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Abstract

In this thesis we studied a novel class of algorithms for unconstrained optimisation 
with particular focus to the issues arising in noisy optimisation. These algorithms 
were developed using an innovative framework for design of efficient and robust 
algorithms, namely the Supervisor and Searcher Co-operation (SSC) framework. 
This framework provides a systematic way to incorporate desirable characteristics 
of existing algorithms into a new improved scheme.

The aim was to explore the properties of the SSC-based algorithms focusing 
on their behaviour in practice under the presence of stochastic noises. To this end, 
first, a basic algorithm was proposed along with a number of modifications and ex­
tensions to it. Then, their properties were evaluated in a systematic way through 
a variety of experiments involving a wide range of non-trivial deterministic and 
stochastic problems. Our findings suggest that the SSC algorithms are demon­
strably efficient in the deterministic case, but, mainly, that they are robust enough 
to successfully address the difficulties arising in the presence of stochastic noises. 
Also, they can easily be modified to meet specific application requirements, while 
the resulting algorithms retain the desirable properties of the original algorithm.

Finally, to assess the applicability of the SSC algorithms in real world prob­
lems an adaptation to the basic SSC algorithm was proposed for use in Multilayer 
Neural Network training. The corresponding evaluations were performed through 
statistical experiments on a number of regression and classification problems, de­
signed to cover the complex issues associated with neural networks learning, such 
as overtraining, and mainly generalisation ability. The SSC-based algorithm ex­
hibited significantly better performance than the two algorithms used as bench­
marks for comparisons. Specifically, it was demonstrably faster with respect to 
reduction of the error in the training set, but more importantly, it showed in­
creased ability to avoid overtraining and hence to generalise (perform successfully 
in unknown samples), which is the ultimate goal of learning in neural networks.

xi
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Chapter 1

Introduction

This thesis studies a class of algorithms for optimisation of noisy functions devel­

oped within a novel framework, namely the Supervisor and Searcher Co-operation 

framework (SSC). This framework provides an effective mechanism to design new 

efficient optimisation algorithms by combining desirable features of two (or more) 

existing ones. The principle underlying the SSC framework can be viewed as a 

systematic way of exploring possible combinations of existing optimisation algo­

rithms (synthesis of algorithms).

To verify the flexibility provided by the SSC framework a number of algorithms 

are introduced and experimentally evaluated in a series of benchmarking problems. 

Furthermore, the ability of an algorithm designed according to this framework 

to successfully address complex realistic tasks is explored through comparative 

statistical experiments in the challenging field of Artificial Neural Network (ANN) 

training.

In order to place the research reported in this study within the relevant cog­

nitive contexts the remainder of the chapter is divided in two parts:

In the first part, the class iterative gradient-based deterministic optimisation 

algorithms is initially discussed briefly to provide an introduction to related meth­

ods used for optimisation problems in the presence of noise. Then, the noisy op­

timisation problem is formally defined followed by a critical review of the most

1
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popular categories of algorithms associated with it. Consequently, the discus­

sion is naturally led to the methods of Stochastic Approximation with which the 

Supervisor and Searcher Co-operation framework is more closely related.

The second part of this chapter considers concepts and theoretical aspects 

of the field of Artificial Neural Networks (ANNs), and discuss their relationship 

with noisy optimisation. Also, it demonstrates the importance of ANNs not as 

a single application but as a cognitive area in its own right based on both their 

theoretical attributes as well as the wide variety of real world problems they have 

been employed to address. These problems cover both the two main categories of 

function approximation, those of regression and classification. Subsequently, the 

points of the preceding discussion providing motivation to the present work are 

summarised and the corresponding research objectives are stated. The chapter 

concludes with an outline of the contents of the remaining chapters of the thesis.

1.1 Deterministic Optimisation

The classical deterministic unconstrained minimisation problem can be formally 

defined as follows:

min Fix).
x€Rn

In this section we limit our discussion to gradient-based iterative algorithms 

because they are the most closely related to the algorithms studied in the present 

work. Although a large number of alternative methods exist to address the above 

optimisation problem, e.g. the class of trust region-based, algorithms, such an 

extensive survey is out of the scope of this thesis.

From a historical point of view, Cauchy was the first to apply the steepest 

descent method to solve unconstrained minimisation problems (Cauchy, 1847). 

The theory of local optimization provides powerful tools for the optimisation a 

smooth function F. A well-known method in the class of steepest descent methods 

(Avriel, 1976; Luenberger, 1973; Rao, 1984) for unconstrained minimisation of 

functions having Lipschitz continuous first partial derivatives is given by Armijo
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in (Armijo, 1966). Under suitable assumptions for the function to be optimised 

this method always converges to a local minimum. It is, in fact, a modification 

of Cauchy’s original method and allows for the possibility of variable step size. 

Furthermore, it does not require knowledge of the value of the Lipschitz constant.

The well-known Newton and Newton-type methods show superlinear conver­

gence in the vicinity of a non-degenerate optimiser. Additionally, global conver­

gence results for quite wide classes of problems have been stated, for example, for 

strictly convex functions. These methods combine robustness and the property 

of being locally fast. They use a (local) quadratic approximation of F, and in 

the case of Newton-type methods through a, possibly modified, Hessian. How­

ever, these methods assume the ability to acquire knowledge about the gradient 

or the Hessian, in contrast to other optimisation techniques like the Nelder-Mead 

(Nelder and Mead, 1965) method, or the direction set method of Powell (Powell, 

1992).

Another efficient class of methods is known under the names quasi-Newton 

and variable metric methods, typified by the Davidon-Fletcher-Powell (DFP) algo­

rithm (Avriel, 1976; Davidon, 1959; Fletcher and Powell, 1963; Luenberger, 1973; 

Press et ah, 1992; Rao, 1984). Closely related are, also, the so-called Fletcher- 

Powell (FP), and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms. In 

contrast to Newton methods they employ an approximation of the Hessian, built 

up iteratively. These methods are very stable and they converge superlinearly (Or­

tega and Rheinboldt, 1970). On the other hand, they require storage of order n2 

(where n is the dimensionality of the problem) and they need derivative calcu­

lations. Moreover, they approximate the inverse of the Hessian matrix and they 

involve one-dimensional subminimisation procedures.

Finally, the class of methods called nonlinear conjugate gradient methods, are 

typified by the Fletcher-Reeves (FR) algorithm (Polak, 1971; Press et al., 1992). 

Their convergence for general nonlinear problems, is linear (Luenberger, 1973; 

Ortega and Rheinboldt, 1970). They require storage of order only a few times n,



CHAPTER 1. INTRODUCTION 4

but they, also, involve derivative calculations as well as one-dimensional submin­

imisation and, finally, they exhibit high sensitivity to round-off errors (Vrahatis 

et ah, 1996).

1.2 Noisy Optimisation

The methods mentioned previously require precise function and gradient values. 

In many optimisation problems of practical interest, however, the values of the 

objective functions are known only within some (often low) precision. For instance, 

when the function and gradient values are the result of numerical simulations, 

precise values may be difficult to be obtained. Or, when the available function 

values result from the numerical integration of a system of differential equations 

the precision of the computed values is necessarily limited.

This imprecise knowledge of the function values means that although the un­

derlying function may be smooth, the values observed show a discontinuous be­

haviour. Hence, the function values corresponding to small variations around 

some point x do not reflect the local behaviour of the function but that of the 

noise. Therefore, methods employing finite difference estimators of the gradient, 

such as the quasi-Newton methods, often fail. Nevertheless it has been argued 

by many authors (Fletcher, 1987; Gill et ah, 1981; Nocetal, 1992) that quasi- 

Newton methods using a finite difference approximation for the gradients seem to 

be among the more efficient for the optimisation of smooth functions when only 

the function values are available (Elster and Neumaier, 1997).

However, for the cases where substantial noise is present, (Gill et ah, 1981, 

Section 8.6.2.2) suggest that a remedy could be the use of larger difference intervals 

in the finite difference estimation process, although this requires knowledge of the 

precision of the function to be optimised and hence the level of variability of 

the noise. The latter can also be estimated (see, for example, (Gill et ah, 1981, 

Section 8.5.2.3)), but only at the expense of additional function evaluations, and 

the estimation should be repeated regularly when the noise depends on x.
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1.2.1 Formulation of the Problem

In real world applications, various types of noises are present in most of the 

available data. Here the noises are conceived in a broad sense. In some cases, 

these noises can be ignored, but more often than not, they play an important role 

in the mathematical modelling of the application. The purpose of this thesis is 

to study a class of new algorithms to handle such cases. We are interested in the 

noisy unconstrained minimisation problem formally defined as follows:

min Fix),
x eR n

where it is difficult or impossible to evaluate F{x)  exactly. Then, let f (x )  be an 

estimator of F(x)  in the sense

f (x )  =  F(x)  +  e,

then F  is the underlying exact mathematical model, and either:

1) e represents some kind of deterministic error (e.g. round-off or truncation errors 

due to inexact computations), or

2) e is stochastic noise, which may depend on x.

In the first case, it is possible that e is negligible in function value evaluation, but 

it becomes significant if an estimator of the gradient is needed (Mathews, 1992, 

pp. 28-40). In the second case, also, e can rise to levels which will significantly 

affect the smoothness of the objective function and its gradient.

Henceforth, whenever we refer to the function value or the gradient of /  at a 

point x € Rn, we mean an estimator of the corresponding value or gradient of F  

at x. When we refer to a minimizer of / ,  we, in fact, mean a minimizer of F. 

