
Cupitt, John R. G. (1989) The design and implementation of an operating system
in a functional language. Doctor of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94289/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94289

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It

was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94289/
https://doi.org/10.22024/UniKent/01.02.94289
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

THE DESIGN AND IMPLEMENTATION OF AN
OPERATING SYSTEM IN A FUNCTIONAL LANGUAGE

A THESIS SUBMITTED TO

T h e U niversity o f K e n t a t C a n t e r b u r y

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By

John R. G. Cupitt

October 1989

Abstract

Operating systems are notoriously difficult programs to write. This thesis deals with

the design and implementation of a small operating system in the purely functional

language Miranda1 [26]. Functional languages promise extreme brevity of expression,

combined with the possibility of formal verification. This thesis aims to show that

an operating system in a functional language can be both easy to write and easy to

reason about.

1 Miranda is a trademark of Research Software Ltd.

n

Acknowledgements

I should like to gratefully acknowledge the help and encouragement of my supervisor

David Turner during the course of this research. I should also like to thank Simon

Thompson for several lengthy discussions, and for help when I was stuck while reading

up on the more theoretical aspects of the subject. Many thanks go to Mark Longley,

Gareth Howells and Rafael Lins for their ideas about functional programming, and

to my family for their love.

The quotes in the chapter headings are taken from UBIK by Philip K. Dick and

should not be read.

Contents

Abstract 11

Acknowledgements hi

1 Introduction 1

1.1 Basic Operating System Structure... 2

1.2 Comparison with Other W o r k .. 5

2 Non-determinism and Functional Programming 6

2.1 Introducing Non-determ inism .. 7

2.2 Stoye’s Sorting O ffice .. 11

2.3 Cleaning up the T y p e s .. 12

2.4 Synchronised Streams.. 13

2.5 Removing Processes... 17

2.6 Controlling D evices... 13

2.7 Switching to Continuations.. 13

2.8 A Small K e r n e l... 22

2.9 A Worked E xam ple... 28

2.10 An Outline of a Semantics for the KAOS K ernel................................... 30

IV

2.11 A Sample P r o o f ... 32

2.12 Discussion... 37

3 The Structure of KAOS 38

3.1 The Real KAOS Kernel ... 39

3.1.1 The KAOS Kernel In terface .. 39

3.1.2 Extensions to M iran da.. 42

3.2 KAOS Message Structure .. 43

3.3 The Event Manager... 45

3.4 Device Drivers.. 47

3.5 The File System ... 51

3.6 The Resource Tracker.. 52

3.6.1 Tracking Process C rea tion ... 54

3.7 Current Difficulties... 55

3.8 Implementation... 57

4 A Better Kernel for KAOS 58

4.1 What is M issin g?.. 58

4.1.1 Non-determinism... 58

4.1.2 Memory Management... 60

4.1.3 Exception Handling.. 61

4.2 New Features for K A O S ... 61

4.3 Discussion... 64

5 Programming Operating System Processes 65

5.1 Higher Order Functions for Sequencing... 66

5.2 The std io L ib ra ry ... 69

v

5.3 Programming System P rocesses.. 71

6 KAOS Applications 80

6.1 The KAOS shell.. 80

6.1.1 Shell Command Syntax.. SO

6.1.2 Programs Available.. 82

6.1.3 Shell C om m an d s... 84

6.1.4 Variable Substitution... 85

6.1.5 Command Sequen cing.. 86

6.1.6 Shell Syntax... S7

6.1.7 A Sample Session... 87

6.1.8 Inside the S h e ll .. S8

6.2 medit — A Screen Editor Under KAOS .. 88

6.2.1 Changing the Input Style ... 89

6.2.2 Isolating File Input and O u tp u t.. 90

6.2.3 Cosmetic Changes .. 90

7 Conclusions and Future Developments 92

A KAOS Kernel Source 97

A .l Introduction.. 97

A.2 Type definitions... 98

A.3 Useful functions... 102

A.4 Kernel functions visible to the outside w o r ld .. 103

A.5 Kernel device control functions .. 104

A.6 The scheduler... 106

A.7 Process rem oval.. I l lvi

A.8 Message passing... 113

A. 9 Process creation.. 115

B KAOS Libraries 117

B. l Introduction... 117

B.2 m isc.m — Various useful fu n c tio n s .. 117

B.3 char .m — Useful character fu n ction s ... 120

B.4 key .m — Maintain keyed l i s t s ... 122

B.5 l i f t .m — Add an error element to a t y p e ... 127

B.6 e rrs .m — KAOS error codes ... 12S

B. 7 co lle c t io n .m — Manage hetrogenous lists.. 130

C Interactions 133

C. l Introduction... 133

C.2 low in ter.m — The core of in t e r a c t .. 134

C.3 in te r .m — Useful functions over lo w in t e r .m 138

vii

List of Figures

1 The Canonical Operating S y ste m ... 4

2 A Parallel Solution to the Hamming Numbers P rob lem 8

3 A Network Requiring a Non-deterministic Solution 9

4 The Sorting Office .. 12

5 A P ro ce s s .. 20

6 Two Processes.. 21

7 Sketch of the Major KAOS System Processes.. 45

viii

“Friends, this is clean up
time, and we’re discounting
all our silent, electric Ubiks
by this much money. Yes,
we’re throwing away the
bluebook. And remember:
every Ubik on our lot has
been used only as directed. ”

Chapter 1

Introduction

It has been claimed[2] that operating systems are among the most complicated things

ever constructed by man. Because of this complexity, as any computer user can tell

you, they are invariably riddled with bugs. Proponents of functional languages have

claimed for years that the functional paradigm makes for far faster and less trouble

some development of programs, and even opens up the possibility of the application

of formal methods to large systems. This thesis describes the design and implementa

tion of KAOS (for Kent Applicative Operating System), a small multi-user operating

system developed entirely in the purely functional language Miranda.

There is another reason why an operating system written in a functional language

might be an interesting exercise. Functional languages are usually used in an envi

ronment in which a user enters an expression and waits for the value to be printed.

It is not clear how one might express an interactive process as a function — this is

still a research topic, see for example [25]. Operating systems perhaps represent the

archetype of this sort of programming problem: an operating system must control the

execution of other programs, interface to physical devices, provide interconnections

1

CHAPTER 1. INTRODUCTION 2

between programs and users and so on. If we can successfully tackle these prob

lems in a purely functional style, then it will be quite a step forward for functional

programming.

The remainder of this first chapter tries to explain what an operating system

should do and argues for a structure along the lines of U N IX 1. Chapter two discusses

the features that need to be added to a functional language to make it possible to write

an operating system, and presents a tiny operating system kernel based on these ideas.

It ends with a sketch of a semantics for an even smaller operating system. Chapter

three presents the complete KAOS kernel and describes in detail the additions to

Miranda that were necessary in order to implement it. It goes on to cover the higher

levels of KAOS, explaining how KAOS handles interrupts, the file system and resource

allocation. Chapter four describes the features present in operating systems like U N IX

but still missing from KAOS and then shows how these capabilities might be added.

Chapter five discusses the problems involved in systems programming in functional

languages and presents a systematic scheme for handling side effects and interrupts.

Chapter six discusses the two large applications that run under KAOS: the KAOS

shell and a port of the Miranda screen editor, medit. Finally, chapter seven lists the

areas in which KAOS is still deficient and suggests some avenues for future research.

1.1 Basic Operating System Structure

An operating system provides a cushion between the user and the machine. We can

list four basic characteristics which an operating system should possess

• The operating system should allow several people to share the machine.

1UNIX is a trademark of AT&T and Bell Laboratories in the USA and other countries

CHAPTER 1. INTRODUCTION 3

• It should manage a persistent set of objects for each user.

. • It should provide a convenient environment for each user to operate in. It should

make it easy to manipulate objects in the persistent store, start up programs

and so on.

• It needs to provide an environment for programs. It should be easy to write

programs such as editors and compilers, and they should have controlled, high-

level access to the machine’s facilities.

These demands have a number of simple consequences for the design of an operating

system.

A multi-user operating system will need to support a set of independent processes

and these processes should have shared access to the resources of the machine, such

as printers, discs, terminals and so on. How are these processes to exist comfortably

together? The operating system must clearly provide a virtual machine for each

process: each virtual machine will be a cleaned up version of the real underlying

machine. The function of the operating system is then to provide a ‘nice’ mapping

of a set of virtual machines onto the single physical machine. The environment for

programs demanded above will then be a set of libraries providing a pleasant interface

to a virtual machine, and the environment for the user will be a program which allows

this mapping to be controlled.

It is perhaps harder to see that the requirements above also imply non-determin

ism. As new computations are started by each user, the operating system will need

to perform them not in some predefined order, but rather overlapped in some way.

It clearly is no good at all if one user wanting to know the seven millionth digit of n

prevents anyone else from using the machine for ten minutes! Moreover, we cannot

CHAPTER 1. INTRODUCTION 4

Editor Shell etc. user processes

File
System

Interrupt
Handler

Resource
Allocation • • • etc. system processes

kernel

machine

Figure 1: The Canonical Operating System

decide in advance how processes are to be overlapped — it will depend of their relative

execution speeds. Any system whose result depends on the exact number of CPU

cycles a computation will take must be non-deterministic. This problem is discussed

at greater length in chapter two.

While the lowest levels of the operating system will clearly have to deal with non

determinism, this is not a complication we want any higher up than strictly necessary

— it can only make reasoning harder. We therefore split the operating system into

two main levels: we have a kernel which supports non-deterministic parallel execution

of a set of processes, and over this a system layer in which a number of privileged

address the problems of resource allocation and sharing. Finally, user processes sit

over the system laj êr. Figure 1 gives an overview of this canonical operating system.

CHAPTER 1. INTRODUCTION 5

1.2 Comparison with Other Work

There have been a number of operating systems written in functional languages.

Perhaps the one closest to KAOS is the operating system produced by Stoye for

his SKIM II machine[21]; the scheme KAOS uses for introducing non-determinism is

based on Stoye’s. This was not intended to be a full operating system, it was just a

collection of utilities produced during the development of the machine.

Jones has produced a number of small operating systems written in functional

languages[15, 14]. These are based on the merge operator described in section 2.1.

These systems were not produced as practical operating systems, but rather as pro

gramming exercises.

More complete systems have been produced or proposed, for example Nebula.[8,

19], but these tend to be based on the somewhat ad-hoc use of operators like merge,

and as a result seem almost impossible to reason about.

In summary, KAOS is a relatively complete operating system in a functional

language with the beginnings of a formal semantics. We believe that it would make

a sound basis upon which to construct a fully practical multi-user operating system

in a functional language.

“Instant Ubik has all the
flavour of just-brewed drip
coffee. Your husband will
say, Christ, Sally, I used to
think your coffee was only
so-so. But now, wow! Safe
when taken as directed.”

Chapter 2

Non-determinism and Functional

P rogramming

There are several problems to be overcome before a functional language can be used

to write an operating system. The most obvious is one of efficiency — in the past,

functional languages have been hundreds of times slower than imperative languages.

This does now seem to be changing with the development of new implementation

techniques such as TIM[5] and the C.M.-C.M.[11]. At a slightly more subtle level, it’s

quite difficult to find an elegant way of representing many operating system concepts

in functional languages. In particular, parallelism in the form exhibited by operating

systems like U N IX require one, as we noted in the introduction, to introduce non

determinism.

This chapter first outlines a number of the schemes that have been proposed for

adding non-determinism to functional languages. We cover in detail the scheme we

shall use and present a listing of a fairly complete kernel written in this style. The

chapter ends with a sketch of a semantics for our kernel.

6

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 7

2.1 Introducing Non-determinism

We first present another perspective on the reasons for the introduction of non

determinism. We shall consider the sorts of process networks that can be represented

in functional languages, and aim to show that these networks are inadequate as the

basis for an operating system.

A deterministic process can be conveniently represented as a lazy function from

a list of the messages sent to it to a list of the messages it sends to other processes.

The process has internal state, as each output item can be a function of the entire

input history up to the moment when the output item is sent. In Miranda such a

process has type

process * ** == [*] -> [**]

We can form networks of these processes by simply using the output from one

process as the input to another. A good example of this style of programming is the

well known communicating-process solution to the Hamming numbers problem. Here

one has to print in ascending order all numbers of the form 2a365c where a, 6, c can

be any natural numbers. The network shown in figure 2 is described by the Miranda

function output below

output :: [nun]
output

= 1:(mult 2 output $join mult 3 output) $join mult 5 output
where
mult n = map (*n)
join (a:x) (b:y)

= a:join x (b:y), a < b
= b:join (a:x) y, a > b
= a:join x y, a = b

See [17, 28] for more on this style of programming.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 8

Figure 2: A Parallel Solution to the Hamming Numbers Problem

Now consider the network in figure 3. Here we have two processes both commu

nicating with a single filing system process. How are we to represent this network in

a functional language? The problem is that the filing system needs to know in what

order the processes will send requests; it cannot simply take a request first from one

process and then from the other, as this would require the processes to emit requests

alternately!

One of the simplest solutions is to require processes to emit special ‘null’ messages

at regular intervals to mark the passage of time. These null messages were dubbed

Hiatons by Wadge, as they mark a ‘hiatus’ of activity on a channel. So for example,

in figure 3 the processes would be required to emit a hiaton perhaps every second or

so. The filing system can then simply alternate between the processes; if one process

is not using the filing system for a while, then the filing system will just see a hiaton

rather than having to wait until the process does want to use the filing system again.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 9

Process 2

Figure 3: A Network Requiring a Non-deterministic Solution

This discipline has to stretch throughout the whole operating system. Every

process is under obligation to emit regular hiatons if everything is to keep running.

From a practical point of view, this is very inefficient. We have what is known

in operating system terminology as busy waiting: the entire system is in constant

motion as hundreds of hiatons move between idle processes. More seriously, networks

constructed with hiatons cannot be made bottom avoiding. Suppose an undebugged

user process reduces to J_ and stops sending hiatons? There is a good chance that

the whole system will stop running!

It should be clear that no scheme in a pure functional language can describe a

bottom avoiding network, since bottom avoidance is essentially non-deterministic.

We are forced to introduce some new primitive.

One of the most common non-deterministic primitives is the merge operator, as

used by Henderson[6]. This is a function which evaluates two lists in parallel, pro

ducing a single list of elements in order of computation time, merge might be written

in Miranda as

merge : : [*] -> [*] -> [*]

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 10

merge x y
= test x, ready x
= merge y x, otherwise

where
test [] = y
test (a:b) = a: merge y b

(Where ready is a hypothetical (and very unsound!) ‘function’ that side-effects its

argument, performing some fixed number of reductions and returning True if it man

ages to reduce it to a base type, a constructor function or a lambda within that time,

and False otherwise. Note that this is a very disciplined form of merge: it is both

fair and bottom avoiding. The issues connected with this are discussed at greater-

length in section 2.12)

We now have another problem. By introducing this operator we have lost the

ability to reason equationally about our programs. For example

merge [2] [4]

might reduce to

[2,4]

We would then expect

merge [1+1] [4]

to have the same value, but of course it won’t! This might well reduce to

[4,2]

Other types of merge can be even stranger. If the two streams being merged

come from different processors, perhaps over a network, then merge applied to the

same arguments might yield different values on different occasions. All these things

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 11

combine to make reasoning about our programs far more complicated. A number of

models for functional programs incorporating merge have been put forward[18, 1],

but all are rather unwieldy. Clearly, merge is a bad thing and ought to be used as

little as possible. In [22], Sto}^e suggested a variation on merge which confines its use

to a single instance outside the language. We shall now consider this scheme in detail.

2.2 Stoye’s Sorting Office

Stoye represents each process running in the machine as a lazy deterministic function

from the stream of messages sent to the process to a stream of messages the process

wishes to send to other processes. Each message sent needs to have the address of

the destination process attached to it. Using Miranda we can write this as

process == [object] -> [(address, object)]

Connecting together all the processes, Stoye has a sorting office. This acts rather

like a postman, taking pairs of addresses and objects from the output of each process

and feeding the objects into the inputs of the destination processes; see figure 4. The

key point here is that the sorting office acts non-deterministically. It reduces all the

processes concurrently, routing messages not in some predefined order, but rather in

the order in which the processes produce them.

We can use merge to write a sorting office in Miranda

sorting :: [(address, object)]
sorting

= mergelist [
processl (inputnfor address_l),
process2 (inputjfor address_2),

etc.
]

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 12

Figure 4: The Sorting Office

where
m ergelist = fo ld r merge []
input_for adr = [x I (d , x) <- so rt in g ; d = adr]

We now only have a single instance of merge in the entire system. We have split

the world into two levels: ordinary functional programs inside each process to which

we can apply all of the usual proof techniques, and a simple non-deterministic agent

linking them all together.

2.3 Cleaning up the Types

In [27], Turner suggested a method for giving individual types to processes. Each

process consumes a list of objects of some specific type and produces a list of message.

process * == [*] -> [message]

Here, message is an opaque type. The only way that processes can make messages is

by using special wrapper functions. These take an object of the input type of some

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 13

process and wrap it up (together with the address of that process) inside a message,

wrapper * = = * - > message

So a process can only send a message to another process if it possesses a wrapper

function for that process.

Wrapper functions are made by the sorting office when a new process is created.

Processes are created by using a special wrapper called spawn to wrap up the function

that is to be the new process, and then sending the resulting message to the sorting

office. The sorting office sets up the new process, hands it its wrapper and starts

it going. Obviously, owning your own message wrapper is not very useful. The new

process will have to send this new wrapper off to some other processes using wrappers

it inherited from its parent.

spawn :: (wrapper * -> process *) -> message

(Turner handled process creation in a slightly different manner, but I believe the spirit

is the same.)

By requiring processes to use wrappers to send messages wTe have allowed each

process to have a different input type, but kept static typechecking. This is an

important addition to the flexibility of the system.

2.4 Synchronised Streams

Our next step is to require that processes emit the special message WAIT immediately

prior to reading their input. This has the effect of making public the process’s de

pendencies between input and output. Stoye has this idea in his thesis[21] and uses

it to get correct synchronisation for interactive programs, but he never applies it to

the sorting office.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 14

If we do this, processes then make enough information available about how they

are going to behave to allow us to write a version of the sorting office that doesn’t use

merge. The advance is that now the sorting office can differentiate between processes

that it can safely demand more output from and those that are blocked on input by

applying these rules whenever a process emits a message

• If the process emits the special WAIT message and the total number of WAITs
the process has emitted so far is greater than the total number of messages sent

to the process, then the process has become blocked on input.

• If the process emits an object to be sent to some destination process d and the

total number of messages sent to d is equal to the total number of WAITs emitted

by d, then d was previously blocked but is now runnable again.

(These rules express asynchronous message passing, where processes only ever stop

if they have no input available. It is straightforward (if a little fiddly) to extend

these rules to express synchronous message passing, where senders block until their

message has been read. Synchronous message passing is generally thought to be more

fundamental, and in fact is the style we will use later.)

These rules are easily expressed in Miranda. A message is now either a WAIT or a

SEND. For each process running, we will keep track of the output list for that process

and the number of messages that that process has yet to consume

process-state == ([message], num)
message ::= WAIT I SEND process_address object
process_address == num

The state of the sorting office as a whole comes in two parts. First, we have a

list of the process-states for all the processes currently in the machine. Process

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 15

addresses will be indexes into this list. The second part is a run queue — a list of

the addresses of all the processes which are currently runnable. The process whose

address is at the head of the run queue is the next to be run

machine_state == ([process_state] , [process_address])

The sorting office is a function taking a machine_state to a [m essage]. It finds

a possible interleaving of the process’ output lists. We can also see the sorting office

as controlling the execution of processes. Each time it demands the next output item

from a process, it is forcing the evaluation of a small part of that process.

There are three main cases — the first is that the run queue is empty, that is, that

there are no runnable processes in the operating system. We have either deadlocked or

the operating system has terminated. If the run queue is not empty, then we demand

the next output item from the process at the head of the run queue, and choose one

of the other two cases depending on whether or not it is the special message WAIT.

sortin g : : machine_state -> [message]
sortin g (p l i s t , run)

= [] , run = []
= handle_wait, x = WAIT
= handle_send, otherwise

where
(p :ta ilru n) = run
(x :t a i lp r o c , w aiting) = p l i s t !p
run' = p o s t f ix p ta ilru n

Second case — the process has emitted the WAIT message. If this process has no

messages waiting for it, it becomes blocked on input. If there are messages waiting,

we can just put its address back on the end of the run queue.

handle_wait
= x :s o r t in g (p l i s t ' , t a i lr u n) , w aiting = 0
= x rsortin g (p l is t > , r u n ') , otherw ise

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 16

where
plist' = update p (tailproc, waiting - 1) plist

(update is a function to replace an element of a list, update n x 1 is a new version

of 1 in which element n has been replaced by x.)
Final case — the process is sending a message to another process. If the waiting

count on the destination process was zero, then it was previously blocked on input

and should now go back on the run queue. Otherwise, we can just put the sender’s

address back on the end of the run queue.

handle_send
= x: sorting (plist'', run"), dwaiting = -1
= x:sorting (plist'', run'), otherwise

where
plist' = update p (tailproc, waiting) plist
plist'' = update d (dproc, dwaiting + 1) plist'
run'' = postfix d run'
(SEND d obj) = x
(dproc, dwaiting) = plist !d

We make the input stream for each process by applying some suitable filter func

tion to the output of sorting. For example, we might run a process wombat at

address zero by

runwombat :: [message]
runwombat

= sorting ([(wombat wombat-input, 0)], [0])
where
wombat-input = [x | SEND d x <- runwombat; d = 0]

(Note that for the sake of simplicity we are not using Turner’s type scheme here. We

are also assuming that processes produce an infinite list of messages once they are

started.)

