same constant.

Under this assumption, the equilibrium condition E(π) = 0 from Equation 3.2.1 simplifies

to:

E [QΠ ]− E [QX ] = 0. (3.3.12)

To progress to a parameterised version of Equation 3.3.12, we need to assume that

there is no moral hazard. Technically:

Assumption 8 (No moral hazard). Conditional on a given risk-group, Q and X

are independent.

Given this assumption, conditioning over the different risk-groups and then taking condi-

tional expectation, the equilibrium condition in Equation 3.3.12 yields:

E [QΠ−QX ] = 0

⇔
n∑
i=1

P[Risk-group i] [E [QΠ | Risk-group i]− E [QX | Risk-group i ]] = 0 (3.3.13)

⇔
n∑
i=1

pi [πiE [Q | Risk-group i]− E [Q | Risk-group i ]E [X | Risk-group i ]] = 0

(3.3.14)

(as Π = πi for risk-group i; and Q and X are independent given a risk-group),

⇔
n∑
i=1

pi di(πi) (πi − µi) = 0, (3.3.15)
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as given a risk-group i, Q and X are Bernoulli random variables with parameters di(πi)

and µi respectively. Equation 3.3.15 is intuitively appealing as it can be interpreted as

the demand-weighted average profits generated by different risk-groups.

By inspection, π = µ = (µ1, µ2, . . . , µn) is a solution to Equation 3.3.15, and we will

refer to this as the full risk classification regime.

At the other end of the spectrum is the pooling regime where risk classification is

banned and all risk-groups are charged the same premium πi = π0 for i = 1, 2, . . . , n.

Since the insurance demand in our model is a continuous function of premium, there

exists at least one premium π0 where µ1 ≤ π0 ≤ µn and E(π0) = 0.6

Our final assumption is not a strict requirement, but is made for presentational con-

venience:

Assumption 9 (No full demand). No risk-group is fully insured under any risk

classification regimes.

It is possible that an entire risk-group is insured, if the premium charged is sufficiently

small; any further reduction in premium will then have no effect on demand from that

risk-group. This special case can also be analysed using the same framework. However

for ease of exposition, we present our findings based on Assumption 9 in the main text,

and cover the case of full take-up for some risk-groups in Appendix F.

3.4 Definition of Loss Coverage

Although the first part of this thesis focuses on the impacts of premium regimes on social

welfare, in some cases, it is computationally difficult to measure social welfare directly.

In order to obtain analytical results, we have used loss coverage in our investigation of

6For notational convenience, we specify only one argument for multivariate functions if all arguments
are equal, e.g. we write E(π) for E(π, π, . . . , π).



33

partial risk classification in Chapter 5. The concept of loss coverage and its maximisation

as a policy objective for insurance regulators has been discussed in Thomas (2008) and

Thomas (2017). We use the same formulation of loss coverage as outlined in Hao et al.

(2018).

Under an equilibrium premium, or risk classification, regime, π, loss coverage is de-

fined as the expected losses that are compensated by insurance, i.e.:

Loss coverage: LC (π) = E [QX ] =
n∑
i=1

pi di(πi)µi. (3.4.1)

Using loss coverage under the full risk classification regime as a reference level, the

loss coverage ratio is defined as follows:

Loss coverage ratio: C (π) =
LC (π)

LC
(
µ
) =

∑n
i=1 pi di(πi)µi∑n
i=1 pi τi µi

. (3.4.2)

Hao et al. (2019) showed that for iso-elastic insurance demand, where the elasticity is

same for all risk groups, loss coverage is a valid proxy measure for social welfare. But

this equivalence is not strictly true in other scenarios. Therefore, results for loss coverage

cannot be generally extended to social welfare. However, as discussed below in Section

4.5, there is a large set of possible price elasticities, where the equivalence between loss

coverage and social welfare holds true.



Chapter 4

Social Welfare under Pooling and

Full Risk Classification

In this chapter, we use the model described in Chapter 3 to compare social welfare under

the pooled premium regime against the full risk classification regime. We derive sufficient

conditions on demand elasticities of different risk-groups to ensure higher social welfare

under the pooled premium regime. In Section 4.1 we consider iso-elastic demand functions

with same demand elasticity across all risk-groups. In Section 4.2 we consider iso-elastic

demand function for all risk-groups, but demand elasticities are allowed to vary across

risk-groups. In Section 4.3 we consider general demand functions, for which sufficiency

conditions are derived using the concept of arc elasticity of demand. In Section 4.4 we

have summarised our results and looked at some empirical evidence of observed demand

elasticities in various insurance markets. In Section 4.5 we compared our results on social

welfare with those obtained using the measure of loss coverage. In Section 4.6 we discuss

our results in the context of existing literature, especially Hoy (2006).

34
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4.1 Iso-elastic Insurance Demand

In this section, we apply the framework created in Chapter 3 to calculate Social Welfare

under different premium regimes using the iso-elastic insurance demand.

Iso-elastic insurance demand is a tractable insurance demand function, which for

risk-group i is given by:

di(πi) = τi

(
µi
πi

)λi
, (subject to a cap of 1), (4.1.1)

producing a constant demand elasticity:

ε(πi) = −∂ log(di(πi))

∂ log πi
= λi. (4.1.2)

The parameter τi can be interpreted as the fair-premium demand, that is the demand

when an actuarially fair premium is charged.

The above iso-elastic insurance demand can be constructed within our model set-up

as follows. Consider an individual from risk-group i, with initial wealth W , who risks

losing an amount L. Suppose her risk preferences are driven by a power utility function:

us(w) =

[
w − (W − L)

L

]γ
, (4.1.3)

so that us(W ) = 1 and us(W − L) = 0. This particular form of utility function leads to:

u′s(w) =
γ

L

[
w − (W − L)

L

]γ−1

, and so consequently: (4.1.4)

Lu′s(W ) = γ. (4.1.5)

So under the framework of power utility functions, the risk preferences index, Lu′s(W ),

defined in Section 3.3, can be interpreted as the underlying parameter, γ, of the power
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utility function.

As outlined in Section 3.3, γ is sampled randomly from some underlying random

variable Γi with distribution function FΓi(γ), and the demand for insurance for risk-group

i at a given premium πi is then:

di(πi) = P

[
Γi <

µi
πi

]
. (4.1.6)

The demand for insurance for risk-group i takes the form of iso-elastic demand given in

Equation 4.1.1 if Γi has the following distribution:

FΓi(γ) = P [Γi ≤ γ] =


0 if γ < 0

τi γ
λi if 0 ≤ γ ≤ (1/τi)

1/λi

1 if γ > (1/τi)
1/λi ,

(4.1.7)

where τi and λi are positive parameters. λi controls the shape of the distribution function

and τi controls the range over which Γi takes its values.1

Using the specific form of iso-elastic demand, the analytical form of social welfare

given in Equation 3.3.11 for a particular premium regime π, is provided in Lemma 1

(proof in Appendix A).

1This is a generalised version of the Kumaraswamy distribution, which in its standard form takes
values only over [0,1] (Kumaraswamy (1980)). Note that τi = λi = 1 leads to a uniform distribution.
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Lemma 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with

iso-elastic demand elasticities λ1, λ2, . . . , λn respectively, then for a given premium

regime π, the expression for social welfare is given by:

S(π) =
n∑
i=1

pi τi
1

(λi + 1)

(
µi
πi

)λi+1

πi +K, (4.1.8)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

piτi

(
µi
πi

)λi
(πi − µi) = 0, (4.1.9)

and the constant K does not depend on the premium regime under consideration.

Lemma 1 provides the basis for comparing any two premium regimes. Specifically,

we focus on comparing the pooling regime against the full risk classification regime.

Under pooling, it is sometimes notationally convenient to express the equilibrium

condition and social welfare in terms of the risk-premium ratios : vi = µi/π0. A risk-

premium ratio of vi < 1 indicates that the i -th risk-group pay more than their fair

actuarial premium, and conversely for vi > 1. Using this notation, the pooling equilibrium

in Equation 4.1.9 becomes:

n∑
i=1

αiv
λi+1
i =

n∑
i=1

αiv
λi
i , (4.1.10)

or, equivalently:
∑
i: vi>1

αi
[
vλi+1
i − vλii

]
=
∑
i: vi≤1

αi
[
vλii − vλi+1

i

]
, (4.1.11)

where αi = piτi∑n
j=1 pjτj

and the social welfare condition Equation 4.1.8 can be expressed as:

S(π0) T S(µ)⇔
n∑
i=1

αi v
λi+1
i

λi + 1
T

n∑
i=1

αi vi
λi + 1

, 2 (4.1.12)
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⇔
∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
T
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
. (4.1.13)

Equation 4.1.11 says that under the pooling equilibrium, losses from the high risk-

groups are exactly offset by the profits from the low risk-groups. And Equation 4.1.13 can

be interpreted as the comparison between the (aggregate) utility gains by the high risk-

groups (from pooling as compared against full risk classification) against the (aggregate)

utility losses of the low risk-groups.

We can now derive the conditions for which social welfare under pooling is higher than

that under full risk classification. In the first instance, we make the simplest assumption

that all risk-groups have the same positive constant demand elasticity λ. Under this

assumption, we obtain the following result (proof in Appendix B) :

Theorem 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with the

same positive constant demand elasticity λ for all risk-groups. Then:

λ S 1⇒ S(π0) T S(µ). (4.1.14)

Figure 4.1 provides a graphical representation of Theorem 1, showing the ratio of

(S(π0)−K) to
(
S(µ)−K

)
as a function of constant demand elasticity λ for two risk-

groups with risks (µ1, µ2) = (0.01, 0.04) and (α1, α2) = (0.8, 0.2). Recall from Equation

4.1.8, in the expression for S(π), K is a constant which does not depend on the premium

regime π. So the ratio of (S(π0)−K) to
(
S(µ)−K

)
focuses solely on the effect of changes

in premium regimes.

It can be clearly seen that λ = 1⇒ S(π0) = S(µ), while λ < 1⇒ S(π0) > S(µ) and

vice versa, as postulated in Theorem 1.

2We use the notation T in the following sense: A T B ⇒ C T D is shorthand for A > B ⇒ C > D

and A = B ⇒ C = D and A < B ⇒ C < D. A similar interpretation applies for the notation S.
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Figure 4.1: Illustration of Theorem 1: Social welfare under pooling is higher than under

full risk classification for λ < 1.

Basis: (µ1, µ2) = (0.01, 0.04) and (α1, α2) = (0.8, 0.2). Similar pattern for any population structure and relative risk.

4.2 Varying Demand Elasticities across Risk-Groups

Theorem 1 assumes the same constant iso-elastic demand elasticity for all individuals.

However, different risk-groups may have different sensitivities to price changes. In partic-

ular, for higher risk consumers, insurance premiums may represent a larger part of their

total budget constraint, and so the effect of a small percentage change in price on their

insurance demand might be larger. In this section, for ease of exposition, we first consider

two risk-groups with iso-elastic demand, but with different demand elasticities. We then

generalise our result to more than two risk-groups.

Typical insurance underwriting processes often classify a majority of insurance risks
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as standard (or low risks in the terminology of this thesis), with the remaining risks rated

higher based on their individual characteristics. The empirical evidence (cited in Table

4.1 in Section 4.4) suggests that the more numerous low risk-group’s demand elasticity

may often be less than 1. But, as noted above, the high risk-group’s demand elasticity is

likely to be higher than that the low-risk-group, and may often exceed 1. This pattern

motivates Theorem 2 (proof in Appendix C). Theorem 2.1 states a sufficient condition on

λ1 and λ2 for social welfare to be higher under pooling than under full risk classification,

for any population structures and underlying risks. Theorem 2.2 then extends it for some

of the ranges of λ2 not covered in Theorem 2.1, but this involves introduction of additional

conditions.

Theorem 2. Suppose there are two risk-groups with risks µ1 < µ2 with positive

constant demand elasticities λ1 and λ2 respectively.

2.1. For any population structure:

λ1 ≤ 1 and λ1 ≤ λ2 ≤
1

λ1

⇒ S(π0) ≥ S(µ). (4.2.1)

2.2. For any population structure there exists a threshold premium π∗ such that:

λ1 ≤ 1 and λ2 >
1

λ1

and π0 ≥ π∗ ⇒ S(π0) ≥ S(µ). (4.2.2)

Theorem 2 is illustrated in Figure 4.2, where (µ1, µ2) = (0.01, 0.04) and the x and

y axes represent the lower and higher demand elasticities λ1 and λ2. The two curves

emanating from the origin show the boundary at which S(π0) = S(µ) for two possible

population structures. The bold red curve demarcates the boundary for a moderate

population structure, (α1, α2) = (0.8, 0.2); the dashed blue curve is the boundary for

an extreme population structure with very few high risks, (α1, α2) = (0.99, 0.01). Social
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welfare under pooling is higher than under full risk classification on the left of the boundary

curves, and lower on the right. The sufficient conditions in Theorem 2.1 specify that in

the green shaded region where λ1 ≤ 1 and λ1 ≤ λ2 ≤ 1/λ1, social welfare under pooling

is always higher than that under full risk classification, irrespective of the population

structure (and also the risks µ1 and µ2).

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0 1.5 2.0

λ1

λ 2

S(π0) > S(µ)
everywhere to left of boundary curve

S(π0) < S(µ)
everywhere to right of boundary curve

S(π0) > S(µ)
guaranteed in green shaded area
for all population structures

and relative risks

Boundary curve:  S(π0) = S(µ)
α1 = 0.8
α1 = 0.99

Figure 4.2: Illustration of Theorem 2: Social welfare under pooling is higher than under

full risk classification in green area, for all population structures and relative risks. See

text for interpretation of solid red and dashed blue boundary curves.

To understand the patterns in Figure 4.2, first note that moving from full risk classifi-

cation to pooling always leads to (i) a beneficial increase in both the number of high-risks

insured, and the per capita utility of insured high-risks and (ii) a detrimental decrease in

both the number of low-risks insured, and the per capita utility of each insured low-risk.
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An initial intuition is that pooling will tend to “work well” when lower risks’ elasticity is

low compared with higher risks’ elasticity, i.e. towards the left of Figure 4.2.

As we move leftwards in the graph with λ2 fixed, λ1 eventually becomes sufficiently

low compared with λ2, so that pooling “works well” and effect (i) dominates. As we move

upwards in the graph with λ1 fixed (where λ1 ≤ 1), λ2 eventually becomes sufficiently

high compared with λ1, so that pooling again “works well” and effect (i) dominates. This

explains the position of the red curve.

However, if the high risk-group is small and has high demand elasticities, it may

not have the required capacity to absorb all the aggregate utility losses of the low risk-

group. This “capacity limit” on effect (ii) for a small high-risk-group is illustrated by the

curvature of the dashed blue line for α1 = 0.99 (a very small fraction of high-risks) back

towards the vertical axis for λ2 > 1 (high elasticities of the high-risks). The green curve

represents a limiting value of this “capacity limit” on effect (ii). To the left of this limit

(i.e. inside the green shaded area specified by Theorem 2.1), effect (i) is guaranteed to

dominate, for any population structure and risks.

Note that the conditions in Theorem 2.1 are sufficient, but not necessary. This non-

necessity is illustrated by the white and dotted regions adjacent to the green shaded

region, but to the left of the red boundary curve, where S(π0) > S(µ) for the population

structure α1 = 0.8 even though the conditions of Theorem 2.1 are not satisfied. Where

the conditions of Theorem 2.1 are not satisfied, social welfare may still be higher under

pooling than under full risk classification, but this might require additional conditions.

For the region λ1 ≤ 1 and λ2 > 1/λ1 (dotted in Figure 4.2), Theorem 2.2 identifies

the additional condition in the form of the equilibrium premium π0 needing to exceed a

threshold premium π∗ for social welfare under pooling to be higher.

An implication of Theorem 2.2 is that the high risk-group needs to be of a large

enough size to pull the equilibrium premium above the threshold. This can be interpreted

as the need for the high risk-group to be of a reasonably large size to absorb the impact
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of aggregate utility losses for the low risk-group. The dashed blue boundary line for

an extreme population structure with very few high-risks, α1 = 0.99, curves back into

the dotted region, indicating that the condition π0 ≥ π∗ may not always be satisfied.

In contrast, for a moderate population structure with α1 = 0.8, the bold red boundary

curves back into the dotted region only at much higher values of λ2 (not shown in the

figure).

Theorem 2 can be generalised for more than two risk-groups with iso-elastic demand

for all risk-groups. While generalising our results to more than two risk-groups, under

pooling it will be convenient to classify the different risk-groups into two broad categories:

• ‘lower’ risk-groups, for whom pooled premium is higher than fair premium,

i.e. µi ≤ π0;

• ‘higher’ risk-groups, for whom pooled premium is lower than fair premium,

i.e. µi > π0.

For these two broad categories, we define the following:

• λminlo = min {λi : µi ≤ π0}, i.e. minimum demand elasticity for lower risk-groups;

• λmaxlo = max {λi : µi ≤ π0}, i.e. maximum demand elasticity for lower risk-groups;

• λminhi = min {λi : µi > π0}, i.e. minimum demand elasticity for higher risk-groups;

• λmaxhi = max {λi : µi > π0}, i.e. maximum demand elasticity for higher risk-groups.

For the case of two risk-groups, we simply have: λminlo = λmaxlo = λ1 and λminhi = λmaxhi = λ2.

Using these notations, we present our general result (proof in Appendix C):
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Theorem 3. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with

iso-elastic demand elasticities λ1, λ2, . . . , λn respectively.

3.1. For any underlying population structures:

λmaxlo ≤ λminhi ≤ λmaxhi ≤ 1⇒ S(π0) ≥ S(µ). (4.2.3)

3.2. For any underlying population structures:

λmaxlo ≤ 1 and 1 ≤ λminhi ≤ λmaxhi ≤
1

λmaxlo

⇒ S(π0) ≥ S(µ). (4.2.4)

3.3. There exists a threshold premium π∗ such that:

λmaxlo ≤ 1 and λminhi >
1

λminlo

and π0 ≥ π∗ ⇒ S(π0) ≥ S(µ). (4.2.5)

It is easy to see that Theorem 2.1 can be obtained as a special case of Theorems 3.1 and

3.2; while Theorem 2.2 is a special case of Theorem 3.3.

4.3 Generalised Demand Function

So far, we have only considered constant demand elasticities, either for all individuals

in the population, or for all individuals belonging to a particular risk-group. Iso-elastic

demand functions are easy to understand and are also analytically convenient. However,

they may also be criticised as being unrealistic. In this section, we use the concept of

arc elasticity of demand to extend the results in Section 4 to a form applicable to more

general demand functions.

The formulation of iso-elastic demand arose from the particular choice of distribution

function in Equation 4.1.7 for the random variable Γi (denoting the risk preferences index)
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for risk-group i. However, the framework developed in Section 3 is general and can be

applied to any distribution for the risk preferences index. In this section, we will just

assume that Γi is a positive continuous random variable3 with a distribution function:

FΓi(γ) = P [ Γi ≤ γ ] . (4.3.1)

Under this general framework, social welfare for a given premium regime π is given by

Lemma 2 (for proof see Appendix D).

Lemma 2. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn and

any general demand functions. Then for a given premium regime π, for which no

risk-group is fully insured, the expression for social welfare is given by:

S(π) =
n∑
i=1

piGi

(
µi
πi

)
πi +K, where Gi(g) =

∫ g

0

P [ Γi < γ ] dγ, (4.3.2)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

pi di(πi) (πi − µi) = 0, (4.3.3)

and the constant K does not depend on the premium regime under consideration.

Comparing social welfare under pooling to that under full risk classification gives:

S(π0)− S(µ) =
n∑
i=1

piGi

(
µi
π0

)
π0 −

n∑
i=1

piGi

(
µi
µi

)
µi, (4.3.4)

3The derivations in this section can also be suitably adapted for any positive discrete random variable.
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where the equilibrium premium π0 satisfies:

n∑
i=1

pi di(π0) (π0 − µi) = 0. (4.3.5)

Using the notations involving risk-premium ratios, vi = µi/π0, we get:

S(π0) T S(µ)⇔
n∑
i=1

pi [Gi (vi)− viGi (1) ] T 0. (4.3.6)

To make analytical progress with the general relationship in Equation 4.3.6, we need

to establish a connection between general demand elasticity functions, εi(·), and general

distribution functions for the risk preferences index, FΓi(·). The link arises from Equations

3.1.6 and 3.3.9, reproduced below with appropriate adaptation for risk-group i:

di(π) = τi exp

[
−
∫ π

µi

εi(s) d log s

]
, (4.3.7)

di(π) = P
[

Γi <
µi
π

]
= P [ Γi ≤ v ] , where v =

µi
π
. (4.3.8)

Note the distinction between vi (earlier in the thesis) and v for risk-group i: vi is the

risk-premium ratio at the equilibrium premium π0, whereas v is the risk-premium ratio

as a function of premium π.