Obviously, in the degenerate case where e =  0, the estimators are identical to the 

corresponding exact values.
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1.2.2 Some Examples of Noisy Optimisation

It is possible to identify to main categories of problems where stochastic mod­

els arise in optimisation. In the first belong cases where we have to consider a 

quantity that is only measurable with error. For instance, we may wish to find 

a combination of controls maximising the output of an industrial plant, but we 

can only estimate the output from an experiment. Such an example occurs when 

attempting to optimise settings to achieve the maximum yield from a chemical 

reaction. The objective function is, consequently, evaluated by carrying out chem­

ical experiments which are subject to random errors. For a given set of parameter 

values the experiment can be repeated many times over and then the average 

yield over the whole set of experiments can provide an improved estimate of the 

objective function.

In the second category the interest is focused on parameter estimation in com­

plex statistical models. Such problems are the maximisation of a likelihood or 

the minimisation of a goodness-of-fit statistic when the appropriate distributions 

are so complex that they are not tractable analytically. Examples of this type of 

problems are given by (Diggle and Gratton, 1984) and (Ruppert et ah, 1984). In 

maximum likelihood estimation methodology, for instance, part of the likelihood 

(e.g. the normalising constant) may be needed to be estimated by simulation 

methods or in a moment-based estimator the theoretical moments could be found 

by simulation. Another example of this type occurs when the evaluation of the 

function to be optimised involves the numerical solution of a system of Partial 

Differential Equations (PDE), where the accuracy depends on the grid size used. 

Finally, in this category can be classified also the increasingly important area of 

simulation optimisation (see (Fu, 1994) for a recent review).

In all the above cases finding the best choice of parameter values requires the 

judicious balancing of the time spent on improving the accuracy of the objec­

tive function estimator at a single point against the time spent in evaluating the 

function at different parameter settings.
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Desired Features of the Algorithms

Noisy optimisation (and especially the case of stochastic noises) introduces re­

quirements which are beyond the scope of most popular algorithms for determin­

istic function optimisation.

On one hand, many deterministic methods rely heavily on the objective func­

tion’s derivatives calculation. However, if, for example, the objective function 

value is the expected response of a simulation process, the relationship between 

the simulation input and the expected response is often too complicated to find 

analytical expressions for the derivatives (Glasserman, 1991b; Glynn, 1987). On 

the other hand, the behaviour of the optimisation method should be insensitive 

to small perturbations in the observed function values, since these are subject to 

uncertainty due to either finite precision calculations or random errors.

Hence, these variations in the function values and in the corresponding estima­

tors of the derivatives limit the applicability and the effectiveness of deterministic 

gradient-based algorithms. We anticipate that a desirable algorithm will combine 

efficiency in the easier problems with robustness and reliability when the prob­

lems become noisier, since it is difficult to control the level of noise in real world 

applications.

1.2.3 Categories of Methods

One possible classification of the methods proposed to tackle stochastic optimisa­

tion problems is reflected in the following two categories:

1. Methods based on functional estimation, which construct an estimate of the 

objective function over its entire domain, and then optimise the estimate.

2. Iterative methods, which start at some initial design point, and move by 

(usually small) steps at successive iterations, based on local information 

about the objective function, e.g. by using a gradient estimator at each 

iteration.
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3. Direct-search methods, which do not require gradient estimates but utilise 

only evaluations of the objective function to approach the optimum.

Approaches that belong in the first category are sometimes called stochastic 

counterpart methods, because they optimise a stochastic estimate of the actual 

objective function. Any deterministic optimisation algorithm can be used once the 

estimate has been constructed. In principle, the methods of nonparametric regres­

sion, which aim to approximate an unknown function over its entire domain solely 

on the basis of noisy data from selected parts within the domain, are applicable to 

the stochastic counterpart approach. For example, in (Müller, 1985; Müller, 1989) 

this idea is used within the framework of kernel regression techniques. Newer ap­

proaches such as the so-called sample path optimisation (Plambeck et ah, 1996), or 

the retrospective optimisation (see (Andradottir, 1998) and the references therein), 

belong also to this category.

In the second category, usually, an “efficient” gradient estimator is needed, 

e.g. unbiased and/or with bounded variance (see (L’Ecuyer and Yin, 1998) for 

details). For certain classes of functions, methods such as perturbation analy­

sis (Fu, 2001a), score function, or likelihood ratio, or finite differences with com­

mon random numbers, can provide gradient estimators with the required efficiency 

(see (Glasserman, 1991b; Glynn, 1990; L’Ecuyer, 1991; Rubinstein and Shapiro, 

1993)). However, due to the fact that these methods are often hard to implement, 

one should often rely on the less efficient but straightforward finite differences and 

their variations (Spall, 1992).

Algorithms that are often characterised as direct-search methods constitute 

another category of techniques. These are based on deterministic analogs directly 

adapted to the stochastic setting. Examples include the well-known Nedler-Mead 

method (Neider and Mead, 1965) and its variants (see (Barton and Ivey, 1996)), in 

which rules that control movements and possible expansions or contractions guide 

the updates on a simplex set of points at each iteration. The Hookes-and-Jeeves 

method (Jacobson and Schruben, 1992) belongs also to this category.
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Stochastic search methods for global optimisation, such as Simulated Anneal­

ing (Kirkpatrick et ah, 1982) and Genetic Algorithms (Goldberg, 1989; Holland, 

1975), have often been adapted to address noisy optimisation problems with con­

tinuous parameters. These algorithms can also be categorised as direct-search 

methods since they typically do not employ gradients. Randomness is used to 

explore the set over which a function is to be optimised in an efficient manner. 

It has been reported that these methods generally do well in very complex opti­

misation problems (e.g. see (Sirlantzis et ah, 2001a) for an example in Multiple 

Classifier Systems for handwritten character recognition). However, as pointed 

out in (Schoen, 1991) these algorithms are typically several orders of magnitude 

more computationally expensive to achieve the same accuracy as the “traditional” 

local optimisation methods. The task in which they can really excel is “to detect 

regions of attraction of new local optima, and/or provide confidence about the 

fact that the global optimum has already been found” .

Finally algorithms based on techniques drawn from the area of Response Sur­

face Methodology (RSM), in Statistics, developed originally for the analysis of 

factorial Experimental Designs can be applied in either of the first two classes.

In the following we shall review in more detail the response surface methodol­

ogy and the direct-search algorithms, as well as some adaptations of deterministic 

gradient based algorithms, because these are the methods more often suggested 

in the literature to be appropriate to tackle noisy optimisation problems. Finally, 

the class of stochastic approximation methods will also be reviewed, as it is closely 

related to the algorithms proposed in this work. Recent surveys for these meth­

ods have been given by (Azadivar, 1992; Jacobson and Schruben, 1989; Safizadeh, 

1990).

1.2.4 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is based on statistical field of design of ex­

periments methodology. Since exploring the entire feasible region of the objective

function, which is wasteful and in many cases impractical, RSM explores small
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subregions successively based on their potential for improvements. The approach 

adopted in RSM is straightforward (Khuri and Cornell, 1987): the behaviour 

of the objective function is estimated using points in the neighbourhood of the 

current point x to form some kind of factorial experiment. Then, a low order poly­

nomial (usually linear) is fitted to these points. Subsequently, a line search in the 

negative gradient direction defines the size of the step to be taken, and the whole 

process is repeated until the linear response surface becomes inadequate. The 

latter is indicated when the slope becomes “approximately” zero, which means 

that at that point the interaction effects are larger than the main effects. The 

optimum is determined analytically from the fit of a higher order response surface 

(e.g. a quadratic).

A related method, using a quadratic function which provides a more accurate 

fit to the objective function values and chooses the descent direction accordingly 

has been proposed by (Glad and Goldstein, 1977). For this method convergence 

results have been established for bounded noises. Similar approaches are adopted 

in (Elster and Neumaier, 1995) in which a grid-based algorithm is introduced, and 

in (Elster and Neumaier, 1997) where an algorithm based on the notion of trust 

regions is proposed. Both were shown to be superior to the Nelder-Mead method 

on a variety of noisy test problems.

Since the first phase of the algorithm is iterative, usually an attempt is made 

to carry out fewer function evaluations if possible. However, in the final phase 

it is important to acquire accurate information about the function topology, so 

a large number of evaluations is required. Recognising the significance of this 

disadvantage a method is suggested in (Karidis and Turns, 1984) which utilises 

the previous function evaluations for the least squares fit, instead of extra function 

evaluations at points in a fixed pattern. Also, the search part of this type of 

algorithms is often identical to Stochastic Approximation methods. Taking into 

consideration the above observations it is not difficult to realise that the methods 

in this category are, in general, more computationally expensive than the standard 

Stochastic Approximation algorithms. Details and references can be found in (Fu,



CHAPTER 1. INTRODUCTION 11

2001b; Safizadeh, 1990).

1.2.5 Direct-Search Methods

In the last few years there has been an increasing interest in direct search meth­

ods (Anderson and Ferris, 2001) for unconstrained optimization. Direct-search 

techniques rely only on the function values to find the location of the optimum. 

These methods do not, usually, require first- or second-order Taylor approxima­

tions of the function for their choice of search direction. Additionally they do 

not make gradient estimates, and involve relatively few function evaluations at 

each iteration. The most commonly used method in this class is due to Nelder 

and Mead (Nelder and Mead, 1965). The method uses repeated operations of 

reflection, expansion and contraction applied to a simplex of n +  1 points in Rn. 