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 17

Our new sorting office is not quite the same as the original, however. Execution

switches between processes only when they send or receive messages, never while

a process is actually computing: it is no longer bottom avoiding. Things are not

hopeless however. The merge-free sorting office does make a useful prototype and in

some applications this kind of security is not necessary. Chapter 4 discusses these

issues at greater length.

It is interesting to note that this form of parallelism occurs in conventional oper

ating systems as well. Systems such as NeWS[24] and MultiFinder for the Macintosh

series of computers are based on non-preemptive schedulers similar to the one pre

sented above.

2.5 Removing Processes

We need some way of removing processes from the system once they have done their

job. The obvious way of doing this is to allow processes to reduce to [] — the sorting

office can spot this and then take the process out of the process list.

Adding process removal to the sorting office introduces a nasty problem: the

wrapper functions described in section 2.3 can persist after the process to which they

connect has gone. We need to add the stipulation that after using a send wrapper,

the next item on the process’s input is a special value indicating whether or not the

message was sent successfully.

We also need some way of forcibly removing processes from the system. A simple

way of doing this is to make the sorting office hand a new process a kill wrapper along

with its send wrapper. Using this kill wrapper will cause the sorting office to remove

this process.

killwrapper :: message

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 18

spawn : : (wrapper * -> killw rapper -> process *) -> message

As with send wrappers, kill wrappers can become out of date. We need to say

that after using a kill, the next item on the process’s input is a success or failure

value.

2.6 Controlling Devices

We need to add facilities for controlling devices such as discs and terminals. We do

this by adding more special wrapper functions and more guarantees about what will

appear next in the process’s input stream. For example, a process might talk to a

disc with wrappers like

w rite_disc : : blockNumber -> b lock -> message

where the next item on the process’s input is a success or failure value, and

read_disc : : blockNumber -> message

where the next item on the process’s input is either failure, or success coupled with

the b lock that was read.

It seems sensible to change our terminology slightly — while ‘sorting office’ is quite

acceptable for something that simply routes messages, we have now added enough

extras to allow us to call what was the sorting office the kernel of an operating system.

2.7 Switching to Continuations

If one tries to implement a kernel based on the above sketch, things rapidly become

very awkward indeed.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 19

• The curious guarantees about the next item on the input of a process after a

send, kill or device message has been sent require that we delay adding anything

to the output of sortin g unless we know that it will be used straight away. The

behaviour of the sorting office is far simpler if we use continuations, where input

and output are tied together.

• Continuations will work as well with a strict language. Stream based systems

depend very heavily on the precise semantics of the lazy evaluation of lists —

not always as simple a thing as one might think, as [25] shows.

• As we will see, the strange type message that was present in the stream based

model disappears when we switch to continuations.

Continuations are used in Denotational Semantics[23] to model constructions such

as goto statements. The idea is that instead of having functions always returning

their results to their caller, functions are instead passed a number of other functions,

one of which they can choose to pass a value on to. In general, a function using

continuations might look something like

/ : « - » -------> /? (7 -»•-------> - * -------* (« -------* 6) -* . 8 .'---------v---------' '-------- v -------- ---------
a b c d

Where a represents the ‘ordinary’ arguments to / , b represents the first continuation

available to / and c represents the final continuation available, d is the result of the

entire computation.

Instead of being lazy functions over lists, processes are now simply objects of type

process (corresponding to 8 in the above sketch). This is an opaque type whose

internal structure does not yet concern us. New processes are now handed three

functions as they start up: a send function which can be used to send messages to

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 20

t

1 1

Figure 5: A Process

this process, a receive function which this process can use to get its next item of input

and finally a kill function which can be used to remove this process.

send * = = * - > process -> process
re ce ive * == (* -> process) -> process
k i l l fu n == process -> process
newProcess * == send * -> rece ive * -> k i l l fu n -> process

A send function takes as arguments an item of the input type of the process to

which the function sends and a continuation. When the message has been accepted,

control passes to the continuation. A receive function takes a continuation expecting

a message of the input type. This continuation is handed the next message sent

to that process. A kill function takes a single continuation. Control passes to this

continuation when the process has been removed. Clearly, if a process executes its

own kill wrapper, the continuation will never be used. As was hinted at above,

communication is intended to be synchronous: senders block until the message has

been read by the receiver, receivers block until a message arrives.

So for example, consider the process p shown in figure 5. This takes the type t as

input, and can send messages of type ti to tn. Its type would be

p : : send t\ -> • • • -> send tn -> newProcess t

New processes are created with spawn, a function exported by the kernel. This

takes two arguments: the function which is to be the new process and a continuation

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 21

Figure 6: Two Processes

to which control passes when the process has been created,

spawn :: newProcess * -> process -> process

Devices can be controlled with more functions exported by the kernel

readDisc :: blockNumber -> (block -> process) -> process
writeDisc :: blockNumber -> block -> process -> process

As an example, here are two processes exchanging messages (See figure 6). mknum

makes a series of numbers and pipes them to double, double doubles each one,

converts it to a [char] and sends it off to some other process.

mknum posts its numbers off using a send function it was handed as it started up.

As mknum never reads any input, we leave its input type as the empty tuple.

mknum :: send num -> newProcess ()
mknum outfun mknumsend mknumreceive mknumkill

= loop 42
where
loop n = outfun n (loop (n + 1))

double is itself handed a send function as it starts up. It first spawns mknum, handing

it a send function

double :: send [char] -> newProcess num

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 22

double sendfun doublesend doublereceive doublekill
= spawn (mknum doublesend) (double' sendfun doublereceive)

And then loops, reading numbers sent by mknum, doubling them, converting them to
[char] and sending them off

double' :: send [char] -> receive num -> process
double' sendfun doublereceive

= loop
where
loop = doublereceive loop'
loop' n = sendfun (show (n * 2) ++ ", ") loop

2.8 A Small Kernel

This section presents a listing of a kernel based on continuations. Appendix A contains

the source to the complete kernel used in the current implementation of KAOS. It is

a greatly expanded version of the kernel below. For simplicity we will omit process

removal, but we will include a version of the type discipline described in section 2.3.

As there is no process removal, for the definitions below read

newProcess * == send * -> receive * -> process

We hold the current state of a process as an algebraic type. The * represents the

input type of the process.

process-state *
::= RUN process [(*, process-id)] I

IN (* -> process) |
OUT process [(*, process-id)]

RUN The process is runnable. We need to keep the current continuation and a queue

of processes waiting to send to this process. For each waiting process, we hold

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 23

the message the process is trying to send and the p ro ce sse d of the sender.

process_ids are small integers used to identify processes.

IN The process is blocked on input. We need only keep track of the continuation.

OUT The process is blocked on output. We need to hold the continuation and a list

of the processes waiting to send to this process.

We will need to store a list of these things inside the kernel. Unfortunately, the *

will take a different binding for each process and Miranda requires that every element

of a list has the same type. We get around this problem with the special function

changetype, whose purpose is to smuggle things past the typechecker

changetype : : * -> **
changetype = id

(This is only intended to give the reader an idea of what changetype is like. This is

most definitely not a legal definition in Miranda.)

It is interesting to note that it is possible to hide the use of changetype inside

a much smaller abstype, and then to write the kernel in terms of this. Section B.7

shows how this might be done. A kernel written in this way is however far more

cumbersome.

We will hold the process states as [process_state item], where item is sup

posed to represent some untyped expression. We turn *s into items and back using

changetype. Our use of message passing functions ensures that playing with types

in this way is safe — these functions guarantee that *s will always be changetyped

back into their original form.

item == num i| Could be anything

The state of the kernel is again a pair consisting of a list of all the processes and

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 24

a run queue.

machine_state == ([process_state item], [process_id])
processed == num

A process_id is again an index into the [process_state item]. We adopt the

convention that the current process is the one whose p rocessed is at the head of

the run queue.

We are now able to reveal exactly what a process is — it’s a function from a

machine_state to a list of sysunessage, the Miranda console message type.

process == machine-state -> [sys_message]
abstype process
with writeTty :: [char] -> process -> process

spawn :: newProcess * -> process -> process
start :: newProcess * -> [sysunessage]
schedule :: process
pre_send : : process-id -> send *
pre_receive : : receive *

writeTty sends a list of characters to a terminal. There should clearly be more

of these device functions, but writeTty serves to give the flavour.

writeTty :: send [char]
writeTty str cont mstate = Stdout stricont instate

(Note that we could make writeTty call the scheduler, rather than always returning

to its caller.)

spawn creates a new process and adds it to the end of the run queue. Note how we

create the message passing functions for the new process by partially parameterising

pre_send, instantiating the type variable with the input type of the new process.

spawn :: newProcess * -> process -> process
spawn newprocess cont (processMist, run)

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 25

= cont (processlist' , run')
where
newpid = #process_list
run' = postfix newpid run
process .list' = postfix newp processJList
newp = RUN (newprocess ptx prx) []
ptx = pre_send newpid
prx = pre_receive

schedule puts the old current process at the end of the run queue and executes

the next process. If the run queue is empty, the kernel can just exit.

schedule :: process
schedule (process-list, (arrest))

= cont (process-list, run')
where
run' = postfix a rest
(RUN cont pend) = process -list!(hd run')

schedule (processlist, [])
= [Stdout "run queue empty"]

start sets up the first process and calls the scheduler. We type this at the Miranda

prompt to get off the ground.

start :: newProcess * -> [sys_message]
start root

= schedule ([rootp], [0])
where
rootp = RUN (root rtx rrx) []
rtx = pre_send 0
rrx = pre_receive

pre_receive first checks the queue of pending messages attached to the receiver.

If there are no other processes waiting, the receiver becomes blocked on input. Other

wise, we copy a message across and restart the sender. Section 2.9 contains a worked

example — it may be helpful to read that in conjunction with these definitions.

pre_receive :: receive *

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 26

prejreceive rcont (processJList, run)
= switch (process JList!rpid)

where
(rpid:rest) = run

There are no processes waiting to send to this process. We block this process on

input, remove it from the run queue and exit through the scheduler.

switch (RUN oldcont [])
= schedule (processJList', rest)

where
rnew = IN (changetype rcont)
processJList' = update rpid rnew process_list

There are processes waiting. We take the sender at the head of the queue, copy the

message across, change the sender from OUT to RUN, add the now runnable sender to

the run queue and exit through the scheduler.

switch (RUN oldcont ((x, spid):other))
= schedule (processJList’ ' , run')

where
run' = postfix spid run
(OUT scont spend) = processJList! spid
snew = RUN scont spend
processJList' = update spid snew processJList
rnew = RUN (rcont (changetype x)) other
processJList’ ’ = update rpid rnew processJList'

pre_send switches on the state of the receiver. If the receiver is blocked on input,

we can just copy the message across. Otherwise, we have to block the sender on

output and add it to the end of the receiver’s pending list.

pre_send : : processed -> send *
pre_send rpid x scont (process-list, run)

= switch (process.list!rpid)
where

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 27

(spid:rest) = run

The receiver is blocked on input. We copy the message across, change the receiver

back into RUN, add it to the run queue and exit through the scheduler.

switch (IN rcont)
= schedule (process_list'' , run')

where
run* = postfix rpid run
(RUN oldcont spend) = process-list!spid
snew = RUN scont spend
process_list' = update spid snew processJList
rnew = RUN (rcont (changetype x)) []
processJList' ' = update rpid rnew processJList'

The receiver is running and thus not interested in receiving. We change the sender

into OUT, add it to the end of the receiver’s pending list and exit through the scheduler.

switch (RUN rcont rpend)
= schedule (process-list'', rest)

where
(RUN oldcont spend) = process .list!spid
snew = OUT scont spend
processJList' = update spid snew processJList
rnew = RUN rcont (postfix (changetype x, spid) rpend)
processJList'' = update rpid rnew process-List'

And finally, if the receiver is itself blocked on output, the sender has to queue up on

that.

switch (OUT rcont rpend)
= schedule (processJList ' ' , rest)

where
(RUN oldcont spend) = process .list!spid
snew = OUT scont spend
processJList ' = update spid snew processJList
rnew = OUT rcont (postfix (changetype x, spid) rpend)
processJList' ’ = update rpid rnew processJList'

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 28

2.9 A Worked Example

This section runs through the evaluation of start (double writeTty), with the
intention of animating the definitions above.

start will build an initial machine_state and then call the scheduler.

startp = double writeTty (pre_send 0) pre_receive
start_state = ([RUN startp []], [0])
schedule start_state

schedule rotates the run queue and chooses the next process to be executed. Obvi
ously, this will be the one we have just created.

double writeTty (pre_send 0) preureceive start-state

double spawns mknum

spawn (mknum (pre_send 0)) (double' writeTty pre_receive) start-state

And spawn adds mknum as a new process, before returning to double'.

newp = mknum (pre_send 0) (pre_send 1) pre_receive
new_state = ([RUN startp [] , RUN newp []], [0,1])
double' writeTty pre_receive new_state

double' now reads its input

prejreceive loop' new_state

And will clearly have to become an IN until mknum is run. pre_receive puts loop'
back in the state and calls the scheduler again.

newer-state = ([IN (changetype loop'), RUN newp []] , [l])

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 29

schedule newer_state

And schedule obviously has no choice but to run mknum.

mknum (pre_send 0) (pre_send 1) pre_receive newer_state

mknum generates the first number, and sends it off.

pre_send 0 42 (loop 43) newer_state

pre_send looks at the destination process, sees that it is IN at the moment, passes
the message across, changes the IN into a RUN and calls the scheduler.

(process JList, run) = newer_state
(IN (changetype loop')) = process JList! 0
(RUN newp []) = process JList ! 1
newest_state = ([RUN (loop' 42) [] , RUN (loop 43) []], [1,0])
schedule newest-state

schedule rotates the run queue, choosing process 0 as the next to be run.

final_state = ([RUN (loop' 42) [] , RUN (loop 43) []], [0,1])
loop' 42 final_state

double' has now received its first number. It doubles it, turns it into a [char] and
calls writeTty.

writeTty "42, " loop final-state

And writeTty prints the characters to the screen.

Stdout "42, ":loop final-state

2.10 An Outline of a Semantics for the KAOS

Kernel

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 30

This section sketches a very simple operational semantics for a cut down version of

the kernel presented in this chapter. This is only intended to hint at how one might

go about proving properties of collections of KAOS processes — a great deal of extra

machinery would be required to turn this into a usable theory.

Consider the Miranda type process

abstype process
with spawn :: newProcess * -> process -> process

start :: newProcess * -> [sys_message]
writeTty :: [char] -> process -> process
pre_send : : process-id -> send *
pre_receive :: receive *

newProcess * == send * -> receive * -> process
send * = = * - > process -> process
receive * == (* -> process) -> process

We shall represent states of the operating system by finite lists of expressions of

type process. We shall ignore the possibility that an expression might evaluate to

1 .

When reduced, expressions will reach one of the forms

spawn (Ax, y.a) b (1)

pre_send i z a (2)

prerreceive (Ax.a) (3)

writeTty s a (4)

where a, 6 £ process, i £ num, s £ [char] and 2 is any Miranda value.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 31

We give a semantics to our operating system by defining a number of rewriting

rules which show how an operating system state can be transformed once all of its

elements are in one of the forms above. Note that there will usually be more than

one possible rewrite. The choice as to which rewrite is used represents the non

determinism in our system.

[P0,...,P*,...,Pn]
Pk = spawn a b (5)

[po,..., b, . .., pn, a (pre_send (n -f 1)) pre_receive]

[po,...,ps,...,pr, ...,pn]
ps = pre_send r x a

pr = pre_receive b
(6)

b o ,. . . , o , . . . , b x , . . . , pn]

From a starting state o we can construct a derivation tree of states reachable from

that state. For example

° 2

o3

Derivation trees will usually be infinite.

We prove properties of an operating system by making a hypothesis about the

structure of the derivation tree of some operating system state. We prove these

hypotheses by induction over the depth of the derivation tree of that state.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 32

2.11 A Sample Proof

This section sketches a proof of a small collection of processes using the semantics

outlined in the previous section.
The example we shall use is resource allocation. The process allocate will organ

ise sharing of a resource among a number of client processes represented by client
below. Clients wishing to use the resource send allocate a REQuest message. When
the resource becomes free, allocate sends back an acknowledgement message. When
the client has finished, it sends a RELease message back to allocate, which is then
free to grant the resource to some other client.

allocate

allocReq is the input type for our allocator.

allocReq
::= REQ (send ()) I II Request with ack attached

REL

allocate can be in two states: either the resource is free, in which case the
allocator is simply waiting for a REQ message to arrive, or it is allocated to some
process, in which case the allocator is waiting for a REL message to arrive.

There is a slight complication: a REQ message might arrive while the allocator is
waiting for a REL message. If this happens, then the allocator has to put the request
on to the end of a queue of pending requests. When the REL message does arrive and

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 33

the allocator goes back to wait for another REQ message, we have to make sure it first

checks the queue to see if any requests are pending. The function representing the

allocator state in which the resource is free therefore has to take a queue of pending

requests as an argument.

For simplicity we are ignoring the problem of distributing the allocator’s send

function to the various clients.

allocate :: newProcess allocReq
allocate tx rx = free rx []

The resource is free. If there are any pending requests for the resource, then we send

a grant to the process at the head of the queue. If there are no pending requests for

the resource, then we have to wait for a REQ to arrive.

free :: receive allocReq -> [send ()] -> process
free rx (ack:rest)

= ack () (alloced rx rest)
free rx []

= rx unpack
where
unpack (REQ ack)

= ack () (alloced rx [])

The resource is granted to some process. We wait for the next message. If it is

another REQ, then we put that request on the end of the queue of pending messages.

If the next message is a REL, then we can return to the state in which the resource is

free.

alloced :: receive allocReq -> [send ()] -> process
alloced rx q

= rx unpack
where
unpack REL = free rx q

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 34

unpack (REQ ack) = alloced rx (postfix ack q)

The process we shall use for the clients. This simply sits in a tiny loop, requesting

There are two properties of the allocator that we might want to prove: safety

and liveness. Safety here means that the allocator is well behaved, that is, that it

never issues spurious grants. Liveness here would be that we never ignore a client

forever, that is, that all requests are eventually followed by a grant. Unfortunately,

our semantics is not strong enough for us to be able to prove liveness properties. We

would need some fairness conditions attached to the rewriting rules. This is discussed

further in section 2.12.

Instead we shall prove that our allocator is safe. We express this property as a

predicate on operating system states. We shall take as our starting point the state

o0 = [free r [] , reqx,..., reqj

Now consider a state o*, some way into the running of the program. It could have the

the resource, waiting for it to be granted and then freeing it again.

client :: send allocReq -> newProcess ()
client alloc tx rx

= req
where
req = alloc (REQ tx) wait
wait = rx free
free () = alloc REL req

form

ofc = [free r q ,cu . . . ,cn]

[pre_send d0,..., pre_send efo.] = q
(7)

(3)

where

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 35

V o<i<k ■ — wait (9)

^i<i<n,pres ending . c,- = r e q (1 0)

Equation 9 says that any process on the queue of pending requests will be waiting

(see the definition of c l ie n t) and equation 10 says that all other processes are waiting

to make a request.

Ok could also have the form

Ok = [a lloced rx q, C\,. . . , cn] (11)

[pre_send d0, . . . , pre_send dfc] = q (12)

where

Vo < i< k oCdi = wait (13)

3 i < r<n-cr = fre e () A V 1<;<n,pr e _send i £ q , i^ r -C> = reCl (14)

Equation 13 again means that all processes on the queue of pending requests are equal

to wait and equation 14 means that there is at least one process about to release the

resource, and all other processes are waiting to make a request.

We shall say that an operating system state conforming to one of the sets of

conditions above is stable.

Now we have only to show that from any stable starting state, we must always

reach another stable state after a finite number of rewrites. The start state Oo is

clearly stable, as it matches equation 7 and satisfies the conditions associated with it.

Now consider an arbitrary stable state Ok. We must show that Ok will inevitably

rewrite to another stable state within a finite number of transitions.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 36

There are two cases: our stable state Ok could match either equation 7 or equa

tion 11. For reasons of space we shall only explore the first case. We can immediately

produce two more subcases

Case 1 q = [] . In this case, fre e will wait for the next message to arrive. This in

turn generates n subcases, one for each of the clients which could get to send

the next request message. If client c/ gets to send to the allocator, then by

application of rule 6, Ofc+1 will have the form

[unpack (REQ (pre_send /)), Ci,. . . , q_ i , w a it,. . . , cn]

which is equal to

[pre_send / () (a llo ced rx []), c1?. . . , q _1, w a it,. . . , cn]

Now there is only a single Ok+2 , which by rule 6 will be

[a lloced rx [] , Ci,. . . , c/_i, fr e e () , . . . , c n]

This matches equation 11 and satisfies the associated conditions and so is there

fore stable.

