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Abstract

During a time of habitat loss, climate change and loss of biodiversity, effi-

cient analytical tools are vital for population monitoring. This thesis con-

cerns the modelling of butterflies, whose populations are undergoing various

changes in abundance, range, phenology and voltinism. In particular, three-

quarters of UK butterfly species have shown declines in their distribution,

abundance, or both over a ten-year period. As the most comprehensively

monitored insect taxon, known to respond rapidly and sensitively to change,

butterflies are particularly valuable, but devising methods that can be fitted

to large data sets is challenging and they can be computer intensive.

We use occupancy models to formulate occupancy maps and novel re-

gional indices, which will allow for improved reporting of changes in butter-

fly distributions. The remainder of the thesis focuses on models for count

data. We show that the popular N-mixture model can sometimes produce

infinite estimates of abundance and describe the equivalence of multivariate

Poisson and negative-binomial models.

We then present a variety of approaches for modelling butterfly abun-

dance, where complicating features are the seasonal nature of the counts

and variation among species. A generalised abundance index is very effi-

cient compared to generalised additive models, which are currently used for

annual reporting, and new parametric descriptions of seasonal variation pro-

duce novel and meaningful parameters relating to phenology and survival.

We develop dynamic models which explicitly model dependence between

broods and years. These new models will improve our understanding of the

complex processes and drivers underlying changes in butterfly populations.

ii



Acknowledgements

I would firstly like to express my gratitude to my academic supervisors,

Professor Byron Morgan and Professor Martin Ridout, for their continuous

support and insight, as well as Dr Stephen Freeman, Dr David Roy and Dr

Tom Brereton for their advice and expertise. It has been a pleasure working

with you all. My particular thanks to Byron for your continued guidance,

enthusiasm and encouragement, for being an inspiring mentor, and for ac-

commodating my move to the west. My particular thanks also to Stephen

and David, for introducing me to the study of butterflies and suggesting a

PhD at the University of Kent.

I am grateful to the Engineering and Physical Sciences Research Coun-

cil (EPSRC), the School of Mathematics, Statistics and Actuarial Science

at the University of Kent, and the National Centre for Statistical Ecology

(NCSE) for funding my PhD research. I would also like to thank Professor

David Elston and Dr Diana Cole for being examiners of my thesis.

Many thanks to the Centre for Ecology & Hydrology/Butterfly Con-

servation for providing UKBMS and BNM data, and special thanks to the

great number of volunteer recorders who give up their time to contribute to

these data sets, without which the research presented in this thesis would

not have been possible. The UKBMS is operated by CEH, BC and the

British Trust for Ornithology and funded by a multi-agency consortium

including the Countryside Council for Wales, Defra, the Joint Nature Con-

servation Committee, Forestry Commission, Natural England, the Natural

iii



iv

Environment Research Council, and Scottish Natural Heritage. Thanks also

to Thibaut Couturier for supplying the Hermann’s tortoise data.

Thanks to all of my family and friends, with particular thanks to my

parents for their unwavering love and support. Most of all thanks to my

partner James, for knowing me so well and bringing me happiness.



Contents

Abstract ........................................................................... ii

Acknowledgements............................................................ iii

Contents........................................................................... v

List of figures ................................................................... ix

List of tables ....................................................................xvi

List of electronic appendices ............................................. xx

1 Introduction ..................................................................... 1

1.1 Butterflies.................................................................... 2

1.1.1 Changes in abundance and distribution .................... 5

1.1.2 Changes in phenology ........................................... 7

1.1.3 Voltinism ........................................................... 8

1.1.4 Modelling butterfly abundance ............................... 9

1.2 Thesis motivation and aims ............................................. 11

1.3 Data for UK butterflies .................................................. 13

1.3.1 UK Butterfly Monitoring Scheme ............................ 13

1.3.2 Butterflies for the New Millennium.......................... 16

1.3.3 Wider Countryside Butterfly Survey ........................ 18

1.4 Thesis structure ............................................................ 18

2 Occupancy modelling ........................................................ 21

2.1 Background.................................................................. 22

2.2 Methods ...................................................................... 26

v



CONTENTS vi

2.2.1 Presence-only model ............................................. 26

2.2.2 Site-occupancy model ........................................... 28

2.2.3 Assessing model performance ................................. 29

2.2.4 Indexing occupancy.............................................. 30

2.3 Application .................................................................. 32

2.3.1 Generating non-detection records for BNM data......... 34

2.3.2 Model performance for BNM data ........................... 36

2.4 Results........................................................................ 36

2.4.1 Model comparison................................................ 36

2.4.2 Optimal benchmarking ......................................... 47

2.4.3 Detection probability............................................ 53

2.4.4 Occupancy indices ............................................... 59

2.5 Discussion.................................................................... 66

3 N-mixture models ............................................................. 73

3.1 Background.................................................................. 73

3.2 The N-mixture model..................................................... 75

3.3 Equivalence of the Poisson N-mixture model with a multi-

variate Poisson model..................................................... 76

3.3.1 Example: T=2, Poisson case .................................. 78

3.3.2 Multivariate Poisson distribution ............................ 79

3.3.3 Performance of the multivariate Poisson model .......... 80

3.4 Explicit form for the bivariate negative-binomial case ........... 83

3.5 The effect of the choice of K on fitting the N-mixture model .. 85

3.5.1 Incorrect estimates due to the choice of K ................ 85

3.5.2 Automatic choice of K .......................................... 90

3.6 Moment estimation for a mixed-Poisson N-mixture model...... 91

3.6.1 Moment estimation .............................................. 91

3.6.2 Performance of the multivariate negative-binomial model 93

3.7 Application to Hermann’s Tortoise Data ............................ 97

3.8 Discussion and recommendations ...................................... 98

A Performance of method-of-moments estimation ...................102



CONTENTS vii

4 Recent models for butterfly abundance .............................109

4.1 Generalised additive models ............................................110

4.1.1 Missing data .......................................................110

4.1.2 Original GAM approach........................................110

4.1.3 Two-stage GAM approach .....................................112

4.1.4 Comparison of the two GAM methods .....................114

4.1.5 Application to UKBMS data ..................................117

4.1.6 Improving efficiency .............................................119

4.1.7 Discussion ..........................................................124

4.2 Stopover models............................................................127

4.2.1 Model description ................................................127

4.2.2 Application to UKBMS data ..................................129

4.2.3 Discussion ..........................................................134

5 A generalised abundance index .........................................137

5.1 Background..................................................................137

5.2 Generalised abundance index ...........................................138

5.2.1 Concentrated likelihood for the Poisson case..............139

5.2.2 Negative-binomial case..........................................140

5.2.3 Zero-inflated Poisson case ......................................141

5.2.4 Increased efficiency ..............................................142

5.2.5 Generalised abundance index .................................142

5.2.6 Functions for ai,j .................................................142

5.3 Demonstration of efficiency via simulation ..........................144

5.4 A hierarchical model approach .........................................146

5.4.1 Poisson-gamma model ..........................................146

5.4.2 Negative-binomial-gamma model.............................148

5.4.3 Comparison of the hierarchical model and GAI ..........148

5.5 Comparison of the SOB and NB GAIs ...............................153

5.5.1 Simulation study .................................................153

5.5.2 Comparison for UKBMS data ................................158

5.6 Examples.....................................................................161



CONTENTS viii

5.6.1 Splines ..............................................................161

5.6.2 Indices from the phenomenological model .................163

5.6.3 Stopover model ...................................................169

5.6.4 Regressing parameters on year and northing..............170

5.7 Discussion....................................................................173

6 Dynamic models ...............................................................176

6.1 Dynamic model formulation ............................................177

6.1.1 Phenomenological model for univoltine species ...........178

6.1.2 Phenomenological model for bivoltine species ............179

6.1.3 Stopover models ..................................................180

6.1.4 Concentrated likelihood ........................................181

6.1.5 Annual index of abundance....................................184

6.2 Application ..................................................................184

6.2.1 Indices...............................................................187

6.2.2 Productivity .......................................................187

6.2.3 Survival .............................................................195

6.2.4 Phenology ..........................................................202

6.2.5 Comparison to the GAI approach............................209

6.3 Discussion....................................................................214

7 Discussion and future work ...............................................218

Bibliography .....................................................................226



List of Figures

Figure 2.1 Regions used for regional occupancy indices. .................. 35

Figure 2.2 ROC curves for a single random partition for each species,

for the PO and PA models. ........................................ 38

Figure 2.3 AIC comparison for fitting the PA model with and with-

out quadratic effects, for each species............................ 39

Figure 2.4 PA model output for Wall Brown in 2009: a) observations

b) estimated occupancy probability c) standard error. ...... 44

Figure 2.5 PO model output for Wall Brown in 2009: a) observations

b) estimated occupancy probability c) standard error. ...... 44

Figure 2.6 PA model output for Ringlet in 2009: a) observations b)

estimated occupancy probability c) standard error........... 45

Figure 2.7 PO model output for Ringlet in 2009: a) observations b)

estimated occupancy probability c) standard error........... 45

Figure 2.8 PA model output for Silver-washed Fritillary in 2009: a)

observations b) estimated occupancy probability c) stan-

dard error. .............................................................. 46

Figure 2.9 PO model output for Silver-washed Fritillary in 2009: a)

observations b) estimated occupancy probability c) stan-

dard error. .............................................................. 46

Figure 2.10 Locations of BNM records from 10, 20 and all bench-

marking species in 2000. ............................................ 47

ix



LIST OF FIGURES x

Figure 2.11 Proportion of observations made per week across all lo-

cations and years, for each species. ............................... 54

Figure 2.12 Estimated detection probability throughout the season

for each species in 2009.............................................. 58

Figure 2.13 Mean estimated detection probability (over the season)

per year for each species. ........................................... 59

Figure 2.14 Regional occupancy indices for Wall Brown from the PA

model. ................................................................... 62

Figure 2.15 Regional occupancy indices for Ringlet from the PA model. 63

Figure 2.16 Regional occupancy indices for Silver-washed Fritillary

from the PA model. .................................................. 64

Figure 2.17 a) UK occupancy indices for each of the three species

b) Index of abundance for each species, generated from

UKBMS data using the two-stage GAM approach. .......... 65

Figure 3.1 Log(λ̂) from the bivariate Poisson model plotted against

the covariance diagnostic, cov∗(y1, y2), for S = 20, λ =

2, 5, 10 and p = 0.25. ................................................. 81

Figure 3.2 Log(λ̂) from the multivariate Poisson model with T = 3

plotted against the covariance diagnostic, cov∗(y1, y2, y3),

for S = 20, λ = 2, 5, 10 and p = 0.25. ............................ 82

Figure 3.3 Kernel density estimates of λ̂ from the Poisson N-mixture

model when S = 20, λ = 5 and p = 0.25, for T = 2, 3, 4

and K = 100, 500, 1000. ............................................. 86

Figure 3.4 Kernel density estimates of λ̂ from the Poisson N-mixture

model when S = 50, λ = 5 and p = 0.25, for T = 2, 3, 4

and K = 100, 500, 1000. ............................................. 87



LIST OF FIGURES xi

Figure 3.5 a) λ̂ plotted against increasing K for a two simulations,

with default values of K for unmarked and PRESENCE

also shown. b) A plot of log(λ̂) versus the smaller eigen-

value of the estimated Hessian at the maximum-likelihood

estimate for K = 200 & 1000. ..................................... 88

Figure 3.6 Kernel density estimate for λ̂p from the Poisson N-mixture

model, for K = 200 when T = 2, S = 20, λ = 5 and

p = 0.25.................................................................. 89

Figure 3.7 a) A plot of λ̂ versus p̂ and (b) log(λ̂) versus log(p̂) rotated

135◦ clockwise about the origin, when T = 2, 3, 4, 5 for

K = 200, S = 20, λ = 5 and p = 0.25............................ 90

Figure 3.8 Diagnostic 1 versus diagnostic 2 from the bivariate negative-

binomial model, for S = 20, λ = 2, 5, 10, α = 5 and

p = 0.25.................................................................. 95

Figure 3.9 Diagnostic 1 versus diagnostic 2 from the bivariate negative-

binomial model, for S = 20, λ = 2, 5, 10, α = 1.25 and

p = 0.25.................................................................. 95

Figure 3.10 Diagnostic 1 versus diagnostic 2 from the multivariate

negative-binomial model when T = 3, for S = 20, λ =

2, 5, 10, α = 5 and p = 0.25. ........................................ 96

Figure 3.11 Diagnostic 1 versus diagnostic 2 from the multivariate

negative-binomial model when T = 3, for S = 20, λ =

2, 5, 10, α = 1.25 and p = 0.25. .................................... 96

Figure 4.1 Real weekly counts at two example UKBMS sites in 2005

for three species, with the corresponding GAM...............115

Figure 4.2 Estimated power (the percentage of simulations that de-

tected a significant linear time trend) for the original and

two-stage GAM approaches. .......................................116



LIST OF FIGURES xii

Figure 4.3 (a) Comparison of the mean number of sites included by

each model for each species. b) Mean percentage of total

monitored 10 km grid squares retained under the original

GAM approach against the total numbers of sites for each

species. ..................................................................118

Figure 4.4 a) Comparison of the estimated percentage trends of the

collated indices for the two GAM approaches for each

species. b) The difference in mean width of the confidence

intervals from the two GAM approaches compared to the

mean number of sites for each species. ..........................118

Figure 4.5 Collated indices for the original and two-stage GAM ap-

proaches, with corresponding confidence intervals. ...........119

Figure 4.6 Collated indices for the two-stage GAM approach, using

all years, and only the last 10 years in the second stage

of the model. ...........................................................121

Figure 4.7 Predicted seasonal pattern from the two-stage GAM ap-

proach for each species in 2011, treating the counts as

daily and weekly. ......................................................123

Figure 4.8 Collated indices for the two-stage GAM approach, treat-

ing the counts as daily, and weekly. ..............................123

Figure 4.9 Parameter estimates from the stopover model for Com-

mon Blue. a) Relative size of the first brood, b) mean

emergence times of the two broods, with northing, and

c) estimated survival probabilities with week in the season.132

Figure 4.10 Estimated arrival proportions for Common Blue at a sam-

ple of northing values. ...............................................133



LIST OF FIGURES xiii

Figure 5.1 Comparison of estimated site parameters, N̂G, from the

P/N2 GAI and N̂H from the hierarchical Poisson-gamma

model. ...................................................................152

Figure 5.2 Comparison of estimated site parameters, N̂G from the

P/N2 GAI and N̂SO from the P/SO2 GAI......................159

Figure 5.3 Predicted seasonal pattern for each week since the start

of the season for the GAM approach and P/S GAI for

Speckled Wood. .......................................................162

Figure 5.4 Relative abundance indices and associated bootstrapped

intervals for the GAM approach and P/S GAI for Speck-

led Wood. ...............................................................162

Figure 5.5 AIC values from the P/N2, ZIP/N2 and NB/N2 GAIs. .....164

Figure 5.6 Dispersion values from the P/N2, and NB/N2 GAIs. ........165

Figure 5.7 Relative abundances indices from the NB/N2 GAI and

two-stage GAM approach. ..........................................166

Figure 5.8 Comparison of indices with bootstrapped intervals de-

rived from the two-stage GAM and NB/N2 GAI. ............167

Figure 5.9 Predicted weekly survival probability, ϕ̂, from fitting a

P/SO1 GAI for two univoltine species. .........................169

Figure 5.10 Average week of emergence, µ̂, versus predicted weekly

survival probability ϕ̂, from fitting a P/SO1 GAI to data

for two univoltine species. ..........................................170

Figure 5.11 Predicted seasonal pattern for each week since the start

of the season for the multi-year P/N2 GAI (1980-2011)

for Wall Brown for three years. ...................................172



LIST OF FIGURES xiv

Figure 6.1 a) Relative abundance indices from model N1 and the

GAM approach and b) annual estimates of productivity,

ρk, from model N1. ...................................................189

Figure 6.2 a) Relative abundance indices for the first and second

broods from model N2 and the GAM approach. b) annual

estimates of productivity for the first (ρk,1) and second

(ρk,2) brood from model N2.........................................190

Figure 6.3 Alternative representation of relative abundance indices

for the first and second broods from model N2 and the

GAM approach. .......................................................191

Figure 6.4 a) Annual estimates of productivity for the first (ρk,1)

and second (ρk,2) brood for each bivoltine species b) the

corresponding average seasonal patterns. .......................192

Figure 6.5 Predicted productivity with varying temperature from

model SO1. Each line represents one of 25 equally-spaced

northing values within the species range. .......................193

Figure 6.6 Predicted productivity with varying temperature from

model SO2. Each line represents one of 25 equally-spaced

Northing values within the species range. ......................194

Figure 6.7 Predicted life expectancy (in weeks) with varying tem-

perature from model SO1. Each line represents one of 25

equally-spaced Northing values within the species range. ..197

Figure 6.8 Predicted life expectancy for each brood (in weeks) with

varying temperature from model SO2............................198

Figure 6.9 Annual estimates of a) µk and b) σk from model N1, which

was fitted to estimate ρk, µk and σk across sites for each

year. ......................................................................204



LIST OF FIGURES xv

Figure 6.10 Annual estimates of a) µk,1 and b) µk,2 from model N2,

which was fitted to estimate ρk,b, µk,b and σk,b across sites

for each brood and year. ............................................205

Figure 6.11 Annual estimates of a) σk,1 and b) σk,2 from model N2,

which was fitted to estimate ρk,b, µk,b and σk,b across sites

for each brood and year. ............................................206

Figure 6.12 Annual estimates of µk versus productivity ρk from model

N1, which was fitted to estimate ρk, µk and σk across sites

for each year............................................................207

Figure 6.13 Annual estimates of a) µk,1 versus ρk,1 and b) µk,2 versus

ρk,2 from model N2, which was fitted to estimate ρk,b, µk,b

and σk,b across sites for each brood and year. .................208

Figure 6.14 Comparison of site parameters {Ni,k} from the P/N1 GAI

model (NGAI) and model N1 (NDYN). ............................212

Figure 6.15 Relative abundance indices from dynamic model N1, the

P/N1 GAI model and the GAM approach......................213



List of Tables

Table 1.1 Butterfly monitoring schemes in Europe and beyond. ....... 3

Table 1.2 Sources of count data for other insect taxa in the UK. ..... 4

Table 1.3 Summary of the primary sources of data for UK butterflies. 14

Table 1.4 Latin names of the UK butterfly species mentioned and/or

studied in this thesis, grouped by taxonomic family. ........ 15

Table 2.1 A confusion matrix for observed and predicted presence/

absence patterns (Fielding and Bell 1997). ..................... 29

Table 2.2 Land cover classes for UK land cover data for 2007 from

(Morton et al. 2014), where the five combined classes are

those used in Chapter 2. ............................................ 34

Table 2.3 Comparison of the PO and PA models for Wall Brown

data....................................................................... 40

Table 2.4 Comparison of the PO and PA models for Ringlet data. ... 41

Table 2.5 Comparison of the PO and PA models for Silver-washed

Fritillary data. ......................................................... 42

Table 2.6 Parameter estimates for the PO and PA model for each

species for 2009. ....................................................... 43

Table 2.7 Variation in benchmarking for Wall Brown. ................... 49

Table 2.8 Variation in benchmarking for Ringlet. ......................... 50

Table 2.9 Variation in benchmarking for Silver-washed Fritillary. ..... 51

xvi



LIST OF TABLES xvii

Table 2.10 Variation in benchmarking for Ringlet in Scotland........... 52

Table 2.11 Comparison of the PA model with detection probability

constant or varying linearly with α, the proportion of

observations made per week, for Wall Brown. ................. 55

Table 2.12 Comparison of the PA model with detection probability

constant or varying linearly with α, the proportion of

observations made per week, for Ringlet. ....................... 56

Table 2.13 Comparison of the PA model with detection probability

constant or varying linearly with α, the proportion of

observations made per week, for Silver-washed Fritillary. .. 57

Table 2.14 Comparison of trends in occupancy and abundance. Trends

for PA represent percentage change of the linear trend of

the UK occupancy index from the PA model. ................. 66

Table 3.1 Performance of the covariance diagnostic for the multi-

variate Poisson model for various scenarios of λ, p and T

for S = 20 sites. ....................................................... 82

Table 3.2 Performance of the covariance diagnostic for the multi-

variate negative-binomial model for various scenarios of

λ, p, α and T for S = 20 sites. .................................... 94

Table A.1 Comparison of estimation via method-of-moments and

the N-mixture model for the Poisson case with λ = 2, 5, 10,

p = 0.25 and S = 20..................................................103

Table A.2 Comparison of estimation via method-of-moments and

the N-mixture model for the Poisson case with λ = 2, 5, 10,

p = 0.1 and S = 20. ..................................................104

Table A.3 Comparison of estimation via method-of-moments and

the N-mixture model for the negative-binomial case with

λ = 2, 5, 10, p = 0.25, α = 1.25, and S = 20....................105



LIST OF TABLES xviii

Table A.4 Comparison of estimation via method-of-moments and

the N-mixture model for the negative-binomial case with

λ = 2, 5, 10, p = 0.1, α = 1.25, and S = 20. ....................106

Table A.5 Comparison of estimation via method-of-moments and

the N-mixture model for the negative-binomial case with

λ = 2, 5, 10, p = 0.25, α = 5, and S = 20. ......................107

Table A.6 Comparison of estimation via method-of-moments and

the N-mixture model for the negative-binomial case with

λ = 2, 5, 10, p = 0.1, α = 5, and S = 20. ........................108

Table 4.1 Comparison of model trends when fitting the two-stage

GAM approach to data for all years or only the past 10

years. .....................................................................121

Table 4.2 Comparison of model trends when fitting the two-stage

GAM approach, treating the data as either daily and

weekly. ...................................................................124

Table 4.3 Parameter estimates from the most favoured (in terms of

AIC) stopover model applied to UKBMS data for Com-

mon Blue. ...............................................................131

Table 5.1 Average computation times from 20 simulated datasets,

fitting the full and concentrated likelihood approach for

the phenomenological and stopover models. ...................145

Table 5.2 Model comparison for the P/N2 GAI and the hierarchical

Poisson-gamma model. ..............................................151

Table 5.3 Summary of simulation output from fitting a) P/SO1 and

b) P/N1 GAIs. .........................................................156

Table 5.4 Summary of simulation output from fitting a) P/SO2 and

b) P/N2 GAIs. .........................................................157



LIST OF TABLES xix

Table 5.5 Parameter estimates from the P/SO2 and P/N2 GAIs. .....160

Table 5.6 Comparison of efficiency and accuracy for the GAM and

P/N2, ZIP/N2 and NB/N2 GAIs. Computation times are

given in minutes. ......................................................168

Table 5.7 Model comparison for the multi-year P/N2 GAI for Wall

Brown. ...................................................................171

Table 5.8 Parameter estimates (and asymptotic standard errors) for

the best (in terms of AIC) multi-year P/N2 GAI for Wall

Brown. ...................................................................172

Table 6.1 Approximate flight periods for the sample of butterfly

species studied, which are used for the relevant tempera-

ture covariates. ........................................................186

Table 6.2 Parameter estimates from the a) SO1 and b) N1 models

with covariates. ........................................................199

Table 6.3a Parameter estimates from the SO2 model with covariates. .200

Table 6.4b Parameter estimates from the N2 model with covariates....201

Table 6.5 Comparison of a) the dynamic N1 model and b) the P/N1

GAI.......................................................................211



List of electronic appendices

Dynamic occupancy maps

We provide dynamic occupancy maps for Wall Brown, Ringlet and Silver-

washed Fritillary, based on the occupancy models fitted with varying detec-

tion probability in Section 2.4.3.

List of supplementary R files

We provide R code for the models developed in Chapters 3, 5 and 6.

Chapter 3

Nmixture model.r - contains the likelihood functions for the N-mixture

model, for any number of sampling visits, using the multivariate Poisson and

negative-binomial formulation, and standard Royle (2004a) formulation.

Simulation for Nmixture.r - contains code to simulate example data and

fit the N-mixture model, using the two different approaches.

Chapter 5

GAI model.r - contains functions for the GAI likelihood, and functions to

optimise the concentrated likelihood, including the iterative approach.

Simulation for GAI.r - contains code to fit the GAI to an example of

simulated data.

Chapter 6

Dynamic model.r - contains functions for the dynamic model likelihood, as

well as functions to optimise the concentrated likelihood.

Simulation for Dynamic.r - contains code to simulate example data and

fit the dynamic model.

xx



Chapter 1

Introduction

Global biodiversity is acknowledged to be under significant decline (Barnosky

et al. 2011), which is projected to continue without greater action to limit

anthropogenic climate change (Thomas, C. D. et al. 2004; Pereira et al.

2010). The importance of biodiversity is widely recognised for its multi-

faceted rôle in controlling our ecosystems (Chapin III et al. 2000; Dı́az et al.

2006). Land-use change, climate change and other human-induced factors

have been recognised as important causes of recent declines in biodiversity

(Chapin III et al. 2000; Rands et al. 2010).

At a time of climate change and major loss of biodiversity, efficient

tools for monitoring populations are paramount. Within statistical ecology

various types of data may be collected (King 2014), but in this thesis we

focus primarily upon count data, as well as presence/absence records, where

individuals within a population may not be identified.

Animal abundance indices, typically derived from count data, are re-

quired as a vital source for robust biodiversity indices to help monitor,

understand and predict future responses to changes in climate and land-

use. Indices contribute to the assessment of progress made towards targets

to reduce biodiversity loss at both national (Defra 2013) and global scales

(Butchart et al. 2010; Convention on Biological Diversity 2006). In 1993

the Convention on Biological Diversity (CBD; Glowka et al. 1994) came

into force as an international treaty which aimed for the conservation and

1
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sustainable use of biological resources. In response to the Convention the

UK set up the UK Biodiversity Action Plan (UKBAP; Ruddock et al. 2007)

and the use of biodiversity indicators was recommended to measure and

communicate progress in reaching biodiversity targets.

1.1 Butterflies

Insects are an important component of our ecosystems and account for a ma-

jor proportion of the world’s biodiversity (Gaston 1991), but many groups

are not well monitored. Given the sparsity of data available for many insect

taxa, wide scale studies and contributions towards biodiversity goals, such

as the UKBAP, are mainly based upon a limited selection of indicator taxa,

chiefly butterflies, but also other taxa such as moths, Odonata (dragonflies

and damselflies) and bees.

Butterflies are the most comprehensively monitored insect taxon and

are hence the most practical insects to study. Butterflies are increasingly

recognised as a valuable environmental indicator for changes in biodiversity

and phenology because as ectotherms they respond rapidly and sensitively

to changes in climate and habitat and act as a representative for other

species, particularly other insects (Thomas 2005; Pearman andWeber 2007).

A growing number of participatory schemes for monitoring insects, pre-

dominantly butterflies, have been developed (Table 1.1). This thesis will

focus on modelling British butterfly data, however butterfly monitoring

schemes exist in many countries and continue to be established, hence the

methods we develop will have wider applicability. In the UK, abundance

indices for butterflies form one of 25 indicators employed by UK government

for the assessment of general trends in biodiversity (Defra 2013). Butterfly

indicators for the UK and Europe are discussed further by van Swaay et al.

(2008) and Brereton et al. (2011b). Monitoring schemes for other insect

taxa also exist, for example for moths, dragonflies and bees (Table 1.2). A

key element of such schemes is the high level of volunteer participation
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Table 1.1: Butterfly monitoring schemes in Europe and beyond. The year

that the scheme was established and recent estimate of the number of tran-

sects monitored per year are taken from van Swaay and Warren (2012),

except where otherwise specified.

Location Year
Number of

transects

Andorra 2004 6

Belgium - Flanders 1991 10

Estonia 2004 11

Finland 1999 65-67

France 2005 611-723

Germany 2005 400

Ireland 2007 190

Israel* 2009 40

Lithuania 2009 14

Luxemburg 2010 30

North America** Variable Unknown

Norway 2009 9-18

Russia - Bryansk area 2009 2-14

Slovenia 2007 9-14

Spain - Catalonia 1994 60-70

Sweden 2010 90

Switzerland 2003 90-95

The Netherlands 1990 430

Ukraine 1990 159

United Kingdom*** 1976 > 1200

*http://eubon-ipt.gbif.org/resource.do?

r=butterflies-monitoring-scheme-il

** http://www.nab-net.org/goal-1

*** Brereton et al. (2014)

http://eubon-ipt.gbif.org/resource.do?r=butterflies-monitoring-scheme-il
http://eubon-ipt.gbif.org/resource.do?r=butterflies-monitoring-scheme-il
http://www.nab-net.org/goal-1
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Table 1.2: Sources of count data for other insect taxa in the UK.

Taxon Scheme References

Moths
Rothamsted Insect Survey

http://www.rothamsted.ac.uk/insect-survey/

Conrad et al. (2006)

Garden Moth Scheme Bates et al. (2013)

Odonata British Dragonfly Monitoring Scheme http://www.british-dragonflies.org.uk/content/british-

dragonfly-monitoring-scheme

Bees BeeWalk http://bumblebeeconservation.org/get-involved/surveys/

beewalk/

Aphids Rothamsted Insect Survey http://www.rothamsted.ac.uk/insect-survey/

http://www.rothamsted.ac.uk/insect-survey/
http://www.british-dragonflies.org.uk/content/british-dragonfly-monitoring-scheme
http://www.british-dragonflies.org.uk/content/british-dragonfly-monitoring-scheme
http://bumblebeeconservation.org/get-involved/surveys/beewalk/
http://bumblebeeconservation.org/get-involved/surveys/beewalk/
http://www.rothamsted.ac.uk/insect-survey/
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required to gather such large quantities of data. The volunteers are often

referred to as citizen scientists (Silvertown 2009; Devictor et al. 2010).

In this thesis we model data for UK butterflies from two different schemes,

which are described in Section 1.3. Both data sets consist of citizen science

records, but the two schemes require different levels of commitment and

effort: count data require greater expertise and commitment, whereas op-

portunistic records are likely to be made by the general public.

In addition to monitoring schemes which consist of count data, op-

portunistic recording schemes exist for a variety of taxa, for example in

the UK the data for many of these schemes is overseen by the Biologi-

cal Records Centre, which forms part of the National Biodiversity Network

(NBN, https://data.nbn.org.uk/). Observation records of this type gen-

erally require less commitment from citizen scientists as records are oppor-

tunistic. These data are used to study changes in species’ distributions,

and in this thesis we study distribution data for British butterflies, which

we describe in Section 1.3.2.

1.1.1 Changes in abundance and distribution

Over a ten-year period, three-quarters of UK butterfly species have shown

declines in distribution, population, or both (Fox et al. 2011a). A recent

Red List for the 62 resident and regularly breeding butterflies in Britain

showed an increase in the number of species classified as threatened, indi-

cating that four species are Regionally Extinct (Black-veined White, Large

Copper, Mazarine Blue and Large Tortoiseshell), 19 are threatened (two

Critically Endangered, eight Endangered and nine Vulnerable), and a fur-

ther 11 species are classified as Near Threatened (Fox et al. 2011c). Ex-

cluding the four species extinct from Britain, and including Cryptic Wood

White (which was not considered in Fox et al. (2011c)), there are considered

to be 59 butterfly species that occur regularly in the UK.

According to the European Red List, across Europe populations of 31%

of butterfly species are thought to be declining, with 9% of species classified

as threatened and 10% as Near Threatened (van Swaay et al. 2010), but

https://data.nbn.org.uk/
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this may be an underestimate for some species (van Swaay et al. 2011).

Analysis of distribution data by Thomas, J. A. et al. (2004) suggested that

in Britain butterflies are declining more rapidly than birds and plants.

In response to climate change and habitat loss and deterioration, habitat-

specialist species have experienced declines in abundance and distribution,

whereas changes for generalists are more variable (Warren et al. 2001). Un-

der recent climate change, distributional shifts have been documented for

many species. The Comma, for example, has spread northwards by more

than 200 km since 1990 (Thomas and Lewington 2010), an expansion which

has been accompanied by an increase in abundance, despite previous de-

cline (Asher et al. 2001). Some butterfly species have expanded northwards

and to higher latitudes in response to warmer climates (Parmesan et al.

1999). Northward shifts in range margin have also been found for some

moths (Fox et al. 2011b), Odonata (Hickling et al. 2005) and many other

taxonomic groups (Hickling et al. 2006).

Despite many species expanding their range northwards, there is also

evidence of retractions in range (Thomas et al. 2006). One example species

is Grayling, which although widespread in coastal areas, has been mostly

lost from inland sites due to loss of suitable habitat and has also shown de-

clines in abundance (Asher et al. 2001). Franco et al. (2006) attributed site

extinctions of four butterfly species with southern limits in Britain to both

climate warming and habitat loss. Hill et al. (2002) assessed distributional

changes for British butterflies, predicting that with limited opportunity to

expand northwards, and possible retraction at southern margins, northerly

distributed species are likely to fare worse under climate change. Species

with southern distributions have the potential to shift northwards, leading

to either similar or increased range sizes, depending on whether southern

sites are lost. Dapporto and Dennis (2013) reported that the most negative

distribution trends for UK butterflies were associated with so-called mid

generalists, whereas specialist species benefit from conservation measures.

Warren et al. (2001) and Dapporto and Dennis (2013) suggest that

changes in abundance and distributions tend to have strong positive correla-
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tion, however Mair et al. (2012) found that for British butterflies northward

shifts in range margin were not always accompanied by increases in over-

all distribution or abundance. An in-depth discussion of possible drivers of

changes in the distributions of UK butterflies is given by Asher et al. (2001).

Butterfly populations are known to fluctuate with weather conditions

(Pollard and Yates 1993). Pollard (1988) studied associations between but-

terfly populations and weather, and mainly concluded a causal link between

warm summers and population values. This association was confirmed for a

longer dataset by Roy et al. (2001), who predicted increases for the majority

of species under future warmer climates. However relationships with winter

weather are disputed (Roy et al. 2001; Dennis and Sparks 2007; Isaac et al.

2011b).

1.1.2 Changes in phenology

Increasing temperatures under recent climate change have given rise to ad-

vances in phenology, the seasonal timing of events such as timing of flower-

ing, breeding or emergence, for various taxa (Walther et al. 2002; Parmesan

2007).

A number of studies have compared phenological changes for butter-

flies with changes in climate. Sparks and Yates (1997) studied historical

phenological records for 12 British butterflies and suggested that “climate

warming of the order of 3◦C could advance butterfly appearance by two to

three weeks”. Analysis for 35 species over a longer time period predicted

that a warming of the order of 1◦C could lead to advances of 2-10 days for

most butterflies (Roy and Sparks 2000). Botham et al. (2008) found that

species that fly earlier in the year have shown the greatest advances in their

flight periods, which may be explained by proportionally greater increases

in spring temperatures compared to summer temperatures. Increases in

the duration of flight periods were also found. There is also evidence for

advances in flight period for butterflies in Spain (Stefanescu et al. 2003),

California, USA (Forister and Shapiro 2003) and Sweden (Karlsson 2014).

Spatial variation in phenology has also been found, with a tendency for
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some (but not all) species’ flight period to be earlier in the south relative to

the north (Roy and Asher 2003). Analyses by Diamond et al. (2011) and

Altermatt (2010b) also suggest that species’ traits, such as overwintering

stage and diet, may influence changes in species’ phenology in response to

climate change.

Phenological studies for butterflies have typically involved measures such

as mean first appearance, mean peak appearance and mean length of the

flight period, which could present bias, for example through observer be-

haviour. The date of first appearance may be influenced by variation in

abundance (Roy and Sparks 2000), variation in voltinism, or an increase in

the number of monitored sites (van Strien et al. 2008).

Hodgson et al. (2011) utilised generalised additive models (GAMs) to

model both spatial and temporal variation in species’ seasonal pattern, and

hence observe phenological changes, such as variation in the number of gen-

erations per year, which we will discuss in Section 1.1.3. Suitable models

for phenology might improve the estimation and prediction of changes, and

assist the study of potential implications of phenological changes, such as

phenological mismatch. For example, Hindle et al. (2014) suggest the pos-

sibility of phenological mismatch between the emergence of Marbled White

and the species’ main nectar source.

1.1.3 Voltinism

As is true of many insects, butterfly life-cycles vary from one adult gen-

eration per year (univoltine), two per year (bivoltine), or more than two

per year (multivoltine). The majority of UK butterflies are univoltine, with

11 bivoltine species and a further few species with complex/multivoltine

life-cycles, such as Small Heath and Speckled Wood (Pollard and Yates

1993). Voltinism is known to vary with climatic conditions (Pollard and

Yates 1993), hence for some species the number of annual broods can vary

with space and time. For example, Common Blue exhibit two broods in

southern Britain, reducing to a single brood in the north (Asher et al. 2001;

Hodgson et al. 2011).
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Given advances in flight period, which prolong the length of the season,

some species are showing increases in voltinism by additional generations.

Some species have also shown increases in the relative size of subsequent

generations. Altermatt (2010a) evaluated changes in voltinism for 263 but-

terfly and moth species in Central Europe. Kernel density estimates of

occurrence record dates were used to identify peaks in the seasonal pat-

tern, although second and subsequent generations were pooled. For 72% of

species the second/subsequent generations had become more pronounced.

Additionally, 44 univoltine or bivoltine species were found to have gained

an additional brood relative to before 1980. Increases in voltinism have also

been found for Finnish moths (Pöyry et al. 2011) and Hodgson et al. (2011)

also found that the number of peaks in the seasonal pattern varied with

space and/or time for 7 out of 15 UK butterfly species considered.

Many phenological studies for butterflies have not considered the timing

of separate broods, although Botham et al. (2008) split the data for bivoltine

but not multivoltine species. Some studies have taken metrics over the whole

flight period (for example Roy and Sparks 2000), whereas others have only

considered the first brood (Karlsson 2014), or excluded multivoltine species

from the analysis (for example Roy and Asher 2003; Stefanescu et al. 2003).

1.1.4 Modelling butterfly abundance

Here we provide background to the work in this thesis by exploring pre-

existing models for butterfly abundance. A key challenge when modelling

the abundance of insects such as butterflies is the seasonal nature of the

data. Counts are usually only made of the most visible adult stage of the

life-cycle, but typically for multiple visits within the flight period. For

each brood within a given season, counts generally increase from zero and

then decrease to zero corresponding to the emergence and death of adult

butterflies. Methods for modelling this type of data need to account for

such seasonal variation, in addition to potential between-year variation.

A range of models have been proposed to describe the pronounced

within-year variation in counts. In the calculation of abundance indices
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for UK butterflies, generalised additive models (GAMs) are used (Rothery

and Roy 2001) to describe the seasonal variation non-parametrically. A

spline is fitted to data from multiple sites to estimate a seasonal pattern

for each year. Brewer (2008) explored the use of generalised estimating

equations for describing within-season correlation in data for Small Heath.

Empirical methods, such as GAMs, can only estimate relative abun-

dance, and provide no additional demographic information. The model

defined by Zonneveld (1991) and related to that of Manly (1974) estimates

abundance, mortality rate, day of peak emergence and the variance in emer-

gence, and is implementable via the Insect Count Analyzer (INCA; 2011).

The model is based upon a differential equation that describes the variation

in counts over a season, where the associated integral requires numerical

integration. The strong assumptions of the model have been highlighted

(Haddad et al. 2008; Gross et al. 2007; Calabrese 2012), namely that emer-

gence is logistically distributed and death rate is constant. Calabrese (2012)

generalised the Zonneveld (1991) model to allow for asymmetric emergence

patterns and age-dependent death rate, but found that the newly associ-

ated parameters were not consistently identifiable from count data alone.

Consequently, as discussed in a review of methods for monitoring butterflies

(Nowicki et al. 2008), the Zonneveld (1991) model remains difficult to apply

and has not been widely adopted, and Nowicki et al. (2008) suggest that

“finding an effective way to estimate longevity with transect counts seems

impossible”.

Soulsby and Thomas (2012) developed a model also based on a differ-

ential equation for describing the seasonal variation in counts, but allowed

only for discrete, non-overlapping generations and claimed the methods are

not applicable to data for species observed only in small numbers. Survival

was also assumed to be constant, and model estimation required potentially

complicated step-wise numerical integration for non-constant survival.

Butterfly abundance has also been studied in the context of smaller-scale

mark-release-recapture (MRR) studies. For example Nowicki et al. (2009)

studied the influence of density-dependence on the butterfly populations of
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two species, surveyed intensively for 12 years. Nowicki et al. (2008) review

MRR sampling as a method for modelling butterfly abundance, but in this

thesis we focus on modelling butterfly abundance from counts of unmarked

individuals since optimal methods are needed for these data, which are

readily available from large-scale, long-term monitoring programs.

1.2 Thesis motivation and aims

This thesis primarily aims to develop new statistical methods for modelling

the abundance and distribution of butterflies. Climate change is predicted

to become an increasingly important cause of biodiversity decline and new

statistical methods are needed to model and predict species’ complex re-

sponses. The majority of studies are based on a single or small number

of species, or limited timespan, and feasibility of application to a greater

dataset is unclear. We focus on developing methods that will be broadly ap-

plicable to many species, despite much variation, for example in abundance,

life-cycle and habitat preferences.