We now need the concept of arc elasticity of demand (Vázquez (1995)), defined as:

λi(v) =

∫ π
µi
εi(s) d log s∫ π
µi
d log s

, for i = 1, 2, . . . , n, (4.3.9)

which can be interpreted as the weighted average of (point) elasticity for risk-group i, εi(s),

over the arc of the demand curve from premium µi to premium π, where the weights are

the log premiums.
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Using the concept of arc elasticity of demand, Equation 4.3.8 can be written as:

di(π) = P [ Γi ≤ v ] = τi exp

[
−λi(v)

∫ π

µi

d log s

]
= τi

(µi
π

)λi(v)

= τi v
λi(v), (4.3.10)

and the equilibrium condition in Equation 4.3.5 as:

n∑
i=1

pi τi v
λi(vi)+1
i =

n∑
i=1

pi τi v
λi(vi)
i , as di(π0) = τi v

λi(vi)
i . (4.3.11)

Now consider a hypothetical population with the same probabilities of loss, i.e. µ1 <

µ2 < · · · < µn, as in the actual population. But suppose that in the hypothetical popula-

tion, demand for insurance is iso-elastic with constant elasticity parameters set at values

λ1(v1), λ2(v2), . . . , λn(vn) respectively. Then all the results obtained in Section 4.2 are ap-

plicable for the hypothetical population with iso-elastic demand. This creates an avenue

for extending the results for iso-elastic demand to general demand functions.

Specifically, if the relevant conditions of iso-elastic demand functions given in Theorem

3 of Section 4.2 apply for the hypothetical population, we know that pooling increases

social welfare as compared to full risk classification. In that case, Equation 4.1.13 implies

that for the hypothetical population:

n∑
i=1

pi
τi

λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
≥ 0. (4.3.12)

However, insurance demand of the actual population is not necessarily iso-elastic.

But, interestingly, by construction, the equilibrium condition in Equation 4.3.11 is the

same for both the hypothetical population and the actual population, i.e. the pooled

equilibrium premium, π0, will be the same under both set-ups.

Now for the higher risk-groups, i.e. for those risk-groups for which µi > π0, it is

shown in Lemma 4 in Appendix E that if the demand elasticity, εi(π), is either increasing
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or iso-elastic as a function of premium π, then:

Gi(vi)− viGi(1) ≥ τi
λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
. (4.3.13)

In other words: for the higher risk-groups, under the assumption of increasing or iso-

elastic demand elasticities, the increase in social welfare in the actual population when

we move to pooling is higher than that in the hypothetical population.

Conversely, for the lower risk-groups, i.e. for those risk-groups for which µi ≤ π0, it is

shown in Lemma 5 in Appendix E that if the demand elasticity, εi(π), is either decreasing

or iso-elastic as a function of premium π, then:

viGi(1)−Gi(vi) ≤
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
. (4.3.14)

In other words: for the lower risk-groups, under the assumption of decreasing or iso-elastic

demand elasticities, the fall in social welfare in the actual population when we move to

pooling is lower than that in the hypothetical population.

Putting Equations 4.3.13 and 4.3.14 together, we get the following expression for the

increase in social welfare in the actual population when we move to pooling:

n∑
i=1

pi [Gi (vi)− viGi (1)] (4.3.15)

=
∑
µi>π0

pi [Gi (vi)− viGi (1)]−
∑
µi≤π0

pi [viGi (1)−Gi (vi)] , (4.3.16)

≥
∑
µi>π0

pi
τi

λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
−
∑
µi≤π0

pi
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
, (4.3.17)

=
n∑
i=1

pi
τi

λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
. (4.3.18)
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This implies that if the actual population is such that the hypothetical population

satisfies the relevant conditions of iso-elastic demand functions given in Theorem 3.1 of

Section 4.2, then pooling gives higher social welfare than full risk classification in the

actual population. The following theorem outlines the required conditions in the actual

population.

Theorem 4. Suppose there are n risk-groups with risks µ1 < µ2 < · · ·µn. If the

insurance demand elasticities have the following properties over their respective ranges

from µi to the pooled premium π0:

(i) for each lower risk-group, demand elasticity is either decreasing or iso-elastic

as a function of premium;

(ii) for each higher risk-group, demand elasticity is either increasing or iso-elastic

as a function of premium;

(iii) risk-groups with higher risks have higher arc elasticities of demand; and

(iv) demand elasticities do not exceed 1

then pooling increases social welfare as compared against full risk classification.

Theorem 4 thus partly relaxes the iso-elasticity condition on higher risk-groups in

Theorem 3.1. Specifically, condition (ii) allows higher risk-groups to have either iso-elastic

or increasing demand elasticities (as a function of premium), provided that they also

have higher arc elasticities than all lower risk-groups (condition (iii)) and their demand

elasticities do not exceed 1 (condition (iv)).

Technically, Theorem 4 also partly relaxes the iso-elasticity condition on lower risk-

groups. Specifically, condition (i) allows lower risk-groups to have either iso-elastic or

decreasing demand elasticities (as a function of premium). However, as discussed pre-

viously, demand elasticities are more likely to be increasing as a function of premium.
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So, for all practical purposes, condition (i) amounts to a restriction to iso-elastic demand

functions.

We emphasise that the conditions presented in Theorem 4 are sufficient, but not nec-

essary. In fact, experimentation using simple functions reveals that pooling can sometimes

increase social welfare even where lower risk-groups have increasing demand elasticity (as

a function of premium), as long as the marginal increase in their demand elasticities does

not exceed a certain threshold which depends on the high risk-groups’ demand elasticities.

However, we do not include these results here as they are not generic and apply to specific

analytic forms of demand elasticity functions.

4.4 Summary and Empirical Comparisons

The results obtained in this chapter give sufficient conditions for social welfare to be higher

under pooling than under full risk classification. They can be summarised as follows.

(a) Theorem 1 for iso-elastic demand (common elasticity for all risk-groups) requires only

that the common demand elasticity is less than 1.

(b) Theorem 2 (2 risk-groups) and Theorem 3 (n risk-groups) for iso-elastic demand

(different elasticities for different risk-groups) require that all higher risk-groups’ de-

mand elasticities are higher than all lower risk-groups’ demand elasticities, and all

demand elasticities are less than 1. They also provide sufficient conditions when

higher risk-groups’ demand elasticities exceed 1, as long as all lower risk-groups’ de-

mand elasticities are less than 1.

(c) Theorem 4 then uses the concept of arc elasticity of demand to extend the results in

a form applicable to more general demand functions.

The conditions above are stringent because they are sufficient for any population

structures and relative risks. But the conditions are not necessary, and where they
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are not fully satisfied, social welfare under pooling may still be higher than under risk-

differentiated premiums for some combinations of population structures and demand elas-

ticities.

Given that the conditions all relate to demand elasticities, an obvious question is:

what elasticities do we typically observe? Table 4.1 shows some relevant empirical esti-

mates. It can be seen that most estimates are of magnitude significantly less than 1. This

is at least suggestive of the possibility that social welfare in some insurance markets could

be higher under pooling than under full risk classification.

Table 4.1: Estimates of demand elasticity for various insurance markets.

Market & country Demand elasticities a Authors

Term life insurance, USA 0.66 Viswanathan et al. (2006)
Yearly renewable term life, USA 0.4 to 0.5 Pauly et al. (2003)
Whole life insurance, USA 0.71 to 0.92 Babbel (1985)
Health insurance, USA 0 to 0.2 Chernew et al. (1997),

Blumberg et al. (2001),
Buchmueller and Ohri (2006)

Health insurance, Australia 0.35 to 0.50 Butler (1999)
Farm crop insurance, USA 0.32 to 0.73 Goodwin (1993)

aEstimates in empirical papers are generally given as negative values, but we have presented the
absolute values here for consistency with the definition of demand elasticity used in this thesis.

The estimates in Table 4.1 are made in various contexts, some of which may not

correspond closely to the set-up in this thesis. However, we wish to emphasise that

they all appear to be product elasticities, not brand elasticities. Product elasticity is the

response of market demand to a small change in market price. Brand elasticity is response

of one insurer’s demand to a (unilateral) small change in one insurer’s price. Product

elasticity is the relevant parameter for our analysis. Intuitively, in a competitive market,

brand elasticity is likely to be many times higher than product elasticity.
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Brand elasticities are of more immediate interest for competitive strategy, and so

more likely to be estimated by insurers, but they are not informative for our analysis.

More detailed empirical work on product elasticities, separately for different markets and

risk-groups, is needed for policymakers to implement our results.

4.5 Relationship between Loss Coverage and Social

Welfare Results

The results for social welfare can be compared with the analogous results for loss coverage

in Hao et al. (2018). As a reminder, loss coverage is defined as expected losses compensated

by insurance for the whole population. One of the advantages of using loss coverage, is that

ex-post it is an observable quantity, whereas social welfare is based on an unobservable,

notional utility functions.

The comparison is illustrated in Figure 4.3 with two risk-groups. The boundary curve

is shown for a hypothetical population with 80% in low risk-group. The dotted area where

pooling is sure to increase loss coverage (but increases social welfare only subject to further

conditions) arises because the loss coverage criterion focuses on compensation of losses for

the population as a whole, and places no weight on the premium cross-subsidies implied by

pooling; on the other hand, social welfare takes account of the premium cross-subsidies.

For moderate dispersion of elasticities (and hence utility functions), taking account of

premium cross-subsidies typically does not change the ranking of pooling versus full risk

classification. But with large dispersion of elasticities (and hence utility functions) – in

particular, λ2 � λ1, that is where high-risks have much higher demand elasticities than

low-risks – then pooling may be beneficial in terms of loss coverage, but not in terms of

social welfare. However, λ2 � λ1 is probably an unrealistic parameterisation; for more

realistic parameters (e.g. all elasticities not much more than 1), loss coverage and social
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Figure 4.3: Elasticity conditions for pooling to beat full risk classification are more

stringent for social welfare criterion (green area on left panel) than for loss coverage

criterion (green area on right panel).

welfare usually give the same ranking of pooling versus full risk classification. This is

shown by the similar positions of the red boundary curve, inside the unit square, in the

left and right panels of Figure 4.3.

4.6 Discussion of Results

The results in this section can be compared with those of Hoy (2006), who finds that

utilitarian welfare is increased by pooling, provided only that the fraction of high-risks is

sufficiently small. Hoy (2006) assumes a utility function which is uniformly risk-averse for
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the whole population; this leads all individuals to buy insurance under either pooling or

full risk classification, albeit the pooling contract provides only partial insurance.4 When

pooling is mandated, there is (i) a loss in efficiency because the pooling contract offers only

partial insurance, and (ii) a redistribution from low risks (previously better off, because

they paid lower premiums) to high-risks. Behind the veil of ignorance, effect (i) reduces

welfare, but effect (ii) increases welfare. For a sufficiently small high-risk fraction, effect

(ii) dominates (i.e. for a risk-averse utility function, expected utility behind the veil of

ignorance is always increased by a sufficiently small redistribution towards the previously

worse off).

In contrast, we allow for a distribution of utility functions in the population, such

that not all individuals will purchase insurance at an actuarially fair price. In our model,

if we pool a very small high-risk population with high elasticity with a large low-risk

population with low elasticity, many of the high-risks who now choose to participate at

the (cheap to them) pooled price have low-risk aversion, so their gain in utility from

participating is relatively small. On the other hand, the low-elasticity lower risks’ loss in

utility from either leaving the market or paying the (expensive to them) pooled price, is

relatively large. Therefore overall, pooling might not be advantageous, even with a very

small high-risk fraction. Looking back at Figure 4.2, this is represented by the curvature

of the dashed blue boundary for α1 = 0.99 (i.e. very few high-risks) back towards the

vertical axis for λ2 � λ1.

But this feature in our model probably has little practical significance, because λ2 �
λ1 is not a realistic parameterisation. For more typical parameter values (e.g. λ1 < λ2 <

1), the relative position of the dashed blue and solid red curves in Figure 4.2 suggests that

reducing the size of the high risk-group makes pooling slightly more likely to be beneficial

(in the sense that pooling gives higher social welfare for a slightly wider range of (λ1, λ2)

4The partial-cover pooling contract is that predicted by the anticipatory (E2) equilibrium concept in
Wilson (1977).



55

parameter values). This is more in accordance with (albeit not the same as) Hoy’s result.



Chapter 5

Loss Coverage under Partial Risk

Classification

So far in this thesis, we have focused only on the two extreme premium regimes, pooling

and full risk classification. A more common scenario in practice is partial risk classifi-

cation, where risk classification is restricted but not completely banned. For example,

in some cases, a regulator may allow risk classifications based on certain criteria (e.g.

lifestyle choices) but not on others (e.g. gender). This leads to merging of some risk-

groups and the insurer charging them same premium. For some markets, regulator may

impose a limit on the ratio of premiums for high risk-groups relative to low risk-groups -

which may also lead to merging of risk-groups. These scenarios can be compared with the

polar cases by identifying and comparing against all possible intermediate classifications

of the risk-groups permitted by the regulations. A full analysis of partial risk classification

would require some extensions of our model.

Firstly, all possible solutions satisfying the equilibrium conditions may not be polit-

ically acceptable for the society or plausible in real life. For example, it would be unfair

that the lower risk-groups are charged higher premiums than the higher risk-groups, and

56
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therefore politically unacceptable. Hence we introduce a political constraint to ensure

fairness in premium charging. Secondly, it also makes sense to limit the investigation

within the set of robust equilibria only, i.e. those equilibrium scenarios, where by unilat-

eral deviation, a single insurer would not be able to gain in the long run. The robustness

constraint essentially limits our investigation within the set of stable Nash equilibria.

As a deviation from earlier sections, in the current section we use loss coverage

(Thomas (2008), Thomas (2017), Hao et al. (2018)) instead of social welfare, to com-

pare premium regimes. To obtain analytical results, it was necessary to use loss coverage,

rather than social welfare, as our policy metric in this part of the thesis.

5.1 Political, Regulatory and Economic Framework

Using the framework and notations developed in Section 3.2, consider a population con-

sisting of n distinct risk-groups with probabilities of loss given by µ = (µ1, µ2, . . . , µn),

where 0 < µ1 < µ2 < . . . < µn < 1. Let the proportion of the population belonging to

risk-group i be pi, for i = 1, 2, . . . , n. Suppose for risk-group i, insurers charge premium

(per unit of loss) πi for i = 1, 2, . . . , n, so that π = (π1, π2, . . . , πn) is a premium, or risk

classification, regime. The proportional insurance demand for risk-group i, at premium

πi, is denoted by di(πi).

Although any premium regime is theoretically possible, political, regulatory and eco-

nomic constraints limit the possibilities of premium regimes which are feasible and stable.

In this section, we discuss these constraints and their implications.

Political Constraints

Premiums need to be politically acceptable, rather than just being technically possible.

For example, although an insurer can theoretically propose a premium regime, π, where
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a high risk-group is charged a higher premium than their underlying risk and/or a low

risk-group’s premium is lower than their underlying risk. This might be politically unac-

ceptable, as this can lead to a disagreeable perception that a disadvantaged high risk-group

is over-charged to subsidise an already fortunate low risk-group.

On the other hand, it might also be considered inappropriate if a low risk-group is

charged more than a high risk-group. Such a situation can arise, for example, in the case of

three risk-groups, with say low, medium and high risks, where grouping the low and high

risk-groups at one premium, and the medium risks at another premium, is theoretically

possible; but if it leads to a premium regime where low risks are charged a higher premium

than medium risks, this might be considered unacceptable.

Formally, these notions can be encapsulated as:

Constraint 1 (Political). Given risks µ, a politically acceptable premium regime π

needs to satisfy:

µ1 ≤ π1 ≤ π2 ≤ · · · ≤ πn ≤ µn. (5.1.1)

Other examples of politically unacceptable premium regimes include those which lack

face validity (e.g. combine risk-groups having no apparent similarities), or which disad-

vantage socially protected classes (e.g. combine a low risk-group identified by disability

with a high risk-group identified by participation in dangerous sports). We do not consider

these situations here.

Regulatory Constraints: Price Collar

A regulator, or a policymaker, can implement policies which can directly influence the

range of premium regimes available in an insurance market. For example, regulators can

impose constraints on premiums to promote specific policy objectives, like banning of risk

classifications based on certain protected characteristics, e.g. gender or genes.
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In this thesis, we will analyse the impact of mandating a regulatory price collar,

whereby insurers are allowed to charge any premiums to any risk-groups, subject to the

condition that the highest premium charged cannot exceed the lowest premium by a

certain prescribed multiple. The objective of a price collar is to ensure that no risk-group

is charged an unacceptably large premium compared to the general population.

Although theoretically a regulator can impose different price collars for different cat-

egories of risk characteristics, it may not always be practical due to the complexity of

implementation and cost of regulatory oversight. So, for the purposes of this thesis, we

focus on the implications of operating a single regulatory price collar for all risk-groups.

Constraint 2 (Regulatory). Given a prescribed price collar, κ, where κ ≥ 1, any

premium regime π needs to satisfy:

πH ≤ κπL, (5.1.2)

where πL = mini πi and πH = maxi πi.

Pooled premium regime, i.e. where all risk-groups are charged the same premium, can

be achieved by setting κ = 1, which would imply πL = πH, and because of the political

constraint, premiums of all risk-groups, sandwiched between the lowest and the highest

risk-groups, would then all have to be the same.

The political constraint also requires that πH ≤ µn and πL ≥ µ1, implying:

πH
πL
≤ µn
µ1

. (5.1.3)

So for a price collar to have a tangible impact, it cannot exceed µn/µ1. Hence, a price

collar’s effective range is:

1 ≤ κ ≤ µn
µ1

. (5.1.4)
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Economic constraints

A competitive insurance market would introduce further constraints on available premium

regimes in the market to ensure that these regimes are economically viable. In particular,

a perfectly competitive insurance market would require that any available premium regime

in the market is also stable, in the sense of it not being susceptible to permitted unilateral

decisions by competing insurers. Formally:

Constraint 3 (Economic). Perfect competition between insurers allows only stable

premium regimes which are robust to permitted unilateral deviations, i.e. it is not

possible for an insurer, operating in the same market, to profitably destabilise a stable

premium regime by offering an alternative premium regime.

A direct consequence of the economic constraint is that any stable premium regime leads to

zero profits market equilibrium, because under perfect competition, no insurer can make

sustained profits or endure sustained losses indefinitely. Henceforth, unless otherwise

stated, we will only consider equilibrium premium regimes.

Using the notations developed in Chapter 3, in a perfectly competitive insurance

market, we have:

Premium income =
n∑
i=1

pi di(πi) πi. (5.1.5)

(Expected) insurance claim =
n∑
i=1

pi di(πi)µi. (5.1.6)

(Expected) profit : E (π) =
n∑
i=1

pi di(πi) (πi − µi) . (5.1.7)

Market equilibrium⇒ E (π) = 0. (5.1.8)

Clearly, full risk classification regime, π = µ satisfies Equation 5.1.8. The full risk classi-

fication regime also satisfies the political constraint and also the regulatory constraint if
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the price collar is set at: κ = µn/µ1.

At the other end of the spectrum, a regulator may ban all risk classification, by setting

a price collar of κ = 1, resulting in a pooled regime, where all risk-groups are charged

the same premium, πi = π0 for i = 1, 2, . . . , n. Although multiple solutions are possible,

only the cheapest of these solutions lead to a stable equilibrium, as any higher pooled

equilibrium premium would be eliminated by competition.