Case 2 q = (pre_send d o :rest). In this case, ok is equal to

[pre_send d0 O (a llo ced rx r e s t) , c1?. . . , Cd0_i, w a it ,. . . , cn]

which by application of rule 6 is uniquely related to

[a lloced rx rest, cu . . . , cdo_i, fre e () , . . . , c„]

which matches equation 11, satisfying the associated conditions and is therefore

also stable.

CHAPTER 2. NON-DETERMINISM AND FUNCTIONAL PROGRAMMING 37

2.12 Discussion

There are a number of points which should be made about the semantics presented

above.

The system suggested allows one at most to prove partial correctness of an oper

ating system, that is, that we cannot reason about operating systems in which some

processes may evaluate to _L. This is necessary if the same semantics is to be used for

both the Miranda kernel in appendix A and for the putative bottom avoiding kernel

discussed in chapter 4. We should perhaps not dodge this issue.

We also make no mention of fairness. As we saw in the example, we are unable

to demonstrate many properties which it would be nice to be able to prove. We

would have to add extra conditions to the definition of the rewriting rules to disallow

derivations which involved indefinite delaying of a process which was ready to perform

some action. Fairness is notoriously difficult to formalise, see for example [20].

Chapter 3

“Can’t make the frug
contest Helen; stomach’s
upset. I ’ll fix you Ubik!
Ubik drops you back in the
thick of things fast. Taken
as directed, Ubik speeds
relief to head and stomach.
Remember: Ubik is only
seconds away. Avoid
prolonged use.”

The Structure of KAOS

There has not been much written about the higher levels of functional operating sys

tems. Most papers, such as [16, 21, 19], describe in detail how they tackle the prob

lems of representing non-determinism and controlling devices, but say little about

how they build an operating system on top of these facilities. As we have seen, con

siderations concerning the representation of non-determinism have already given us

a gross structure for our operating system: a collection of processes exchanging mes

sages. We can now borrow many structuring ideas from more conventional message

passing operating systems.

This chapter first describes the differences between the actual KAOS kernel and

the skeleton kernel outlined in the previous chapter, then describes the general form

of messages exchanged by KAOS system processes and finally covers in detail the

sorts of messages to which each type of system process responds.

38

CHAPTER 3. THE STRUCTURE OF KAOS 39

3.1 The Real KAOS Kernel

The real KAOS kernel is very similar in structure to the tiny kernel outlined in the

previous chapter, but with additions for process removal and device control. Ap

pendix A contains a complete listing of the kernel source — a total of around 400

lines of Miranda.

3.1.1 The KAOS Kernel Interface

As the KAOS kernel allows processes to be removed, send functions can now become

out of date: we need to allow for the possibility that a process might use a send

function after the process to which that function connects has been removed. The

continuations supplied to KAOS send functions therefore expect a success or failure

message back from the kernel.

send * = = * - > (lift () -> process) -> process

where l i f t adds an error element to a type

l i f t *
::= P * I I sysErr I I Proper and Improper

sysErr
::= ERR_E0F [char] |

ERR_INAPPROPRIATE [char] |
ERR_N0PR0CESS [char] |
... etc.

(The [char] attached to each constructor in sysErr is intended for helpful diagnos

tics, rather than for system use.)

CHAPTER 3. THE STRUCTURE OF KAOS 40

Receive functions are augmented in the same way. A receive function can fail, for

example, if it is used by some process other than the one for which it was made.

receive * == (lift * -> process) -> process

Kill functions can also fail if the process to which they refer is removed,

killfun == (lift () -> process) -> process

And spawn can also fail in KAOS.

newProcess * == send * -> receive * -> killfun -> process
spawn :: [char] -> newProcess * -> (lift () -> process) -> process

(The [char] is the name the kernel will use for the process; it is used only for

debugging. When the kernel detects deadlock, it tries to show the state of all the

processes in the system. The [char] is used to label each process in this list.)

There is a function for producing Miranda’s sys_messages. This is used by parts

of the operating system to help produce debugging output, but is not available to

user processes.

sys : : sys_message -> process -> process

All devices in KAOS are identified by unique devicelds. For example, the current

version of KAOS usually has a disc as device 0 and terminals as devices 1 and 2.

Kernel functions are provided to read and write single disc sectors

discBlock == [char] |I Always the same length
blockNum == num
readDisc

:: deviceld -> blockNum -> (lift discBlock -> process) ->
process

writeDisc
: : deviceld -> blockNum -> discBlock ->

CHAPTER 3. THE STRUCTURE OF KAOS 41

(lift () -> process) -> process

Functions are provided to read from and write to terminals.

readTty
:: deviceld -> (lift [char] -> process) -> process

writeTty
:: deviceld -> [char] -> (lift () -> process) ->

process

Many processes can read from or write to each terminal. In particular, a terminal

can have several pending reads. Terminals can be in either LINE or CBREAK mode.

In LINE mode, readTty requests return an entire line of input; in CBREAK mode they

return every time the user hits a key. CBREAK mode is used only by the KAOS screen

editor. A process is allowed to setTtyState while other processes are reading.

lineState ::= LINE | CBREAK
setTtyState :: deviceld -> lineState -> process -> process

The start function from the previous chapter is now called kaos and takes two
extra parameters: a list of the UNIX path names it is to read and write the discs
from, and a list of the UNIX path names it is to read and write the terminals from.

kaos :: [[char]] -> [[char]] -> newProcess * -> [sysunessage]

So for example, KAOS is usually entered with

kaos ["os/sys/ker/disc.image"] ["/dev/tty", "/dev/ttyOl"]
(root ":disc/sys/startup")

which sets up one disc and two terminal devices, then runs root, the KAOS boot

process, passing in the name of the boot file on the KAOS file system.

CHAPTER 3. THE STRUCTURE OF KAOS 42

3.1.2 Extensions to Miranda

Various features had to be added to Miranda to make the KAOS kernel described

above possible. These are

changetype This is used in a few places in the kernel. It is not available to ordinary

Miranda programs! The previous chapter describes in detail where it is used

and why.

nb jread This is a version of the ordinary Miranda read function that does not block

when input is unavailable, instead returning special hiaton characters. It is used

inside the kernel to implement readTty.

An addition to Miranda would also be necessary to implement versions of

readDisc and writeDisc which actually side-effected a disc (or a large UNIX
file). Instead, the current version of the KAOS kernel represents the disc as

a large list which is read from a UNIX file at start up and written back again

when the kernel exits.

load This would be used to add new code to the operating system at run time. The

idea is that you pass load a binary file you have just read from a disc, and the

name of the object you wish to extract from the binary, load scans the binary,

extracts the named object and returns a graph for it.

load :: [char] -> [char] -> lift *

As with the Miranda show system, load is not a polymorphic function, it is

a reserved identifier standing for a family of monomorphic functions. One of

these functions is chosen at compile time, according to the type context that

load appears in.

CHAPTER 3. THE STRUCTURE OF KAOS 43

load will fail if it cannot find the name, or if the object it finds is not an instance

of the type of load in this context. So for example, you might write a function

to load a device driver as

loadDriver :: [char] -> [char] -> lift (deviceDriver *)
loadDriver = load

(Note that, unlike a conventional operating system, we need no inverse of load

for removing processes — the garbage collector will do this for us when the

process finishes.)

load has not actually been added to the language yet, so the current version of

KAOS is simply one huge function.

3.2 KAOS Message Structure

All KAOS system processes have a large algebraic type as their input, with one

constructor for each of the sorts of requests you can make. All the messages you send

to system processes have to have a reply function attached which the system process

can use to tell you whether your request was successful or not. In general then, the

input type of a system process might look something like

marsupReq
::= MARSUP.POSSUM possumType (send (lift ())) I

MARSUPJWOMBAT wcmbatType (send (lift wombatld)) |
etc.

(Here a MARSUP_POSSUM expects a possumType as an argument, and sends back lift
() and MARSUP_WOMBAT expects a wombatType as an argument and returns lift
wombatld.)

CHAPTER 3. THE STRUCTURE OF KAOS 44

If you are a process wishing to talk to marsup, you should have a constructor of
your input type dedicated to receiving replies from it.

mylnput
: := FROM_MARSUP marsupReply |

... etc.

where

marsupReply
::= MARSUP_CONFIRM (lift ()) |

MARSUP-WOMBATID (lift wombatld) I
... etc.

(Most KAOS system processes will have an equivalent to marsupReply defined for

you.)

So for example, here’s a process which registers a new wombat and then exits if

it was successful. It expects to be passed a send function for marsup.

askForWombat :: send marsupReq -> newProcess mylnput
askForWombat marstx mytx myrx mykill

= marstx (MARSUP_WOMBAT anotherWombat
(mytx. FROM_MARSUP .MARSUPJiOMBATID)) test

where
test (P ()) = ask’ myrx mykill

askJ :: receive mylnput -> killfun -> process
ask' myrx mykill

= myrx unpack
where
unpack (P (FROMJiARSUP (MARSUPJiOMBATID x)))

= mykill undef, isproper x
= error "bad wombat!", otherwise

(No one would actually write this. There are a number of libraries available which

hide all the details of sending and receiving messages.)

CHAPTER 3. THE STRUCTURE OF KAOS 45

device
drivers

Figure 7: Sketch of the Major KAOS System Processes

The next few sections describe the input types of the major forms of system

processes. Each section has roughly the same structure: a few paragraphs explaining

why the process is necessary, the type itself, a brief explanation of each request and

finally another few paragraphs of discussion. Figure 7 roughly shows the relationships

between the processes discussed below for a two user version of KAOS.

3.3 The Event Manager

In a message passing operating system, interrupts are conveniently represented by

small messages which arrive on a process’s input when the interrupt occurs. For ex

ample, when the process controlling access to a terminal sees an arriving “C character,

it should send a series of messages off to any processes which are under the control

CHAPTER 3. THE STRUCTURE OF KAOS 46

of that terminal and which are interested in interrupts. To help route and coordinate

interrupt messages, KAOS provides a system process called the event manager.

An event is some kind of external event, such as the user hitting ~C. Processes

which want to hear about the event declare an interest in it. When a process decides

that the event should occur (perhaps the terminal driver has just seen the ~C character

arrive) it signals it and the event manager sends all interested processes an interrupt

message.

eventReq
::= EVENT-NEW [char] (send (lift ())) |

EVENT.INTEREST [char] (send ()) (send (l i f t ev en tld)) |
EVENT-UNINTEREST eventld (send (l i f t ())) |
EVENT-SIGNAL [char] (send (lift ())) |
EVENT-REMOVE [char] (send (lift ()))

eventReply
::= EVENT-EVENTID (lift eventld) |

EVENT_C0NF (lift ())

eventld == num

EVENT-NEW name rep ly Create a new event with the given name. Events are iden

tified by [char]. For example, the ~C event associated with t t y l is called

"CTRLC-TTY1". The event manager replies with a success or failure message.

Creating an event can fail if the name supplied is already in use by an existing

event.

EVENT-INTEREST name signal-fn replycfn Declare an interest in an existing event.
When the event is signalled, the event manager will use the signal_fn to send
you (). The event manager replies with an eventld which you can use at some
later point as an argument to EVENT-UNINTEREST.

EVENT-UNINTEREST eventld reply Renounce interest in an event.

CHAPTER 3. THE STRUCTURE OF KAOS 47

EVENT_SIGNAL name reply Send () to all the processes which have expressed an

interest in the named event. The event manager replies when all the interested

processes have received their interrupt messages.

EVENT_REMOVE name reply Remove the named event. This will fail if any processes

are still interested in the event.

Interrupt messages are the only ones in KAOS which have no reply field. This was

rather a late decision, made to help prevent deadlocks which were occurring frequently

when one typed ahead and then hit ~C. See section 3.7 for more comments on this

issue.

3.4 Device Drivers

The other main class of activity in KAOS is reading and writing [char] to and from

terminals and discs. A device driver sits on top of the kernel device functions like

readDisc and writeDisc, trying to provide a clean and consistent interface to the

rest of the world.

At the most basic level, a driver accepts driverReq messages

driverReq
::= DRIVER_FILEREQ fileReq |

DRIVER-STREAMREQ streamReq |
DRIVER-SYSDRIVERREQ sysDriverReq

sysDriverReq is used to control the behaviour of the driver. It looks like

sysDriverReq
::= DRIVER_FORMAT pathName (send (lift ())) |

DRIVERA10UNT pathName (send (lift ())) |
DRIVER-UNMOUNT (send (lift ()))

CHAPTER 3. THE STRUCTURE OF KAOS 48

pathName == [fileName]
fileName == [char]
fileNameLength = 15

A fileName is a list of characters padded on the right with spaces to at least
f ileNameLength. Having a limit on the maximum length of file names can be
rather annoying, but it does greatly simplify the device drivers, and as KAOS has
no users apart from the author, the complaints are easy to ignore. pathNames are in
tended to behave rather like UNIX path names; KAOS allows you to open files called
"mydir/f red", for example.

DRIVER-FORMAT path reply The driver should in some way reset the physical device

it controls. A disc driver would reformat the disc, a terminal driver might

perhaps set the baud rate. The pathName can be interpreted in any way the

driver sees fit. For example, the current KAOS disc driver expects a path like

"kaos ro o t /2 0 " , where the first component is the title you wish to give the

disc volume and the second is the number of sectors the driver should try to

format for.

DRIVER-MOUNT path reply All drivers are sent this message when they are linked

to the file system. The path here contains start up information of a more

specific kind. For example, the current KAOS terminal driver expects a path

like "CTRLC-TTYl/l", where the first component is the name of the event the

driver should signal when it sees a ~C character and the second is the deviceld
the driver should use for its readTty and writeTty calls.

DRIVER-UNMOUNT reply Drivers are sent this message when they are about to be
unmounted. They should tidy up, and if all is ok, they should send P () back

CHAPTER 3. THE STRUCTURE OF KAOS 49

before killing themselves. If the driver has problems tidying up, perhaps because

there are still some open files or because there is a hard device error when it

tries to flush its caches, then it should send an error back and not kill itself.

All drivers are expected to support a subset of streamReq. These messages have

to do with opening, reading, writing and closing files.

streamReq
::= STREAMJOPEN pathName (send (lift fileld)) |

STREAM_CLOSE fileld (send (lift ())) |
STREAM-READ fileld (send (lift [char])) I
STREAM-WRITE fileld [char] (send (lift ())) |
STREAM_SEEK fileld filePointer (send (lift ())) |
STREAM-TRUNCATE fileld (send (lift ())) I
STREAM-IOCTL fileld [char] (send (lift ()))

streamReply
::= STREAM-FILEID (lift fileld) |

STREAM-CONF (lift ()) |
STREAM-CHARS (lift [char])

fileld == num
filePointer == num

STREAM-OPEN path reply The file referenced by the path is opened, and a fileld
that can be used in subsequent requests is returned. If the file does not exist,

you get a ERR-NOTFOUND error back. You can have more than one open on a

file; multiple readers and writers have the ‘expected’ behaviour. You can open

directories as files and read from them (but not write to them). Files are opened

with the file pointer set at zero.

There are no file modes — facilities such as open for append and open for read

only are supposed to be provided by a higher level in the operating system.

STREAM-CLOSE fileld reply Closes the specified file.

CHAPTER 3. THE STRUCTURE OF KAOS 50

STREAM_READ f Held reply Reads the next ‘ lump’ from the file. Quite how much is

read is left to the driver to decide. For example, the terminal driver will return

single characters when in CBREAK mode and whole lines when in LINE mode. If

you try to read past the end of the file you get an ERR_E0F back.

STREAM_WRITE f ileld chars reply Writes the characters to the file. The file will
magically ‘grow’ if you try to write past the end of it.

STREAM_SEEK f ileld filePointer reply Moves to the given position. If you try

to move the pointer past the end of the file you get an error and the pointer

is not moved. This request is only supported by ‘directory’ style devices — it

clearly makes no sense on a terminal.

STREAM-TRUNCATE f i l e ld rep ly The length of the file is reduced, so that it is equal

to the current value of the file pointer. This can cause confusion if other pro

cesses have opened the file, so it is only allowed if this f i l e ld is the only one

open on this file. Again, this makes no sense on a terminal.

STREAMJEOCTL f ileld command reply Performs some kind of device specific control
function. The only IOCTL supported at the moment is to the terminal driver.
"LINE" puts the terminal into LINE mode, "CBREAK" puts it into CBREAK mode.

Only directory style devices are expected to support fileReq. These are the

requests dealing with general file management.

fileReq
::= FILE_DELETE pathName (send (lift ())) I

FILE-MKDIR pathName (send (lift ())) I
FILE-CREATE pathName (send (lift ())) I
FILE_RENAME pathName pathName (send (lift ()))

CHAPTER 3. THE STRUCTURE OF KAOS 51

fileReply
::= FILE.CONF (lift ())

FILE-DELETE path reply Deletes the named file. You are not allowed to delete non
empty directories or files which are open.

FILE-MKDIR path reply Creates a new directory. If there is already a file with that
name, it is deleted subject to the conditions above.

FILE_CREATE path reply Creates a new file. Again, any existing file with this name
is deleted.

FILE-RENAME frompath topath reply The file at f rompath is moved to topath. If
topath already exists, it is deleted subject to the usual conditions. You can
move open files and full directories.

3.5 The File System

The file system gathers together all the device drivers under one roof. It interprets

the first component of a pathName as the name of the device driver to which the

rest of the request should be sent. Library functions are available to turn strings like

" : disc/myf ile/fred" into the appropriate pathName.

f sReq
::= FS-FILEREQ fileReq I

FS_STREAMREQ streamReq I
FS-SYSFSREQ sysFsReq

sysFsReq
::= FS-MOUNT (send driverReq) pathName (send (lift ())) |

FS.UNMOUNT fileName (send (lift ())) I
FS_F0RMAT pathName (send (lift ()))

CHAPTER 3. THE STRUCTURE OF KAOS 52

FS_MOUNT driver_send path reply Adds a new device driver to the file system.

The first component of the path is stripped off, and the rest passed down to the

driver in a DRIVER_MOUNT message. If the driver reports a successful mount, the

file system adds the driver to its list of mounted devices and returns a success

message. From then on, any fileReq or streamReq to a path whose first

component matches the first component of the mount path will be redirected

to the new driver.

FSJJNMOUNT name reply Sends a DRIVERJJNMOUNT message to the driver. If this
returns successfully, the driver is removed from the file system’s list of devices
and a success message sent back to the unmounter.

FS-FORMAT path reply Sends a DRIVER-FORMAT message down to the device. This

really has nothing to do with the file system process, but is grouped in the same

type for security. These are all messages which ordinary processes should be

unable to send.

Another function performed by the file system is to ensure that the f i le ld s used

by streamReq are unique across all the mounted device drivers.

3.6 The Resource Tracker

When a process is killed on an operating system like UNIX, all the resources allocated

to it are automatically released. To help provide similar facilities, KAOS has a process

called the resource tracker which coordinates all resource allocation. To kill a process

safely, you send a message to the resource tracker; this calls the kernel k i l l function

for the process and then releases all the resources the process had taken.

CHAPTER 3. THE STRUCTURE OF KAOS 53

KAOS also tracks process creation, so that when you kill a process you also au
tomatically kill all of its children. This requires quite a complex protocol and is
described in its own subsection below.

trackMgrReq
::= TRACK_TRACKREQ processld trackReq

When track sees an incoming request, it needs to know which process sent it. A
send trackReq function is in fact a send trackMgrReq that has had a processld
buried inside it. Every process running under the supervision of the resource tracker
thus has its own personal send trackReq.

trackReq
::= TRACKJOPEN pathName (send (lift fileld)) I

TRACK-CLOSE fileld (send (lift ())) I
TRACK-NEWEVENT [char] (send (lift ())) I
TRACKJtEMOVEEVENT [char] (send (lift ())) I
TRACKANTEREST [char] (send ()) (send (lift eventld)) I
TRACK-UNINTEREST eventld (send (lift ())) I
TRACK-FORK (send (send trackReq)) I
TRACKJFORKROQT (send (send trackReq)) I
TRACK-ENDFORK killfun (send (lift ())) |
TRACK-KILL (send (lift ())

trackReply
::= TRACK-CONF (lift ()) I

TRACK.TRACKWRAP (send trackReq) |
TRACK-FILEID (lift fileld) I
TRACK-EVENTID (lift eventld)

processld == num

Note that not all system requests go through track; only the ones which cause
some kind of allocation to take place.

TRACK-OPEN path reply Passes a STREAM-OPEN message on to the file system, makes
a note of the fileld that was allocated and returns it to the caller. All the

CHAPTER 3. THE STRUCTURE OF KAOS 54

rest of these messages do much the same kind of thing, except for the messages

concerned with process creation (see below) and

TRACK_KILL reply Kills oif the process and all its children, then releases any re

sources they have allocated.

3.6.1 Tracking Process Creation

Creating a new process which the resource tracker can follow is rather an intricate

operation.