Given the efforts of many volunteer contributors, huge sources of data

are available for UK butterflies, hence statistical techniques are required to

exploit the information fully. The previous approach used for deriving UK

butterfly abundance indices, for example, was not able to make use of all

data collected. Consequently this thesis develops new methods, which can

be applied to all data collected for multiple species, across many years and

sites, with relative efficiency and accuracy. This has particular relevance

for the analysis of data from long-term monitoring schemes where efficient

methods will lead to faster outputs and feedback of results to recorders and

policy makers. The provision of feedback to recorders is essential for the

motivation and retention of participants in citizen science projects.

In addition to improving efficiency, we aim to develop models which

may address the “lack of mechanistic understanding about factors driv-

ing butterfly population dynamics’ over large spatial and temporal scales’

(Isaac et al. 2011b). By considering both within- and between-year varia-
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tion in populations, we aim to describe the underlying processes determining

changes in abundance, demography and phenology, rather than solely de-

scribe the count data empirically. Predicting variation in seasonal patterns

using GAMs, as in Hodgson et al. (2011), allows for changes in phenology

and voltinism to be visualised, but not simply quantified. We aim to de-

velop parametric approaches for modelling seasonal variation in butterfly

abundance, with the aim of producing estimates of meaningful and relevant

parameters. Limited focus has previously been placed on explicitly mod-

elling bi- or multi-voltine data, and how climate change may affect different

broods and their dependence.

In this thesis we develop robust and flexible frameworks for modelling

butterfly count data, which can be modified according to the purpose of a

particular study or application. In doing so, further application of the mod-

els may provide new insights relevant to the monitoring and conservation

of seasonal insects, such as butterflies.

We also develop recommendations for optimal modelling of the spatial

distribution of UK butterflies. Modelling of UK butterfly occupancy has to

date been fairly limited and is needed to provide more accurate assessments

of change. Suitable methods for modelling spatio-temporal variation can

enhance the study of changes in distribution and range dynamics in the

monitoring of responses to changes in climate and habitat.

The development of new models that are suitable for describing count

data requires knowledge about common models in this area, and their po-

tential relevance for butterflies. Hence we additionally consider performance

of the N-mixture model (Royle 2004a), which models abundance and de-

tectability from repeated counts made at a set of sites. The N-mixture

model is a popular tool for modelling abundance, and is hence of interest

for conservation and management. Although not directly applicable for typ-

ical butterfly count data, due to their seasonal variability in numbers, we

see that the N-mixture model links with aspects of the models developed

for butterfly data in this thesis. Furthermore, future application to insects

may be possible with adaptation of the model.
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We develop a variety of modelling approaches with the aim of intro-

ducing new models that are both more efficient and more informative, and

applicable to all species, with possible adaptation where required. We sug-

gest avenues for further work throughout this thesis. The topic of each

chapter could be explored in greater depth, but had this been done the

full range of different models proposed in this thesis would not have been

realised.

1.3 Data for UK butterflies

In this thesis methods are applied to count and observation data for UK

butterflies, which are summarised in Table 1.3, and described in further

detail in this section. As mentioned in Section 1.3.3, in this thesis we do not

study the WCBS data. Latin names for the UK butterfly species mentioned

and/or studied in this thesis are given in Table 1.4.

1.3.1 UK Butterfly Monitoring Scheme

Count data for UK butterflies are principally gathered through the UK

Butterfly Monitoring Scheme (UKBMS), an intensive, wide-scale system

of weekly transect walks which began in 1976. The scheme design allows

for counts to be made throughout the season for butterfly activity, during

which abundance will vary according to different seasonal patterns of emer-

gence. Recorders make counts of observed butterflies within a set limit (an

estimated distance of five metres ahead and to the sides of the recorder)

along a fixed line transect route under favourable conditions. Counts are

taken weekly during the main butterfly flight period from the beginning of

April until the end of September, within specified periods of the day and

when weather conditions are suitable for butterfly activity. Transects are

typically 2-4 km long and divided into a maximum of 15 sections which cor-

respond to different habitat or management units, though in this thesis we

aggregate counts for all sections within a transect. The UKBMS transect

method (Pollard Walks) is described in depth by Pollard and Yates (1993),
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Table 1.3: Summary of the primary sources of data for UK butterflies.

Scheme Description Chapter(s)

UK Butterfly Monitoring Long-term network of over 4, 5 and 6

Scheme (UKBMS) 1200 self-selected sites each

monitored weekly (April-

September) under standardised

conditions. Established in

1976. Counts are used to report

trends in abundance annually

(Brereton et al. 2014). Over

17 million butterflies have been

counted (Botham et al. 2013a).

Butterflies for the New Ad-hoc observation records 2

Millennium (BNM) submitted by the public. For-

mally created in 1995. Con-

sists of over 7.5 million observa-

tion records (Asher et al. 2011).

Used for mapping species distri-

butions (Asher et al. 2001) and

estimating simple trends (Fox

et al. 2011a).

Wider Countryside A reduced-effort scheme -

Butterfly Survey (WCBS) launched fully in 2009 (Brereton

et al. 2011a). At least two visits

are made per year to randomly-

selected 1 km squares. Aims to

reduce bias within UKBMS to-

wards sites of specific interest

and improve recording of wider

countryside species. Combined

with UKBMS data in recent re-

porting (Brereton et al. 2014).
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Table 1.4: Latin names of the UK butterfly species mentioned and/or stud-

ied in this thesis, grouped by taxonomic family. Species that are extinct in

the UK (Section 1.1.1) are denoted by *.

Taxonomic family Species Latin name

Hesperiidae Small Skipper Thymelicus sylvestris

Lycaenidae

Adonis Blue Polyommatus (Lysandra) bellargus

Brown Argus Aricia agestis

Brown Hairstreak Thecla betulae

Chalkhill Blue Polyommatus (Lysandra) coridon

Common Blue Polyommatus icarus

Green Hairstreak Callophrys rubi

Holly Blue Celastrina argiolus

Large Blue Phengaris (Maculinea) arion

Large Copper* Lycaena dispar

Mazarine Blue* Polyommatus (Cyaniris) semiargus

Purple Hairstreak Favonius quercus

Small Blue Cupido minimus

Nymphalidae

Comma Polygonia c-album

Dark Green Fritillary Argynnis aglaja

Large Tortoiseshell* Nymphalis polychloros

Marsh Fritillary Euphydryas aurinia

Painted Lady Vanessa (Cynthia) cardui

Red Admiral Vanessa atalanta

Silver-washed Fritillary Argynnis paphia

Small Tortoiseshell Aglais urticae

White Admiral Limenitis camilla

Pieridae

Black-veined White* Aporia crataegi

Brimstone Gonepteryx rhamni

Cryptic Wood White Leptidea juvernica

Green-veined White Pieris napi

Small White Pieris rapae

Satyridae

Gatekeeper Pyronia tithonus

Grayling Hipparchia semele

Marbled White Melanargia galathea

Ringlet Aphantopus hyperantus

Scotch Argus Erebia aethiops

Small Heath Coenonympha pamphilus

Speckled Wood Pararge aegeria

Wall Brown Lasiommata megera
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and has been shown to provide a good representation of large-scale trends

in abundance for most species (Isaac et al. 2011a). Two reduced-effort

methods are also used to aid the monitoring of a small number of habitat-

specialist species: adult timed counts and larval web counts (Brereton et al.

2014), but in this thesis we do not consider these data.

The main objective of the UKBMS is to provide data for assessment of

the status and trends in the abundance of UK butterfly species for both

conservation and research purposes. Abundance estimates derived from the

UKBMS data play an important rôle in acting as indicators for trends in

biodiversity, habitat change and climate change (Brereton et al. 2011b). In

2013, population trends could be calculated for 56 of the 59 butterfly species

regularly found in the UK, to demonstrate whether the overall abundance

of each species has changed over time (Brereton et al. 2014).

The scheme began in 1976 with 34 sites, but the network has grown

steadily to over 1000 sites recorded each year (1212 sites in 2013, of which

130 were monitored using reduced effort methods, Brereton et al. 2014). A

large network of recorders has contributed to the UKBMS, making around a

quarter of a million weekly visits in total to almost 2000 sites and counting

over 17 million butterflies (Botham et al. 2013a). Ideally, an annual index of

abundance for each site may be calculated as the sum of the weekly counts;

the scheme design is for a count to be made in each of 26 weeks. Inevitably,

some weeks of the transect season are missed due to unsuitable weather

conditions or recorder unavailability, for example due to illness or holidays,

and hence fewer than 26 counts per year are typically made at each site,

and require suitable interpolation.

Past and present methods for deriving indices of abundance from UKBMS

data will be reviewed in Chapter 4.

1.3.2 Butterflies for the New Millennium

The Butterflies for the New Millenium (BNM) database was formed in 1995

and consists of over 7.5 million ad-hoc observation records submitted mostly

by volunteer members of the public (Asher et al. 2011). The dataset also
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consists of historical records prior to 1995, but the scheme has grown sig-

nificantly since it was formally created as the BNM in 1995. The BNM

provides a much greater geographical coverage of the UK compared to the

UKBMS data, for which around 1200 self-selected sites are monitored inten-

sively each year (Brereton et al. 2014). The majority of BNM records arise

from opportunistic recording following no structured format, compared to

the UKBMS which follows a standardized scheme design.

The BNM data are used for mapping species distributions across the

UK. In particular, broad trends between multi-year survey periods have

been studied (Warren et al. 2001; Fox et al. 2007, 2011a), and atlases are

also produced from BNM records (Asher et al. 2001). Asher et al. (2011)

assessed the proportional change in species’ national distributions between

1995-9 and 2005-9. The change in range for each species was calculated as

the percentage change in species occupancy between the two time periods,

where occupancy was derived in terms of the number of occupied 10 km

squares at which the species has been recorded in both time periods.

Similar analyses have been made for changes in the distributions of UK

moths and dragonflies (Hickling et al. 2005; Fox et al. 2011b). Hickling et al.

(2005) studied British Odonata species using data at a 10 km resolution from

the Biological Records Centre for two ten-year periods (1960-1970 and 1985-

1995). Fox et al. (2011b) presents initial results from the National Moth

Recording Scheme, which was set up in 2007 and also worked at a 10 km

resolution. Despite being collected in an unstandardised manner, records

from the BNM scheme are available in large numbers and are hence likely

to hold much information that may not currently be being put to optimal

use.

Pagel et al. (2014) present a hierarchical model that describes tempo-

ral variation in range size and abundance by combining BNM data with

UKBMS data for Gatekeeper, but the approach may not be readily appli-

cable to species without considerable data available.



Chapter 1. Introduction 18

1.3.3 Wider Countryside Butterfly Survey

A new reduced-effort scheme, the Wider Countryside Butterfly Survey

(WCBS), was piloted in 2007 and fully launched in 2009 (Brereton et al.

2011a). The scheme aims to reduce the current bias in the UKBMS arising

from uneven sampling of wider countryside species, due to the self-selection

of sites. In particular the UKBMS sites are biased towards sites of specific

interest and rich in butterflies, such as protected areas. Protected areas

have been shown to support greater populations than non-protected areas

(Gillingham et al. 2014) and potentially facilitate range expansions (Thomas

et al. 2012).

The WCBS involves making at least two visits within July and August

to a randomly-selected 1 km square. The sampling design is broadly similar

to that adopted for the Breeding Bird Survey (BBS) which is coordinated by

the British Trust for Ornithology (BTO) and hence provides an opportunity

for BTO recorders to monitor butterflies in addition to birds (Risely et al.

2011). Roy et al. (2014) found comparable trends from the two schemes in

a study of 26 butterfly species between 2009 and 2013 when both schemes

were operating, although changes were greater on WCBS transects for 17

of the species considered. The WCBS data have recently been used in

conjunction with UKBMS data in the annual reporting of wider countryside

species (Brereton et al. 2014), using the two-stage GAM approach described

in Section 4.1.3 of this thesis.

In this thesis we focus on UKBMS and BNM data, however the WCBS

could be incorporated with the UKBMS data in the methods presented, to

reduce the current sampling bias by covering both protected areas and the

wider countryside.

1.4 Thesis structure

This thesis consists of five core chapters.

In Chapter 2 we explore the performance of occupancy models applied

to opportunistic distribution records for UK butterflies. Due to the unstan-
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dardised nature of the BNM, only records of species’ presence are made,

and hence there is a lack of information on where species are absent, there-

fore a benchmarking approach is taken (Kéry et al. 2010b). The production

of annual maps of occupancy probability and associated errors is demon-

strated. These maps are also visualised as dynamic maps which change each

year. Furthermore we derive novel occupancy indices, which we produce for

different regions of the UK, as well as the UK as a whole.

In Chapter 3 we consider the N-mixture model, which is a widely used

method for estimating the abundance of a population in the presence of un-

known detection probability, from only a set of counts subject to spatial and

temporal replication (Royle 2004a). We show that particularly when detec-

tion probability and the number of sampling occasions are small, infinite

estimates of abundance can arise. We explain the equivalence of N-mixture

and multivariate Poisson and negative-binomial models, which provides new

approaches for fitting these models. The methods in Chapter 3 are illus-

trated by a simulation study and an analysis of data on Hermann’s tortoise

Testudo hermanni. The work in Chapter 3 has been published in Biomet-

rics (Dennis et al. 2015b), as an open-source paper. Aspects of the models

fitted in Chapter 3 have links with the models in the later chapters of the

thesis.

Chapters 4-6 focus on modelling the relative abundance of butterflies

from count data, namely from the UKBMS. In Chapter 4 we describe past

and recent models developed for butterfly abundance. We detail a two-stage

approach that uses Generalised Additive Models (GAMs) to describe the

annual seasonal variation in count data for butterflies. This approach is

published in Methods in Ecology and Evolution (Dennis et al. 2013), and is

currently the adopted method for analysing national butterfly data in the

UK, contributing to annual national reports (Botham et al. 2013b; Brereton

et al. 2014). In addition the methods in (Dennis et al. 2013) are in wider

use in Europe and North America. These methods provide foundations for

comparison with the new models in this thesis.

In the latter part of Chapter 4 we describe a ‘stopover’ model approach
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for describing butterfly count data which estimates relevant parameters,

such as times of emergence within the season and survival. This method was

published in Matechou et al. (2014), for which I performed the application

to UKBMS data. The stopover model is revisited in the later chapters of

this thesis, where further applications are made, as well as modifications of

the model.

Chapter 5 presents a novel generalised abundance index (GAI) within a

general framework which encompasses both parametric and non-parametric

approaches for describing seasonal variation in butterfly counts. We show

how the use of concentrated likelihood techniques leads to very efficient

model fitting, compared to previous modelling techniques which can be

highly time consuming. The work in this chapter has been submitted to

the Annals of Applied Statistics (Dennis et al. 2014).

Chapter 6 builds on the models in Chapter 5 to produce dynamic models,

which describe data from all years simultaneously. Novel estimates of annual

productivity are produced. We extend the model to bivoltine species, where

productivities are estimated separately for each brood, and extended indices

which indicate contributions from different broods are devised. We illustrate

the incorporation of relevant covariates within the model. The work in

this chapter has been submitted for publication in Journal of Agricultural,

Biological, and Environmental Statistics (Dennis et al. 2015a).

Associated R code is provided as an electronic appendix to this thesis.

These files are listed and briefly described on page xx of this thesis.
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Occupancy modelling

The study of species distributions is an important and continually growing

area in ecological research, allowing the investigation of factors affecting

species occurrence, as well as analysis of changes in species’ range and dis-

tribution. Given the changes in distribution of UK butterflies, such as those

described in Chapter 1, this chapter is motivated by a need to devise suit-

able methods to analyse and understand these changes. As in the case of

UK butterflies, for BNM data the primary source of distribution data avail-

able often consists of opportunistic, citizen-science type records (Hochachka

et al. 2012), for which typical occupancy models requiring presence-absence

data are not directly suitable (MacKenzie et al. 2003).

This chapter investigates the performance of occupancy models in the

context of modelling the distribution of UK butterflies from opportunis-

tic records. In Section 2.1 we provide a general review of the methods

suggested in recent literature for modelling occupancy in situations where

typical presence-absence records are not available. In Section 2.2 we de-

scribe the two potential modelling approaches that we will consider, namely

a presence-only model (Royle 2004a) and a presence-absence model, which

requires the presence records of other “benchmark” species for absence infor-

mation (Kéry et al. 2010b). In Sections 2.3 and 2.4 we apply these methods

to BNM data and compare their performance. This includes a demonstra-

tion of the use of standard error maps to accompany maps of occupancy and

21
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we also explore the effects of varying benchmarking and detection proba-

bility. In Section 2.4.4 we develop occupancy indices on a national and

regional basis, before concluding this chapter with a discussion.

2.1 Background

The BNM scheme consists of opportunistic observation records of UK but-

terflies, used for mapping species distributions (see Chapter 1). Despite the

large source of information available from the BNM, modelling of UK but-

terfly distributions, particularly on a large scale, has to date been limited,

possible due to the difficulties proposed in modelling ad-hoc data. Static

maps of observations inform changes in distribution and range, which con-

tribute to monitoring and conservation efforts, for example by studying

broad trends between multi-year survey periods. However, simple analyses

such as these generally ignore annual changes in distribution. Furthermore,

maps of observation locations in their raw form can only display the range

at which a species is detected, which may not necessarily correlate well with

the actual underlying distribution. In this chapter we investigate the per-

formance of occupancy models for providing new and improved descriptions

of UK butterfly distributions.

Accurate estimation and modelling of distributions is important for as-

sessing levels of change, be it contractions in response to degradation of

habitats or expansions in response to climate warming, which may open

up new locations for colonization (Warren et al. 2001). Effective modelling

may also be beneficial for the assessment of the performance of conservation

efforts for declining species.

Numerous approaches to species distribution modelling have been pro-

posed (Elith et al. 2006; Warton and Aarts 2013), although many do not

explicitly estimate the probability of occurrence of a species, in particu-

lar by not formally accounting for imperfect detection. In a review of 108

recently published articles that use MaxEnt, a popular machine-learning

procedure for modelling presence-only data (Phillips et al. 2006), Yack-
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ulic et al. (2013) found that 36% discarded absence information by using

a presence-only framework and only 14% mentioned detection probability.

Ignoring imperfection detection can influence estimates of occupancy (Kéry

2011; Guillera-Arroita et al. 2014b; Lahoz-Monfort et al. 2014), which is

demonstrated with occupancy maps by Kéry et al. (2013).

Royle et al. (2012) proposed a model (with the maxlike package in R) for

estimating occupancy without the need for absence information, but under

certain model assumptions. The paper provides a critical review of MaxEnt,

which does not directly estimate the probability of occurrence. The two

methods are applied to data from the North American Breeding Bird Survey

and compared to estimates from a presence-absence approach. Estimates

from MaxEnt were found to under-estimate prevalence when compared with

estimates from the presence-absence data, which were similar to estimates

from the presence-only model.

In further applications, Maxlike has also generally been compared to

MaxEnt. Merow and Silander (2014) discuss similarities between Maxlike

and MaxEnt and suggest that Maxlike can perform well for large data sets,

but note that there can be high variability in estimates of an intercept

parameter. Hastie and Fithian (2013) criticise the parametric assumptions

of Maxlike, in particular the assumption of a linear logistic form. Higa et al.

(2015) showed that Maxlike is sensitive to spatial bias in sampling effort.

Despite it’s potential fragility, Maxlike has been adopted successfully for

multiple applications (Sarre et al. 2013; Flockhart et al. 2013), and was

preferred to MaxEnt by Fitzpatrick et al. (2013).

Yackulic et al. (2013) highlight potential flaws and assumptions associ-

ated with the use of MaxEnt and recommend the use of a presence-absence

framework where possible. Point process models offer another approach

for modelling presence-only data (Warton and Shepherd 2010; Chakraborty

et al. 2011), and have been shown to have equivalence or relation to other

methods (Aarts et al. 2012; Renner and Warton 2013; Fithian et al. 2013),

however only relative occurrence can be estimated by Maxent and these

approaches (Guillera-Arroita et al. 2014a).
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When presence-absence information with replicate observations is avail-

able, site-occupancy models are recommended (Kéry 2011; Yackulic et al.

2013), as they provide for inference on a defined parameter for occupancy,

as well as allowing for imperfect detection. Van Strien et al. (2013) discuss

the biases associated with opportunistic citizen science data which can be

addressed with the aid of occupancy models, namely geographical bias in

the distribution of surveyed locations, observation bias via variation in ob-

server effort, and reporting bias where observers may not record all species

observed. To our knowledge, comparison of Maxlike with site-occupancy

models has been limited, most likely because the presence-only model is

typically needed when only presence information is available. Ferrer-Paris

et al. (2014) fitted both Maxlike and site-occupancy models, but to data

from different time scales.

Nowicki et al. (2008) advocate the use of occupancy models for modelling

butterfly distributions, but the BNM data in their raw form contain only

presence information. However, site-occupancy models (MacKenzie et al.

2003) which require presence-absence data can be applied to opportunistic

observations by employing recorded sightings of other, “benchmark” species

to provide the absence (non-detection) records (Kéry et al. 2010b; Hill 2011).

The sightings of other species therefore provide information on where the

target species has not been recorded, and can also be used to estimate de-

tection probability by forming repeated visits within a period of temporal

closure, where the occupancy status does not change. So, for example, at

a particular site a record of 1,−, 0, 0, would represent the scenario where

i) the target species was observed at the site on the first occasion in the

season, ii) the site was not visited on occasion 2 (or no species were de-

tected if the site was visited), iii) at least one other species (other than the

target species) was observed at the site on occasions 3 and 4. Some within-

season replication is required in order to separate detection probability from

occupancy probability, but not necessarily at all sites.

A benchmarking approach will be optimal when all detected species have

been recorded, although this may not always be the case for opportunistic
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data, for example species of particular interest may be recorded, rather than

every common species that was observed. Estimates based on records of only

one-species or short lists (where only a selection of species are recorded if

observed) have shown imprecision (van Strien et al. 2010), and Kéry et al.

(2010b) advise that all observed species are recorded. However variation in

the length of the lists of species observed at each site has been accounted

for by Szabo et al. (2010) and van Strien et al. (2013).

Site-occupancy models with benchmarking have been applied to oppor-

tunistic records of various taxa including dragonflies, butterflies and birds

(van Strien et al. 2010, 2011; Kéry et al. 2010a,b). Van Strien et al. (2013)

found that estimates of distribution trends from occupancy models fitted

to opportunistic data for butterfly and dragonfly species in the Nether-

lands were reliable compared with trends from monitoring data. A recent

simulation study also favoured occupancy models for estimating robust dis-

tribution trends from opportunistic data (Isaac et al. 2014). An alternative

method defined by Hill (2011), which is known as Frescalo, also performed

well for Isaac et al. (2014). Here recorder intensity is described by the

proportion of benchmark species observed at similar sites within the neigh-

bourhood surrounding a given location.

Previous applications of site-occupancy models using benchmarking have

frequently involved fitting dynamic occupancy models (MacKenzie et al.

2003; Royle and Kéry 2007), but in this chapter, for comparison with the

presence-only model, we apply standard site-occupancy models separately

to data for each year. Kéry et al. (2013) demonstrated the use of dynamic

occupancy models for mapping the range of the European crossbill Loxia

curvirostra, but in other studies the focus tends to have been placed upon

solely temporal change in occupancy (via time series), or spatial change

within a single year. Although there have been many applications of site-

occupancy models using benchmarking, in this chapter we have the specific

aim of modelling butterfly distributions from the BNM data, in order to

produce appropriate maps and indices, to aid the monitoring of species’

distributions and ranges.
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For UK butterflies, we are interested in estimating spatial occupancy for

a given species for each year. Despite the controversy concerning the use of

Maxlike, we nonetheless test the performance of this method for BNM data,

and make a comparison with fitting occupancy models, using benchmarking

to obtain absence information. In Section 2.3.1 we explore whether varying

the chosen benchmark species affects output from the occupancy models.

Upon identifying a favoured method (Maxlike or occupancy models us-

ing benchmarking), we will then create new dynamic maps which change

annually, as well as devise concise summaries of regional changes in the form

of novel occupancy indices. Analyses of BNM data have generally been at

a coarse scale, such as 10 km, however Cowley et al. (1999) showed that

sampling at the 10 km scale may under-emphasize local declines in abun-

dance. Hence in this analysis we will work at a finer 1 km scale to predict

spatial occupancy for UK butterflies, given that most BNM records are at

this scale (or finer). Thus the set of all UK 1 km squares at which butterflies

have been recorded form the sites for this occupancy study, and we estimate

occupancy for all 1 km squares in the UK (excluding Northern Ireland).

2.2 Methods

We now outline two modelling approaches, namely the presence-only ap-

proach and the site-occupancy model approach, which we will use by bench-

marking.

2.2.1 Presence-only model

Royle et al. (2012) present a method for the estimation of the probability

of occurrence, ψ, from presence-only data using a conventional likelihood

approach. The data are assumed to have been collected under random

sampling and the probability of species detection is assumed constant.

Under presence-absence sampling, at each sampled location, x, a random

variable, y, is observed as zero or one according to the species true presence
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or absence (assuming perfect detection). In this instance we can assume

y(x) ∼ Bernoulli(ψ(y | x)),

where ψ(y | x) = Pr(y(x) = 1), is the probability that location x is occupied.

For presence-only data, the target species is observed present at all sam-

pled locations, x1, . . . , xn, and hence y = 1 with probability 1, for all xi.

Hence xi represent a sample from all possible spatial values X which is bi-

ased towards locations at which the species of interest is present. Using π()

and ψ() to represent probability distributions for x and y, respectively, then

using Bayes rule, as described in Royle et al. (2012), gives

π(x | y = 1) =
ψ(y = 1 | x)π(x)

ψ(y = 1)
.

Here ψ(y = 1) is the marginal probability that a location is occupied, which

can be expressed by

ψ(y = 1) =
∑
x∈X

ψ(y = 1 | x)π(x).

Given that π(x) describes the possible values of x, under random sampling

π(x) will be constant. Hence, at a given location xi, where i = 1, . . . , n,

π(xi | yi = 1) =
ψ(yi = 1 | xi,β)π(xi)∑
x∈X ψ(y = 1 | x;β)π(x)

=
ψ(yi = 1 | xi,β)∑
x∈X ψ(y = 1 | x;β)

,

where the occupancy probabilities depend on parameters, β. For a presence-

only sample at n locations, the likelihood to be maximised is

LPO(β; {xi}) =
n∏

i=1

ψ(yi = 1 | xi;β)∑
x∈X ψ(y = 1 | x;β)

.

The parameters β typically describe a relationship with covariates, for ex-

ample using a logit link, as

logit(ψ(yi = 1 | xi;β))) = β0 +
M∑

m=1

βmwi,m,

where β0 is an intercept and β1, . . . , βM are coefficients for each of the M

site-specific covariates, wi,m. The model currently excludes inference on
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detection probability, p, which cancels out from LPO(β) when assumed to

be constant. However it may be possible for detection probability to vary

with covariates independent of those that determine occupancy (Yackulic

et al. 2013). In this chapter we denote the presence-only model by PO.

2.2.2 Site-occupancy model

Unlike the PO model, the site-occupancy model (MacKenzie et al. 2003)

requires non-detection records, as well as replication with a period of closure,

where the occupancy status of the species at each site does not change. As

described in Section 2.1, for opportunistic records non-detection records can

be created from detections of benchmark species (Kéry et al. 2010b).

For records made at S sites, each surveyed T times, and an encounter

history yi = {yi,j; j = 1, 2, . . . , T} for the ith site, the individual encounter

history probability is given as

Pr(yi | zi = 1) =
T∏

j=1

p
yi,j
i,j (1− pi,j)

1−yi,j ,

where zi is an indicator for whether the site is occupied and pi,j represents

the detection probability for site i and visit j. For example, if yi = 101,

then Pr(yi = 101 | zi = 1) = pi,1(1− pi,2)pi,3. The multinomial likelihood is

then the product of all such probabilities over the set of S sites

LPA(β,p; {yi}) =
S∏

i=1

{Pr(yi | zi = 1)ψi + I(yi = 0)(1− ψi)},

where the occupancy probability, ψi, is a function of M site-specific covari-

ates, wi,m, so that logit(ψi) = β0+
∑M

m=1 βmwi,m. Detection probability can

similarly vary with site-specific covariates, as well as covariates that vary

within the season, for example to describe variation in observation effort,

or factors that might affect a species’ detectability. The likelihood is zero-

inflated to account for the sampling of potentially unoccupied sites. Hence

I(yi = 0) denotes an indicator function which is satisfied if the encounter

history for the ith site is entirely zero, i.e. I(yi = 0) = 1; I(yi > 0) = 0.

The corresponding probability that the site is unoccupied, when yi = 0, is

(1− ψi). Here we denote site-occupancy models by PA.
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2.2.3 Assessing model performance

In this chapter we will apply the PO and PA models to BNM data. We

compare average occupancy estimates across space between the two models,

at locations at which the species of interest was observed, and at all con-

sidered locations, as well as the average standard error at these locations.

We use Akaike’s Information Criterion (AIC) to compare the performance

of variations of the PA model.

In addition we estimate receiver operator characteristic (ROC) curves

for each model (Fielding and Bell 1997), which are frequently employed to

assess the accuracy of species’ distribution models (Yackulic et al. 2013;

Liu et al. 2011). Many methods for assessing how well a model estimates

presence and absence require a threshold value to be chosen in order to

convert continuous occupancy estimates to binary presence-absence predic-

tions, for comparison with observed presence and absence (Liu et al. 2011).

ROC curves are threshold independent, since this approach plots sensitivity

against ‘1-specificity’ for all possible thresholds of occurrence. Sensitivity

and specificity are best described using a so-called confusion matrix (Table

2.1). Sensitivity is the probability that a presence is correctly predicted,

a/(a + c) and ‘1-specificity’ is the probability that a true absence is incor-

rectly predicted as a presence, b/(b+ d), where predictions are classified as

presence or absence for each possible threshold value.

Data are typically partitioned such that a proportion of the records are

used for model-fitting (calibration data), and the remainder are retained as

an independent sample for testing the model, by comparing model predic-

Table 2.1: A confusion matrix for observed and predicted presence/absence

patterns (Fielding and Bell 1997).

Observed

Present Absent

Predicted
Present a b

Absent c d
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tions with true observations as just described. In this chapter we randomly

partition as in Phillips et al. (2006), such that 70% of the records were

taken as calibration data and the remaining 30% were reserved for testing

the models. Various alternative methods of data partitioning are described

by Fielding and Bell (1997), for example k-fold partitioning.

The area under the ROC curve (AUC) provides a single threshold-

independent measure of accuracy, but should be interpreted with caution

(Lobo et al. 2008), especially for small samples (Hanczar et al. 2010), which

may be relevant when assessing results for specialist or localised species.

The AUC can be interpreted as the probability that a random presence

and a random absence would be correctly predicted by the model (Phillips

et al. 2006). An ROC curve requires both presence and absence informa-

tion, therefore we use records from benchmark species to define absences

from which to ascertain correct/incorrect prediction. Hence the ROC curves

in this chapter consider species detections against random points (Yackulic

et al. 2013; Phillips et al. 2006).

2.2.4 Indexing occupancy

As described in Section 2.1, trends in distribution for UK butterflies have

been typically based on studying broad trends between multi-year survey

periods. We are interested in devising suitable indices for occupancy from

the model output. It is possible that changes in species’ occupancy will vary

regionally, for example a species may be expanding at the northern edge of

it’s range, but be contracting or being lost from sites at the southern edge.

Hence in this chapter we also explore approaches for devising occupancy

indices for different regions of the UK. In this section we describe two main

approaches for indexing occupancy, which will be tested for BNM data in

Section 2.4.4.
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A weighted index

Intuitively, for each year, we use the weighted mean of the estimated occu-

pancy probabilities to create an index for occupancy in a given year k. We

use the reciprocals of the associated variances as the weighting. Hence the

index, I, in a given year k, may be estimated by

Ik =

∑nk

i=1 ψi,kσ
−2
i,k∑nk

i=1 σ
−2
i,k

,

where the occupancy probability, ψi,k and standard error σi,k are estimated

from the PA model for location i of nk points in the region of interest in

year k. In doing so, occupancy estimates with smaller associated standard

errors will have a higher contribution to the estimated index.

As defined by Meier (1953), the estimated associated variance, Vk, of

the index is

Vk =
1∑nk

i=1 σ
−2
i,k

{
1 + 4

n∑
i=1

1

qi,k

σ−2
i,k∑nk

i=1 σ
−2
i,k

(
1−

σ−2
i,k∑nk

i=1 σ
−2
i,k

)}
,

where qi,k is the number of replicate visits made at site i in year k.

A simple average index

As an alternative to a weighted index, we can simply take the average

occupancy estimate in the region of interest, such that each point effectively

has the same weighting. In this case

Ik =
1

nk

nk∑
i=1

ψi,k,

where the associated variance of the index may be estimated by

Vk =
1

n2
k

nk∑
i=1

σ2
i,k.

In Section 2.4.4 we test these two approaches for indexing occupancy

from BNM data for the regions defined in Section 2.3. Additionally we assess

the effects of defining the points within each region of interest by taking all

squares within the region, or by taking only those at which observations
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have been made. We discuss the advantages and disadvantages in each

case.

Finally, we will describe multiple ways to derive occupancy indices for

the UK as a whole, given the estimation of regional indices, and then com-

pare trend estimates with reported estimates of changes in distribution and

abundance.

2.3 Application

In this section we describe the methodology for applying the two models of

Section 2.2 to BNM data. We compare the PO and PA approaches for three

illustrative UK butterfly species, using data from the BNM between 1995

and 2009. Historical records made prior to the scheme’s formation in 1995

also exist, but are fewer in numbers and so are not considered here. Records

from the BNM data with a precise location (1 km2 or less) and exact date

were extracted. Therefore 1 km squares are the definition of a site in this

model and we assume that different records in the same sample unit do

not refer to different locations that vary greatly (van Strien et al. 2011).

For some standardisation to create a period of temporal closure within each

year when the occupancy status of each site does not change, the data were

restricted to be approximately within the main period for butterfly flight

(beginning of April to the end of September).

Ringlet and Wall Brown have relatively large ranges across the UK.

Ringlet has shown expansions in range and increases in abundance, whereas

Wall Brown has experienced losses from much of inland England, with

an increasingly coastal distribution (Asher et al. 2001; Fox et al. 2011a).

Population numbers of Wall Brown are also in decline, and this species

was classified as Near Threatened in the most recent Red List (Fox et al.

2011c). Wall Brown and Ringlet are both wider-countryside species, with

Wall Brown mainly found in grasslands whereas the Ringlet favours damp

situations with tall grassland, such as in woodland areas.

The third species, Silver-washed Fritillary, is a habitat-specialist, found
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in woodlands and limited mostly to southern England, this species has

started to show slight increases in range and abundance. Given the fairly

limited distribution of Silver-washed Fritillary, for this species the models

were fitted to a smaller region, limited to being below 100 m above the

northing of the most northerly observation of Silver-washed Fritillary (be-

tween 1995 and 2009) at 506000 m. More detailed accounts of each species,

including changes in their distributions, can be found in Asher et al. (2001)

and Thomas and Lewington (2010).

The PO and PA models were fitted using the maxlike (Royle et al.

2012) and unmarked (Fiske and Chandler 2011) packages in R (R Core

Team 2015), respectively. The PA models were fitted with absence in-

formation obtained from selected benchmark species which we describe in

Section 2.3.1. Each model was fitted to data separately for each year from

1995 to 2009. Northing, easting, minimum February temperature (since

February was on average the coldest winter month), and average monthly

rainfall (mm, April-September) were considered as potential covariates for

occupancy with both linear and quadratic effects (we show that AIC values

are higher when only linear effects are used). The weather-related covari-

ates were taken from historic weather-station data (Met Office 2015), which

were smoothed using a thin-plate spline (Green and Silverman 1994), using

the fields package (Nychka et al. 2014) in R, to get weather covariates at

a scale of 1 km2. Selected land cover variables were also considered, but as

linear effects only. Percentage land cover was used from a 1 km resolution

land cover map from 2007 (Morton et al. 2014). The data consist of 10 land

cover classes, but, as given in Table 2.2, in this chapter we used five com-

bined classes to minimise the complexity of the models. Extensive covariate

selection was not performed and the covariates used may not be optimal,

but allow for a direct comparison of the two models. All covariates were

standardised to have zero mean and unit variance.

For simplicity in the model comparison, detection probability was as-

sumed constant in the PA model. However, we later explore the effects of

allowing non-constant detection probability in Section 2.4.3. As butterfly
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Table 2.2: Land cover classes for UK land cover data for 2007 from (Morton

et al. 2014), where the five combined classes are those used in this chapter.

Land cover class Combined class

Broadleaf woodland
}

Woodland
Coniferous woodland

Arable Arable

Improved grassland
}

Grassland
Semi-natural grassland

Mountain, heath and bog Mountain

Saltwater -

Freshwater -

Coastal -

Built-up areas and gardens Urban

numbers vary within the season according to their life-cycle, we anticipate

that the probability of detecting a species will be influenced by the pop-

ulation size according to the time within the season. Hence we use the

proportion of observations made of the species of interest each week, over

all sites and years, as a proxy for the seasonal variation in population size.

We use this as a linear covariate for detection probability, p, in Section 2.4.3.

In Section 2.4.4 we explore novel regional occupancy indices as described

in Section 2.2.4, based upon output from the PA model. These new indices

provide a summary of the annual changes in a species’ occupancy, rather

than the single percentage-change values that are typically used as measures

of change. Indices were calculated for the UK as a whole and each of the

regions displayed in Figure 2.1.

2.3.1 Generating non-detection records for BNM data

In order to fit the PA model (Section 2.2.2) to BNM data, we use a bench-

marking approach as described in Section 2.1, where the observations of
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Figure 2.1: Regions used for regional occupancy indices.

non-target, benchmark species are used to generate non-detection records,

and hence form detection histories, {yi}, for each site.

Throughout this chapter, including the comparisons with PO, we used

the observations of the ten species occupying the most 10 km grid squares

(based on a table of distribution trends given by Fox et al. 2011a) to pro-

duce non-detection records, in order to create detection histories for the PA

models. This judgement was loosely based upon the assumption that if a

very common species is detected during a visit, it is likely that the recorder

would have also recorded a less or equally common species if it was also

observed. However we additionally assess the effects of using more bench-
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mark species in Section 2.4.2, by fitting the PA model with the 20 species

occupying the most 10 km grid squares, as well as for all 51 species for

which BNM data were available.

Detections of the benchmark species outside the first and last month

that the target species was observed in a given year were disregarded, in

order to prevent non-detection records being created outside of the target

species’ flight period, when the target species is mostly likely not present

and hence not detectable. Observations were treated as weekly to provide

a maximum of 26 replicates within a season, although in 87% of cases fewer

than 5 replicates were made at each location within a given year, based on

data for the ten benchmark species. The average number of visits made

to each 1 km square in a given year has increased slightly over time, from

approximately 2.9 in 1995 to 3.4 in 2009.

2.3.2 Model performance for BNM data

We estimate occupancy from each model (PO and PA) and display the

output using occupancy maps. Corresponding maps of estimated standard

error are used to display the associated uncertainty, using the Delta method

to produce estimates on the untransformed scale (using the deltamethod

function in the msm package (Jackson 2011) in R). To obtain ROC curves,

the BNM data were randomly partitioned as described in Section 2.2.3.

As a check, ROC curves were created for ten random partitions but were

generally very similar for each partition.

2.4 Results

2.4.1 Model comparison

Model output from multiple years suggests the PO model is less reliable

than the PA model for these data. Tables 2.3 and 2.4 demonstrate that the

average prediction from the PO model (AOALL) is often very low, with more

realistic average estimates produced by the PA model, which is particularly



Chapter 2. Occupancy modelling 37

significant for Ringlet which is known to have a relatively large range in the

UK. Furthermore average occupancy estimates at the observed locations

(AOOBS) of Wall Brown and Ringlet are higher for the PA model than the

PO model.

Average standard errors from PA are always larger than from PO (with

the exception of 1999 for Silver-washed Fritillary where they are equivalent

to three decimal places), but this might be expected given the lower oc-

cupancy estimates from PO, and despite this estimates from PA are more

reliable than from PO based on the estimated occupancy probabilities. Sim-

ilar results are found for Silver-washed Fritillary, although in this instance

the PO model did not converge for 6 out of 15 years (Table 2.5), a frequency

which rose to 13 out of 15 years when the model was not fitted to a limited

range (below a northing of 506000 m). AUC values are consistently higher

from the PA model. Example ROC curves for each species are given in

Figure 2.2, demonstrating the slightly better discrimination capabilities of

the PA model.