Invented more than 30 years ago, the Nelder-Mead method, or some version of it, 

is still the most common when the function value estimators are the result of sep­

arate experiments, despite the fact that other direct-search methods, such as the 

one due to Powell (Brent, 1973; Powell, 1964), often exhibit superior performance.

The Nelder-Mead simplex method is also the most popular direct-search method, 

based on published applications (Barton and Ivey, 1996). The range of ap­

plication is very broad: use of the method has been reported for problems in 

analytical chemistry, biology, neurology, statistics, engineering, quality control, 

fishery management, and fusion technology, to name but a few. In (Fletcher, 

1987) this technique is considered “the most successful of the methods which 

merely compare function values” . Other popular direct-search methods include 

the complex method by Box (Box, 1966) and the method introduced by Hooke 

and Jeeves (Hooke and Jeeves, 1961).

However, the situations in which the direct-search methods can prove more use­

ful are appropriately pointed out in the following quotation from (Swann, 1972), 

as referred in (Barton and Ivey, 1996):

[Direct-search methods are] particularly useful for cases where the
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function is non-differentiable, where the first partial derivatives of 

the function are discontinuous, and where the function value depends 

on some physical measurement and may therefore be subject to ran­

dom error, all of which are problems which can cause difficulties using 

the more theoretically based gradient methods. In practice they have 

generally proved to be robust and reliable. In addition, the relative 

simplicity of the direct search approach can prove advantageous since 

it generally means that the methods can be easily and quickly pro­

grammed.

Very limited knowledge exists about the convergence properties of the Nelder- 

Mead method on deterministic functions. Moreover, general proof of convergence 

of the iterates (to any point, optimal of not) has yet to be reported for the cases 

where the expected value of stochastic functions is to be optimised. Not even for 

the simple case of a quadratic function. In (Barton and Ivey, 1996) it is claimed 

that the paper presents the first formal analysis of the behaviour of Nelder-Mead 

type of methods on stochastic functions.

Nevertheless, the most commonly recommended method for optimising noisy 

functions is the simplex (or polytope) method of Nelder and Mead (see (Nocetal, 

1992, p. 30) and (Powell, 1988, p. 230) for some examples). This is due to 

the fact that the method is controlled solely by the relative size (ranks) of the 

function values and does not make any assumption about the function’s continuity. 

Therefore, it is considered to have the ability to cope with noise. It has been 

argued that this method proved to be a useful in many applications, despite 

the lack of theoretical convergence statements (Elster and Neumaier, 1997). The 

argument is based on the idea that in the presence of noise more complex methods 

which approximate the function with some polynomial base on recent function 

evaluations may be led seriously astray (Powell, 1994).

On the other hand, the original Nelder-Mead method was not designed for 

such (stochastic) applications, and in a nondeterministic context, can terminate
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inappropriately, possibly at a solution that is far from the true optimum (An­

derson and Ferris, 2001). This has been recognised for some time and has led 

suggestions for modifications aiming to remedy the situation in practice (Hed- 

lund and Gustavsson, 1992). Furthermore, in (Humphrey and Wilson, 1998) the 

Nelder-Mead procedure has been found to be extremely sensitive to user-specified 

starting values. Another important restriction of methods in this category is that 

their computation times depend heavily on the dimension of the problem. They 

are, usually, considered suitable for small to medium sized problems (Dennis and 

Torczon, 1991).

Finally, while in some cases it is possible to apply methods that use stochastic 

derivatives in conjunction with direct-search methods, the latter are more impor­

tant when stochastic gradient techniques cannot be applied, or require greater 

computational effort, due, for example, to expensive calculations in order to im­

prove the accuracy of the gradient estimators.

1.2.6 Stochastic Approximation

The name Stochastic Approximation covers a great number of methods used to 

tackle mainly optimisation problems involving stochastic errors. These techniques 

range from the classical Robbins-Monro/stochastic gradient method to recent 

methods involving scaling of the gradient estimates (Poljak and Tsypkin, 1973)

We begin with one of the most popular algorithms in engineering computa­

tions, namely the classical Stochastic Approximation algorithm (denoted hence­

forth as SA), which has been widely used in various applications with strong 

(stochastic) noises since the 1950’s. It was introduced in the cornerstone papers 

(Kiefer and Wolfowitz, 1952) and (Robbins and Monro, 1951), and there exists 

an extensive body of references about it in the literature— see, for example, (Ben- 

veniste et ah, 1990; Kushner and Clark, 1978; Kushner and Yin, 1997; Ljung, 

1986), as well as the references cited therein. Stochastic approximation meth­

ods are, in general, the stochastic versions of gradient-based deterministic search
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algorithms. Their general form can be, in most cases, defined as follows:

xk+1 =  n 0 (xfc -  tkX7f(xk)) (1.1)

where, in the same notation as previously, V f { x k) is an estimate of V F ( x k) from 

iteration k, and II0 is a (not always present) projection onto the set of feasible 

solutions 0 . In this algorithm, there is no line search at all. It uses a pre-assigned 

positive sequence of step sizes { tk} (often called gain sequence), e.g.

tk =  1 /k,tk — 1 /k0'5, or tk =  0.001.

SA proves very robust, and its global convergence has been established under 

various assumptions for the noises. The most common criticisms are that SA is 

in general very slow, and that it is difficult to select suitable { i fc}, as it will be 

shown later on in some examples. For deterministic problems without noises, SA 

has been known to be very slow in comparison with efficient gradient algorithms 

like the conjugate gradient (CG) method. (Nevertheless, this algorithm and its 

variants are the most widely used optimization algorithms in the training of Feed­

forward Artificial Neural Networks, (which, as stated previously, is the real world 

application area of particular interest in this study). This is probably due to its 

simplicity and strong robustness.)

There have been many improvements on SA since the 50’s. A number of 

adaptive or second order SA methods were proposed (see (Benveniste et ah, 1990; 

Kushner and Clark, 1978; Kushner and Yin, 1997; Ljung, 1986)), though most 

of them seem either to be expensive or to bring only marginal improvements, see 

also Uryas’ev’s work in (Uryase’ev, 1992).

Considerations about the convergence of stochastic approximation algorithms 

place conditions on the following:

1. the objective function;

2. the gain sequence;
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3. the bias and variance of the gradient estimators;

4. the choice of stopping rules.

For the objective function, in general, some degree of differentiability is re­

quired and either convexity or unimodality. Additionally, when the projection 

operator is not used, supplementary conditions are needed (e.g. Lipschitz conti­

nuity). For the gain sequence a very fast rate of decrease may lead the algorithm 

to premature convergence to a (possibly) wrong value, while a very slow decrease 

may prevent the algorithm from convergence to any value at all. For the gradient 

estimate is required that the bias should go to zero, and the variance must be, 

usually, uniformly bounded. Unlike the conditions for the gain sequence, those 

corresponding to the function and gradient estimators may not be possible to be 

verified directly.

A set of commonly used assumptions, which clearly satisfy the above gain 

sequence conditions, and allow convergence w.p. 1 of the algorithm to be estab­

lished is the following: Ylk tk — °°> Ylk < °°- The harmonic series tk — a/k (for 

some constant a), for instance, satisfies these conditions. However, in practice, 

to avoid slow convergence, sequences decreasing more gradually, or even constant 

step sizes, are often used. The general form of gain sequences used is tk — a/ka, 

and (in the case of finite difference estimation for the gradients) the estimation 

interval is ck =  c/k3, where a,/3,a and c are constants to be selected given that 

a < 1 and a — (3 >  0.5. Then, the optimal asymptotic convergence rates that can 

be achieved are: n~1//2 for the Robbins-Monro algorithm, and n-1/3 for the Kiefer- 

Wolfowitz using symmetric differences. Finally, the choice of the appropriate gain 

sequence is a major difficulty with SA. The algorithm performance is extremely 

sensitive to it and the optimal choice requires knowledge about the eigenvalues of 

the Hessian of the objective function, which is typically unknown and difficult to 

estimate.

A notable observation is that iterate averaging often produces improved per­

formance over the use of a single iterate, that is, using x k =  Yli=ix i/k as the
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estimate of the optimum; (Pflug, 1996) is a useful resource for further discussion 

and references. In (Kushner and Yin, 1997, pp. 21,327-346) it is argued that such 

an estimating procedure, called “Polyak averaging” is preferable only when the 

gain sequence goes to zero slower than 0(l/k) .  There are other stochastic approx­

imation techniques which, instead of decreasing step lengths, they use increased 

sampling of f (x )  to ensure convergence. Examples can be found in (Dupuis and 

Simha, 1994).

The development of methods for gradient estimation in stochastic optimisation 

is a very active field of research. Procedures that use estimates of the gradient 

with some bias but without resorting to finite differences are often called Robbins- 

Monro-like algorithms, while when unbiased estimators are utilised they are cate­

gorised as Kiefer-Wolfowitz algorithms. The key point to consider that procedures 

providing unbiased estimates are, in general, computationally expensive. For ex­

ample, the symmetrical finite difference (SD) estimator needs a different pair of 

estimates for each parameter dimension to obtain an estimate of the gradient, 

thus requiring 2n function evaluations. On the other hand, the one-sided finite 

difference (FD) estimator requires n +  1 function values, while the simultaneous 

perturbation (SP) estimator of Spall (Spall, 1992) requires only two function eval­

uations, because it uses the same pair for every parameter dimension. SP provides 

at least an order of magnitude savings in computational load. Also, SP was re­

ported to compare favorably to finite difference and random directions gradient 

estimating procedures (Chin, 1990; Chin, 1997). In general, approaches providing 

unbiased estimators of the gradients require knowledge of the underlying system. 