There are in fact two different kinds of process creation. TRACK-FORK is used to

tell the resource tracker that you wish to fork a child process, TRACK-FORKROOT is
used to indicate that the process you wish to fork should be at the root of a new

process tree. This second kind of forking is only supposed to be used by system

processes. The description below only talks about TRACK-FORK, but it should be clear

how TRACK-FORKROOT would work. •

• The parent-to-be posts a TRACK-FORK message to the resource tracker using its
personal track function. It includes a send function that the tracker then uses
to send back the child-to-be’s personal track function.

• The parent waits for the child’s track function to arrive, then calls the kernel

spawn function, passing the child’s personalised track function. The parent then

waits for a confirmation message to arrive from the child.

• The first thing the child does is to send a TRACK-ENDFORK message to the tracker,

including in the message its kill function (which the tracker will later use to

remove it.)

CHAPTER 3. THE STRUCTURE OF KAOS 55

• The tracker makes a note of the child’s kill function, then posts a confirmation

message back to the child.

• The child sees the confirmation arriving from the tracker, then posts a confir

mation to the parent and starts executing.

• The parent sees the child’s confirmation message and resumes execution. To

kill the child, it sends a TRACK_KILL message using the child’s personal track

function.

(User processes see none of this detail — they simply call a library function which

spawns the child and returns a tracked kill function.)

3.7 Current Difficulties

In our view, the major difficulty with the current design has to do with an aspect of

the system processes which this chapter has been very careful to avoid up to now.

As an example, here is a deadlock problem that appeared while developing KAOS.

At this early stage, interrupt messages still had reply fields and the event manager

would only reply to an EVENT_SIGNAL message when all of the interested processes

had replied to their interrupt messages.

• The user types ahead a short way, and then hits ~C.

• The terminal driver spots the "C character, and sends a signal to the event

manager. It then waits for the event manager to reply, indicating that all the

interested processes had seen the signal.

• The event manager sends an interrupt message to the shell, and waits for the

shell to reply.

CHAPTER 3. THE STRUCTURE OF KAOS 56

• The shell meanwhile has finished processing its input, and tries to print a new

prompt (before looking at its input again). It sends "kaos> " off to the terminal

driver and waits for a reply.

• .. .but naturally, the terminal driver never sees the message — it’s still waiting

for a reply from the event manager. We have deadlocked!

There are various ways around this problem. The simplest (and the solution the

current version of KAOS uses) is to not have reply fields on interrupt messages. The

event manager will then be able to signal all of the interested processes, even if they

are not listening for interrupt messages at the time. This seems rather unsatisfactory

however, as the root of the problem seems to lie in the way processes behave, and in

particular in the way that the current method for handling multiple input streams

works. The shell should have been able to respond to an interrupt message even

while it was busy talking to the device driver, the device driver should have been

able to print some output even while waiting for the event manager to reply. In

operating system terminology, KAOS processes are single-threaded rather than being

multi-threaded.

Another problem has to do with the level at which the filing system works. It

would be nice if it were possible to write a device driver that mimicked a U N IX pipe,

allowing something like

kaos> cat :d is c /f r e d > :pipe/newpipe &
kaos> cat < :pipe/newpipe > :t t y l

to copy " :d is c / f r e d " through " :pipe/new pipe" and onto the screen. Unfortu

nately by the time the STREAM-OPEN message reaches the driver, the driver can have

no way of knowing whether it should be an open for reading or an open for writing,

CHAPTER 3. THE STRUCTURE OF KAOS 57

that is, which end of the pipe this STREAM_OPEN should be attached to. This is simple

to fix: STREAMjOPEN should take a set of flags as an argument.

Large message passing operating systems often have amazingly complicated mes

sage passing semantics, allowing processes to attach priorities to messages, to time

stamp them, and so on. Whether the KAOS message model is suitable for larger

systems remains to be seen.

There must also be questions about the adequacy of the semantics presented for

the event manager. While the existing scheme seems to work reasonably well for “C

events, it’s easy to imagine situations in a more grown up operating system where it

would be woefully inadequate.

3.8 Implementation

KAOS is quite a large program by Miranda standards: almost 14,000 lines of source.

This divides up as (roughly) 700 lines for the kernel, 4,000 lines for the disc device

driver, 1,000 lines for the terminal device driver, about 1,500 lines for the three system

processes, 1,500 lines for the shell and its commands, 4,000 lines for the screen editor

and the rest in various libraries. Execution speed is more or less what one might

expect. On an Orion-1/05 (a 4 VAX MIPS machine) with 700,000 cells of heap space

it takes about a second for the kaos> prompt to come back after you hit return.

“Perk up pouting household
surfaces with new miracle
JJbik, the easy-to-apply,
extra-shiny, nonstick plastic
coating. Saves endless
scrubbing, glides you right
out of the kitchen! Entirely
harmless if used as
directed. ”

Chapter 4

A Better Kernel for KAOS

As we noted in section 2.4, the Miranda kernel is really useful only as a prototype. If

we want an operating system written in a functional language to be used in the same

situations as conventional systems such as U N I X , then there are many more problems

we have to address. This chapter tries to list the areas in which the Miranda kernel

is deficient and then briefly describes a kernel that could address these problems.

4.1 What is Missing?

The Miranda kernel is missing several important features of conventional operating

system kernels. These are discussed individually in the sections below.

4.1.1 Non-determinism

The Miranda kernel is missing the important property of bottom avoidance: that is,

if one process running contains a bug and goes to _L, it is very important that the

whole machine does not stop; we have to reintroduce the non-determinism we were

58

CHAPTER 4. A BETTER KERNEL FOR KAOS 59

so careful to take out in section 2.4.

It is interesting to note that a primitive like ready (see section 2.1) makes it very

easy to add bottom avoidance to the Miranda kernel; we only need to rewrite the

function schedule (see section 2.8). ready applied to an object of type process

will evaluate to True when the process tries to examine its missing argument, the

machine_state. As process is an abstype, this can only be done by one of the

functions in the abstype. Hence ready will return True when the process tries to

call a kernel function.

So the modification we have to make is that before committing itself to a particular

process as the next to perform a kernel call, the scheduler should check that the

process is ready. If the current process is not ready, then the scheduler should try the

next on the run queue. This requires the addition of a single line

schedule :: process
schedule (process JList, (arrest))

= cont (process J.ist, run')
, ready cont

= schedule (processJList, run')
, otherwise

where
run' = postfix a rest
(RUN cont pend) = processJList!(hd run')

schedule ([] , process JList)
= [Stdout "run queue empty"]

A kernel to be used as the basis for a real operating system would also need some

system for giving different processes different amounts of processor time based on

their relative importance.

CHAPTER 4. A BETTER KERNEL FOR KAOS 60

4.1.2 Memory Management

The Miranda kernel has no control over how much memory each processes uses. A

process containing a bug might use up the heap for the whole machine, stopping ev

ery process. In a paper describing an earlier version of KAOS[27], Turner suggested

a scheme which put each process in a separate address space. This nicely solves

the memory problems, but forces us to think very carefully about message passing.

Turner required that message passing be hyperstrict, that is, objects to be sent in mes

sages should be completely reduced; message passing then simply consists of copying

fully evaluated acyclic subgraphs between processes. While this successfully prevents

processes sending strange objects such as infinite lists in messages, it also prevents

the passing of functions, and it seems absolutely necessary to be able to send send

functions (message wrappers in the terminology used in Turner’s paper) in order to

be able to set up networks with the correct interconnections.

For example, suppose we have some persistent process implementing, say, a file

system in our operating system. When a new process is created, we can easily arrange

for it to be passed the send function for this file system process, enabling the new

process to send messages to it. What we cannot do, unless we are allowed to pass

send functions in messages, is arrange for the file system process to be given the send

function for our new process. Our new process will be able to write files, but not able

to read them!

The solution seems to be to require message passing to be hyperstrict, but to sim

ply say that we allow functions through. This is exactly what the standard Miranda

function force does. This will work well, provided that the only functions we try to

send are send functions and compositions of send functions with constructors. If a

programmer tries to send, say, a function which implements a screen editor, then it

CHAPTER 4. A BETTER KERNEL FOR KAOS 61

will work but the operating system will run very slowly while all three megabytes of

graph are copied and reconstructed.

The kernel now has to be able to copy cyclic graphs between address spaces. There

are a number of ways of doing this, all of which have some overhead compared with

the copying of acyclic graphs[4]. On the plus side, these schemes all preserve sharing,

which straightforward copying of acyclic graphs would not. The degree to which this

would slow down message passing is an open question.

While the previous missing feature could be easily added to a Miranda kernel

given a new primitive, it is very hard to conceive of a primitive that might allow the

addition of a separate address space system to KAOS.

4.1.3 Exception Handling

The final serious problem with the Miranda kernel lies with the difficulties raised by

exception handling. Currently, if a process contains a bug and attempts to divide

by zero, the whole operating system will crash. Again, the damage should ideally be

limited to the abrupt removal of a single process from the system.

4.2 New Features for KAOS

A replacement kernel could be written in a conventional language such as C which

would address most of the problems outlined above. This section briefly describes a

design for such a kernel.

The C kernel should be implemented as a modification to the abstract machine

supporting Miranda. It should timeslice reduction between the processes running,

maintain separate address spaces for each process, copy cyclic graphs between the

CHAPTER 4. A BETTER KERNEL FOR KAOS 62

processes, and so on. There are a number of additions that would need to be made

to the kernel interface to control these new features. These are

• We would need some mechanism to allow priorities to be attached to processes.

This could be done most easily by adding a priority function to newProcess

priority
== priorityLevel -> (lift () -> process) -> process

Rather as with k illfu n , the new process would be free to pass this to other

process which it felt ought to be able to set its priority. Again, as with k illfu n ,

we would have to build some mechanism on to process start up to pass priority

functions for processes to the resource tracker.

• We need some way of allowing processes to interrogate the kernel, to find out

how many processes are running, how much of the CPU each is using, and so on.

Again, this could be done by the addition of another function to newProcess

stats
== (lift processStats -> process) -> process

Which would return some data structure containing information about this

process. As with p r io r ity , we would want some mechanism for passing stats

functions back to the resource tracker.

• We need some mechanisms for controlling the separate address spaces. We need

some way of finding out when a process runs out of heap, and we need some

way of expanding or shrinking the amount of heap a process is allocated.

CHAPTER 4. A BETTER KERNEL FOR KAOS 63

Another parameter to spawn could specify the amount of memory a process

was given to start with, and another function in newProcess could change heap

allocations

setsize
== bytes -> (lift () -> process) -> process

Its harder to decide how we could most easily detect heap exhaustion. Perhaps

the simplest way would be to add another parameter to spawn, giving a send

function to be used by the kernel when the new process ran out of memory. See

the final version of spawn below for a possible type.

• When a process is removed by the kernel following an exception such as divide

by zero, we need some way for the kernel to inform other processes that this

has happened, so that resources claimed by the dead process can be released by

the operating system. As with the memory exhaustion case above, the simplest

way is to pass a send function for the kernel to use to spawn.

In summary, the new kernel will need some changes to the type of spawn. The new

spawn will have type

spawn
:: [char] -> newProcess * -> bytes -> send exception ->

(lift () -> process) -> process
newProcess *

== send * -> receive * -> killfun -> priority -> stats ->
setsize -> process

exception
: := EX-HEAPFAULT |

EX_DIVIDEBYZERO |

CHAPTER 4. A BETTER KERNEL FOR KAOS 64

4.3 Discussion

It is interesting to note how little the above sketch depends on the details of the

machine that KAOS is running on. It could map as easily onto a network of machines,

such as Transputers, as onto a shared memory multiprocessor machine, such as Grip,

as onto a conventional machine like the Orion 1 /05 that KAOS runs on at the moment.

Many of the problems with the current kernel would not occur in a functional

programming language with a Martin-Lof style type system[9]. Programs written

under this type system are guaranteed to not reduce to _L, reducing the problems

associated with non-preemptive scheduling and are also guaranteed not to attempt

things like division by zero, reducing the problems caused by the lack of exception

handling noted above. Type systems of this sort can also describe the type of load
(see section 3.1.2) and [process JList item] (see section 2.8), removing the need for

the games we have been playing with the type system. Such type systems do not

make predictions about the space behaviour of programs, however; some form of run

time memory management would be needed even for an operating system running

under a Martin-Lof type system.

It is also worth noting that the additions described above are either cosmetic, such

as stats, or only affect the operation of the machine in exceptional circumstances,

such as when a process goes wild and consumes all of its heap or perhaps hits _L.

Provided that you are happy with partial correctness proofs, the semantics presented

in section 2.10 will still hold for the new kernel. This issue is discussed at greater

length in section 2.10.

Chapter 5

“Has perspiration odour
taken you out of the swim?
Ten-day Ubik deodorant
spray or Ubik roll-on ends
worry of offending, brings
you back to where the
happening is. Safe when
used as directed in a
conscientious program of
body hygiene.”

Programming Operating System

Processes

Chapter 3 discussed the functions that the system processes have to perform, without

saying quite how one is to write such a process in a functional language. This chapter

describes the techniques used in KAOS and presents fragments from the inside of the

disc device driver.

Writing operating system code presents special difficulties for the programmer.

As an example, consider a device driver for a disc. It has to turn messages like ‘write

the string "cat" into the file referenced by handle 131072 at the current file pointer

position’ into a series of readDisc and writeDisc kernel calls. This is quite difficult,

for a number of reasons.

The driver needs to side effect the disc drive. As the driver processes a request,

it makes a series of changes to the disc; keeping track of the state of the disc during

the request and being able to take the appropriate recovery action if disaster should

65

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 66

strike is tricky. For example, what should happen if one of the sectors fails during a

write operation? That sector should clearly be taken off the disc’s free sector map and

another allocated instead. What happens if a sector fails and there is no replacement

available because the disc is full? The half completed write operation will have to

be undone. Anticipating all the possible combinations of errors and programming in

appropriate recovery strategies is very tough.

The disc file system is one of the most crucial parts of the operating system

from the point of view of overall operating system speed. There are a great many

optimisations possible to minimise the number of readDisc and writeDisc calls

needed to service a request. These range from simple block caches, to sequencing disc

operations in order to minimise head movement. Programming in these optimisations

requires a good deal of thought.

To help tackle these problems, KAOS uses a library of functions based on the type

in teract, in teracts come with structuring primitives tailored to the problems of

exceptions, side effects and parallelism.

5.1 Higher Order Functions for Sequencing

In [25], Thompson introduced a scheme for handling interactions with the user in a

functional language which hid the details of stream input and output. In the same

spirit, KAOS uses a type in tera ct to hide the details of messages and continuations.

Appendix C contains the complete source to the in tera ct library. It may be helpful

to read this source in conjunction with the explanation below.

An in tera ct is a ‘function’ that can side effect input and output. It is a function

in the sense that it has a value it returns: in te ra cts may be composed, mapped

along lists, used to fold up lists, etc.

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 67

interacts are made with return

return :: * -> interact *

So for example, an interact which took two numbers and returned their product
might be written

silly :: num -> num -> interact num
silly a b = return (a*b)

interacts can be composed with comp

comp :: (* -> interact **) -> interact * -> interact **

So, for example, you might write

silly 4 $comp silly 2 3

which would (eventually) return 24. More usefully, you can define equivalents of the
standard fold and map functions. For example, one library provides ifoldr

ifoldr :: (* -> ** -> interact **) -> ** -> [*] -> interact **
ifoldr int start = foldr (comp . int) (return start)

interact provides a simple kind of multiple input port, get gets the next message
of the right ‘flavour’

get :: (inputType -> bool) -> interact inputType

where inputType is the input type for this process and occurs ‘/.free in the script
defining interact. The first argument to get is a predicate that will be applied to
incoming messages. The first to satisfy the predicate will be the message that get
returns. Messages which fail the predicate are saved in a buffer that will be searched
the next time get is called.

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 68

You often simply want the next message to arrive.

getNext :: interact inputType
getNext = get (const True)

interact provides a simple exception handling system, catch runs an interact,
trapping to an error handler if anything goes wrong.

catch : : (sysErr -> interact *) -> interact * -> interact *

and raise signals an error, returning control to the error handler associated with the

most recently encountered catch

raise :: sysErr -> interact *

So for example, many of the kernel functions return l i f t e d types; it’s very handy to

have something to turn these explicit error values into raises.

hideLift :: interact (lift *) -> interact *
hideLift int

= test $comp int
where
test (I err) = raise err
test (P x) = return x

And vice versa

revealLift :: interact * -> interact (lift *)
revealLift int

= catch (return . I) ((return . P) $comp int)

Things become more difficult if the interacts inside a catch send or receive

any messages. Execution can pass to the error handling interact without the error

handler having any idea exactly how far through a sequence of messages the faulty

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 69

interact got. To let raise pass information back, interact carries about a */,free
object of type userState. Three functions are available to manipulate the state

getState : : interact userState

returns the current state.

putState : : userState -> interact ()

changes the current state, and

applyState : : (userState -> userState) -> interact ()

applies a function to the current state.

5.2 The stdio Library

KAOS provides a library of in teracts called s td io to hide the details of communi

cation with the KAOS system processes. The complete library contains around thirty

functions; a few are described here to help give a flavour of the sorts of abstractions

that are possible.

stdio maintains some state using the getState, putState and applyState func

tions described in the previous section. The state includes the various send functions

stdio needs to communicate with the system processes, and also the buffers needed

by the readLine interact described below.

openFile : : pathName -> interact fileld

Sends a TRACK-OPEN message to the resource tracker (see chapter 3) and returns the

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 70

reply. An error is raised if there are any problems.

readChars :: fileld -> interact [char]

Reads the next block from the file, raiseing ERRJEOF if there is no more input avail

able.

readLine :: fileld -> interact [char]

Reads the next ’ \nJ terminated line of text from the file, again raiseing ERR_E0F
if there is no more text available. This function is useful, as readChars returns an

amount of text determined by the driver for the particular device you are reading

from. This is only a line of text in the case of the tty driver, the disc driver returns

text in lumps approximately equal to the size of the sectors of the disc it is controlling.

Text returned from the driver but not needed by this call to readLine is saved in a

buffer ready for the next call,

forkProcess
:: [char] -> application * -> send (lift ()) ->

interact trackedKill

Starts up a new process, application * is stdios equivalent of newProcess *. It

includes all of the extra parameters that processes that are to run under stdio need.

The send (lift ()) is the send function that the instance of stdio attached to the

child will use to post back the child’s exit status. If the child exited because of a

raise, then you will see an error value arriving. Normal termination returns P () .

The trackedKill is a send function that the parent can use to signal to the resource

tracker that it wants the child to be killed.

mountDriver :: deviceDriver * -> pathName -> interact ()

Forks and mounts a new device driver.
interestEvent :: [char] -> send () -> interact eventld

Express interest in an event. When the event occurs, the send () passed will be used

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 71

to notify you.

stdiolnterest :: [char] -> interact eventld

Make stdio express interest in an event. When stdio sees the message indicating

that the event has occurred it executes a special signal interaction for you. You can

set this signal with

setSignal :: interact * -> interact ()

This signal interact could set a flag in the state to indicate to the rest of your program

that the signal had occurred, or could perhaps ra ise an exception.

5.3 Programming System Processes

This section presents some code fragments from the inside of the disc device driver,

illustrating how the driver addresses the problems outlined at the start of this chapter.

As these pieces of code come from a complex program, it is not really possible

within a reasonable amount of space to give enough background information for a

complete understanding of all the ins and outs. The presentation below tries to give

enough information to make the general outline of the code comprehensible without

overwhelming the reader with detail.

The first example comes from the script which contains the functions used to

maintain directories. KAOS directories are ordinary files containing a list of objects

of type dirEntry (encoded as a [char] , of course). examineNext is a function which

when given a f Held for an open directory either returns the next dirEntry, or if

it reaches the end of the file raises an ERRJJOTFOUND, since the directory must have

been completely searched without a match being found.

examineNext :: fileld -> interact dirEntry

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 72

examineNext fid
= handle ERRJEOF handler (

(return . hd . ctod) $comp
readStream dirEntryLength fid)

where
handler err = raise (ERRJJOTFOUND "not in directory")

where handle is a library function built on catch — it lets you name a particular
error you wish to trap, ctod turns a [char] into a [dirEntry],

Now it’s easy to search a whole file for a particular dirEntry. There is a slight
complication: when a file is deleted, all the driver does is set the f ileType field in its
dirEntry to UNUSED. searchStream has to be careful to ignore any dirEntrys that
are marked as UNUSED.

searchStream :: fileName -> fileld -> interact dirEntry
searchStream name fid

= test $comp examineNext fid
where
test entry

= return entry
, fname = name & ftype ~= UNUSED

= searchStream name fid
, otherwise

where
(ftype, fname, ibn) = entry

State changing operations can often be split into three stages: an open phase
when some kind of resource is claimed, a p ro cess in g stage during which the resource
is manipulated and finally a clo se stage which releases the resource. If the processing
stage can fail in some way with an exception, it is often necessary to insert a catch to
ensure that the close operation is always performed, otherwise there is perhaps some
danger of leaving the resource in an inconsistent state.