For 2009, parameter estimates for Wall Brown from the PA and PO

model are all of the same sign and similar magnitude, whereas for Ringlet

and Silver-washed Fritillary there is greater variability in the parameter

estimates between the two models (Table 2.6). In particular for Ringlet,

when the PO model underestimates occupancy in 2009, there are differences

between the intercept terms of the two models, with a larger estimate and

standard error for the PO model. In most cases standard errors are small

relative to the regression parameter estimates, implying that the chosen

covariates are significant. The optimal covariate selection is likely to vary

between species, and potentially across different years, and may be identified

using model selection, but as previously stated in this chapter the covariates

were selected for demonstration and comparison of the two models.

The PA model was also fitted with only linear effects on each covariate

(i.e without quadratic effects on northing, easting, minimum temperature

and rainfall), but the AIC values were consistently lower when the quadratic

effects were included (Figure 2.3). We note that the AIC differences are
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Figure 2.2: ROC curves for a single random partition for each species, for

the PO (solid black) and PA (dashed blue) models.

large, but this might be expected given the large amounts of data being

modelled.

Figures 2.4-2.9 display occupancy maps and corresponding standard er-

rors for the PA and PO models for each species in 2009. Predicted occu-

pancy from PA in 2009 for Wall Brown and Ringlet shows higher estimates

of occupancy corresponding to locations of the observations (Figures 2.4

and 2.6), but much lower estimates from the PO model (Figures 2.5 and

2.7). This is particularly evident for Ringlet. Standard errors from the PA

model for Ringlet are greater in Scotland, which might be expected given

the more limited sampling in this area (see Section 2.4.2).

Estimates of spatial occupancy for Silver-washed Fritillary in 2009 are

similar from the two models, with the exception of southern Wales which
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Figure 2.3: AIC comparison for fitting the PA model with (Q) and with-

out (L) quadratic effects (on northing, easting, minimum temperature and

rainfall), for Wall Brown, Ringlet & Silver-washed Fritillary.

has greater estimates of occupancy from the PA model, despite minimal

records in this area. Further investigation may be required to distinguish

whether this prediction reflects the true distribution, or is a consequence of

the sparser recording in this region.

In this chapter occupancy maps have only been presented for a single

year, but dynamic maps, which visualise annual changes in distribution by

displaying occupancy maps for each year in sequence, are provided as an

electronic appendix to this thesis.

Despite the reasonable performance of PO in some instances, Tables

2.3-2.5 demonstrate that the PO model shows varied success in providing

realistic estimates across multiple years. As a consequence of the unrelia-
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bility of the PO model for these data, in the following sections we consider

only the PA model.

Table 2.3: Comparison of the PO and PA models for Wall Brown data.

AOALL and AOOBS are the average estimated occupancy probability from all

points and from all points at which Wall Brown was observed, respectively.

ASE is the average standard error of the estimated occupancy probability

from all points and AUC is the average AUC value from 10 partitions.

AOOBS AOALL ASE AUC

Year PO PA PO PA PO PA PO PA

1995 0.52 0.70 0.21 0.38 0.024 0.032 0.557 0.724

1996 0.34 0.58 0.13 0.32 0.018 0.028 0.683 0.742

1997 0.26 0.69 0.11 0.44 0.018 0.036 0.572 0.744

1998 0.39 0.52 0.17 0.30 0.021 0.025 0.657 0.713

1999 0.94 0.52 0.59 0.31 0.020 0.028 0.645 0.721

2000 0.98 0.63 0.64 0.33 0.010 0.028 0.557 0.732

2001 0.33 0.53 0.15 0.38 0.021 0.036 0.581 0.681

2002 0.26 0.52 0.11 0.32 0.018 0.035 0.675 0.706

2003 0.28 0.52 0.11 0.28 0.014 0.026 0.590 0.731

2004 0.21 0.59 0.07 0.30 0.013 0.023 0.727 0.753

2005 0.26 0.54 0.09 0.28 0.014 0.024 0.727 0.757

2006 0.28 0.51 0.09 0.25 0.013 0.023 0.737 0.759

2007 0.19 0.39 0.06 0.19 0.011 0.022 0.666 0.750

2008 0.29 0.48 0.07 0.22 0.012 0.023 0.766 0.811

2009 0.30 0.44 0.08 0.17 0.010 0.017 0.729 0.799
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Table 2.4: Comparison of the PO and PA models for Ringlet data. AOALL

and AOOBS are the average estimated occupancy probability from all points

and from all points at which Ringlet was observed, respectively. ASE is

the average standard error of the estimated occupancy probability from all

points and AUC is the average AUC value from 10 partitions.

AOOBS AOALL ASE AUC

Year PO PA PO PA PO PA PO PA

1995 0.81 0.82 0.42 0.53 0.021 0.035 0.706 0.725

1996 0.03 0.63 0.01 0.46 0.013 0.038 0.649 0.684

1997 0.84 0.77 0.52 0.55 0.023 0.025 0.596 0.678

1998 0.88 0.70 0.58 0.53 0.020 0.030 0.583 0.663

1999 0.04 0.77 0.02 0.58 0.021 0.028 0.610 0.660

2000 0.22 0.72 0.10 0.53 0.020 0.038 0.647 0.688

2001 0.18 0.71 0.08 0.55 0.022 0.036 0.603 0.674

2002 0.07 0.75 0.03 0.60 0.022 0.031 0.609 0.667

2003 0.19 0.70 0.10 0.59 0.023 0.036 0.611 0.661

2004 0.41 0.72 0.24 0.59 0.024 0.030 0.603 0.643

2005 0.13 0.76 0.07 0.65 0.021 0.042 0.591 0.622

2006 0.01 0.81 0.01 0.71 0.021 0.027 0.611 0.645

2007 0.19 0.74 0.10 0.62 0.020 0.034 0.615 0.648

2008 0.14 0.77 0.07 0.61 0.015 0.032 0.613 0.642

2009 0.06 0.71 0.03 0.59 0.022 0.028 0.600 0.633
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Table 2.5: Comparison of the PO and PA models for Silver-washed Fritillary

data. AOALL and AOOBS are the average estimated occupancy probability

from all points and from all points at which Silver-washed Fritillary was

observed, respectively. ASE is the average standard error of the estimated

occupancy probability from all points and AUC is the average AUC value

from 10 partitions. Instances where the PO model did not converge are

identified by the gaps.

AOOBS AOALL ASE AUC

Year PO PA PO PA PO PA PO PA

1995 0.25 0.58 0.02 0.12 0.007 0.019 0.860 0.904

1996 0.37 0.54 0.04 0.11 0.010 0.017 0.867 0.894

1997 - 0.55 - 0.12 - 0.017 - 0.904

1998 - 0.50 - 0.08 - 0.013 - 0.907

1999 0.47 0.52 0.05 0.07 0.011 0.011 0.917 0.929

2000 - 0.51 - 0.07 - 0.013 0.914

2001 - 0.49 - 0.06 - 0.013 0.908

2002 0.28 0.47 0.02 0.07 0.005 0.013 0.910 0.919

2003 0.30 0.50 0.03 0.08 0.005 0.012 0.892 0.913

2004 0.37 0.55 0.04 0.10 0.008 0.015 0.906 0.914

2005 - 0.54 - 0.12 - 0.017 - 0.898

2006 0.28 0.56 0.04 0.15 0.006 0.017 0.868 0.879

2007 - 0.51 - 0.09 - 0.013 - 0.901

2008 0.35 0.51 0.03 0.10 0.006 0.014 0.879 0.895

2009 0.45 0.53 0.05 0.09 0.008 0.012 0.896 0.901
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Table 2.6: Parameter estimates for each model and species for 2009, where MLE is the maximum likelihood estimate and SE is the

associated standard error.

Wall Brown Ringlet Silver-washed Fritillary

Parameter MLEPA SEPA MLEPO SEPO MLEPA SEPA MLEPO SEPO MLEPA SEPA MLEPO SEPO

intercept -1.639 0.092 -3.032 0.126 0.624 0.083 -3.588 0.686 -1.716 0.581 -4.312 0.540

north -2.241 0.235 -2.837 0.302 -0.910 0.121 -0.564 0.056 -4.538 0.619 -2.303 0.538

north2 1.106 0.121 0.987 0.126 -0.857 0.092 0.023 0.042 -1.696 0.311 -0.740 0.286

east 6.186 0.300 6.833 0.336 -0.197 0.190 1.041 0.096 3.457 1.603 -3.221 1.504

east2 -0.014 0.082 -0.126 0.081 0.213 0.083 -0.185 0.036 -2.184 0.421 -0.357 0.394

tmin 1.070 0.130 0.968 0.122 -0.950 0.109 0.010 0.048 0.885 0.269 1.090 0.263

tmin2 -0.203 0.050 -0.078 0.052 0.272 0.042 0.052 0.019 0.045 0.054 0.198 0.051

rain 6.711 0.345 6.082 0.362 -0.375 0.210 0.207 0.090 3.930 1.700 -4.760 1.607

rain2 -1.993 0.120 -2.429 0.138 0.020 0.075 -0.243 0.039 0.199 0.408 -1.570 0.427

woodland -1.081 0.108 -1.434 0.186 0.770 0.074 0.220 0.032 1.189 0.123 1.031 0.125

grassland -0.865 0.144 -2.040 0.266 0.247 0.082 -0.219 0.045 0.041 0.198 -0.295 0.194

arable -1.033 0.156 -2.428 0.293 0.549 0.093 -0.343 0.051 -0.026 0.230 -0.709 0.226

urban -1.004 0.094 -1.305 0.167 -0.150 0.050 -0.121 0.029 -0.386 0.158 -0.443 0.154

mountain -1.468 0.178 -2.673 0.278 -0.011 0.106 -0.591 0.060 0.043 0.139 -0.067 0.135
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Figure 2.4: PA model output for Wall Brown in 2009: a) observations b)

estimated occupancy probability c) standard error.

Figure 2.5: PO model output for Wall Brown in 2009: a) observations b)

estimated occupancy probability c) standard error.
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Figure 2.6: PA model output for Ringlet in 2009: a) observations b) esti-

mated occupancy probability c) standard error.

Figure 2.7: PO model output for Ringlet in 2009: a) observations b) esti-

mated occupancy probability c) standard error.
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Figure 2.8: PA model output for Silver-washed Fritillary in 2009: a) obser-

vations b) estimated occupancy probability c) standard error.

Figure 2.9: PO model output for Silver-washed Fritillary in 2009: a) obser-

vations b) estimated occupancy probability c) standard error.



Chapter 2. Occupancy modelling 47

2.4.2 Optimal benchmarking

By increasing the number of benchmark species used, we can anticipate

increases in the number of sites and/or the number of replicated visits per

site. Observations were made at an average of 15552, 17085 and 17659

locations per year for 10, 20 and all benchmark species, respectively. There

is a minimal difference in the mean number of replicates per site and year

for varying numbers of benchmark species (2.73, 2.85 and 2.83 respectively).

Figure 2.10 shows similar patterns in the location of observations, in 2000,

from varying numbers of benchmark species. Regardless of the number

of benchmark species used, some areas shows limited coverage, such as

Scotland, large areas of Wales, East Anglia and North Devon.

Tables 2.7-2.9 show that varying the number of benchmark species has

minimal effect on the average occupancy estimates from the PA model.

These minor differences may be anticipated given that the majority of

records are likely to arise from observations of more common species, hence

as increasingly scarce species are included in the benchmarking, the effect

on the model results is limited. This may not be true for particular areas

Figure 2.10: Locations of BNM records from a) 10, b) 20 and c) all bench-

marking species in 2000.
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with poorer coverage and/or with species which may have restricted ranges

but be relatively widespread within that range, for example Scotch Argus

in Scotland.

To assess the effect of varying the benchmarking effort on an area with

more limited sampling coverage, in Table 2.10 we present estimated occu-

pancy probabilities for Scotland for Ringlet. Neither of the other species’

ranges extends significantly into Scotland. With the exception of 2003, there

are minimal differences in the mean occupancy probabilities from varying

benchmarking for Ringlet in Scotland, suggesting that using 10 species may

be sufficient in this case.

There were only small differences in computation time from increasing

the number of benchmark species used, however as discussed in Section 2.1,

it is possible that as increasingly rare species are included, the likelihood of a

common species, such as Ringlet, being recorded may decrease. Analysis of

the species composition and number of species recorded, often referred to as

list length, could help determine whether all observed species are typically

recorded.
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Table 2.7: Variation in benchmarking for Wall Brown. AOALL and AOOBS are the mean estimated occupancy probability from all points

and from all points at which Wall Brown was observed, respectively. ASE is the average standard error of the estimated occupancy

probability from all points.

AOOBS AOALL ASE

Year 10 20 all 10 20 all 10 20 all

1995 0.70 0.69 0.69 0.38 0.37 0.37 0.032 0.031 0.030

1996 0.58 0.57 0.57 0.32 0.31 0.31 0.028 0.027 0.027

1997 0.69 0.67 0.67 0.44 0.43 0.42 0.036 0.036 0.035

1998 0.52 0.50 0.50 0.30 0.29 0.29 0.025 0.024 0.023

1999 0.52 0.52 0.51 0.31 0.30 0.30 0.028 0.027 0.025

2000 0.63 0.62 0.61 0.33 0.32 0.31 0.028 0.026 0.026

2001 0.53 0.52 0.52 0.38 0.37 0.36 0.036 0.036 0.035

2002 0.52 0.50 0.50 0.32 0.31 0.30 0.035 0.032 0.031

2003 0.52 0.50 0.50 0.28 0.28 0.28 0.026 0.025 0.024

2004 0.59 0.58 0.57 0.30 0.29 0.29 0.023 0.022 0.022

2005 0.54 0.52 0.52 0.28 0.27 0.27 0.024 0.023 0.023

2006 0.51 0.50 0.49 0.25 0.24 0.23 0.023 0.022 0.021

2007 0.39 0.38 0.38 0.19 0.18 0.18 0.022 0.021 0.020

2008 0.48 0.46 0.46 0.22 0.20 0.20 0.023 0.022 0.022

2009 0.44 0.43 0.43 0.17 0.17 0.17 0.017 0.016 0.016
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Table 2.8: Variation in benchmarking for Ringlet. AOALL and AOOBS are the mean estimated occupancy probability from all points and

from all points at which Ringlet was observed, respectively. ASE is the average standard error of the estimated occupancy probability

from all points.

AOOBS AOALL ASE

Year 10 20 all 10 20 all 10 20 all

1995 0.82 0.82 0.81 0.53 0.53 0.52 0.035 0.035 0.034

1996 0.63 0.63 0.62 0.46 0.46 0.45 0.038 0.038 0.040

1997 0.77 0.77 0.77 0.55 0.55 0.55 0.025 0.025 0.024

1998 0.70 0.69 0.69 0.53 0.53 0.53 0.030 0.029 0.029

1999 0.77 0.77 0.77 0.58 0.58 0.58 0.028 0.028 0.027

2000 0.72 0.71 0.71 0.53 0.52 0.52 0.038 0.037 0.035

2001 0.71 0.71 0.71 0.55 0.55 0.55 0.036 0.035 0.034

2002 0.75 0.74 0.73 0.60 0.59 0.58 0.031 0.029 0.029

2003 0.70 0.74 0.73 0.59 0.69 0.69 0.036 0.026 0.027

2004 0.72 0.71 0.70 0.59 0.58 0.57 0.030 0.029 0.029

2005 0.76 0.75 0.74 0.65 0.64 0.62 0.042 0.042 0.036

2006 0.81 0.80 0.80 0.71 0.70 0.70 0.027 0.026 0.026

2007 0.74 0.73 0.73 0.62 0.61 0.60 0.034 0.033 0.032

2008 0.77 0.76 0.75 0.61 0.59 0.59 0.032 0.030 0.029

2009 0.71 0.70 0.70 0.59 0.57 0.57 0.028 0.028 0.027
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Table 2.9: Variation in benchmarking for Silver-washed Fritillary. AOALL and AOOBS are the mean estimated occupancy probability

from all points and from all points at which Silver-washed Fritillary was observed, respectively. ASE is the average standard error of

the estimated occupancy probability from all points.

AOOBS AOALL ASE

Year 10 20 all 10 20 all 10 20 all

1995 0.58 0.57 0.57 0.12 0.12 0.12 0.019 0.019 0.019

1996 0.54 0.55 0.54 0.11 0.11 0.11 0.017 0.017 0.017

1997 0.55 0.55 0.55 0.12 0.12 0.12 0.017 0.017 0.017

1998 0.50 0.50 0.50 0.08 0.08 0.08 0.013 0.013 0.013

1999 0.52 0.52 0.51 0.07 0.07 0.07 0.011 0.011 0.011

2000 0.51 0.51 0.50 0.07 0.07 0.07 0.013 0.014 0.014

2001 0.49 0.49 0.49 0.06 0.07 0.07 0.013 0.014 0.014

2002 0.47 0.47 0.46 0.07 0.07 0.07 0.013 0.013 0.013

2003 0.50 0.50 0.50 0.08 0.08 0.08 0.012 0.012 0.012

2004 0.55 0.54 0.54 0.10 0.10 0.10 0.015 0.015 0.015

2005 0.54 0.53 0.53 0.12 0.12 0.11 0.017 0.017 0.017

2006 0.56 0.56 0.55 0.15 0.15 0.15 0.017 0.017 0.017

2007 0.51 0.51 0.50 0.09 0.09 0.09 0.013 0.013 0.013

2008 0.51 0.51 0.50 0.10 0.10 0.09 0.014 0.014 0.014

2009 0.53 0.52 0.52 0.09 0.09 0.09 0.012 0.012 0.012
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Table 2.10: Variation in benchmarking for Ringlet in Scotland. AOALL and AOOBS are the mean estimated occupancy probability from

all points in Scotland and from all points in Scotland at which Ringlet was observed, respectively. ASE is the average standard error

of the estimated occupancy probability from all points in Scotland.

AOOBS AOALL ASE

Year 10 20 all 10 20 all 10 20 all

1995 0.51 0.52 0.50 0.27 0.28 0.26 0.044 0.044 0.041

1996 0.45 0.46 0.44 0.40 0.40 0.37 0.054 0.055 0.059

1997 0.85 0.86 0.86 0.32 0.33 0.33 0.022 0.021 0.020

1998 0.62 0.64 0.64 0.32 0.32 0.31 0.036 0.034 0.032

1999 0.74 0.76 0.74 0.44 0.44 0.42 0.034 0.033 0.032

2000 0.67 0.67 0.65 0.40 0.39 0.36 0.048 0.047 0.043

2001 0.56 0.57 0.56 0.33 0.33 0.32 0.044 0.041 0.039

2002 0.71 0.71 0.70 0.38 0.37 0.36 0.036 0.034 0.032

2003 0.57 0.77 0.75 0.48 0.79 0.78 0.057 0.023 0.026

2004 0.76 0.76 0.75 0.46 0.46 0.44 0.035 0.034 0.032

2005 0.72 0.73 0.69 0.50 0.51 0.47 0.064 0.064 0.049

2006 0.88 0.88 0.88 0.72 0.72 0.70 0.028 0.027 0.028

2007 0.61 0.61 0.60 0.48 0.47 0.45 0.048 0.045 0.042

2008 0.60 0.60 0.60 0.41 0.39 0.38 0.041 0.037 0.034

2009 0.62 0.62 0.61 0.41 0.41 0.40 0.033 0.032 0.031
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2.4.3 Detection probability

In this section we explore the effects of allowing seasonal variation in de-

tection probability, as described in Section 2.3. Figure 2.11 shows how the

proportion of observations made per week varies throughout the season for

each species, according to the species’ life-cycle. Wall Brown is a bivoltine

species, hence the curve exhibits two peaks, whereas Ringlet and Silver-

washed Fritillary are both univoltine with a single peak in the proportion

of observations made per week.

The PA model with varying detection probability has smaller AICs,

however there are generally only minimal differences in average occupancy

estimates (Tables 2.11-2.13). Figure 2.12 shows the estimated detection

probabilities for 2009, which reflect the seasonal variation of the covariate

used.

Figure 2.13 plots the average detectability over the season for each year

and species. Based on simple linear regressions applied to average detection

probabilities in Figure 2.13, the average detection has increased significantly

(p ≤ 0.05) for Wall Brown and Silver-washed Fritillary, but not Ringlet,

which is reflected in Figure 2.13. Increases in detection probability could

be a result of changes in observer effort. Averaged over the season and

multiple years, detection probability is similar for the three species (0.16 to

two decimal places for all three species).
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Figure 2.11: Proportion of observations made per week across all locations

and years, for Wall Brown, Ringlet and Silver-washed Fritillary.
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Table 2.11: Comparison of the PA model with detection probability con-

stant or varying linearly with α, the proportion of observations made per

week, for Wall Brown. AOALL and AOOBS are the mean estimated occu-

pancy probability from all points and from all points at which Wall Brown

was observed, respectively. ASE is the average standard error of the occu-

pancy probability from all points and AIC the Akaike Information Criterion.

AOOBS AOALL ASE AIC

Year p(.) p(α) p(.) p(α) p(.) p(α) p(.) p(α)

1995 0.70 0.68 0.38 0.36 0.032 0.028 12261 10151

1996 0.58 0.56 0.32 0.31 0.028 0.027 11889 11595

1997 0.69 0.63 0.44 0.41 0.036 0.036 13471 11785

1998 0.52 0.47 0.30 0.27 0.025 0.022 17054 15200

1999 0.52 0.53 0.31 0.31 0.028 0.024 19817 17260

2000 0.63 0.60 0.33 0.31 0.028 0.026 16366 14525

2001 0.53 0.50 0.38 0.35 0.036 0.033 12328 10783

2002 0.52 0.50 0.32 0.30 0.035 0.032 14308 12742

2003 0.52 0.50 0.28 0.27 0.026 0.023 17246 15605

2004 0.59 0.56 0.30 0.28 0.023 0.021 19697 16857

2005 0.54 0.53 0.28 0.27 0.024 0.023 16169 14067

2006 0.51 0.54 0.25 0.26 0.023 0.022 17190 14823

2007 0.39 0.39 0.19 0.19 0.022 0.022 12164 11344

2008 0.48 0.46 0.22 0.20 0.023 0.022 11080 10166

2009 0.44 0.42 0.17 0.16 0.017 0.015 14162 12220
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Table 2.12: Comparison of the PA model with detection probability con-

stant or varying linearly with α, the proportion of observations made per

week, for Ringlet. AOALL and AOOBS are the mean estimated occupancy

probability from all points and from all points at which Ringlet was ob-

served, respectively. ASE is the average standard error of the occupancy

probability from all points and AIC the Akaike Information Criterion.

AOOBS AOALL ASE AIC

Year p(.) p(α) p(.) p(α) p(.) p(α) p(.) p(α)

1995 0.82 0.74 0.53 0.48 0.035 0.030 16225 11112

1996 0.63 0.59 0.46 0.42 0.038 0.033 18766 14651

1997 0.77 0.66 0.55 0.48 0.025 0.024 23647 14470

1998 0.70 0.67 0.53 0.53 0.030 0.029 25683 16160

1999 0.77 0.68 0.58 0.52 0.028 0.026 29500 19208

2000 0.72 0.67 0.53 0.48 0.038 0.030 22808 14338

2001 0.71 0.67 0.55 0.53 0.036 0.033 18914 12839

2002 0.75 0.70 0.60 0.57 0.031 0.029 25251 15666

2003 0.70 0.66 0.59 0.53 0.036 0.027 30870 20910

2004 0.72 0.70 0.59 0.59 0.030 0.027 32148 21666

2005 0.76 0.69 0.65 0.57 0.042 0.030 29520 18441

2006 0.81 0.75 0.71 0.67 0.027 0.026 33521 21852

2007 0.74 0.72 0.62 0.61 0.034 0.031 30433 21272

2008 0.77 0.73 0.61 0.61 0.032 0.032 34502 20901

2009 0.71 0.70 0.59 0.58 0.028 0.025 35699 23998
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Table 2.13: Comparison of the PA model with detection probability con-

stant or varying linearly with α, the proportion of observations made per

week, for Silver-washed Fritillary data. AOALL and AOOBS are the mean es-

timated occupancy probability from all points and from all points at which

Silver-washed Fritillary was observed, respectively. ASE is the average stan-

dard error of the occupancy probability from all points and AIC the Akaike

Information Criterion.

AOOBS AOALL ASE AIC

Year p(.) p(α) p(.) p(α) p(.) p(α) p(.) p(α)

1995 0.58 0.55 0.12 0.12 0.019 0.018 3910 3123

1996 0.54 0.52 0.11 0.11 0.017 0.017 4420 3773

1997 0.55 0.53 0.12 0.11 0.017 0.016 5047 4161

1998 0.50 0.48 0.08 0.07 0.013 0.012 4356 3613

1999 0.52 0.49 0.07 0.07 0.011 0.010 4121 3455

2000 0.51 0.49 0.07 0.07 0.013 0.013 3441 2905

2001 0.49 0.48 0.06 0.06 0.013 0.013 2862 2566

2002 0.47 0.47 0.07 0.07 0.013 0.013 3900 3390

2003 0.50 0.49 0.08 0.08 0.012 0.012 5386 4661

2004 0.55 0.51 0.10 0.09 0.015 0.014 5910 4665

2005 0.54 0.51 0.12 0.11 0.017 0.016 6212 5157

2006 0.56 0.53 0.15 0.14 0.017 0.016 9813 7792

2007 0.51 0.50 0.09 0.09 0.013 0.013 6738 5721

2008 0.51 0.50 0.10 0.10 0.014 0.014 6426 5778

2009 0.53 0.51 0.09 0.09 0.012 0.011 8512 6803



Chapter 2. Occupancy modelling 58

Figure 2.12: Estimated detection probability throughout the season for each

species in 2009.
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Figure 2.13: Mean estimated detection probability (over the season) per

year for Wall Brown (black), Ringlet (blue) and Silver-washed Fritillary

(red).

2.4.4 Occupancy indices

In this section we present novel occupancy indices, as outlined in Section

2.2.4. The regions used are shown in Figure 2.1. Given the results in Section

2.4.3, we use the PA model with varying detection probability.

Figures 2.14-2.16 display regional indices for the three species, derived

using varying approaches. For Silver-washed Fritillary the range was limited

in the model fitting (Section 2.3) hence regional indices are not available for

Scotland and Northwest England. In each figure, plots a) and b) compare

using the weighted index versus the simple index, as described in Section

2.2.4, based on all locations in each region. Although using the standard er-

rors of the occupancy estimates as a weighting seems intuitive, the resulting

indices are generally more variable. In the case of particularly large/small

occupancy estimates, associated estimated standard errors are likely to be

small and/or poorly estimated, and consequently this can produce prob-

lems with the weighted indices, where the more extreme values have higher

weightings which influence the indices. For example the index for Wall
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Brown in Scotland is zero for the weighted index, but is more realistically

slightly larger than zero for the simple index (Figure 2.14), a feature which

similarly occurs for some regions for Silver-washed Fritillary in Figure 2.16.

For Ringlet the index for Scotland fluctuates significantly for the weighted

index compared to the simple index (Figure 2.15).

In plot c) of each Figure 2.14-2.16, we plot simple regional occupancies

based on using only locations at which records have been made in that

year. Using all possible points as in plots a) and b) relies on predictions of

occupancy in unsampled locations, however using only sampled locations,

as in plots c), could produce results that are biased given the unstandard-

ised sampling design of the BNM. Furthermore, when using the recorded

locations for each year, there is variation in the sample of points contribut-

ing to the indices for each year, as a result of the unstandardised manner

of the data. For Wall Brown there are minimal differences between Fig-

ures 2.14b and 2.14c for most regions, although the estimated index for

Scotland is much lower when all locations are used, which is likely to be

more realistic given the limited distribution of Wall Brown in Scotland. For

Ringlet and Silver-washed Fritillary there are also only minimal differences

between Figures 2.15b and 2.15c and Figures 2.16b and 2.16c, although for

Silver-washed Fritillary in Wales there is some variation.

Although using only sampled locations removes any bias from using

predictions at unsampled locations, these illustrative results suggest that

there may be bias when sampling is uneven, particularly for some regions

such as Scotland andWales, which were shown to be undersampled in Figure

2.10. This issue may be more prevalent for rare, localised species which were

not studied in this preliminary development of the indices. Further work is

needed, but using a simple index from all locations may be the most suitable

approach for deriving occupancy indices.

Figure 2.17a shows indices for the UK as a whole for each species. For

Wall Brown and Ringlet, the indices derived from either taking the average

of the occupancy estimates for all points in the UK (black lines) are similar

to those calculated by taking a geometric mean of the regional indices in plot
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b) of Figures 2.14 and 2.15. However for Silver-washed Fritillary, which has

a more limited range in the UK, the index derived using a geometric mean

is much lower, although taking only regions with an index of above 0.05

produces an index more similar to the simple index for all locations (black

line). The indices of abundance in Figure 2.17b show similar patterns to the

occupancy indices, despite having a different scale and representing changes

in abundance, from UKBMS data, rather than changes in occupancy from

BNM data.

Table 2.14 compares estimated percentage trends from the UK occu-

pancy indices (black lines in Figure 2.17) created from the PA model, with

distribution and abundance trends reported in Fox et al. (2011a). The

predicted trends from the PA model are of the same sign as the reported

trends, but for Wall Brown and Ringlet the values are of a greater magni-

tude, implying that changes in distribution may be greater than previously

suggested. Given the regional indices presented in this section, novel esti-

mates of regional trends in distribution could also be made.

In this section we have proposed innovative indices for studying varia-

tion in occupancy, but wider application is needed to identify the optimal

approach, which may vary for different species. We discuss some possible

avenues for further work in the discussion of this chapter. The indices in

this section have been presented without associated error estimates. Es-

timates of error were made as described in Section 2.2.4, but resulted in

very small values. This is likely to be a result of the large number of points

contributing to the indices.
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Figure 2.14: Regional occupancy indices for Wall Brown from the PA model.

a) weighted index for all locations b) simple index for all locations c) simple

index for only recorded locations.
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Figure 2.15: Regional occupancy indices for Ringlet from the PA model. a)

weighted index for all locations b) simple index for all locations c) simple

index for only recorded locations.
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Figure 2.16: Regional occupancy indices for Silver-washed Fritillary from

the PA model. a) weighted index for all locations b) simple index for all

locations c) simple index for only recorded locations.
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Figure 2.17: a) UK occupancy indices for each of the three species based

on an index calculated for the UK (black), a geometric mean of all regions

(blue), or a geometric mean of regions with a minimum occupancy index of

at least 0.05 (green). The simple index approach based on all locations was

used. b) Index of abundance for each species, generated from UKBMS data

using the two-stage GAM approach.
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Table 2.14: Comparison of trends in occupancy and abundance. Trends for

PA represent percentage change of the linear trend of the UK occupancy

index from the PA model (black lines in Figure 2.17a). RDT and RAT

are the distribution and abundance trends reported in Fox et al. (2011a).

Significant trends are represented by *p ≤ 0.05, **p ≤ 0.01 and ***p ≤

0.001, but were not reported for RDT.

Series trend (%)

Species PA RDT RAT

Wall Brown -46 *** -21 -37 *

Ringlet 37 *** 8 25 *

Silver-washed Fritillary 4 12 38

2.5 Discussion

This chapter has investigated the performance of occupancy models when

applied to unstandardised, opportunistic distribution data for UK butter-

flies. Using a site-occupancy model with benchmarking (PA model) was

found to be superior to the presence-only Maxlike model (PO model) for

estimating spatial occupancy from BNM data.

Despite performing comparably to the PA model in some instances, the

PO model did not produce consistent results for each year for the three

species considered. As highlighted by Royle et al. (2012), a key assumption

of the PO model is that the data arise from a random sample of presence

locations which could be an inappropriate assumption for ad-hoc data. For

example there could be bias in the records towards locations with a high but-

terfly density or known to have specific species present. The presence-only

model may be suitable in some other contexts, particularly where detection

can more reasonably be assumed as constant and sampling to be random.

The PO model was particularly unreliable for Silver-washed Fritillary.

In the scenarios where the model-fitting did not converge, a feature which

could also present itself for other species not assessed here, it is possible
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that convergence might be achieved by wider testing of suitable covariates

or starting values, however this may be futile given that the PA model had

no difficulty in fitting to these data.

The findings in this chapter provide a basis for devising recommenda-

tions for new modelling of the BNM data with occupancy models. Modelling

of the UK butterfly distributions has previously been limited, particularly

in the context of wide-scale application for monitoring many species over

multiple years. Further application, particularly to a wider set of species

and scenarios, may lead to a new framework for modelling the distributions

of UK butterflies, which will benefit the study and assessment of changes

in distribution, both in terms of contractions and expansions. As for the

methods in Chapters 5 and 6, which model butterfly abundance, the opti-

mal approach for modelling occupancy may vary according to species and

study aim. An area for future study is the modelling of local changes in

occupancy (and abundance), for example at sites of particular conservation

interest.

The creation of dynamic maps provides an up-to-date tool for visualising

and monitoring changes in a species’ distribution, and could benefit the

motivation and retention of the citizen scientists that contribute to the

BNM database. Furthermore, Kéry et al. (2013) highlighted the importance

of providing associated error maps, providing a demonstration for European

crossbill Loxia curvirostra in Switzerland, and stating that “quantifying and

honestly communicating the uncertainty in species distribution maps is a

greatly under-appreciated but very important issue”, although of course it is

important to remember that the errors themselves are only estimates. The

dynamic maps were created for illustration, and in future suitable code could

be developed to generate dynamic maps easily, for potential presentation

on websites that can be easily accessed.

This chapter has only illustrated the potential of using occupancy mod-

els to estimate spatial occupancy for UK butterflies, and further analysis is

needed. Appropriate model selection is required to identify the most suit-

able covariates for both occupancy and detection probability, which is likely
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to vary among species, and will influence the resulting occupancy estimates

and associated maps and indices. Here only variables for aggregated land

cover classes were considered, whereas more specific subclasses may be im-

portant, particularly for habitat specialist species, such as those restricted

to or favouring chalk and limestone grassland, for example Chalkhill Blue

and Adonis Blue (Asher et al. 2001). Incorporating information on specific

plant distributions could be valuable for species with specific or favoured

foodplants (Asher et al. 2001), for example Purple Hairstreak is restricted

to oak trees, whereas Adonis Blue favours Horseshoe Vetch Hippocrepis co-

mosa. Variables linked to species’ host plants have been shown to relate to

butterfly distributions by Dennis et al. (2005).

Here we considered only linear or quadratic covariate relationships. A

quadratic relationship was assumed for some covariates, such as those re-

lated to weather, as a linear relationship may be too limiting, but quadratic

effects allow for variations at extremes, for example a species may favour

temperatures that are neither too warm or too cold. Other non-linear re-

lationships could be accounted for, as in Maxent (Elith et al. 2011; Merow

et al. 2013). For example, splines could be incorporated, as used to describe

variation in detection by Strebel et al. (2014).

In this analysis we allowed detection probability to vary with a species’

seasonal variation in abundance by using the proportion of observations

made per week as a covariate. A similar metric was used for predicting

phenology by Bishop et al. (2013), although a spline may also provide a

flexible modelling approach for detectability (Strebel et al. 2014). Other

applications of occupancy models to opportunistic data for taxa such as

butterflies have used date as a covariate for detection probability, but have

limited the analysis to a single brood for bi- or multivoltine species (van

Strien et al. 2013).

There may be many other influences on detection probability, for exam-

ple weather-based covariates could be included if available, or covariates to

account for spatial variation in detection, such as land cover type or lati-

tude. Given the incorporation of suitable covariates, relationships could be
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inspected to advance the study of factors that influence changes in species’

range and distribution, although for opportunistic data sets such as the

BNM, suitable covariates for detection probability may not typically be

available. We anticipate that for taxa such as butterflies, within-season

variation in detection arising from variation in the number of adult but-

terflies may outweigh variation in detection from other factors, although

investigating the effects of the number of species recorded is an avenue for

further work (van Strien et al. 2013).

Royle and Nichols (2003) developed a model that incorporates hetero-

geneity in detection probability as a result of variation in abundance, and in

doing so estimates of site abundance can be obtained from presence-absence

data, which are typically cheaper and easier to obtain than count data, such

as for the UKBMS. Although in this chapter we have shown detection prob-

ability to vary with abundance, the Royle-Nichols model requires abundance

to be constant within a period of closure, which is unlikely for butterflies

due to the seasonal variability. Nowicki et al. (2008) and Bried and Pellet

(2011) suggest that a situation where samples are made on the same day

may be an exception, but this would not be applicable for opportunistic

data such as from the BNM. Similar issues apply for fitting the N-mixture

model in Chapter 3 to count data for butterflies, due to a lack of closure

between repeated visits. Nowicki et al. (2008) point out that abundance

estimates from the Royle-Nichols model are also likely to be biased for large

population numbers with low individual detection probabilities, which was

supported by Bried and Pellet (2011) who found that presence-absence did

not reliably estimate abundance for a sparse butterfly species.

The choice of benchmark species in the PA model could be fine-tuned.

For example, rather than taking the most prevalent species, considering

whether particular habitats are covered by the selected benchmark species

may improve the approach. Adopting a regional approach to benchmarking

would also be worth consideration, since the expected list of species likely

to be found will vary regionally, for example species found in Scotland will

vary considerably compared to those found in southern England. Hill (2011)
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adopted a regional benchmarking approach for analysing the occurrence of

bryophytes, but a much higher level of species richness was available than

for UK butterfly species. In many applications, the full list of observed

species is used, and the length of the list of species observed at each site on

a particular visit may be used as a measure of observation and reporting

effort in the form of a covariate for detection probability (Szabo et al. 2010;

van Strien et al. 2013).

There may be benefit in accounting for spatial autocorrelation in oc-

cupancy probability (Johnson et al. 2012), for example Bled et al. (2011)

explicitly account for relative distances between sites as well as the influence

of local density on occupancy. However these approaches may be computa-

tionally draining for multi-species, multi-year analyses, particularly at fine

spatial scales over potentially large ranges.

Combining multiple sources of information has received growing inter-

est (Schaub and Kéry 2012). A preliminary investigation of combining

UKBMS data, treating the counts as presence-absence data, with BNM

data produced no appreciable benefit in occupancy estimation. Pagel et al.

(2014) modelled temporal variation in range size and abundance by com-

bining BNM and UKBMS data at the 10 km scale, but discuss the potential

limitations for widespread application.

Within the BNM there are under-sampled areas in some regions of the

UK. Incorporation of data from other schemes (UKBMS and WCBS) may

reduce this issue, or alternatively a post-stratification of sites may be possi-

ble to reduce bias from under-sampled areas or land cover types (Van Turn-

hout et al. 2008), as suggested in van Strien et al. (2013).

The benchmarking approach has the benefit of multi-year dynamic mod-

els for presence-absence data already being available (MacKenzie et al.

2006), which can be fitted using a hierarchical perspective (Royle and Kéry

2007; Royle and Dorazio 2008). Dynamic occupancy models are an av-

enue for further work which may provide the opportunity to study temporal

changes in the distribution of UK butterflies better, with relevant extinction

and colonisation probability parameters, which were each mapped by Kéry
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et al. (2013). However, as pointed out by van Strien et al. (2013), fitting

such occupancy models to large data sets can be computationally intensive,

particularly in a Bayesian framework. Bled et al. (2011) developed dynamic

occupancy models to study the direction of spread of invasive species, which

could be applied to range expansion, but may require a coarser scale than

1 km2.

Recent developments of occupancy models allow the closure assumption

to be relaxed, and the arrival and departure times of a species to be de-

scribed, providing estimates of phenology (Kendall et al. 2013; Chambert

et al. 2015). Roth et al. (2014) demonstrated a method for estimating arrival

and departure dates based on occupancy models, and estimated the length

of the flight period for two butterfly species. Adaptation of these models

may be possible for bi- or multivoltine species. Although in this case the

arrival and departure of the species, rather than individuals, is modelled.

In Section 4.2 we describe stopover models that estimate emergence and

departure (death) from count data, where survival can also be estimated,

which are then applied further in Chapters 5 and 6.

The novel regional indices developed in this chapter allow for the study

of occupancy trends in regions of particular interest and how changes in

occupancy might vary spatially over a species’ range, for example to deter-

mine whether behaviour is related between certain regions. National indices

may also provide new perspectives of distribution trends for UK butterflies,

which have previously only been reported in terms of percentage change

over multi-year periods. Indices for groups of particular species may be de-

rived by taking the geometric mean of the indices for each species (Buckland

et al. 2005; Brereton et al. 2011b), on a UK, country or now regional basis.

The regions used in this chapter were chosen arbitrarily for demonstra-

tion, and alternative methods for choosing appropriate regions may be pre-

ferred. There is much potential to derive alternative spatial indices, for

example using a clustering mechanism, or by alternative regions, for exam-

ple by land cover type, or for urban areas. The fitted models could also be

used to derive occupancy indices for specific areas or sites of interest. Har-
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rison et al. (2014) displayed changes in the abundance of farmland birds for

each 100 km square in the UK on a map. The regional occupancy indices

described in this chapter could be visualised in a similar way.

Opportunistic schemes are commonly used to form atlases for various

taxa around the world and these methods are likely to be applicable to other

species groups. In the UK alone, 39 recording schemes exist for mapping

the distributions of invertebrates, overseen by the Biological Records Centre

(BRC), in addition to schemes for birds and plants (Thomas 2005).