In between the two extremes of full risk classification regime (κ = µn/µ1) and pooled

regime (κ = 1), a stable intermediate risk classification regime can also be achieved for

a given price collar κ, where 1 < κ < µn/µ1, which satisfies the political, regulatory and

economic constraints. This is presented in Theorem 5 (proof in Appendix G):

Theorem 5. If there are n risk-groups, with risks µ1 < µ2 < · · · < µn, in presence of

political, regulatory and economic constraints, with regulatory price collar of κ, where

1 ≤ κ ≤ µn/µ1, there exists a stable equilibrium premium regime π = (π1, π2, . . . , πn),

such that:

πi =


πL if µi < πL;

µi if πL ≤ µi ≤ πH;

πH if µi > πH.

(5.1.9)

where πL = mini πi, πH = maxi πi and πH = κπL.

In other words, given a price collar κ, where 1 ≤ κ ≤ µn/µ1, a stable equilibrium

premium regime will consist of three collection of risk-groups:

• l lowest risk-groups such that µi < πL, where i ∈ L = {1, . . . , l};

• h highest risk-groups such that µi > πH, where i ∈ H = {n− h+ 1, . . . , n};

• remaining risk-groups such that πL ≤ µi ≤ πH, where i ∈M = {l + 1, . . . , n− h};
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where the premium regime π charges the premium πL for all risk-groups in L, the premium

πH for all risk-groups in H and the actuarially fair premiums for all remaining risk-groups

in M.

µ1 µ2 µl µl+1 µn−h µn−h+1 µn−1 µn

πL πH

L M H

It is possible for L,M or H to be empty. For example, for a full risk classification regime,

all risk-groups, being charged the fair actuarial premium, belong to M. For a pooled

regime, M is empty, unless the pooled equilibrium premium happens to exactly match

the risk of one of the risk-groups in the middle.

Given the nature of a stable market equilibrium under political, regulatory and eco-

nomic constraints, a regulator might be interested in determining the optimal value of the

price collar which would promote certain policy objectives. In this chapter, we will use

iso-elastic insurance demand to determine the optimal price collar which would maximise

loss coverage as a regulatory policy objective.

5.2 Loss Coverage under Iso-elastic Demand

In Equation 3.1.6 of Section 3.1.5 we have defined iso-elastic demand for insurance for

risk-group i, as follows:

di(πi) = τi

(
µi
πi

)λi
, (subject to a cap of 1). (3.1.6)

The risk-premium ratio, µi/πi, for risk-group i, which appears in Equation 3.1.6, plays

a crucial role in our subsequent analysis, so we will denote it by vi for ease of reference.

Further, for the two extreme risk classification regimes, i.e. full risk classification and
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pooled, it would be convenient to extend the notation of vi to vif and vip respectively.

Note that vif = 1, and vip T 1⇔ π0 S µi, where π0 is the pooled equilibrium premium.

For iso-elastic demand, the equilibrium condition in Equation 5.1.8 takes the form:

E (π) =
n∑
i=1

pi τi

(
µi
πi

)λi
(πi − µi) = 0, (5.2.1)

⇔ E (π) =
n∑
i=1

pi τi µi

(
µi
πi

)λi (πi
µi
− 1

)
= 0, (5.2.2)

⇔ E (v) =
n∑
i=1

ai
(
vλi−1
i − vλii

)
= 0, where ai =

pi τi µi∑
j pj τj µj

. (5.2.3)

In Equation 5.2.3, we have re-expressed the equilibrium condition E (π) = 0, in terms of

the risk-premium ratios, v = (v1, v2, . . . , vn), so that E (v) = 0. We have also scaled the

equilibrium condition in Equation 5.2.3, using the full risk classification regime’s expected

loss, so that the weights, ai, add up to 1, i.e.
∑

i ai = 1.

For iso-elastic demand, recalling the definition of loss coverage ratio from equation

3.4.2, the expression for loss coverage ratio, in terms of risk-premium ratios, takes the

form:

C (v) =

∑n
i=1 pi τi

(
µi
πi

)λi
µi∑n

i=1 pi τi µi
=

n∑
i=1

ai v
λi
i . (5.2.4)

A regulator, or a policymaker, might be interested in maximising loss coverage ratio,

so as to ensure that insurance purchased in the population covers the maximum possible

losses in the population. To achieve this policy objective, a regulator would aim to set an

optimal level of regulatory price collar, κ, so that loss coverage is maximised among all

possible premium regimes, which satisfy the required political, regulatory and economic

constraints.



64

Mathematically, the objective can be stated, in terms of premiums, as:

max
κ

C (π) , subject to E (π) = 0, (5.2.5)

which, for the case of iso-elastic insurance demand, using risk-premium ratios, becomes:

max
κ

C (v) =
n∑
i=1

ai v
λi
i , subject to E (v) =

n∑
i=1

ai
(
vλi−1
i − vλii

)
= 0. (5.2.6)

5.3 The Case of Two Risk-groups

For the simple case of iso-elastic demand with two risk-groups, the objective is to max-

imise:

C (v) = a1 v
λ1
1 + a2 v

λ2
2 , (5.3.1)

subject to the equilibrium condition:

E (v) = a1

(
vλ1−1

1 − vλ11

)
+ a2

(
vλ2−1

2 − vλ22

)
= 0. (5.3.2)

For two risk-groups, the political constraint, introduced in Section 5.1, requires:

µ1 ≤ π1 ≤ π2 ≤ µ2. (5.3.3)

This translates into the following conditions for v1 and v2:

µ1 ≤ π1 ⇒ v1 =
µ1

π1

≤ 1; (5.3.4)

π2 ≤ µ2 ⇒ v2 =
µ2

π2

≥ 1; (5.3.5)

π1 ≤ π2 ⇒ v2 =
µ2

π2

=
µ2

µ1

µ1

π2

≤ µ2

µ1

µ1

π1

=
µ2

µ1

v1; (5.3.6)
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which, put together, lead to:

1 ≤ v2

v1

≤ µ2

µ1

. (5.3.7)

Note that the extremes, v1 = v2 = 1 signifies the full risk classification regime; and

v2 = µ2
µ1
v1, i.e. π1 = π2 = π0, signifies the pooled regime.

Analysis of Premium Regimes under Equilibrium

Consider two premium regimes: v = (v1, v2) and v+ dv = (v1 + dv1, v2 + dv2), where both

regimes satisfy the equilibrium condition in Equation 5.3.2, so that E (v + dv) = E (v) =

0. If dv is “small”, ignoring higher-order terms in the Taylor series expansion gives 1:

dE = E (v + dv)− E (v) = E1 dv1 + E2 dv2, (5.3.8)

where Ei =
∂E

∂vi
= −ai λi vλi−2

i

[
vi −

(
1− 1

λi

)]
, for i = 1, 2. (5.3.9)

As E (v + dv) = E (v) = 0, and thus dE = 0, the relationship between dv1 and dv2 can

be expressed as:

dv2

dv1

= −a1 λ1 v
λ1−2
1

a2 λ2 v
λ2−2
2

v1 −
(

1− 1
λ1

)
v2 −

(
1− 1

λ2

)
 . (5.3.10)

Analysis of Loss Coverage Ratios under Equilibrium

To compare loss coverage ratios under two equilibrium premium regimes: v = (v1, v2) and

v + dv = (v1 + dv1, v2 + dv2), Taylor series expansion ignoring higher-order terms gives:

dC = C1 dv1 + C2 dv2, where Ci =
∂C

∂vi
= ai λi v

λi−1
i , for i = 1, 2. (5.3.11)

1Readers, who are familiar with Lagrange multipliers and Kuhn-Tucker theorem (please see Dixit
(1990) for an exposition from an economic perspective), would realise that the constrained maximisa-
tion problem, can be framed in terms of these optimisation approaches. However, instead of directly
applying these methods mechanically, we provide a detailed analysis, so that the underlying economic
interpretations are not overlooked.
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Using the relationship between dv1 and dv2 in Equation 5.3.10, we get:

dC = a1 λ1 v
λ1−1
1 dv1 + a2 λ2 v

λ2−1
2 dv2, (5.3.12)

⇒ dC

dv1

=

 a1 λ1 v
λ1−1
1

v2 −
(

1− 1
λ2

)


︸ ︷︷ ︸
T1

(
1− 1

λ1

)
︸ ︷︷ ︸

T2

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
︸ ︷︷ ︸

T3

. (5.3.13)

The relative signs of the terms T1, T2 and T3, in Equation 5.3.13, would vary ac-

cording to the values of λ1 and λ2, which in turn would determine how C depends on

v1. Specifically, for given values of λ1 and λ2, analysis of dC/dv1 would tell us if the loss

coverage is maximised for a full risk classification regime or a pooled regime or a partial

risk classification regime, which is intermediate between full risk classification and pooled

regimes, or is indeterminate.

The result is presented in Theorem 6 (proof in Appendix H).
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Theorem 6. Suppose there are two risk-groups with risks µ1 < µ2 and iso-elastic

demand elasticities λ1 and λ2 respectively. Consider the four segments, A, B, C and

D, in the (λ1, λ2)–plane formed by the intersecting curves:

λ2 = λ1; (5.3.14)

1− 1
λ2

1− 1
λ1

=
µ2

µ1

; (5.3.15)

where

• A =

{
(λ1, λ2) : λ2 ≥ λ1

}
−D;

• B =

{
(λ1, λ2) : λ2 ≤ λ1 ≤ 1 and 1 ≤(1− 1

λ2

)/(
1− 1

λ1

)
≤
µ2

µ1

}
;

• C =

{
(λ1, λ2) : λ2 ≤ λ1

}
− B;

• D =

{
(λ1, λ2) : λ2 ≥ λ1 ≥ 1 and 1 ≤(1− 1

λ2

)/(
1− 1

λ1

)
≤
µ2

µ1

}
.

For each of the segments, we have:

6.1. A : Loss coverage is maximum for pooled and minimum for full risk classification

regime, while partial risk classification is intermediate.

6.2. B : Loss coverage is minimum for a specific partial risk classification regime and

maximum for either pooled or full risk classification.

6.3. C : Loss coverage is maximum for full risk classification regime and minimum

for pooled, while partial risk classification is intermediate.

6.4. D : Loss coverage is maximum for a specific partial risk classification regime.

Figure 5.1 provides a graphical representation of the partitions of (λ1, λ2)–plane into
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segments A, B, C and D for µ2/µ1 = 2, showing where the different risk classification

regimes, i.e. pooled, full risk classification or partial, lead to maximum loss coverage.

Figure 5.1 also shows subdivision of the segments A and C into three sub-segments each,

by the vertical and horizontal axes λ1 = 1 and λ2 = 1 respectively. The sub-segments of

A and C are denoted by (A1,A2,A3) and (C1, C2, C3) respectively.

Using Theorem 6 and based on the actual values of λ1 and λ2 prevalent in the insur-

ance market, a regulator would be able set appropriate levels of price collar to maximise

loss coverage in the population. For example, if (λ1, λ2) falls in:

A: set price collar κ = 1;

B: set price collar κ = 1 or κ = µ2/µ1 depending on whether pooled or full risk

classification regime maximises loss coverage;

C: set price collar κ = µ2/µ1 (or not set a price collar at all);

D: set price collar at a level κ, which produces the partial risk classification regime

maximising loss coverage.
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A1

A2

B

C2 C1

C3

DA3

0
1

2

0 1 2

λ1

λ
2

Boundary curves

(
1− 1

λ2

)

(
1− 1

λ1

) = µ2

µ1

λ2 = λ1

Maximum loss coverage

Pooled (A : A1 +A2 +A3)

Pooled or full (B)

Full (C : C1 + C2 + C3)

Partial (D)

Figure 5.1: For µ2/µ1 = 2, the plot shows the partition of the (λ1, λ2)–plane into four

segments, A, B, C and D, where different risk classification regimes lead to maximum

loss coverage. The segments A and C are further subdivided into three sub-segments

each, namely (A1,A2,A3) and (C1, C2, C3) respectively, by the vertical and horizontal axes

λ1 = 1 and λ2 = 1 respectively.
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5.4 Generalisation to n Risk-groups

In an insurance market with more than two risk-groups, we can generalise the result in

Theorem 6, using the structure of the stable equilibrium premium regime in presence of

the political, regulatory and economic constraints, as outlined in Theorem 5,.

Recall that, according to Theorem 5, the stable equilibrium premium regime π

charges: premium πL for all risk-groups in L, i.e. with risks less than πL; premium

πH for all risk-groups in H, i.e. with risks more than πH; and actuarially fair premium for

all remaining risk-groups in M.

While generalising our results to more than two risk-groups, we will assume that

all risk-groups in L have the same iso-elastic demand elasticity λL and all risk-groups

in H have the same iso-elastic demand elasticity λH. This is based on the premise that

risk-groups with similar risks are likely to have similar sensitivities towards price changes.

Analysis of Premium Regimes Under Equilibrium

As the risk-groups inM do not contribute to profit or loss, the equilibrium condition can

be expressed as:

E (π) =
∑
i∈L

pi τi

(
µi
πL

)λL
(πL − µi)︸ ︷︷ ︸

EL

+
∑
j∈H

pj τj

(
µj
πH

)λH
(πH − µj)︸ ︷︷ ︸

EH

= 0. (5.4.1)

The first term, EL, in Equation 5.4.1, can be split as follows:

EL =
∑
i∈L

pi τi

(
µi
πL

)λL
(πL − µi) ; (5.4.2)

=
∑
i∈L

pi τi

(
µL
πL

)λL ( µi
µL

)λL
[(πL − µL) + (µL − µi)] ; (5.4.3)
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=

(
µL
πL

)λL [∑
i∈L

pi τi

(
µi
µL

)λL
(πL − µL) +

∑
i∈L

pi τi

(
µi
µL

)λL
(µL − µi)

]
; (5.4.4)

where µL is such that the second term in Equation 5.4.4, is zero, i.e.:

∑
i∈L

pi τi

(
µi
µL

)λL
(µL − µi) = 0, (5.4.5)

so that µL can be interpreted as the pooled equilibrium premium, if the insurance market

only consisted of the risk-groups in L. Also, µL is unique and is given by:

µL =

∑
i∈L pi τi µ

λL+1
i∑

i∈L pi τi µ
λL
i

, so that: µ1 ≤ µL ≤ max
i∈L

µi ≤ πL. (5.4.6)

Using such a µL, the expression for EL in Equation 5.4.4 becomes:

EL =

[∑
i∈L

pi τi

(
µi
µL

)λL] (µL
πL

)λL
(πL − µL) = pLτL

(
µL
πL

)λL
(πL − µL) ; (5.4.7)

where pL =
∑
i∈L

pi, τL =
∑
i∈L

(
pi
pL

)
τi

(
µi
µL

)λL
. (5.4.8)

Note that pL is the aggregate proportion of population belonging to the collection of risk-

groups in L and τL can be interpreted as the ‘fair-premium demand’ when all risk-groups

in L are pooled and charged the same pooled premium, µL.

A similar line of argument for the risk-groups in H leads to:

EH = pHτH

(
µH

πH

)λH
(πH − µH) ; where pH =

∑
j∈H

pj, τH =
∑
j∈H

(
pj
pH

)
τj

(
µj
µH

)λH
, (5.4.9)

where µH =

∑
j∈H pj τj µ

λH+1
j∑

j∈H pj τj µ
λH
j

, so that: πH ≤ min
j∈H

µj ≤ µH ≤ µn. (5.4.10)

Using the expressions for EL and EH in Equations 5.4.7 and 5.4.9 respectively, Equa-
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tion 5.4.1 becomes:

E (π) = pL τL

(
µL
πL

)λL
(πL − µL)︸ ︷︷ ︸

EL

+ pH τH

(
µH

πH

)λH
(πH − µH)︸ ︷︷ ︸

EH

= 0. (5.4.11)

Equation 5.4.11 shows that it is possible to conceptualise L and H as collective risk-

groups with demand elasticities λL and λH respectively, where the collective risks are the

pooled equilibrium premiums, µL and µH, of the respective collections. Essentially, this

reduces the problem involving more than two risk-groups to the simpler two risk-groups

problem, so that the analysis of Section 5.3 can be extended directly to this situation.

Following the approach of Section 5.3, we express the equilibrium condition in Equa-

tions 5.4.1 in terms of the risk-premium ratios, as follows:

E (v) = aL
(
vλL−1
L − vλLL

)
+ aH

(
vλH−1
H

− vλH
H

)
= 0; (5.4.12)

where vL =
µL
πL

; vH =
µH

πH
; (5.4.13)

aL =
pL τL µL

pL τL µL + pH τH µH +
∑

m∈M pm τm µm
; (5.4.14)

aH =
pH τH µH

pL τL µL + pH τH µH +
∑

m∈M pm τm µm
. (5.4.15)

Analysis of Loss Coverage Ratios Under Equilibrium

The loss coverage for the stable premium regime can then be expressed as:

C (π) =
∑
i∈L

pi τi

(
µi
πL

)λL
µi +

∑
j∈H

pj τj

(
µj
πH

)λH
µj +

∑
m∈M

pm τm µj; (5.4.16)

=
∑
i∈L

pi τi

(
µi
πL

)λL
πL +

∑
j∈H

pj τj

(
µj
πH

)λH
πH +

∑
m∈M

pm τm µj; (5.4.17)
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. . . by the equilibrium condition in Equation 5.4.1;

= pL τL

(
µL
πL

)λL
πL + pH τH

(
µH

πH

)λH
πH +

∑
m∈M

pm τm µj; (5.4.18)

. . . by the definitions of pL, τL, µL, pH, τH and µH;

= pL τL

(
µL
πL

)λL
µL + pH τH

(
µH

πH

)λH
µH +

∑
m∈M

pm τm µj; (5.4.19)

by the equilibrium condition in Equation 5.4.11.

Using the definition of loss coverage ratio in Equation 3.4.2 and the expression for

loss coverage in Equation 5.4.19, we get:

C (π) =
LC (π)

LC
(
µ
) =

pL τL

(
µL
πL

)λL
µL + pH τH

(
µH
πH

)λH
µH +

∑
m∈M pm τm µm∑n

i=1 pi τi µi
; (5.4.20)

= ξ
pL τL

(
µL
πL

)λL
µL + pH τH

(
µH
πH

)λH
µH +

∑
m∈M pm τm µm

pL τL µL + pH τH µH +
∑

m∈M pm τm µm
; (5.4.21)

where ξ =
pL τL µL + pH τH µH +

∑
m∈M pm τm µm∑n

i=1 pi τi µi
. (5.4.22)

The loss coverage ratio can then be expressed in terms of the risk-premium ratios as:

C (v) = ξ
[
aL v

λL
L + aH v

λH
H

+ aM
]
, (5.4.23)

where aM =

∑
m∈M pm τm µm

pL τL µL + pH τH µH +
∑

m∈M pm τm µm
. (5.4.24)

The role of the constant, ξ, is to provide the link of the loss coverage ratios between

the insurance market with n distinct risk-groups and the conceptualised market involving

the two collective risk-groups, L and H (along with the risk-groups inM). ξ can also be

interpreted as the loss coverage ratio for a premium regime charging the respective pooled
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premiums µL and µH for the collective risk-groups L and H (and fair actuarial premium

for risk-groups in M).

Assuming the compositions of L, M and H remain unaffected, changing πL (or,

equivalently, vL) affects πH (or, equivalently, vH) without any implications for the risk-

groups in M. Also note that, as long as L, M and H remain unchanged, the constant ξ

is unaffected. Then following the same steps as in Section 5.3, we get:

dC

dvL
= ξ

 aL λL v
λL−1
L

vH −
(

1− 1
λH

)


︸ ︷︷ ︸
T1

(
1− 1

λL

)
︸ ︷︷ ︸

T2

vH
vL
−

(
1− 1

λH

)
(

1− 1
λL

)


︸ ︷︷ ︸
T3

. (5.4.25)

An alternative proof of Equation 5.4.25, from first principles, is given in Appendix I.

Noting that ξ is positive, the three multiplicative terms, T1, T2 and T3, in Equation

5.4.25 can be analysed in the same way as in Theorem 6. Given that aL, λL, λH and vL

are all positive:

µH ≥ πH and λH > 0⇒ T1 ≥ 0. (5.4.26)

Also: λL T 1⇔ T2 T 0. (5.4.27)

T3 can be analysed in the same way as for the case of two risk-groups. The general result

is presented in Theorem 7.
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Theorem 7. Suppose there are n risk-groups, with risks µ1 < µ2 < · · · < µn and

iso-elastic demand elasticities λ1, λ2, . . . , λn respectively.