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 73

careful performs a processing interact, being careful to tidy up even if the process

fails.

careful
:: (* -> interact ()) -> (* -> interact **) -> * ->

interact **
careful tidy process x

= dotidy $comp catch (((.).comp) raise dotidy) (process x)
where
dotidy y = tidy x $then return y

Note that the error handler here itself contains a raise, then performs left-to-right

sequencing of interacts which return no result. It is defined as

then :: interact () -> interact * -> interact *
then inti int2 = (const int2) $comp inti

This next interaction makes any stream reading operation ‘safe’ . It opens a stream,

performs some arbitrary interaction on it and then closes the stream. It remembers

to perform the close even if the interaction it called ra ised an error.

handoverFileld
:: fileType -> blockNum -> (fileld -> interact *) ->

interact *
handoverFileld ftype ibn inter

= careful closeStream inter $comp openStream ftype ibn

And now we can write a safe directory searching function , which will work what

ever happens.

searchDir :: fileName -> blockNum -> interact dirEntry
searchDir name ibn

= handoverFileld DIRECTORY ibn (searchStream name)

As a more complex example, here is the code used to extend a file. In the extend

operation, more blocks have to be allocated from the disc’s free sector map and linked

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 74
on to the existing blocks of the file. This example illustrates all the problems discussed

at the beginning of this chapter: the extend function has to be able to cope gracefully

with sectors failing at arbitrary points during the extend operation.

Before we can examine the details of the extendStream function, we first have

to say something about the representation of files on the KAOS disc and the data

structures the device driver has to maintain in order to be able to keep track of them.

Disc sectors come in three parts

driverB lock
== (blockNum, 1 1 Next block

blockNum, 1 1 First block
[char]) 1 1 Data

The first field is the blockNum of the next block in the file, the second field is the

blockNum of the first block in the file, and the final field is the data itself. The [char]

is always blockLength characters long.

Files come in two levels. Simple files are blocks chained together by their next

block fields. Files at this level have to be a multiple of the block size in length. The

last block in a file has its next block field set to zero.

Inodes are simple files holding information about another simple file. Each stores

e the length of the file in characters,

• the size of the map,

• a map of the file. This is a list of the blockNums of the blocks making up the

body of the other file.

Since we only know the length of the inode to the nearest blockLength, we have

to hold the length of the map explicitly.

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 75

When a file is opened, the whole of the inode is read into the inode structure

maintained by the driver. Changes to the inode are made in memory. When the file

is closed again, if the inode has changed, it is rewritten on the disc. This is far simpler

than having to change the inode as well as the main body of the file every time the

length of the file changes. It has the disadvantage that until the file is closed, the disc

is in an inconsistent state. The inconsistency is not serious, however. If disaster were

to strike before the file was closed, then the only problem would be that files whose

inodes were not updated will be truncated somewhat. A disc recovery program could

easily find these truncated files and rebuild the inodes correctly. Having said that,

this is a deficiency in this version of the driver that should perhaps be fixed in the

next version.

The types used below are

openFiles
== ([streamBlock], I I One per fileld

[inodelnfo], I | One per file
[(blockNum, inodeld)]) II Map iids to inodelds

The first component of openFiles has a streamBlock for every stream currently

open (the f i l e l d passed to extendStream was an index into this list); the second

has an inodeln f o for every open file. Note that open files and open streams are not

the same thing! We could for example have the same file opened twice, with both

streamBlocks sharing a single inodeln f o.

The real device driver uses keyedLists (see appendix B) rather than ordinary

lists for these structures; ordinary lists are used here to help simplify presentation.

streamBlocks and inodelnf os have the following structure

streamBlock
== (blockld, || Current in cache

blockNum, I I Block's address on disc

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 76

filePointer, I I Current file pointer
num) I I Pointer into inode info

inodelnfo
== (blockNum,

fileType,
blockMap,
num,
bool,
num,
blockMap)

I| blockNum of inode on disc
I| Need to track this
I| Map for file
I I Current file length
I| Dirty bit
I| Number of opens
I| Map for inode on disc

It’s not necessary to explain the use of all these fields, except to note that the current

length of the file is held inside the inodeln f o for that file.

There are two cases

• See if we can satisfy the request just by changing the length field in the inode,

that is, without allocating a new block. If so, it’s very easy: we just change the

length field in the copy of the inode we are holding in memory.

• If not, then we have to allocate a new block, link it on (by rewriting the current

last block), and recurse. We have to be very careful about error handling. More

comments below on this.

All extendStream does is to extract the stream data structures from the state,

checking that the stream we are interested in does indeed exist. The stream data

structures are then passed on to extend'.

extendStream : : num -> f i l e l d -> in tera ct ()
extendStream amount f id

= extend' amount f id $comp extractStream f id

And here are the two cases we mentioned above. If the amount of new space

needed is less than the space that is unused within the last sector of the file, then all

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 77

we need do is change len. Otherwise, we read the final block of the file into memory,

preparatory to allocating a new block and linking it on.

extend' : : num -> f i l e l d -> openFiles -> in te ra ct ()
extend' amount f i d o f i l e s

= replaceStream o f i l e s '
, amount < ava ilab le

= tweak $comp getBlock ftyp e lastbn
, otherwise

where

Take the state apart.

(s trb s , inodes, index) = o f i l e s
(sb , bn, p tr , i id) = s t r b s l f id
(ibn , fty p e , map, len , id ir t y , nopens, imap) = in o d e s !iid

Useful things we calculate, lastbn is the blockNum of the current last-block-in-file,

o f fs e t is the position of len within the last block, and a v a ila b le is the amount we

can increase len by without allocating more space.

lastbn = la s t map
o f fs e t = len mod blockLength
ava ilab le = blockLength - o f fs e t

Rebuilding the state for the easy case. Here we can just bump up len.

in od e i' = (ibn , fty p e , map, len + amount, True, nopens, ima
inodes' = update i id in o d e i' inodes
o f i l e s ' = (s trb s , in o d e s ', index)

And the hard case. We have just grabbed the current last block of the file. We

allocate a new block, rewrite the old last block (to link it on to the new block), write

out the new last block, change openFiles to reflect the new length and recurse.

We consider error recovery separately. The general philosophy behind error re

covery in the driver is to either complete successfully, or to fail and leave things as

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 78

you found them. In the recursive case, we only make two changes: we allocate the

new sector and rewrite the last block of the file. Hence in the case of an error after

the allocation we have to remember to to deallocate the sector again, and in the case

of an error after we have rewritten the last block we need to write back its original

contents.

This is not quite the situation we had in the previous example, where we had to

remember to close the stream again, even if the stream operation had trouble. Here

we only want to deallocate only if the write has trouble. The error function we need

is called errundo (perhaps meaning ‘undo in case of error’) and is defined as

errundo
: : (* -> in tera ct ()) -> (* -> in tera ct **) -> * ->

in tera ct **
errundo undo in t x

= catch hand (in t x)
where
hand err = undo x $then ra ise err

And finally, here is the recursive case.

tweak (0, first, data)
= errundo deallocate tweak' $comp allocate

where
tweak' newbn

= errundo (const restore) (const link) $corap
putBlock ftype lastbn (newbn, first, data)
where

The two operations be can perform: linking on the new block and recursing, and

undoing the link should we fail further down the line.

restore
= putBlock ftype lastbn (0, first, data)

link
= putBlock ftype newbn

CHAPTER 5. PROGRAMMING OPERATING SYSTEM PROCESSES 79
(0 , f i r s t , testBody) $then

extend' (amount - a v a ila b le)
f i d o f i l e s ' '

Rebuilding openFiles for the recursive case, len should point into the first

character of the new block.

in o d e i '' = (ib n , fty p e , p o s t f ix newbn map,
len + a v a ila b le , True, nopens, imap)

in o d e s '' = update i id in o d e i ' ' inodes
o f i l e s ' ' = (s trb s , in o d e s ' ' , index)

As these examples have hopefully shown, systems programming is much more

difficult than you might expect. Practical experience has shown that abstractions in

the style of in tera ct help make these problems manageable.

It might be objected that in teract is not really in the spirit of functional pro

gramming; that it just implements a tiny procedural language inside Miranda. We

would say that all large functional programs define their own set of higher order

functions for structuring, tailored to their own problems. It is not surprising that

the primitives chosen for an operating system are concerned with the problems of

exceptions, side effects and parallelism.

“Taken as directed, Ubik
provides uninterrupted
sleep without morning-after
grogginess. You awaken
fresh, ready to tackle all
those little annoying
problems facing you. Do
not exceed recommended
dosage. ”

Chapter 6

KAOS Applications

This chapter briefly describes the facilities provided by the two main KAOS applica

tion programs, sh the KAOS shell and medit8, a full screen editor that runs under

KAOS. It ends with a discussion of the special difficulties that arise in writing pro

grams that are to run under systems like KAOS.

6.1 The KAOS shell

KAOS has a simple shell which provides similar facilities to the standard UNIX shells.
It is a user level process just like any other, relying heavily on the std io library
described in the previous chapter.

6.1.1 Shell Command Syntax

A shell command consists of a number of blank separated words, the first of which is

the name of the program to be run and the rest are either arguments which are to be

SO

CHAPTER 6. KAOS APPLICATIONS 81

passed to the program, or modifiers which tell the shell about the environment the

program is to be run in.

There are four modifiers available: output, input and error redirection and back

grounding. If a word starts with a ' > ’ character, the rest of the word is interpreted

by the shell as a path name to which the program’s output should be redirected. If

a word starts with ' < ' , the rest of the word is interpreted as a path name for input

redirection and if a word starts with ‘ # ', as error redirection. If the last word in a

shell command is a " ! ", then the program is run in the background. The shell will

print a message on the terminal when a backgrounded program terminates.

At the moment there is no notion of a current directory; path names have to all

be given in full. The syntax of a path name in KAOS is

pathname : ‘ : ’ < devicename > < tailpath >

tailpath : t |
‘ / ’ < filename > < tailpath >

(Where file names and device names are both strings of up to f ileNameLength char

acters. See section 3.4 for another view of this.)

So for example:

Is :disc/sys

lists the sys directory on the KAOS disc, and

cat :disc/sys/newshell >:tty2 !

copies the file newshell off the KAOS disc onto device tty2 in the background.

There are a variety of devices available: :disc is the main filesystem, :n i l is

a ‘black hole’ which simply swallows anything sent to it, :ttyl is the terminal and

: clock is a time of day clock. There may be other tty devices, depending upon the

configuration of the system.

CHAPTER 6. KAOS APPLICATIONS 82

All commands return success or failure codes. If a command finishes successfully,

the shell simply prompts for more input. If a command fails, then the shell will

attempt to give some diagnostics. Background commands always produce a message

when they finish.

6.1.2 Programs Available

There are a number of programs that can be run from the shell. These vary from tiny

utility programs like cat and echo, to large applications like the screen editor ed. All

can have their input, output and error streams redirected, all can be backgrounded

and all can be interrupted if they are run in the foreground.

cat Interprets its arguments as a list of filenames which are each read in turn and

copied to cat’s standard output. If there are no arguments, cat just copies

standard input to standard output.

rm Removes the list of filenames given as arguments.

Is If the named files are directories, Is writes a pretty directory listing to its standard

output. If the files are not directories, then KAOS crashes.

mv Renames a file on a device. This cannot be used across devices, for obvious

reasons. For example,

mv :disc/sys/newshell :disc/test

moves newshell into the root directory, renaming it as test. Only two argu

ments are allowed, both of which have to be complete path names.

CHAPTER 6. KAOS APPLICATIONS S3
echo Writes its arguments to stdout. For example,

echo hello sailor! >:tty2

writes hello sailor! on :tty2.

i f Tests its arguments for textual equality, returning an error if they are not all the

same. This can be used in conjunction with the sequencing operators described

below.

fmt Reformats the named devices. This is rather a dangerous command and should

be used with care!

mkdir Makes a series of new directories.

sh Runs a sub shell. If there are no arguments, sh reads commands from its standard

input. Otherwise it runs itself on the script named in the first argument, passing

in the remaining arguments to the script.

ed Runs a version of medit, the Miranda screen editor, on the first file named. If

there are no arguments, ed starts up on an empty file.

mount Mounts a device. The first argument is the name of the driver to be mounted

(currently only tty, clock, disc and nil are allowed), the second argument is

a path to mount at. For example,

mount tty :tty2/CTRLC-TTY2/2

mounts another tty driver, which will signal interrupts on CTRLC-TTY2 and
which will access kernel device number 2.

CHAPTER 6. KAOS APPLICATIONS 84

unmount Unmounts a series of devices. For example,

unmount : t t y l :tty 2

help Prints a manual page for sh. The help system is rather rudimentary.

6.1.3 Shell Commands

There are a number of commands which are built directly into the shell. These behave

rather differently to the programs described above: although they can have their

input, output and error streams redirected, they cannot be run in the background,

and they cannot be interrupted, with the exception of wait.

job s Lists all the background jobs currently executing,

wait Wait until all backgrounded jobs finish.

create Creates a new event owned by the shell. Only one argument is allowed,

setenv Sets an environment variable. For example,

setenv ENVJSIGNAME CTRLC-TTY2

sets variable ENV_SIGNAME to CTRLC-TTY2. The environment is a list of map

pings from [char] to [ch a r], passed down from parent to child processes. It

includes things like ENV_STDOUT, etc.

showenv Display the current environment.

unsetenv Unset a variable.

CHAPTER 6. KAOS APPLICATIONS 85

e x it Causes the shell to exit prematurely. If there are any arguments, then the

shell exits with a USERERROR with the arguments attached to it. If there are no

arguments, then the shell exits normally. For example,

e x it wrong number o f a rg s !

~D (CONTROL-D) Generates an end-of-file from the keyboard. The sample session

below shows how it can be used.

"K (CONTROL-K) The shell will attempt to kill the foreground job. The shell does

not let you kill background jobs.

6.1.4 Variable Substitution

Before command lines are parsed, KAOS performs variable expansion. Occurences of

$ (fre d) are replaced by the contents of the environment variable fred . Expansions

can be nested: $ (f r e d $ (b i l l)) expands b i l l first, then looks for a variable whose

name starts with fred , followed by the contents of b i l l . As an abbreviation, the

brackets may be omitted if the name of the variable is a single character.

A number of environment variables are defined automatically. These are:

ENV_STDIN, ENV.STDOUT, ENV_STDERR These hold the file handles for the streams
the shell is currently working on.

ENV_SIGNAME This holds the name of the event the shell is listening for interrupt

messages on. If it is undefined when the shell starts up, then the shell will not

look out for interrupts.

0 This is the name of the script the shell is currently processing. It is set to std in

if the shell is just reading from its standard input.

CHAPTER 6. KAOS APPLICATIONS 86

1, 2, . . . These are the arguments the shell was passed. They may or may not be all

defined!

n This is the number of arguments the shell was passed, not including argument 0.

* Is arguments 1 to n joined together with spaces.

*/, Is arguments 2 to n joined together with spaces. This is useful for recursing down

argument lists, in the absence of proper string operators.

6.1.5 Command Sequencing

Several commands may be put on a line, joined together with " I " or " ; " and

grouped with " (" and ") " . These operators let you do simple command sequencing.

commandl & c o m m a n d 2 Means do command2 unless commandl fails. This is sup

posed to look like conjunction: the whole expression only succeeds if both of its

components succeed.

commandl | c o m m a n d 2 Means do command2 unless commandl succeeds. This is

like disjunction: the whole expression succeeds if one of its components succeeds.

commandl ; c o m m a n d 2 Means do command2 whether commandl succeeds or not.

These operators are left associative and all have equal binding power. You can

use " (" and ") " to force grouping when necessary.

So for example, here is a shell script which will act a little like the UNIX cp
command: it will copy all its initial arguments to its final argument with cat. Note

how we do tests and recursion.

(if $n 0 | if $n 1) I (cat $1 >$($n) & sh $0 $'/.)

CHAPTER 6. KAOS APPLICATIONS 87

6.1.6 Shell Syntax

The syntax accepted by the shell can be summarised as

line : < element > |
< element > < op > < line >

element : < command > |
‘ (’ < l i n e X ‘) ’ >

op : ‘ ft’ | T | V
command : < name > < args > < bged >

args : e |
< arg > < args >

bged : e | T

6.1.7 A Sample Session

Below is a sample KAOS session, intended to illustrate the use of the commands

above. As a general rule of thumb, the system tends to work like UNIX: if you do

what comes naturally, most things work.

kaos> mount disc :disc/3/0
kaos> Is :disc
:disc
kaos> cat >:disc/jane
Now is the winter of our discontent
Made glorious summer by this OS of Kent.
"D
kaos> Is :disc
: disc
1) jane : FILE
kaos> cat :disc/jane
Now is the winter of our discontent
Made glorious summ"K
kaos> cat :disc/jane >:disc/fred &
kaos> jobs
1) cat :disc/jane >:disc/fred
kaos> rm :disc/jane

CHAPTER 6. KAOS APPLICATIONS 88

shell: 'rm :disc/jane' failed: file is open
kaos>
shell: 'cat :disc/jane >:disc/fred': terminated
kaos> cat >:disc/jane
cat :disc/jane
~D
kaos> sh :disc/jane >:disc/fred
kaos> cat :disc/fred
cat :disc/jane
kaos> unmount :disc
kaos> ~D

6.1.8 Inside the Shell

Internally, the shell is structured as an event loop. At any time, it can receive an

exit message from a background process, a CONTROL-C interrupt message or a new

line of input from the user. This presents structuring problems, as in teracts such

as readLine (see section 5.2) cannot be used asynchronously.

The solution adopted was to split the shell into two processes. A front end calls

readLine repeatedly, posting lines of text to the other half of the shell as they ar

rive. This other half simply calls getNext repeatedly, switching to different functions

depending on the message.

6.2 medit — A Screen Editor Under KAOS

medit was originally written by Robert Duncan[3] to run inside the normal Miranda

environment. Substantial changes had to be made to make it work comfortably un

der KAOS. It is interesting to note that the changes described below took only a

fews days hacking, despite the complexity of medit and the relative lack of program

CHAPTER 6. KAOS APPLICATIONS 89

documentation. This ease of maintenance seems to be due to a combination of a pro

gram which was written with updates to Miranda in mind; referential transparency,

which makes it possible to understand small parts of large systems in isolation; and

a powerful type system, which catches most errors at compile time.

6.2.1 Changing the Input Style

The original version of medit had two main functions, line_mode and screen_mode.

screen_mode was for moving around the document: it allowed you to search for

strings, move to specific lines, scroll forwards and backwards by a page and so on. If

you tried an editor command that screen.mode did not understand, such as inserting

a character, it would extract the current line of text from the document and pass it

to line_mode. line_mode simply edited a single line of text from the document. It

allowed you to cursor left and right along the line, insert and delete text from the

current line, and so on. If you tried an editor command that line_mode did not

understand, it would return the edited line together with the editor command that

failed. screen_mode would put the new line back in the document and then try to

interpret the command itself.

This was clearly an unsuitable structure for a KAOS application, as one of the

things being passed between line_mode and screen_mode was the stream of com

mands being typed at the keyboard, and KAOS does not have this form of lazy input.

What was needed was a single function taking an editor command and an editor state

to a new state and some characters to be used to update the screen.

The editors state was expanded to hold a flag indicating whether the editor was in

line mode, and if so to then also hold the appropriate extra pieces of state information.

Every time the edit function is called, it looks at the editor command and decides

CHAPTER 6. KAOS APPLICATIONS 90

if it should be handled by line_mode or screen_mode. It then checks the state the

previous editor command was processed in. If this command is to be processed in the

same state, then it can simply extract the right part of the state and pass it to either

line_mode or screen_mode. If not, then before it can call either function, it has to

switch states by calling a function to extract the current line from the document or

a function to replace the edited current line in the document.

6.2.2 Isolating File Input and Output

medit originally had its file input and output handling scattered throughout the

code. Under KAOS, input and output has to be done with in teracts — to prevent

in te ra ct spreading throughout the program it was necessary to move all the file han

dling to the top level. Again, this involved quite substantial changes to the structure

of the program.

6.2.3 Cosmetic Changes

A number of other changes were made to medit. The system for binding editor

commands to key sequences was originally rather more complex and slow than was

strictly necessary. It was replaced by a system which associated a single keystroke with

a single command, medit originally checked every character it sent to the screen to see

if it was printable ASCII, displaying it as a ' ? ' if not. Removing this feature speeded

up screen output dramatically. The terminal database used by medit was improved,

and the functions for extracting the description of the current terminal are now called

just once, during program start up. Previously, medit had performed this extraction

operation every time it needed to output some screen control codes. Support was also

added for the INSERTCHAR and DELETECHAR operations provided by VT100

CHAPTER 6. KAOS APPLICATIONS 91
terminals, speeding up character insertion.

The version of medit running at the moment under KAOS comes in two parts:

a single 400 line file written using in teracts which handles all the communication

with the operating system, and another 3500 lines written in an ordinary functional

style which defines a single function edscreen, of type

edscreen
:: window -> edit_command -> screenstate ->

(screenstate, [char])

which processes a keystroke, returning a new editor state and some characters to be

sent to the screen.