Recent methods include perturbation analysis (Fu, 2001a; Ho and Cao, 1991; 

Glasserman, 1991a), the likelihood ratio/score function method (Rubinstein and 

Shapiro, 1993), and weak derivatives (Pflug, 1996).

Finally, stopping rules are, usually, based on the progression of the iter­

ates, the gradient estimates, or some combination. As it will be shown in Sec­

tions 2.4 and 2.5, where we discuss the stoping criteria employed in the experi­

ments of this study, a variety of stopping rules have been used in different reports;
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(Anderson and Ferris, 2001; Elster and Neumaier, 1997; Humphrey and Wilson, 

1998), for instance, represent only a small sample of these. This fact, of course, 

place limitations on the usefulness of the reported results for valid comparisons.

1.2.7 A Class of Classical Algorithms

Under the term “classical algorithms” a number of techniques can be considered 

aiming to facilitate direct application, to the noisy optimisation, problems of clas­

sical deterministic gradient-based algorithms. Let us first have a closer look at 

the generic classical minimization algorithm:

Given x0,to ,v0,

xk+1 = x k -  tkvk, k =  0 ,1 ,2 ,..., (1.2)

where tk and vk are commonly referred to as the step length and the search 

direction respectively. In many cases, the following algorithm:

%k+l  —  %k Vk

is locally convergent. To a large extent, it actually decides the speed of algo­

rithm (1.2), while its global convergence is normally ensured by selecting the step 

lengths -¡A} via a line search procedure of, for example:

1) the exact monotone type,

2) the inexact monotone type, e.g. Armijo-Goldstein, Wolfe-Powell (see (Dennis 

and Schnabel, 1983) and (Fletcher, 1987)),

3) the inexact non-monotone type, e.g. Grippo-Lampariello-Lucidi (see (Grippo 

et ah, 1986)).

However, the robustness of most existing line search procedures deteriorates 

when the smoothness of the objective functions is compromised either by the pres­

ence of strong noises or because the functions are in general only Lipschitz. For 

instance, in stochastic optimization an exact line search could prove very expensive
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and unstable, due to noises. Also, most of the existing inexact line search meth­

ods, though possibly less expensive, seem to have similar problems. In stochastic 

optimization the estimated gradient normally contains much stronger noises than 

those present in the measurement of an objective function. Hence, the Wolfe type 

line search results are likely to be inconsistent. In fact, the existing line search pro­

cedures frequently fail, as it will be illustrated in our numerical experiments. For 

nonsmooth objective functions, line search methods are in general not applicable.

There has been extensive research in developing efficient algorithms for the 

noisy optimization problems in the literature. An obvious approach is to use 

some kind of averaging procedure such as the sample mean:

N

F(xt ) = N - ' ' £ f ( x t )
1

(for a positive integer N ) to estimate the objective function value at Xk- If the noise 

has zero mean, this, of course, is an unbiased estimator of the expected function 

values. Then existing deterministic optimization algorithms may be applicable. 

However, this approach is, in general, computationally expensive.

There were also attempts to generalise the standard line search procedures to 

the stochastic case. For instance in (Yan and Mukai, 1993), the Armijo type line 

search with restarts is proposed. One of the basic ideas is that the line search 

is allowed to restart if it fails. Since the estimated objective function values 

are in general different each time they are re-sampled, this line search should 

eventually succeed to overcome poor local minima. Also, it should be assumed 

that the errors in the gradient estimator used in the algorithm tend to zero as 

the iterations proceed. This idea has not been widely used in applications yet. 

In our experiments, it was found that it may not work efficiently. In general, the 

algorithms reviewed in this section are either unstable or slow, due to the presence 

of line search procedures. However, the algorithms studied in this thesis can be 

efficient and robust without having to resort to line searches. They belong to the 

class of algorithms we review in the following section.
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1.2.8 Combinations of Methods

Combining techniques is currently an emerging area of active research which has 

shown the potential to be a highly fruitful path in tackling the problems arising 

in noisy optimisation. For instance, the Gradient Surface Method (GSM), which 

was proposed in (Ho et ah, 1992), combines the approaches of RSM and SA. 

GSM proceeds in two phases like RSM. In the first phase it fits a surface to a 

set of points, while, at the same time, implicitly using a second-order design by 

considering also the corresponding gradient surface. A single replication is used, 

as usual, to obtain the gradient estimator defining the first-order least-squares fit. 

However, unlike SA, at every iteration in the first phase multiple such points (in 

essence a “window” ) are used. In the second phase the algorithm switches to SA 

when the optimum is approached. This is because SA is considered to be much 

more efficient than curve fitting in the neighbourhood of the optimum. Gradient 

estimation is used in two ways in the GSM procedure: first, to guide the search of 

the gradient surface least-squares fit, and second, to provide the search direction, 

as usual, after switching to the stochastic approximation part. This procedure 

offers gains of the order of n2, where n is the number of parameters, in the cases 

where n is large enough. The procedure is sequential in spirit and attempts a fast 

exploration of each region in the fitted surface, similarly to the SA algorithms. 

However, it shares with RSM the property of using more than just the current 

iteration information. Finally, in GSM the problem of choosing an appropriate 

window size, replaces that of the step length choice in SA.

The algorithms studied in the present work are developed by exploiting the 

flexibility offered by a framework which can by assigned to this category of meth­

ods, namely the Supervisor and Searcher Co-operation framework. However, un­

like the example previously presented, which is specialised on the combination 

of two particular algorithms the SSC framework makes and additional step and 

provides a generic mechanism for the synthesis of different methods.
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1.3 Artificial Neural Networks (ANNs)

We shall now proceed to introduce concepts and discuss issues of significant im­

portance in the field of Artificial Neural Networks, which, as explained previously, 

will be the area where the Supervisor and Searcher Co-operation algorithm will be 

evaluated for its applicability and effectiveness in real world applications. The aim 

of this review is to place in context our discussion of learning algorithms for neural 

networks in Chapter 5.Before moving further, the basic question to be answered is 

whether Artificial Neural Networks (ANNs) training is still an important problem 

and if the response is affirmative why it forms a challenging area for research.

1.3.1 Some Definitions

In order to form a basis to our discussion, it is useful to regard some of the 

definitions about them.

Definition 1. (Cheng and Titterington, 1994) Neural Networks are the math­

ematical models represented by a collection of simple computational units inter­

linked by a system of connections.

Definition 2. (Muller and Reinhardt, 1990) A Neural Network Model is defined 

as a directed graph with the following properties:

1. The existence of nodes and a state variable associated with each one of them.

2. The existence of links between nodes and a real-valued weight (w) associated 

with each link.

3. The existence of inputs associated with each node.

4. The existence of a transfer function for each node that determines its state 

as a function of its input.

According to this definition the building elements of ANNs are:

• The computational units (neurons or nodes) that can be characterized as 

input units if their input is fed outside the system, output units if they
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provide their state variable outside the system, and hidden units if their 

input is a function of other units and their output serves as input to other 

units.

• The link weights that must be determined in order for the task of the network 

to be achieved.

It is often convenient to consider the neurons organized in layers containing nodes 

that share the same task. So, we have input, output, and hidden layers. Networks 

that have no hidden layer are called single-layer networks while those with one 

or more hidden layers are called multilayer networks (see Multilayer Perceptrons 

below).

The transfer function can be linear or nonlinear one. A Neural Network, there­

fore, is characterized by, a) its pattern of connections between the neurons (called 

architecture) and, b) the method of determining the weights of the connections 

(called learning algorithm). The question of determining these characteristics for 

specific applications is not a straightforward task.

On the other hand, depending on the topologies of their connections, there ex­

ist various types of networks. For example, Feedforward Neural Networks (FNNs), 

are the ones with connection topologies admitting no closed paths, in contrast to 

Recurrent Networks which have topologies admitting closed paths. The most 

popular examples of FNNs are the so-called Multilayer Perceptrons (MLPs).

1.3.2 ANNs as Universal Approximators

To answer the question about the importance of ANNs training we must follow a 

path beginning with Kolmogorov’s “mapping network existence theorem” ( (Kol­

mogorov, 1957) as cited in (Ripley, 1993), and (Fausett, 1994)), its refinement by 

Sprecher (Sprecher, 1965), the casting in neural nets terminology of Sprecher’s 

theorem by Hecht-Nielsen (Hecht-Nielsen, 1987), to the Hornik, Strinchcombe 

and White (Hornik et ah, 1989) theorem stating that neural networks having
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“squashing1” activation functions, are universal approximators of arbitrary func­

tions. In other words, “standard feedforward networks with only a single hidden 

layer can approximate any continuous function uniformly on any compact set and 

any measurable function arbitrarily well with respect to a metric, regardless of 

the squashing function ip being continuous or not, regardless of the dimension of 

the input space, and regardless of the input space environment p” . Where p is a 

probability measure and p  ̂ a metric defined on it.