Chapter 3

N-mixture models

Estimating the abundance of a population is an important component of

ecological research. The N-mixture model (Royle 2004a) is widely used to

estimate animal abundance from only a set of counts. In this chapter we

explore computational aspects of fitting the N-mixture model. In particu-

lar, we show that especially when detection probability and/or the number

of sampling occasions are small, infinite estimates of abundance can arise.

We also explain and exploit the equivalence of N-mixture and multivariate

Poisson and negative-binomial models, which provides powerful new ap-

proaches for fitting these models. This chapter is based on Dennis et al.

(2015b), from which all tables and figures in the chapter have been taken.

3.1 Background

N-mixture models can be used to estimate animal abundance from counts,

subject to both spatial and temporal replication, whilst accounting for im-

perfect detection (Royle 2004a). Whereas alternative sampling methods for

obtaining estimates of abundance exist, such as capture-recapture, distance,

removal and multiple-observer sampling, these may be expensive in effort

or cost, or impractical for some species and scenarios. A benefit of the N-

mixture model is the reasonably low comparative cost and effort required

for data collection, which does not require individuals to be identified. This

is especially true of many citizen-science based monitoring programs.

73
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Consequently, since development by Royle (2004a), many applications

and extensions of the N-mixture model have been made. These include

applications to various taxa, including birds (Kéry et al. 2005), mammals

(Zellweger-Fischer et al. 2011) and amphibians (Dodd and Dorazio 2004;

McIntyre et al. 2012). In addition, covariates have often been used to ex-

amine spatial patterns in abundance and detection (Kéry 2008) and hence

create maps of spatial abundance (Royle et al. 2005). Dénes et al. (2015)

review extensions that have been made to the N-mixture model, and we

describe many of these in the discussion of the chapter.

Despite the popularity of the N-mixture model, only limited studies

have made comparisons with estimates derived via alternative methods or

undertaken simulation studies of performance (for example Hunt et al. 2012;

Couturier et al. 2013; Yamaura 2013). A potential issue for fitting the

model using classical inference is the need to specify an upper bound, K, to

approximate an infinite summation in the likelihood. We found this matter

was rarely mentioned in publications. For example, McIntyre et al. (2012)

used simulated data to support their amphibian study, highlighting the

benefit of more sampling occasions, particularly when detection probability

was low, however the value of K used was not provided. When software

such as unmarked (Fiske and Chandler 2011) written in R (R Core Team

2015) and PRESENCE (Hines 2011) is used for model fitting, it is possible

that only default values of the bound K are employed. Yamaura (2013)

performed simulations for the N-mixture model under various scenarios,

but noted that the choice of K did not influence the results. However, in an

application to Goldcrest data, Knape and Korner-Nievergelt (2015) found

that estimates of abundance were sensitive to K, and suggested that in

some cases abundance and detection may not be separable. Couturier et al.

(2013) suggest bias could be induced by the choice of K for low detection

probabilities and we revisit the data from this study in Section 3.7.

In this chapter we explore the effect that K can have on parameter esti-

mates. We investigate computational aspects of fitting N-mixture models,

in particular via a simulation study for scenarios where detection probabil-
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ity is low and/or the number of sampling occasions is small. This may be of

particular importance for the study of cryptic species, and may have impli-

cations for sample design: many applications to date have made only three

visits, whereas in Royle (2004a) simulations were tested for five visits and

an application made to data with ten visits. When only one sampling visit

is made, it is well known that in the absence of covariates the N-mixture

model reduces to a thinned Poisson distribution, with only one estimable

parameter, the product of mean abundance and detection probability, a

feature which underlies aspects of the work which follows.

The N-mixture model is described in Section 3.2. In Section 3.3 we ex-

plain the equivalence of the Poisson N-mixture model with a multivariate

Poisson distribution. We use this formulation to show that infinite estimates

of abundance may arise, and provide a simple diagnostic to identify such

cases. The multivariate Poisson formulation has the advantage of not requir-

ing a constant K to be set. Section 3.4 provides the probability function in

the bivariate negative-binomial case. In Section 3.5 we show how the choice

of K in the N-mixture model interacts with the occurrence of infinite esti-

mates of abundance, and how incorrect conclusions may arise. An automatic

method for choosing K is provided. Section 3.6 provides moment estimates

and evaluates the use of two diagnostic tests for the negative-binomial case

for when infinite estimates of abundance may arise. Section 3.7 provides an

application to real data on Hermann’s tortoise Testudo hermanni, and the

chapter ends with discussion in Section 3.8. Appendix A assesses the perfor-

mance of method-of-moments estimation compared to maximum likelihood

from the N-mixture model.

3.2 The N-mixture model

Under the study design in Royle (2004a), a set of counts is made during

sampling visits j = 1, 2, . . . , T at i = 1, 2, . . . , S locations (sites). In this

chapter we assume that visits are equally spaced over time, and hence time,

occasion and visit are interchangeable. The population is assumed to be
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closed during the period of sampling, for example with respect to mortality,

recruitment and movement, and each individual is assumed to have the

same detection probability p. Each count yi,j at site i and time j is then

assumed to be an independent binomial random variable,

yi,j ∼ Bin(Ni, p),

where Ni is the unknown population size at site i. To fit the model using

classical inference, we assume the Ni to be independent random variables

with probability density function f(N ;θ), and then maximise the likelihood

L(p,θ; {yi,j}) =
S∏

i=1

[
∞∑

Ni=κi

{
T∏

j=1

Bin(yi,j;Ni, p)

}
f(Ni;θ)

]
, (3.1)

where κi = maxjyi,j. In this chapter we shall consider both Poisson and

negative-binomial mixing distributions for N . As noted by Royle (2004a),

numerical maximisation of (3.1) requires the replacement of the infinite

summation over Ni by a sum with upper limit K. The value of K may

be selected by fitting the model for a succession of increasing values and

selectingK when the parameter estimates appear to stabilise (Royle 2004a).

In this chapter we will show that the N-mixture model can produce

unrealistically large estimates of abundance. We describe this feature by

using the equivalence of the N-mixture model with multivariate Poisson

and negative-binomial models, which we will first describe for the Poisson

case in the next section.

3.3 Equivalence of the Poisson N-mixture model with

a multivariate Poisson model

The number of individuals observed at a site at time j can be written as

the convolution of independent random variables, corresponding to those

seen only once, those seen twice etc. This natural feature of the N-mixture

model can be formalised as we now show.

Let S denote the set of non-empty subsets of {1, . . . , T}, and let the

random variable Xi,s (s ∈ S) denote the number of individuals seen at site
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i only on occasions s. For example, Xi,124 denotes the individuals seen at

site i on occasions 1, 2 and 4 only. Then, if we let Sj denote those elements

of S that include a given occasion j, we can decompose yi,j as

yi,j =
∑
s∈Sj

Xi,s.

For example, with T = 3, we have

yi,1 = Xi,1 +Xi,12 +Xi,13 +Xi,123

yi,2 = Xi,2 +Xi,12 +Xi,23 +Xi,123

yi,3 = Xi,3 +Xi,13 +Xi,23 +Xi,123.

Conditional on Ni, the joint distribution of the set of random variables

Xi,s (s ∈ S) is multinomial, with index Ni and probabilities πi,s = p|s|(1 −

p)T−|s|, where |s| denotes the number of elements in the set s. When Ni ∼

Pois(λ), the Xi,s (s ∈ S) are independent Poisson random variables, with

E (Xi,s) = λp|s|(1− p)T−|s|,

see Johnson et al. (1997, p146). The thinned Poisson is the case T = 1.

It follows that the joint distribution of (yi,1, . . . , yi,T ) is multivariate Pois-

son (Johnson et al. 1997, Chapter 37), with

E(yi,j) =
∑
s∈Sj

E(Xi,s) =
∑
s∈Sj

λp|s|(1− p)T−|s|.

There are
(
T−1
k−1

)
subsets s ∈ Sj such that |s| = k (k = 1, . . . , T ). Hence

E(yi,j) =
T∑

k=1

(
T − 1

k − 1

)
λpk(1− p)T−k = λp.

Similarly, if we let Sj,u denote the elements of S that include both occasions

j and u then

cov(yi,j, yi,u) =
∑
s∈Sj,u

var(Xi,s) =
∑
s∈Sj,u

λp|s|(1− p)T−|s|.

There are
(
T−2
k−2

)
subsets s ∈ Sj,u such that |s| = k (k = 2, . . . , T ). Hence,

for j ̸= u,

cov(yi,j, yi,u) =
T∑

k=2

(
T − 2

k − 2

)
λpk(1− p)T−k = λp2,



Chapter 3. N-mixture models 78

and corr(yi,j, yi,u) = p (j ̸= u).

This result is a special case of Johnson et al. (1997, Equation 37.88),

which is stated there without proof.

3.3.1 Example: T=2, Poisson case

Cormack (1989) mentions this case in closed-population capture-recapture

modelling of data from one site only.

Suppressing site dependence, we have

y1 = X1 +X12 and y2 = X2 +X12

where X1, X2, X12 are independent with X1, X2 ∼ Pois(θ1), where θ1 =

λp(1 − p) and X12 ∼ Pois(θ0), where θ0 = λp2. Note that small p would

result typically in small values for X12, and as p tends to zero y1 and y2

become independent, so that the model reverts to a thinned Poisson.

The counts (y1, y2) follow a bivariate Poisson distribution with corr(y1, y2) =

p, and the bivariate Poisson probability is

Pr(y1, y2;λ, p) =

min(y1,y2)∑
u=0

[
e−λp2(λp2)ue−2λp(1−p)

u!(y1 − u)!(y2 − u)!
{λp(1− p)}y1+y2−2u

]

= {p(1− p)}y1+y2

min(y1,y2)∑
u=0

e−λ(2p−p2)λy1+y2−u

(1− p)2uu!(y1 − u)!(y2 − u)!
.

(3.2)

Including site dependence, the likelihood is

L(p, λ; {yi,j}) = e−(2θ1+θ0)

S∏
i=1

θ
yi,1+yi,2
1

yi,1!yi,2!

min(yi,1,yi,2)∑
u=0

(
yi,1
u

)(
yi,2
u

)
u!

(
θ0
θ21

)u

 .

(3.3)

For T = 2 the expressions of (3.1) and (3.3) are identical, but the likelihood

of (3.3) may be maximised without requiring selection of a value K. 2
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3.3.2 Multivariate Poisson distribution

For general T , let Xi denote the set of all possible values xi,s of the random

variables Xi,s, s ∈ S such that

yi,j =
∑
s∈Sj

xi,s, j = 1, . . . , T.

Because the random variables Xi,s are independent, the joint probability

function of (yi,1, . . . , yi,T ) is

Pr(yi,1, . . . , yi,T ) =
∑
Xi

∏
s∈S

Pr(Xi,s = xi,s),

and ∏
s∈S

Pr(Xi,s = xi,s) =

∏
s∈S

exp
{
−λp|s|(1− p)T−|s|}{λp|s|(1− p)T−|s|}xi,s

xi,s!
.

There are
(
T
k

)
elements s ∈ S such that |s| = k, for k = 1, . . . , T . Hence

∏
s∈S

exp
{
−λp|s|(1− p)T−|s|} = exp

{
−λ

T∑
k=1

pk(1− p)T−k

}
= exp

[
−λ
{
1− (1− p)T

}]
.

Therefore, we can write

Pr(yi,1, . . . , yi,T ;λ, p) =
∑
Xi

∏
s∈S

{
p|s|(1− p)T−|s|}xi,s

xi,s!

× exp
[
−λ
{
1− (1− p)T

}]
λ
∑

s∈S xi,s . (3.4)

We can check that the case T = 2 is given in (3.2). An associated R

program, which is provided as an electronic appendix to this thesis, contains

the functions required to optimised the multivariate Poisson (and negative-

binomial) formulation of the N-mixture model and incorporates efficient

construction of Xi.
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3.3.3 Performance of the multivariate Poisson model

For illustration, we investigate performance of the multivariate Poisson

model via simulation from the fitted model. We assess output for the cases

T = 2, 3, 4 based upon 1000 simulations where λ = 2, 5, 10, p = 0.1, 0.25 and

S = 20. The chosen parameter values were guided by those used in Royle

(2004a). The model was fitted using the optim function in the R software

package (R Core Team 2015) using the default Nelder-Mead algorithm and

a tolerance value of 1 × 10−12. The results were checked with those from

using several other optim algorithms, including simulated annealing and

quasi-Newton.

We observe that estimates for λ were very large in some cases (the

maximum estimate from 1000 simulations was 1.36 × 1013 when λ = 5,

p = 0.25 and T = 2). Figure 3.1 shows that non-positive values of a

covariance diagnostic,

cov∗(y1, y2) = y1y2 − {(y1 + y2)/2}2, (3.5)

can identify the high estimates of λ from fitting the bivariate Poisson. Here

y1y2 denotes the mean of the product y1y2 over S sites. Note that this

(intraclass) estimate is appropriate as E[y1] = E[y2]. A proof that a local

maximum of the likelihood occurs at p = 0 when cov∗(y1, y2) ≤ 0 is given

in the next section. In unpublished work, Professor Peter Jupp, of the

University of St Andrews, has proved that for the case T = 2 there are no

other maxima when the diagnostic is satisfied. Further work is required for

a general proof for T > 2. Hence, in these instances when p̂ = 0, in order

to have finite λ̂p, λ̂ is actually infinite and the large range of high estimates

of abundance obtained in practice, as in Figure 3.1, is partly an artefact of

the optimisation routine stopping prematurely when the likelihood is flat.

For more than two visits, which corresponds to T > 2, the appropriate
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Figure 3.1: Log(λ̂) from the bivariate Poisson model plotted against the

covariance diagnostic, cov∗(y1, y2) from (3.5), based upon 1000 simulated

datasets for S = 20, λ = 2, 5, 10 and p = 0.25. Values at which the

covariance diagnostic is negative are shown by red crosses.

covariance diagnostic can be estimated as

cov∗(y1, . . . , yT ) =
2

T (T − 1)
(y1y2 + · · ·+ yT−1yT )

−
(
y1 + · · ·+ yT

T

)2

, (3.6)

where the first term consists of the average of the means of all T (T − 1)/2

pairwise products. Our conjecture that the diagnostic extends for T > 2

is supported by Figure 3.2 which compares the covariance diagnostic (3.6)

with λ̂ from the multivariate Poisson model for T = 3, when λ = 2, 5, 10.

Performance of the covariance diagnostic is demonstrated further in Ta-

ble 3.1, which shows close correspondence between the proportion of simu-

lations where the diagnostic is negative and the proportion where λ̂ is large

(λ̂ > 500). Table 3.1 also shows the prevalence of infinite estimates of λ̂,

particularly as λ, T and p decrease. In fact for the case where λ = 2,

p = 0.1 and T = 2, a finite value of λ̂ was not achievable in over half of

1000 simulations.
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Figure 3.2: Log(λ̂) from the multivariate Poisson model with T = 3 plotted

against the covariance diagnostic, cov∗(y1, y2, y3) from (3.6), based upon

1000 simulated datasets for S = 20, λ = 2, 5, 10 and p = 0.25. Values at

which the covariance diagnostic is negative are shown by red crosses.

Table 3.1: Performance of the covariance diagnostic for the multivariate

Poisson model for various scenarios of λ, p and T for S = 20 sites. EPN

is the proportion of simulations when the sample covariance diagnostic was

negative. EPD is the proportion of simulations where the estimate of λ̂ >

500.

T = 2 T = 3 T = 4

λ p EPN EPD EPN EPD EPN EPD

2 0.10 0.505 0.505 0.351 0.351 0.276 0.276

2 0.25 0.225 0.224 0.090 0.089 0.033 0.033

5 0.10 0.427 0.427 0.362 0.361 0.219 0.222

5 0.25 0.167 0.167 0.084 0.084 0.017 0.020

10 0.10 0.398 0.398 0.317 0.318 0.251 0.256

10 0.25 0.180 0.181 0.066 0.066 0.038 0.038
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Proof that when T = 2 a local maximum of the likelihood occurs

at p = 0 when cov∗(y1, y2) ≤ 0

It is convenient here to set θ0 = λp2, θ2 = λp. It can be proved that

θ̂2 =
∑

i(yi,1+yi,2)

2S
, as noted in Holgate (1964). For observation (yi,1, yi,2), we

write

gi(θ0) =

ui∑
m=0

θm0 (θ̂2 − θ0)
yi,1+yi,2−2m

m!(yi,1 −m)!(yi,2 −m)!
, where ui = min(yi,1, yi,2).

The profile log-likelihood function for θ0 is then given by

ℓ(θ0) = S(θ0 − 2θ̂2) +
S∑

i=1

log(gi(θ0)) and

dℓ

dθ0
= S +

S∑
i=1

g′i(θ0)

gi(θ0)
.

We deduce that

g′i(0)

gi(0)
=

1

θ̂2
2{yi,1yi,2 − θ̂2(yi,1 + yi,2)}.

Thus
dℓ

dθ0

∣∣∣∣
θ0=0

= S +
1

θ̂22

{
S∑

i=1

yi,1yi,2 − θ̂2

S∑
i=1

(yi,1 + yi,2)

}
,

and

dℓ

dθ0

∣∣∣∣
θ0=0

≤ 0 ≡ 1

S

∑
i

yi,1yi,2 ≤ θ̂22

≡ cov∗(y1, y2) ≤ 0.

3.4 Explicit form for the bivariate negative-binomial

case

The Poisson distribution may be replaced by a mixed-Poisson distribution,

for which λ ∼ g(λ;θ), when the probability of (3.2) becomes

Pr(y1, y2; p,θ)

= {p(1− p)}y1+y2

min(y1,y2)∑
u=0

1

(1− p)2uu!(y1 − u)!(y2 − u)!

×
∫ ∞

0

e−λ(2p−p2)λy1+y2−ug(λ;θ)dλ.
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For the negative-binomial distribution, the mixing distribution is gamma

with parameters θ = (α, β) and

g(λ;α, β) =
βα

Γ(α)
λα−1e−βλ, for λ ≥ 0, (3.7)

which results in the NB-2 form (Hilbe 2011, p187). In this case∫ ∞

0

e−λ(2p−p2)λy1+y2−ug(λ;α, β)dλ

=
βα

Γ(α)

∫ ∞

0

{
e−λ(2p−p2+β) × λy1+y2−u+α−1

}
dλ

=
βαΓ(y1 + y2 − u+ α)

Γ(α)(2p− p2 + β)y1+y2−u+α
,

where we have used the fact that∫ ∞

0

λae−bλdλ =
Γ(a+ 1)

ba+1
(a > −1, b > 0).

Therefore the joint probability for the bivariate negative-binomial model is

given by

Pr(y1, y2; p, α, β) =
βα{p(1− p)}y1+y2

Γ(α)

×
min(y1,y2)∑

u=0

Γ(y1 + y2 − u+ α)

u!(y1 − u)!(y2 − u)!(1− p)2u(2p− p2 + β)y1+y2−u+α
. (3.8)

In the parametrisation of (3.7), the mean and variance of the gamma dis-

tribution are α/β and α/β2, respectively. If we now write λ = α/β for

the expected value of the Poisson mean, then the variance is λ2/α and the

coefficient of variation of the Poisson mean is 1/
√
α. The Poisson model

arises as the limit α, β → ∞, maintaining λ = α/β.

In terms of the parameters α and λ, β = α/λ and we can write (3.8) as

Pr(y1, y2;λ, p, α) =
αα{p(1− p)}y1+y2

λαΓ(α)

×
min(y1,y2)∑

u=0

Γ(y1 + y2 − u+ α)

u!(y1 − u)!(y2 − u)!(1− p)2u

{
λ

λp(2− p) + α

}y1+y2−u+α

. (3.9)

The case for T > 2 follows in the same way, by integrating the expression

of (3.4), to give the multivariate negative-binomial probability as
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Pr(yi,1, . . . , yi,T ;λ, p, α)=
αα

λαΓ(α)

∑
Xi

∏
s∈S

{
p|s|(1− p)T−|s|}xi,s Γ(

∑
s∈S xi,s + α)

xi,s!
{
1− (1− p)T + α

λ

}∑
s∈S xi,s+α

.

The expression yi,j =
∑

s∈Sj
Xi,s also applies to the negative binomial

case, but the {Xi,s} are no longer independent.

3.5 The effect of the choice of K on fitting the N-

mixture model

3.5.1 Incorrect estimates due to the choice of K

We now consider how the choice of K for computing the Poisson N-mixture

likelihood of (3.1) interacts with the occurrence of infinite estimates of λ.

Output is obtained for 1000 simulations based on the parameter values used

in Royle (2004a), where λ = 5, p = 0.25 and S = 20, 50, but for number of

sampling occasions T = 2, 3, 4, 5. The models were again fitted using optim

in the R software package using the default Nelder-Mead algorithm and a

tolerance value of 1 × 10−12. The parameters p and λ were constrained to

be in range via logit and log link functions, respectively. Each simulated

dataset was fitted with K = 100, 500, 1000.

We see that large finite estimates of abundance can arise, in particular

where the number of sampling occasions T is small (Figure 3.3). Specifi-

cally, a proportion of simulations result in a second peak in the sampling

distribution for λ̂ and the value at which this is found increases with the

value of K. Fitting the multivariate Poisson model to simulated data cre-

ated under comparable scenarios for T = 2, 3, 4 also produced a second peak

in the sampling distribution for λ, but as described in Section 3.3.3, the es-

timates were substantially greater in the absence of the limiting value K

in the N-mixture model. An increase in the number of sampling occasions

reduces the incidence of high estimates of λ, which become rare for T > 3,

as more information is available as T increases. For T = 5 very few high

estimates of λ occurred in the 1000 simulations. Figure 3.4 demonstrates

that an increase in the number of sites also reduces the proportion of high

values.
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Figure 3.3: Kernel density estimates of λ̂ from the Poisson N-mixture model

when S = 20, λ = 5 and p = 0.25, based upon 1000 simulated datasets for

T = 2, 3, 4 and K = 100, 500, 1000.

Thus when the N-mixture model is fitted by maximising the likelihood

of (3.1), when λ̂ should be infinite, λ is estimated as large as possible for a

given value of K, and p̂ is restricted to be as close to zero as possible. The

occurrence of large finite estimates of λ is similar to analogous findings of

Wang and Lindsay (2005) in the context of species richness estimation.

Figure 3.5a illustrates the effect of K for a single simulated dataset,

with λ̂ increasing linearly with K. The corresponding relationships from

different simulations and parameter values are found to be very similar.

The heuristic reason for this, and the fact that the green line in Figure 3.5a

lies below the line of unit slope through the origin, is that for large λ the
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Figure 3.4: Kernel density estimates of λ̂ from the Poisson N-mixture model

when S = 50, λ = 5 and p = 0.25, based upon 1000 simulated datasets for

T = 2, 3, 4 and K = 100, 500, 1000.

Poisson distribution is approximately Normal, N(λ,λ). For values of K in

the approximate range λ ± 2
√
λ, the effect of K is to lose a large fraction

of this probability, and hence reduce the likelihood. Therefore it would not

be possible to estimate λ values that correspond to reduced values of the

likelihood and thus in practice K > λ̂.

For a negative-binomial mixing distribution, we find that where λ̂ is in-

finite for the Poisson distribution, the green solid line in Figure 3.5a is un-

changed for the negative binomial. However, for a different simulation (blue

lines), when the sample covariance diagnostic (3.5) is positive, for a Poisson

mixing distribution, λ̂ = 6.64 for increasing K, but for a negative binomial
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Figure 3.5: a) λ̂ plotted against increasing K for a single simulation (green),

with default values of K for unmarked (K = max(count)+100, dotted) and

PRESENCE (K = 200, dashed) also shown. λ̂ is plotted against increasing

K for a different simulation in blue, with a comparison of λ estimates for

a Poisson (solid) and negative-binomial (dashed) mixing distribution. b) A

plot of log(λ̂) versus the smaller eigenvalue of the estimated Hessian at the

maximum-likelihood estimate for K = 200 & 1000 (black), K = 200 (green)

and K = 1000 (red) based upon 1000 simulated datasets. The parameter

values used were T = 2, S = 20, λ = 5 and p = 0.25.

mixing distribution λ̂ increases with K, although with a smaller slope than

that of the Poisson line for the alternate simulation (shown in green). Hence

we have seen here that the single covariance diagnostic is not sufficient in

identifying infinite estimates of λ when a negative-binomial mixing distribu-

tion is used. We encounter this latter case, where estimates of λ are stable

from the Poisson but not from the negative-binomial distribution, again in

Section 3.7, when we consider a real dataset. An additional diagnostic for

the negative-binomial case is given and explored in Section 3.6.

Figure 3.5b shows that as the value of λ̂ increases, the smaller eigen-

value of the Hessian matrix of the log likelihood evaluated at the maximim-

likelihood estimate, estimated within optim using the default Nelder-Mead

algorithm and a tolerance value of 1 × 10−12, decreases towards zero. The

model becomes near singular (Catchpole et al. 2001), with only the prod-
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Figure 3.6: Kernel density estimate for λ̂p from the Poisson N-mixture

model, for K = 200 when T = 2, S = 20, λ = 5 and p = 0.25.

uct λp being estimable, corresponding to the thinned Poisson situation. As

similarly demonstrated in Figure 3.3, estimates of λ made with different

values of K are equivalent for finite λ̂ , but differ when λ̂ should be infinite,

and hence approaches K. The spread of non-zero eigenvalues when λ̂ is

close to K is reduced for larger K (Figure 3.5b). The artificial truncation

of the range of λ by K is responsible for the non-zero values of the smaller

eigenvalue for the largest values of λ̂ (Figure 3.5b).

The sampling distribution of the product λ̂p appears to be unbiased

(Figure 3.6), hence when finite estimation of λ̂ is impossible, only a single

thinned-Poisson parameter λp is estimable, the rectangular hyperbola for

which is shown in Figure 3.7a. Figure 3.7b illustrates the log-log transform

of Figure 3.7a, rotated 135◦ about the axis to examine possible differences

for an increasing number of visits, T . The main distribution shows similar

spread for different values of T but fewer small estimates of λ as more visits

are made. For cases where λ̂ is truncated by K, estimates of λ do not vary

with T , as found also when the green line of Figure 3.5a did not vary for

alternative parameter values.
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Figure 3.7: (a) A plot of λ̂ versus p̂ and (b) log(λ̂) versus log(p̂) rotated

135◦ clockwise about the origin, when T = 2 (black), T = 3 (blue), T = 4

(green) and T = 5 (red) for K = 200, S = 20, λ = 5 and p = 0.25. z1 =

− 1√
2
logp̂+ 1√

2
logλ̂ and z2 = − 1√

2
logp̂− 1√

2
logλ̂. In a) the solid line represents

the hyperbola for λp and the straight lines correspond to the known values

of p (dashed) and λ (dot-dash). In b) the straight lines represent the rotated

logarithms of λp (solid), p (dashed) and λ (dot-dash).

3.5.2 Automatic choice of K

For the Poisson case the covariance diagnostic identifies when infinite values

of λ̂ arise. When the diagnostic is not satisfied, K may be selected automat-

ically, for example by ensuring that the Poisson or negative-binomial upper

tail probability is < 10−10, so that the value of K will adapt for successive

iterations according to the estimate of λ. This approach was also suggested

by Guillera-Arroita et al. (2012). We have found this to be a simple and

preferable alternative to fitting the model for successively larger values of

K until estimates appear to stabilise.
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3.6 Moment estimation for a mixed-Poisson N-mixture

model

Suppose we have an N-mixture model in which Ni follows a mixed-Poisson

distribution, as in Section 3.4, with

E(Ni) = λ and var(Ni) = σ2, with σ2 ≥ λ.

Conditional on Ni, the random variables yi,1, . . . , y,i,T are independent bi-

nomial variables, with

yi,v|Ni ∼ Bin(Ni, p), v = 1, . . . , T.

Therefore, conditional on Ni

E(yi,v|Ni) = Nip

E(y2i,v|Ni) = Nip(1− p) +N2
i p

2

E(yi,v, yi,w|Ni) = N2
i p

2 (v ̸= w),

and the corresponding unconditional expectations are

E(yi,v) = λp (3.10)

E(y2i,v) = λp(1− p) + (λ2 + σ2)p2 (3.11)

E(yi,v, yi,w) = (λ2 + σ2)p2 (v ̸= w). (3.12)

It follows that

cov(yi,v, yi,w) = σ2p2 and corr(yi,v, yi,w) = σ2p/λ.

3.6.1 Moment estimation

We have the following moment estimates for E(yi,v), E(y2i,v) and E(yi,vyi,w),

respectively:

m1 =
1

ST

T∑
j=1

S∑
i=1

yi,j

m2 =
1

ST

T∑
j=1

S∑
i=1

y2i,j

m12 =
2

ST (T − 1)

T∑
j=1

T∑
s=j+1

S∑
i=1

yi,jyi,s.
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Equating these to the expectations given by (3.10)-(3.12) yields the follow-

ing moment estimators of the parameters λ, p and σ2

p̃ = (m1 −m2 +m12)/m1

λ̃ = m1/p̃

σ̃2 = (m12 −m2
1)/p̃

2.

Because σ2 ≥ 0, we require

m12 −m2
1 ≥ 0, (3.13)

for a valid set of moment estimates. This is the same diagnostic as the

covariance diagnostic given previously in (3.6), but derived via moments.

We also require 0 < p ≤ 1. The lower bound yields the new diagnostic

m1 −m2 +m12 > 0 (3.14)

for a finite (moment) estimate of λ. The upper bound yields

m1 −m2 +m12 ≤ m1

or

m12 ≤ m2,

which is a consequence of the Cauchy-Schwarz inequality and not a useful

diagnostic, as we found via simulation that it always holds. The bound

m1 −m2 +m12 > 0 given above to ensure p̃ > 0 and hence λ̃ finite, gives a

new diagnostic.

If we adopt a method-of-moments (MOM) approach for the bivariate

Poisson distribution, p is estimated by the sample correlation of the counts,

as observed also by Royle (2004b), and λ is estimated by dividing (n1 + n2)/2

by this estimate of p. For more than two visits (T > 2), p can be estimated

by the mean of all sample correlations between counts for different sampling

occasions. Then λ̃ is the sample mean of all counts divided by this estimate

of p. This generalises Holgate’s (1964) work, which considered T = 2 only.

In Appendix A of this chapter we assess the performance of MOM estima-

tion as a simple method for parameter estimation compared to maximum

likelihood for the N-mixture model.
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3.6.2 Performance of the multivariate negative-binomial model

Given the proposed diagnostics for the mixed-Poisson case in Section 3.6.1,

here we assess the performance of the multivariate negative-binomial model.

Simulated data were fitted as in Section 3.3.3 but for the negative-binomial

case, with λ = 2, 5, 10 and α = 1.25, 5. We again assume that λ̂ > 500

equates to infinite λ̂. If both (3.13) and (3.14) are negative, λ̂ is very likely to

be infinite and the mean proportion with λ̂ > 500 from 21 scenarios is 0.921

(Table 3.2). However performance of the diagnostics when one or more of

the two diagnostics is negative is less clear. Additionally, λ̂may occasionally

be infinite despite both diagnostics being positive and on average λ̂ > 500

for approximately 8.5% of simulations when both diagnostics are positive.

We see fewer instances of infinite λ̂ for large T and p. Performance for the

bivariate cases where p = 0.25 and α = 1.25, 5 are illustrated in Figures 3.8

and 3.9, and similarly for the multivariate case with T = 3 in Figures 3.10

and 3.11. We see that neither singly nor in combination do the diagnostics

perform as well as the single diagnostic for the Poisson case.
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Table 3.2: Performance of the covariance diagnostic for the multivariate

negative-binomial model for various scenarios of λ, p, α and T for S = 20

sites. EP1, EP3 and EP5 are the proportion of simulations where both

diagnostics are negative, one or more diagnostic is negative, or both diag-

nostics are positive, respectively. EP2, EP4 and EP6 are the corresponding

proportions of those where λ̂ > 500.

λ p α T EP1 EP2 EP3 EP4 EP5 EP6

2 0.10 1.25 2 0.192 0.938 0.3 0.853 0.388 0.072

2 0.10 1.25 3 0.093 0.925 0.271 0.841 0.426 0.131

2 0.10 5.00 2 0.199 0.92 0.296 0.804 0.274 0.113

2 0.10 5.00 3 0.104 0.904 0.264 0.822 0.293 0.126

2 0.25 1.25 2 0.046 0.913 0.229 0.777 0.571 0.07

2 0.25 1.25 3 0.002 1 0.138 0.681 0.71 0.048

2 0.25 5.00 2 0.064 0.953 0.184 0.826 0.411 0.097

2 0.25 5.00 3 0.011 1 0.103 0.748 0.473 0.047

5 0.10 1.25 2 0.088 0.966 0.347 0.813 0.472 0.121

5 0.10 1.25 3 0.023 1 0.333 0.757 0.52 0.113

5 0.10 5.00 2 0.139 0.935 0.305 0.803 0.282 0.128

5 0.10 5.00 3 0.064 0.906 0.252 0.829 0.343 0.143

5 0.25 1.25 2 0.006 1 0.217 0.71 0.746 0.068

5 0.25 1.25 3 0 - 0.137 0.533 0.843 0.047

5 0.25 5.00 2 0.038 0.763 0.193 0.741 0.555 0.05

5 0.25 5.00 3 0.002 0.5 0.108 0.694 0.678 0.028

10 0.10 1.25 2 0.032 0.969 0.342 0.813 0.596 0.139

10 0.10 1.25 3 0.005 1 0.325 0.775 0.65 0.097

10 0.10 5.00 2 0.116 0.931 0.322 0.835 0.378 0.108

10 0.10 5.00 3 0.027 0.926 0.302 0.844 0.437 0.105

10 0.25 1.25 2 0 - 0.193 0.674 0.806 0.069

10 0.25 1.25 3 0 - 0.125 0.472 0.87 0.029

10 0.25 5.00 2 0.01 0.9 0.156 0.756 0.726 0.054

10 0.25 5.00 3 0.001 1 0.09 0.656 0.817 0.026
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Figure 3.8: Diagnostic 1 (3.13) versus diagnostic 2 (3.14) from the bivariate

negative-binomial model, based upon 1000 simulated datasets for S = 20,

λ = 2, 5, 10, α = 5 and p = 0.25. Values are which λ̂ > 500 and λ̂ ≤ 500

are shown by black circles and red crosses, respectively.
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Figure 3.9: Diagnostic 1 (3.13) versus diagnostic 2 (3.14) from the bivariate

negative-binomial model, based upon 1000 simulated datasets for S = 20,

λ = 2, 5, 10, α = 1.25 and p = 0.25. Values where λ̂ > 500 and λ̂ ≤ 500 are

shown by black circles and red crosses, respectively.
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Figure 3.10: Diagnostic 1 (3.13) versus diagnostic 2 (3.14) from the multi-

variate negative-binomial model when T = 3, based upon 1000 simulated

datasets for S = 20, λ = 2, 5, 10, α = 5 and p = 0.25. Values where λ̂ > 500

and λ̂ ≤ 500 are shown by black circles and red crosses, respectively.
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Figure 3.11: Diagnostic 1 (3.13) versus diagnostic 2 (3.14) from the multi-

variate negative-binomial model when T = 3, based upon 1000 simulated

datasets for S = 20, λ = 2, 5, 10, α = 1.25 and p = 0.25. Values where

λ̂ > 500 and λ̂ ≤ 500 are shown by black circles and red crosses, respec-

tively.
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3.7 Application to Hermann’s Tortoise Data

In this section we analyse data from a study of the threatened Hermann’s

tortoise Testudo hermanni in southeastern France. One hundred and eigh-

teen sites were each surveyed three times during a period when the species

is most active. Full details are provided in Couturier et al. (2013), and we

briefly reassess the conclusions drawn in their paper and demonstrate the

effect of study design on results.

For the tortoise data, optimisation of the negative-binomial model con-

firms that λ̂ is infinite in the negative binomial model for these data; after

500 iterations, the estimates had reached

λ̂ = 39616973, p̂ = 3.322971× 10−8, α̂ = 1.506465.

As noted in Couturier et al. (2013), the fit is much improved compared

to the Poisson case, with - maximum log-likelihood values of 540.34 versus

576.27, but at the expense of λ̂ becoming infinite. Hence for this dataset

a finite estimate of mean abundance can be obtained for the Poisson but

not for the negative-binomial. Whilst the first diagnostic (3.13) is positive,

m12 − m2
1 = 1.05, so that the Poisson estimate is finite, the additional

diagnostic (3.14) is negative, as m1 −m2 +m12 = −0.2655.

The zero-inflated Poisson is an intermediate model between the Poisson

and negative-binomial, with a - maximum log-likelihood value of 562.13 for

these data. The zero-inflated Poisson therefore provides an improvement

upon the Poisson case, but still yields the finite parameter estimate λ̂ =

7.58.

To show the potential effect of study design on model performance, we

inspect the sample covariance diagnostic (3.13) for this dataset for the Pois-

son case for a reduced number of sites and/or visits. Taking two of the three

visits made at all sites, the diagnostic was always positive (0.97-1.17). The

diagnostic based upon all three visits but a random sample of fewer sites,

was negative for 1.7% and 0% of 1000 samples, respectively for S = 20 and

S = 50. However for only two visits, the diagnostic was negative for 9.0%
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and 0.8% of 1000 samples, respectively for S = 20 and S = 50.

3.8 Discussion and recommendations

In this chapter we have shown that the N-mixture model can produce infinite

estimates of abundance, particularly when working with a limited number

of sampling occasions and/or low detection probability. The equivalence of

the N-mixture model with the multivariate Poisson has been demonstrated,

allowing us to understand and diagnose poor behaviour of the N-mixture

model.

We believe the equivalence of the Poisson N-mixture model to the mul-

tivariate Poisson distribution to be previously largely unknown, especially

in statistical ecology. The multivariate Poisson model conveniently avoids

the requirement to select an upper bound K. We provide R code for fitting

the multivariate Poisson and negative-binomial models, for any T , as an

electronic appendix to this thesis. Due to the complexity of the multivari-

ate Poisson and negative-binomial models, the associated computation time

increases with T and the size of the counts, and is greater than the compu-

tation time for the N-mixture models. We have fitted these models for up

to T = 5, which in our experience covers most practical applications of the

models, although computation time will of course be dependent upon both

the data being analysed and the computing system being used. Possible al-

ternative techniques for fitting the multivariate distributions include using

the EM algorithm (Karlis 2003), a composite likelihood (Jost et al. 2006)

or a symbolic computation approach (Sontag and Zeilberger 2010). Con-

sequently this equivalence could also have the alternative purpose of using

the N-mixture model to provide simple fitting of the multivariate Poisson

and negative-binomial models for particular covariance structures.

Since development by Royle (2004a), various extensions have been made

to the N-mixture model, many of which were reviewed in Dénes et al. (2015).

In each case we anticipate that without sufficient information from the avail-

able data, similar issues with estimating finite λ to those demonstrated in



Chapter 3. N-mixture models 99

this chapter may be encountered.

A zero-inflated Poisson or zero-inflated negative-binomial distribution

can be used to allow for excess zeros in the abundance distribution (Wenger

and Freeman 2008), and Joseph et al. (2009) suggest that the zero-inflated

Poisson may be preferable to negative-binomial distributions. Application

to the data for Hermann’s tortoise in Section 3.7 suggested that the zero-

inflated Poisson may provide a better fit than a standard Poisson whilst

estimating finite λ, when that was not possible in the negative binomial

case. Further work could be undertaken to explore the prevalence of this

effect.

An extension of the N-mixture model to open populations by includ-

ing population dynamics parameters offers great potential but also requires

many upper bounds to be set (Dail and Madsen 2011), hence further work

could explore the computational performance of this model. Kéry et al.

(2009) extended the N-mixture model to allow for analysis of data resulting

from closed sampling periods connected by open periods and the multivari-

ate formulations also apply in that case. Dorazio et al. (2013) provide an

extension in which p is given a distribution at each visit. The binomial

distribution in (3.1) is then replaced by a beta-binomial. This has also been

considered in a Bayesian context by Martin et al. (2011). For the multi-

variate Poisson case this extension is dealt with by appropriate numerical

integration of the probability of (3.4). An increasing number of studies use

a Bayesian approach for parameter estimation (Kéry et al. 2009; Graves

et al. 2011). Further simulation study comparing a Bayesian approach with

maximum likelihood estimation could show whether this approach can also

produce poor estimates in some scenarios. Some comparisons have been

made by Toribio et al. (2012), based upon parameter values from Royle

(2004a).

In practice, covariates are frequently used to describe variation in abun-

dance and detection parameters. Further analysis could determine how the

inclusion of covariates might affect instances where a finite abundance esti-

mate cannot be obtained for a model with constant abundance and detec-
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tion. In particular with the addition of covariates parameters may become

identifiable (Cole and Morgan 2010), as we find for stopover models in Sec-

tion 4.2, where abundance and detection probabilities become separable

via the inclusion of a covariate for the detection probability. The effect of

including covariates will clearly be scenario dependent and will not always

allow for λ and p to be separated, as was not the case in Knape and Korner-

Nievergelt (2015), where the N-mixture model with covariates was sensitive

to the choice of K.