“Pop tasty Ubik into your
toaster, made from fresh
fruit and healthful
all-vegetable shortening.
Ubik makes breakfast a
feast, puts zing into your
thing! Safe when handled
as directed.”

Chapter 7

Conclusions and Future

Developments

Chapter two discussed the problems of introducing non-determinism to a functional

language, developing a model of parallelism which was flexible enough for implemen

tation in either a functional language or an imperative one. It then presented an

operating system kernel written entirely in Miranda and went on to sketch roughly

how one might go about proving properties of parallel functional programs. Chapter

three described the insides of KAOS, an operating system based on the ideas de

veloped in chapter two and written entirely in Miranda. Chapter four showed what

features of conventional operating systems are not covered by the kernel from chap

ter three, and suggested how a kernel written in an imperative language could solve

these problems while maintaining compatibility with the Miranda kernel. Chapter

five explained a systematic scheme for writing operating system code in a functional

language, giving examples of how one handled error recovery and side effects. Finally,

chapter six described two of the larger applications that run under KAOS: the shell,

92

CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTS 93

and the screen editor medit.
There are a number of problems with the current design of KAOS. As section 3.7

explained, there are questions about the adequacy of the design of several of the

system processes, and about the very simple message passing semantics adopted by

KAOS. The semantics presented in section 2.10 is also very incomplete: a great deal

of work would be necessary if somet hing along those lines were to become a reasonable

system for proving properties of collections of processes.

If KAOS were to be taken any further, perhaps the next step should be a proper

kernel, as described in chapter 4, and the implementation of a Miranda compiler in

Miranda, so that KAOS could become a complete development environment. Only

by using the system on a daily basis could one get a feel for its shortcomings and some

ideas about the future development of operating systems in functional languages.

Bibliography

[1] M. Broy. Nondeterministic Dataflow Programs: How to Avoid the Merge

Anomaly. Science of Computer Programming 10 (1985) 65-85.

[2] P. Denning, R. Brown. Operating Systems. Scientific American, September 1984.

[3] R. Duncan. Using the Miranda Screen Editor MEDIT. University of Kent Com

puting Laboratory, 1986.

[4] Fenichel, Yockelson. Garbage Collection in a Virtual Storage Situation. CACM,

vol. 12, no. 11, p. 611, 1969.

[5] J. Fairbairn, S. Wray. TIM — A simple, lazy abstract machine to execute su-

percombinators. Third conference on Functional Programming Languages and

Computer Architecture, Springer Lecture notes in Computer Science 274.

[6] P. Henderson. Purely Functional Operating Systems. Functional Programming

and its Applications, eds Darlington, Henderson and Turner. Cambridge Univer

sity Press, 1982.

[7] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Interna

tional, 1985.

94

BIBLIOGRAPHY 95

[8] K. Karlsson. Nebula — A Functional Operating System. Laboratory for Pro

gramming Methodology, Department of Computer Science, Chalmers University,

1981.

[9] P. Martin-Lof. An Intuitionist Theory of Types: Predictive Part. Logic Collo

quium 1973, eds. Rose and Shepherdson, North Holland 1975.

[10] G. Kahn, D. McQueen. Coroutines and networks o f parallel processes. IFIP 77,

North Holland.

[11] R. D. Lins. C.M.-C.M. A Categorical Multi-Combinators Machine. UKC Com

puting Laboratory Report 57, December 1988.

[12] M. Longley. MOOSE. UKC Computing Laboratory Report No 55.

[13] M. Longley. Continuations —> Continuations — Interactions. UKC Computing

Laboratory Report No 63.

[14] S. B. Jones. A Range of Operating Systems Written in a Purely Functional Style.

University of Stirling Department of Computer Science, Technical report TR16.

[15] S. B. Jones. Abstract Machine Support for Purely Functional Operating Systems.

Oxford University Programming Research Group Technical Monograph 34, Au

gust 1983.

[16] S. B. Jones, A. F. Sinclair. Functional Programming and Operating Systems. The

Computer Journal, Vol. 32, No. 2, 19S9.

[17] G. Kahn, D. McQueen. Coroutines and networks o f parallel processes. IFIP 77,

North Holland.

BIBLIOGRAPHY 96

[18] J. Misra. Equational Reasoning About Nondeterministic Processes. Published

where??

[19] N. Perry. Short Note: Towards a Functional Operating System. Imperial College

report.

[20] A. Pnueli. Applications of Temporal Logic to the Specification and Verification

of Reactive Systems: A Survey of Current Trends. LNCS 224, March 86.

[21] W. Stoye. The Implem entation o f Functional Languages using Custom Hardware.

PhD Thesis, Cambridge University Computer Laboratory, December 1985.

[22] W. Stoye. A New Scheme For Writing Functional Operating Systems. Cambridge

University Computer Laboratory Technical Report 56, 1984.

[23] C. Strachey, C. P. Wadsworth. Continuations — a Mathematical Semantics for

Handling Full Jumps. PRG-11, Programming Research Group, University of

Oxford, 1974.

[24] Sun Microsystems, The NeWS Window System: Technical Overview. October

1986.

[25] S. J. Thompson. Interactive functional programs: a method and a formal seman

tics. UKC Computing Laboratory Report No 48, November 1987.

[26] D. A. Turner. An Overview of Miranda. SIGPLAN Notices, December 1986.

[27] D. A. Turner. Functional Programming and Communicating Processes. Confer

ence proceedings for PARLE, June 1987.

[28] D. A. Turner. SASL Language Manual. St. Andrews University Department of

Computational Science, December 1976.

Appendix A

KAOS Kernel Source

>|| kernel.m - KAOS kernel, V.5.0

Export the kernel calls and some useful type synonyms.

>’/,export
> receive killfun newProcess send
> discBlock discBlockLength blockNum lineState deviceld
> process kaos spawn sys
> writeTty readTty setTtyState writeDisc readDisc

Include various libraries. Their source appears in appendix B.

>*/,include "os/lib/misc"
>*/,include "os/lib/char"
>*/,include "os/lib/key"
>*/,include "os/lib/lift"
>*/,include <local/disgusting>

A .l Introduction

The kernel manages the set of processes currently active in the system, switching
execution between them, passing messages etc. It provides functions to control devices
too.
This is a literate script; all lines starting with a > character are lines of program text.
This appendix was generated automatically from the KAOS source.

97

APPENDIX A. KAOS KERNEL SOURCE 98

A .2 Type definitions

We have functions for sending and receiving. Processes have a private receive function
for accepting messages addressed to themselves, and a public send function they can
pass to other processes who might wish to send to them.
To send a message, we pass the thing to be sent and a continuation expecting the
result of the send. Send fails if the function is out of date; ie. is a send function for
a process that has been removed from the system.

>send * = = * - > (l i f t () -> process) -> process

To receive a message, we just pass a continuation expecting something of the appro
priate type. Receives can fail if used by some process other than the one they were
made for.

>receive * == (l i f t * -> p rocess) -> process

A kill function removes a particular process. Each process starts up with its own kill
function and is free to pass it to any other processes which it feels ought to be able to
kill it. Kills can also fail, eg. if they become out of date. A process kills itself when
it wishes to finish. The argument can be left undef in this case.

> k illfu n == (l i f t () -> process) -> process

A newProcess the thing we pass to spawn; it is a process expecting all the things
processes are handed when they start up.

>newProcess * == send * -> rece ive * -> k i l l fu n -> process

A process is a huge abstype containing the entire state of the operating system. There
are only three kernel calls available to the outside world

kaos Starts up the operating system. This is what one types at the Miranda prompt
to boot, passing the root process and some other stuff.

spawn Makes a new process out of the newProcess passed, returns an error value to
the spawner.

sys Sends a sys_message to the outside world. Used only for producing debugging
messages on the console.

APPENDIX A. KAOS KERNEL SOURCE 99

And five more functions for accessing devices. All get passed a deviceld, which
should be for a device of the right type.

readDisc/writeDisc Read and write a sector on the disc. Some quick defs. for disc
blocks

>discBlock == [char]
>discBlockLength = 6 0 || Very small for the moment
>blockNum == num

readTty/writeTty/setTtyState Read and write characters to the terminal. Select
either raw or cooked input with setTtyState.

>lineState ::= LINE | CBREAK

See the implementation equations for more detailed comments on these functions.

>abstype process
>with kaos : :: [[char]] -> [[char]] -> newProcess * ->
> [sys_message]
> spawn
> : [char] -> newProcess * -> (lift () -> process) ->
> process
> sys : :: sys_message -> process --> process

Device functions.

>
>
>
>
>
>
>
>
>
>
>
>
>

readDisc
: : deviceld -> blockNum -> (lift discBlock -> process)

process
writeDisc

:: deviceld -> blockNum -> discBlock ->
(lift () -> process) -> process

readTty
:: deviceld -> (lift [char] -> process) -> process

writeTty
:: deviceld -> [char] -> (lift () -> process) ->

process
setTtyState

:: deviceld -> lineState -> process -> process

->

APPENDIX A. KAOS KERNEL SOURCE 100
And some internal functions that also need to be in the abstype.

> schedule :: process
> doDeviceNow :: deviceld -> process
> doDeviceLater :: process
> doRunnable :: process
> exitKaos :: process
> killWrap :: processld -> killfun
> receiveWrap :: receive *
> sendWrap :: processld -> send *

A process is a function taking the current machineState to a list of sys_message
suitable for piping to the Miranda environment.

>process == machineState -> [sys_message]

The machine state is a keyedList of all the processStates (processlds are keys
into this list), a list of the processlds of all the currently runnable processes and a
list of device states, devicelds are indexes into this list.

>machineState
> == (keyedList (processState item),
> [processld],
> [deviceState]
>)
>processId == listKey
>deviceld == num
>item == num || Could be anything

item is supposed to represent some untyped fragment of combinator graph. We use
changetype to turn things into items and back again; see send/receive at the end of
this file. The head of the runnable list is the pid of the currently active process.
A process can be in one of four states

RUN The process is runnable. We need to hold the continuation for that process and
a list of the processes which are currently waiting to send to it, together with
the thing they are trying to send.

OUT The process is blocked waiting for output; it tried to send to a process that was
not waiting for input. We need to hold the continuation, the process we are
trying to send to and the list of processes currently blocked on this process.

APPENDIX A. KAOS KERNEL SOURCE 101
IN The process is blocked waiting for input; it tried to read when there were no

messages waiting. We only need to hold the continuation.

DEV The process is blocked on a device. Something in deviceState keeps track of
the process’ processld and will restart it when the device is ready. Likewise,
DEV has to track the deviceld the process is waiting on, so we can tidy up
deviceState if the process is killed. Again, we need to keep track of the
processes blocked on this process.

The * for a processState is the input type for that process, the [char] at the front
of each constructor is the name of the process (useful for debugging).

>processState *
> ::= RUN [char] process [(processld, *)] I
> OUT [char] (lift () -> process) processld [(processld, *)] I
> IN [char] (lift * -> process) I
> DEV [char] (devReply -> process) deviceld [(processld, *)]

And the device state. For each device attached, we note the queue of processes
blocked on it and some more stuff particular to each device type.

>deviceState == ([processld], deviceParticulars)

For the disc we just hold the current list of blocks and the name of the file it came
from. For each tty we need to hold

• The input stream from that tty; ie. the result of something like
nb_read "/dev/ttyl4",

• The current line state for the tty; either LINE or CBREAK,
• The device name for the tty. Again, something like "/dev/ttyl4". This is the
name we Tofile to to write to the terminal, and stty to to change the line
mode.

5ÏA

>deviceParticulars
> ::= PART_DISC [discBlock] [char] I
> PART-TTY [char] lineState [char]

APPENDIX A. KAOS KERNEL SOURCE 102
Continuations in DEV are waiting for a devReply. This has various shapes, depending
on the device the process is blocked on. Currently, things only get blocked on tty
reads.

>devReply
> ::=TTY_REPLY (lift [char])

A .3 Useful functions

This function is used by schedule (see below) to dump the process list. Without this
function, we just get <unprintable> errors as processState is not exported (and I
don’t think should be) from this file.

>showprocessState :: (* -> [char]) -> processState * -> [char]
>showprocessState showthing (RUN name cont pend)
> = "RUN \"" ++ name ++ "\" <process> " ++ showpend showthing pend
>showprocessState showthing (OUT name cont key pend)
> = "OUT \"" ++ name ++ "\" <lift () -> process> <item> " ++
> show key ++ " " ++ showpend showthing pend
>showprocessState showthing (IN name cont)
> = "IN \"" ++ name ++ "\" Clift item -> process>"
>showprocessState showthing (DEV name cont did pend)
> = "DEV \"" ++ name ++ "\" cdevReply -> process> " ++ show did ++
> " " ++ showpend showthing pend

Show a pending list.

>showpend :: (* -> [char]) -> [(processld, *)] -> [char]
>showpend showthing pend
> = " [" ++ foldl showit "" pend ++ "]"
> where
> showit sofar (key, x)
> = showed, sofar = ""
> = ", " ++ showed, otherwise
> where
> showed = "(" ++ shownum key ++ "," ++ showthing x ++ ")"

Replace the current process’ continuation. This is called by spawn, sys etc.

APPENDIX A. KAOS KERNEL SOURCE 103

>replaceRunnable :: process -> machineState -> machineState
>replaceRunnable cont' (plist, run, devs)
> = (plist', run, devs)
> where
> pkey = hd run
> (RUN name cont pend) = indexKey pkey plist
> pstate' = RUN name cont' pend
> plist' = updateKey pkey pstate' plist

Find a process’ name. Useful for debugging.

>findName :: processState item -> [char]
>findName (RUN name cont pend) = name
>findName (OUT name cont key pend) = name
>findName (IN name cont) = name
>findName (DEV name cont did pend) = name

A .4 Kernel functions visible to the outside world

kaos evaluates some root process to a [sys_message]. W e have to set up the initial
deviceState: this involves doing some nb_reads and grabbing the initial disc states
from UNIX. W e set the terminals to ignore “D’s. W e take lists of tty names and file
names (which hold the discs) as arguments.

>11 kaos :: [[char]] -> [[char]] -> newProcess * -> [sys_message]
>kaos discs ttys root
> = schedule (addProcess "root" root (emptyKey, [], devs))
> where
> makedisc name = ([], PART_DISC
> (choplist (chop discBlockLength)
> (read name)) name)
> maketty name = ([] , PART-TTY (ttylnput name) LINE name)
> devs = map makedisc discs ++ map maketty ttys

Repeatedly read from a terminal. This lets us catch 'Ds. We turn ~Ds into CR, ~D,
CR. We have to pass the name around to stop lazy evaluation doing funny things.

>ttylnput :: [char] -> [char]
>ttylnput name

APPENDIX A. KAOS KERNEL SOURCE 104

> join name
where
join name

>
>
> = nb_read name ++ ['\n’,’\04’,’\n’] ++ join name

spawn turns a newProcess into new process, adding it to the state. Currently spawn
always succeeds.

> | I spawn
>|| :: [char] -> newProcess * -> (lift () -> process) -> process
>spawn name newjob cont state
> = schedule state'’
> where
> state’ = replaceRunnable (cont (P ())) state
> state’’ = addProcess name newjob state’

And finally, sys sends a sys_message to the Miranda environment and then runs
some other process.

>|| sys :: sysunessage -> process -> process
>sys mess cont state
> = mess : schedule state’
> where
> state’ = replaceRunnable cont state

A .5 Kernel device control functions

The disc functions are very simple. We do the read/write then exit through the
scheduler.

> | I readDisc
>|| :: deviceld -> blockNum -> (lift discBlock -> process) ->
> | | process
>readDisc did n cont state
> = schedule state’
> where
> (run, plist, devs) = state
> ([], PART_DISC disc discname) = devs!did
> state’ = replaceRunnable (cont (P (discln))) state

APPENDIX A. KAOS KERNEL SOURCE 105

> | | writeDisc
>11 :: deviceld -> blockNum -> discBlock -> (lift () -> process) ->
> | | process
>writeDisc did n blk cont state
> = schedule state''
> where
> (run, plist, devs) = state
> ([], PART_DISC disc discname) = devs!did
> disc' = update n blk disc
> devs' = update did ([], PART_DISC disc' discname) devs
> state' = (run, plist, devs')
> state'' = replaceRunnable (cont (P ())) state'

writeTty just does a sys for you. It has to look up the name of the file to write to
in the device list.

> |I writeTty
>|| :: deviceld -> [char] -> (lift () -> process) -> process
>writeTty did str cont state
> = sys (Tofile devname str) (cont (P ())) state
> where
> (run, plist, devs) = state
> (q , PART_TTY inp 1st devname) = devs!did

This process becomes blocked on tty input. We add it to the end of the queue inside
ttyState and change it into a DEV. The scheduler will test the input stream and
restart the process if there is any available.

>|| readTty :: deviceld -> (lift [char] -> process) -> process
>readTty did cont state
> = schedule state'
> where

Take the state apart.

> (plist, (ckey:rest), devs) = state
> (q, part) = devs!did

Make the new device state. We just append the processld to the queue on this
device.

APPENDIX A. KAOS KERNEL SOURCE 106

> q' = postfix ckey q
> devs' = update did (q', part) devs

Make the new process list. We have to change the RUN into a DEV.

> (RUN name oldcont pend) = indexKey ckey plist
> pstate' = DEV name cont’ did pend
> cont' (TTY-REPLY x) = cont x
> plist' = updateKey ckey pstate' plist
> state' = (plist', rest, devs')

Set the lineState for a particular terminal.

>11 setTtyState :: deviceld -> lineState -> process -> process
>setTtyState did 1st cont state
> = sys (System str) cont state'
> where
> (plist, rlist, devs) = state
> (q, PART_TTY inp oldlst devname) = devs!did
> devs' = update did (q, PART-TTY inp 1st devname) devs
> state' = (plist, rlist, devs')
> toterm = " > " ++ devname
> str = enterCbreak ++ toterm, 1st = CBREAK
> = enterLine ++ toterm, otherwise

sys_messages for changing the terminal mode.

>enterCbreak = "stty raw -echo"
>enterLine = "stty -raw echo"

A .6 The scheduler

Chose and run the next process. This is very confusing! In summary, we

• Are there any processes blocked on devices? If so, are there any devices ready?
If we find a ready device and a waiting process, we change the process from DEV
to RUN and schedule it next (by calling doDeviceNow). Otherwise, fall through
to the next test.

APPENDIX A. KAOS KERNEL SOURCE 107

• Are there any processes in the run queue? If there are, we choose one of these
and run it (by calling doRunnable). Otherwise, fall through to the next test.

• Test again to see if there are any processes blocked on devices. If there are,
then wait for the first device to become ready and then schedule its associated
process (by calling doDeviceLater). Otherwise fall through to the next test.

• There are no runnable processes to be found. KAOS should exit, dumping the
system state (by calling exitKaos).

Note: we have to be very careful to continually throw away hiatons. Every time
we find a hiaton, unless we junk it we will not force another poll next time around.
So, after scanning the tty list to find any ready terminals, we have to scan it again
throwing away hiatons from the fronts of all the lists.

>11 schedule :: process
>schedule state
> = doDeviceNow (hd ready) state', ready ~= []
> = doRunnable state', run "= []
> = doDeviceLater state', waiting
> = exitKaos state', otherwise
> where

Take the state apart.

> (plist, run, devs) = state

Look through all the devices for devices with non-empty queues.

> waiting = or [q "= [] I (q, part) <- devs]

Find all the ttys with non-empty queues and some stuff waiting to be read on their
input. Build a list of the processlds of all these devices.

> ready = [id 1 (id, (q, PART-TTY inp 1st devname)) <-
> zip2 [0..] devs;
> q "= [] & hd inp ~= hiaton]

ready will force evaluation of the heads of all the tty input streams with waiting
processes. All the input streams with no ready input will now have hiatons on their
fronts. We have to go through all the input streams throwing away one hiaton from
the front of each.

APPENDIX A. KAOS KERNEL SOURCE 108

> ¿Levs' = [(q, tidy part) | (q, part) <- devs]
> tidy (PART_TTY (a:x) 1st devnarae)
> = PART_TTY x 1st devname, a = hiaton
> = PART_TTY (a:x) 1st devname, otherwise
> tidy other = other
> state' = (plist, run, devs')

Do a read from a tty. By the time we get called, we know that there is enough input
available on this terminal. Roughly, we do

• Read the appropriate amount from the input stream,

• pull the blocked process out of the process list,

• hand the continuation the appropriate number of characters,

• put it back in the process list as a RUN and add its key to the run queue.

• run the process!

>|| doDeviceNow :: deviceld -> process
>doDeviceNow did state
> = cont' state'
> where

First we take the state apart.

> (plist, run, devs) = state
> (nkey: restq, PART_TTY inp 1st devname) = devs!did

Read either the next line or the next character from inp. in p ' is what’s left after
the read, dta is what we have read.

> (txtline, restline) = chopuntil (='\n') inp
> (chr : rest) = inp
> inp' = rest, 1st = CBREAK
> = restline, 1st = LINE
> dta = [chr], 1st = CBREAK
> = txtline, 1st = LINE

Take the blocked process out of the state and hand it the new stuff we have read.