Under political, regulatory and economic constraints, with regulatory price collar

κ, where 1 ≤ κ ≤ µn/µ1, let π be the stable equilibrium premium regime, subdividing

the risk-groups in three collections L, M and H, where all risk-groups in L pay the

same premium πL, all risk-groups in H pay the same premium πH, and all risk-groups

in M pay their fair actuarial premiums. Further suppose:

λi =

λL if i ∈ L;

λH if i ∈ H.
(5.4.28)

Let µL and µH be the pooled equilibrium premiums of the risk-groups in L and H
respectively. Consider the four segments, A, B, C and D, in the (λL, λH)–plane formed

by the intersecting curves:

λH = λL; (5.4.29)

1− 1
λH

1− 1
λL

=
µH

µL
; (5.4.30)

where

• A =

{
(λL, λH) : λH ≥ λL

}
−D;

• B =

{
(λL, λH) : λH ≤ λL ≤ 1 and 1 ≤(1− 1

λH

)/(
1− 1

λL

)
≤
µH

µL

}
;

• C =

{
(λL, λH) : λH ≤ λL

}
− B;

• D =

{
(λL, λH) : λH ≥ λL ≥ 1 and 1 ≤(1− 1

λH

)/(
1− 1

λL

)
≤
µH

µL

}
.

For each of the segments, we have:

7.1. A : Loss coverage increases if price collar, κ, is decreased.

7.2. B : Loss coverage is minimum for a specific price collar, κ.

7.3. C : Loss coverage increases if price collar, κ, is increased.

7.4. D : Loss coverage is maximum for a specific price collar, κ.
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Theorem 7 follows directly from Theorem 6, with an added complication that if

the price collar, κ, changes, then it is possible for the compositions of L, M and H to

change. However, assuming insurance demands to be continuously differentiable functions

of premiums, which is indeed the case for iso-elastic demand functions, the conclusions

would remain unaffected if the constituents of L, M and H change when κ changes.

Moreover, it is important to be mindful of the fact that (µH /µL ) will change as the

compositions of L,M and H change, and hence the actual boundaries of segments A, B,

C and D would shift slightly as a result.

Note that, Theorem 7 requires that the risk-groups in L and H always have iso-elastic

demand elasticities λL and λH respectively, even if the compositions of L,M andH change.

This is not necessarily a constraint because, as κ changes, transfer of risk-groups would

only happen between collections L andM or between collectionsM and H. So, Theorem

7 only requires that if a risk-group in M joins L, it has a demand elasticity of λL, and if

a risk-group in M joins H, it has a demand elasticity of λH.

5.5 Discussion of Results

In this chapter, we have dealt with the partial risk classification scenarios where regulator

can introduce a price collar to restrict risk classifications. Note that the price collar,

at its lower and upper extremes represent the pooled and full risk classification regimes

respectively.

Our results for partial classification regimes are in agreement with our general finding

that when demand elasticities are less than 1, and low risk-groups are less price sensitive

than the high risk-groups, more pooling, characterised by lowering the price collar κ,

increases social welfare and insurance loss coverage. We derived sufficient conditions on

demand elasticities, which a regulator may find useful to devise a price collar to achieve

higher loss coverage.



Chapter 6

Conclusions

This thesis has evaluated the welfare effects of restrictions on risk classification, in circum-

stances where institutional or regulatory factors lead insurers to restrict risk classification,

and in particular the extreme case of pooling all risks at a common price. Such restric-

tions have both efficiency and equity effects. Depending on the distribution of utility

functions in the population and the resulting insurance demand functions and elasticities,

utilitarian social welfare and insurance loss coverage can increase or decrease.

In terms of social welfare, the distribution of utility functions in the population influ-

ences social welfare through two mechanisms. First, utility functions determine individ-

uals’ insurance purchasing decisions, which determine the insurance demand curve and

hence the equilibrium prices when insurance risk classifications are restricted. Second,

utility functions determine the utilities which individuals assign to their outcomes given

the equilibrium insurance premium.

Because the distribution of utility functions implies the aggregate insurance demand

function and vice versa, the distribution of utility functions across the population can be

completely characterised by demand elasticities. Hence in this thesis, demand elasticity

functions have been used to specify both demand and (implicitly) the distribution of
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utility functions in the population.

We derived sufficient conditions on demand elasticities of higher and lower risks which

ensure that social welfare will be higher under pooling than under fully risk-differentiated

premiums. The conditions were stated first for iso-elastic demand with a single elasticity

parameter; then for iso-elastic demand with different elasticity parameters for different

risk-groups; and then generalised in a form applicable to other demand functions using the

concept of arc elasticity. The conditions for higher social welfare under pooling encompass

many plausible combinations of higher and lower risks’ demand elasticities, particularly

in scenarios where all demand elasticities are less than 1.

In general, from the results we can see that as long as lower risk-groups have demand

elasticities less than 1, and higher risk-groups have higher demand elasticities than the

lower risk-groups, social welfare under pooling is higher. Having lower demand elasticity

implies that the lower risk-groups are less price sensitive. Hence the demand from lower

risk-groups would not fall significantly under pooling, whereas higher risk-groups being

more price sensitive, would buy more insurance under pooling. Rise in expected utility of

higher risk-groups under pooling would more than compensate the loss of utility of lower

risk-groups caused by falling coverage and subsidising higher risk-groups. As a result

social welfare at the aggregate level is expected to rise under pooling in these conditions.

Full risk classification or ban of risk classification are two extreme cases of equilibrium

premium pricing regimes. Due to various reasons they may not be practicable in real life.

For example, a full risk classification can be prohibitively expensive for insurers and

therefore some pooling of risk-groups can be expected. Pooling of specific risk-groups can

be mandated by regulators too. For example a regulator may ban genetic risk profiling

but allow profiling based on lifestyle choice. On the other hand, complete ban on risk

profiling can also be unimplementable due to political or ethical reasons. Hence, partial

risk classification would be an area of interest for any real world policy maker.

In our analysis of partial risk classification, we have investigated the effect of a price
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collar on loss coverage. To obtain analytical results, it was necessary to use loss coverage,

rather than social welfare, as our policy metric in this part of the thesis. Note that, full

risk classification and pooling can be interpreted as special cases of a price collar. Under

iso-elastic demand function, we provide a set of conditions on demand elasticities which

determines the impact of changing price collar on loss coverage. When implementing a

complete ban on classification is not plausible, a regulator can use price collars to achieve

a relatively high level of loss coverage and social welfare.

In summary, the results show that there exists a large set of scenarios, especially

where the lower risk-groups have demand elasticity less than 1, and are relatively less

price sensitive than higher risk-groups, where imposition of some price collar to limit

the price charged for high risk-groups would deliver higher benefit to the society as a

whole, compared to an unrestricted risk classification regime. This rise in benefit can

be quantified by expected utilitarian social welfare or by insurance loss coverage, both

measures broadly producing similar conclusions.

Empirical data on insurance demand elasticities is available in many insurance mar-

kets. We hope that with the help of these results regulators and policymakers can set

policies on risk classifications, with clear objectives of maximising social welfare and/or

loss coverage, for these markets. This thesis shows that these societal benefits can be

realised, regardless of the proportion of people in different risk-groups in the population.

6.1 Extensions

In the current thesis we have focused on a specific case of partial risk classification, viz.

price collar, and analysed its effect on loss coverage. However, regulators could also

pursue other forms of restricted risk classification. For example, a regulator may restrict

risk classification for some risk categories (e.g. gender), but not for others (e.g. lifestyle

choices). These scenarios can be compared with the polar cases (i.e. full classification or
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pooling) by identifying and comparing against all the possible intermediate groupings of

the risk-groups permitted by any regulatory ban.

A detailed analysis would require us to systematically enumerate and analyse all

possible partial risk classifications permitted under a given regulatory regime. For two

risk-groups, only the polar risk classification regimes are possible. For three risk-groups,

in addition to the two polar regimes, three partial risk classification regimes are possible,

by grouping two of the risk-groups together while leaving out the third; this gives a total

of five possible regimes. The number of possible regimes grows super-exponentially with

the number of risk-groups. In combinatorial mathematics, this is equivalent to counting

all possible partitions of a n-member set, known as the Bell number, Bn (for more details

on Bell numbers see Sándor and Crstici (2004)). For six risk groups, the Bell number is

B6 = 203, and for ten risk groups, B10 = 115,975, which suggests that analysis of partial

risk classification with a realistic number of risk-groups might require a more numerical

approach.

Analysis of social welfare directly (i.e. without reference to the loss coverage) un-

der partial risk classification and for generalised form of demand function could also be

considered as a possible area of future research.
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Appendix A

Expressions for Social Welfare Under

Iso-elastic Demand

Lemma 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with

iso-elastic demand elasticities λ1, λ2, . . . , λn respectively, then for a given premium

regime π, the expression for social welfare is given by:

S(π) =
n∑
i=1

pi τi
1

(λi + 1)

(
µi
πi

)λi+1

πi +K, (4.1.8)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

piτi

(
µi
πi

)λi
(πi − µi) = 0, (4.1.9)

and the constant K does not depend on the premium regime under consideration.

Proof. The equilibrium condition follows directly by inserting the specific expression for

iso-elastic insurance demand in Equation 3.3.15.

Now recall that, given a risk-group i, insurance is purchased when Γi < µi/πi (a
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subscript i in Γi is used to denote the random variable specific to risk-group i). Hence:

[Q | Risk-group i ] = I

[
Γi <

µi
πi

]
⇒ E [Q | Risk-group i ] = P

[
Γi <

µi
πi

]
= di(πi),

(A.0.1)

where I(·) is the indicator function.

Using the expression for social welfare as given in Equation 3.3.11 we have:

S(π) = E [Q (X − Π Γ) ] +K = E [QX ]− E [QΠ Γ ] +K. (A.0.2)

Evaluating each of these terms separately:

E [QX ] =
n∑
i=1

P[Risk-group i]E [QX | Risk-group i ] (A.0.3)

=
n∑
i=1

pi E [Q | Risk-group i ] E [X | Risk-group i ] , using Assumption 8,

(A.0.4)

=
n∑
i=1

pi di(πi)µi, (A.0.5)

=
n∑
i=1

pi τi

(
µi
πi

)λi
µi, (A.0.6)

=
n∑
i=1

pi τi

(
µi
πi

)λi+1

πi, (A.0.7)

and:

E [QΠ Γ ] =
n∑
i=1

P[Risk-group i]E [QΠ Γ | Risk-group i ] (A.0.8)

=
n∑
i=1

pi E
[
I

[
Γi <

µi
πi

]
Γi

]
πi, (A.0.9)
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=
n∑
i=1

pi

[∫ µi
πi

0

γτiλiγ
λi−1dγ

]
πi, using the distribution of Γi in Equation 4.1.7,

(A.0.10)

=
n∑
i=1

pi τi
λi

(λi + 1)

(
µi
πi

)λi+1

πi. (A.0.11)

Putting these together, we have:

S(π) =
n∑
i=1

pi τi
1

(λi + 1)

(
µi
πi

)λi+1

πi +K, (A.0.12)

where K = E[1−X] does not depend on the premium regime under consideration.



Appendix B

Proof of Theorem 1

Theorem 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with the

same positive constant demand elasticity λ for all risk-groups. Then:

λ S 1⇒ S(π0) T S(µ). (4.1.14)

Proof. Using the construction involving risk-premium ratios, vi = µi/π0, we observe that,

under the assumption of the same constant demand elasticity, λ, for all risk-groups, the

equilibrium condition in Equation 4.1.10 simply becomes:

n∑
i=1

αiv
λ+1
i =

n∑
i=1

αiv
λ
i . (B.0.1)

And the condition comparing social welfare under pooling against that under the full risk

classification regime in Equation 4.1.12 simplifies to:

S(π0) T S(µ)⇔
n∑
i=1

αi v
λ+1
i

λ+ 1
T

n∑
i=1

αi vi
λ+ 1

⇔
n∑
i=1

αi v
λ+1
i T

n∑
i=1

αi vi. (B.0.2)

We will consider the three cases λ = 1, 0 < λ < 1 and λ > 1 separately:
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Case: λ = 1: Due to the equilibrium condition in Equation B.0.1, for λ = 1:

n∑
i=1

αiv
λ+1
i =

n∑
i=1

αiv
λ
i =

n∑
i=1

αivi ⇒ S(π0) = S(µ). (B.0.3)

Case: 0 < λ < 1: (Weighted) Hölder’s inequality (Hardy et al. (1988); Cvetkovski (2012))

states:

(Weighted) Hölder’s inequality. Let a1, a2, . . . , an; b1, b2 . . . , bn;m1,m2, . . . ,mn be

three sequences of positive reals numbers and If p, q > 1 be such that 1/p + 1/q = 1,

Then: (
n∑
i=1

mi a
p
i

)1/p ( n∑
i=1

mi b
q
i

)1/q

≥
n∑
i=1

mi ai bi. (B.0.4)

Equality occurs if and only if
ap1
bq1

=
ap2
bq2

= · · · = apn
bqn

.

Setting 1/p = λ, 1/q = 1 − λ, ai = vλ
2

i , bi = v1−λ2
i and mi = αi; and noting that

the ratios, api /b
q
i = 1/vi, are not constant (unless all vi = 1), (weighted) Hölder’s

inequality gives:

[
n∑
i=1

αi

(
vλ

2

i

) 1
λ

]λ [ n∑
i=1

αi

(
v1−λ2
i

) 1
1−λ

]1−λ

>
n∑
i=1

αi v
λ2

i v1−λ2
i , (B.0.5)

⇒
[

n∑
i=1

αi v
λ
i

]λ [ n∑
i=1

αi v
1+λ
i

]1−λ

>

n∑
i=1

αi vi, (B.0.6)

⇒
n∑
i=1

αi v
1+λ
i >

n∑
i=1

αi vi, by the equilibrium condition in Equation B.0.1,

(B.0.7)

⇒ S(π0) > S(µ), by the social welfare condition in Equation B.0.2. (B.0.8)

Case: λ > 1: Young’s inequality (Hardy et al. (1988); Cvetkovski (2012)) states that:
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Young’s inequality. For a, b > 0 and p, q > 1 such that 1/p+ 1/q = 1:

ab ≤ ap

p
+
bq

q
. (B.0.9)

Equality occurs if and only if ap = bq.

Setting p = λ, q = λ
λ−1

, a = v
1
λ
i , b = v

λ− 1
λ

i and noting that ap 6= bq unless vi = 1,

Young’s inequality gives:

v
1
λ
i v

λ− 1
λ

i <
1

λ
v

1
λ
λ

i +
λ− 1

λ
v

(λ− 1
λ

) λ
λ−1

i , (B.0.10)

⇒ vλi <
1

λ
vi +

λ− 1

λ
vλ+1
i , (B.0.11)

⇒
n∑
i=1

αi v
λ
i <

1

λ

n∑
i=1

αi vi +
λ− 1

λ

n∑
i=1

αi v
λ+1
i , (B.0.12)

⇒
n∑
i=1

αi v
λ+1
i <

n∑
i=1

αi vi, by the equilibrium condition in Equation B.0.1,

(B.0.13)

⇒ S(π0) < S(µ), by the social welfare condition in Equation B.0.2. (B.0.14)



Appendix C

Proof of Theorem 3

In this section, we prove Theorem 3. As discussed in Section 4.2, Theorem 2 is a special

case of Theorem 3.

Theorem 3. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with

iso-elastic demand elasticities λ1, λ2, . . . , λn respectively.

3.1. For any underlying population structures:

λmaxlo ≤ λminhi ≤ λmaxhi ≤ 1⇒ S(π0) ≥ S(µ). (4.2.3)

3.2. For any underlying population structures:

λmaxlo ≤ 1 and 1 ≤ λminhi ≤ λmaxhi ≤
1

λmaxlo

⇒ S(π0) ≥ S(µ). (4.2.4)

3.3. There exists a threshold premium π∗ such that:

λmaxlo ≤ 1 and λminhi >
1

λminlo

and π0 ≥ π∗ ⇒ S(π0) ≥ S(µ). (4.2.5)

Proof. (of Theorem 3.1) The proof is presented in the following steps:
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Step 1: If a > 0 and 0 < b ≤ 1, then since Arithmetic Mean ≥ Geometric Mean:

(1− b)ab+1 + bab ≥ a(b+1)(1−b) × ab2 = a⇒
(
ab+1 − a

b

)
≥
(
ab+1 − ab

)
. (C.0.1)

Step 2: As vi > 0 and 0 < λi ≤ 1 for all risk-groups, using Step 1, we get:

n∑
i=1

αi
vλi+1
i − vi
λi

≥
n∑
i=1

αi
(
vλi+1
i − vλii

)
=

n∑
i=1

αiv
λi+1
i −

n∑
i=1

αiv
λi
i = 0, (C.0.2)

by equilibrium condition in Equation 4.1.10.

Step 3: Using Step 2, and separating out the terms involving vi > 1 from vi ≤ 1 we get:

∑
i: vi>1

αi
vλi+1
i − vi
λi

≥
∑
i: vi≤1

αi
vi − vλi+1

i

λi
≥ 0. (C.0.3)

Step 4: As 0 < x ≤ y ⇒ x
x+1
≤ y

y+1
, if 0 < vj ≤ 1 ≤ vk, for some j and k, then

λj ≤ λmaxlo ≤ λminhi ≤ λk ⇒
λj

λj + 1
≤ λmaxlo

λmaxlo + 1
≤ λminhi

λminhi + 1
≤ λk
λk + 1

. (C.0.4)

Step 5: Using Steps 3 and 4, we get:

∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
=
∑
i: vi>1

αi
λi

λi + 1

vλi+1
i − vi
λi

, (C.0.5)

≥ λminhi

λminhi + 1

∑
i: vi>1

αi
vλi+1
i − vi
λi

, (C.0.6)

≥ λmaxlo

λmiaxlo + 1

∑
i: vi≤1

αi
vi − vλi+1

i

λi
, (C.0.7)

≥
∑
i: vi≤1

αi
λi

λi + 1

vi − vλi+1
i

λi
, (C.0.8)
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=
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
(C.0.9)

Hence by Equation 4.1.13, S(π0) ≥ S(µ).

Proof. (of Theorem 3.2) The proof is presented in the following steps:

Step 1: Let 0 < a ≤ 1, b ≥ a such that a b ≤ 1 and function g(v) be defined as:

g(v) = (b− a)va + (a+ 1)va−1 − (b+ 1), for v > 0. (C.0.10)

If a = 1, then b = 1 (as b ≥ a and ab ≤ 1), in which case: g(v) = 0 for v > 0.

If 0 < a < 1 i.e. (a− 1) < 0, limv→0+ g(v) = +∞, g(1) = 0 and:

g′(v) = (b− a) a va−2

[
v − 1− a2

ab− a2

]
< 0, for 0 < v < 1 as ab ≤ 1. (C.0.11)

So g(v) is a non-negative decreasing function over 0 < v ≤ 1. Hence g(v) ≥ 0 for

0 < v ≤ 1.

Step 2: For vi ≤ 1, set a = λi and b = λmaxhi ⇒ ab = λi λ
max
hi ≤ λmaxlo λmaxhi ≤ 1. By Step

1:

(λmaxhi − λi)vλii + (λi + 1)vλi−1
i − (λmaxhi + 1) ≥ 0. (C.0.12)

Rearranging and multiplying by αi vi on both sides, we get:

αi
λmaxhi + 1

[
vλii − vλi+1

i

]
≥ αi
λi + 1

[
vi − vλi+1

i

]
. (C.0.13)

As this holds for all vi ≤ 1, summing over all such risk-groups leads to:

1

λmaxhi + 1

∑
i: vi≤1

αi
[
vλii − vλi+1

i

]
≥
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
. (C.0.14)
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Step 3: For all risk-groups with vi > 1, λi ≥ 1 (since λminhi ≥ 1). So:

∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λmaxhi + 1

∑
i: vi>1

αi
[
vλi+1
i − vi

]
, as λmaxhi ≥ λi (C.0.15)

≥ 1

λmaxhi + 1

∑
i: vi>1

αi
[
vλi+1
i − vλii

]
, as vi > 1 and λi ≥ 1

(C.0.16)

=
1

λmaxhi + 1

∑
i: vi≤1

αi
[
vλii − vλi+1

i

]
, by Equation 4.1.11.