Furthermore, White (White, 1992, chapter 8) gives theoretical results in order 

for these approximation procedures to be consistent, that is the probability that 

the approximation error exceeds any specified level e as measured by a metric p 

tends to zero, depending on a trade off between the growth of network complexity 

q (g=number of hidden units) and the sample size n. He states subsequently that 

the only errors ultimately made by these consistent procedures are the inherent 

unavoidable errors arising from any fundamental randomness or fuzziness in the 

true relations between the example pair. In essence, White describes here, al­

beit from a different perspective, the well-known bias/variance dilemma which we 

shall discuss further below. However, he notices that although the above results 

provide asymptotic guidelines on the network complexity, they say nothing about 

determining an adequate complexity in a specific application given the ‘examples’ 

(training set) size n, and he quotes: “It is apparent that methods developed by 

statisticians will prove helpful in this search” . For a formal treatment of the above 

issues we refer to White (White, 1992).

1.3.3 Relations with Statistics

There is an emerging belief that artificial neural networks have strong relationship 

with statistical inference (Cheng and Titterington, 1994; Ripley and Hjort, 1984; 

Smith, 1993). A remark of Aharonian cited in (Ripley, 1993, p. 105), comes as

1A function ip : R —> [0,1] is a squashing function if is non-decreasing, limA-i-oo iPW = 1 and 
limA-).-oo "0(A) =  0 (Hornik et al., 1989, definition 2.3). Later, White (White, 1990) extended 
these results to include the set of functions 41 : R —> R such that 41 is bounded, satisfies a 
Lipschitz condition and is either squashing or ¿-finite.
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natural judgement on the advantages and the usefulness of the former against the 

latter:

You will often see someone claim some great breakthrough in using 

neural network for financial analysis; check to see if the author com­

pares his results to traditional statistical analysis - if not, then (s)he 

probably has not stumbled onto anything significantly (in the statis­

tical sense) new.

In fact, there exist a number of studies comparing their results with conven­

tional statistical techniques having though contradictory conclusions. Some of 

them turn in favour of neural networks (e.g. (Weigend et ah, 1990), (Weigend 

et ah, 1991) compare them to the TAR model (Tong, 1983; Tong and Lim, 1980) 

over the sunspot numbers and exchange data, while in (Lachtermacher and Fuller, 

1995) a comparison is made with ARMA and ARIMA models over stationary and 

non-stationary series), and others in favour of traditional statistical techniques 

(e.g. in (Tang et ah, 1991) ANNs are used as alternatives to Box-Jenkins models 

with unsatisfactory results).

The strong relations and similarities of Artificial Neural Network modeling and 

statistics have been highlighted by an increasing number of authors (Cheng and 

Titterington, 1994), (Ripley, 1993), and (White, 1992). Additionally, Levin et al. 

(Levin et al., 1990) present a rigorous account of the relations between learning in 

artificial neural networks and the field of statistical mechanics, especially the no­

tions of entropy, stochastic complexity and the minimum description length prin­

ciple (MDL). Especially concerning nonparametric regression, Refenes (Refenes, 

1995) has shown that neural network models can be expressed as nonparamet­

ric nonlinear additive regression models. Consequently, he proposed that all the 

known results about the latter should be exploited, in order to expand our under­

standing of the former. In the light of this proposition are most of the following

notes.
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1.3.4 ANN Training as an Optimisation Problem

A really intriguing field for applications of optimization algorithms is the area of 

neural networks training. In particular the design of training algorithms for the 

most commonly used type of Feedforward Neural Networks (FNNs) the Multilayer 

Perceptrons (MLPs).

The challenge in this area of applications arises from the fact that, depending 

on the type of data available, as we shall see below, it incorporates both the 

deterministic and stochastic cases of unconstrained optimization. That is, in 

some cases it can be considered an optimization problem with deterministic noises 

(which in certain situations can become negligible), while in other cases it is an 

optimization problem with stronger noises of stochastic nature.

1.3.5 Deterministic vs Stochastic Training

In general the problem of learning in neural networks can be considered either as 

deterministic or stochastic depending on the definition of the criterion function 

or more generally the goal to be achieved (Battiti, 1992). If one considers the 

minimisation of an error function with respect to a particular fixed data set, it 

leads up to a deterministic optimisation problem which is related to memorisation 

of the specific data. However, when we view the training set as random samples 

drawn from an unknown distribution, we arrive at a stochastic setting correspond­

ing to generalisation over unseen examples. These two definitions of the training 

problem are closely related to the duality between interpolation and extrapolation 

in statistics (see (White, 1992)).

As a consequence a large number of the authors using and comparing de­

terministic optimisation techniques directly adjusted to neural networks training 

from the field of numerical non-linear optimisation (some of which we will discuss 

in the following section) tend to report on the observed error over the training 

set and the corresponding convergence properties of their algorithms (see for ex­

ample (Johansson et ah, 1992; Denton and Hung, 1996)). In other cases only
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a limited exploration of the generalisation capabilities is included concerning a 

small subset of the example problems used (see for example (Magoulas et ah, 

1999; Vrahatis et ah, 2000b)). Even in these cases a note of caution in (Reed and 

Marks, 1999, p. 168) warns us that the quantities reported and compared should 

be comparable, taking into account additional forward and backward steps often 

required by these algorithms as compared to simpler training algorithms and their 

variants. In many such cases large initial differences in training speed were either 

considerably reduced or overturned when an appropriately comparable measure 

(e.g. CPU time) was considered.

The view adopted in this study is that the issue of generalisation is fundamen­

tal prerequisite in the concept of learning, so, although performance on a training 

set is important when comparing learning algorithms for neural networks, moni­

toring also their behaviour on an unknown data set is crucial for any comparative 

assessment. As a consequence, we chose in our experiments to measure the evo­

lution of the performance on both the training and an independent test set at 

two different points in time during the simulation runs. Furthermore, to account 

for the already discussed sensitivity of neural networks to the initial weights, we 

perform a number of runs from different starting points and subsequently perform 

statistical comparisons, including testing of alternative hypotheses on the aver­

aged outcomes of the runs. Finally, we compliment these analyses with alternative 

measures of performance wrhich shall be discussed in Chapter 6.

1.3.6 Memorisation vs Generalisation

When dealing with the issue of learning we have to address the issues of memori­

sation and generalisation (Ripley, 1993, p. 42). This distinction becomes crucial 

when the models of our interest are characterised by broad generality, in terms of 

the classes of relationships that can represent, like the neural networks models do. 

Memorisation, can be considered as the ability to fit the features of the given data 

optimally with respect to a certain error criterion. Generalisation, on the other 

hand is, in essence, the ability of performing well for items not in the training
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set, or in other words, to perform equally well with respect to both the ‘seen’ and 

the ‘unseen’ cases. To achieve generalisation “it is important to find a suitable 

compromise between overfitting and underfitting” (Cheng and Titterington, 1994, 

p. 20). That is, learning the ‘details’ of a given data set as opposed to extracting 

only very general characteristics from it.

The relative weight between generalisation and memorisation is problem de­

pendent, though. For classification tasks with fully determined classes, such as 

the X O R  or the parity problem, the issue of generalisation does not arise at 

all. Gemman et al. in (Geman et al., 1992, pp. 18-33) characterise this case as 

“degenerate” , and further illustrate and discuss the total generalisation error and 

its bias and variance components as functions of the number of hidden nodes— i.e. 

the degree of modelling flexibility— of a neural network. They also demonstrate 

that there exists a characteristic difference with the case of an ‘ambiguous’ , as 

they call it, classification task due to noise inherent in the available data. In 

general, for any task which is subject to ‘uncertainty’ , generalisation ability is the 

most desirable feature, dictating the choice of which method to use. “In fore­

casting, nobody cares how well a model fits the training data -  only the quality 

of future predictions counts” , as very clearly Gershenfeld and Weigend (Gershen- 

feld and Weigend, 1993, p.19) pointed out. To successfully address the issue of 

generalisation is not a straightforward task. Bienenstock and Geman (Cheng and 

Titterington, 1994, Discussion, p. 36) remark:

Statisticians know that generalisation (good performance on samples 

not in the training set) depends almost entirely on the extent to which 

the training set is representative, and/or the structure of the problem 

happens to accommodate the models used.

In summary, the ability of neural network to generalise depends on:

• the network architecture and size,

• the quality and quantity of the data, and
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• the learning algorithm,

An increasing number of studies in neural networks literature are attempting to 

tackle the above issues in both the theoretical and practical grounds.

1.3.7 Network Architecture and Training Data

To begin with, White in (White, 1990) provides theoretical results for the choice 

of proper activation functions, number of hidden nodes qn and bounds for the val­

ues of the weights A „, in order to ensure that the sequence of his ‘connectionist 

sieves’ { 0 n}, will have a rate of growth to guarantee increasing flexible networks. 

In addition, these choices are such that 0 n(V>) can be sufficiently ‘big’ , to avoid 

underfitting, while preventing it from becoming too big too fast, to avoid over­

fitting. Other theoretical results presented by Baum and Haussler (Baum and 

Haussler, 1989), address the issue of the network capacity, that is, essentially, the 

number of classes of functions representable by the network. They also pose the 

question of the appropriate training set size in order to achieve a specified level of 

generalisation with a network of fixed size. Their results being implemented in a 

‘rule of thumb’, have been referred to by various authors (Fausett, 1994); (Rip­

ley, 1994). More specifically, they suggest that Baum and Haussler’s results imply 

that for a two-layer network with W  number of weights, the number of training 

examples N  required to guarantee a success rate on a set of unknown examples 

(drawn from the same sample space) of at most e worst than that on the training 

set, is approximately equal to W/t.