APPENDIX A. KAOS KERNEL SOURCE 109

> (DEV name cont did' pend) = indexKey nkey plist
> cont' = cont (TTY-REPLY (P dta))
> pstate' = RUN name cont' pend

Rebuild the state, but with the ex-blocked process off the waiting list for the tty and
back on the run queue. It’s going to be the next thing we run, so its key goes at the
head of the run queue.

> run' = nkey:run
> plist' = updateKey nkey pstate' plist
> devs' = update did (restq, PART_TTY inp' 1st devname) devs
> state' = (plist', run', devs')

Chose and run a new process from the run queue. Put the old process key at the end
of the run queue.

>|| doRunnable :: process
>doRunnable (plist, run, devs)
> = cont (plist, run', devs)
> where
> (okey:rest) = run
> run' = postfix okey rest
> ckey = hd run'
> (RUN name cont pend) = indexKey ckey plist

Wait for a device to become ready. We grab all the input streams from devs and look
along them for the first non-hiaton. This is quite complicated! Because of the way
nb_read works, we need to be very careful about our order of evaluation.
Once we have found a device one of whose processes could be run, we call doDeviceNow
to schedule it.

>|| doDeviceLater :: process
>doDeviceLater state
> = doDeviceNow did state'
> where

First we take the state apart.

> (plist, run, devs) = state

APPENDIX A. KAOS KERNEL SOURCE n o

Get all the terminal input streams, paired with their deviceld. Filter out devices
which have no waiting processes.

> streams = [(did, inp) I (did,
> (q, PART_TTY inp 1st devname)) <-
> zip2 [0..] devs; q ~= []]

Useful functions: drop the head of every stream, find the streams that have output
ready, test to see if any streams have output available.

> step strs = [(did, tl str) I (did, str) <- strs]
> ready strs = [did I (did, str) <- strs; hd str ~= hiaton]
> avail strs = ready strs "= []

Loop step along the streams, find the first step at which one stream has some input
ready and find its did.

> steps = iterate step streams
> (found: junk) = dropwhile ((") . avail) steps
> (did: morejunk) = ready found

Replace all our shortened streams in the device list.

> devs' = foldr plopback devs found
> plopback (did, newstr) devs
> = update did (q, PART_TTY newstr 1st devname) devs
> where
> (q, PART_TTY inp 1st devname) = devs!did

The new state.

> state' = (plist, run, devs')

Shut down KAOS. We write the (presumably) modified discs back to UNIX with a
series of Tof ile s , then dump the system state.

>11 exitKaos :: process
>exitKaos (plist, run, devs)
> = plopdiscs ++ [Stdout helpful]
> where

APPENDIX A. KAOS KERNEL SOURCE 111
> plopdiscs = [Tofile discname (concat disc) |
> (q, PARTJDISC disc discname) <- devs]
> helpful
> = "Run queue empty - dump of system state:\n" ++
> showkeyedList
> (showprocessState (const "item"))
> plist

A .7 Process removal

Remove a process. There are several things to do to unlink the process

• Signal errors for any processes waiting to send to the process we are trying to
remove.

• If the process we are removing is waiting on output, we have to remove its
processld from the pending list of the process it is trying to send to.

• Remove the process from the RUN queue if necessary.

• Remove the process from the queues in the device list if necessary.

>removeProcess : : processld -> machineState -> machineState
>removeProcess pid (plist, run, devs)

= switch (indexKey pid plist)
where
switch (IN name cont)

= (plist', run, devs)
where
plist' = removeKey pid plist

switch (RUN name cont pend)
= foldr restartProcess st' pend
where
st' = (plist', run', devs)
plist' = removeKey pid plist
run' = filter (~=pid) run

switch (OUT name cont wpid pend)
= foldr restartProcess st' pend
where

APPENDIX A. KAOS KERNEL SOURCE 112
>
>
>
>
>
>
>
>
>
>
>

st ’ = (plist'', run, devs)
plist' = removeKey pid plist
plist’’ = removePending pid wpid plist ’

switch (DEV name cont did pend)
= foldr restartProcess st' pend

where
(q, part) = devs!did
st’ = (plist', run, devs’)
devs' = update did (q', part) devs
q' = filter (~=pid) q
plist' = removeKey pid plist

Restart a process blocked on output.

>restartProcess :: (processld, *) -> machineState -> machineState
>restartProcess (pid, x) (plist, run, devs)
> = switch (indexKey pid plist)
> where
> switch (OUT name cont wpid pend)
> = (plist', pid:run, devs)
> where
> pstate' = RUN name (cont (I err)) pend
> plist ' = updateKey pid pstate' plist
> err = ERR_N0PR0CESS "receiver killed"

Remove a processld from a pending list.

>removePending
> : : processld -> processld -> keyedList (processState item) ->
> keyedList (processState item)
>removePending pid wpid plist
> = switch (indexKey wpid plist)
> where
> fstneq a (b,x) = a ~= b
> switch (RUN name cont pend)
> = plist’
> where
> plist' = updateKey wpid
> (RUN name cont pend') plist
> pend’ = filter (fstneq pid) pend

APPENDIX A. KAOS KERNEL SOURCE 113

>
>
>
>
>
>
>
>
>
>
>
>

switch (OUT name cont wait pend)
= plist'
where
plist' = updateKey wpid

(OUT name cont wait pend') plist
pend' = filter (fstneq pid) pend

switch (DEV name cont did pend)
= plist'

where
plist' = updateKey wpid

(DEV name cont did pend') plist
pend' = filter (fstneq pid) pend

A .8 Message passing

First do a receive for the current process. We switch depending on the state of the
pending list; if it’s empty we block the process on input, otherwise we take the first
p rocessld , copy the item across and restart the sender.

>receiveProcess
> : : (lift * -> process) -> machineState -> machineState
>receiveProcess rcont (plist, run, devs)
> = switch (indexKey rpid plist)
> where
> rpid = hd run
> switch (RUN name old [])
> = (plist', run', devs)
> where
> plist' = updateKey rpid
> (IN name (changetype rcont)) plist
> run' = tl run
> switch (RUN rname old ((spid, x): rest))
> = (plist'', run', devs)
> where
> (OUT sname scont swait spend) = indexKey spid plist
> scont' = scont (P ())
> rcont' = (changetype rcont) (P x)
> plist' = updateKey spid
> (RUN sname scont' spend) plist

APPENDIX A. KAOS KERNEL SOURCE 114

> plist'' = updateKey rpid
> (RUN rname rcont’ rest) plist'
> run' = postfix spid run

Send a message from the current process. We switch depending on the state of the
process we are sending to. If it is waiting on input, we copy the item across and
restart it. If it is OUT, RUN or DEV, we add the sender to the end of the pending list
and block the sender.

>sendProcess
> : : (lift () -> process) -> * -> processld -> machineState ->
> machineState
>sendProcess scont x rpid (plist, run, devs)
> = switch (indexKey rpid plist)
> where
> spid = hd run
> (RUN sname old spend) = indexKey spid plist
> switch (IN rname rcont)
> = (plist'', run', devs)
> where
> spstate = RUN sname (scont (P ())) spend
> rpstate = RUN rname ((changetype rcont) (P x)) []
> plist' = updateKey spid spstate plist
> plist'' = updateKey rpid rpstate plist'
> run' = postfix rpid run
> switch (OUT rname rcont rwait rpend)
> = (plist'', run', devs)
> where
> spstate = OUT sname scont rpid spend
> rpstate = OUT rname rcont rwait rpend'
> rpend' = postfix (spid, changetype x) rpend
> plist' = updateKey spid spstate plist
> plist'' = updateKey rpid rpstate plist'
> run' = tl run
> switch (RUN rname rcont rpend)
> = (plist'', run', devs)
> where
> spstate = OUT sname scont rpid spend
> rpstate = RUN rname rcont rpend'
> rpend' = postfix (spid, changetype x) rpend

APPENDIX A. KAOS KERNEL SOURCE 115

>
>
>
>
>
>
>
>
>
>
>
>

plist' = updateKey spid spstate plist
plist'' = updateKey rpid rpstate plist'
run' = tl run

switch (DEV rname rcont did rpend)
= (plist'', run', devs)

where
spstate = OUT sname scont rpid spend
rpstate = DEV rname rcont did rpend'
rpend' = postfix (spid, changetype x) rpend
plist' = updateKey spid spstate plist
plist'' = updateKey rpid rpstate plist'
run' = tl run

A .9 Process creation

We make the various sends and receives for the new function and pop it into the state
at the end of the run queue. Currently, addProcess always succeeds. Slight problem:
the functions we pass to the new process need to know the key addKey will return.
Solution: We addKey a dummy value, then updateKey it with the real thing when
we know the key.

>addProcess
> : : [char] -> newProcess * -> machineState -> machineState
>addProcess name newjob (plist, run, devs)
> = (plist'', run’, devs)
> where
> (newkey, plist') = addKey undef plist
> plist'' = updateKey newkey newprocess plist'
> newprocess = RUN name newjob' []
> newjob' = newjob (sendWrap newkey)
> receiveWrap (killWrap newkey)
> run' = postfix newkey run

The functions addProcess hands to a new process. First the kill function. We check
to make sure the function is not out of date, then call removeProcess. We pass
success/fail back to the killer and exit through the scheduler.

> || killWrap :: processld -> killfun
>killWrap dpid kcont state

APPENDIX A. KAOS KERNEL SOURCE 116

> = schedule estate, "checkKey dpid plist
> = schedule state'', otherwise
> where
> (plist, run, devs) = state
> estate = replaceRunnable (kcont (I err)) state
> state'' = removeProcess dpid state'
> state' = replaceRunnable (kcont (P ())) state
> err = ERRJIOPROCESS "kill function out of date"

Receiving a message. Very easy! We don’t need to do an isuptodate check.

>11 receiveWrap :: receive *
>receiveWrap rcont state
> = schedule state'
> where
> state' = receiveProcess rcont state

Sending a message. We call sendProcess to do the dirty work, after checking that
the function is not out of date. We exit through the scheduler.

>11 sendWrap :: processld -> send *
>sendWrap rpid x scont state
> = schedule estate, "checkKey rpid plist
> = schedule state', otherwise
> where
> (plist, run, devs) = state
> estate = replaceRunnable (scont (I err)) state
> state' = sendProcess scont x rpid state
> err = ERR_N0PR0CESS "send function out of date"

Appendix B

KAOS Libraries

B .l Introduction

This appendix contains the libraries used by the KAOS kernel. It is included to help
understanding of appendix A rather than because it’s of interest in its own right!

B.2 misc.m — Various useful functions

>1! misc.m - Other stuff

>*/.include "os/lib/char"
>*/,include "os/lib/lift"

A couple of useful little functions.
Given a score function on things and a list of things, chose the thing with the highest
score. Return its index in the list and its score.

>chose_best :: (* -> num) -> [*] -> (num, num)
>chose_best scoreJrn things
> = foldl f (0, sc a) (zip2 [1..] (map sc x))
> where
> f (p, s) (p>, s')
> (p ' , s ^) , s ‘ > s
> = (p, s) , otherwise

Update a list; replace the nth element by x.

117

APPENDIX B. KAOS LIBRARIES 118

>update :: mim -> * -> [*] -> [*]
>update n x list
> = error ("list too short for update; asked to update pos " ++
> show n ++ " in list of length " ++ show (#list))
> , ~(0 <= n < #list)
> = take n list ++ [x] ++ drop (n+l) list
> , otherwise

Remove an element from a list. The nth is taken out and the rest shuffled up.

>remove : : num -> [*] -> [*]
>remove n list
> = error ("list too short for remove; asked to remove element " ++
> show n ++ " in list of length " ++ show (#list))
> , ~(0 <= n < #list)
> = take n list ++ drop (n+l) list
> , otherwise

Turn a num into 4 bytes and 4 bytes into a num. During debugging, these chaps
sometimes have to be looked at. Store as ASCII until it seems to be working. This
pair of functions will be

>
>
>
>
>
>
>

ctoi : : [char] -> num
ctoi [a,b,c,d]

= (code a) * 16777216 +
where
(code b) * 65536 +
(code c) * 256 +
(code d)

>
>
>
>
>
>
>
>

itoc :: num -> [char]
itoc n
= (decode a):(decode b):(decode c):(decode d):[]

where
a = n div 16777216
b = (n div 65536) mod 256
c = (n div 256) mod 256
d = n mod 256

Have to be very careful about ctoi; numval is fussy about input formats!

APPENDIX B. KAOS LIBRARIES 119

>ctoi :: [char] -> num
>ctoi list
> = numval list'
> where
> list' = "0", digs = []
> = digs, otherwise
> digs = takewhile isdigit list

>itoc :: num -> [char]
>itoc n = take 4 ((show n) ++ " ")

Sort a list on a predicate. Predicate returns True if the two things passed are in the
right order.

>psort :: (* - > * - > bool) -> [*] -> [*]
>psort pred []
> = []
>psort pred (a:x)
> = insert a (psort pred x)
> where
> insert a [] = [a]
> insert a (b:x)
> = a:b:x, pred a b
> = b: insert a x, otherwise

Useful for input stream processing; chop a list in two. Kind of a combined take and
drop. The two result lists ++ed together should be the same as the input list.

>chop :: num -> [*] -> ([*] , [*])
>chop n list = (take n list, drop n list)

And a variant: chop until a predicate is true. We leave the element that caused us to
stop scanning at the end of the first list (this is the behaviour one usually wants; see
choplist below). This is supposed to be analogous to a repeat until loop — at least
one element is always consumed.

>chopuntil :: (* -> bool) -> [*] -> ([*] , [*])
>chopuntil pred list
> = jiggle (chopwhile ((") . pred) list)
> where
> jiggle (s> []) = (s, [])
> jiggle (s, a:x) = (postfix a s, x)

APPENDIX B. KAOS LIBRARIES 120
Chop while a predicate is true. This is supposed to be analogous to a while loop
— we can consume zero elements. DANGER: ch o p lis t (chopwhile (~= ’ \n)) will
not terminate! It’ll loop on the first \n it hits.

>chopwhile : : (* -> b oo l) -> [*] -> ([*] , [*])
>chopwhile pred l i s t
> = (takew hile pred l i s t , dropwhile pred l i s t)

Another variant: chop an entire list up. It should be possible to write this with a
fold or something, but I can’t quite see how. This is why we wanted chopuntil to
behave as above:

ch o p lis t (chopuntil (= ; \n')) "my cat\n likes" = ["my ca t\ n ", " l ik e s "]

>choplist :: ([*] -> ([*] , [*])) -> [*] -> [[*]]
>choplist cf
> = chp . cf
> where
> chp (blk, []) = [blk]
> chp (blk, rest) = blk: chp (cf rest)

Find the index of something in a list. Return -1 for not found.

>findlndex : : (* -> bool) -> [*] -> lift num
>findlndex pred

>
> find 0

where

>
> find n [] = I (ERRJJOTFOUND "findlndex fails")

find n (a:rest)

>
> = P n, pred a

= find (n+1) rest, otherwise

B.3 char .m — Useful character functions

>|| char.m -- functions on ASCII characters

Lifted from Robert Duncan’s libraries, 20th May 1987.
Some sensible names.

APPENDIX B. KAOS LIBRARIES 121

>escchar = ’\27’
>delchar = '\127'
>belchar = '\7’
>newline = ’ \n'
>space = ’ ’
>tab = ;\t>
>hiaton = '\191'
>killchar = '\ll'

Convert c to its corresponding control character.

>ctrl c = decode (code c - code

Character type classifications

>isupper c = ’A’ <= c <= 'Z'
>islower c = 'a' <= c <= ’z‘
>isalpha c = isupper c \/ islower c
>isdigit c = '0' <= c <= '9'
>isalphanum c = isalpha c \/ isdigit c
>isprint c = ' ' <= c < delchar
>ismark c = ’ ’ < c < delchar
>isspace = member " \t\n\r\f"
>isctrl c = c < ‘ ‘ \/ c = delchar

Change case of c.

>toupper c
> = decode (code 'A' - code 'a' + code c), islower c
> = c, otherwise

>tolower c
> = decode (code 'a' - code ’A’ + code c), isupper c
> = c, otherwise

APPENDIX B. KAOS LIBRARIES 122

B.4 key.m — Maintain keyed lists

>|| key.m - keyed lists!

This script maintains a keyed list data structure. Keyed lists are used throughout
KAOS for all kinds of things, from process tables in the kernel to file id tables in the
disc device driver.
Export two versions of each function: the ones with an ‘e’ in front are lifted, the
others bomb out with a conformality error if they have trouble.

>'/,export
> keyedList emptyKey listKey
> addKey updateKey removeKey indexKey checkKey
> eaddKey eupdateKey eremoveKey eindexKey
> showkeyedList unpackKey

>'/.include "os/lib/lift"
>'/.include "os/lib/misc"

For a keyed list of *, we keep a list of (key, *) pairs. Keys come in two parts

key = id * 65536+ < index of item in keyedList >

To look up an element in the list, we take the key apart, fetch that element from the
list with ‘ ! ’ and check the ids. If they match, we have found it. Ids are supposed
to be unique. They provide a measure of security as well as accelerating lookup. To
help uniqueness of ids, we hold the next id we will allocate; to avoid constant #ing of
lists before attempting subscripting, we hold the current length of the list.
Since the position of something in the list is bound up with its key, when removing
things from the list we cannot simply take it out and shuffle everything else down.
We replace the missing element with a ZOMBIE. When allocating new keys, we search
the list for the first ZOMBIE and overwrite that.
And the abstype.

>abstype keyedList *
>with emptyKey :: keyedList *
> eaddKey :: * keyedList * -> lift (listKey, keyedList *)
> eupdateKey :: listKey -> * -> keyedList * -> lift (keyedList *)

APPENDIX B. KAOS LIBRARIES 123

> eremoveKey : : listKey -> keyedList * -> lift (keyedList *)
> eindexKey : : listKey -> keyedList * -> lift *
> addKey : : * keyedList * -> (listKey, keyedList *)
> updateKey : : listKey -> * -> keyedList * -> keyedList *
> removeKey : : listKey -> keyedList * -> keyedList *
> indexKey : : listKey -> keyedList * -> *
> showkeyedList :: (* -> [char]) -> keyedList * -> [char]
> unpackKey : : keyedList * -> [(listKey, *)]

Ids, keys and indexes are just nums.

>listKey == num
>listld == num
>listlndex == num

>keyedList *
> == ([keyListElement *] ,
> listld,
> num)

>keyListElement *
> ::= ZOMBIE | I I A place marker
> ELEMENT listKey *

The implementation equations. These are straightforward.
Take listKeys apart and put them back together. Making a listKey is easy: we
shift the id up 16 bits and add on the index.

>|| mkkey :: listld -> listlndex -> listKey
>mkkey id index = id * 2“16 + index

Take the id out of a key.

>|| ktoid :: listKey -> listld
>ktoid key = key div 2~16

Take the index out of a key.

APPENDIX B. KAOS LIBRARIES 124

>|| ktoin :: listKey -> listlndex
>ktoin key = key mod 2~16

A m empty keyedList!

>|| emptyKey :: keyedList *
>emptyKey = ([] , 0, 0)

To add a new key, we search for a ZOMBIE; failing that we extend the list. The lift
is in case we ever get around to adding error trapping. Currently keyedLists are
limited to 65536 elements.

>1! eaddKey :: * -> keyedList * -> lift (listKey, keyedList *)
>eaddKey
> = P . addKey

>|| addKey :: * -> keyedList * -> (listKey, keyedList *)
>addKey x klist
> = switch (findlndex (=Z0MBIE) list)

where
(list, next, len) = klist
switch (I err)

= (key, (postfix ele list, next + 1, len + 1))
where
key = mkkey next len
ele = ELEMENT key x

switch (P n)
= (key, (update n ele list, next + 1, len))

where
key = mkkey next n
ele = ELEMENT key x

Update an existing element in a keyedList. W e have to check that the index is
sensible before we try to ‘! ’ the list with it! W e then need to check that the position
in question contains an ELEMENT rather than a ZOMBIE, and that the keys match. The
non-error returning version dispenses with all this namby-pamby error checking.

>|| eupdateKey :: listKey -> * -> keyedList * -> lift (keyedList *)
>eupdateKey key x klist

APPENDIX B. KAOS LIBRARIES 125

> = I errres, "(0 <= index < len)
> = switch (list!index), otherwise
> where
> errres = ERR_N0TF0UND "eupdateKey fails"
> ele = ELEMENT key x
> (list, next, len) = klist
> index = ktoin key
> switch ZOMBIE = I errres
> switch (ELEMENT oldkey oldx)
> = I errres, key ~= oldkey
> = P (update index ele list, next, len), otherwise

>1 I updateKey :: listKey -> * -> keyedList * -> keyedList *
>updateKey key x klist
> = (update index ele list, next, len)
> where
> (list, next, len) = klist
> index = ktoin key
> ele = ELEMENT key x

Remove an element from a keyedList by key. In the ecase we check it’s there first.
W e shorten the list if this is the last element and turn the element into a ZOMBIE
otherwise

>|| eremoveKey :: listKey -> keyedList * -> lift (keyedList *)
>eremoveKey key klist
> = I errres, "(0 <= index < len)
> = switch (list!index), otherwise
> where
> errres = ERRJI0TF0UND "eremoveKey fails"
> (list, next, len) = klist
> index = ktoin key
> switch ZOMBIE = I errres
> switch (ELEMENT oldkey x)
> = I errres, oldkey ~= key
> = P (take (len - 1) list, next, len - 1), index = (len -
> = P (update index ZOMBIE list, next, len), otherwise

APPENDIX B. KAOS LIBRARIES 126

>|| removeKey :: listKey -> keyedList * -> keyedList *
>removeKey key klist
> = (take (len - 1) list, next, len - 1), index = (len - 1)
> = (update index ZOMBIE list, next, len), otherwise
> where
> (list, next, len) = klist
> index = ktoin key

Look up by key. As before we do several checks in the ecase.