(C.0.17)

Step 4: Combining Steps 2 and 3, we get:

∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λmaxhi + 1

∑
i: vi≤1

αi
[
vλii − vλi+1

i

]
≥
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
,

(C.0.18)

Hence by Equation 4.1.13, S(π0) ≥ S(µ).

Proof. (of Theorem 3.3) The proof is presented in the following steps:

Step 1: Let 0 < a ≤ 1, b > a such that a b > 1 and function h(v) be defined as:

h(v) = (b− a)vb − (b+ 1)vb−1 + (a+ 1), for v > 0. (C.0.19)

limv→0+ h(v) = a+ 1 > 1, limv→+∞ h(v) = +∞, h(1) = 0 and:

h′(v) = (b− a) b vb−2

[
v − b2 − 1

b2 − ab

]
⇒ h′(vm) = 0⇒ vm =

b2 − 1

b2 − ab > 1. (C.0.20)

h′′(vm) > 0 ⇒ vm is minimum. So there exists a v∗ > 1 such that, h(v) ≤ 0 for

1 < v ≤ v∗.
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Step 2: For all vi > 1, there exists a v∗i such that for 1 < vi ≤ v∗i ,

∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λminlo + 1

∑
i: vi>1

αi
[
vλi+1
i − vλii

]
. (C.0.21)

To prove this, set a = λminlo and b = λi, so ab = λi λ
min
lo ≥ λminhi λminlo > 1. So, by

Step 1:

(λi − λminlo )vλii − (λi + 1)vλi−1
i + (λminlo + 1) ≤ 0. (C.0.22)

Rearranging and multiplying by αi vi on both sides, we get:

αi
λi + 1

[
vλi+1
i − vi

]
≥ αi
λminlo + 1

[
vλi+1
i − vλii

]
. (C.0.23)

As this holds for all vi > 1, summing over all such risk-groups leads to Equation

C.0.21.

Step 3: Based on all risk-groups for which vi ≤ 1:

∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
≤ 1

λminlo + 1

∑
i: vi≤1

αi
[
vi − vλi+1

i

]
, as λminlo ≤ λi (C.0.24)

≤ 1

λminlo + 1

∑
i: vi≤1

αi
[
vλii − vλi+1

i

]
, as vi ≤ 1 and λi ≤ 1

(C.0.25)

=
1

λminlo + 1

∑
i: vi>1

αi
[
vλi+1
i − vλii

]
, by Equation 4.1.11.

(C.0.26)

Step 4: Combining Steps 2 and 3, we get

∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λminlo + 1

∑
i: vi>1

αi
[
vλi+1
i − vλii

]
≥
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
,

(C.0.27)
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for 1 < vi ≤ v∗i for all vi > 1.

As vi = µi/π0, vi ≤ v∗i ⇒ π0 ≥ µi/v
∗
i for all risk-groups for which vi > 1. So if we define

π∗ = maxi: vi>1 (µi/v
∗
i ), then π0 ≥ π∗ ⇒ S(π0) ≥ S(µ) by Equation 4.1.13.



Appendix D

Expression for Social Welfare Under

General Insurance Demand

Lemma 2. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn and

any general demand functions. Then for a given premium regime π, for which no

risk-group is fully insured, the expression for social welfare is given by:

S(π) =
n∑
i=1

piGi

(
µi
πi

)
πi +K, where Gi(g) =

∫ g

0

P [ Γi < γ ] dγ, (4.3.2)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

pi di(πi) (πi − µi) = 0, (4.3.3)

and the constant K does not depend on the premium regime under consideration.
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Proof. Recall that, given a risk-group i, insurance is purchased when Γi < µi/πi. Hence:

[Q | Risk-group i ] = I

[
Γi <

µi
πi

]
⇒ E [Q | Risk-group i ] = P

[
Γi <

µi
πi

]
= di(πi).

(D.0.1)

Using the expression for social welfare as given in Equation 3.3.11 we have:

S(π) = E [Q (X − Π Γ) ] +K, (D.0.2)

= E [QX ]− E [QΠ Γ ] +K, (D.0.3)

= E [QΠ ]− E [QΠ Γ ] +K, as under equilibrium: E [QX ] = E [QΠ ] (D.0.4)

= E [ (1− Γ)QΠ ] +K, (D.0.5)

=
n∑
i=1

pi E
[

(1− Γi) I

[
Γi ≤

µi
πi

] ]
πi +K. (D.0.6)

Now using Lemma 3:

S(π) =
n∑
i=1

pi

[(
1− µi

πi

)
P

[
Γi ≤

µi
πi

]
+

∫ µi
πi

0

P [ Γi ≤ γ ] dγ

]
πi +K, (D.0.7)

=
n∑
i=1

pi

(
1− µi

πi

)
P

[
Γi ≤

µi
πi

]
πi +

n∑
i=1

pi

∫ µi
πi

0

P [ Γi ≤ γ ] dγ πi +K, (D.0.8)

=
n∑
i=1

pi di(πi) (πi − µi) +
n∑
i=1

piGi

(
µi
πi

)
πi +K, as P

[
Γi ≤

µi
πi

]
= di(πi),

(D.0.9)

=
n∑
i=1

piGi

(
µi
πi

)
πi +K, as in equilibrium:

n∑
i=1

pi di(πi) (πi − µi) = 0.

(D.0.10)

as required.
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Lemma 3. For a positive continuous random variable, X:

(i) E [X ] =
∫∞

0
P [X > y ] dy;

(ii) E [X I [X ≤ c ] ] = cP [X ≤ c ]−
∫ c

0
P [X ≤ y ] dy;

(iii) E [ (1−X) I [X ≤ c ] ] = (1− c) P [X ≤ c ] +
∫ c

0
P [X ≤ y ] dy.

Proof. Assuming the density function of X is given by p(x)

(i)

E [X ] =

∫ ∞
0

x p(x) dx =

∫ ∞
0

[∫ x

0

dy

]
p(x) dx =

∫ ∞
0

[∫ ∞
y

p(x) dx

]
dy

=

∫ ∞
0

P [X > y ] dy. (D.0.11)

(ii)

E [X I [X ≤ c ] ] =

∫ c

0

x p(x) dx, (D.0.12)

=

∫ c

0

[∫ x

0

dy

]
p(x) dx, (D.0.13)

=

∫ c

0

[∫ c

y

p(x) dx

]
dy, by interchanging integrals, (D.0.14)

=

∫ c

0

P [ y < X ≤ c ] dy, (D.0.15)

=

∫ c

0

[ P [X ≤ c ]− P [X ≤ y ] ] dy, (D.0.16)

= cP [X ≤ c ]−
∫ c

0

P [X ≤ y ] dy. (D.0.17)
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(iii)

E [ (1−X) I [X ≤ c ] ]

= E [ I [X ≤ c ] ]− E [X I [X ≤ c ] ] , (D.0.18)

= P [X ≤ c ]−
[
cP [X ≤ c ]−

∫ c

0

P [X ≤ y ] dy

]
, (D.0.19)

= (1− c) P [X ≤ c ] +

∫ c

0

P [X ≤ y ] dy (D.0.20)



Appendix E

Derivations for General Demand

Elasticities

First note that if demand elasticity is an increasing function of premium π, then it is a

decreasing function of v = µi/π; and hence a weighted average such as arc elasticity λi(v)

is also decreasing function of v. The inverse statements (i.e. with increasing replaced by

decreasing and vice versa) also hold.

Lemma 4. If for a risk-group i, µi > π0 (i.e. vi > 1) and the demand elasticity,

εi(π), is an increasing function of premium π, then:

Gi(vi)− viGi(1) ≥ τi
λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
. (E.0.1)

Proof. Firstly:

Gi(vi)−Gi(1) =

∫ vi

1

P [Γi ≤ v] dv, (E.0.2)

=

∫ vi

1

τi v
λi(v)dv, by Equation 4.3.10, (E.0.3)
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≥
∫ vi

1

τi v
λi(vi)dv, as λi(v) is a decreasing function, (E.0.4)

=
τi

λi(vi) + 1

[
v
λi(vi)+1
i − 1

]
. (E.0.5)

And,

(vi − 1)Gi(1) = (vi − 1)

∫ 1

0

P [Γi ≤ v] dv, (E.0.6)

= (vi − 1)

∫ 1

0

τi v
λi(v)dv, by Equation 4.3.10, (E.0.7)

≤ (vi − 1)

∫ 1

0

τiv
λi(vi)dv, as v < 1⇒ vλi(v) ≤ vλi(vi), (E.0.8)

=
(vi − 1)τi
λi(vi) + 1

. (E.0.9)

Hence:

Gi(vi)− viGi(1) = [Gi(vi)−Gi(1)]− [(vi − 1)Gi(1)] ≥ τi
λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
,

(E.0.10)

as required.

Lemma 5. If for a risk-group i, µi ≤ π0 (i.e. vi ≤ 1) and the demand elasticity,

εi(π), is a decreasing function of premium π, then:

viGi(1)−Gi(vi) ≤
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
. (E.0.11)

Proof. Firstly:

vi [Gi(1)−Gi(vi)] = vi

∫ 1

vi

P [Γi ≤ v] dv, (E.0.12)

= vi

∫ 1

vi

τi v
λi(v)dv, by Equation 4.3.10, (E.0.13)
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≤ vi

∫ 1

vi

τi v
λi(vi)dv, as v < 1⇒ vλi(v) ≤ vλi(vi), (E.0.14)

=
viτi

λi(vi) + 1

[
1− vλi(vi)+1

i

]
. (E.0.15)

And

(1− vi)Gi(vi) = (1− vi)
∫ vi

0

P [Γi ≤ v] dv, (E.0.16)

= (1− vi)
∫ vi

0

τi v
λi(v)dv, by Equation 4.3.10, (E.0.17)

≥ (1− vi)
∫ vi

0

τi v
λi(vi)dv, as λi(v) is an increasing function, (E.0.18)

=
(1− vi)τi
λi(vi) + 1

[
v
λi(vi)+1
i

]
. (E.0.19)

Hence, as required:

viGi(1)−Gi(vi) = vi [Gi(1)−Gi(vi)]− (1− vi)Gi(vi) ≤
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
.

(E.0.20)



Appendix F

Social welfare when higher risks are

fully insured under pooling

In the main text of the thesis, we have explicitly assumed that no risk-groups are fully

insured under any premium regime. However, for sufficiently small pooled equilibrium

premium, it is possible that all individuals purchase insurance, in some higher risk-groups.

If there are more than two risk-groups, the analysis of implications of full insurance

would require consideration of many possible combinations. For ease of exposition, while

analysing the case of full take-up of insurance, we will only consider two risk-groups,

where the high risk-group is fully insured under pooling. We assume that fair-premium

demand τi < 1 for all risk-groups, which is consistent with most empirical evidence. (The

special case of τi = 1 can also be analysed using the same techniques.)

Assuming τi < 1, social welfare under full risk classification follows from Lemma 1:

S(µ) = p1 τ1
1

(λ1 + 1)
µ1 + p2 τ2

1

(λ2 + 1)
µ2 +K. (F.0.1)

For pooling we obtain the following lower bound for social welfare:
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Lemma 6. Suppose there are two risk-groups with risks µ1 < µ2 with positive constant

demand elasticities λ1 and λ2 respectively. If the high risk-group is fully insured under

pooling, then social welfare under pooled premium S(π0) satisfies:

S(π0) ≥ p1 τ1
1

(λ1 + 1)

(
µ1

π0

)λ1+1

π0 + p2
1

(λ2 + 1)
µ2 +K, (F.0.2)

where the pooled premium π0 satisfies the equilibrium condition:

p1 τ1

(
µ1

π1

)λ1
(π0 − µ1) + p2 (π0 − µ2) = 0, (F.0.3)

and the constant K does not depend on the premium regime under consideration.

Proof. The equilibrium condition follows from Equation 3.3.15, by inserting the specific

expression for iso-elastic insurance demand for low risk-group and noting that proportional

demand for high risk-group is 1 under pooling.

Using the general expression for social welfare given in Equation 3.3.11, we have:

S(π0) = E [QX − QΠ Γ ] +K, (F.0.4)

=
2∑
i=1

E [QX − QΠ Γ | Risk-group i ] pi +K. (F.0.5)

As not all low risks will purchase insurance, the same steps in Lemma 1 will give:

E [QX − QΠ Γ | Risk-group 1 ] = p1 τ1
1

(λ1 + 1)

(
µ1

π0

)λ1+1

π0. (F.0.6)
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But all high-risks buy insurance under pooling, i.e. [Q | Risk-group 2] = 1. So:

E [QX − QΠ Γ | Risk-group 2 ] = E [X | Risk-group 2 ]− E [ Π Γ | Risk-group 2 ] ,

(F.0.7)

= µ2 − E [ Γ | Risk-group 2 ] π0, (F.0.8)

= µ2 −
∫ (

1
τ2

) 1
λ2

0

γτ2λ2γ
λ2−1dγ π0, (F.0.9)

= µ2 −
λ2

(λ2 + 1)

(
1

τ2

) 1
λ2

π0, (F.0.10)

≥ 1

(λ2 + 1)
µ2, since τ2

(
µ2

π0

)λ2
≥ 1⇒

(
1

τ2

) 1
λ2

π0 ≤ µ2.

(F.0.11)

Using Equations F.0.6 and F.0.11 in Equation F.0.5 gives the required relationship in

Equation F.0.2.

Equation F.0.2 of Lemma 6 implies that, when high-risks are fully insured under

pooling (but partially insured under full risk classification), social welfare under pooling

exceeds that under full risk classification, i.e. S(π0) ≥ S(µ) if:

p1 τ1
1

(λ1 + 1)

(
µ1

π0

)λ1+1

π0 + p2
1

(λ2 + 1)
µ2 ≥ p1 τ1

1

(λ1 + 1)
µ1 + p2 τ2

1

(λ2 + 1)
µ2,

(F.0.12)

⇔ p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p2

1

(λ2 + 1)
v2 ≥ p1 τ1

1

(λ1 + 1)
v1 + p2 τ2

1

(λ2 + 1)
v2, (F.0.13)

using the notations involving risk-premium ratios: v1 and v2. And Equation F.0.3 be-

comes:

p1 τ1 v1
λ1 (1− v1) + p2 (1− v2) = 0 (F.0.14)
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We can then state the sufficient condition on λ1 and λ2, for social welfare to be

higher under pooling than under full risk classification for any population structures and

underlying risks, when high-risks are fully insured under pooling.

Theorem 8. Suppose there are two risk-groups with risks µ1 < µ2 with positive

constant demand elasticities λ1 and λ2 respectively. If high-risks are fully insured

under pooling while low-risks are not, and neither risk-group is fully insured under

full risk classification, then:

λ1 ≤ 1 and λ2 ≤
(

1 +
1

λ1

)
(1− τ2)− 1⇒ S(π0) ≥ S(µ). (F.0.15)

Proof. The proof is presented in the following steps:

Step 1: The equilibrium condition in Equation F.0.14 leads to:

p2 v2 = p1 τ1

(
v1
λ1 − v1

λ1+1
)

+ p2. (F.0.16)

Step 2: Using Equation F.0.16 in the social welfare condition in Equation F.0.13 gives:

S(π0) ≥ S(µ) (F.0.17)

if p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p2

1

(λ2 + 1)
v2 ≥ p1 τ1

1

(λ1 + 1)
v1 + p2 τ2

1

(λ2 + 1)
v2,

(F.0.18)

i.e. if p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p1 τ1

1

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)

+ p2
1

(λ2 + 1)

≥ p1 τ1
1

(λ1 + 1)
v1 + p1 τ1

τ2

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)

+ p2
τ2

(λ2 + 1)
, (F.0.19)

i.e. if p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p1 τ1

1

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)

≥ p1 τ1
1

(λ1 + 1)
v1 + p1 τ1

τ2

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)
, as τ2 < 1, (F.0.20)
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i.e. if
(1− τ2)

(λ2 + 1)
≥ 1

(λ1 + 1)

(
v1 − v1

λ1+1
)

(v1
λ1 − v1

λ1+1)
. (F.0.21)

Step 3: As 0 < λ1 ≤ 1 and 0 < v1 < 1, using Arithmetic Mean ≥ Geometric Mean:

(1− λ1) vλ1+1
1 + λ1 v

λ1
1 ≥ v1 ⇒

λ1

(λ1 + 1)
≥ 1

(λ1 + 1)

(
v1 − v1

λ1+1
)

(v1
λ1 − v1

λ1+1)
. (F.0.22)

Step 4: Finally:

λ2 ≤
(

1 +
1

λ1

)
(1− τ2)− 1⇒ (1− τ2)

(λ2 + 1)
≥ λ1

(λ1 + 1)
, (F.0.23)

⇒ (1− τ2)

(λ2 + 1)
≥ 1

(λ1 + 1)

(
v1 − v1

λ1+1
)

(v1
λ1 − v1

λ1+1)
, by Step 3,

(F.0.24)

⇒ S(π0) ≥ S(µ), by Step 2. (F.0.25)

Figure F.1 provides a graphical representation of Theorem 8, where the fair-premium

demand is 50% for both low and high risk-groups. Social welfare is guaranteed to be

higher under pooling for all population structures and risks in the shaded region to the

left of the bold green curve.

For specific population structures and risk parameters, the region where social welfare

is higher under pooling is a much larger area than the shaded region in Figure F.1. For

example, social welfare is guaranteed to be higher under pooling in the region to the left of

the blue dot-dashed line for p1 = 0.99 and (µ1, µ2) = (0.01, 0.04). Similarly, the region to

the left of the red dashed line represents the region where social welfare is guaranteed to

be higher under pooling for p1 = 0.9 and (µ1, µ2) = (0.01, 0.04). The region where social

welfare is guaranteed to be higher under pooling increases with the size of the higher risk-
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0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5

λ1

λ 2

S(π0) ≥ S(µ)

guaranteed in green shaded area

for all population structures
S(π0) ≥ S(µ)
for p1 = 0.99

S(π0) ≥ S(µ)
forp1 = 0.9

Figure F.1: Curve demarcating the regions where social welfare under pooling is greater

than under full risk-differentiation where (µ1, µ2) = (0.01, 0.04), fair-premium demand is

50% for both risk-groups and high-risks are fully insured under pooling.

group, because larger high risk-group’s gain in welfare from pooling has greater capacity

to offset the lower risk-group’s loss in welfare from pooling.



Appendix G

Proof of Theorem 5

Theorem 5. If there are n risk-groups, with risks µ1 < µ2 < · · · < µn, in presence of

political, regulatory and economic constraints, with regulatory price collar of κ, where

1 ≤ κ ≤ µn/µ1, there exists a stable equilibrium premium regime π = (π1, π2, . . . , πn),

such that:

πi =


πL if µi < πL;

µi if πL ≤ µi ≤ πH;

πH if µi > πH.

(5.1.9)

where πL = mini πi, πH = maxi πi and πH = κπL.

Proof. We will prove the theorem using the following steps:

1. An equilibrium premium regime with the structure proposed in Equation 5.1.9 exists.

2. If there are multiple equilibrium premium regimes with the same proposed structure,

the regime with the smallest πL is stable among all such regimes.

3. Given πL and πH = κπL, the premium regime with the proposed structure cannot be

destabilised by any other equilibrium premium regime with the same πL and πH but

having a different structure.
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4. Given a regulatory price collar κ, the premium regime with the proposed structure

cannot be destabilised by any other premium regime based on a smaller price collar.

Proof of step 1. Given a price collar κ, define the expected profit from setting the lowest

premium πL, where µ1 ≤ πL ≤ µn/κ, as follows:

eκ (πL) = E (π) =
n∑
i=1

pi di(πi) (πi − µi) ; where πi =


πL if µi < πL;

µi if πL ≤ µi ≤ κπL;

κπL if µi > κπL.

(G.0.1)

If πL = µ1, as κµ1 ≤ µn, expected profit cannot be positive, i.e.: eκ (µ1) ≤ 0.