Finally, the quality of the data and its inherent complexity depend on the phe­

nomenon observed and the measurement mechanism. In realistic situations the ex­

perimenter normally has not (absolute) control over the noise intrinsic in the data. 

Hence even when experiments with artificial or simulated data are conducted, it 

is advisable to emulate these conditions inducing appropriate types of noises. 

These could be a bounded variate for the case of deterministic inaccuracies— such 

as round-off errors — an additive random component to simulate measurement
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noises, or, finally, a noise variate which is involved in the dynamics of the mod­

elled system. Obviously the two latter cases are the most important to address 

and they are both explored in our experiments included in Chapter 6.

1.3.8 Learning Algorithms

The learning algorithm is nothing more than an efficient way of determining the 

weights so that our objective can be reached. Learning is usually divided in super­

vised where the adjustments to weights (model parameters) are made according 

to the closeness of the network output to a desired target example, and unsuper­

vised where no such target examples exist, so that updates are based on other 

information provided by the training set. In the case of supervised learning the 

closeness of the network output to target is defined by a suitably chosen error 

function E.

Learning algorithms are, essentially, another important issue of an applica­

tion set up which involves the issue of generalisation. They are, as stated above, 

procedures to enable a neural network reach a near optimal solution (at least 

including local minima) through minimization of an error function. But, in the 

case of forecasting, which is of our particular interest, generalisation is the ul­

timate goal. Most of the existing texts and prominent authors in the field (see 

for example, (Bishop, 1995; Reed and Marks, 1999; White, 1989; Ripley, 1993) 

recognise the fundamental importance of generalisation and its assessment as a 

crucial issue in the evaluation and comparisons of training algorithms. As Rip­

ley (Ripley, 1993, p. 53) insightfully quotes from (Raudys and Jain, 1991, p. 

47) “it remains to solve the problem of ‘designing fast training algorithms which 

minimize the true error instead of minimizing the apparent error’. Here the ‘true’ 

error refers to the rate on future examples.” . Consequently, the performance of a 

learning procedure, with respect to this goal, passes through the search of suitable 

evaluation techniques.
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1.3.9 The Bias/Variance Dilemma

The bias/variance dilemma is one of the most important. In general, under the 

regression framework between variables Y  and X , it is well known that among 

all functions of X , the regression E(Y\X) is the best predictor of Y  given X  

in the mean-squared-error sense. Thus, based on sample D  of pairs (X t, Yt) of 

realizations of X  and Y, the effectiveness of any function f ( X t] D) as predictor of 

Yt can be expressed:

E[(Yt -  f ( X t-D ))2\Xt,D] =  E[Yt -E [Y \ X ])2\Xf,D} +

( f (X t;D ) -E [Y \ X ] )2 (1.3)

While the first part of the Right Hand Side (RHS) of expression (1.3) does not 

depend on D  and / ,  the second part can serve as a measure of effectiveness of 

/  as predictor of Y. Furthermore, its expectation denotes / ’s effectiveness as an 

estimator of E(Y\X) with respect to D\

Ed M X , ;  D) -  E[Y\X]f] =  (ED[(f(X ,-t D) -  |Jf])2 +

E; -  D )])2] (1.4)

This expression can be easily transferred to the neural networks framework, by 

simply substituting f ( X t:D ) by the network output function f ( X t,W ;D )  where 

W  is the vector of all weight strengths. The first part of the RHS of (1.4) is the 

bias term, while the second expresses the variance. In the ANN context, as pointed 

out in (Geman et ah, 1992), the contribution of each term to the total error along 

with the expected trade-off, it is influenced by two distinct factors of the ANNs 

design. (These factors of the network complexity are expressed by the number of 

nodes and the time of training.) In (Geman et al., 1992) is illustrated, by certain 

examples, that a small number of nodes introduce significant bias to the resulting 

network, which eventually decreases as a result of a larger network. However, 

increasing the complexity will introduce an increasing variance component by
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allowing the network to become too “faithful” to the data. For the case of the 

duration training, the same mechanism holds for bias and variance respectively.

1.3.10 Applications to Regression and Classification

The theoretical results presented previously establish the potential of neural net­

works as function approximators. Their importance in this context is that they 

offer a very powerful and flexible apparatus for representing non-linear mappings 

which can be applied in a wide range of application areas. If for example this map­

ping is defined on the conditional expectations of the output given the available 

date (input variables) —  in other words, in terms of an average over a random 

quantity —  the problem belongs in the class of “regression” (Bishop, 1995, p. 5). 

In this case the outputs represent values of continuous variables. On the other 

hand, when the task is to assign new inputs to one of a number of discrete classes 

or categories on the basis of known attributes, the problem belongs to the class 

of “classification” (Neal, 1996, p. 2). The function to be approximated in the 

latter case is the conditional probability function of the output to be assigned a 

particular class label given its attributes vector.

The regression category, broadly speaking, includes applications where the av­

erage response of a phenomenon is to be estimated based on observations of its 

characteristics. For example, in (Thodberg, 1996) the objective is to determine 

the average fat content of meat based on near infrared spectroscopy measure­

ments. It also includes tasks which involve the prediction of the response of 

dynamic systems based on time dependent observation of its state, that is time 

series forecasting. An enormous amount of work has been published up to now 

concerning applications of artificial neural networks to time series forecasting. 

These applications extend from weather forecasting and climate research (Hu, 

1964; Eisner and Tsonis, 1992) to the sunspot numbers prediction (Nowlan and 

Hinton, 1992). Moreover, this list can be extended from chaotic time series in the 

early work of Lapedes and Farber (Lapedes and Farber, 1987a) to a large number 

of studies concerning short-term prediction of electric load forecasting (among
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others (Hwang and Moon, 1991; Lee and Park, 1992). In the field of business 

and finance, applications include the areas of stock market prediction— beginning 

with an early attempt of White (White, 1988) to predict IBM stock prices, Ger­

man stocks prediction (Schoneburg, 1990), or interval forecasting for stock mar­

ket indeces (Sirlantzis, 1996), to indicatively only mention some— exchange rates 

prediction (Refenes and Zaidi, 1992; Refenes, 1991; Refenes et ah, 1993), bond 

rating (Garavaglia, 1991; Utans and Moody, 1991), mortgage prediction, etc., 

covering all possible fields during the last decades.

In our experiments, in order to cover both of the above broad areas of regres­

sion tasks, we have included two conventional regression problems with different 

distributions of noise components as well as two examples of chaotic time series 

prediction.

On the other hand, the classification class includes two-class (binary) problems 

as well as multi-class problems with a diverse variety of applications (Schalkoff, 

1992). These extend from character recognition (Ghorbani and Bayat, 2000), 

speech recognition and understanding (Magoulas et ah, 1999), radar/sonar sig­

nal classification (Hasenjager and Ritter, 1999), and analysis to medical diagno­

sis (Cho and Chow, 1999) and texture analysis (Vrahatis et ah, 2000b), to name 

but a few.

Furthermore, in (Michie et ah, 1994), the variety of the examples used extends 

from credit risk identification in finance to satellite image analysis and understand­

ing. This text is also a rich source of comparative results about the effectiveness of 

neural network classifiers with alternative machine intelligence and conventional 

statistical discriminators. As pointed out by Bishop (Bishop, 1995, p. 6) “many 

of the key issues which need to be addressed in tackling pattern recognition prob­

lems are common both to classification and regression” . Although the concept of 

pattern recognition often means different things to different people, if we define 

pattern recognition as the “science that concerns the description or classification 

(recognition) of measurements” (Schalkoff, 1992, p. 2), it comes as a natural re­

alisation the fact that artificial neural networks were from the beginning and still
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are considered mainly as efficient ’pattern recognisers’.

1.4 Motivation and Objectives

The preceding discussion about the main classes of algorithms currently employed 

to tackle the problems of noisy optimisation can be summarised in the following 

remarks which provided the motivation for the work reported in this study.

1. The algorithms that utilise gradient information compare favourably to 

those that do not since they can achieve faster their objective by exploit­

ing the additional information about the (local) topology of the function in 

hand.

2. Gradient based algorithms that are fast and locally convergent in the noise- 

free cases can easily exhibit unstable behaviour in the noisy optimisation 

task due to the the influence of the noises to the gradient estimators used.

3. The choice of appropriate stepsizes is of paramount importance for gradient 

based algorithms controlling both their speed and their robustness with 

respect to disturbances.

4. On one hand, the choice of conservative (i.e. slowly decreasing) stepsizes 

in order to establish stability renders the corresponding gradient algorithms 

slow to converge. On the other hand, generalisation of the classical exact 

line search procedure for the choice of stepsizes (e.g. inexact or even non­

monotone versions) offers limited improvements in the presence of strong 

(stochastic) noises.

5. Alternative algorithms based only on function evaluations are able to over­

come in practice the adverse effects of noise in the estimators of interest and 

have been demonstrably robust for noisy optimisation. However, they need 

significant numbers of additional function evaluations and, consequently,
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are slow to converge, especially when highly accurate approximations to the 

solutions are required.

A logical conclusion indicated by the above remarks for the design of algo­

rithms able to successfully address the issues arising in noisy optimisation, is that 

a framework based on synthesis mechanism is needed. This should facilitate the 

integration of desirable characteristics of existing algorithms into a novel appara­

tus exhibiting qualitatively emerging behaviour different that the mere addition 

of its constituent parts. It should also be generic with respect to the types of algo­

rithms that can be applied on. Finally, it should allow to adapt the behaviour of 

the resulting algorithms according to the characteristics of the problem at hand. 