Although not considered in this thesis, the N-mixture model has also

been considered for the case of only one visit, where T = 1 (Sólymos et al.

2012), which might be applicable in situations where the closure assumption

is violated. Sólymos et al. (2012) suggested that abundance and detection

can be correctly identified when appropriate covariates are incorporated,

although simulations were based on a minimum of 100 sites. However the

ability to separate abundance and detection from single-visit data has been

contested by Knape and Korner-Nievergelt (2015), who suggest that in this

particular case estimates are sensitive to the choice of link function, and

also refer to the similar arguments made by Hastie and Fithian (2013) in

the context of the presence-only model (Royle et al. 2012), as discussed in

Section 2.1 of this thesis.

Good experimental design is vital for occupancy studies; see for example

Guillera-Arroita et al. (2010, 2014). The same issues apply for N-mixture

work, though with the different perspective of avoiding poor model-fitting

behaviour. If possible, study design effort should be distributed to ensure

more than two visits are made to each site (in addition to including a rea-

sonable number of sites). Alternatively a study design where more visits

are made to a subset of the sites is worth exploring.

For maximum-likelihood estimation, we recommend using MOM esti-

mates to start the iterative search for MLEs. In the Poisson case the co-

variance diagnostic may be used to determine when infinite estimates of

abundance may arise. Infinite estimates of abundance may occur for some

model choices but not others, as for the Hermann’s Tortoise case study.
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Hence we advise fitting the model for multiple distribution choices, to iden-

tify which may provide finite estimates of abundance. An R program which

allows for covariates in the detection and abundance parameters is available

in the electronic appendices that accompany this thesis.

Despite having applicability to many different taxa, the N-mixture model

is not directly suitable for modelling butterfly transect data, such as from

the UKBMS, due to a lack of closure in abundance across visits. Although

Pellet et al. (2012) suggest that repeated visits could be made on a single

day, for example by repeating counts by walking the transect back and forth.

Given the lack of closure between visits, the open N-mixture model may be

suitable for butterfly data (Dail and Madsen 2011). The issue of a lack a

closure between visits within the season was also discussed in Section 2.5, in

the context of estimating abundance from only presence-absence data using

the Royle-Nichols model (Royle and Nichols 2003), which is associated with

the N-mixture model (Dorazio 2007).

The standard N-mixture model requires only two parameters to be esti-

mated and is a classic example of hierarchical modelling, which has received

increasing popularity and application (Royle and Dorazio 2008). In Chapter

4 we describe recent approaches for modelling butterfly abundance which

involve many parameters, due to requiring a parameter to be estimated for

each site. New models with fewer parameters are developed in Chapter 5,

and in Section 5.4 we incorporate ideas from N-mixture models, by testing

a hierarchical approach for describing the site parameters.
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Appendix A: Performance of method-of-moments esti-

mation

We assess the performance of MOM estimation as a simple method for

parameter estimation compared to maximum likelihood estimation (MLE)

from the N-mixture model. The upper bound K for the MLE was automat-

ically selected such that the tail proportion was 10−10: see Section 3.5.2.

For the Poisson case, estimates for where the covariance diagnostic is neg-

ative were excluded in this comparison. Correspondingly, estimates for the

negative-binomial were excluded when one or more of the diagnostics was

negative. Additionally, for both the Poisson and negative-binomial, cases

where either the MLE or MOM estimate of λ is finite but large (λ̂ > 100)

were excluded to provide a fair comparison.

For the Poisson case, when p = 0.25, the MOM approach only performs

better than MLE based upon RMSE when T = 2 (Table A.1). However

for smaller p = 0.10, MOM estimation performs better for almost all cases

(Table A.2). In the negative-binomial case, results are not greatly affected

by varying α (Tables A.3-A.6). As in the Poisson case, when p = 0.25, MOM

only outperforms MLE when few visits are made, which is emphasised when

λ is small. For smaller p = 0.10, MOM often performed better than MLE in

terms of RMSE, although the difference was reduced for increasing T and

λ.

Method of moments can quickly provide good estimates of λ and p, but

it does not consistently outperform MLE. We suggest using MOM estimates

as sensible starting values for optimisation of the N-mixture likelihood.
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Table A.1: Comparison of estimation via method-of-moments (MOM) and

the N-mixture model (MLE) for the Poisson case with λ = 2, 5, 10, p =

0.25 and S = 20. RMSE is the root mean-squared error for λ. EPD is

the proportion of simulations discarded when the covariance diagnostic was

negative or either estimate of λ̂ > 100. EPN is the proportion of simulations

when the covariance diagnostic was negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 2.28 1.58 2.49

0.312 0.219
MOM 1.9 1.41 1.5

3
MLE 2.53 1.89 2.66

0.18 0.098
MOM 2.43 1.63 2.61

4
MLE 2.73 2.01 3.19

0.091 0.033
MOM 2.97 1.82 4.03

5
MLE 2.7 2.04 3.11

0.055 0.012
MOM 2.93 1.93 4.37

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 5.97 3.87 7.92

0.258 0.171
MOM 5.45 3.64 5.72

3
MLE 6.95 4.74 7.97

0.152 0.083
MOM 6.68 4.27 9.01

4
MLE 6.44 4.93 6.74

0.081 0.017
MOM 6.97 4.57 8.29

5
MLE 6.47 5.04 6.03

0.046 0.008
MOM 6.59 4.8 6.63

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 11.5 8.07 11.52

0.255 0.157
MOM 9.96 7.21 8.79

3
MLE 12.89 9.51 11.72

0.147 0.072
MOM 12.39 8.76 11.82

4
MLE 12.89 9.87 10.72

0.094 0.029
MOM 12.78 9.34 11.44

5
MLE 12.14 10.08 7.82

0.055 0.016
MOM 12.42 9.53 9.87
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Table A.2: Comparison of estimation via method-of-moments (MOM) and

the N-mixture model (MLE) for the Poisson case with λ = 2, 5, 10, p =

0.1 and S = 20. RMSE is the root mean-squared error for λ. EPD is

the proportion of simulations discarded when the covariance diagnostic was

negative or either estimate of λ̂ > 100. EPN is the proportion of simulations

when the covariance diagnostic was negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 1.1 0.77 1.51

0.61 0.52
MOM 0.71 0.61 1.36

3
MLE 1.87 1.12 2.41

0.506 0.377
MOM 1.25 0.94 1.22

4
MLE 2.43 1.4 3.4

0.444 0.283
MOM 1.58 0.98 1.51

5
MLE 2.65 1.58 3.97

0.356 0.214
MOM 1.94 1.21 2.27

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 3.19 1.97 5.62

0.52 0.424
MOM 2.25 1.67 3.31

3
MLE 4.6 2.84 5.79

0.467 0.331
MOM 3.53 2.18 4.09

4
MLE 6.33 3.63 9.04

0.387 0.235
MOM 5.42 2.7 7.45

5
MLE 6.71 4.08 8.64

0.364 0.203
MOM 5.39 3.09 7.92

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 6.72 4.01 8.8

0.527 0.451
MOM 4.73 3.17 6.82

3
MLE 10.16 6 12.5

0.433 0.299
MOM 8.21 4.55 11

4
MLE 12.5 7.96 13.99

0.387 0.223
MOM 9.72 5.85 11.73

5
MLE 11.59 7.69 11.78

0.384 0.174
MOM 10.53 6.76 12.59
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Table A.3: Comparison of estimation via method-of-moments (MOM) and

the N-mixture model (MLE) for the negative-binomial case with λ = 2, 5, 10,

p = 0.25, α = 1.25, and S = 20. RMSE is the root mean-squared error for

λ. EPD is the proportion of simulations discarded when either covariance

diagnostic was negative or either estimate of λ̂ > 100. EPN is the proportion

of simulations when both diagnostics were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 2.24 1.44 4.22

0.256 0.058
MOM 1.81 1.3 1.67

3
MLE 2.52 1.72 3.52

0.185 0.013
MOM 2.49 1.57 3.33

4
MLE 2.64 1.78 3.6

0.129 0
MOM 2.84 1.71 5.37

5
MLE 2.7 1.84 4.1

0.093 0
MOM 2.89 1.79 5.31

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 5.42 3.44 8.58

0.258 0.009
MOM 5.2 3.16 7.67

3
MLE 6.43 4.35 8.13

0.192 0
MOM 6.14 3.93 7.8

4
MLE 5.99 4.32 5.82

0.151 0
MOM 6.82 4.34 8.25

5
MLE 5.88 4.56 5.49

0.1 0
MOM 6.63 4.52 7.56

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 10.66 7.07 11.3

0.287 0.001
MOM 9.32 6.36 9.11

3
MLE 11.49 8.55 9.29

0.207 0
MOM 11.74 7.92 12.1

4
MLE 11.76 8.79 10.52

0.135 0
MOM 11.45 8.38 10.24

5
MLE 11.68 9.12 9.08

0.106 0
MOM 11.44 8.4 10.2
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Table A.4: Comparison of estimation via method-of-moments (MOM) and

the N-mixture model (MLE) for the negative-binomial case with λ = 2, 5, 10,

p = 0.1, α = 1.25, and S = 20. RMSE is the root mean-squared error for

λ. EPD is the proportion of simulations discarded when either covariance

diagnostic was negative or either estimate of λ̂ > 100. EPN is the proportion

of simulations when both diagnostics were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 1.02 0.64 1.92

0.565 0.401
MOM 0.67 0.51 1.4

3
MLE 1.48 0.91 2.38

0.45 0.187
MOM 1.1 0.8 1.35

4
MLE 1.7 1.06 2.48

0.425 0.097
MOM 1.36 0.9 1.55

5
MLE 2.58 1.38 6.25

0.349 0.044
MOM 1.7 1.08 1.92

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 2.69 1.68 5.13

0.455 0.161
MOM 1.96 1.41 3.51

3
MLE 3.74 2.29 5.51

0.405 0.048
MOM 3.32 2 4.51

4
MLE 5.19 2.73 8.69

0.364 0.012
MOM 4.47 2.36 6.91

5
MLE 5.46 2.95 8.93

0.348 0.002
MOM 4.53 2.67 7.88

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 5.79 3.36 9.68

0.439 0.037
MOM 4.28 2.89 7.02

3
MLE 7.63 4.24 11.08

0.373 0.002
MOM 6.13 3.94 7.75

4
MLE 8.84 5.47 10.57

0.373 0
MOM 8.64 5.1 11.67

5
MLE 8.73 5.7 10.27

0.35 0
MOM 8.3 5.14 9.72
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Table A.5: Comparison of estimation via method-of-moments (MOM) and

the N-mixture model (MLE) for the negative-binomial case with λ = 2, 5, 10,

p = 0.25, α = 5, and S = 20. RMSE is the root mean-squared error for

λ. EPD is the proportion of simulations discarded when either covariance

diagnostic was negative or either estimate of λ̂ > 100. EPN is the proportion

of simulations when both diagnostics were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 2.38 1.6 2.88

0.301 0.151
MOM 1.79 1.32 1.57

3
MLE 2.62 1.88 3.1

0.195 0.052
MOM 2.33 1.67 2.36

4
MLE 2.91 1.95 4.74

0.098 0.011
MOM 2.9 1.91 4.05

5
MLE 2.5 1.98 2.49

0.052 0.003
MOM 2.85 1.86 4.28

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 6.25 3.89 7.86

0.243 0.065
MOM 5.6 3.6 7.07

3
MLE 6.51 4.47 7.77

0.129 0.01
MOM 6.41 4.13 8.62

4
MLE 6.6 4.86 6.48

0.094 0.001
MOM 6.93 4.67 8.21

5
MLE 6.58 4.88 7.44

0.07 0.001
MOM 6.92 4.64 8.15

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 11.11 7.55 10.41

0.235 0.02
MOM 10.45 7 10.94

3
MLE 12.08 8.8 11.23

0.153 0
MOM 12.52 8.57 12.35

4
MLE 12.34 9.45 10.68

0.091 0
MOM 12.29 9.01 10.74

5
MLE 11.84 9.51 8.03

0.053 0
MOM 12.44 9.33 10.08
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Table A.6: Comparison of estimation via method-of-moments (MOM) and

the N-mixture model (MLE) for the negative-binomial case with λ = 2, 5, 10,

p = 0.1, α = 5, and S = 20. RMSE is the root mean-squared error for

λ. EPD is the proportion of simulations discarded when either covariance

diagnostic was negative or either estimate of λ̂ > 100. EPN is the proportion

of simulations when both diagnostics were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 1 0.65 1.44

0.605 0.497
MOM 0.7 0.6 1.4

3
MLE 1.56 1.04 2.15

0.482 0.291
MOM 1.18 0.82 1.28

4
MLE 2.25 1.31 3.45

0.454 0.187
MOM 1.6 1.06 1.62

5
MLE 2.75 1.56 5.47

0.393 0.139
MOM 1.81 1.17 2.05

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 3.39 1.86 6.29

0.517 0.301
MOM 2.19 1.56 3.32

3
MLE 4.73 2.61 7.9

0.449 0.174
MOM 3.45 2.18 4.17

4
MLE 5.4 3.34 8.1

0.384 0.092
MOM 4.36 2.73 5.7

5
MLE 5.82 3.64 7.9

0.342 0.063
MOM 5.66 2.99 10.01

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 7.09 4.13 9.52

0.466 0.171
MOM 5.51 3.61 6.99

3
MLE 8.42 5.19 10

0.393 0.075
MOM 7.34 4.55 9.28

4
MLE 9.72 5.96 10.9

0.36 0.045
MOM 9.13 5.55 10.7

5
MLE 9.76 6.65 10.56

0.343 0.015
MOM 9.94 5.85 11.41



Chapter 4

Recent models for butterfly

abundance

The remaining core chapters of this thesis deal with modelling the abun-

dance of UK butterflies. In this chapter we review past and present methods

for modelling butterfly abundance from UKBMS data, which was described

in Section 1.3.1. In Section 4.1 we discuss recent approaches for deriving

indices of abundance, using generalised additive models (GAMs). The de-

velopment of the two-stage GAM approach described in Section 4.1.3 was

undertaken for my dissertation as part of an MRes at the University of

York. During my PhD, the applications of the model were extended and

the approach was published in Methods in Ecology and Evolution (Dennis

et al. 2013).

Secondly, in Section 4.2 we describe a ‘stopover’ model approach for

describing butterfly count data, which includes the estimation of survival

parameters, and is different from the typically empirical model descriptions

of these data. The methods described in this chapter provide foundations

for comparison with the new models which we will present in the later core

chapters of this thesis.

109
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4.1 Generalised additive models

Abundance indices produced from UKBMS data are vital for assessing

trends in the abundance of UK butterflies. Appropriate modelling ap-

proaches must account for the highly variable numbers within a season,

in accordance with differing seasonal patterns of emergence. A further chal-

lenge proposed by these data is the substantial proportion of proposed visits

not made by recorders, which we will now briefly describe.

4.1.1 Missing data

Within the UKBMS, typically fewer than the optimal 26 weekly counts are

made at each site per year, and across the dataset, considering all sites,

years and species, approximately 29% of counts are missed, equivalent to

approximately 8 out of 26 weeks of the transect season. There is no evidence

of a trend over time in the proportion of missed counts (p = 0.69) although

there is a latitudinal gradient in the proportion of missed counts (p < 0.001),

which tends to increase the further north sites are located. Dividing the data

crudely into three regional areas, corresponding to low (below 250 km), mid

(between 250 km and 625 km) and high (above 625 km) northings in the

UK, the average percentage of counts missed are approximately 26%, 32%

and 46%, respectively. The frequency of missing counts is also not uniform

across the transect season, with an increase in missing counts at the ends of

the season. Given these trends, it is likely that many missed counts are due

to unsuitable weather conditions, rather than just recorder unavailability.

4.1.2 Original GAM approach

Estimates of missing counts for butterfly monitoring schemes were originally

obtained using linear interpolation of the counts either side of the missing

value. The use of generalized additive models (GAM, Hastie and Tibshirani

1990; Wood 2006) as an alternative method was introduced by Rothery and

Roy (2001), who applied the models to both UKBMS and simulated data

with varying flight periods. This procedure has been adopted for annual
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reporting of the UKBMS since 2002 (Greatorex-Davies and Roy 2003), and

still remains the method employed for habitat-specialist species (Brereton

et al. 2014).

A GAM is a generalized linear model (GLM) where part of the lin-

ear predictor contains one or more smooth functions of predictor variables

(Wood 2006), hence it is more flexible than the linear approach, but requires

more data to avoid the potential for erratic behaviour. Here we outline the

original GAM approach (Rothery and Roy 2001), where values for weeks

with missing counts are imputed by fitting a GAM with Poisson distribu-

tion and a log link function to the observed counts at individual sites and

years. GAMs can be fitted using the mgcv package in R (Wood 2000, 2006;

R Core Team 2015), which selects the level of smoothing internally using

generalized cross-validation (GCV).

If yt represents the count at a site on day t in an example year, then

E[yt] = µt = exp[s(t; f)], (4.1)

where the function s(t; f) denotes a cubic regression spline, for a given

monitored site and year, with f degrees of freedom. Here, t ∈ (1, 182)

represents each day in the monitoring season from April to September.

Thereafter, real counts are used where taken and the weeks with missing

counts are allocated imputed values, µ̂t, from the GAM for the middle day of

that week. The result is a flight period curve corresponding to the seasonal

variation in counts, which may be real or imputed for each week.

Annual site indices of abundance (an index value for each site and year

recorded) are then calculated by an estimate of the area under the flight

period curve. For a series of T counts y1, y2, . . . , yT (which may be real or

imputed) at times t1, t2, . . . , tT , as in Rothery and Roy (2001), the trape-

zoidal rule is used to approximate the integral of the curve to give the index

Index =
T∑

j=2

(yj + yj−1)(tj − tj−1)

2
. (4.2)

Across-site, collated indices are then derived by fitting a single log-linear

regression model to the annual indices at all sites, with site and year as
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additive predictors (Roy et al. 2007). This can be fitted using any of the

widely-available software packages for GLM (van Strien et al. 2001). The

model accounts for the fact that some years yield higher counts than others,

and also that the population varies geographically, across sites. Collated

indices are derived from the indices at all sites and hence describe national

trends in abundance.

For this GAM approach, where a high proportion of weeks or the peak

of the flight period is missed (defined where the maximum prediction of a

missed count exceeds the maximum of the observed counts), data for that

particular site and year are excluded from analysis, since prediction from the

GAM is likely to be poor in these instances. Under these criteria, on average

across the species monitored by the UKBMS 38% of transect visits made do

not contribute to reported population indices. This represents a substantial

quantity of data not utilised, and in the interest of the optimal use of the

volunteer-collected records, a new approach, which also uses GAMs, was

developed with the aim of allowing for more efficient analysis of the UKBMS

data and hence more robust estimates of changes in butterfly abundance.

4.1.3 Two-stage GAM approach

Whilst the previous strategy involves fitting a GAM to counts on an indi-

vidual site/year basis, here a GAM is applied across all sites within a year,

to estimate the average annual seasonal flight curve. In this case all incom-

plete series of recordings may be included. This approach is published in

Dennis et al. (2013).

A GAM with Poisson distribution and a log link function is used to

estimate the annual seasonal pattern (which is assumed to the same across

S sites) as follows. If yi,t represents the count at site i = 1, . . . , S on day

t ∈ (1, 182) in an example year, then

E[yi,t] = µi,t = exp[ηi + s(t; f)], (4.3)

where ηi represents a site effect and s(t; f) denotes a smoothing function

with f degrees of freedom. This creates a flight period curve which is
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common for all sites for that year, but varies (via ηi) in magnitude between

sites with respect to varying abundance between sites. Estimation of an

average seasonal pattern across sites for each year allows for even those with

a high proportion of missing counts to be included in abundance estimation.

Studies of butterfly phenology confirm that butterfly flight periods vary

from year-to-year (Roy and Sparks 2000). Hence, due to an interaction

between the day and the year, a single-stage extension of equation (4.3) for

the full dataset with an additional simple year effect would be too restrictive,

since this would only estimate a single flight period across all years. A direct

comparison of total annual abundances, obtained by summing the expected

values at all sites, which can each be estimated via equation (4.3), cannot

be made due to the variation in the set of sites covered each year. Therefore

an additional stage to the model is introduced.

If yi,t,k represents the count of a species at site i = 1, , S in year k =

1, . . . , Y on day t ∈ (1, 182), then the mean count is given by

E[yi,t,k] = µi,k(t) = exp[αi + βk + γk(t)], (4.4)

where αi and βk represent effects for the ith site and the kth year respec-

tively and γk(t) allows for the seasonal pattern, which can vary between

years, but not over sites. A site index, Mi,k for site i and year k, can be

calculated as the sum of the expected counts for that season, which is given

by summing (4.4) over t as follows

Mi,k =
∑
t

µi,k(t) =
∑
t

exp[αi + βk + γk(t)]

= exp[αi + βk]
∑
t

exp[γk(t)]. (4.5)

Since both the annual effects and seasonal effects in the model vary with

respect to year, we constrain γk(t) so that
∑

t exp[γk(t)] = 1. The annual

effects, βk, provide an index proportional to total abundance provided that

the exp[γk(t)] sum to one. Hence equation (4.4) is fitted to the counts for

all years as a Poisson GLM with the values of γk(t) as an offset, where

γk(t) represent the annual seasonal pattern and were obtained by scaling
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the output from the first stage (equation 4.3). Missing values can also be

estimated from equation (4.4) and thereafter the approach is the same as for

the original GAM approach, as site indices are derived from formula (4.2).

Collated indices are then estimated, and βk taken as an index of abundance,

as before, via a further GLM with site and year as multi-level factors.

4.1.4 Comparison of the two GAM methods

The two GAM approaches described in Sections 4.1.2 and 4.1.3 are com-

pared in Dennis et al. (2013), via an extensive simulation study and appli-

cation to UKBMS data. In this chapter, we briefly outline these results.

Simulation study

The two GAM approaches and linear interpolation approach were compared

for simulated data. Figure 4.1 shows the flight periods of three species with

different levels of voltinism. Data were simulated based on UKBMS data

for these three species, generating weekly counts for 100 sites with seasonal

variation corresponding to the season flight curves in Figure 4.1. Linear

trends in abundance were imposed to simulate varying declines over a period

of ten years, and 30% of records were discarded to resemble the missing data

in the real data.

The percentage of simulations that detected a significant trend was used

to assess the statistical performance of the models (Elston et al. 2011). The

simulation study showed that compared to the original GAM and linear

interpolation approaches, the two-stage GAM approach had greater power

to detect trends, particularly for smaller declines (Figure 4.2). For no change

in abundance over ten years, the percentage of simulations that incorrectly

predict significant trends lies reasonably close to 5% in all cases. In addition,

trend estimates from the original GAM are less accurate than from the two-

stage GAM, and accompanied by larger standard errors.
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Figure 4.1: Real weekly counts at two example UKBMS sites in 2005 for

three species, with the corresponding GAM (blue/black correspond to dif-

ferent sites). This figure appears in Dennis et al. (2013).
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Figure 4.2: Estimated power (the percentage of simulations that detected

a significant linear time trend) for the original (black) and two-stage (blue)

GAM approaches. This figure appears in Dennis et al. (2013).
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4.1.5 Application to UKBMS data

Collated indices were calculated from UKBMS data for 46 butterfly species,

using both the original and two-stage GAM models. Confidence intervals

for both GAM approaches require a bootstrapping approach, which involves

drawing a random sample, with replacement, from the set of sites, for a given

number of replicates (in this case 100 replicates was judged to be sufficient

for each species, for each model). Collated indices are estimated for the

sites in each bootstrap sample and then ordered to derive approximate 95%

confidence intervals for each species (Fewster et al. 2000). By applying all

stages of each model to each bootstrap sample, error propagation is ac-

counted for. However, bootstrapping requires a high level of computational

effort, hence in Dennis et al. (2013) for species with many sites the analysis

was restricted to the last ten years and a random subsample of 300 sites.

The mean number of sites per year that contribute to the two GAM-

based models highlights the substantial improvement in data efficiency of

the two-stage GAM approach (Figure 4.3a). The two-stage GAM approach

makes full use of the data available, whilst the original GAM approach

discards a proportion of the data. For all species, fewer data were used under

the original GAM approach and hence a reduced geographical coverage was

represented, whereas results from the two-stage GAM approach are fully

representative of the area for which data have been collected. The mean

percentage of 10 km grid squares which contain at least one monitored site

that were retained under the original GAM approach was approximately

63% (Figure 4.3b).

The collated indices for the 46 species from the two models are generally

highly correlated and produce similar estimated linear trends in abundance

(Figure 4.4a). The majority of points fall near the line of equality; al-

though predictions from the two-stage GAM approach tend to be greater,

especially for the larger changes (i.e. estimation of large increases is more

pronounced for the two-stage GAM approach). Confidence intervals are in

general narrower for the two-stage GAM approach (Figure 4.4b). This is
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Figure 4.3: a) Comparison of the mean number of sites included (averaged

by year) by each model for each species. The solid line is the 1-1 line. b)

Mean percentage of total monitored 10 km grid squares retained under the

original GAM approach (averaged by year) against the total number of sites

for each species. These figures appear in Dennis et al. (2013).

Figure 4.4: a) Comparison of the estimated percentage trends of the collated

indices for the two GAM approaches for each species. The solid line is the

1-1 line. b) The difference in mean width (over years) of the confidence

intervals from the two GAM approaches compared to the mean number of

sites (averaged by year) for each species. These figures appear in Dennis

et al. (2013).
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Figure 4.5: Collated indices for the original (black) and two-stage (blue)

GAM approaches, with corresponding confidence intervals. Indices are

scaled relative to a value of 2.0 in the initial year, as in UKBMS reports.

Red/green lines indicate significant decrease/increase from linear regressions

(p-value ≤ 0.05).

more pronounced for species recorded at fewer sites. For illustration, Fig-

ure 4.5 shows the two collated indices for selected species and displays the

close correspondence between the indices. For the Marsh Fritillary, a lo-

calised species with relatively few records, the confidence interval is con-

siderably narrower under the two-stage GAM approach compared to the

original GAM approach model which shows particularly wide intervals for

some years. However, as discussed in Section 1.3.1, alternative sampling

methods not included here are utilised by the UKBMS to increase the sam-

ple size of monitoring sites for priorities species, such as Marsh Fritillary.

4.1.6 Improving efficiency

As mentioned in the previous section, a disadvantage of the two-stage GAM

approach is that computation times may be long for species with many
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sites. In this section we assess two potential approaches for reducing the

time taken to fit these models. All comparisons in computation time are

based on fitting models using a University of Kent server (64 bit Intel Xeon

E5540 x 2, 2.53GHz, 32GB). In each case for illustration we fit the models

to data for the four example species in Figure 4.5. The main computational

burden arises from the need to perform bootstrapping to obtain estimates

of error. In this section we only assess how the time taken to fit the model

to the original data may be reduced, but any benefits would also apply to

reducing the time taken to bootstrap.

Limiting the number of years

A potential disadvantage of the two-stage GAM approach is that the second

stage requires a GLM with offset to be fitted to all the data, which may

be time-consuming. For annual reporting of UKBMS data, the models

require refitting annually with the addition of new data for each year. In

this section we investigate whether the computation time may be reduced

by fitting the second stage of the model to only a subsection of the data,

without sacrificing the precision of the estimates of abundance. For each of

the last 12 years (2000-2011), we fit the second stage of the model (equation

4.4) to data from only the previous ten years. The site indices were then

estimated and taken for only the most recent year, before being combined

with site indices from the previous years to estimate the collated index.

On average across the 12 years and four species, using only ten years

in the second stage of the model reduced the computation time of this

stage by 56%, with the average for each species ranging between 52% and

61%, and an overall range of 30-72%. Figure 4.6 shows that there are

minimal differences between the estimated collated indices, which is further

demonstrated in Table 4.1, which compares estimated percentage trends in

abundance from the two approaches.



Chapter 4. Recent models for butterfly abundance 121

Figure 4.6: Collated indices for the two-stage GAM approach, using all

years (black), and only the last 10 years (red) in the second stage of the

model. Indices are scaled relative to a value of 2.0 in the initial year, as in

UKBMS reports.

Table 4.1: Comparison of model trends (percentage change of the linear

trend of the index) when fitting the two-stage GAM approach. 10-year

refers to fitting only the last ten years in the second stage of the model,

from 2000-2011. Significant trends are represented by *p ≤ 0.05, **p ≤ 0.01

and ***p ≤ 0.001.

Series trend (%)

Species Full 10-year

Chalkhill Blue 1.39 5.47

Grayling -18.57 *** -17.60 ***

Dark Green Fritillary 19.53 ** 18.51 *

Marsh Fritillary -7.72 -6.45
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Treating counts as daily or weekly

Within the GAM approaches, the count data are typically treated as daily,

with s(t; f) a smoothing function of t ∈ (1, 182) days in the transect season.

Given that only one count is made per week in accordance with the UKBMS

design, in this section we fit the two-stage GAM approach but treat the

data as weekly. Hence we instead fit s(w; f), where w ∈ (1, 26) is the week

number in the season. We explore whether taking a weekly approach can

effect the computation time required to fit the GAM, and how the estimated

collated index might be effected.

Treating the data as daily or weekly has minimal effect on the predicted

shape of the seasonal pattern (Figure 4.7). Furthermore, Figure 4.8 shows

that there are minimal differences between the estimated collated indices.

This is supported by Table 4.2, which compares estimated percentage trends

in abundance from the two approaches. However, computation times be-

tween the two approaches were variable and for two of the four species, the

weekly GAM approach took significantly longer than the daily GAM. Closer

inspection suggests that the computations times are influenced by a small

number of years where there may be issues with model fitting, and that

on the whole for the other years the computation times are fairly similar

between fitting a weekly or daily model.
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Figure 4.7: Predicted seasonal pattern from the two-stage GAM approach

for each species in 2011, treating the counts as daily (solid black line) and

weekly (blue dots).

Figure 4.8: Collated indices for the two-stage GAM approach, treating the

counts as daily (black), and weekly (blue). Indices are scaled relative to a

value of 2.0 in the initial year, as in UKBMS reports.
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Table 4.2: Comparison of model trends (percentage change of the linear

trend of the index) when fitting the two-stage GAM approach, treating

the data as either daily or weekly. Significant trends are represented by

*p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. Time represents the percentage

difference in computation time of the weekly approach relative to the daily

approach.

Series trend (%)

Species Daily Weekly Time

Chalkhill Blue 1.39 1.23 83

Grayling -18.57 *** -19.35 *** -2

Dark Green Fritillary 19.53 ** 19.05 ** 114

Marsh Fritillary -7.72 -8.29 -43

4.1.7 Discussion

In this section of Chapter 4, we have described the primary recent mod-

elling approaches for deriving indices of butterfly abundance, using GAMs.

The UKBMS provides a large-scale source of butterfly population data for

assessing the status and trends in abundance for species which serve as key

indicators for change in biodiversity (Brereton et al. 2011b). The full po-

tential of these data had not previously been realised due to limitations in

the original GAM approach, particularly due to the substantial proportion

excluded from analysis (approximately 38% visited sites per year).

The two-stage GAM approach addresses the implications of this in doc-

umenting annual change, firstly by estimating an annual seasonal pattern

and then using this to adjust for incomplete series when modelling changes

between years. This approach produces more precise trend estimates and

allows all volunteer records to contribute to the indices and thus incorpo-

rates data from more populations within the geographic range of a species,

providing full coverage at least of the monitored area.

Application of the two models to the UKBMS data showed predictions of
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large changes in abundance were generally greater for the two-stage GAM

approach, which may suggest that the original GAM approach underes-

timates the magnitude of the change in abundance for some species with

such changes. This could have important implications for conclusions drawn

from abundance indices for UKBMS data, for example in the classification

of Red Lists (Fox et al. 2011c). Bootstrapped confidence intervals for the

collated indices indicate that estimates from the two-stage GAM approach

have greater precision than the original GAM approach. The confidence

intervals tend to be wider for earlier years in the dataset, probably due

to the smaller number of sites available to sample from. The confidence

intervals are particularly narrower from the two-stage GAM approach for

species with fewer sites, which reinforces that such species may benefit from

the greater usage of data.

Further extensions for the two-stage GAM approach could be under-

taken. A possible drawback of the approach is that the seasonal pattern

is assumed to be the same across sites within each year. In come cases a

geographically varying approach to the model may improve missing count

estimates, since for some species flight periods vary regionally. For exam-

ple, as we will see in Section 4.2, Common Blue populations are known to

exhibit different levels of voltinism with latitude across the UK. Addition-

ally, some species, especially those with a large latitudinal and altitudinal

range, exhibit spatial variation in phenology, for example in their date of

emergence (Roy and Asher 2003). Hence the seasonal pattern estimation

may be over-simplified by the two-stage GAM approach, although variation

will generally be greater from year to year than within years. In this chap-

ter seasonal patterns were considered to be consistent at all sites (within

a year) for ease of illustration. Spatial variation in the flight period may

be incorporated in GAMs using covariates, but may not be straightforward

computationally. This matter is not explored further in this thesis, since

the new methods proposed in Chapters 5 and 6 provide a simpler and more

informative way to allow for spatial variation in flight periods.

The two-stage GAM approach has the benefit of all volunteer input
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contributing to the abundance indices, thus providing confidence that their

efforts are valuable and hence aiding the retention of volunteers (Bell et al.

2008), therefore allowing the scheme to continue at its current level and

making further expansion more likely. Additionally, using the two-stage

GAM approach to estimate population trends for wider countryside species

has allowed for WCBS data to be incorporated (Brereton et al. 2014), thus

providing more representative indices by reducing the current bias from

uneven sampling of wider countryside species (Brereton et al. 2011a).

Despite the apparent benefits of the two-stage GAM approach, appli-

cation to species with many sites can be slow, particularly given the need

to perform bootstrapping to obtain estimates of error. In Section 4.1.6,

exploratory analyses suggest that fitting the second-stage of the model to

data from only ten years was effective in reducing computation time with-

out greatly influencing the estimated abundance indices. Further analysis

is required to assess the relative effect this may have on computation time

and precision when bootstrapping is performed. Furthermore, it is unclear

how these results might vary for species with many more sites, since we

anticipate that reducing the number of years may have minimal impact on

computation time when there are many site effects to estimate. An iterative

approach to model-fitting may be possible for species with appreciable data

(Wood et al. 2015).
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4.2 Stopover models

The GAM-based methods described in Section 4.1 estimate abundance in-

dices for butterflies, but only describe seasonal variation in counts empir-

ically. As discussed in Section 1.1.4, alternative methods for describing

butterfly counts have been proposed, but not applied widely due to a lack

of flexibility in assumptions.

A new so-called ‘stopover’ modelling approach for describing butterfly

counts borrows ideas from stopover capture-recapture literature. In doing

so parameters of interest are estimated, such as mean arrival times and

survival probability. Data for multivoltine species are described by a novel

mixture model, which provides estimates of relative brood sizes.

The new approach for modelling butterfly abundance was published in

Matechou et al. (2014), for which I performed the application to UKBMS

data. In this chapter the model is described and the results from the paper

are outlined.

Stopover models were originally developed in a capture-recapture mod-

elling context (Matechou et al. 2013), where individuals within a population

can be uniquely marked or identified, which is not the case for typical count

data for butterflies. The unknown times of arrival and departures of in-

dividuals to a site are modelled, and the average duration of the stay of

the individuals can be indirectly estimated. The stopover model proposed

in Matechou et al. (2014) explains seasonal variation in butterfly counts

in terms of arrival (emergence) and survival. Relatively little is known

regarding butterfly survival, and what is known results from short-term

mark-recapture programs, which are expensive and only local, hence these

models may provide valuable new information on butterfly lifespans, and

how they may vary.

4.2.1 Model description

Suppose counts of adult butterflies are recorded at S sites, each visited on

T occasions, within a given year. We assume that the T possible sampling
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occasions are equally spaced. Each count, yi,j, for the ith site and jth

visit, can be treated as the realisation of a random variable from a suitable

discrete distribution, which, for example, is often taken as Poisson. In this

case for expectation λi,j at site i and visit j, made at time ti,j (e.g. week

number in the season), the model likelihood has the form

L(N ,β,ϕ;y) =
S∏

i=1

T∏
j=1

[
exp(−λi,j)λ

yi,j
i,j

yi,j!

]
, (4.6)

where

λi,j = Ni

j∑
d=1

βi,d−1

(
j−1∏
m=d

ϕm,c

)
, (4.7)

for j = 1, . . . , T and c = m − d + 1, is the unknown number of occasions

that an individual has been present at the site, where d = 1, . . . , j are

the possible times of emergence for an individual detected on visit j. The

parameters {βi,d−1} describe the proportions of the ‘super-population’ Ni

emerging at site i and visit d, such that
∑T

d=1 βi,d−1 = 1 for each site i.

These emergence parameters are modelled using a mixture of B normal

distributions to represent B broods, so that

βi,d−1 =
B∑
b=1

wi,b{Fi,b(ti,d)− Fi,b(ti,d − 1)},

where wi,b represent the relative weights of each brood, and Fi,b(ti,d) =

Pr(X ≤ ti,d), for X ∼ N(µi,b, σ
2
i,b), where µi,b is the mean date of emergence

for brood b and σ2
i,b the associated variance. Given that Fi,b(0) = 0 and

Fi,b(T ) = 1 for each i and b, then βi,0 =
∑B

b=1wi,b[Fi,b(1)] and βi,T−1 =

1−
∑B

b=1wi,b[Fi,b(T−1)]. We define ϕm,c as the probability that an individual

which has been at a site for c occasions and is present at visit m will remain

until m + 1. So, for example if j = 3, then for a particular site i, λi,3 =

Ni(βi,0ϕ1,1ϕ2,2 + βi,1ϕ2,1 + βi,2).

In Matechou et al. (2014), variation in survival is demonstrated with

respect to time and age, such that for time variation

logit(ϕm,c) = αϕ,0 + αϕ,1xm,
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for all c, where xm is a time-varying covariate such as calendar time, or

alternatively for age variation

logit(ϕm,c) = αϕ,0 + αϕ,1c,

for all m, where age is defined as the unknown time since entry to the site,

c.

The mean emergence times and relative weights of each brood may be

modelled in terms of a site-specific covariate to account for spatial variation

in emergence and relative brood sizes.

In theory, imperfect detection may be incorporated into the model, such

that

λi,j = Ni

[
j∑

d=1

βi,d−1

(
j−1∏
m=d

ϕm,c

)]
pi,j, (4.8)

where pi,j represents the probability of detecting an individual that is present

at site i on occasion j. If p is assumed to be constant, only the product Nip

is estimable. However when p is allowed to vary with a time-varying covari-

ate, such as temperature, Matechou et al. (2014) suggest that N and p may

be estimated separately provided sufficient information is available from the

data. These findings were discussed in the context of parameter redundancy:

a model is termed parameter redundant when one or more parameters can-

not be estimated (Catchpole and Morgan 1997). In this stopover model

approach, if the covariate for p does not vary considerably across visits, or

the effect on p is not statistically significant, then the model will behave like

a parameter-redundant model, where each Ni cannot be separated from p.

Matechou et al. (2014) conducted an extensive simulation study of the

stopover model approach for butterflies, which we do not describe in depth

here. The model was found to perform well for multiple scenarios for S = 10,

T = 15 and up to 20% missing data, for up to M = 3 broods.

4.2.2 Application to UKBMS data

The stopover model approach was demonstrated with UKBMS data for a

single butterfly species, the Common Blue, for data collected in 2010. In

this section we provide an outline of these results.
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Data were limited to a random sample of 50 monitored sites, excluding

sites where more than 6 counts were missing from the season or the sum

of the counts made was less than 10. Common Blue is known to exhibit

bivoltine populations in the south of the UK, while populations become

single-brooded in the north. However, a precise latitude at which this occurs

or knowledge of how this boundary may have changed over time are both

unknown (Asher et al. 2001). Hodgson et al. (2011) demonstrate the change

from two broods in the south to one brood in the north using GAMs, and

found that the best fitting model for Common Blue did not include temporal

variation, which was included by using growing degree-days as a covariate.

Normal mixture distributions with two components, such that B = 2,

were used to describe the emergence pattern of the butterflies. Common

Blue overwinters as a caterpillar and is therefore not seen in flight until

late spring. The start of the season was defined as the week with the first

positive count, with season length totalling 21 weeks.

A model comparison was undertaken for varying parameter assumptions

using AIC. Detection probabilities were set either as constant and common

across sites or as logistically dependent on temperature at the site on the day

of sampling, which is usually recorded by the observer. Missing temperature

records were replaced by the average of neighbouring sites.