If πL = µn/κ, as µ1 ≤ µn/κ, expected profit cannot be negative, i.e.: eκ (µn/κ) ≥ 0.

Assuming continuity of the demand functions di(πi) for all risk-groups, eκ(x) is also a

continuous function. So, by the intermediate value theorem, there exists a value πL, such

that µ1 ≤ πL ≤ µn/κ, for which eκ (πL) = 0. This proves the existence of an equilibrium

premium regime as outlined in the theorem. �

Proof of step 2. If there are multiple solutions to the equation, eκ (πL) = 0, the premium

regime, based on the smallest of these roots, cannot be destabilised by premium regimes

based on any other solutions of eκ (πL) = 0. To show this, suppose if possible there are

two premium regimes:

π = (π1, π2, . . . , πn) , with πH = κπL, where πL = min
i
πi and πH = max

i
πi;

π? = (π?1, π
?
2, . . . , π

?
n) , with π?

H
= κπ?

L
, where π?

L
= min

i
π?i and π?

H
= max

i
π?i ;

with πL < π?
L

(and consequently πH < π?
H
), such as shown below:
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µ1 µ2 µa µb µc µn−1 µn

πL π?
L πH π?

H

Taking into account the choices available for all risk-groups, we have following possibilities:

• Risk-groups i, with µi ≤ πL, will choose the cheaper premium regime π over π?.

These risk-groups are profitable, as they pay a premium higher than their risk.

• Risk-groups i, with πL < µi ≤ π?
L
, will choose the cheaper premium regime π over

π?, as under π they would pay actuarially fair premiums, whereas under π?, they

would pay π?
L
. These risk-groups contribute towards neither profits or losses for π,

but losing these risk-groups is problematic for π? as they would have contributed

towards profits.

• Risk-groups i, with π?
L
< µi ≤ πH, will be indifferent between the premium regimes

as they pay fair actuarial premiums under both regimes.

• Risk-groups i, with πH < µi ≤ π?
H
, will choose the cheaper premium regime π over

π?. Retaining these risk-groups is not problematic for premium regime π, as they

have already captured all the required low risk-groups to recoup any losses from

these high risk-groups. The premium regime π? would be indifferent about the

non-retention of these risk-groups, as these risk-groups pay fair actuarial premiums

under π?.

• Risk-groups i, with µi > π?
H
, will choose the cheaper premium regime π over π?.

Retaining these risk-groups is not problematic for premium regime π, as they have

already captured all the required low risk-groups to recoup any losses from these

high risk-groups.
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So premium regime π? is not attractive to any risk-groups, except those who are indiffer-

ent. Hence the smallest root of eκ (πL) = 0 provides a unique stable solution, among all

possible roots. �

Proof of step 3. The minimum and maximum premiums, πL and πH, create three collec-

tions of risk-groups:

• l lowest risk-groups for which µi < πL, where i ∈ L = {1, . . . , l};

• h highest risk-groups for which µi > πH, where i ∈ H = {n− h+ 1, . . . , n};

• remaining risk-groups for which πL ≤ µi ≤ πH, where i ∈M = {l + 1, . . . , n− h};

where the premium regime π charges πL for all risk-groups in L, πH for all risk-groups in

H and the actuarially fair premium for all remaining risk-groups in M.

µ1 µ2 µl µl+1 µn−h µn−h+1 µn−1 µn

πL πH

L M H

Consider an alternative equilibrium premium regime: π? = (π?1, π
?
2, . . . , π

?
n), with the

same minimum and maximum premiums, i.e. πL = π?
L

= mini π
?
i and πH = π?

H
= maxi π

?
i ,

but having a different structure. To check whether π? can destabilise π, consider the

following possibilities:

• For i ∈ L, π?i ≮ πL, as πL = mini π
?
i . Also, for i ∈ L, π?i ≯ πL, because then the

profitable risk-group i would choose premium regime π over π?, as π is cheaper.

Then premium regime π? would lose out on the profits from risk-group i, which

cannot be recouped from elsewhere, because increasing premiums would either be

impossible (for risk-groups in H) or make π? unattractive (for risk-groups in M).

• For i ∈ H, π?i ≯ πH, as πH = maxi π
?
i . Also, for i ∈ H, π?i ≮ πH, because then the
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loss-making risk-group i would choose premium regime π? over π, as π? is cheaper.

This means that π? would incur the losses from risk-group i, which cannot be re-

couped from elsewhere, because increasing premiums would make π? unattractive

(for risk-groups in both L and M). Note that, losing the loss-making risk-group i

does not pose a problem for premium regime π.

• For i ∈M, π?i ≯ µi, as risk-group i would then choose premium regime π over π?, as

π is cheaper. Also, for i ∈M, π?i ≮ µi, as risk-group i would then choose premium

regime π? over π, as π? is cheaper, and contribute losses for π?, which cannot be

recouped from elsewhere, because increasing premiums would either be impossible

(for risk-groups in H) or make π? unattractive (for risk-groups in L). Note that,

losing risk-group i does not pose a problem for premium regime π, as these risk

groups, paying the actuarially fair premiums, do not contribute to profits nor losses.

This proves that π cannot be destabilised by any other alternative equilibrium premium

regime with the same minimum premium πL and maximum premium πH. �

Proof of step 4. As a regulatory price collar would only require πH ≤ κπL, we need to

show that π cannot be destabilised by an equilibrium premium regime using a smaller

price collar.

Consider an alternative equilibrium premium regime: π? = (π?1, π
?
2, . . . , π

?
n), with

minimum and maximum premiums: π?
L

= mini π
?
i and π?

H
= maxi π

?
i respectively, such

that π?
H

= κ? π?
L
, for some κ? < κ. Also, suppose π? is stable and unique in the sense

outlined in the proofs of steps 1, 2 and 3, but based on the smaller price collar κ?.

To check whether π? can destabilise π, consider the following possibilities:

• If πL < π?
L
, then irrespective of the comparative values of πH and π?

H
, π? cannot

destabilise π, as all profitable low risk-groups i with risks µi < πL will choose the

cheaper premium regime π.
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• If π?
L
≤ πL, then κ? < κ⇒ π?

H
= κ? π?

L
< κπ?

L
≤ κπL = πH, i.e.:

µ1 µ2 µa µb µc µd µn−1 µn

π?
L πL π?

H
κπ?

L πH

κ?

κ

By construction of π?, eκ? (π?
L
) = 0, where the profits generated from the low risk-

groups by charging π?
L

is exactly offset by losses incurred from the high risk-groups

by charging π?
H
; while the risk-groups in between pay their actuarially fair premiums.

Now consider eκ (π?
L
). In this case, the same amount of profit, as for eκ? (π?

L
), is

generated from the low risk-groups. But in eκ (π?
L
), the premium charged for the

high risk-groups, i.e. κπ?
L
, is higher than that for eκ? (π?

L
), which is π?

H
= κ? π?

L
. The

higher premium, κπ?
L
, reduces the high risk-groups’ insurance demand, as well as

lowers the losses; the overall impact being lower expected losses for eκ (π?
L
).

Note that the risk-groups i, for which π?
H
< µi < κπ?

L
, pay actuarially fair premium

under eκ (π?
L
) and thus do not contribute to profits or losses; whereas these risk-

groups contribute losses for eκ? (π?
L
). The risk-groups in between π?

L
and π?

H
pay

their actuarially fair premiums under both eκ (π?
L
) and eκ? (π?

L
).

Hence eκ (π?
L
) > 0, implying that, there is a root of eκ (x) = 0, which is smaller than

π?
L
≤ πL, i.e. πL cannot be the smallest root. This is a contradiction. So, π?

L
� πL.

So, a smaller price collar leads to a higher minimum premium, i.e. πL < π?
L
, which

cannot destabilise π, as we have already proved. So, premium regime π cannot be desta-

bilised by an equilibrium premium regime using a smaller price collar. �

So, π, as outlined in the theorem, exists, and is a unique stable equilibrium premium

regime satisfying all political, regulatory and economic constraints. �
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Proof of Theorem 6

In order to prove Theorem 6, we first need a few preliminary results. First, we outline

the relationship between v1 and v2:

Lemma 7. Suppose there are two risk-groups with risks µ1 < µ2 and iso-elastic

demand elasticities λ1 and λ2 respectively. For equilibrium premium regimes:

λ1 ≤ 1⇒ dv2

dv1

< 0. (H.0.1)

Proof. Firstly note the following relationships:

v2 ≥ 1 and λ2 > 0⇒ v2 −
(

1− 1

λ2

)
= v2 − 1 +

1

λ2

> 0. (H.0.2)

v1 > 0 and 0 < λ1 ≤ 1⇒
(

1− 1

λ1

)
≤ 0⇒ v1 −

(
1− 1

λ1

)
> 0. (H.0.3)

Using Equations H.0.2 and H.0.3 in Equation 5.3.10:

dv2

dv1

= −a1 λ1 v
λ1−2
1

a2 λ2 v
λ2−2
2

v1 −
(

1− 1
λ1

)
v2 −

(
1− 1

λ2

)
 < 0. (H.0.4)
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Lemma 7 states that, if λ1 ≤ 1, v2 is a decreasing function of v1, or equivalently,

π2 is a decreasing function of π1, irrespective of the value of λ2. At first glance, the

result in Lemma 7 seems obvious, as one would expect high risk-group’s premium π2 to

fall, if low risk-group’s premium π1 increases, to maintain equilibrium. However, this is

only partially true. Due to the compounding effect of insurance demand, as π1 increases,

although insurance profit increases as a result, this is tempered by the lowering of low risk-

group’s insurance demand. If the decrease in low risk-group’s demand is not substantial,

for example when λ1 ≤ 1, i.e. low risk-group’s demand elasticity is low, a decrease in π2

can be inferred with certainty. However, for higher demand elasticities for low risk-group,

the impact of increasing π1 on π2 is indeterminate.

Next, we introduce the ratio of the risk-premium ratios v2/v1, which we will denote

by ρ. Note that, for the case of two risk-groups, a price collar, κ = π2/π1, is related to ρ

as follows:

ρ κ =
µ2

µ1

. (H.0.5)

The relationship between the ratio of risk-premium ratios, ρ, and v1 is as follows:

Lemma 8. Suppose there are two risk-groups with risks µ1 < µ2 and iso-elastic

demand elasticities λ1 and λ2 respectively. For equilibrium premium regimes:

λ1 ≤ 1⇒ dρ

dv1

< 0. (H.0.6)

λ2 ≥ λ1 ⇒
dρ

dv1

< 0. (H.0.7)

Proof. (of Equation H.0.6:) By Lemma 7.if λ1 ≤ 1, v2 is a decreasing function of v1. So

ρ = v2/v1 is also a decreasing function of v1 which proves Equation H.0.6. Mathematically:

v2 = ρ v1 ⇒ dv2 = ρ dv1 + v1 dρ⇒
dρ

dv1

=
1

v1

[
dv2

dv1

− ρ
]
< 0, (H.0.8)
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as dv2
dv1

< 0 for λ1 ≤ 1 by Lemma 7.

Proof. (of Equation H.0.7:) Using v2 = ρ v1 in the equilibrium condition in Equation 5.3.2

gives:

E (v1, v2) = a1

(
vλ1−1

1 − vλ11

)
+ a2

(
vλ2−1

2 − vλ22

)
= 0, (5.3.2)

⇔ E (v1, ρ) = a1

(
vλ1−1

1 − vλ11

)
+ a2

(
ρλ2−1 vλ2−1

1 − ρλ2 vλ21

)
= 0, (H.0.9)

⇔ E? (v1, ρ) = a1 (1− v1) + a2

(
ρλ2−1 vλ2−λ11 − ρλ2 vλ2−λ1+1

1

)
= 0, (H.0.10)

after dividing by vλ1−1
1 . Then ignoring higher-order terms in Taylor series expansion gives:

dE? =−
[
a1 + a2

{
(λ2 − λ1 + 1) ρλ2 vλ2−λ11 − (λ2 − λ1) ρλ2−1 vλ2−λ1−1

1

}]
dv1

− a2

[
λ2 ρ

λ2−1 vλ2−λ1+1
1 − (λ2 − 1) ρλ2−2 vλ2−λ11

]
dρ = 0, (H.0.11)

⇒ dρ

dv1

=−
[
a1 + a2

{
(λ2 − λ1 + 1) ρλ2 vλ2−λ11 − (λ2 − λ1) ρλ2−1 vλ2−λ1−1

1

}
a2

[
λ2 ρλ2−1 vλ2−λ1+1

1 − (λ2 − 1) ρλ2−2 vλ2−λ11

] ]
, (H.0.12)

=−

a1 + a2 ρ
λ2−1 vλ2−λ1−1

1 (λ2 − λ1 + 1)
[
v2 − λ2−λ1

λ2−λ1+1

]
a2 ρλ2−2 vλ2−λ11 λ2

[
v2 −

(
1− 1

λ2

)]
 , as v2 = ρ v1,

(H.0.13)

< 0, as λ2 ≥ λ1 and v2 ≥ 1. (H.0.14)

Equation H.0.7 asserts that even when λ1 ≥ 1, although the behaviour of v2 as a function

of v1 is indeterminate, but if λ2 ≥ λ1, ρ is still a decreasing function of v1.

Now recall the relationship between C and v1 obtained in Equation 5.3.13, reproduced

below:

dC

dv1

=

 a1 λ1 v
λ1−1
1

v2 −
(

1− 1
λ2

)


︸ ︷︷ ︸
T1

(
1− 1

λ1

)
︸ ︷︷ ︸

T2

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
︸ ︷︷ ︸

T3

. (5.3.13)
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To analyse the three multiplicative terms, T1, T2 and T3, in Equation 5.3.13, note that

a1, λ1, λ2 and v1 are all positive and v2 ≥ 1. So:

T1 > 0. (H.0.15)

T2 T 0⇔ λ1 T 1. (H.0.16)

The behaviour of T3 depends on the values of λ1 and λ2. Using the segments and sub-

segments of the (λ1, λ2)–plane given in Figure 5.1, the result outlining the behaviour of

T3 is presented in Lemma 9.

Lemma 9. Suppose there are 2 risk-groups with risks µ1 < µ2 and iso-elastic demand

elasticities λ1 and λ2 respectively. For T3 defined as:

T3 =

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
=

[
ρ−

1− 1
λ2

1− 1
λ1

]
: (H.0.17)

9.1. A1 and A2 : T3 ≥ 0.

9.2. B and D : There exists a v?1 where v1p ≤ v?1 ≤ v1f such that T3 T 0⇔ v1 S v?1.

9.3. C2 and A3 : T3 ≤ 0.

9.4. C1 and C3 : T3 ≥ 0.

Proof. (of Lemma 9.1:)

For A1 : λ1 ≤ 1 and λ2 ≥ 1⇒
1− 1

λ2

1− 1
λ1

≤ 0. (H.0.18)

For A2 : λ1 ≤ λ2 ≤ 1⇒
1− 1

λ2

1− 1
λ1

≤ 1. (H.0.19)
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As ρ =
v2

v1

≥ 1, for A1 and A2 : T3 =

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
≥ 0. (H.0.20)

Proof. (of Lemma 9.2:) For B, λ1 ≤ 1 and for D, λ2 ≥ λ1. So by Lemma 8, for both B
and D, ρ = v2/v1 is a decreasing function of v1 and hence T3 is a decreasing function of

v1.

For both B and D, as v1 increases from v1p to v1f (i.e. from pooled to full risk

classification regime), ρ decreases from µ2/µ1 to 1. Now note that for both B and D:

1 ≤
1− 1

λ2

1− 1
λ1

≤ µ2

µ1

. (H.0.21)

So there exists a v?1 where v1p ≤ v?1 ≤ v1f such that:

T3 =

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
T 0⇔ v1 S v?1, (H.0.22)

as required.

Proof. (of Lemma 9.3:) For both C2 and A3:

1− 1
λ2

1− 1
λ1

≥ µ2

µ1

⇒ T3 =

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
≤
[
v2

v1

− µ2

µ1

]
≤ 0, (H.0.23)

as ρ = v2
v1

never exceeds µ2/µ1.

Proof. (of Lemma 9.4:)

For C1 : λ1 ≥ 1 and λ2 ≤ 1⇒
1− 1

λ2

1− 1
λ1

≤ 0. (H.0.24)

For C3 : λ1 ≥ λ2 ≥ 1⇒
1− 1

λ2

1− 1
λ1

≤ 1. (H.0.25)
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As ρ =
v2

v1

≥ 1, for C1 and C3 : T3 =

[
v2

v1

−
1− 1

λ2

1− 1
λ1

]
≥ 0. (H.0.26)

Over the range of v1, except for the two regions B and D, where T3 changes its sign, for

all other regions, T3 is either positive or negative.
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Theorem 6. Suppose there are two risk-groups with risks µ1 < µ2 and iso-elastic

demand elasticities λ1 and λ2 respectively. Consider the four segments, A, B, C and

D, in the (λ1, λ2)–plane formed by the intersecting curves:

λ2 = λ1; (5.3.14)

1− 1
λ2

1− 1
λ1

=
µ2

µ1

; (5.3.15)

where

• A =

{
(λ1, λ2) : λ2 ≥ λ1

}
−D;

• B =

{
(λ1, λ2) : λ2 ≤ λ1 ≤ 1 and 1 ≤(1− 1

λ2

)/(
1− 1

λ1

)
≤
µ2

µ1

}
;

• C =

{
(λ1, λ2) : λ2 ≤ λ1

}
− B;

• D =

{
(λ1, λ2) : λ2 ≥ λ1 ≥ 1 and 1 ≤(1− 1

λ2

)/(
1− 1

λ1

)
≤
µ2

µ1

}
.

For each of the segments, we have:

6.1. A : Loss coverage is maximum for pooled and minimum for full risk classification

regime, while partial risk classification is intermediate.

6.2. B : Loss coverage is minimum for a specific partial risk classification regime and

maximum for either pooled or full risk classification.

6.3. C : Loss coverage is maximum for full risk classification regime and minimum

for pooled, while partial risk classification is intermediate.

6.4. D : Loss coverage is maximum for a specific partial risk classification regime.
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For the proof of Theorem 6, recall from Equations 5.3.13, H.0.15 and H.0.16:

dC

dv1

= T1 × T2 × T3, where, T1 > 0; T2 T 0⇔ λ1 T 1; (H.0.27)

and the behaviour of T3 is outlined in Lemma 9.
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Proof. (of Theorem 6.1:) For A:

For A1 : T2 ≤ 0 and T3 ≥ 0⇒ dC

dv1

≤ 0. (H.0.28)

For A2 : T2 ≤ 0 and T3 ≥ 0⇒ dC

dv1

≤ 0. (H.0.29)

For A3 : T2 ≥ 0 and T3 ≤ 0⇒ dC

dv1

≤ 0. (H.0.30)

So, in all three cases, dC
dv1
≤ 0, implying that the loss coverage ratio, C, is a decreasing

function of v1, as v1 increases from v1p to v1f . Hence, loss coverage is maximum for

pooled equilibrium and minimum for full risk classification. Partial risk classification is

intermediate.

Proof. (of Theorem 6.2:) For B:

T2 ≤ 0 and
[
T3 T 0⇔ v1 S v?1

]
⇒
[
dC

dv1

S 0⇔ v1 S v?1

]
, (H.0.31)

where v1p ≤ v?1 ≤ v1f . This implies that the loss coverage ratio, C, is a minimum at v?1

as v1 increases from v1p to v1f . Hence, loss coverage is maximum at either of the two

extremes, pooled or full risk classification, depending on the other model parameters.

Proof. (of Theorem 6.3:) For C:

For C1 : T2 ≥ 0 and T3 ≥ 0⇒ dC

dv1

≥ 0. (H.0.32)

For C2 : T2 ≤ 0 and T3 ≤ 0⇒ dC

dv1

≥ 0. (H.0.33)

For C3 : T2 ≥ 0 and T3 ≥ 0⇒ dC

dv1

≥ 0. (H.0.34)

So, in all three cases, dC
dv1
≥ 0, implying that the loss coverage ratio, C, is an increasing

function as v1 increases from v1p to v1f . Hence, loss coverage is maximum for full risk



122

classification and minimum for pooled equilibrium. Partial risk classification is interme-

diate.