>|| eindexKey :: listKey -> keyedList * -> lift *
>eindexKey key klist
> = I err, "(0 <= index < len)
> = switch (list!index), otherwise
> where
> err = ERR_N0TF0UND "eindexKey fails"
> (list, next, len) = klist
> index = ktoin key
> switch ZOMBIE = I err
> switch (ELEMENT oldkey x)
> = I err, oldkey ~= key
> = P x, otherwise

>11 indexKey :: listKey -> keyedList * -> *
>indexKey key klist
> = x
> where
> (list, next, len) = klist
> index = ktoin key
> (ELEMENT oldkey x) = list¡index

Check that a key is valid.

>checkKey :: listKey -> keyedList * -> bool
>checkKey key klist
> = isproper (eindexKey key klist)

Show a keyedList. Print as a list of pairs (key, item). We export this, as it is
sometimes necessary to call this function explicitly (see kernel .m for an example).

APPENDIX B. KAOS LIBRARIES 127

>|| showkeyedList :: (* -> [char]) -> keyedList * -> [char]
>showkeyedList showx keyed
> = "keyedList [\n" ++
> foldr comma [] (map showp (unpackKey keyed)) ++ "]"
> where
> showp (key, x) = shownum key ++ ++ showx x
> comma new [] = new
> comma new sofar = new ++ ";\n " ++ sofar

Return a list of the contents of a keyedList. Also exported for convenience, although
it’s rather unsafe.

>11 unpackKey :: keyedList * -> [(listKey, *)]
>unpackKey (list, next, len)
> = [(key, x) I (ELEMENT key x) <- list]

B.5 lift.m — Add an error element to a type

>1 I lift.m - things to add an error element to a type

>'/.export + "os/sys/hdr/errs"

>'/, include "os/sys/hdr/errs" II KAOS errors

This is used throughout KAOS for functions that may fail. Also some functions for
adding/stripping the improper element.

>lift * ::= P * I I sysErr

>addlift :: * -> (lift *)
>addlift st = P st

>striplift :: (lift *) -> *
>striplift (P x) = x
>striplift (I s) = error "striplift: can't strip improper element"

APPENDIX B. KAOS LIBRARIES 128

>isproper : : (lift *) -> bool
>isproper (P x) = True
>isproper (I s) = False

>isimproper : : (lift *) -> bool
>isimproper = (~) . isproper

B.6 errs.m — KAOS error codes

>|| errs.m - errors KAOS functions can return

The string attached to each error is intended to be used for diagnostics for the user
rather than for machine consumption.

>sysErr
> ::= ERFLINUSE [char] |
> ERR_INAPPROPRIATE [char] I
> ERRJJOPROCESS [char] I
> ERR_BADNAME [char] |
> ERR_N0TF0UND [char] |
> ERR_ISFILE [char] |
> ERRJIOSPACE [char] |
> ERRJJOTIMPLEMENTED [char] I
> ERR_0UT0FRANGE [char] |
> ERR_0PENFILE [char] I
> ERRJJOENCLOSING [char] |
> ERRJIOTEMPTY [char] I
> ERR_DEVICEERR0R [char] |
> ERR_E0F [char] I
> ERRJJSERERROR [char]

Check two sysErrs for equality .. we want to ignore the string.

>equalErr :: sysErr -> sysErr -> bool
>equalErr (ERR-INUSE x) (ERR-INUSE y) = True
>equalErr (ERR-INAPPROPRIATE x) (ERR-INAPPROPRIATE y) = True
>equalErr (ERRJIOPROCESS x) (ERR-NOPROCESS y) = True
>equalErr (ERR_BADNAME x) (ERR_BADNAME y) = True

APPENDIX B. KAOS LIBRARIES 129

>equalErr (ERRJJOTFOUND x) (ERRJJOTFOUND y) = True
>equalErr (ERR_ISFILE x) (ERR_ISFILE y) = True
>equalErr (ERRJJOSPACE x) (ERRJIOSPACE y) = True
>equalErr (ERRJIOTIMPLEMENTED x) (ERR_NOTIMPLEMENTED y) = True
>equalErr (ERR_0UT0FRANGE x) (ERR-OUTOFRANGE y) = True
>equalErr (ERR.OPENFILE x) (ERR_DPENFILE y) = True
>equalErr (ERRJIOENCLOSING x) (ERRJJOENCLOSING y) = True
>equalErr (ERRJIOTEMPTY x) (ERRJJOTEMPTY y) = True
>equalErr (ERRJ)EVICEERROR x) (ERR_DEVICEERROR y) = True
>equalErr (ERR_E0F x) (ERR_E0F y) = True
>equalErr (ERRJJSERERROR x) (ERRJJSERERROR y) = True
>equalErr x y = False

>showsysErr :: sysErr -> [char]
>showsysErr (ERR-INUSE x) = "in use" ++ showstr x
>showsysErr (ERR-INAPPROPRIATE x) = "inappropriate message" ++ showstr x
>showsysErr (ERRJIOPROCESS x) = "no such process" ++ showstr x
>showsysErr (ERR_BADNAME x) = "bad name" ++ showstr x
>showsysErr (ERRJJOTFOUND x) = "not found" ++ showstr x
>showsysErr (ERR-ISFILE x) = "object is file" ++ showstr x
>showsysErr (ERRJIOSPACE x) = "no space" ++ showstr x
>showsysErr (ERRJJOTIMPLEMENTED x) = "not implemented" ++ showstr x
>showsysErr (ERRJDUTOFRANGE x) = "out of range" ++ showstr x
>showsysErr (ERR_OPENFILE x) = "file is open" ++ showstr x
>showsysErr (ERRJJOENCLOSING x) = "no enclosing directory" ++ showstr x
>showsysErr (ERRJIOTEMPTY x) = "directory not empty" ++ showstr x
>showsysErr (ERR-DEVICEERROR x) = "device error" ++ showstr x
>showsysErr (ERR-EOF x) = "end of file" ++ showstr x
>showsysErr (ERRJJSERERROR x) = "user error" ++ showstr x

>showstr "" = ""
>showstr x = ": " ++ x

Brief explaination:

ERR-INUSE You get this if you try to access some non-shareable resource, like writing
to the terminal while someone else is using it.

ERR_INAPPROPRIATE Things like sending a FILE-DELETE message to the terminal.

APPENDIX B. KAOS LIBRARIES 130

ERR JIOPROCESS Attempt to reference a process which has been killed . . . this can
happen with old wrappers.

ERR_BADNAME Bad format for a pathName .. .eg. trying to open a terminal as if it
were a disc. Also things like file name too long.

ERRJJOTFOUND Not found. Returned for things like file not found etc.

ERR_ISFILE Returned if (eg.) a path contains something which is not a directory.

ERRJIOSPACE Things like disc full etc.

ERR_NOTIMPLEMENTED Returned for requests for facilities not there yet.
ERR_0UT0FRANGE Some kind of bad argument . . . eg. trying to format a disc with a

silly number of sectors etc.

ERR-OPENFILE Returned by the file system for things like trying to delete an open

ERRJJOENCLOSING Returned for things like trying to delete the root directory.
ERRJJOTEMPTY Returned for (perhaps implicit) attempts to delete non-empty direc

tories.
ERR-DEVICEERROR Returned (for example) by the disc device driver when a read/write

error occurs.
ERR.E0F End of file.
ERRJJSERERROR Applications are supposed to use this if nothing else fits. The at

tached string should obviously be used to give more specific information!

B.T collection.m — Manage hetrogenous lists

file.

>|| collection.m - hetrogeneous lists

This file provides a simple structure for holding objects of any type — rather like
keyedList *. It is intended to hide changetype.

>'/,export
>
>
>

collection handle
emptyCollection addCollection indexCollection eindexCollection
updateCollection removeCollection

APPENDIX B. KAOS LIBRARIES 131

>*/, include "os/lib/lift"
>’/.include "os/lib/misc"
>’/.include "os/lib/key"
>’/.include <local/disgusting>

A c o l le c t ion is a set of objects of varying type. Associated with each stored element
is a handle of the corresponding type. This can be used as an argument to the
index/update/remove functions.

>abstype collection, handle *
>with emptyCollection :: collection
> addCollection :: * collection -> (handle *, collection)
> indexCollection :: handle * -> collection -> *
> eindexCollection :: handle * -> collection -> lift *
> updateCollection :: handle * - > * - > collection -> collection
> removeCollection :: handle * -> collection -> collection

collections are implemented on top of keyedLists for efficiency. We are careful
to use the error trapping versions of the key functions, as errors with changetype
involved can be hard to track!

>collection == keyedList item
>item == num II changetyped later!
>handle * == listKey

We store items in the keyedList — an item is intended to be some untyped fragment
of graph. We use changetype to turn the objects we store into items and back.
The typed handles guarantee that playing with types in this way is safe: we always
changetype something back into its original form.
The collection functions just call the appropriate functions in key .m.

>|| emptyCollection :: collection
>emptyCollection = emptyKey

>|| addCollection :: * -> collection -> (handle *, collection)
>addCollection x coll
> = addKey (changetype x) coll

APPENDIX B. KAOS LIBRARIES 132

>|| indexCollection :: handle * -> collection -> *
>indexCollection h coli
> = changetype x
> where
> (P x) = eindexKey h coli

>|| eindexCollection :: handle * -> collection -> lift *
>eindexCollection h coli
> = changetype (eindexKey h coli)

>|| updateCollection :: handle * - > * - > collection -> collection
>updateCollection h x coli
> = newc
> where
> (P newc) = eupdateKey h (changetype x) coli

>|| deleteCollection :: handle * -> collection -> collection
>removeCollection h col
> = newc
> where
> (P newc) = eremoveKey h col

Appendix C

Interactions

This appendix contains the complete source to the interact library described in
chapter 5.

C .l Introduction

This script provides some simple routines to help the handling of input and output
streams. Using this package, one can write Mirandaish code that side-effects I/O in an
intuitive sort of way. It is based havily on Simon Thompson’s interactive input/output
package. The implementation of exception handling arose from discussions with Mark
Longley, who uses something similar in his version of interacts[13].
interacts do five main things

• hide the continuations that the kernel uses, interacts are functions that can
be composed etc.

• keep track of the input wrapper and the kill wrapper. User just calls get for
input and just exits to kill himself.

• fake multiple inputs, get takes as an argument a predicate on inputType and
returns the next input value that satisfies the predicate. Incoming values which
fail are saved in a queue which is searched by the next call to get before the
input is read again. •

• provide a simple exception handling system, catch marks a point which errors
should be caught at, raise raises an error.

133

APPENDIX C. INTERACTIONS 134

• provide a state which interacts can side effect. This is important if you use the
exception system: you need a model for your history which is reliable even after
disasters.

C.2 lowinter.m — The core of interact

>| | lowinter.m - version 5

This is supposed to provide the minimum functionality, inter.m builds on this ab-
stype to provide a nicer interface.

>*/,export
> interact
> get execute run comp return raise catch
> getState putState applyState

>'/,free {
> inputType :: type;
> userState :: type;
>}

>'/.include "os/sys/ker/kernel"
>'/.include "os/lib/lift"
>'/.include "os/lib/misc"

The abstype. See below for explainations of all the functions.

>abstype interact *
>with get :: (inputType -> bool) -> interact inputType
> scaninp :: (inputType -> bool) -> interact inputType
> execute :: ((* -> process) -> process) -> interact *
> run :: interact * -> receive inputType -> kill -> process
> comp :: (* -> interact **) -> interact * -> interact **
> return :: * interact *
> raise :: sysErr -> interact *
> catch :: (sysErr -> interact *) -> interact * -> interact *
> getState :: interact userState
> putState :: userState -> interact ()
> applyState :: (userState -> userState) -> interact ()

APPENDIX C. INTERACTIONS 135

A contination is the most basic part of an interact — it’s a function taking a
*, a list of pending input items, a catch point, the receive wrapper for this process,
the kill wrapper for this process and the user’s state. Catch points are continuations
saved up by catch ready for raise to return to; see the (brief!) discussion at the top
of this file.
catchPoint is defined as a algebraic type to stop Miranda complaining about circu
larity. Annoying!

>continuation *
> == * -> [inputType] -> catchPoint -> userState ->
> receive inputType -> kill -> process
>catchPoint
> ::= CATCH (continuation sysErr)
>interact *
> == continuation (continuation *)

Explaination: The first argument an interact sees is the continuation it must pass
it’s result on to. If this interact is a raise, it can call the catchPoint instead.
These continuations will already have had their continuations wired into them by
either comp or catch.
get returns the next input item satisfying the predicate passed. Inputs that fail the
test are saved in a queue — the next call to get scans this queue of previously rejected
messages before reading from the input again.
First step: look through the queue of saved messages for one that satifies the predicate.
If we find one, return it. Otherwise we hop into scaninp below.

>|| get :: (inputType -> bool) -> interact inputType
>get pred cont q
> = cont x q', isproper pos
> = scaninp pred cont q, otherwise
> where
> pos = findlndex pred q
> (P n) = pos
> x = q!n
> q' = remove n q

This subfunction of get scans the input stream looking for a message statisfying the
predicate. Rejected messages are queued, ready for the next call to get.

>|| scaninp :: (inputType -> bool) -> interact inputType

APPENDIX C. INTERACTIONS 136

>scaninp pred cont q catchp st rx k
> = rx (scan q)
> where
> scan q' (I err)
> = raise err cont q' catchp st rx k
> scan q' (P x)
> = cont x q' catchp st rx k, pred x
> = rx (scan (postfix x q’))> otherwise

execute does some kind of kernel-type continuation based function as if it were an
interact. Easy to do put/spawn/kill/sys etc. in terms of this.

>11 execute :: ((* -> process) -> process) -> interact *
>execute thing cont q catchp st rx k
> = thing grab
> where
> grab x = cont x q catchp st rx k

run runs an interaction . Print an error message if it fails. Set the start state to
undef.

>11 run :: interact * -> receive inputType -> kill -> process
>run
>
>
>
>
>
>
>
>
>
>
>
>
>
>

inter
= inter cont [] (CATCH wicketkeeper) undef

where
cont y (a:x) catchp st rx k

= sys (Stdout helpful) (k undef)
where
helpful = "inter exits with unread messages\n"

cont x [] catchp st rx k
= k undef

wicketkeeper err q catchp st rx k
= sys (Stdout helpful) (k undef)

where
helpful

= "unexpected exit with: " ++
showsysErr err ++ "\n"

comp composes two interactions.

APPENDIX C. INTERACTIONS 137

>|| comp :: (* -> interact **) -> interact * -> interact **
>comp interl inter2 exit
> = inter2 cont
> where
> cont x = interl x exit

return makes an interact — it’s result is simply the argument passed.

> || return :: * interact *
>return x cont
> = cont x

raise hops back to the last catch. We leave the catch point on the error handler as
undef — catch will fix this up for us.

> I I raise :: sysErr -> interact *
>raise err cont inp (CATCH catchp)
> = catchp err inp undef

And catch installs a new catch point before calling an interact. It carefully restores
the old catchpoint afterwards — hence the undef attached to raise above.

>|| catch :: (sysErr -> interact *) -> interact * -> interact *
>catch catchinter inter cont inp catchp
> = inter tidycont inp (CATCH catchcont)
> where
> catchcont err inp' newcatchp
> = catchinter err cont inp' catchp
> tidycont x inpJ newcatchp
> = cont x inp' catchp

Accessing the state — the bare minimum!

>|| getState :: interact userState
>getState cont q catchp st
> = cont st q catchp st

>|| putState :: userState -> interact ()
>putState newst cont q catchp oldst
> = cont () q catchp newst

APPENDIX C. INTERACTIONS 138

Slightly fancier — transform the state. Saves a lot of getting and putting if you know
what you want to do.

>|| applyState (userState -> userState) -> interact ()
>applyState f cont q catchp oldst
> = cont () q catchp (f oldst)

C.3 inter.m — Useful functions over lowinter.m

>1| inter.m - nice interface to lowinter.m

This script builds on lowinter.m providing a nice set of functions for progs.

>‘/.export
> then hideLift revealLift sendSys fork put debug getNext handle
> ignore careful imap ifoldl ifoldr interFold sput
> "os/sys/lib/lowinter"

>'/,free {
> inputType :: type;
> userState :: type;
> debugging :: bool; || Turn on debugging output.
>}

>‘/.include "os/lib/lift"
>‘/.include "os/sys/ker/kernel"
>*/, include
> "os/sys/lib/lowinter"
> { inputType == inputType;
> userState == userState;
> }

then is rather like in LISP — the first in teraction is done, the result thrown away
and then the second is done. We only allow () to be chucked though! To discard
in te ra ct returns, use const yourself.

>then :: interact () -> interact ** -> interact **
>then interl inter2
> = const inter2 $comp interl

APPENDIX C. INTERACTIONS 139
Get rid of a lift — kernel functions return lifted results, we want exceptions instead.

>hideLift :: (lift *) -> interact *
>hideLift (I err) = raise err
>hideLift (P x) = return x

W e sometimes want to return a lifted result, rather than an exception.

>revealLift :: interact * -> interact (lift *)
>revealLift inter = catch (return . I) ((return . P) $comp inter)

sendSys/f ork/put in terms of execute.

>sendSys :: sys_message -> interact ()
>sendSys mess
> = execute thing $then return ()
> where
> thing cont = sys mess (cont ())

W e could use a couple of dots and get rid of the arguments — but it’s far too confusing.

>fork :: [char] -> job * -> interact ()
>fork name newjob = hideLift $comp execute (spawn name newjob)

>put : : send * - > * - > interact ()
>put wrap x = hideLift $comp execute (wrap x)

Debugging — print a message on the console.

>debug : : [char] -> interact ()
>debug msg
> = sendSys (Stdout ("debug: " ++ msg ++ "\n")), debugging
> = return (), otherwise

A useful function — often want just the next message. getNext does this.

>getNext : : interact inputType
>getNext = get (const True)

APPENDIX C. INTERACTIONS 140

catch is a bit longwinded for some operations — often we just want to handle a
specific error from an interact.

>handle
> :: ([char] -> sysErr) -> (sysErr -> interact *) -> interact * ->
> interact *
>handle handleerr recover
> = catch lookout
> where
> lookout err
> = recover err, equalErr err (handleerr "")
> = raise eril Bthppgate!

>ignore :: ([char] -> sysErr) -> interact () -> interact ()
>ignore err
> = handle err (const (return ()))

Perform some interaction on a *, doing a cleanup on the * even if the interaction
fails. Makes state changing operations safe.

>careful :: (* -> interact ()) -> (* -> interact **) -> * -> interact **
>careful clean int x
> = doclean $comp catch (((.) . comp) raise doclean) (int x)
> where
> doclean y = clean x $then return y

Versions of map and fold that work for interacts.

>ifoldr :: (* -> ** -> interact **) -> ** -> [*] -> interact **
>ifoldr inter start = foldr (comp . inter) (return start)

>ifoldl :: (** -> * -> interact **) -> ** -> [*] -> interact **
>ifoldl inter start
> = foldl (converse (comp . (converse inter))) (return start)

>imap :: (* -> interact **) -> [*] -> interact [**]
>imap inter
> = ifoldr f []
> where
> f a sofar = (return . (:sofar)) $comp inter a

APPENDIX C. INTERACTIONS 141

Another useful function — use a ‘process’ interact to f oldl up a stream of items
coming from an ‘input’ interact. The input interact might be getNext, for exam
ple, and the process interact might be some kind of ‘process event’ function. This
is used as the main loop for many of the system processes. Return a new state when
the input interact fails with ERR_E0F.
W e wrap the input interact up with revealLift, then switch on what we see. If
it’s EOF, we can exit. If its some unexpected error, we raise it.

>interFold :: (* -> ** -> interact *) -> * -> interact ** -> interact *
>interFold trans start inp
> = loop start
> where
> loop oldst
> = test $comp revealLift inp
> where
> test (P x) = loop $comp trans oldst x
> test (I (ERR-EOF x)) = return oldst
> test (I err) = raise err

A useful function — when replying to ’untrusted’ messages, we want to be careful to
avoid ERRJJOPROCESS errors from put. This version of put just returns silently if the
send fails.

>sput :: send * - > * - > interact ()
>sput wrap x
> = ignore ERRJJQPROCESS (put wrap x)

/ 1 N
<=t®u*r
^ . A