The two models with the lowest AIC values had w and µ dependent

on northing and the survival probabilities dependent quadratically on cal-

endar time (week number in the season). The most favoured model had

detection probability dependent on temperature, such that p increased with

temperature, whereas the second most favoured model had constant detec-

tion probability. Table 4.3 shows the parameter estimates for the favoured

model, which had 61 parameters in total corresponding to the eleven pa-

rameters given in Table 4.3, plus the estimated {Ni} for each of S = 50

sites.

The weighting of the first normal distribution with respect to the second

increases with northing, with the second brood almost disappearing in the

north as w approaches unity (Figure 4.9a). The means of the two normal
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distributions suggest a later time of emergence in the north (Figure 4.9b).

This is also demonstrated by the entry parameters: two relatively even

broods at southern sites, with the first brood dominating at high northing,

in addition to a later emergence (Figure 4.10). At high northing values,

when Common Blue are univoltine, Figure 4.10 shows a small peak at the

end of the season, which is similarly found in Figure 4.9b, where µ2 extends

beyond T . This issue may be resolved by suitably constraining µ.

The estimated survival probabilities, shown in Figure 4.9c, peak around

week 11 of 21, before dropping off towards the ends of the season. They are

estimated as approximately zero for the initial weeks of the season.

Table 4.3: Parameter estimates from the most favoured (in terms of AIC)

stopover model applied to UKBMS data for Common Blue. Est and SE

represent the parameter estimates and standard error, respectively. All

covariates were standardised to have zero mean and unit variance. All

estimates are on the log scale, except those relating to p and ϕ which are on

the logit scale. The results in this table appear in Matechou et al. (2014).

Parameter Est SE

pj(intercept) -4.600 1.769

pj(temperature) 5.522 2.170

wi,1(intercept) 1.186 0.160

wi,1(northing) 1.101 0.150

µi,1(intercept) 1.688 0.023

µi,2(intercept) 2.748 0.013

µi,1(northing) 0.209 0.010

σ 1.251 0.055

ϕj(intercept) 1.743 0.193

ϕj(week) 1.562 0.266

ϕj(week
2) -3.200 0.297
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Figure 4.9: Parameter estimates (with 95% confidence intervals) from the

stopover model for Common Blue. a) Relative size of the first brood, w, b)

mean emergence times of the two broods, µ, with northing, and c) estimated

survival probabilities, ϕ, with week in the season. These figures appear in

Matechou et al. (2014).
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Figure 4.10: Estimated arrival proportions for Common Blue at a sample

of northing values. This figure appears in Matechou et al. (2014).
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4.2.3 Discussion

Prior to the development of stopover models for describing butterfly count

data in Matechou et al. (2014), the main approaches for indexing abundance

were non-parametric and empirical. The GAM approaches described in

Section 4.1 involve interpolating missing values, and do not account for

potentially counting the same individual on separate occasions within the

season. Consequently, estimates of the total number of sightings rather than

individuals are made.

The stopover model can estimate indices of abundance that are more rep-

resentative of the actual number of individuals than the GAM approaches,

by implicitly accounting for possible repeat sightings of individuals during a

season. Describing the seasonal variation in counts parametrically provides

estimates of new and valuable parameters, which are likely to be informa-

tive for studying phenological change, as well as potential changes in the

relative sizes of two (or more) broods. The novel mixture element in the

stopover model approach also allows data for bivoltine (and multivoltine)

species to be modelling parametrically.

The stopover approach is related to the pioneering work of Zonneveld

(1991), which we described in Chapter 1, as a special case, in which data

from single sites are modelled individually with a constant rate of survival.

The capacity for useful inference was limited by data from only a single site

and season. By simultaneously analysing data from multiple, potentially

many, sites, in Matechou et al. (2014) the stopover model demonstrates

improved inference on key ecological parameters, and that assumptions may

be tested, for example whether survival is constant or varying.

Matechou et al. (2014) demonstrates the potential of stopover modelling

for butterfly count data, and using northing as a covariate, confirms and

quantifies, the long-standing field experience that Common Blue is effec-

tively single-brooded in the far north of its range and bivoltine at southern

sites, and that emergence is later with increasing northing.

We will provide further applications of stopover models in this thesis,
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for example in Chapter 5 they form part of a general framework that we

develop for modelling butterfly count data. Furthermore, in Chapter 6,

we describe stopover models within a slightly different formulation, in the

context of dynamic models. In both of these chapters comparisons are also

made with the two-stage GAM approach from Section 4.1.

Although beyond the scope of this thesis, wider application of the stopover

approach is needed to confirm performance of the model for more extensive

data, specifically for multiple years and for more species, with varying num-

bers of broods per season. This may be particularly relevant for species

with fewer sites or low counts, which may not provide enough information

to robustly estimate survival.

Previously, a need for capture-recapture data has been advised to obtain

robust estimates of butterfly survival (Gross et al. 2007; Haddad et al. 2008;

Nowicki et al. 2008). Comparison of survival estimates from the stopover

model with estimates from mark-recapture studies could confirm whether

the stopover model can offer a valid alternative, by estimating survival from

only count data. Additionally, application and model-selection for more

species could examine whether variation in survival, for example with time

or age, is consistent or variable across different species.

Various extensions or modifications to the approach are possible. For

example, alternatives to the Normal distributions for the emergence times

could be explored, for instance Calabrese (2012) generalised Zonneveld

(1991) to consider asymmetric distributions. Cornulier et al. (2009) also

used asymmetric distributions within mixture models to permit a degree

of skewness in the hatching dates of birds from monitored nests. Allowing

for more flexible distributions may, for example, accommodate a scenario

where most butterflies emerge at once in accordance with suitable climatic

conditions.

In other contexts, stopover models use analogous methods to describe

the arrival and departure of (marked) individuals from a location, which

are usually considered as immigration and emigration, and absolute abun-

dance may be estimated. Butterflies are not individually identifiable from
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count data, which thus prohibits the estimation of true abundance when

detection probability is assumed constant. For butterfly transect data, such

as from the UKBMS, which are collected under standardised protocols, it

is typical to assume detectability to be constant, and consequently mea-

sures of relative rather than absolute abundance are used in management

and monitoring. Given the large-scale and long-term nature of the data,

variation in detection is assumed to be minimal compared to variation in

abundance (van Swaay et al. 2008). A distance-sampling study by Isaac

et al. (2011a) suggested that “UKBMS data provide a good reflection of rel-

ative abundance for most species”, despite variation in detectability among

species. In Matechou et al. (2014), detectability was modelled as a function

of temperature at the site on the day of sampling. If available, other co-

variates such as habitat type, recorder effort, experience or age could also

be incorporated, but might not necessarily provide sufficient information to

separate {Ni} and p. Where possible, further analysis could be undertaken

to compare the impacts of allowing variation in detectability upon indices

of abundance and their associated trends.



Chapter 5

A generalised abundance index

In producing indices for insects such as butterflies it is important to ac-

count for variation in counts within seasons, and in the previous chapter

two recent methods were described: one non-parametric, using generalised

additive models, and the other parametric, based on stopover models. In

this chapter we present a novel generalised abundance index which encom-

passes both parametric and non-parametric approaches. We will see that it

is extremely efficient due to the use of concentrated likelihood techniques.

This has particular relevance for the analysis of data from long-term exten-

sive monitoring schemes with records for many species and sites, for which

the existing modelling techniques can be time consuming. Performance of

the index is demonstrated by several applications to UK Butterfly Moni-

toring Scheme data. We demonstrate the potential for new insights into

both phenology and spatial variation in seasonal patterns from parametric

modelling and the incorporation of covariate dependence, which is relevant

for both monitoring and conservation. This chapter is based upon a paper

that is under review by the Annals of Applied Statistics.

5.1 Background

As discussed already in Chapter 1, abundance indices for butterflies are

vital for monitoring the population status of species and contribute to the

assessment of trends in biodiversity. Novel methods for deriving indices

137
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accurately and efficiently are continually sought.

The GAM and stopover model approaches described in Chapter 4 each

have advantages for modelling butterfly count data, but both require opti-

misation of a likelihood with potentially many parameters corresponding to

the relative abundance for each site. Given the often large amount of data

available from monitoring schemes such as the UKBMS, fitting these mod-

els for hundreds or thousands of sites over many years, for multiple species,

is computer-intensive and challenging. Long-term monitoring schemes re-

quire annual updates, and time-consuming methods, particularly the non-

parametric bootstrapping required for error estimation, lead to appreciable

lags in data processing. The need for more efficient data analysis methods

motivates the model developments in this chapter.

The new generalised abundance index (GAI) is described in Section 5.2.

A concentrated likelihood approach is given for the Poisson case, followed by

an iterative concentrated likelihood method for the negative-binomial and

zero-inflated Poisson distributions. The derivation of the index is given in

Section 5.2.5, followed by three possible options for describing seasonal vari-

ation, including a novel phenomenological model. In Section 5.3 we demon-

strate the efficiency of the concentrated likelihood approach via simulation.

Section 5.4 describes an alternative hierarchical model approach and then in

Section 5.5 model comparisons are made for the stopover model, with real

and simulated data. Section 5.6 presents a series of examples of the GAI

applied to UKBMS data, chosen to illustrate the flexibility of the approach.

The last example indicates how a multi-year model can be formed, and the

chapter ends with a discussion in Section 5.7.

5.2 Generalised abundance index

Suppose counts are recorded at S sites, each visited on T occasions, within

a single year. We treat each count, yi,j, for the ith site and jth visit, as

an appropriate discrete random variable. As noted in Chapter 3, particu-

larly useful are Poisson, negative-binomial and zero-inflated Poisson distri-
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butions. The expectation of the distribution, λi,j, is modelled as a product

of site parameters, Ni, which represent the relative abundance for the ith

site, and general ai,j = ai(ti,j,η), which denotes a function for describing

the seasonal variation in counts in terms of a small set of parameters η,

where ti,j is the time (e.g. week number in the season) of the jth visit to

site i. The ai,j is thus not forced to be the same across all sites, which allows

for greater flexibility and realism compared to the currently adopted two-

stage GAM approach (Section 4.1.3). Both non-parametric and parametric

functions for ai,j are possible, as we will demonstrate in Section 5.2.6.

5.2.1 Concentrated likelihood for the Poisson case

The Poisson distribution with expectation λi,j = Niai,j gives the likelihood

L(N,η;y) =
S∏

i=1

T∏
j=1

exp(−Niai,j)(Niai,j)
yi,j

yi,j!
. (5.1)

Maximisation of this likelihood is straightforward but cumbersome when

data arise from many sites, where S could be over 1000 for some common

species. For instance in Matechou et al. (2014), as described in Section

4.2.2, a random sample of 50 sites was taken, but Common Blue have been

monitored at 1448 sites as of 2013 (Brereton et al. 2014). However, the

number of parameters to estimate can be reduced appreciably by optimising

a concentrated (or profile) likelihood as follows. Using the notation ai,. =∑T
j=1 ai,j,

ℓ = Log(L) = −
S∑

i=1

Niai,. +
S∑

i=1

yi,.log(Ni)

+
S∑

i=1

T∑
j=1

yi,jlog(ai,j)−
S∑

i=1

T∑
j=1

log(yi,j!).

Then
∂ℓ

∂Ni

= −ai,. +
yi,.
Ni

,

and equating to zero we obtain

Ni =
yi,.
ai,.

, (5.2)
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which evidently estimates {Ni} by scaled site totals. Substituting this ex-

pression for {Ni} in (5.1) results in a Poisson likelihood with expectation

λi,j =
yi,.
ai,.
ai,j, which we refer to as a concentrated likelihood, which is max-

imised with respect to only the parameters, η, associated with {ai,j}. Es-

timation of {Ni} is then straightforward, by deriving âi,., and substituting

into (5.2). An alternative approach for reducing the number of parameters,

by treating the site parameters as random effects, is shown to generalise

(5.2) in Section 5.4.

5.2.2 Negative-binomial case

For the negative-binomial case, we take the NB-2 form (Hilbe 2011, p187)

Pr(Y = y) =

(
y + r − 1

y

)(
m

r +m

)y (
r

r +m

)r

, (5.3)

which is parameterised by r, the negative-binomial dispersion parameter,

and p = m
r+m

, where m is the expectation of the negative-binomial. Hence

the negative-binomial likelihood is given by

L(N,η, r;y) =
S∏

i=1

T∏
j=1

Γ(yi,j + r)

Γ(r)yi,j!

(
Niai,j

r +Niai,j

)yi,j ( r

r +Niai,j

)r

, (5.4)

where the expectation of yi,j is Niai,j, as in the Poisson case. Hence

ℓ = Log(L) =
S∑

i=1

T∑
j=1

[
log

{
Γ(yi,j + r)

Γ(r)yi,j!

}
+ yi,jlog(Niai,j)

− (r + yi,j)log(r +Niai,j) + rlogr

]
, (5.5)

leading to

∂ℓ

∂Ni

=
T∑

j=1

{
yi,j
Ni

− (r + yi,j)ai,j
r +Niai,j

}
. (5.6)

An exact solution for Ni does not result in this case from equating ∂ℓ
∂Ni

to

zero. However, given that E(yi,.) = Niai,., if we make the approximation

yi,j ≈ Niai,j, then (5.6) reduces to

Ni =
yi,.
ai,.

,
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as in (5.2), which provides an approximation for a concentrated likelihood,

which can be fitted as for the Poisson case. Exact maximum-likelihood

parameter estimates can then be obtained as follows:

(i) Maximise the approximate concentrated likelihood from (5.5) with

Ni, =
yi,.
ai,.

to give parameter estimates for âi,j.

(ii) Based on âi,j, solve
∂ℓ
∂Ni

= 0 in (5.6) numerically for Ni.

(iii) Insert the Ni from (ii) into (5.5) and optimise for the parameters of

âi,j.

(iv) Iterate steps (ii)-(iii) until convergence.

5.2.3 Zero-inflated Poisson case

The approach for the negative binomial applies also for the zero-inflated

Poisson. In this case the likelihood is

L(N,η, ψ;y) =
S∏

i=1

T∏
j=1

{
1− ψ + ψe−Niai,j

}1−bi,j

{
ψe−Niai,j (Niai,j)

yi,j

yi,j!

}bi,j

,

where 1− ψ accounts for additional zeros, and

bi,j =

 1 if yi,j > 0

0 if yi,j = 0.

Then

ℓ = Log(L) =
S∑

i=1

T∑
j=1

{
(1− bi,j)log

(
1− ψ + ψe−Niai,j

)
+ bi,jlog

(
ψ

yi,j!

)
−bi,jNiai,j + bi,jyi,jlog (Niai,j)

}
, (5.7)

and differentiating with respect to Ni gives

∂ℓ

∂Ni

=
T∑

j=1

{
−ψai,j(1− bi,j)e

−Niai,j

1− ψ + ψe−Niai,j
− bi,jai,j +

bi,jyi,j
Ni

}
. (5.8)

Steps (i)-(iv) in Section 5.2.2 can then be applied to obtain maximum-

likelihood parameter estimates, but replacing (5.5) and (5.6) with (5.7) and

(5.8), respectively.
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5.2.4 Increased efficiency

Step (ii) of Section 5.2.2 is easily achieved using the uniroot function in R

and only a few iterations of steps (ii)-(iii) are generally needed. The con-

centrated likelihoods are functions of S fewer parameters than the original

likelihoods. Substantial reductions in computation time are then made,

which we demonstrate via simulation in Section 5.3. An R program for the

GAI, which incorporates the concentrated likelihoods with iteration where

required, is provided as an electronic appendix to this thesis.

5.2.5 Generalised abundance index

For each year for any particular model we use the average of the estimated

site parameters, {N̂i}, as a measure of abundance, given by

G =
1

S

S∑
i=1

N̂i. (5.9)

The model is fitted separately for each year, G is calculated in each case

and the results are plotted against time to provide an index of abundance.

As in Section 4.1.5 for the two-stage GAM approach, errors are derived by

non-parametric bootstrapping, where for each replicate the GAI is fitted to

data for a random sample of sites, drawn with replacement.

We specify a particular GAI using the x/z notation, with x denoting

the distribution and z the choice for ai,j. In this paper we consider x as P,

ZIP and NB for the Poisson, zero-inflated Poisson, and negative-binomial

distributions, respectively. In the following section possible options for z

are described.

5.2.6 Functions for ai,j

The function ai,j may be any general function which describes the seasonal

variation in counts over the monitoring period. Here we present both non-

parametric and parametric options.
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Splines

For illustration we adopt simple cubic B-splines (Chambers and Hastie

1991), such that

ai,j = exp

{
α0 +

f∑
d=1

αdBd(ti,j)

}
,

where ti,j is the time of the jth visit to the ith site, Bd(ti,j) are the basis

functions and f is the degrees of freedom, defined as the sum of the degree

of the spline (in this case 3 for cubic splines) and the number of knots.

The estimated seasonal pattern is the same across sites, as for the GAM

approach (Section 4.1.3). Model notation is x/S. We compare the P/S GAI

with the two-stage GAM approach in Section 5.6.1.

Phenomenological model

The seasonal variation in counts tends to reflect the emergence of B broods.

In this case ai,j is taken as a mixture of B Normal probability density

functions so that

ai,j =
B∑
b=1

wi,b
1

σi,b
√
2π

exp

{
−(ti,j − µi,b)

2

2σ2
i,b

}
, (5.10)

where wi,b, µi,b and σi,b correspond to the weight, mean and standard devi-

ation, respectively, for the ith site and bth brood. For a univoltine species,

where B = 1, ai,j would be the single Normal probability density function

ai,j =
1

σi
√
2π

exp

{
−(ti,j − µi)

2

2σ2
i

}
. (5.11)

We denote these models by x/NB.

Stopover model

The functions for ai,j presented above are solely descriptive, fitting appro-

priate curves (non-parametrically or parametrically) through counts. The

stopover model described in Section 4.2 of this thesis explains seasonal vari-

ation via specific parameters relating to the butterfly life-cycle. Based upon
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(4.7), in this case

ai,j =

j∑
d=1

βi,d−1

(
j−1∏
m=d

ϕm,c

)
, (5.12)

for j = 1, . . . , T and c = m−d+1, where d = 1, . . . , j are the possible times

of emergence for an individual detected on visit j. As defined in Section

4.2.1, the parameters {βi,d−1} describe the proportions Ni emerging at site

i and visit d, and are modelled using a mixture of B normal distributions.

We again define ϕm,c as the probability that an individual which has been

at a site for c occasions and is present at visit m will remain until m+ 1.

We denote these models by x/SOB. Whereas previously in Section 4.2

estimation of potentially many {Ni} is required, using the concentrated

likelihood approach for the stopover model means that estimation of only

parameters within the expression of (5.12) is necessary. We demonstrate

the reductions in computation time that arise from fitting the concentrated

likelihood approach in Section 5.3. In Section 5.5 we compare stopover and

phenomenological models for simulated and UKBMS data from 2010, and

a further application to data for multiple years is made in Section 5.6.3.

5.3 Demonstration of efficiency via simulation

In this section we compare the performance of optimising a full versus a con-

centrated likelihood for simulated data for Poisson, negative-binomial and

zero-inflated Poisson GAI, for both phenomenological and stopover models.

Data were simulated from the relevant fitted model, based on a single year

for S = 50 sites and T = 26 visits, where for illustration the parameter

values used were based upon reasonable values that might be applicable for

data for a real species. For the negative-binomial and zero-inflated Poisson

cases, we set r = 0.75 and ψ = 0.75, respectively. For the stopover models,

we set ϕ = 0.5. We assume a univoltine species where the counts arise from

a Normal distribution with µ = 10 and σ = 2.5, and Ni for each site was

drawn from a Poisson distribution with an expectation of 150.

For the simplest P/N1 GAI, the concentrated likelihood has just two

parameters to estimate, and for the full likelihood, with the addition of a
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parameter for each site, there are 52 parameters to estimate. The negative-

binomial and zero-inflated Poisson phenomenological models each required

one additional parameter to be estimated. Similarly where the stopover

model formulation was used, an additional parameter, ϕ, was estimated.

The concentrated likelihoods were maximised using the optim function

in the R software package (R Core Team 2015) with the default Nelder-

Mead algorithm, as were all of the analyses in this chapter except where

specified. The full likelihoods were maximised using the BFGS algorithm,

since the Nelder-Mead algorithm did not always optimise. The computa-

tion times are based on the simulations performed on a University of Kent

server (64 bit Intel Xeon E5540 x 2, 2.53GHz, 32GB). Similarly the timing

comparisons made throughout this chapter were performed on this server.

Iterative likelihood optimisation for the negative-binomial and zero-inflated

Poisson cases, as described in Sections 5.2.2 and 5.2.3, was performed until

the difference in the current and previous log-likelihood value was < 0.001.

Based on the average time taken to fit each model to one simulated

dataset, using a concentrated likelihood approach showed very large reduc-

Table 5.1: Average computation times (in seconds) from 20 simulated

datasets, fitting the full and concentrated likelihood approach for the phe-

nomenological and stopover models. The mean and maximum number of

iterations are given for the ZIP and NB iterative concentrated likelihood

approach.

Computation time No. of iterations

Model Full Concentrated Mean Max

P/N1 8.6 0.1 - -

ZIP/N1 18.3 0.7 3 3

NB/N1 20.3 0.7 4 5

P/SO1 66.9 0.6 - -

ZIP/SO1 101.5 9.8 11 23

NB/SO1 93.9 5.2 6 7
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tions in computation time (Table 5.1). In particular for the Poisson case,

fitting the full parameter model took over 100 times longer than fitting the

concentrated likelihood model for both the phenomenological and stopover

models. Despite requiring iterative likelihood optimisation, the concen-

trated approach was also faster than optimising the full likelihood in the

zero-inflated Poisson and negative-binomial cases. The zero-inflated Pois-

son and negative-binomial phenomenological models always each converged

within 3 and 5 iterations through steps (ii)-(iv) of Section 5.2.2, respec-

tively, whereas for the stopover model formulation the zero-inflated Poisson

model took a maximum of 23 iterations, and hence took the longest time to

fit. In all cases the stopover model took longer than the phenomenological

model to fit, which would be anticipated given the greater complexity of

the model, which also has an additional parameter to estimate.

5.4 A hierarchical model approach

An alternative approach to optimising a concentrated likelihood involves

treating the individual site effects as random effects. Using a hierarchical

approach, we assume the site parameters, Ni, to be independent random

variables with a particular probability density function f(Ni,θ), as in the

N-mixture model (Section 3.2).

5.4.1 Poisson-gamma model

It is natural in this instance for f(Ni,θ) to be a continuous distribution,

where Ni can take any non-negative value. The gamma distribution is a

sensible choice, since the Poisson-gamma mixture is well known to produce a

negative-binomial distribution, as shown below. Here we explore the gamma

distribution with shape parameter α and rate parameter β. The likelihood

for site i and visit j will be based upon

Pr(Y = yi,j) =

∞∫
0

e−ai,jNi(ai,jNi)
yi,j

yi,j!

βα

Γ(α)
Nα−1

i e−βNi dNi,



Chapter 5. A generalised abundance index 147

which simplifies to

Pr(Y = yi,j) =

(
yi,j + α− 1

yi,j

)(
ai,j

ai,j + β

)y (
β

ai,j + β

)α

.

Hence, a Poisson-gamma mixture where the Poisson expectation is the

scalar product, ai,jNi, is a negative-binomial distribution as in expression

(5.3), parameterised by r = α and p =
ai,j

ai,j+β
.

Consequently, the likelihood over S sites and T visits for the Poisson-

gamma model is

L(η, α, β;y) =
S∏

i=1

T∏
j=1

(
yi,j + α− 1

yi,j

)(
ai,j

ai,j + β

)yi,j ( β

ai,j + β

)α

, (5.13)

where η is the set of parameters associated with {ai,j}. Incorporating the

hierarchical aspect into the model increases the number of parameters rela-

tive to the GAI, by the addition of parameters for the gamma distribution.

We note the similarity of the Poisson-gamma likelihood in (5.13) with the

negative-binomial likelihood in (5.4), but with an absence of {Ni}. Whereas

in (5.4) the expectation is Niai,j, the expectation of the Poisson-gamma

model is α
β
ai,j, which corresponds to the product of ai,j and the expectation

of the gamma distribution for Ni. Moreover, in (5.13), the dispersion pa-

rameter r in (5.4) is replaced by α. Overdispersion is accounted for in two

different ways: in (5.4) via r, and in (5.13) only via the gamma distribution

for Ni.

The conditional probability density of Ni is derived by Bayes theorem

as

fNi
(ni|yi,j, ai,j, α, β) =

Pr(yi,j|ni, ai,j)f(ni|α, β)∫
Pr(yi,j|ni, ai,j)f(ni|α, β)dni

∝ Pr(yi,j|ni, ai,j)Pr(ni|α, β)

∝ n
yi,j+α−1
i e−(ai,j+β)ni ,

which is a gamma distribution with shape parameter yi,j + α and rate pa-

rameter ai,j + β. Hence

E(Ni) =
yi,j + α

ai,j + β
,
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and, averaging over j, we can estimate each Ni by

E(Ni) =
yi,. + α

ai,. + β
. (5.14)

This expression generalises the expression of (5.2), and as α, β → 0, keeping

the ratio constant results in (5.2).

In other scenarios, a discrete distribution for Ni may be more appropri-

ate. For example in Royle (2004a) and Chapter 3, the Poisson and negative-

binomial distributions are mixed with the Binomial distribution.

5.4.2 Negative-binomial-gamma model

As for the GAI in Section 5.2.2, the negative-binomial provides an alterna-

tive to the Poisson model. We again take the negative-binomial defined by

(5.3), parameterised by the dispersion parameter r and expectation Nai,j.

The negative-binomial-gamma likelihood is

L(α, β,η;y) =
S∏

i=1

T∏
j=1

∞∫
0

Γ(r + yi,j)

yi,j!Γ(r)

(
r

r + ai,jN

)r (
ai,jN

r + ai,jN

)yi,j

× βα

Γ(α)
Nα−1e−βN dN. (5.15)

The integral in (5.15) does not have a simple solution as in the Poisson-

gamma case, hence evaluation of the likelihood requires numerical inte-

gration. In R, we use the standard integrate function (with a toler-

ance of 10−4). Due to this need for numerical integration, fitting the

negative-binomial-gamma model is difficult and only limited results have

been obtained. The negative-binomial-gamma model is also much more

time-consuming to fit compared to the Poisson-gamma.

5.4.3 Comparison of the hierarchical model and GAI

For illustration we compare model performance for the P/N2 GAI, the analo-

gous hierarchical Poisson-gamma model, and the NB/N2 GAI, for a sample

of five bivoltine species for UKBMS data from 2010, although univoltine

species or alternatives for {ai,j} could have also been taken. The following

aspects of the model fitting apply also for later applications of the GAI in
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this chapter, except where specified. Where a species has been observed at

more than 100 sites within a given year (this is true of all five species except

Small Blue which was observed at 41 sites per year on average), each model

was fitted to a common random sample of 100 sites. Due to the mixture

model aspect of the bivoltine phenomenological models, different starting

values for the parameters could yield different local maxima (Matechou et al.

2014; McLachlan and Peel 2004), therefore each model was run from five

random starting values and in each case results are only presented for the

fitted model with the highest likelihood value. We let µ2 = µ1 + µd, where

µ1, µd ≥ 0 to ensure µ2 ≥ µ1, and consider the homoscedastic case where

σ1 = σ2. Despite possible spatial variation in seasonal pattern (for example

as demonstrated for Common Blue in Section 4.2), since the focus here was

on model comparison, all parameters in η were assumed to be constant (w,

µ1, µd and σ). This resulted in four, five and six model parameters for the

P/N2 GAI, NB/N2 GAI and Poisson-gamma model, respectively.

The Poisson-gamma model has lower AIC values than the P/N2 GAI

for four out of the five species, but the NB/N2 GAI consistently has AIC

values that are the lowest (Table 5.2). Given that the models are applied to

large, noisy data sets, there are often large differences in AIC as each model

describes the data, particularly in terms of overdispersion, differently. The

Poisson-gamma model is an intermediate option between the two GAIs: it

allows for variation in {Ni}, whereas the NB/N2 GAI estimates the appre-

ciable additional variation in the raw data with respect to the Poisson.

Estimates of the four parameters associated with the mixture compo-

nents show minimal differences between the three models. The associated

standard errors are consistently smallest for the P/N2 GAI, and are larger

from the NB/N2 GAI and Poisson-gamma model, which may be anticipated

as a consequence of accounting for overdispersion. Estimates of the average

abundance, Ĝ, which were estimated by the expression in (5.9), are similar

for the different methods, as well as the associated 95% confidence intervals,

which were estimated via a bootstrapping approach (Section 5.2.5). For the

hierarchical Poisson-gamma model, Ĝ could also be estimated simply by
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Ĝ = α̂/β̂. Individually, comparison of the {N̂i} from the P/N2 GAI, esti-

mated from (5.2), and from the Poisson-gamma model, derived from (5.14),

also correspond well (Figure 5.1).

The computation times for the P/N2 GAI are lower than for the hi-

erarchical Poisson-gamma model and NB/N2 GAI. Computation times for

the NB/N2 GAI are longer than for the Poisson case due to the iterative

concentrated likelihood approach (Section 5.2.2). The differences in compu-

tation time for the hierarchical model compared to the GAIs would be more

significant for the negative-binomial-gamma models, which are not straight-

forward to fit, as discussed in Section 5.4.2. We conclude that the GAI is

preferable to the hierarchical models as it is simpler and more efficient,

whilst producing similar results, and the negative-binomial GAI performs

best. Consequently we focus on the GAI in the remainder of this chapter.
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Table 5.2: Model comparison for a) the P/N2 GAI, b) the hierarchical Poisson-gamma model and c) the NB/N2 GAI. The computation

time is given in seconds. Ĝ is the index of abundance from the expression of (5.9), with a 95% confidence interval estimated via

bootstrapping. Parameter estimates are given with the associated standard errors in brackets.

Species Time Log(L) AIC Ĝ ŵ µ̂1 µ̂d σ̂

a)

Holly Blue 0.34 -2115 4238 21.8 (14.4, 32.9) 0.29 (0.011) 7.42 (0.107) 11.38 (0.123) 2.31 (0.042)

Small Blue 0.31 -2263 4535 60.3 (47.5, 77.7) 0.77 (0.008) 5.24 (0.033) 7.74 (0.069) 1.57 (0.022)

Wall Brown 0.39 -2532 5073 28.5 (23.4, 32.8) 0.36 (0.010) 7.25 (0.070) 10.84 (0.084) 1.86 (0.030)

Small White 0.57 -4421 8850 73.5 (60.3, 87.9) 0.11 (0.004) 8.05 (0.121) 10.55 (0.123) 2.63 (0.028)

Common Blue 0.37 -6925 13857 190.6 (138, 233.8) 0.25 (0.004) 6.10 (0.028) 8.94 (0.031) 1.67 (0.010)

Species Time Log(L) AIC Ĝ ŵ µ̂1 µ̂d σ̂ α̂ β̂

b)

Holly Blue 4.61 -2113 4238 21.7 (14.3, 33.2) 0.31 (0.023) 7.40 (0.162) 11.50 (0.197) 2.37 (0.071) 0.28 (0.019) 0.014 (0.001)

Small Blue 0.80 -1664 3340 61.7 (47.6, 78.7) 0.68 (0.049) 5.22 (0.071) 8.13 (0.136) 1.32 (0.038) 0.29 (0.024) 0.003 (5e-04)

Wall Brown 1.25 -2175 4362 28.4 (23.3, 32.9) 0.36 (0.027) 7.44 (0.153) 10.68 (0.175) 2.05 (0.053) 0.29 (0.019) 0.011 (0.001)

Small White 4.44 -3431 6874 73.9 (60.6, 88.2) 0.11 (0.009) 8.10 (0.179) 10.88 (0.195) 2.62 (0.060) 0.46 (0.023) 0.006 (4e-04)

Common Blue 1.96 -3979 7969 192.7 (137.2, 233.3) 0.23 (0.019) 6.43 (0.112) 9.02 (0.128) 1.79 (0.038) 0.25 (0.011) 0.001 (1e-04)

Species Time Log(L) AIC Ĝ ŵ µ̂1 µ̂d σ̂ r̂

c)

Holly Blue 2.51 -1826 3661 21.8 (14.4, 33.3) 0.27 (0.018) 6.90 (0.145) 11.62 (0.168) 2.22 (0.053) 0.81 (0.077)

Small Blue 1.56 -1475 2961 60.5 (48.0, 78.3) 0.75 (0.021) 5.30 (0.079) 7.94 (0.135) 1.54 (0.040) 0.64 (0.057)

Wall Brown 3.31 -1965 3940 28.6 (23.5, 32.8) 0.31 (0.020) 7.28 (0.117) 10.93 (0.141) 1.87 (0.039) 0.55 (0.042)

Small White 3.22 -3144 6298 73.9 (60.4, 88.1) 0.12 (0.008) 8.24 (0.164) 10.72 (0.176) 2.62 (0.050) 0.88 (0.054)

Common Blue 3.79 -3429 6869 192.6 (139.8, 237.5) 0.22 (0.012) 6.53 (0.082) 8.78 (0.096) 1.76 (0.026) 0.75 (0.042)
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Figure 5.1: Comparison of estimated site parameters, N̂G, from the P/N2

GAI and N̂H from the hierarchical Poisson-gamma model. Both axes are

displayed on the log scale and the dashed line indicates the 1-1 line.
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5.5 Comparison of the SOB and NB GAIs

In the following section we compare the phenomenological and stopover

GAI. The P/NB GAI can be viewed as an approximation to the P/SOB

GAIs. In the stopover model, P/SO1, assuming ϕ to be constant,

λi,j = Ni,SO(αi,j + αi,j−1ϕ+ αi,j−2ϕ
2 + · · ·+ αi,0ϕ

j−1), (5.16)

where Ni,SO denotes the site parameter from the stopover model for a given

site i, and for a given occasion, j, αi,j = F (ti,j)−F (ti,j−1), where F (ti,j) =

Pr(X ≤ ti,j), for X ∼ N(µi, σ
2
i ). Comparatively, for the P/N1 GAI,

λi,j = Ni,Gαi,j, (5.17)

where {Ni,G} are the site parameters for the phenomenological model and

αi,j = f(ti,j) = 1
σi

√
2π
exp

{
− (ti,j−µi)

2

2σ2
i

}
, from equation (5.11). Since the

multiplier of Ni,SO is greater than that for Ni,G, if we equate (5.16) and

(5.17), then we find that

Ni,G > Ni,SO. (5.18)

If we consider the sum of λi,j over j, the coefficients of ϕ in the stopover

model will sum approximately to unity as they form the area under a density.

An approximate geometric sum for ϕ (ϕ < 1) remains which will produce

1/(1− ϕ). This suggests that the site estimates will differ between the two

models by a scaling factor of approximately 1− ϕ.

Similar theory applies for the B = 2 case, and the x/NB GAI will simi-

larly approximate the x/SOB GAI for alternative distributions to the Pois-

son.

5.5.1 Simulation study

In Matechou et al. (2014) the stopover model was shown to perform well for

data simulated from the stopover model. In this section we consider how

the stopover might perform if data are simulated under a different scenario.

In particular we simulated data from the P/NB GAI, for B = 1, 2, and then

compare the model fit from the P/SOB and P/NB GAI.
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For B = 1, 2, we simulated 100 datasets for T = 26 and varying numbers

of sites and proportions, c, of missing counts. Based upon reasonable values

that might be applicable for data for a real species, we set µ = 10, σ = 2.5,

and for the bivoltine case w = 0.6, µd = 8 and assumed the same variances

for the two broods such that σ1 = σ2 = 2.5. The Ni for each site was drawn

from a Poisson distribution with an expectation of 150. The P/NB GAI has

two and four parameters for the univoltine and bivoltine case, respectively,

and in each case the corresponding P/SOB has one additional parameter,

ϕ.

Typically the P/N1 GAI produces accurate parameter estimates, with

increasing precision for more sites and/or fewer missing counts (Table 5.3).

Despite being different from the simulated model, fitting the P/SO1 pro-

duces reasonable parameter estimates. As expected given the results of

(5.18), the estimates of G, which are the average of {N̂i}, are lower from

the stopover model by a factor of roughly 1− ϕ̂, as discussed in Section 5.5.

Estimates of µ are earlier from the stopover model, which could be antic-

ipated since µ in the stopover model represents the mean date of emergence

of individuals into the population, whereas the corresponding parameter

in the phenomenological model represents the mean flight date, consisting

of both individuals that have entered the population and those that have

survived from previous weeks. Estimates of σ are consistently smaller for

the SO/N2 GAI. In this case σ represents the length of the emergence pe-

riod, whereas in the phenomenological model σ describes the length of the

flight period. Estimates of ϕ are relatively close to zero, which suggests

that the stopover model tries to estimate the underlying phenomenological

model, given that the two models are approximately the same when survival

probability is zero.

Accuracy and precision of the parameter estimates improves with in-

creasing S, but the effect of c is less apparent. Similar conclusions can be

made for the B = 2 case (Table 5.4). Note that the root-mean-square error

(RMSE) could not be calculated for ϕ̂ because a true value of ϕ does not

exist, given that the data were simulated from the phenomenological model.
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Fitting the stopover model to data generated by the phenomenological

model produces biased and imprecise estimates of G, and small estimates

of survival probability, which in some scenarios could be credible. Hence

stopover models should only be used when there is confidence that it is the

correct model.
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Table 5.3: Summary of simulation output from fitting a) P/SO1 and b) P/N1 GAIs. S is the number of sites and c is the proportion

of missing counts. We denote the mean estimate of a parameter by ˆ and SE and RMSE are the associated standard error and

root-mean-square error, respectively.

S c Ĝ SE RMSE µ̂ SE RMSE σ̂ SE RMSE ϕ̂ SE

a)

20 0.0 136.5 1.75 22.02 9.37 0.017 0.65 2.45 0.006 0.08 0.10 0.012

50 0.0 136.8 1.31 18.55 9.40 0.011 0.61 2.45 0.003 0.06 0.08 0.009

100 0.0 140.5 1.15 14.89 9.43 0.010 0.58 2.47 0.003 0.04 0.06 0.008

20 0.3 134.6 1.85 33.95 9.36 0.017 0.94 2.44 0.006 0.12 0.11 0.012

50 0.3 138.1 1.40 25.96 9.40 0.012 0.87 2.45 0.004 0.08 0.08 0.009

100 0.3 141.0 1.08 19.89 9.43 0.009 0.82 2.47 0.003 0.06 0.06 0.007

20 0.5 135.1 1.94 42.38 9.35 0.018 1.16 2.44 0.007 0.15 0.11 0.012

50 0.5 137.0 1.50 34.36 9.39 0.013 1.08 2.45 0.004 0.11 0.09 0.010

100 0.5 140.4 1.15 25.92 9.42 0.010 1.01 2.46 0.003 0.08 0.06 0.008

b)

20 0.0 151.8 0.31 3.56 10.00 0.004 0.04 2.50 0.003 0.08

50 0.0 149.3 0.17 1.78 10.00 0.003 0.03 2.50 0.002 0.06

100 0.0 150.0 0.11 1.08 10.00 0.002 0.02 2.50 0.001 0.04

20 0.3 150.7 0.35 5.08 10.00 0.005 0.07 2.50 0.004 0.12

50 0.3 150.1 0.20 2.89 10.00 0.003 0.05 2.50 0.002 0.08

100 0.3 150.2 0.13 1.81 10.00 0.002 0.03 2.50 0.002 0.06

20 0.5 151.8 0.41 7.74 10.00 0.006 0.10 2.50 0.004 0.15

50 0.5 149.9 0.23 3.91 10.00 0.004 0.06 2.50 0.002 0.11

100 0.5 150.0 0.14 2.48 10.00 0.002 0.04 2.50 0.002 0.08
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Table 5.4: Summary of simulation output from fitting a) P/SO2 and b) P/N2 GAIs. S is the number of sites and c is the proportion

of missing counts. We denote the mean estimate of a parameter by ˆ and SE and RMSE are the associated standard error and

root-mean-square error, respectively.