As it was noted previously, a desirable algorithm should be efficient in the cases 

where the noise is negligible and robust when the noises are stronger. The SSC 

framework promises such an algorithm development tool and it is the aim of this 

study to explore its properties. To this end, the objectives of this research are the 

following:

1. First, to design and implement a basic new composite algorithm within the 

SSC framework based on the combination of two existing algorithms with 

diverse characteristics. One constituent part would be a slow but robust 

algorithm while the other a fast but only locally convergent scheme. To 

evaluate experimentally the behaviour of this algorithm on a wide range of 

non-trivial benchmarking function in the noise-free as well as the noisy case. 

Furthermore, to identify effective values for the parameters controlling its 

behaviour under a variety of different conditions.

2. Second, in order to demonstrate the flexibility of the SSC framework, to 

propose and implement a number of possible extensions and modifications 

of the basic algorithm aiming to address specific issues arising in realistic 

applications. Furthermore, to empirically verify their properties via the 

same set of benchmarking problems.
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3. Third, in order to assess the practical applicability of the algorithms devel­

oped within the SSC framework, to adapt a representative algorithm for use 

in neural network learning. The important role of the ANNs’ approach in a 

wide variety of real world applications as well as the intricate nature of the 

issues involved with their learning process (i.e. the issue of generalisation), 

which have already been pointed out, make them an ideally challenging 

benchmark for noisy optimisation algorithms. In order, finally, to validate 

comparative experiments assessing the performance of the proposed algo­

rithm with respect to popular training algorithms for neural networks, to 

perform a series of statistical analyses evaluating the different aspects in­

volved in the learning process.

1.5 Outline of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2

This chapter is divided in two parts. In the first part, initially, the SSC framework 

is defined formally for the noise-free and the banded noise cases, followed by the­

oretical results about the convergence properties and the speed of the algorithms 

developed within it. Subsequently, the framework is redefined in a more general 

form to include the case of stochastic noises. A number of theoretical statements 

are also presented about the convergence characteristics of resulting algorithms. 

The second part of this chapter includes the formal definitions of the determin­

istic forms of the 23 classical benchmarking problems which are employed in the 

following chapters to assess the performance of the proposed algorithms. The 

chapter concludes by describing the stopping criteria used in this study for the 

deterministic as well as the stochastic cases.
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Chapter 3

The subject of this chapter is the basic algorithm proposed in this work, which was 

designed using the SSC framework. First, formal definition along with theoretical 

results about its properties are presented. Then, the algorithm is experimentally 

evaluated in a deterministic setting followed by a similar evaluation in the presence 

of stochastic noises. In the latter case, the effects of different levels of noise are also 

explored. The sensitivity of the algorithm’s behaviour with respect to different 

values of its controlling parameters is examined both in the deterministic and the 

stochastic cases and suggestions are made about effective parameter ranges for a 

variety of conditions. Furthermore, the use of a number of different gradient esti­

mators is also studied, including the classical finite difference estimators as well as 

more recent proposals such as the Simultaneous Perturbation estimators (Spall, 

1998). In an additional set of experiments the effectiveness of statistical tech­

niques aiming to reduce the adverse consequences of strong stochastic values is 

considered. Finally, both in the deterministic and the stochastic setting, the per­

formance of the proposed SSC algorithm is compared with that of well-known 

algorithms over the same set of testing problems.

Chapter 4

A number of extensions and modifications of the basic algorithm are introduced. 

The aim is to demonstrate the flexibility of the SSC framework in designing ef­

ficient algorithms suitable to address specific application requirements. These 

algorithms are evaluated both in the deterministic and stochastic cases using the 

same set of benchmarking problems employed in the previous chapter. Finally, the 

results obtained are discussed with respect to the particular issues each algorithm 

was created to address.
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Chapter 5

The aim of this chapter is to provide adequate background information on concepts 

and issues related to neural network learning procedures and their assessment. 

First, a survey of existing learning algorithms is present. Next, a critical review 

of comparative studies in the literature is provided aiming to identify efficient 

algorithms to be used as benchmarks in the comparative experiments reported in 

the following chapter. Subsequently, an adaptation of the basic SSC algorithm 

introduced in Chapter 3 along with the existing algorithms used for comparisons 

are formally defined. The chapter concludes with a discussion of technical issues 

involved in the experimental evaluation of neural networks learning algorithms.

Chapter 6

In this chapter, a series of experimental comparisons are reported regarding the use 

of algorithms developed using the SSC framework in neural network learning. The 

SSC algorithm employed is evaluated in comparison with two alternative training 

schemes in terms of a variety of criteria including speed of convergence and gen­

eralisation ability. These comparisons are performed over a set of synthetic and 

real world tasks that belong to two main categories, namely regression and clas­

sification. Initially, the experimental setup adopted is described and explained. 

Then, a brief examination of the characteristics of the data sets used is presented, 

accompanied by a discussion of exploratory observations based on the so-called 

learning curves produced by the three algorithms in each case. Subsequently, a 

series of statistical analyses of the results obtained are presented and elucidated. 

The chapter concludes with a number of final comments about the comparative 

performance of the proposed SSC-based learning algorithm summarising the find­

ings of the previous analyses.
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Chapter 7

In the final chapter, an overview of the findings obtained from the experimental 

investigations in this study is, initially, presented, leading to general concluding 

remarks about the efficiency, the robustness and the practical applicability of the 

algorithms developed using the SSC framework, as well as the flexibility of the 

framework to facilitate the design of algorithms with a wide variety of charac­

teristics highly desirable in the noisy optimisation setting. Finally, the chapter 

provides pointers to promising paths for fruitful future research.



Chapter 2

The Supervisor Searcher 

Co-operation (SSC) Framework: 

Theoretical and Methodological 

Issues of the Study

2.1 For mulat ion

Let /  =  F  +  e, where e is some form of noise (deterministic or stochastic), as 

explained in Section (1.2.1) F  is a continuous function on Rn and is bounded 

below. We are interested in finding (local) minimizers of /  (that is, of F).

For given x0,x i, ...,xi, assume that we have an iterative algorithm, called search 

engine (SE):

Xk+1 Xk •S6fc(*£fc) 3'k—li %k—li ki /)>  ̂— lj l T  1) 

The above notation for se* emphasise its dependence on k and the values of 

{ f ( x k-i)}™=(), f(xk-i)}iLo, {H (x k-i)}iL0, etc., where H (x) is the Hessian matrix 

of /  at the point x.

Suppose that e =  0 and that this algorithm is convergent to a local minimizer

38
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of /  provided the starting points are very close to the minimizer. To make the 

algorithm convergent globally, it is classic to introduce into it a line search proce­

dure, monotone or non-monotone, exact or inexact. However as mentioned before, 

a line search procedure is in general sensitive to the smoothness of the function 

and to the accuracy of the function value evaluation. Therefore the resulting 

algorithm, though convergent globally, may not be robust enough to deal with 

stochastic or nonsmooth optimization problems, which are becoming increasingly 

important in practical applications.

The essential idea adopted in (Liu et ah, 1999a; Liu and Dai, 2001; Sirlantzis 

and Liu, 2001) is to employ an alternative globally convergent but robust itera­

tive algorithm to supervise and therefore to safeguard the convergence of the SE 

algorithm. This supervising algorithm will be referred to as the supervisor (SR). 

Then, one may obtain a globally convergent and robust algorithm. Assume that 

this supervisor algorithm (SR) reads: Given Xq, x\,...,xi

Xk-\-1 Xk STk(.Xki 1) •••5 Z) k, k /, / T  1, ... .

In general a SR algorithm is slower but robust, and a SE algorithm is faster 

but only locally convergent. Therefore they have to co-operate in order to work 

efficiently. We proposed in (Liu and Dai, 1999; Liu et ah, 1999a) a supervision 

principle based on the co-operation of the supervisor and the searcher (SSC). 

According to this principle the supervisor intervenes only when it believes that 

the performance of the search engine is not satisfactory while the search engine 

undertakes most of the (solution) searching work. For the resulting algorithm, 

to a large extend, global convergence may be ensured by the supervisor but the 

speed is decided by the search engine.

There are various ways to implement the co-operation principle. The following 

may be seen as one of the simplest:

Assume /  > 0. Given x0, x i , ..., xi, define (k =  l, l +  1,1 +  2,...) the following
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(SSC) algorithm:

x k+i = x k -  srk if Tkf ( x k -  srk) < f ( x k -  sek),

otherwise

%k+1 =  %k

where {Tk} is a given sequence of nonnegative real numbers.

This new algorithm may exhibit a behaviour significantly different from those 

of its “parent” algorithms even for problem with e =  0. The algorithm actually 

switches between its two component algorithms at a not pre-specified frequency. 

Assume, for example, that the Newton search engine is used and e =  0, then the 

algorithm needs only one step to find the minimizer of a convex quadratic objective 

function when Tk =  1. This may be very different from the behaviour of the SR 

algorithm we used. On the other hand, it is not an obvious assumption that the 

well known n-step convergence property will still hold for the SSC algorithm when 

the conjugate gradient algorithm is used as search engine.