Proof. (of Theorem 6.4:) For D:

T2 ≥ 0 and
[
T3 T 0⇔ v1 S v?1

]
⇒
[
dC

dv1

T 0⇔ v1 S v?1

]
, (H.0.35)

where v1p ≤ v?1 ≤ v1f . This implies that the loss coverage ratio, C, is a maximum at the

partial risk classification regime v?1, as v1 increases from v1p to v1f .
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Proof of Equation 5.4.25

To show:

dC

dvL
= ξ

 aL λL v
λL−1
L

vH −
(

1− 1
λH

)


︸ ︷︷ ︸
T1

(
1− 1

λL

)
︸ ︷︷ ︸

T2

vH
vL
−

(
1− 1

λH

)
(

1− 1
λL

)


︸ ︷︷ ︸
T3

, (5.4.25)

first note that by the definitions of aL and ξ in Equations 5.4.14 and 5.4.22 respectively:

ξ aL =
pL τL µL∑n
i=1 pi τi µi

; (I.0.1)

=

∑
i∈L pi τi

(
µi
µL

)λL
µL∑n

i=1 pi τi µi
; by definitions of pL τL in Equation 5.4.8; (I.0.2)

=

∑
i∈L pi τi

(
µi
µL

)λL
µi∑n

i=1 pi τi µi
; as µL is the pooled equilibrium premium for L; (I.0.3)

=
∑
i∈L

ai

(
µi
µL

)λL
. (I.0.4)
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So, Equation 5.4.25 can be alternatively expressed as:

dC

dvL
=


(∑

i∈L ai
(
µi
µL

)λL)
λL v

λL−1
L

vH −
(

1− 1
λH

)
 (1− 1

λL

) vH
vL
−

(
1− 1

λH

)
(

1− 1
λL

)
 , (I.0.5)

Proof. Equation I.0.5, and equivalently Equation 5.4.25, can be proved directly from first

principles by following the method outlined in the proof of Theorem 6.

As the risk-groups inM do not contribute to profit or loss, the equilibrium condition

can be expressed as:

E (π) =
∑
i∈L

pi τi

(
µi
πL

)λL
(πL − µi)︸ ︷︷ ︸

EL

+
∑
j∈H

pj τj

(
µj
πH

)λH
(πH − µj)︸ ︷︷ ︸

EH

= 0. (I.0.6)

The expression for the equilibrium condition in Equation I.0.6, can also be written in

terms of the risk-premium ratios, as follows:

E (v) =
∑
i∈L

ai
(
vλL−1
i − vλLi

)
+
∑
j∈H

aj
(
vλH−1
j − vλHj

)
= 0, where (I.0.7)

vi =
µi
πL

for i ∈ L and vj =
µj
πH

for j ∈ H.

Based on the approach outlined in Section 5.3:

dE = E (v + dv)− E (v) =
∑
i∈L

Ei dvi +
∑
j∈H

Ej dvj, (I.0.8)

where Ei =
∂E

∂vi
= −ai λL vλL−2

i

[
vi −

(
1− 1

λL

)]
, for i ∈ L; (I.0.9)

and Ej =
∂E

∂vj
= −aj λH vλH−2

j

[
vj −

(
1− 1

λH

)]
, for j ∈ H. (I.0.10)
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Now note that:

For i ∈ L: vi =
µi
µ1

v1 and dvi =
µi
µ1

dv1. (I.0.11)

For j ∈ H: vj =
µj
µn

vn and dvj =
µj
µ1

dvn. (I.0.12)

Using these relationships, the component in Equation I.0.8 for risk-groups in L becomes:

∑
i∈L

Ei dvi

= −
∑
i∈L

ai λL v
λL−2
i

[
vi −

(
1− 1

λL

)]
dvi, (I.0.13)

= −
∑
i∈L

ai λL

(
µi
µ1

)λL−2

vλL−2
1

[
µi
µ1

v1 −
(

1− 1

λL

)]
µi
µ1

dv1, (I.0.14)

= −λL vλL−2
1

[∑
i∈L

ai

(
µi
µ1

)λL] v1 −
(

1− 1

λL

)∑
i∈L ai

(
µi
µ1

)λL−1

∑
i∈L ai

(
µi
µ1

)λL
 dv1, (I.0.15)

= −λL vλL−2
1

[∑
i∈L

ai

(
µi
µ1

)λL] [
v1 −

(
1− 1

λL

)
µ1

µL

]
dv1, (I.0.16)

where µL is the pooled equilibrium premium, if the insurance market only consisted of

the risk-groups in L, as shown in Equation 5.4.6 i.e.:

µL =

∑
i∈L pi τi µ

λL+1
i∑

i∈L pi τi µ
λL
i

=

∑
i∈L ai µ

λL
i∑

i∈L ai µ
λL−1

i

⇒ µ1 ≤ µL ≤ max
i∈L

µi ≤ πL. (I.0.17)

Similarly, the component in Equation I.0.8 for risk-groups in H becomes:

∑
i∈H

Ej dvj = −λH vλH−2
n

[∑
j∈H

aj

(
µj
µn

)λH] [
vn −

(
1− 1

λH

)
µn
µH

]
dvn, (I.0.18)

where µH =

∑
j∈H aj µ

λH
j∑

j∈H aj µ
λH−1

j

⇒ πH ≤ min
j∈H

µj ≤ µH ≤ µn (I.0.19)
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As dE = 0, the relationship between dv1 and dvn can be expressed as:

dvn
dv1

= −


∑

i∈L ai
(
µi
µ1

)λL
∑

j∈H aj
(
µj
µn

)λH
(λL

λH

)(
vλL−2

1

vλH−2
n

) v1 −
(

1− 1
λL

)
µ1
µL

vn −
(

1− 1
λH

)
µn
µH

 . (I.0.20)

Note that, for two risk-groups, i.e. n = 2, Equation I.0.20 simplifies to Equation 5.3.10

as then µL = µ1 and µH = µn.

The expression for loss coverage ratio for n risk-groups, in terms of risk-premium

ratios, is given by:

C (v) =
∑
i∈L

ai v
λL
i +

∑
j∈H

aj v
λH
j . (I.0.21)

Based on the approach outlined in Section 5.3:

dC =
∑
i∈L

Ci dvi +
∑
j∈H

Cj dvj, (I.0.22)

where Ci =
∂C

∂vi
= ai λL v

λL−1
i , for i ∈ L; (I.0.23)

and Cj =
∂C

∂vj
= aj λH v

λH−1
j , for j ∈ H. (I.0.24)

So:

dC =
∑
i∈L

ai λL v
λL−1
i dvi +

∑
j∈H

aj λH v
λH−1
j dvj. (I.0.25)

Using Equations I.0.11 and I.0.12, we get:

dC =
∑
i∈L

ai λL

(
µi
µ1

)λL
vλL−1

1 dv1 +
∑
j∈H

aj λH

(
µj
µn

)λH
vλH−1
n dvn. (I.0.26)
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Now using the relationship between dv1 and dvn in Equation I.0.20, we get:

dC

dv1

=
∑
i∈L

ai λL

(
µi
µ1

)λL
vλL−1

1

1− vn
v1

 v1 −
(

1− 1
λL

)
µ1
µL

vn −
(

1− 1
λH

)
µn
µH

 ; (I.0.27)

=


(∑

i∈L ai
(
µi
µ1

)λL)
λL v

λL−1
1

vn −
(

1− 1
λH

)
µn
µH

 (1− 1

λL

)
µ1

µL

vn
v1

−

(
1− 1

λH

)
µn
µH(

1− 1
λL

)
µ1
µL

 (I.0.28)

=


(∑

i∈L ai
(
µi
µ1

)λL)
λL v

λL−1
1

vH −
(

1− 1
λH

)
 (1− 1

λL

) vH
vL
−

(
1− 1

λH

)
(

1− 1
λL

)
 ; (I.0.29)

where vL =
µL

πL
and vH =

µH

πH
.

Further noting that:

v1 =
µ1

µL

vL and dv1 =
µ1

µL

dvL, (I.0.30)

we get:

dC

dvL
=


(∑

i∈L ai
(
µi
µ1

)λL)
λL

(
µ1
µL

)λL
vλL−1
L

vH −
(

1− 1
λH

)
 (1− 1

λL

) vH
vL
−

(
1− 1

λH

)
(

1− 1
λL

)
 ;

(I.0.31)

=


(∑

i∈L ai
(
µi
µL

)λL)
λL v

λL−1
L

vH −
(

1− 1
λH

)
 (1− 1

λL

) vH
vL
−

(
1− 1

λH

)
(

1− 1
λL

)
 ; (I.0.32)

which proves Equation I.0.5 as required.

Again, note that, for two risk-groups, i.e. n = 2, Equation I.0.27 simplifies to Equa-

tion 5.3.13 as then µL = µ1 and µH = µn.



Appendix J

Summary of relevant literature

J.1 Introduction

Most of the economic literature on insurance markets favour risk classification by insurers

on the ground that it is perceived to be more efficient. The argument in favour of risk

classification is that it reduces the information asymmetry between insurer and customer,

and that in turn helps the market to operate more efficiently i.e. it reduces loss of utility

for both insurer and customers. In practice however, regulators in many cases favour risk

pooling, or at least bar insurers from using extensive risk differentiation. This is justified

on the ground that risk classification and charging fair premium to customers may make

insurance unaffordable to high-risk customers. A parable ( said to have been posed by

Kenneth Arrow, see Gruber (2019)) of two farmers facing a hurricane is relevant in this

context. With the uncertainty of not knowing which farmer gets hit by the hurricane, it

incentivizes both to pool their resources and provide cover for each other. But with the

precise knowledge of which one will get hit, there is no incentive for the farmer, who will

be unaffected by the storm to help the other, who faces a certain disaster . Therefore more

information about individual risks may result in a society with a sub-optimal allocation
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of resources.

In the following sub-sections we present a detailed summary of some of the relevant

literature we have covered in chapter 2 above.

J.2 Equilibrium and Adverse Selection

In this section we present a summary of results from Rothschild and Stiglitz (1976). In

a simple two risk-group model, the authors showed that with information asymmetry,

a pure-strategy Nash equilibrium can never exist in the insurance market with pooled

premium. The authors defined an equilibrium in a single period, when customers would

choose a contract from an offered set to maximize their utilities. Each insurer would act

independently of its competitors, and :

1. No contract would generate negative expected profit for insurer.

2. No contract outside the set will make the insurer better off.

However this characterization of equilibrium is not universally accepted, as other authors,

e.g. Wilson (1976) have defined equilibrium differently.

Summary of Rothschild and Stiglitz (1976)

Rothschild and Stiglitz (1976) describes a model where individuals are offered insurance

contracts α = (α1, α2) consisting of a premium α1 and a payout α2. The individual can

belong to either of two risk-groups with probabilities of loss given by pH or pL, where

pH > pL. The proportion of high-risk customers is given by λ. W1 and W2 denote their

wealth before and after the loss inducing event respectively. Insurers’ expected profit from

a contract, which would be zero under perfect competition, would be given by “fair-odds
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line” :

π(p, α) = (1− p)α1 − pα2 = 0 (J.2.1)

where

p = λpH + (1− λ)pL. (J.2.2)

The authors argued that a pooled contract can never achieve market equilibrium. As

shown in the figure J.1 below, for any point α on the fair odds line, it would be possible

for an insurer to offer an alternative pooled contract β which would only be attractive to

lower risk customers and also generate positive profit for the insurer. uH and uL denote

the indifference curves of the high-risk and low-risk customers respectively. Therefore the

equilibrium would be disrupted and only high-risk individuals will be left with the original

contract.

Even when insurers are able to offer separating contracts, i.e. a pair of contracts

which would reveal the risk of loss as perceived by the individual customer, a market

equilibrium is not guaranteed. It would depend on the relative population of high and

low risk individuals in the market.

In a separating scenario, high-risk customers will be offered a contract that would

lie on the line with slope −
(

1−pH
pH

)
, and low-risk customers would be offered a contract

on the line with slope −
(

1−pL
pL

)
.They are shown in the figure J.2 by lines EG and EF

respectively E represents the initial wealth of any individual.

Note that αH must always be part of separating equilibrium. Also note that the

contract offered to low-risk individuals should be such that it would not incentivize high-

risk customers to switch. Therefore low-risk customers would be offered the contract αL.

The authors argue that the contracts represented by αH and αL are the only possible
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uH uL

α

fair odds line

β

W1

W2

Figure J.1: Pooled premium regime

separating equilibrium in this scenario.

However in the scenario in figure J.3, it would be possible to disrupt this equilibrium

too. Suppose the market fair odds line is given here by EH. A pooled contract offered

in the region below EH but above uL curve (e.g. γ) will attract both high and low risk

customers and will produce positive profit for insurer. However it was argued earlier that

a pooled equilibrium would never be achievable. Therefore in this case there would be no

possible market equilibrium. Some of the observations from Figure J.3 are

• If there are very few high-risk individuals, then cost of pooling would be low. EH

and EF would be closer. In this case, insurer may offer a pooled contract.

• Similarly, if cost of separating is too high for low-risk customers (i.e. Utility loss for

low-risk customer for the separating contract in figure J.2 is high compared to full

information scenario), a pooled premium may be offered by the insurer. Graphically
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uH
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αL

αH

E

W1

W2

Figure J.2: Separating equilibrium

this means that in figure J.3 the gap between EF and uL is bigger.

• If pL is close to zero, then it would not pay the low-risk individuals to pool. Therefore

low-risk individuals will not have complete coverage.

• Low cost of pooling implies EH and EF are close. Cost of pooling arises from

low-risk individuals subsidizing high-risk individuals.

The authors argue that an equilibrium would not exist even if we assume that the

individual risk probabilities follow a continuous distribution. However if there are other

types of heterogeneity introduced in the model (e.g. risk aversion), then an equilibrium

under pooled premium may exist, and the authors have not ruled it out. Also, if a

separating equilibrium doesn’t exist then some alternative concept of equilibria could be

used to explain the insurance market. Using a different concept of equilibrium, e.g. Wilson
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αH

E

γ
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Figure J.3: Disrupting equilibrium

(1976), which assumes that loss-making contracts can be withdrawn from the market by

insurers, it could be argued that the market will iteratively reach an equilibrium in all

scenarios.

J.3 Randomness of risk preference

Economists generally prefer estimating risk preference from field data, i.e. from observable

economic behaviour of people in the real world, as laboratory experiment based results

are often found to be true for a specific experiment setup, but not applicable in a more

general scenario. Barseghyan et al. (2018) reviewed different models of risk preference

from the available literature in this area.
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Summary of Barseghyan et al. (2018)

Demand for insurance providing full cover, say QF (π) at premium π is observable from

data. Assuming the slope of demand function for a given risk-group (i.e. a group where all

individuals are having same probability of loss), arises from heterogeneity of risk aversion

coefficient, for a given functional form of utility function, e.g. constant absolute risk

aversion (CARA) or constant relative risk aversion (CRRA), one can derive a distribution

function of the risk aversion coefficient itself.

Specifically for the CARA utility function where u(y) = −e(−ry)/r, where r is the

coefficient of absolute risk aversion, an individual would be willing to pay a maximum

premium π to insure against loss L where:

e(rπ) = µe(rL) + (1− µ) (J.3.1)

From equation J.3.1 the coefficient of absolute risk aversion rF (π) for an individual,

who is willing to pay at most a premium π for full insurance, can be estimated. Any

individual with a risk aversion coefficient r > rF (π) would then buy insurance. From the

observable demand for full insurance , a distribution function F (rF (π)) for rF (π) can be

derived, as

QF (π) = 1− F (rF (π)) (J.3.2)

Now, if a deductible d is introduced , then J.3.1 would be modified to:

µe(r(π+d)) + (1− µ)e(rπ) = µe(rL) + (1− µ) (J.3.3)

From the distribution of risk aversion coefficient , which is known from the equation

J.3.2, it would now be possible to construct the demand function for deductible insurance

QD(π). As the deductible insurance provides less coverage, QD(π) < QF (π).

A different underlying model of risk aversion however can lead to a different conclusion
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about the level of demand. Let’s assume that the individual uses a distorted probability of

loss, say Ω(µ) = Ω > µ , i.e. the individual’s perceived risk is higher than her actual risk

exposure. Hence the decision for buying the deductible insurance driven by the equation

J.3.3 can be written as

Ωe(r(π+d)) + (1− Ω)e(rπ) = Ωe(rL) + (1− Ω) (J.3.4)

which would produce a demand function for deductible insurance with distorted proba-

bility QD
Ω (π). It can be shown that, despite each individual having a higher perceived

risk than actual, for certain values of deductible, d , QD
Ω (π) < QD(π), i.e. the demand for

insurance will actually fall.

The authors have also discussed other models of risk aversion e.g. constant relative

risk aversion (CRRA), hyperbolic absolute risk aversion (HARA) and negligible third

derivative (NTD). However in our case we assume that individual’s attitude towards risk

is independent of her initial wealth, hence CARA would be the appropriate model in this

case.

J.4 Social Welfare

Two models developed respectively by Akerlof (1970) and Rothschild and Stiglitz (1976),

are the basis of most of the economic studies around asymmetric information in insurance

market. However neither of these deals with the aspect of social welfare in great detail.

We can mention Einav and Finkelstein (2011) as an example of a model based on Akerlof

framework to examine social welfare implications. Similarly, Hoy (2006) has used the

Rothschild-Stiglitz model to study the social welfare implications of insurance. In the

following sections we summarise both the models.
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Summary of Einav and Finkelstein (2011)

Einav and Finkelstein (2011) used the concepts of traditional commodity market equi-

librium in a graphical framework to explain social welfare within the insurance market.

A risk averse individual would be ready to pay more than his fair premium due to the

certainty offered by insurance. The maximum quantity that the risk averse customer can

be charged above his fair premium is termed by the authors as “risk premium”. For a risk

loving customer on the hand, the price of insurance has to be subsidized before he will

buy, as he would not be prepared to buy insurance at fair premium. In the case of risk

loving customer risk premium would be negative. An individual’s “willingness to pay” is

defined as the sum of his fair premium and risk premium.

In the graphical framework of Einav and Finkelstein (2011) willingness to pay deter-

mines the demand for insurance (given by BE in figure J.4). The social welfare has been

calculated as the sum of consumers’ surplus and producers’ surplus. The model predicts

that the absence of perfect information would cause a deadweight loss in social welfare.

In case of a population where all individuals are risk averse, the equilibrium is depicted

in figure J.4.

Assuming that the risk premium of the population does not vary with their risk

profile, as the insurer lowers the price, the marginal customer gained would have lower

risk than the average customer, who has already bought the insurance. This implies the

marginal cost curve of the supplier would be downward sloping, and will be below the

average cost curve. In figure J.4, AF and AG are the marginal and average cost curves

respectively.

Note that in a commodity market, a producer would be willing to produce as long as

marginal cost (i.e. cost of producing one additional unit) is lower than price he gets for

it. In other words, marginal cost curve is below demand curve. Marginal cost curve is

therefore considered as supply curve of the commodity.



137

Quantity

P
ric

e

Qeqm Qmax

P e
ff

P e
qm

B

A

P

I

O

C

D

Q

G

E

F

H

J

Demand curve
MC curve
AC curve

Figure J.4: Insurance market equilibrium: risk averse customers
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However, in the insurance market, the true marginal cost of the customer remains

unknown to insurer. Hence the supply of insurance in this case would be determined by

the average cost. The equilibrium price and coverage in the figure is given by Peqm and

Qeqm respectively.

Customer surplus in this case would be represented by the area of 4BPC (this area

represents the difference between the willingness to pay and the actual price paid by the

insured population).

Producer’s revenue is represented by area of �POQC.

Producer’s total cost is given by �AOQD.

Therefore producer’s surplus is represented by 4JCD - 4APJ

Hence total surplus = 4BPC + 4JCD - 4APJ = Area of �BADC

Note that in absence of information asymmetry, the insurer could charge a differenti-

ated price to each customer and due to perfect competition each customer would have paid

fair premium. A full insurance coverage would have been possible in that case, generating

a surplus represented by area of �BAFE.

Therefore a deadweight loss equal to the area of �CDFE is the result of information

asymmetry.