S c Ĝ SE RMSE ŵ SE RMSE µ̂1 SE RMSE µ̂d SE RMSE σ̂ SE RMSE ϕ̂ SE

a)

20 0.0 128.9 1.85 28.01 0.60 0.001 0.01 9.30 0.018 0.73 7.99 0.010 0.10 2.43 0.006 0.094 0.15 0.012

50 0.0 130.7 1.54 24.64 0.60 0.001 0.01 9.35 0.015 0.67 7.99 0.007 0.07 2.44 0.004 0.072 0.13 0.010

100 0.0 128.4 1.57 26.62 0.60 0.002 0.02 9.32 0.022 0.72 7.92 0.077 0.77 2.44 0.005 0.082 0.14 0.011

20 0.3 126.7 2.00 43.46 0.60 0.004 0.06 9.28 0.034 1.12 7.96 0.043 0.60 2.42 0.007 0.151 0.15 0.013

50 0.3 129.9 2.07 40.77 0.59 0.006 0.09 9.27 0.061 1.34 7.91 0.061 0.87 2.43 0.011 0.191 0.14 0.014

100 0.3 128.7 1.77 39.15 0.60 0.004 0.05 9.31 0.029 1.06 7.89 0.087 1.23 2.44 0.006 0.128 0.14 0.012

20 0.5 127.2 2.13 54.03 0.60 0.004 0.08 9.27 0.042 1.46 7.96 0.044 0.76 2.42 0.010 0.219 0.15 0.014

50 0.5 128.6 2.11 52.06 0.59 0.006 0.10 9.27 0.057 1.60 7.92 0.058 1.01 2.42 0.011 0.237 0.15 0.014

100 0.5 128.5 1.64 46.78 0.60 0.003 0.05 9.31 0.025 1.26 7.93 0.071 1.23 2.43 0.006 0.151 0.14 0.011

b)

20 0.0 151.6 0.22 2.68 0.60 0.001 0.01 9.99 0.007 0.07 8.00 0.010 0.10 2.50 0.004 0.037

50 0.0 149.5 0.18 1.82 0.60 0.001 0.01 10.01 0.004 0.04 7.99 0.007 0.07 2.50 0.003 0.027

100 0.0 150.0 0.13 1.32 0.59 0.006 0.06 10.03 0.029 0.29 7.92 0.076 0.77 2.52 0.023 0.230

20 0.3 149.7 0.33 4.71 0.60 0.001 0.02 10.00 0.008 0.11 7.99 0.011 0.16 2.50 0.004 0.060

50 0.3 151.3 0.27 4.29 0.60 0.001 0.01 10.00 0.005 0.07 7.99 0.008 0.11 2.50 0.003 0.040

100 0.3 150.0 0.14 1.98 0.60 0.004 0.06 10.01 0.020 0.29 7.97 0.054 0.77 2.51 0.016 0.231

20 0.5 150.3 0.36 6.21 0.60 0.001 0.02 10.00 0.009 0.15 8.00 0.012 0.21 2.50 0.005 0.088

50 0.5 150.9 0.27 4.91 0.60 0.001 0.01 10.00 0.006 0.11 8.00 0.008 0.14 2.50 0.003 0.054

100 0.5 150.0 0.16 2.74 0.60 0.003 0.06 10.01 0.017 0.29 7.98 0.044 0.77 2.51 0.013 0.233
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5.5.2 Comparison for UKBMS data

For illustration we now compare model performance for the P/N2 and

P/SO2 GAIs for five bivoltine butterfly species from UKBMS data for 2010,

as in Section 5.4.3. All parameters in η were again assumed to be con-

stant, therefore there were four and five model parameters for the P/N2

and P/SO2 GAI, respectively, where ϕ is the additional parameter.

Figure 5.2 demonstrates empirically that the estimates of {Ni} differ

between the P/SO2 and P/N2 GAIs by a scaling factor of approximately

1−ϕ, as described in Section 5.5. The stopover model is generally favoured

in terms of AIC and overdispersion (Table 5.5). We find similar differences

in the parameters to those shown in the simulation study in Section 5.5.1.

Estimates of µ1 and µ2 are again earlier for the P/SO2 GAI than for the

P/N2 GAI, and estimates of σ, which are consistently greater for the P/N2

GAI, for reasons described in Section 5.5.1. The parameter ϕ from the

stopover model provides additional information compared to the P/N2 GAI,

but the stopover model takes an average of seven times longer to run. We

revisit the stopover model in Section 5.6.3, where for the first time we fit

the stopover model to data for multiple years.
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Figure 5.2: Comparison of estimated site parameters, N̂G from the P/N2

GAI and N̂SO from the P/SO2 GAI. Both axes are displayed on the log

scale. The dashed line indicates the 1-1 line and the red line indicates the

line with offset log(1− ϕ̂).
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Table 5.5: Parameter estimates from a) the P/SO2 and b) the P/N2 GAIs. The computation time is given in seconds. D is the

dispersion estimate (residual deviance/degrees of freedom). Note that the results in b) were also presented in Table 5.2a.

a) P/SO2 GAI

Species Time Log(L) AIC ŵ µ̂1 µ̂d σ̂ D ϕ̂

Holly Blue 3.23 -2114.3 4238.6 0.287 (0.011) 6.372 (0.263) 11.379 (0.123) 2.102 (0.109) 1.325 0.376 (0.107)

Small Blue 2.72 -2262.6 4535.2 0.767 (0.008) 4.577 (0.117) 7.756 (0.070) 1.478 (0.054) 3.144 0.149 (0.087)

Wall Brown 3.62 -2500.3 5010.7 0.372 (0.010) 5.950 (0.085) 10.888 (0.080) 1.286 (0.051) 1.844 0.507 (0.021)

Small White 4.89 -4343.0 8696.1 0.120 (0.005) 6.205 (0.130) 10.286 (0.112) 1.825 (0.056) 3.005 0.653 (0.015)

Common Blue 3.28 -6677.3 13364.6 0.260 (0.004) 4.948 (0.032) 8.858 (0.029) 1.189 (0.019) 5.958 0.447 (0.009)

b) P/N2 GAI

Species Time Log(L) AIC ŵ µ̂1 µ̂d σ̂ D

Holly Blue 0.34 -2115.0 4238.0 0.286 (0.011) 7.424 (0.107) 11.382 (0.123) 2.308 (0.042) 1.325

Small Blue 0.31 -2263.3 4534.6 0.766 (0.008) 5.242 (0.033) 7.743 (0.069) 1.573 (0.022) 3.142

Wall Brown 0.39 -2532.3 5072.7 0.363 (0.010) 7.251 (0.070) 10.839 (0.084) 1.856 (0.030) 1.877

Small White 0.57 -4421.1 8850.1 0.110 (0.004) 8.048 (0.121) 10.550 (0.123) 2.626 (0.028) 3.085

Common Blue 0.37 -6924.6 13857.2 0.253 (0.004) 6.103 (0.028) 8.943 (0.031) 1.665 (0.010) 6.244



Chapter 5. A generalised abundance index 161

5.6 Examples

To illustrate the range of modelling options, we now apply the GAI for a

series of examples of butterfly transect counts from the UKBMS.

5.6.1 Splines

A spline is advised for species with complex seasonal flight patterns, which

may not be modelled parametrically with ease. We demonstrate the P/S

GAI, and make comparisons with output from a two-stage GAM (Section

4.1.3), for Speckled Wood, a multivoltine species whose flight pattern tends

to exhibit three overlapping broods per year. The flight period may be

further complicated since the Speckled Wood overwinters as both caterpillar

and pupa, which may emerge at difference times. The models were fitted

to data for a subset of 100 sites.

To formulate the B-spline basis matrix in the GAI, we use the splines

package in R (R Core Team 2015). Six knots were used for this example,

but other choices had minimal effect on the results. The optimal number of

knots could be selected automatically, for example using cross validation as

in GAM approaches. The Nelder-Mead algorithm in optim did not always

optimise the likelihood for the P/S GAI, therefore the BFGS algorithm was

used instead.

Comparable seasonal pattern curves are predicted from the GAM and

P/S GAI (Figure 5.3), as well as similar relative indices of abundance (Fig-

ure 5.4), despite the simplicity and greater speed of fitting the GAI, com-

pared to the GAM approach, which we demonstrate for the phenomeno-

logical GAI in the next section. In order to compare the GAI and GAM

approaches, each index was standardised to have zero mean and unit vari-

ance. Confidence intervals were derived for each index via bootstrapping,

using 100 replicates. Figure 5.3 shows confidence intervals that are slightly

wider from the P/S GAI than the GAM, this may be because the GAI does

not account for variation in sites between years, or the choice of spline may

be modified, for example in terms of the number of knots used. In the next
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section further comparisons of model accuracy will be made, based on the

phenomenological GAI.
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Figure 5.3: Predicted seasonal pattern for each week since the start of the

season for the GAM approach (black solid) and P/S GAI (blue dashed) for

Speckled Wood. The middle day for each week was taken for the GAM.
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Figure 5.4: a) Relative abundance indices for the GAM approach (black

solid) and P/S GAI (blue dashed) for Speckled Wood. Indices from a) are

shown with associated bootstrapped intervals for the two-stage GAM and

P/S GAI in b) and c), respectively.
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5.6.2 Indices from the phenomenological model

We examine the performance of the x/N2 GAI in producing indices of abun-

dance for multiple years for five bivoltine UK butterfly species. For demon-

stration, we fit the model where x is Poisson, zero-inflated Poisson and

negative-binomial for each species and make comparisons with the two-stage

GAM approach (Section 4.1.3). For each species, each model was fitted to

data for each year from 1978-2011 separately, and an index of abundance

then formed as defined in Section 5.2.5. Confidence intervals were derived

via bootstrapping, using 100 replicates. In order to compare the GAI and

GAM approaches, each index was standardised to have zero mean and unit

variance.

There were minimal differences in the indices derived from the P, ZIP

and NB GAIs, but NB performed best in terms of AIC and dispersion,

where dispersion values closer to unity indicate a better model (Figures

5.5 and 5.6). The latter is unavailable for ZIP since the deviance is not

directly estimable for distributions not within the generalised linear model

family. The indices of abundance from the GAM and NB/N2 GAI show

similar patterns (Figure 5.7). The greatest difference is for the Small Blue,

particularly for earlier years in the index, which may be due to the lack

of sites available for this habitat-specialist species, as described in Section

5.4.3.

The confidence intervals for the GAI are narrower than those for the

GAM for three of the five species, and are never greatly wider (Table 5.6

and Figure 5.8). The GAI is substantially quicker than the GAM (Table

5.6).
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Figure 5.5: AIC values from the P/N2 (blue), ZIP/N2 (green) and NB/N2

(black) GAIs.
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Figure 5.7: Relative abundances indices from the NB/N2 GAI (black, solid

line, circles) and two-stage GAM approach (red, dashed line, crosses).
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Figure 5.8: Comparison of indices with bootstrapped intervals derived from

the two-stage GAM (red) and NB/N2 GAI (black).
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Table 5.6: Comparison of efficiency and accuracy for the GAM and P/N2,

ZIP/N2 and NB/N2 GAIs. Computation times are given in minutes.

Species Time for a single run Mean CI width

GAM GAI GAM GAI

P ZIP NB P ZIP NB

Holly Blue 9 0.3 3 1 0.862 0.664 0.703 0.627

Small Blue 32 0.2 2 1 3.091 1.892 1.949 1.871

Wall Brown 39 0.4 3 2 0.860 1.089 1.147 1.096

Small White 23 0.5 3 3 0.998 0.954 0.954 0.938

Common Blue 22 0.4 3 2 1.066 1.305 1.328 1.338
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5.6.3 Stopover model

For illustration we apply the P/SO1 GAI to data for two univoltine species to

assess changes in survival probability ϕ over time. As discussed in Chapter

4, in Matechou et al. (2014) models were fitted where ϕ varied with time

or age, but data were only considered for Common Blue in a single year.

In this chapter only constant ϕ (within each year) is considered to look at

variation over many years. In the absence of the concentrated likelihood

approach fitting the stopover model to data for multiple years would have

previously been more time-consuming.

The stopover model requires more data than the simpler phenomeno-

logical or spline models, and hence analysis was restricted to start from the

first year where at least 30 sites were monitored. Figure 5.9 shows annual

variation in predicted survival probability for the two species, but without

obvious trends. In Figure 5.10 we see that higher estimates of survival are

correlated with earlier emergence in the season, which generates an hypoth-

esis for further investigation. In Chapter 6 we develop dynamic models

for butterfly abundance, which includes further investigations of variation

butterfly survival in Section 6.2.3.

Figure 5.9: Predicted weekly survival probability, ϕ̂, from fitting a P/SO1

GAI for two univoltine species.
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Figure 5.10: Average week of emergence, µ̂, versus weekly predicted survival

probability, ϕ̂, from fitting a P/SO1 GAI to data for two univoltine species.

The green lines show the fitted linear trend, which was significant for both

species (p ≤ 0.05).

5.6.4 Regressing parameters on year and northing

In this section we demonstrate the flexibility of the GAI for the inclusion of

covariates, which would not be as straightforward with previous modelling

approaches. Rather than fitting the model separately to data for each year,

a single concentrated likelihood can be maximised over multiple years. The

number of parameters can be reduced by restricting appropriate parameters

over time, for example to be constant or linearly time-varying.

For demonstration, we apply models to data for Wall Brown, which is

one of the five bivoltine species considered in this chapter. We use the P/N2

GAI, but now fit a single multi-year model. A similar approach could be

undertaken for variations of the GAI, for example with the stopover model

description for {ai,j}, or with an alternative distribution to the Poisson,

such as the negative-binomial which was favoured in Section 5.6.2. The

parameters w, µ1 and µd could vary linearly with year, or an additive or

multiplicative combination of year and northing. We allowed the standard

deviation σ to be constant or linearly varying with year but consider only

the homoscedastic case where σ1 = σ2.
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The most complex model, which had 14 parameters and included an

interaction between northing and year for w, µ1 and µd, was favoured in

terms of AIC. The top five favoured models are given in Table 5.7, where

the second most favoured model had 13 parameters, with no interaction

between year and northing for µd.

Parameter estimates from the favoured model are given in Table 5.8,

and the estimated seasonal pattern is provided for three years in Figure

5.11, each for a sample of northing values. The positive value of the slope

for year for w suggests an overall trend for an increase in size of the first

brood relative to the second brood over time (Table 5.8). The timing of

the first brood is later further north, but has become earlier over time, and

the difference in the timing of the two broods has increased over time. The

standard deviation has changed minimally with time.

Table 5.7: Model comparison for the multi-year P/N2 GAI for Wall Brown.

The number of model parameters is denoted by np. AIC and ∆AIC are

presented for the five most-favoured models, where ∆AIC is the difference

between the AIC and the minimum AIC. year×north denotes that a param-

eter was described by year, northing, and their multiplicative interaction.

Model np AIC ∆AIC

w(year×north)µ1(year×north)µd(year×north)σ(year) 14 143831.3 -

w(year×north)µ1(year×north)µd(year+north)σ(year) 13 143838.9 7.6

w(year×north)µ1(year×north)µd(year)σ(year) 12 143845.8 14.5

w(year×north)µ1(year×north)µd(year×north)σ(.) 13 143872.8 41.5

w(year×north)µ1(year×north)µd(year+north)σ(.) 12 143879.1 47.8



Chapter 5. A generalised abundance index 172

Table 5.8: Parameter estimates for the most favoured (in terms of AIC)

multi-year P/N2 GAI for Wall Brown. Est and SE represent the parameter

estimates and standard error, respectively. All covariates were standardised

to have zero mean and unit variance. All estimates are on the log scale,

except those relating to w which are on the logit scale. Interaction terms

are indicated by ×.

Parameter Est SE

w(intercept) -0.899 0.002

w(northing) -0.027 0.002

w(year) 0.229 0.002

w(year×northing) -0.122 0.001

µ1(intercept) 2.134 0.001

µ1(northing) 0.059 0.002

µ1(year) -0.086 0.002

µ1(year×northing) 0.011 0.003

µd(intercept) 2.464 0.003

µd(northing) -0.005 0.009

µd(year) 0.036 0.011

σ(intercept) 0.613 0.010

σ(year) 0.020 0.010
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Figure 5.11: Predicted seasonal pattern (standardised seasonal count) for

each week since the start of the season for the multi-year P/N2 GAI (1980-

2011) for Wall Brown for three years. Each line represents one of ten equally-

spaced Northing values between 17 km (red) and 667 km (blue).
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5.7 Discussion

This chapter has presented a generalised abundance index which unifies and

extends exisiting methods for estimating abundance of seasonal insects. The

GAI is suitably general for parametric or non-parametric functions to be

chosen specific to the study species and scenario. Splines may be prefer-

able for some species with complex flight periods, such as migrants. The

newly proposed phenomenological model is a simplification of the stopover

model. The stopover model provides additional insights via the estimates

of survival. However, for wider-scale analysis, the phenomenological model

is more efficient and akin to the GAM-based methods currently used for

deriving abundance indices. The phenomenological model is also expected

to be more robust than the stopover model which makes more assumptions,

and the phenomenological model may also be more suitable in cases with

limited data, since the stopover model has greater demands on data in order

to estimate survival.

When spatio-temporal models are fitted to long-term data for many

species and sites an important consideration is the computational effort re-

quired. Model fitting is very time-consuming for the GAM approach. When

there are many sites, bootstrapping can take weeks for a single UKBMS

species. Approaches for reducing the computation time from the GAM ap-

proach, such as those explored in Section 4.1.6, are unlikely to be matched

by the substantial improvements in computation time made by the GAI. The

efficiency of the GAI will reduce the time and resources required for data

processing, leading to faster outputs and feedback of results to recorders and

policy makers. The provision of feedback to recorders is essential for the

motivation and retention of participants in citizen science projects, particu-

larly schemes such as the UKBMS, which require high levels of commitment

than opportunistic schemes such as the BNM (Chapter 2).

The GAM approach assumes the seasonal pattern to be static across

sites within each year. Geographic variation could be incorporated in the

smoothing component but that does not appear to be straightforward and
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robust, particularly compared to the parametric approaches within the GAI

which can readily incorporate available covariates, such as northing, land

cover, weather or growing degree days (Hodgson et al. 2011). Novel descrip-

tion of spatial and temporal variation in seasonal pattern will benefit phe-

nological studies, which for butterfly data have involved measures such as

mean first appearance, mean peak appearance and mean length of the flight

period (Roy and Sparks 2000; Karlsson 2014). Hodgson et al. (2011) utilised

GAMs for studying spatio-temporal variation in phenology, but changes in

phenology and voltinism can be studied more flexibly through the GAI,

extending the capacity to study the non-uniform effects of climate change.

As demonstrated in Section 5.6.4, the GAI can also be applied to data

across multiple years, which could be valuable for exploring phenological

hypotheses. In Chapter 6, we build upon fitting models to data for multiple

years by developing dynamic models which describe data from multiple

years consecutively.

The GAM approach accounts for turnover in sites between years. This is

not included in the GAI, but comparable results to the GAM are produced

despite the simplicity of the model. Time variation in sites may need to be

accounted for when there is a limited number of sites. Trends in relative

abundance for individual sites can be estimated by the GAI, which may

be of interest for conservation and monitoring of certain locations. For the

GAM approach trends in abundance are assumed to be spatially constant,

which may be an unrealistic assumption.

In this chapter the relative abundance parameters {Ni} are confounded

by imperfect detection. As discussed in Section 4.2.3, the study of UKBMS

data is typically in terms of relative, rather than absolute, indices of abun-

dance. As in Section 4.2.1 some variability in detection can be accounted

for in the stopover model by incorporating a suitable covariate to separate

detection probability p from {Ni}. In this chapter we did not explore the

separation of abundance and detection probability, but further study in

this area could be valuable to ascertain the effects of allowing variation in

detectability.
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The examples presented in this chapter demonstrate the generality of the

GAI framework, and application of models other than GAMs to multiple

years and species for the first time. In practice, wider model selection

would be required in any application of the GAI. As for the stopover model,

alternatives to the Normal distribution in the parametric approaches, such

as asymmetric distributions to account for skewness in emergence are also

possible. Clearly the “best” model choice will be dependent on both the

purpose of the study and the species of interest.

The gains in efficiency achieved by the GAI arise from maximising a

concentrated likelihood. The proposed iterative concentrated likelihood ap-

proach for negative-binomial and zero-inflated Poisson is effective and still

considerably quicker than previous methods. The Poisson distribution may

be sufficient if an index is the required output of a study, since it is quick

with minimal differences in accuracy. Using random effects to describe {Ni}

is slower and less straightforward than the concentrated likelihood method,

but could be valuable in particular modelling contexts. Random effects may

also be more suitably incorporated within a Bayesian framework.

The GAI is a robust and flexible framework that can produce new in-

sights relevant to the monitoring and conservation of invertebrates with

both efficiency and accuracy. An R program for the GAI is provided as an

electronic appendix to this thesis.
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Dynamic models

The methods for modelling butterfly abundance described in Chapters 4 and

5 do not impose any relationship between counts from one year to the next,

which is the topic of this chapter. Causes of variation in both abundance

and seasonal pattern from one year to the next are multi-faceted, relating

to population numbers during the previous year, as well as other factors

driving the unobserved stages of the life-cycle, such as weather. Building

upon the GAI framework in the previous chapter, we now present models

which provide succinct descriptions of longitudinal butterfly data across

multiple sites from consecutive years. This approach produces, for the first

time, estimates of the key parameters of brood productivities, which are

included in a deterministic, auto-regressive manner, allowing the data from

each year and/or brood to feed into those of the following year and/or brood.

We describe the formulation for these new dynamic models for univol-

tine and bivoltine species in Sections 6.1.1 and 6.1.2, respectively. In Sec-

tion 6.1.3 we present a novel stopover model formulation, that differs from

that of Section 4.2 and Chapter 5 of this thesis. As in Chapter 5, in Sec-

tion 6.1.4 we develop a concentrated likelihood approach which results in

appreciable efficiency gains. We provide formulae for deriving indices of

abundance in Section 6.1.5. In the bivoltine case separate estimates of

productivity for each brood results in new indices, which indicate the con-

tributions from different generations. Both phenomenological and stopover

176
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models are demonstrated using UKBMS data (Section 6.2). Comparisons

are made with abundance indices generated from GAMs, and the incorpo-

ration of covariates is also explored. In Section 6.2.5 we make comparisons

with the GAI approach from Chapter 5, and finally this chapter concludes

with a discussion. This chapter is based upon a paper that is under review

by the Journal of Agricultural, Biological, and Environmental Statistics.

6.1 Dynamic model formulation

For a given species, suppose counts of adults are recorded at S sites, each

visited on T occasions, over Y years. As in Chapter 5, each count can

be treated as the realisation of a random variable from a suitable discrete

distribution. For example, if this is taken as Poisson, with expectation λi,j,k

for site i, visit j, and year k, the likelihood has the form

L(ρ,η,N 1;y) =
S∏

i=1

T∏
j=1

Y∏
k=1

exp(−λi,j,k)λ
yi,j,k
i,j,k

yi,j,k!
,

where {yi,j,k} are the counts and ρ, η, and N 1, are the model parame-

ters which we describe in the next sections, representing productivity, the

set of parameters that describe seasonal variation in counts, and relative

abundance in the first year, respectively. We adopt the Poisson distribu-

tion throughout this chapter, but there are other possibilities, such as the

negative-binomial and zero-inflated Poisson, which were explored in the pre-

vious chapter and Chapter 3.

As in Section 5.2, but with an additional subscript for year, we write

λi,j,k = Ni,kai,j,k, where ai,j,k = ai,k(ti,j,k,η), which denotes a function for

describing the seasonal variation in counts, in terms of η, where ti,j,k is the

time of the jth visit to site i in year k (e.g. week number in the season).

The methods of this chapter are applied to both a phenomenological model

based on Normal probability density functions and stopover models which

involve mechanisms allowing for estimation of survival.
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6.1.1 Phenomenological model for univoltine species

For a univoltine species the counts within a season generally increase from

zero and then decrease to zero corresponding to the emergence and death

of adult butterflies over the season. Extending the univoltine phenomeno-

logical GAI, which is given in equation (5.11), to multiple years, this sea-

sonal variation may be described by Normal probability density functions

N(µi,k, σ
2
i,k), corresponding to site i and year k, so that for the jth visit at

time ti,j,k we have

λi,j,k = Ni,kai,j,k = Ni,k
1

σi,k
√
2π

exp

{
−(ti,j,k − µi,k)

2

2σ2
i,k

}
, (6.1)

where Ni,k provides an estimate of relative abundance for site i in a given

year, k.

In the GAI (Chapter 5), the models were mostly fitted separately to

data for each year, and hence there was no linkage between the relative

abundance estimates in different years. Even when the GAI is fitted as a

single model in Section 5.6.4, the estimates of abundance are not linked, and

only {ai,j,k} were regressed on year, to reduced the number of parameters.

In contrast, here we allow the relative abundance Ni,k+1, for site i and year

k + 1, to depend upon the value at that site in the previous year, Ni,k, in

a deterministic first-order autoregressive manner by a population growth

rate, ρi,k which, assuming the species does not overwinter as an adult, we

define as “productivity”, i.e. Ni,k+1 = ρi,kNi,k. Developing the recursion

over time provides

λi,j,1 = Ni,1ai,j,1 (6.2a)

and

λi,j,k = Ni,kai,j,k =

(
Ni,1

k−1∏
m=1

ρi,m

)
ai,j,k, (6.2b)

which is similar to the model in Freeman and Newson (2008), but with a

seasonal component. The productivities, {ρi,m}, describe the successes of

a given generation over sites for each year and represent products of the

number of eggs laid per adult and the probability of each egg reaching the
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adult stage in the next generation. The expressions of equations (6.2a)

and (6.2b) characterise the univoltine models of this chapter, with different

formulations for the seasonal pattern, {ai,j,k}, providing different models,

as we shall see for a stopover model formulation in Section 6.1.3.

6.1.2 Phenomenological model for bivoltine species

We may extend the model above to describe counts from two annual broods

by incorporating two Normal distributions as follows (where extra, final,

subscripts designate brood):

λi,j,k = Ni,k,1
1

σi,k,1
√
2π

exp

{
−(tj − µi,k,1)

2

2σ2
i,k,1

}

+Ni,k,2
1

σi,k,2
√
2π

exp

{
−(tj − µi,k,2)

2

2σ2
i,k,2

}
,

which we may write as

λi,j,k ≡ Ni,k,1ai,j,k,1 +Ni,k,2ai,j,k,2,

where at site i in year k the relative abundance for the first brood is given

by Ni,k,1 and for the second brood by Ni,k,2.

Whereas in the GAI (Chapter 5) two broods are described by a mixture

of probability density functions, here the relative abundance of a second

brood in each year is assumed to depend on that of the first brood that

year. Dependence between the two broods in any year is introduced by

defining Ni,k,2 = ρi,k,1Ni,k,1, in addition to the between-year dependence. So

that we write

λi,j,1 = Ni,1,1ai,j,1,1 +Ni,1,2ai,j,1,2

= Ni,1,1ai,j,1,1 + ρi,1,1Ni,1,1ai,j,1,2

= Ni,1,1(ai,j,1,1 + ρi,1,1ai,j,1,2), (6.3a)
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and

λi,j,k = Ni,k,1ai,j,k,1 +Ni,k,2ai,j,k,2

=

(
Ni,1,1

k−1∏
m=1

2∏
b=1

ρi,m,b

)
ai,j,k,1 +

(
Ni,1,1ρi,k,1

k−1∏
m=1

2∏
b=1

ρi,m,b

)
ai,j,k,2

= Ni,1,1 (ai,j,k,1 + ρi,k,1ai,j,k,2)
k−1∏
m=1

2∏
b=1

ρi,m,b, (6.3b)

where ρi,k,1 represents the productivity of the first brood in a given year k,

and correspondingly ρi,k,2 represents the productivity of the second brood,

which feeds into the abundance of the first brood of the following year,

Ni,k+1,1. Thus the new development for bivoltine species is naturally based

on the fact that the relative size of a given brood depends on the produc-

tivity of the previous brood, including within each year. In this chapter

we denote the phenomenological models by NB, where B is the number of

broods.

6.1.3 Stopover models

An attraction of a stopover model is that it incorporates adult survival.

The dynamic models in this chapter which incorporate a stopover model

formulation use a new approach for describing data for species with multiple

broods, and hence the formulation in this case is novel, and differs from that

of Section 4.2 and Chapter 5 of this thesis.

As described in Section 4.2.1, the previous methods consider a site abun-

dance Ni,k in year k, referred to as a super-population by Matechou et al.

(2014), which is distributed across multiple broods by a mixture of B nor-

mal distributions, each with a relative weight, wi,k,b. Hence the expected

number of individuals at site i at time ti,j,k in year k is given by

λi,j,k = Ni,k

{
j∑

d=1

βi,d−1,k

(
j−1∏
m=d

ϕi,m,k

)}
,

and the proportion of Ni,k arriving at time ti,d,k is modelled by setting

βi,d−1,k =
B∑
b=1

wi,k,b {Fi,k,b(ti,d,k)− Fi,k,b(ti,d,k − 1)} , (6.4)
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where Fi,k,b(ti,d,k) = P (X ≤ ti,d,k) when X ∼ N(µi,k,b, σ
2
i,k,b). In this typical

stopover model formulation the mixture of equation (6.4) is used to describe

multiple brood sizes.

In the univoltine dynamic stopover model, B = 1, and wi,k,1 = 1, and the

recursion of equations (6.2a) and (6.2b) applies, but now with a different

specification of {ai,j,k}. For the bivoltine case in the dynamic stopover

model we assign a separate site abundance to each brood in a year, as for

the bivoltine phenomenological model in Section 6.1.2. Thus we assume the

two broods for bivoltine species to be separate such that, for site i, visit j

and brood b, in year k,

ai,j,k,b =

j∑
d=1

βi,d−1,k,b

(
j−1∏
m=d

ϕi,d,k,b

)
, (6.5)

where we define {ϕi,d,k,b} as the appropriate survival probabilities of an

individual from one week to the next, which are now estimated separately

for each brood. This was not considered in the original specification of the

stopover model (Section 4.2 and Chapter 5). The parameters {βi,d−1,k,b}

describe the proportions of Ni,k,b arriving at visit d, and are modelled using

Normal distributions, so that

βi,d−1,k,b = Fi,k,b(ti,d,k)− Fi,k,b(ti,d,k − 1),

where Fi,k,b(ti,d,k) = Pr(X ≤ ti,d,k), for X ∼ N(µi,k,b, σ
2
i,k,b), and µi,k,b is

now the appropriate mean date of emergence for brood b. The recursion

of equations (6.3a) and (6.3b) then applies, with the new specification of

{ai,j,k,b} from equation (6.5).

We specify the dynamic stopover model by SOB, where B is the number

of broods.

6.1.4 Concentrated likelihood

As for all of the models in this thesis, we fit the dynamic models by max-

imum likelihood. As in Chapter 5, the number of parameters in the like-

lihood maximisation can be reduced by S, using a concentrated likelihood

approach as follows. S is typically large and so computational efficiency is
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substantially increased. We consider first the univoltine case. Using equa-

tions (6.2a) and (6.2b), apart from an additive constant, the log-likelihood

for site i may be written as

ℓi = Log(Li) =
T∑

j=1

[
−Ni,1ai,j,1 + yi,j,1log (Ni,1ai,j,1)

+
Y∑

k=2

{
−Ni,1ai,j,1

k−1∏
m=1

ρi,m + yi,j,klog

(
Ni,1ai,j,k

k−1∏
m=1

ρi,m

)}]
.

(6.6)

For all data the log-likelihood is ℓ = Log(L) =
∑S

i=1 ℓi. Using equation

(6.6) we obtain

∂ℓi
∂Ni,1

=
T∑

j=1

{
−ai,j,1 +

yi,j,1
Ni,1

+
Y∑

k=2

(
−ai,j,1

k−1∏
m=1

ρi,m +
yi,j,k
Ni,1

)}
,

and equating to zero we find

Ni,1 =
T∑

j=1

∑Y
k=1 yi,j,k

ai,j,1 +
∑Y

k=2 ai,j,k
∏k−1

m=1 ρi,m
. (6.7)

Thus despite an apparent strong dependence of {Ni,k} on {Ni,1} in equa-

tion (6.2b), this is only a consequence of the deterministic links between

each Ni,k, and all data contribute to the estimation of {Ni,1}, and hence

{Ni,k}. Substitution of the expressions for {Ni,1} from (6.7) in (6.6), re-

sults in a concentrated likelihood, which is maximised with respect to only

the parameters associated with ρ and a. Estimation of {Ni,1} is made by

substituting estimates of {ai,j,k} and {ρi,m} into (6.7). The above approach

holds for both phenomenological and stopover models.

The concentrated likelihood for the bivoltine case is given similarly as

follows. Using equations (6.3a) and (6.3b), the log-likelihood for site i is
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given, apart from an additive constant, by

ℓi = Log(Li) =
T∑

j=1

{
−Ni,1,1 (ai,j,1,1 + ρi,1,1ai,j,1,2)

+ yi,j,1log {Ni,1,1 (ai,j,1,1 + ρi,1,1ai,j,1,2)}

+
Y∑

k=2

[
−Ni,1,1 (ai,j,k,1 + ρi,k,1ai,j,k,2)

k−1∏
m=1

2∏
b=1

ρi,m,b

+ yi,j,klog

{
Ni,1,1 (ai,j,k,1 + ρi,k,1ai,j,k,2)

k−1∏
m=1

2∏
b=1

ρi,m,b

}]}
,

(6.8)

where we have defined {ai,j,k,b} and {ρi,k,b}, for site i, visit j and brood b,

in year k in Section 6.1.2. This gives

∂ℓi
∂Ni,1,1

=
T∑

j=1

[
− (ai,j,1,1 + ρi,1,1ai,j,1,2) +

yi,j,1
Ni,1,1

+
Y∑

k=2

{
− (ai,j,k,1 + ρi,k,1ai,j,k,2)

k−1∏
m=1

2∏
b=1

ρi,m,b +
yi,j,k
Ni,1,1

}]
,

and equating to zero we find

Ni,1,1=
T∑

j=1

∑Y
k=1 yi,j,k

ai,j,1,1+ρi,j,1ai,j,1,2+
∑Y

k=2

{
(ai,j,k,1+ρi,m,1ai,j,k,2)

∏k−1
m=1

∏2
b=1 ρi,m,b

}.
(6.9)

We note how Ni,1,1 is a weighted sum over visits of totals at site i across

years. As in the univoltine case, we substitute the expressions for {Ni,1,1}

from (6.9) into (6.8) and maximise the overall concentrated likelihood, ℓ,

with respect to parameters associated with ρ and a. Estimation of {Ni,1,1}

is obtained by substituting estimates of {ai,j,k,b} and {ρi,k,b} into (6.9).

This concentrated likelihood approach applies for both the phenomeno-

logical and stopover models for bivoltine species, with variation only in the

specification of {ai,j,k,b}.

All applications of the dynamic models in this chapter were made using

the above concentrated likelihood approach.
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6.1.5 Annual index of abundance

The averages of the site abundance estimates, for each year k, are used to

create an index of abundance for year k. For a univoltine species we set

Gk =
1

S

S∑
i=1

N̂i,k =


1

S

S∑
i=1

N̂i,1 if k = 1

1

S

S∑
i=1

(
N̂i,1

k−1∏
m=1

ρ̂i,m

)
if k > 1,

(6.10)

for k = 1, . . . , Y , from equations (6.2a) and (6.2b). Similarly for the bivol-

tine case we estimate an index Gk,b for each brood, b = 1, 2, as

Gk,1 =
1

S

S∑
i=1

N̂i,k,1 =


1

S

S∑
i=1

N̂i,1,1 if k = 1

1

S

S∑
i=1

(
N̂i,1,1

k−1∏
m=1

2∏
b=1

ρ̂i,m,b

)
if k > 1,

(6.11)

and

Gk,2 =
1

S

S∑
i=1

N̂i,k,2 =


1

S

S∑
i=1

N̂i,1,1ρ̂i,k,1 if k = 1

1

S

S∑
i=1

(
N̂i,1,1ρ̂i,k,1

k−1∏
m=1

2∏
b=1

ρ̂i,m,b

)
if k > 1,

(6.12)

for k = 1, . . . , Y , making use of the recursions demonstrated in (6.3a) and

(6.3b).

6.2 Application

We apply the dynamic models to UKBMS data for an illustrative subset

of univoltine and bivoltine UK butterfly species. Each model was fitted

to data for 1978-2011. Sites at which the species of interest was never

recorded or at which monitoring was undertaken for fewer than five years

were excluded from this analysis. As for the applications of the GAI in

Chapter 5, a subset of 100 monitored sites was randomly selected for each

species, with the exception of Holly Blue, which required samples of up to

200 sites to obtain reasonable estimates of productivity.
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The concentrated likelihoods were maximised using the optim function

in R (R Core Team 2015). Given the application to data across many years,

the dynamic models in this chapter are more complicated than the GAI in

Chapter 5, with more parameters to estimate. We found that the default

Nelder-Mead algorithm in optim could not optimise the likelihood for the

dyamic models, particularly for bivoltine species, and therefore the limited-

memory BFGS algorithm (Byrd et al. 1995) was used instead. Associated

R code for the dynamic models is provided as an electronic appendix to

this thesis. Estimates of error for the abundance index can be obtained via

bootstrapping, as for other methods (Sections 4.1.5 and 5.2.5), but error

bars have not been presented in this chapter, for clarity of presentation.

We illustrate the performance of the dynamic models in terms of in-

dices, productivity, survival and phenology, with and without the addition

of covariates. Where parameters were assumed to be constant spatially the

subscript for site, i, is omitted. We compare indices of abundance with

those derived from the two-stage GAM approach (Section 4.1.3). Com-

parisons are also made later to the GAI approach (Chapter 5) in Section

6.2.5.

As in Chapter 5, note that in all models for bivoltine species, we let

µ2 = µ1 + µd, where µ1, µd ≥ 0, to ensure that µ2 ≥ µ1.

The covariates we select are northing and temperature, and were se-

lected to demonstrate the potential of the models, so that they may not be

optimal. The average minimum daily temperature during October-March

was used as a covariate for overwinter productivity. For bivoltine species,

the mean temperature within the flight period of the first brood was used

to describe productivity of the first brood. Productivities were regressed on

the log scale. Survival in stopover models was logistically regressed on mean

temperature within the flight period of the brood of interest. Approximate

flight periods for the sample species are provided in Table 6.1, and were used

for the relevant temperature covariates. We use monthly mean and mini-

mum Central England Temperature data (Parker et al. 1992). All covariates

were standardised to have zero mean and unit variance. Due to interest in
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the possible effect of covariates on estimates of survival, we primarily use

stopover models when covariates are employed and phenomenological mod-

els otherwise.

The phenomenological dynamic models discussed in the context of in-

dices in Sections 6.2.1 and 6.2.2 have 35 and 71 parameters for B = 1, 2,

respectively. Given that Y = 34, in the univoltine case there are 33 annual

estimates of ρk, as well as estimates of µ and σ, and in the bivoltine case,

there are 34 parameters for ρk,1 and 33 parameters for ρk,2, in addition to

µ1, µd, σ1, and σ2.

Table 6.1: Approximate flight periods for the sample of butterfly species

studied, which are used for the relevant temperature covariates. The flight

periods were specified as the first/last month for which the average weekly

count was positive (> 0.1). For bivoltine species, we defined the mid point

between the two generations by the month with the minimum weekly count

between the two peaks in counts, and hence assumed the break between two

generations to always be less than one month.

Species Flight period

Chalkhill Blue July-September

Small Skipper June-September

Green Hairstreak April-July

White Admiral June-August

Gatekeeper June-September

Marbled White June-August

Wall Brown April-July-September

Holly Blue April-June-September

Small White April-June-September

Brown Argus April-July-September

Green-veined White April-June-September
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6.2.1 Indices

We compare relative abundance indices for model N1 and the two-stage

GAM approach (Section 4.1.3). As in the previous chapter, we use the GAM

approach as a benchmark for comparison, since it is the method currently

adopted by the UKBMS for most species. Estimates of abundance from

the dynamic model are derived from estimates of annual productivity and

estimates of initial abundance, as described in Section 6.1.5. In this section

we allow productivity to vary with each brood and year, but µ and σ are

considered as constant. Varying these parameters between years provides

useful information and we shall see examples of this in Sections 6.2.4, but

these parameters had no distinguishable effect on indices of abundance.

Figure 6.1a gives a comparison between annual indices of abundance

for the six univoltine species. There is very good agreement between the

indices resulting from the dynamic model and the two-stage GAM approach

(Section 4.1.3). Dynamic models allow us to add more information to indices

for bivoltine species, which we illustrate in Figures 6.2a and 6.3, where the

same information is presented, but in two different ways. We can see how

the dynamic model allows us to extend the indices produced by the GAM

approach by providing separate indices for each brood.

6.2.2 Productivity

Figure 6.1b presents annual estimates of productivity for the illustrative

univoltine species, from fitting model N1 as in Section 6.2.1. Values of ρk,

greater than unity indicate years of growth compared to the previous year.

Hence as anticipated we see a tendency for growth rates less than unity for

species in decline, such as Small Skipper, while for Marbled White growth

rates tend to be above unity during the initial period of growth, followed by

fluctuations about unity in more recent years, when the population appears

to be relatively stable.

Figure 6.2b presents estimated annual productivities for each brood for

the bivoltine species, using model N2 as fitted in Section 6.2.1. Values above
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unity now represent growth relative to the previous brood. In Figure 6.4

we see how the productivities reflect the relative sizes of the fitted seasonal

curves, for which the average over the series is shown. The relative sizes of

the broods will actually vary with productivity each year.

Figure 6.5 shows the results of including covariates for these species,

in this case for model SO1 with ρi,k and ϕi,k varying with temperature

and northing, which we revisit in Section 6.2.3. It is interesting that with

the exception of Gatekeeper, higher productivity is associated with cooler

winters and in all cases with more Northerly latitudes.

Figure 6.6 shows the effect of adding covariates to the data for bivoltine

species, in this case for model SO2 with productivity varying with tempera-

ture and northing, and survival varying with temperature, which we discuss

further in Section 6.2.3. Associations of first-brood productivity, ρi,k,1, with

northing and weather varied between the five species, which may be asso-

ciated with different species’ traits. The association of higher productivity

with cooler winters, which was shown for univoltine species in Figure 6.5, is

also found for three of the five bivoltine species, with the primary exception

of Holly Blue, which unlike the other species does not favour grasslands.
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Figure 6.1: a) Relative abundance indices from model N1 (black) and the

GAM approach (red) and b) annual estimates of productivity, ρk, from

model N1, which was fitted to estimate ρk across sites for each year. The

dashed line in b) separates productivities above/below unity, corresponding

to growth/decline compared to the previous year.
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Figure 6.2: a) Relative abundance indices for the first (black) and second

(blue) broods from model N2 and the GAM approach (red). b) annual

estimates of productivity for the first (ρk,1, black) and second (ρk,2, blue)

brood from model N2, which was fitted to estimate ρk,b across sites for each

brood and year. The dashed line in b) separates productivities above/below

unity, corresponding to growth/decline compared to the previous brood.
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Figure 6.3: Alternative representation of relative abundance indices for the

first (black circles) and second (blue triangles) broods from model N2 and

the GAM approach (red).
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Figure 6.4: a) Annual estimates of productivity for the first (ρk,1, black) and

second (ρk,2, blue) brood for each bivoltine species. Model N2 was fitted to

estimate ρk,b across sites for each brood and year. b) the corresponding

average seasonal patterns. The dashed line in a) separates productivities

above/below unity, corresponding to growth/decline compared to the pre-

vious brood. Note that the productivities in a) were given in Figure 6.2b.
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Figure 6.5: Predicted productivity with varying temperature from model

SO1. Each line represents one of 25 equally-spaced northing values within

the species range (red at southern sites and blue at northern sites). Model

SO1 was fitted with ρi,k and ϕi,k regressed on temperature and northing.
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Figure 6.6: Predicted productivity with varying temperature from model

SO2. Each line represents one of 25 equally-spaced Northing values within

the species range (red at southern sites and blue at northern sites). Model

SO2 was fitted with ρi,k,b for each brood regressed on temperature and nor-

thing and ϕi,k,b for each brood regressed on temperature.
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6.2.3 Survival

The stopover models allow estimation of weekly survival of butterflies, from

which adult life expectancies (in weeks) can be estimated by expressions

such as 1/(1 − ϕ). Variation in life expectancy with temperature and nor-

thing is displayed for univoltine species in Figure 6.7, based on the model

with covariates, fitted in the previous section. For these univoltine species,

there was generally a negative association of life expectancy with higher

average temperature during the flight period. Four out of the six univoltine

species indicated greater survival at southerly sites.

Variation in life expectancy with temperature is shown for bivoltine

species in Figure 6.8. As for the associations of first brood productivity

with weather, we find that the variation in first brood life expectancy with

temperature differs between the species sampled. With the exception of

Holly Blue, life expectancy for the second brood of the bivoltine species

increases with temperature. Fitting model SO2 with covariates for both

northing and temperature on ρ and ϕ for each brood produced unrealistic

estimates of lifespan for Brown Argus and Holly Blue, hence in Figure 6.8 we

allow ϕ in the SO2 to vary with temperature and brood only. This requires

further investigation, but is likely to be due to the relatively large number

of parameters in model SO2 and/or relatively small size of the sample.

Tables 6.2, 6.3a and 6.4b show the parameter estimates and associated

standard errors from the SOB models with covariates. For comparison es-

timates are also included for the N1 and N2 models with covariates for ρ,

which are not presented in the figures. The SOB models with covariates

have 8 and 14 parameters for B = 1, 2, respectively, compared to the NB

models with 5 and 10 parameters for B = 1, 2, respectively.

Standard errors in Table 6.2a are generally small, but are large for two

instances for Green Hairstreak, which exhibit flatness in the associated plots

(Figures 6.5 and 6.7). Estimates of the parameters relating to ρ and their

associated errors are very similar from SO1 and N1. There are differences in

µ and σ since in the stopover model µ represents the mean date of emergence
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which will be earlier than the mean flight date, and σ relates to the length

of the period of emergence, which will be shorter the length of the flight

period in the N1 model. This was also described and shown in Sections 5.5.1

and 5.5.2. The associated errors for µ and σ are smaller for the N1 than for

the SO1 model.

For the bivoltine species there is more variation in the estimates from N2

and SO2. As in the univoltine case, standard errors from the phenomeno-

logical model tend to be smaller than those from the stopover model.
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Figure 6.7: Predicted life expectancy (in weeks) with varying temperature

from model SO1. Each line represents one of 25 equally-spaced northing

values within the species range (red at southern sites and blue at northern

sites). Model SO1 was fitted with ρi,k and ϕi,k regressed on temperature

and northing.
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Figure 6.8: Predicted life expectancy for each brood (in weeks) with vary-

ing temperature from model SO2. Model SO2 was fitted with ρi,k,b for each

brood regressed on temperature and northing and ϕi,k,b for each brood re-

gressed on temperature.
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Table 6.2: Parameter estimates from the a) SO1 and b) N1 models with covariates. Est and SE represent the parameter estimate and

standard error, respectively. All estimates are on the log scale, except those relating to ϕ which are on the logit scale.

Chalkhill Blue Small Skipper Green Hairstreak White Admiral Gatekeeper Marbled White

Parameter Est SE Est SE Est SE Est SE Est SE Est SE

a)

ρi,k(intercept) 0.0194 0.0004 -0.0455 0.0008 -0.0140 0.0023 0.0094 0.0025 -0.0365 0.0005 0.0255 0.0011

ρi,k(wtemp) -0.0772 0.0011 -0.0624 0.0021 -0.0165 0.0056 -0.0487 0.0059 0.0256 0.0012 -0.0655 0.0023

ρi,k(north) 0.0199 0.0004 0.0399 0.0010 0.0029 0.0016 0.0158 0.0015 0.0108 0.0003 0.0107 0.0009

ϕi,k(intercept) -0.4161 0.0109 -0.7725 0.0423 -2.3267 0.2276 -0.3347 0.0399 -0.9194 0.0175 -0.8585 0.0234

ϕi,k(temp) -0.1246 0.0038 -0.1893 0.0107 -0.0155 0.0205 -0.0513 0.0151 -0.1270 0.0054 0.0242 0.0075

ϕi,k(north) 0.0145 0.0056 -0.0960 0.0214 -3.8071 0.3083 -0.0776 0.0220 -0.2185 0.0087 0.0304 0.0128

µ(emergence) 2.8857 0.0004 2.7588 0.0013 1.8340 0.0048 2.6408 0.0021 2.8375 0.0004 2.6362 0.0007

σ(emergence) 0.3704 0.0028 0.5488 0.0060 0.7506 0.0090 0.4023 0.0120 0.3391 0.0028 0.2842 0.0046

b)

ρi,k(intercept) 0.0192 0.0004 -0.0472 0.0008 -0.0151 0.0023 0.0092 0.0025 -0.0377 0.0005 0.0256 0.0011

ρi,k(wtemp) -0.0763 0.0011 -0.0662 0.0021 -0.0157 0.0056 -0.0492 0.0059 0.0270 0.0012 -0.0660 0.0023

ρi,k(north) 0.0209 0.0004 0.0410 0.0010 0.0037 0.0016 0.0158 0.0015 0.0109 0.0003 0.0109 0.0009

µ(flight period) 2.9473 0.0002 2.8188 0.0005 2.0007 0.0033 2.7227 0.0010 2.8892 0.0002 2.7001 0.0003

σ(flight period) 0.5797 0.0013 0.6690 0.0029 0.9534 0.0071 0.6291 0.0056 0.4834 0.0014 0.4458 0.0022
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Table 6.3a: Parameter estimates from the SO2 model with covariates. Est and SE represent the parameter estimate and standard error,

respectively. All estimates are on the log scale, except those relating to ϕ which are on the logit scale.

Wall Brown Holly Blue Small White Brown Argus Green-veined White

Parameter Est SE Est SE Est SE Est SE Est SE

ρi,k,1(intercept) 0.7869 0.0436 0.1003 0.0755 1.1730 0.1016 0.6211 0.0474 0.6392 0.0415

ρi,k,1(temp) -0.0234 0.0048 -0.1089 0.0068 0.0727 0.0022 0.0564 0.0033 0.0408 0.0018

ρi,k,1(north) 0.0674 0.0175 -0.0038 0.0284 -0.1312 0.0138 0.1596 0.0153 -0.1012 0.0088

ρi,k,2(intercept) -0.8674 0.0436 -0.1021 0.0756 -1.1815 0.1017 -0.6095 0.0475 -0.6374 0.0416

ρi,k,2(wtemp) -0.0015 0.0059 0.0198 0.0102 -0.0801 0.0032 -0.1037 0.0049 -0.0742 0.0026

ρi,k,2(north) -0.0524 0.0176 0.0094 0.0285 0.1529 0.0138 -0.1537 0.0154 0.0748 0.0089

ϕk,1(intercept) -0.2068 0.0940 0.2106 0.1182 -0.5156 0.3086 -2.8444 0.6983 0.1678 0.0888

ϕk,1(temp) 0.0055 0.0239 -0.1956 0.0334 0.4891 0.0701 -1.7035 0.4374 0.0197 0.0136

ϕk,2(intercept) 0.2277 0.0121 0.1430 0.0265 0.5430 0.0086 -1.0809 0.0296 0.4148 0.0064

ϕk,2(temp) 0.1667 0.0327 -0.0855 0.0918 0.3297 0.0559 0.3056 0.1391 0.0730 0.0234

µ1(emergence) 2.0203 0.0090 1.4842 0.0271 1.8331 0.0243 2.1331 0.0046 1.8044 0.0124

µd(emergence) 2.4234 0.0063 2.5370 0.0115 2.4170 0.0141 2.4201 0.0054 2.3789 0.0073

σ1(emergence) 0.5647 0.0207 0.6306 0.0380 0.9677 0.0182 0.7065 0.0105 0.7482 0.0166

σ2(emergence) 0.3105 0.0159 0.5797 0.0333 0.9116 0.0170 0.6887 0.0098 0.6179 0.0119
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Table 6.4b: Parameter estimates from the N2 model with covariates. Est and SE represent the parameter estimate and standard error,

respectively. All estimates are on the log scale.

Wall Brown Holly Blue Small White Brown Argus Green-veined White

Parameter Est SE Est SE Est SE Est SE Est SE

ρi,k,1(intercept) -1.0292 0.0176 -0.1019 0.0243 -1.7222 0.0129 -0.8385 0.0143 -0.8373 0.0084

ρi,k,1(temp) -0.0447 0.0053 -0.0985 0.0066 0.0470 0.0021 0.0643 0.0032 0.0374 0.0018

ρi,k,1(north) 0.0591 0.0153 -0.0130 0.0282 -0.1257 0.0141 0.1605 0.0153 -0.1017 0.0088

ρi,k,2(intercept) 0.9542 0.0177 0.0968 0.0245 1.7188 0.0129 0.8466 0.0144 0.8396 0.0084

ρi,k,2(wtemp) 0.0326 0.0069 0.0113 0.0101 -0.0604 0.0031 -0.1090 0.0045 -0.0703 0.0025

ρi,k,2(north) -0.0664 0.0154 0.0187 0.0282 0.1459 0.0142 -0.1544 0.0153 0.0752 0.0088

µ1(flight period) 2.1423 0.0034 1.7744 0.0078 1.9703 0.0047 2.2037 0.0026 2.0105 0.0023

µd(flight period) 2.4924 0.0028 2.5391 0.0047 2.5157 0.0029 2.4419 0.0024 2.4152 0.0018

σ1(flight period) 0.6731 0.0109 0.8727 0.0157 0.9510 0.0113 0.7457 0.0084 0.8616 0.0061

σ2(flight period) 0.6640 0.0067 0.8497 0.0130 1.1478 0.0044 0.7496 0.0057 0.9529 0.0038
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6.2.4 Phenology

In this section we demonstrate the potential to produce estimates of phenol-

ogy using the dynamic models. The N1 and N2 models were fitted with ρ, µ

and σ each varying with year. Hence the N1 requires 101 parameters to be

estimated, corresponding to 33 parameters for ρk, and 34 parameters each

for µk and σk. Similarly the N2 model has 203 parameters: 34 for ρk,1, 33

for ρk,2, and 34 each for µk,1, µk,d, σk,1 and σk,2. To identify potential pheno-

logical trends, simple linear regressions were performed post-model fitting

and green lines indicate significant regressions (p-value ≤ 0.05). This could

also be examined by building regressions within the model.

Figures 6.9a and 6.10 suggest that the mean flight period date, µ, has

advanced for all species and broods, which is consistent with what is ex-

pected, and was also found in Section 5.6.4. From Figures 6.9b and 6.11 we

see that the length of the flight period/brood has increased significantly for

3 out of 6 univoltine and 4 out of 5 bivoltine species studied, which is in

agreement with previous findings (Roy and Sparks 2000). Figures 6.10 and

6.11 show the presence of a small number of outliers which provides further

evidence that the dynamic models for the bivoltine species may be difficult

to fit or require more data. This requires further investigation.

With the exception of Green Hairstreak, for the six univoltine species

there was no clear relationship between µk and ρk (Figure 6.12). For Green

Hairstreak, which emerges early in the season, lower productivities are as-

sociated with an earlier flight period, which may lead to declines if advances

in phenology continue with changes in climate. For most of the five bivol-

tine species, significant patterns between the mean flight period for each

generation and the associated productivity were not found (Figure 6.13).

However for Brown Argus and Green-veined White, productivity of the sec-

ond generation was lower when µk,2 was advanced.

These results show that the dynamic models frequently predict pheno-

logical changes consistent with expected patterns. The improved estimates

of phenology may be studied in combination with demographic parameters,
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to reveal potential novel insights. Subject to producing robust estimates,

changes in phenology may also be modelled using the stopover models, in

order to separate changes in emergence from changes in survival.
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Figure 6.9: Annual estimates of a) µk and b) σk from model N1, which

was fitted to estimate ρk, µk and σk across sites for each year. Green lines

indicate significant linear regressions (p-value ≤ 0.05).
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Figure 6.10: Annual estimates of a) µk,1 and b) µk,2 from model N2, which

was fitted to estimate ρk,b, µk,b and σk,b across sites for each brood and year.

Green lines indicate significant linear regressions (p-value ≤ 0.05).
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Figure 6.11: Annual estimates of a) σk,1 and b) σk,2 from model N2, which

was fitted to estimate ρk,b, µk,b and σk,b across sites for each brood and year.

Green lines indicate significant linear regressions (p-value ≤ 0.05).
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Figure 6.12: Annual estimates of µk versus productivity ρk from model N1,

which was fitted to estimate ρk, µk and σk across sites for each year. Green

lines indicate significant linear regressions (p-value ≤ 0.05).
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Figure 6.13: Annual estimates of a) µk,1 versus ρk,1 and b) µk,2 versus ρk,2

from model N2, which was fitted to estimate ρk,b, µk,b and σk,b across sites

for each brood and year. Green lines indicate significant linear regressions

(p-value ≤ 0.05).
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6.2.5 Comparison to the GAI approach

In this section we discuss how the dynamic models compare with the GAI

presented in Chapter 5. The GAI approach was presented in a more gen-

eral context than the dynamic models, and provides a broad framework for

modelling butterfly count data for any given year, encompassing a range

of possible discrete distributions as well as phenomenological, stopover and

spline alternatives for modelling the seasonal variation in counts. The GAI

models have structural similarities to the dynamic models, but, aside from

regressions on {ai,j,k}, abundance from different years is analysed separately,

and hence unlike the dynamic models do not produce estimates of produc-

tivity.

We compare output from the dynamic model N1 and the P/N1 GAI

(Section 5.2). In this comparison we regressed µ and σ on year, therefore

for the GAI there were four parameters to estimate, corresponding to an

intercept and slope parameter each for µ and σ. The dynamic model N1

was also fitted with µ and σ regressed on year, with the addition of annual

estimates for productivity.

The estimates and associated standard errors are generally similar from

the two models (Table 6.5). The estimates of dispersion suggest overdisper-

sion in some cases. The standard errors could be suitably inflated to deal

with this, or, as demonstrated in Section 5.6.2, a negative-binomial model

may be preferred. Figure 6.14 compares estimates of site abundance from

the two methods.

Indices of abundance from the dynamic model and GAI show good agree-

ment with the index resulting from the GAM approach (Section 4.1.3) in

Figure 6.15. The index from the dynamic model is often closer to the GAM

index than the GAI, for example in some years for Gatekeeper and Marbled

White. This could be a result of site variation between years, which is ac-

counted for by the GAM approach, as well as in the dynamic model, where

G (Section 6.1.5) can be estimated from every site for each year (and brood).

In contrast, for the GAI only sites visited in a given year contribute to the
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index G (equation 5.9). On average across the six species, the GAI took

15 seconds, whereas the dynamic model took 87 minutes. The GAI per-

forms hugely better than the alternative approaches in terms of efficiency,

which is an important consideration when indices require evaluation every

year for all species. Differences between the indices produced from different

methods are fairly small. The dynamic model can provide estimates of pro-

ductivity, as well as separate indices for different broods, but with greater

computational requirements.



C
h
ap

ter
6.

D
y
n
am

ic
m
o
d
els

2
1
1

Table 6.5: Comparison of a) the dynamic N1 model and b) the P/N1 GAI with log-linear regressions on year. Est and SE represent the

parameter estimate and standard error, respectively. All estimates are on the log scale. To reduce bias, estimates for σ are based on

models with time-varying µ. D is the dispersion (residual deviance/degrees of freedom) and T is the approximate computation time in

minutes.

Species µ(intercept) µ(slope) σ(intercept) σ(slope) D T

Est SE Est SE Est SE Est SE

a)

Chalkhill Blue 2.9555 0.0002 -0.0168 0.0002 0.4999 0.0013 0.0310 0.0020 9.4 91

Small Skipper 2.8203 0.0005 -0.0309 0.0005 0.5397 0.0031 0.0542 0.0020 3.3 57

Green Hairstreak 2.0387 0.0034 -0.0673 0.0037 0.8305 0.0275 0.0886 0.0296 1.1 35

White Admiral 2.7439 0.0011 -0.0415 0.0012 0.4594 0.0256 0.0331 0.0172 0.8 120

Gatekeeper 2.8980 0.0002 -0.0159 0.0002 0.4170 0.0018 0.0241 0.0018 6.5 72

Marbled White 2.7358 0.0005 -0.0436 0.0005 0.3203 0.0114 0.0184 0.0081 4.2 147

b)

Chalkhill Blue 2.9557 0.0002 -0.0169 0.0002 0.5015 0.0014 0.0298 0.0020 4.6 0.21

Small Skipper 2.8199 0.0005 -0.0313 0.0005 0.5372 0.0031 0.0559 0.0020 1.9 0.24

Green Hairstreak 2.0408 0.0035 -0.0673 0.0037 0.8311 0.0278 0.0881 0.0305 0.8 0.14

White Admiral 2.7448 0.0011 -0.0413 0.0012 0.4606 0.0261 0.0313 0.0173 0.6 0.22

Gatekeeper 2.8980 0.0002 -0.0159 0.0002 0.4152 0.0018 0.0255 0.0018 4.5 0.21

Marbled White 2.7359 0.0005 -0.0436 0.0005 0.3199 0.0118 0.0202 0.0080 3.0 0.24
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Figure 6.14: Comparison of site parameters {Ni,k} from the P/N1 GAI

model (NGAI) and model N1 (NDYN), as fitted in Table 6.5. Both axes are

displayed on the log scale and the line indices the 1-1 line.
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Figure 6.15: Relative abundance indices from dynamic model N1 (black),

the P/N1 GAI model (blue) and the GAM approach (red). The GAM

approach is as fitted in Section 6.2.1. The dynamic and GAI models are as

fitted in Table 6.5.
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6.3 Discussion

The dynamic model framework presented in this chapter allows for novel in-

vestigation of the drivers of fluctuations in butterfly abundance from year to

year and provides a basis that can be adapted to both the study species and

research aim. In this chapter we have presented only a preliminary applica-

tion of the models. The methods of Chapter 5, which model data for each

year separately, may be better suited for estimating indices of abundances

most efficiently, whereas the dynamic models provide additional information

of potential value for understanding butterfly demography. In particular

novel estimates of productivities and abundance indices for separate broods

provide new insights.

For the majority of the sample species, higher productivity was associ-

ated with cooler winters. Variability in lifespan and first brood productivity

of bivoltine species differed more between species. Further application may

look for trait-based variation, for example overwintering stage: egg, larva,

chrysalis or adult. Diamond et al. (2011) explored relationships between

changes in date of first appearance and species’ traits.

Further work is needed to explore the most relevant covariates driving

changes in productivity, survival and phenology. Spatial covariates such as

habitat/land-cover variables may describe additional variation in the model

parameters. The inclusion of local-scale weather could identify the period

within the life-cycle for which weather has the most impact on abundance of

the adult stage. Growing degree-days may also be explored (Hodgson et al.

2011; Cayton et al. 2015). Here covariates were included only additively

on a logistic linear scale, whereas true relationships may be non-linear, for

example productivity/survival might be limited by extremes in weather;

models with thresholds could be employed (Besbeas and Morgan 2012).

The models could also be extended to describe variation in productivity

stochastically.

Many of the possible model variations from previous chapters also ap-

ply here. In this chapter we have considered the data to arise only from a
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Poisson distribution. In Chapter 5 the negative-binomial and zero-inflated

Poisson were also considered, and approximate concentrated likelihood ap-

proaches derived, which could similarly be done for the dynamic models in

this chapter. Alternatively, Pagel et al. (2014) accounted for overdispersion

by a mixed log-normal-Poisson distribution within a Bayesian framework.

As suggested for the stopover model in Section 4.2.3 and for the GAI in

Section 5.7, alternatives to the Normal distribution for describing seasonal

variation could be explored, for example to describe skewness.

This study has only accounted for species which are distinctly univoltine

or bivoltine. A spline may be used to define complex seasonal patterns as

shown in Chapter 5, and the models could be extended to allow more than

two broods each year. The models may be developed to accommodate

variation in voltinism, where the first generation contributes to both the

second generation within the same year and first generation the following

year.

Given the greater complexity of the dynamic models, which unlike the

GAI in Chapter 5 model data from multiple years simultaneously, it is un-

derstandable that model fitting becomes increasingly difficult as the com-

plexity increases, particularly for species with multiple broods. Hence many

of the proposed extensions and avenues for further work would most likely

be subject to this restraint, which may be related to the amount of infor-

mation available from the data.

The dynamic models produce realistic estimates of parameters relevant

to phenology, providing further validation of the models. As discussed al-

ready in Section 1.1.2, phenological studies have typically involved measures

such as mean first appearance, mean peak appearance and mean length of

the flight period, which may be driven by observer behaviour. The improved

estimates of phenology from dynamic models provide the opportunity to

study linkages between changes in phenology and demographic changes in

abundance and/or productivity, for example possible phenological mismatch

(Hindle et al. 2014).

Using a phenomenological model may be optimal in scenarios with lim-
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ited data, but the stopover model allows for additional insights by estimat-

ing survival. Spatio-temporal variation in the lifespans of butterflies has

had limited attention, as have potential linkages with other parameters, for

example to explore how phenology affects survival, or whether variation in

survival can influence productivity. Using a stopover model separates rel-

evant parameters, for example to determine whether an increase in flight

period length is due to an extended period of emergence, or increased lifes-

pan.

Density dependence, which has been highlighted for some butterflies

(Nowicki et al. 2009), may be incorporated here in productivity and/or sur-

vival by introducing a dependency on the relative abundance. Additionally,

allowing for spatial dependence of ρ and autocorrelation in abundance may

be advantageous (Johnson et al. 2012). Pagel et al. (2014) included spatially

autocorrelated random effects when modelling mean population density, but

did not account for the within-year variability in counts.

For some threatened, conservation-priority UK butterflies, such as Large

Blue and Marsh Fritillary data are available on other stages of the butterfly

life-cycle, such as counts of caterpillars or eggs. An attraction of the model

framework proposed here is the potential for the incorporation of data from

multiple stages of the life-cycle, which could aid the monitoring and conser-

vation of rarer species for which coverage from standard monitoring schemes

can be limited.

The new dynamic models may address the “lack of mechanistic under-

standing about factors driving butterfly population dynamics” (Isaac et al.

2011b), which we previously referred to in Chapter 1. Further application

of the models will generate a variety of hypotheses for future investigation,

which have the potential to illuminate complex features of butterfly phenol-

ogy and demography which are at present poorly understood. The potential

of the dynamic models, as well as areas for future work, will be revisited in

Chapter 7, within the context of other approaches for modelling butterfly

abundance.

Although we have presented the dynamic models in the context of but-



Chapter 6. Dynamic models 217

terflies, it may be applied to other insect species, possibly after modifica-

tion appropriate to their ecology. For example, adaptation of the models

to flightless longhorn beetles, Dorcadion fuliginator, which take two years

to reach maturity (Baur et al. 2005), is in progress. Other examples are

many dragonflies and some crickets. The models may also be adapted for

the study of migrant bird and reptile populations.



Chapter 7

Discussion and future work

In this thesis we have developed new approaches for modelling the abun-

dance and distribution of butterflies. During a period of habitat loss, cli-

mate change and loss of biodiversity, the availability of accurate and efficient

modelling techniques is crucial for monitoring and understanding changes

in species’ population and distribution. The novel models described in this

thesis provide a basis for new and exciting future studies, generating hy-

potheses for further investigation, which will lead to better understanding

of the drivers of changes in butterfly populations.

The models developed in this thesis have primarily been applicable for

count data, from which indices of abundance can be derived. Indices play an

important rôle in monitoring changes in biodiversity and progress towards

biodiversity targets. As the most comprehensively monitored insect taxon,

known to respond rapidly and sensitively to change, indices for butterflies

are particularly valuable, but devising methods that can be fitted to large

data sets is challenging and they can be computer intensive.

As described in Section 1.1, butterfly populations in the UK and beyond

are undergoing various changes in their abundance, range, phenology and

in some cases voltinism. Of particular note is that three-quarters of UK

butterfly species have shown declines in their distribution, abundance, or

both over a ten-year period (Fox et al. 2011a). The new methods described

in this thesis will aid the monitoring of these changes in the form of accurate

218



Chapter 7. Discussion and future work 219

and efficient indices for abundance, as well as completely novel occupancy

indices for butterflies, both of which may guide future conservation and

management.

Both the UKBMS and BNM, which were the primary datasets consid-

ered in the thesis, consist of data gathered by volunteers/citizen scientists,

amounting to millions of records which were previously not exploited fully.

The original GAM approach involved discarding data for sites where a high

proportion of weeks or the peak of the flight period is missed (Section 4.1.2).

The new methods developed for modelling butterfly abundance, including

the two-stage GAM approach, have the benefit of being possible to apply to

all available data, which is essential for both the motivation and retention

of volunteer participants, as well as the production of accurate indices.

In terms of studying changes in butterfly distributions, the BNM records

were previously only used to map butterfly distributions superficially, by

comparing changes over limited multi-year time periods. New analyses

are possible using the occupancy approach described in Chapter 2, which

demonstrates the formulation of annual occupancy maps and new associ-

ated indices for occupancy, at both the UK and regional scale. With fur-

ther development and application, this approach may advance the study of

changes in distribution and range dynamics, and allow for improved and

more regular reporting of such changes than previously.

In Chapter 3 it was shown that the popular N-mixture model, which is

used for modelling abundance and detection probability from count data,

can produce infinite estimates of abundance in some scenarios. The equiv-

alent multivariate Poisson and negative-binomial models provide alterna-

tive approaches for model fitting which avoid the need to select an upper

bound K. It is hoped that the results in this chapter will increase aware-

ness among practitioners of the potential issues associated with fitting these

popular models to data where detection probability is low and/or the num-

ber of sampling occasions is small. Aspects of the models in Chapter 3 were

also relevant in the development of models suitable for describing butterfly

abundance in Chapters 5 and 6.
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A key challenge when modelling butterfly count data, such as the UKBMS,

is the large amount of information available, where counts have been made

from multiple visits, over many sites and years, for many species, which

show much variation, for example in population size, range, overwintering

stage and foodplants. An additional complicating feature of the data is the

seasonal nature of the counts, and for some species the presence of multiple

broods per year. In Chapters 4-6 we have considered a variety of approaches

for modelling butterfly abundance, within a range of different contexts. The

different methods were designed to be broadly applicable to various types

of species, and each have associated advantages and disadvantages. Given

the variation between different butterfly species, we anticipate that the best

modelling approach may vary according to individual species, as well as the

data available and study purpose. This thesis provide a greater choice of

methods, which may be tailored to the demands of different species, and

which we hope may lead to interesting and influential applications in the

future.

Given the demonstrated efficiency and flexibility, we would recommend

that the phenomenological GAI presented in Chapter 5 may be best suited

for estimating indices of abundance, where a suitable choice of function

for the seasonal variation in counts can be made on an individual species

basis. In particular the GAI is very efficient compared to the two-stage

GAM approach and dynamic models, which would lead to faster outputs

and feedback of results to recorders, as well as policy makers. Improved re-

porting may enhance the experience of the citizen scientists involved, which

is important for retaining volunteers on schemes such as the UKBMS which

require considerable effort from participants.

One feature for further consideration is the influence of variation in

sites sampled between years, which is not currently accounted for by the

GAI. The two-stage GAM approach and dynamic models incorporate this

aspect, although this is typically based upon the assumption that trends in

abundance are the same across sites. However trends may vary among sites

within the dynamic models by allowing the productivities to vary spatially,
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for example with suitable covariates (Section 6.2.2).

The GAM-based approaches that have been typically used to model

UKBMS data describe the seasonal pattern non-parametrically as a means

to impute missing records. The parametric descriptions of seasonal variation

proposed in this thesis go beyond solely empirical descriptions and provided

new and meaningful mechanistic parameters from only count data, such as

survival and productivity. This has particular relevance for species with

multiple broods per year, as studying the population dynamics of individ-

ual broods has typically not been previously possible. Although less efficient

than the GAI, the dynamic models in Chapter 6 consider both within- and

between-year population changes simultaneously, as well as explicitly mod-

elling separate broods and their dependence. Hence the dynamic models

have the potential to improve our understanding of the complex processes

underlying butterfly population dynamics over large spatial and temporal

scales, in particular through the study of the new and informative parame-

ters that explain aspects of phenology and demography.

The stopover models for butterfly abundance can provide new insights

into both spatial and temporal variation in the survival of adult butterflies,

and how survival may link with other features such as phenology. But-

terfly lifespans have previously received limited attention, and in particular

their study has mostly been restricted to small-scale studies of mark-release-

recapture (MRR) data, often for a single species, since an effective method

for estimating survival from only count data was lacking (Nowicki et al.

2008). Hence from the stopover models survival can be estimated for various

species, and also compared between broods for bi- or multivoltine species,

although comparison with estimates from MRR data is needed to confirm

the validity of the survival estimates from stopover models. Estimates of

abundance from stopover models could be used to produce indices that sep-

arate the emergence pattern and lifespans, in order to estimate an index

that is more representative of the actual butterfly population, rather than

the number observed, which is not possible for GAMs and phenomenolog-

ical models. Pollard and Yates (1993) and Nowicki et al. (2008) advised
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that effects of variation in lifespans on indices of abundance are likely to

be small, but Nowicki et al. (2008) also suggested that abundance indices

may be “overestimated in good weather seasons, and underestimated in bad

ones”. By estimating survival, the stopover models provide the opportu-

nity to determine whether declines in species’ abundance are accompanied

by changes in the lifespan of adult butterflies, or if the changes are a result

of other factors, for example relating to productivity.

By providing new opportunities for describing various aspects of but-

terfly populations, the new modelling approaches devised in this thesis can

aid our understanding of the many threats to butterfly populations. There

is wider scope to study the impacts of weather and climate, for example

weather extremes (Oliver et al. 2013), on particular features of the but-

terfly life cycle, at different times of the year, and for different broods for

multivoltine species. The influences of species’ traits, such as overwintering

stage and the number of host plant species, on aspects of butterfly popula-

tion dynamics may also be investigated (Diamond et al. 2011).

The interesting new parameters that relate to phenology and voltin-

ism also present the possibility for more detailed studies on these features

which, as discussed in Chapter 1, were previously based on näıve measures

which may be prone to bias, or in the case of voltinism often not consid-

ered. In particular this may be relevant for revealing potential damaging

effects of changes in phenology in response to climate change, such as phe-

nological mismatch between species’ emergence and food sources (Hindle

et al. 2014), or so-called lost generations (Van Dyck et al. 2015), where a

species might respond to increased temperatures by producing an additional

brood towards the end of the season, which could be detrimental if there is

insufficient time to complete the full life-cycle.

Given the breadth of this thesis, applications in each chapter are only

demonstrative and in each case there is scope for future work, which has

mostly been described in the relevant discussions at the end of each chapter.

In particular, further study is required to determine the robustness and

potential limitations of the new methods, particularly in the context of
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limited data, and/or for more complex model descriptions, for example for

the dynamic models, especially for bivoltine species with a stopover model

formulation.

Given the large and increasing number of butterfly and other insect

schemes (Tables 1.1 and 1.2), we anticipate that the models presented in

this thesis may also prove useful beyond the application to UKBMS data,

to monitoring schemes for butterflies in other countries, as well as data

for other insects, such as moths, possibly with adaptation where required.

The occupancy approaches devised in Chapter 2 may also be used to study

annual changes in the distributions of other taxa with opportunistic obser-

vation records, for example the National Moth Recording Scheme (NMRS)

consists of distribution records for UK moths, and has reached over 15 mil-

lions record since its introduction in 2007 (Fox et al. 2013).

In this thesis applications were limited to only the UKBMS and BNM

data for UK butterflies, but as described in Section 1.3.3, the WCBS also

exists to improve monitoring of the wider countryside and could be used

in combination with the other schemes. The WCBS data are currently

incorporated with UKBMS data for wider countryside species using the

two-stage GAM approach (Brereton et al. 2014), and trends in abundance

from the WCBS have been shown to correlate with those from the UKBMS

(Roy et al. 2014). As mentioned in Section 2.5, combining multiple sources

of information, for example count data with opportunistic records as in

Pagel et al. (2014), is also an avenue for further work.

In Chapter 2, dynamic occupancy maps were proposed as a tool for

visualising spatio-temporal change in butterfly distributions. Further work

could be undertaken to ascertain the performance of site-occupancy models

and the associated dynamic maps for more habitat-specialist species with

limited ranges. Similarly, applications of the models for abundance in this

thesis require testing for habitat-specialist species, which often have limited

data.

For some habitat-specialist species additional methods are used to mon-

itor abundance: adult timed counts, larval web counts and egg counts (Br-
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ereton et al. 2014). There is potential to adapt the dynamic models to

incorporate data on other stages of the butterfly life-cycle, as discussed in

Section 6.3, which could lead to stage-specific parameter estimates such as

survival (Manly 1974), and hence aid the monitoring and conservation of

rarer species. Another possible adaptation of the dynamic models is to the

study of possible drivers for the timing and magnitude of annual influxes of

migratory species such as Painted Lady and Red Admiral, including mea-

sures of climate (Sparks et al. 2005). Similarly, population dynamics for

species which overwinter in the adult stage, such as Brimstone and Small

Tortoiseshell, could be studied.

Temporal changes in abundance have been the focus in Chapters 4-

6, but spatial variation in abundance could be investigated and visualised

using maps or regional indices, as for the occupancy models in Chapter 2.

It will also be valuable to model changes in occupancy and abundance at

more local scales, for example at sites of particular conservation interest,

and in this case using the UKBMS data at the site section level may be

valuable. There is also potential to account for spatial autocorrelation in

butterfly occupancy and or abundance, as discussed in Sections 2.5 and 6.3.

Density-dependence is another factor that could be explored, as advocated

in Nowicki et al. (2009). The models in this thesis could also be adapted to

explore synchrony in populations (Sutcliffe et al. 1996; Powney et al. 2010),

either between sites for a given species or across sites but between multiple

species, by incorporating random effects (Lahoz-Monfort et al. 2011, 2013),

for example in the ρ parameter for productivity in the dynamic models. A

preliminary study has been performed, exploring synchrony between similar

species using occupancy models.

Many of these modelling suggestions may be most feasible within a

Bayesian framework, which can readily incorporate hierarchical models.

All analyses in this thesis were made using maximum-likelihood estimation.

Random effects were used to describe many abundance parameters in Chap-

ter 3 and Section 5.4, but, as discussed, this may be more straightforward in

a Bayesian context. Despite this, classical inference may be favoured: meth-
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ods of model selection and goodness-of-fit are better established and there

is no need to choose suitable priors and undertake prior sensitivity studies.

Moreover, when describing methods for producing indices of abundance

which are used for reporting trends, it is possible that classical approaches

may be more interpretable to non-experts, such as citizen scientists. In the

context of modelling large datasets, for many species, Bayesian methods

can be highly computer intensive, which could be prohibitive when indices

require annual updates, although this is likely to become less restrictive in

future.

Although associated R code is provided in an electronic appendix to this

thesis, the possibility of developing a free, easy to use, statistical package

in R, which incorporates general frameworks for modelling the abundance

of seasonal insects of butterflies, could encourage the wider application of

these methods by producing more accessible tools for users.
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Sólymos, P., Lele, S. and Bayne, E. (2012). Conditional likelihood approach

for analyzing single visit abundance survey data in the presence of zero

inflation and detection error. Environmetrics, 23, 197–205.

Sontag, E. D. and Zeilberger, D. (2010). A symbolic computation approach

to a problem involving multivariate Poisson distributions. Advances in

Applied Mathematics, 44, 359–377.

Soulsby, R. L. and Thomas, J. A. (2012). Insect population curves: mod-

elling and application to butterfly transect data. Methods in Ecology and

Evolution, 3, 832–841.

Sparks, T. H., Roy, D. B. and Dennis, R. L. H. (2005). The influence of

temperature on migration of Lepidoptera into Britain. Global Change

Biology, 11, 507–514.

Sparks, T. H. and Yates, T. J. (1997). The effect of spring temperature on

the appearance dates of British butterflies 1883–1993. Ecography, 20, 368–

374.
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J., Verovnik, R., Warren, M., Wiemers, M., Wynhoff, I. et al. (2011).

Applying IUCN criteria to invertebrates: How red is the Red List of

European butterflies? Biological Conservation, 144, 470–478.

Van Turnhout, C. A. M., Willems, F., Plate, C., van Strien, A., Teunissen,

W., van Dijk, A. and Foppen, R. (2008). Monitoring common and scarce

breeding birds in the Netherlands: applying a posthoc stratification and

weighting procedure to obtain less biased population trends. Journal of

Catalan Ornithology, 24, 15–29.

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee,

T. J., Fromentin, J. M., Hoegh-Guldberg, O. and Bairlein, F. (2002).

Ecological responses to recent climate change. Nature, 416, 389–395.

Wang, J. P. Z. and Lindsay, B. G. (2005). A penalized nonparametric max-

imum likelihood approach to species richness estimation. Journal of the

American Statistical Association, 100, 942–959.

Warren, M. S., Hill, J. K., Thomas, J. A., Asher, T. J., Fox, R., Huntley,

B., Roy, D. B., Telfer, M. G., Jeffcoate, S., Harding, P., Jeffcoate, G.

et al. (2001). Rapid responses of British butterflies to opposing forces of

climate and habitat change. Nature, 414, 65–69.

Warton, D. and Aarts, G. (2013). Advancing our thinking in presence-only

and used-available analysis. Journal of Animal Ecology, 82, 1125–1134.

Warton, D. I. and Shepherd, L. C. (2010). Poisson point process models

solve the pseudo-absence problem for presence-only data in ecology. An-

nals of Applied Statistics, 4, 1383–1402.



BIBLIOGRAPHY 250

Wenger, S. J. and Freeman, M. C. (2008). Estimating species occurrence,

abundance, and detection probability using zero-inflated distributions.

Ecology, 89, 2953–2959.

Wood, S. N. (2000). Modelling and smoothing parameter estimation with

multiple quadratic penalties. Journal of the Royal Statistical Society: Se-

ries B (Statistical Methodology), 62, 413–428.

Wood, S. N. (2006). Generalized Additive Models: an introduction with R.

Chapman & Hall/CRC, Boca Raton.

Wood, S. N., Goude, Y. and Shaw, S. (2015). Generalized additive models

for large data sets. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 64, 139–155.

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D.,

Campbell Grant, E. H. and Veran, S. (2013). Presence-only modelling

using MAXENT: when can we trust the inferences? Methods in Ecology

and Evolution, 4, 236–243.

Yamaura, Y. (2013). Confronting imperfect detection: behavior of binomial

mixture models under varying circumstances of visits, sampling sites,

detectability, and abundance, in small-sample situations. Ornithological

Science, 12, 73–88.
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