Note that in figure J.4, the demand curve is always above the MC curve. This

implies that all the individuals are willing to pay more than their fair premium. However

if there are customers who are risk loving, i.e. who have a negative risk premium, then

these customers will have a lower willingness to pay than their marginal cost. They are

represented by the segment QH in figure J.5. In this scenario there would still be a

deadweight loss represented by area of 4CJD.

If insurance is mandated then the uninsured will be forced to buy insurance at equi-

librium price, and in this case total deadweight loss (compared to perfect information

scenario) would be represented by 4DEF in figure J.5. Therefore mandated buying of

insurance may in some case increase social welfare if area of 4DEF is less than that of
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Figure J.6: Insurance market equilibrium: propitious selection

4CJD.

The authors also considered a scenario where low-risk customers are highly risk averse

and high-risk individuals are risk lovers. In this case, depicted in J.6, the marginal cost

curve would be increasing with quantity of sold insurance and the average cost curve will

be below marginal cost.

The authors argued that in this case too there will be deadweight loss and the dead-

weight loss will result from subsidizing customers who would not have been insured in

perfect information regime. These customers would have a lower willingness to pay than

their fair premium. As opposed to “adverse Selection” this is called “propitious selection”.

In Equilibrium, customer surplus = the area of 4BPC

Producer’s surplus = Area of �POKC - Area of AOKJ

= Area of 4PAL - Area of 4LCJ



141

Hence total social welfare = 4BAD - 4DCJ

Under symmetric information the social welfare would be represented by area of

4BAD.

Therefore the deadweight loss is represented by Area of 4DCJ

Observations from Einav and Finkelstein (2011) include the following:

• The “willingness to pay” is a sum of the customer’s actual risk and his risk aversion.

The scenarios explored in the paper assumes simple upward or downward sloping

marginal cost curves. It would be interesting to translate the willingness to pay into

its component parts i.e. risk and risk aversion (or affection) and look at their indi-

vidual effects on the demand and social welfare in detail, using the same graphical

framework.

• The model assumes that firms compete on price and offer full coverage. Unlike

Rothschild and Stiglitz (1976) it does not allow contracts that can specify both

premium and coverage. It could be investigated further to allow coverage as part of

contract in the model.

• It is possible to show from figures J.4 and J.5 under adverse selection, a regulator

can set price at Peff externally to maximize social welfare. However in this case

insurers will have negative surplus. But regulator can tax the consumers to transfer

some customer surplus to insurers to ensure non negative surplus for insurers.

• If consumers are subsidized to buy insurance, it would move demand curve upward.

That would increase coverage and hence reduce deadweight loss. Therefore subsidies

to consumers can be used by a regulator to achieve the socially optimal consumption

level, i.e. Qeff . On the other hand if administrative cost of insurance increases, then

marginal cost and average cost curves would move up. As a result coverage will fall.
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• If by segregating the markets it is possible to remove the information asymmetry

then segregating (e.g. on the basis of gender) could increase social welfare. How-

ever in most real life scenarios it would not eliminate information asymmetry and

therefore no inference could be drawn on the impact of segregation on social welfare.

• From policymaker’s point of view it may be important to find out the cost of adverse

selection. However a “more adversely selective market” (i.e. where average cost

of insured and uninsured population differ by higher margin) does not necessarily

imply bigger deadweight loss. It can be shown that the size of deadweight loss

would actually depend on the slope of the insurance demand curve, not just on the

difference in average costs.

The model in Einav and Finkelstein (2011) only considers full coverage contracts,

and therefore closer to Akerlof framework. In the next section we consider the welfare

concept of Hoy (2006), which examines the utilitarian impacts arising out of the effect of

insurance on the income distribution, in a Rothschild-Stiglitz framework.

Summary of Hoy (2006)

The author in this paper used the basic simple model of Rothschild and Stiglitz, with a

utilitarian social welfare function. The utility functions are assumed to be interpersonally

comparable cardinal functions. Behind a veil of ignorance, maximizing social welfare is

essentially the problem of maximizing expected utility of an individual.

The paper uses a theorem from Atkinson (1970) which considers F (x) and G(x), two

income distributions with equal means and with density functions f(x) and g(x) respec-

tively (i.e. f = F ′ and g = G′). It says that if LF (k) and LG(k) represent their respective

Lorenz curves, then for a function U(x) where U ′(x) > 0 and U ′′(x) < 0,
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LF (k) ≥ LG(k),∀k ∈ [0, 1]⇔
∫
U(x)f(x)dx ≥

∫
U(x)g(x)dx (J.4.1)

As U(x) can be an utility function, the above theorem means that if F and G represent

two possible income distributions with equal mean, then Lorenz dominance of F (k) over

G(k) implies higher social welfare under distribution F (x) compared to G(x). In this case

one needs to consider the distribution of expected income (ex ante, i.e. before individuals

are exposed to the loss inducing event) under different premium pricing regimes to consider

their welfare implications.

As argued by Rothschild and Stiglitz, in the case of perfect information, as per figure

J.7 αA and αB would be separating contracts sold to high and low risk customers. With

information asymmetry, αA and αC would be separating contracts sold to high and low risk

customers respectively. Lines EH and EL denote high and low risk customers’ fair odds

lines. EG denotes pooled fair odds line. As the pooled market odds line cuts through the

low risk indifference curve uLC for separating contract, in this case the Rothschild-Stiglitz

equilibrium can be disrupted. However, considering the non-myopic equilibrium concept

of Wilson (1976), a contract that would lie on fair odds line and is most preferred contract

by low-risk individuals, i.e. αD ,would be a Wilson equilibrium contract in this case.

Hoy argues that there would be two scenarios which we need to consider while con-

sidering social welfare:

1. When the high-risk population proportion λ is high then pooled fair odds line would

not pass through uLC and in that case separating equilibrium ,as shown in figure J.2

by αA and αC would be stable.

2. When high-risk population proportion λ is low enough then pooled fair odds line

would pass through uLC and in that case separating equilibrium would not be stable.

But Wilson equilibrium as shown in figure J.7 by αD would be stable.
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Based on the above, the following scenarios are of interest:

1. Scenario 1 - Contract A and B: Contracts offered in the perfect information scenario

(represented by αA and αB in figure J.7): In this case loss probabilities are common

knowledge. So each customer would pay fair premium and buy full insurance. If W0

indicates initial wealth and d denotes loss, then utility for high-risk customers (say,

buying contract A) would be UH1 = u(W0 − pHd) in both accident and no-accident

state.

For low-risk customers (say, buying contract B), it would be UL1 = u(W0 − pLd) in

both accident and no-accident state.

2. Scenario 2 - Contract A and C: Separating contracts offered in the asymmetric

information scenario with Rothschild-Stiglitz equilibrium (represented by αA and

αC in figure J.7): As low-risk customers would not buy full coverage, we denote the

fraction of coverage bought by low-risk customers as rS. The expected utility in

this case for low-risk customers (contract C) would be:

UL2 = (1− pL)u(W0 − pLrSd) + pLu(W0 − pLrSd− d+ rSd) (J.4.2)

High-risk customers would still be buying contract A. Utility of high-risk customers

would be the same as in scenario 1. High-risk customers would remain indifferent

between the two contracts on offer. Therefore high-risk individuals’ utility is given

by:

UH2 = u(W0 − pHd) (J.4.3)

Note that in the accident state, low-risk individuals’ wealth would be lower than

high-risk individuals’ wealth (as they will not be buying full coverage). Hence
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W0 − pLrSd− d+ rSd < W0 − pHd (J.4.4)

⇒ rS(1− pL) < 1− pH ⇒ rS < (1− pH)/(1− pL) (J.4.5)

3. Scenario 3 - Contract D: Pooled contract offered in Wilson equilibrium (represented

by αD in figure J.7): This is the contract (say, contract D) that would lie on pooled

fair odds line and maximize low-risk individuals’ utility. The pooled premium price

for unit loss would be p = λpH+(1−λ)pL, as explained in equation J.2.2. Therefore,

if r∗ denotes the proportion of loss covered by insurance, then

r∗ = argmaxr(1− pL)u(W0 − prd) + pLu(W0 − prd+ rd− d) (J.4.6)

The utilities would be given by:

UL3 = (1− pL)u(W0 − pr∗d) + pLu(W0 − pr∗d− d+ r∗d) (J.4.7)

UH3 = (1− pH)u(W0 − pr∗d) + pHu(W0 − pr∗d− d+ r∗d) (J.4.8)

For each of above scenarios we can derive the Lorenz curves (figure J.8) based on

expected wealth distribution. Then using the result J.4.1, social welfare implications can

be drawn from Lorenz curve dominance. Note that slope of Lorenz curve at any point is

equal to the ratio of the wealth of the marginal individual to the average wealth of the

population. As the average expected wealth of the population is same in all scenarios

(W0 − pd), the slope of the Lorenz curves in each scenario would actually indicate the

expected wealth.
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The following conclusions are based on the Lorenz curve analysis of figure J.8.

1. Scenario 1 - Green line AB: OP denotes the proportion of high-risk individuals i.e.

λ. The slope of the curve between O and P represents W0 − pHd and the slops to

the right of P represents W0 − pLd.

2. Scenario 2 - Red Line AC: OM is the proportion of low-risk individuals expected

to face loss : (1 − λ)pL. MQ is the proportion of high-risk individuals : λ. The

slope of the curve between O and M represents W0 − rSpLd+ rSd− d. As all high-

risk individuals would buy full coverage, the slope of the curve between M and Q

represents W0−pHd, i.e. same as the slope of first segment of scenario 1 curve. The

slope of the curve to the right of Q represents W0 − rSpLd. This is the expected

wealth of low-risk individuals who do not face loss, so length of QR is (1−λ)(1−pL).

3. Scenario 3 - Brown line D: Here the contract on offer is a pooled contract. So

the wealth distribution will only depend on whether a person faces a loss or not.

Hence ON represents the proportion of people expected to face a loss , i.e. p =

λpH + (1− λ)pL, and NR=1− p. The slope of the curve to the left of N represents

the expected wealth of individuals who suffer a loss, i.e. W0 − pr∗d+ r∗d− d. The

slope of the curve to the right of N represents W0 − pr∗d.

We can note that if W0 − pr∗d + r∗d − d > W0 − pHd and W0 − pr∗d < W0 − pLd then

brown scenario 3 Lorenz curve will dominate the scenario 1 curve.

W0 − pr∗d+ r∗d− d > W0 − pHd (J.4.9)

⇒ r∗ > (1− pH)/(1− p) (J.4.10)
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and

W0 − pr∗d < W0 − pLd (J.4.11)

⇒ r∗ > pL/p (J.4.12)

Essentially if r∗ is close to 1 then Lorenz curve for Wilson equilibrium or Scenario 3 will

completely dominate the Scenario 1 (perfect information) Lorenz curve. On the other

hand if r∗ is small then the perfect information scenario will dominate.

Note that this analysis does not allow ex post redistribution of wealth via tax/subsidy.

The author also mentions that if information about risk profiles can be collected without

cost to the insurers and customers are fully aware of their own risk probabilities, then

more information for insurers about their customers would always lead to increase in

Pareto efficiency. Now expected ex ante utility under full information is given by:

EUAB = (1− λ)u(W0 − pLd) + λu(W0 − pHd) (J.4.13)

Expected ex ante utility under Wilson equilibrium contract D is given by:

EUD = (1− p)u(W0 − pr∗d) + pu(W0 − pr∗d+ r∗d− d) (J.4.14)

The author proves the following :

1. There exists some λc > 0, such that for any λ < λc, EUD > EUAB.

2. If loss probability for high-risk individuals, pH , increases while proportion of high-

risk population λ falls, so that λpH is constant, then EUAB would fall, but EUD

will remain constant.

Together the above results mean that if the proportion of high-risk individuals is

high enough so that separating equilibrium of Rothschild-Stiglitz is possible, then full
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information delivers higher welfare and therefore regulator or government should not

impose ban on classification.

However if high-risk population proportion is lower than a threshold where separating

equilibrium is not achievable, it might be possible to deliver higher welfare by pooling the

risks and let market achieve Wilson equilibrium . For low enough proportion of high-risk

population this is certain to deliver higher social welfare.

Additionally, if the loss probability of the high-risk population is higher, (i.e. pH is higher)

then the threshold proportion of high-risk population λ, below which Wilson equilibrium

under pooling unambiguously delivers higher welfare, would be smaller.

J.5 Measures of Social Welfare

A good measure of social welfare has always been a fundamental question among economists.

A social welfare function (SWF) is essentially a function on the set of alternative states

which would allow us to rank the alternatives in terms of their goodness from a social

point of view. In the words of Arrow (Sen (2017), p. 271) it would map “the vector of

utilities of individuals into a [collective] utility”.

Arrow (1963) defined a SWF as a functional relation specifying one social ordering

R for any n-tuple of individual orderings Ri for each person, i.e. R = f(Ri).

Bergson (1938) and Samuelson (1947) proposed a SWF as an ordering of choices.

Note that Arrow SWF produces a Bergson-Samuelson SWF as an output of individual

preferences. Arrow imposed a number of conditions that a reasonable SWF would be

expected to satisfy. One of the central conditions that Arrow proposed is the Independence

of Irrelevant Alternatives (IIA). IIA states that as long as individual preferences remain

the same over a subset of social states, the social choice from that particular subset

should also remain the same. IIA plays a central role in defining an Arrow SWF as

Arrow concentrated on understanding the voting paradox. The mutual inconsistency of
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the axioms is proven in Arrow’s impossibility theorem.

However on the question of finding a “good SWF” Dhillon and Mertens (1999) de-

parted from Arrow’s axioms. Replacing IIA by an alternative set of weaker axioms,

Dhillon and Mertens (1999) presented “relative utilitarianism” as an alternative SWF. It

assumes that utility, as opposed to preferences, exists objectively. Also, persons with sim-

ilar preferences and expressive reactions are assumed to derive same utilities from similar

situations. In this framework, relative utilitarianism - which consists of first normalis-

ing von-Neumann-Morgenstern utilities to a scale of 0-1, and then aggregating them – is

shown to be a good SWF. Thus our measure of social welfare is expected utility given

the distributions of loss probabilities and preferences in society, but evaluated behind a

hypothetical veil of ignorance which screens off knowledge of the decision maker’s own

loss probability and preferences.

We also explored ”loss coverage” in the context of social welfare. The concept of “loss

coverage” is introduced in Thomas (2008) as the total expected loss covered by insurance.

Hao et al. (2019) also links the concept of loss coverage to the utilitarian social welfare

concept. They show that under iso elastic demand the ranking of two policies in the order

of their loss coverage would be same as their ranking in order of social welfare achieved

under them. Note that, due to the unobservable nature of utility functions, utilitarian

social welfare is difficult to measure. But loss coverage under a given premium pricing

regime is an observable quantity ex-post. Therefore from the policymakers’ point of view,

loss coverage could be used to compare social welfare achieved under different pricing

regimes (e.g. pooled premium, partial risk classification or full risk classification).

In the model of Hao et al. (2019), the decision to buy insurance for an individual

would depend on the individual’s utility function U(.) , which is private knowledge. If

an individual’s initial wealth is given by W and he faces risk of loss L with probability µ

then his expected utility is given by:
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µU(W − L) + (1− µ)U(W )

If π is the premium for insuring each unit of loss, then by buying insurance, an

individual derives an utility of U(W −πL). Therefore the individual would buy insurance

if

U(W − πL) > µU(W − L) + (1− µ)U(W ) (J.5.1)

This implies that an individual with concave utility function would always buy in-

surance at fair premium i.e. when π = µ. Actually the above condition also implies that

he would be willing to pay above his fair premium. This can be related to risk premium

mentioned in Einav and Finkelstein (2011) and discussed above. Figure J.9 shows why

an individual would be willing to pay up to πc where (πc - µ) actually represents the risk

premium explained in Einav and Finkelstein (2011).

Applying the normalization principle of Dhillon and Mertens (1999), and assuming
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all individuals have same utility at the end points , i.e. U(W ) = 1 and U(W − L) = 0,

decision to buy insurance will be determined by the condition

U(W − πL) > 1− µ (J.5.2)

An individual’s preference of risk would be represented by a random variable Γ, so that

an individual’s utility function would be represented by UΓ(.). The distribution function

of the individual utilities (which really is the relative utility as defined by Dhillon and

Mertens (1999)) can be translated into a demand function for insurance as follows:

d(π) = P [UΓ(W − πL) > 1− µ] (J.5.3)

d(π) can be considered as a demand function of insurance.

If we consider a class of power utility functions of the form U(w) = wγ, then:

P [UΓ(W − πL) > 1− µ] ≈ P [γ <
µ

π
] (J.5.4)

Note that elasticity of demand by definition is given by:

ε(π) = −∂ log d(π)

∂ log π
(J.5.5)

An iso-elastic demand function implies that the elasticity is constant, say λ. Then the

demand would be given by:

d(π) = τ exp[−
∫ π

µ

ε(s)d log s] = τ
(µ
π

)λ
(J.5.6)

where d(µ) = τ is the demand at fair premium.

It is possible to find the distribution function of γ such that the resulting demand
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function is iso-elastic.

Now assume a population of n risk-groups where the proportion of population in each

group is given by pi, i = 1, 2 . . . n and risk of loss for each group is µi (µ1 < µ2 < . . . < µn).

Assume each group’s insurance demand function is given by di(.). If each group is charged

a premium of πi, then under perfect competition, the market equilibrium condition , under

perfect competition implies that the insurer’s profit :

ρ(π) = L
∑
i

di(πi)pi(πi − µi) = 0 (J.5.7)

It can be shown that there exists a pooled premium π∗, where µi < π∗ < µn, for which,

the equilibrium condition would be met.

Note that in above expression, premium earned by insurers is L
∑

i di(πi)piπi and

expected loss coverage is L
∑

i di(πi)piµi. Maximizing loss coverage under equilibrium is

equivalent to finding a solution vector (π), such that:

LC(π) =
∑

i di(πi)piµi is maximum, where ρ(π) = 0

In Hao et al. (2019), the authors had shown that if n risk-groups have iso elastic

demand functions where elasticity of i-th group given by λi, and π0 denotes equilibrium

premium under pooled regime; defining λlo = max{λi : µi < π0} and λhi = min{λi : µi >

π0}
[λhi ≥ λlo] ∩ [λlo < 1]⇒ LC(π0) ≥ LC(µ) (J.5.8)

The result proves that under certain condition on demand elasticities is possible to achieve

higher loss coverage with adverse selection than under full risk classification. The condi-

tion on demand elasticity implies that the high risk-groups would have to be more price

sensitive than low-risk individuals.
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J.6 Discussion

The body of literature discussed above in this section have been used in current thesis, as

a springboard, to develop our model. We looked at them to identify areas where expansion

and further generalisation could lead to qualitatively different results.

Heterogeneity in risk aversion was clearly one area where the existing literature could

be expanded. To estimate the distribution of risk preference in the population we used

demand elasticity as a proxy measure. This approach is similar to Hao et al. (2019).

However unlike Hao et al. (2019), which uses loss coverage to infer about social welfare in

a limited set of scenarios, our focus has been primarily on direct estimation of social welfare

in a more generalized setup. We also use the same approach in partial risk classification

scenarios and examining their implications on social welfare and loss coverage.

For measuring social welfare we used the approach of relative utilitarianism, as defined

by Dhillon and Mertens (1999). This addresses the issue of interpersonal comparability of

individual utilities. In our model, a regulator’s goal is to maximize the expected utility of

a randomly selected individual in the population, behind a hypothetical veil of ignorance

which screens off the regulator’s knowledge about the individual’s risk preference and

loss probability . In our model, insurers offer full coverage with competitive price. The

question of social welfare in a similar model has previously been discussed in Einav and

Finkelstein (2011). But Einav and Finkelstein (2011) did not use a probability distribu-

tion for risk preference in the model. In the current thesis, we show, that introducing

randomness of risk preference across individuals in the model could lead to useful results

related to social welfare. It may help a regulator to look at empirical data from the

market (e.g. demand elasticities) and prescribe policies to increase welfare. Qualitatively

our findings are similar to Hoy (2006). But unlike Hoy (2006), we derive conditions on

demand elasticities which could deliver higher social welfare irrespective of the proportion

of different risk-groups in the population.
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