The sequence {T*;} decides the strength of the co-operation. It is clear that 

the behaviours of a SSC algorithm depend not only on those of the corresponding 

SR and SE algorithms, but also on the degree of supervision, which is determined 

by the sequence {Tk}. For instance, if we take Tk =  0 or Tk =  oo, there will be no 

action of the search engine or the supervisor respectively (assuming f ( x k — rk) > 

0). Also by setting sek =  0, the algorithm becomes the SR algorithm. Although 

such degenerate instances present little interest, they do indicate the wide range 

of algorithms covered by the SSC type algorithms. It seems clear that taking 

larger Tk will force a SSC algorithm to use more SE iterations, and therefore may 

increase its overall speed. However, if Tk is too large, the supervision may become 

too weak, and therefore the resulting SSC algorithm may not be robust enough 

or even convergent globally. In applications, normally one uses Tk =  T >  0. If T 

is smaller, then the supervisor may do most of the work, if T is larger, the search 

engine may be used all the way. From our experience, T =  1 is always the safest
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value.

It is also possible to let the algorithm check for a switch only after two or 

more iterations, to form a multi-step SSC algorithm. Again, this could save much 

computational work, but weakens the supervision. These issues will be closely 

examined in following chapters.

Rem ark 2.1 Note that as far as minimization is concerned, one can always 

assume that f  >  0 by adding a positive constant to the original function. Or one 

can use the following SSC algorithm in the general case:

xk+l =  xk -  srk i fT skl9nU[Xk~srk))f ( x k -  srk) <  f ( x k -  sek),

otherwise

%k-(-1 — %k

where {Tk} is a given sequence of nonnegative real numbers. All the above obser­

vations apply to the general case as well.

There are many possible candidates for SR algorithms. In general they are 

expected to be simpler and robust with a global convergence property. As for SE 

algorithms, we may choose from a wide range of fast algorithms like Newton’s 

algorithm, BFGS, and faster gradient methods like the conjugate gradient (CG) 

method.

2.2 Convergence and Speed in the Deterministic 

Case

Convergence

In the following we present a relevant global convergence result for srk — tkgk, 

where tk is a positive sequence and gk =  V  f ( x k), which holds provided tk =  oo 

and P “ max(l,Tfe) is finite as k —>• oo. This result is actually true for general 

search engines.
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For ease of exposition we assume tk 0 in the following theorem, though it is 

not difficult to see that it holds for the case where tk is very small after k is large 

enough, as in Theorem 4.1 of (Liu and Dai, 2001).

Theorem 2.1 (Theorem 3.1 in (Liu and Sirlantzis, 2001b) Let f  be twice con­

tinuously differentiable and bounded below. Assume that V /  is Lipschitz with a 

global Lipschitz constant. Let {x*,} be generated by an algorithm based on the 

SSC framework defined in Section (2.1). Then 4 | W (x fc)|2} convergent as 

k —> oo provided max(l, Tk) < oo.

Proof: Assume, for ease of exposition, that /  > 0. It follows from the definition 

of the algorithms that for any k > 0

f(xk+ 1) < max ( f ( x k -  tkgk),T kf ( x k -  tkgk)) =  max(l, Tk) f ( x k -  tkgk).

Let Pk =  m ax(l,Tfc). Then we have

f ( z k+1) < P kf(xk ~ tkgk) =  Pkf { x k) -  tkPkgkgk +  t\PkgTk Hkgkl 2,

where Hk is the Hessian matrix of /  at a point 0k in the line segment [xk,x k+i\. 

Therefore there is a C  > 0 such that

f ( x k+1) <  Pkf{xk) -  tkPk\gk\2 +  Ct2kPk\gk\2 (2.1)

< PkPk_1f ( x k- i  -  tk- ig k- i )  -  tkPk\gk\2 +  C t2kPk\gk\2. (2.2)

Repeating this procedure we have

k
/(* * + 1) < P t f M  -  J 2  P?(u -  Cif)Iftp,

i— 1

where P f — fli  Pm■ It follows that there is a k0 > 0 such that

tk( 1 -  C tk) >  c'tk, k >  k0
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where d > 0 is a constant independent of k.

Let us now define Sk =  Y l̂=k0+i It follows that 1 < P* <  P f+1 <  P0°°.

Thus

o < PU(xo) <  PS°f(xo),

and

0 < P?ti\9i\2 < Pi+1U\gi\2.

Hence, S'k =  P jff{x0) — Y^Li Pi fa ~  C f2)|(/i|2, is bounded above and below and 

0 <  Sk < Sk+i- Therefore, {J2o^\s^\2} Is convergent as k —> oo, as Sk is a 

monotone increasing sequence and /  is bounded below.

In particular we know that xk —t x* when /  is uniformly convex, where x* 

is the minimizer of / .  The above result is clearly a generalisation of the global 

convergence Theorem 4.1 in (Liu and Dai, 2001). Note that no assumption was 

made for any particular search engine.

In practical computation Tk is often fixed to a constant T >  1. In the following 

theorem we show that the speed of the SSC algorithms is as fast as the search 

engine.

Deterministic Noises

Remark 2.2 R seerris that some convergence results can be similarly established 

for the case where the noises are deterministic; that is, f  and gk are only some 

approximation of F  and V P . For instance, assume e is smaller in function value 

evaluation, but significant in gradient estimation, e.g. when using a finite differ­

ence approximation scheme to estimate V P . Then it follows from the proof that 

if gk is only an approximation o fV F (xk ), the global convergence will still hold 

provided that

\gk\ <  C\VF(xk)\,(gk,V F {x k)) >  c|VP(^)|2,
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where c, C >  0 are independent of k. These conditions are quite light and easy 

to meet. In fact, pk is allowed to be far away from V F{xk), e.g., twice as long 

as V F (xk ) with a f5  degree angle between them. Note that even when the nature 

of e is stochastic the above results still hold provided |e| is bounded, for example 

when e has some truncated distribution. This indicates strong robustness of the 

SSC type algorithms and their extensions.

Speed

In many cases, a SSC algorithm is as fast as the search engine. For instance, the 

following result can be established.

Theorem 2.2 (Theorem 3.2 in (Liu and Sirlantzis, 2001b)) Let f  > 0 be con­

tinuously differentiable. Let {xfc} be generated by an algorithm based on the SSC 

principle defined in Section 2.1. Assume that Zk is a matrix such that sek — Zkgk, 

with sek as defined in Section 2.1. Assume that {|Z*;|} is bounded above, and 

Tk > T  > 1 after k large enough. Let x* be a local minimizer of f . Then the SSC 

algorithm is as fast as SE provided {xk } converges to x*.

Proof: As f(x* ) >  0, Tk >  T >  1 and /  is continuous, there is a r0 > 0 such 

that

Tkf (x  - tk N f (x ) )  > f(y ) ,  V/c >  0. (2.3)

as long as \x — x*\ < r0 and \y — x*\ < r0, since { tk}  is bounded. Since Xk —> x*, 

we can assume that there is a k0 >  0 such that

\xk -  x*\ <  r0/2, V& > k0.

There exists also a ki > k0 such that

\Zk9k\ < W2, > *h,
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since |V f(xk )  — V f ( x *)| =  \gk\ 0 as k -*  oo. Hence

\{xk -  Zkgk) -  x*| <  -  a:*| +  | -  < r0, Vfc > kx.

Therefore we always have

Tkf ( x k -  tkV f ( x k)) > f ( x k -  Zkgk), \/k >  A*. (2.4)

So, the SSC algorithm will always take the SE stepsize, as determined by the SSC 

switching rule, after k > k\.

Although, we assumed that tk —> 0, again all results hold for the case where 

tk is very small after k is large enough.

The above theoretical results show that both “parent” algorithms (i.e. the 

supervisor and the search engine) play an important role in the overall perfor­

mance of the resulting SSC algorithm. While the supervisor guarantees global 

convergence the searcher contributes an improved convergence rate.

2.3 Theoretical Analysis under Stochastic Noises

Convergence theory of algorithms for stochastic optimization problems has been 

one of the focus points of modern stochastic optimization theory, and is in general 

much more complicated to establish than for the deterministic problems. It seems 

to be relatively less involved to establish some stochastic convergence results for 

an algorithm if the gradient estimators used are assumed to be very accurate, 

see for example (Yan and Mukai, 1993). However, such an assumption is com­

putationally very expensive to satisfy in real life problems, where the gradient 

estimators used are usually based on some kind of approximation procedure, like 

the finite difference estimation, see (Fu, 1994) for a number of examples. Conse­

quently, more sophisticated theoretical tools, such as the Martingale theory, are 

needed in dealing with stochastic convergence.

The two most well-known and classical examples are the algorithm introduced
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by Robbins and Monro (Robbins and Monro, 1951) and the one proposed by Kiefer 

and Wolfowitz (Kiefer and Wolfowitz, 1952). The first algorithm aimed to approxi­

mate the point where a regression function assumes a given value. In (Robbins and 

Monro, 1951) mean square convergence to the root has been proved, under certain 

conditions. Later Wolfowitz (Wolfowitz, 1952) demonstrated that convergence in 

probability still holds under much weaker than the original conditions and Blum 

(Blum, 1954) showed that convergence with probability 1 can be proved for this 

algorithm under even weaker assumptions. The second algorithm was proposed 

in order to approximate the point where the maximum of a regression function 

occurs. Kiefer and Wolfowitz proved convergence in probability of their proce­

dure under certain conditions and Blum (Blum, 1954) extended these results to 

convergence with probability 1 while weakening the original assumptions. Sub­

sequently, in (Dvoretzky, 1956) and (Wolfowitz, 1958) it was proved that under 

significantly weaker conditions both almost sure convergence and convergence in 

mean square occurs for the two classical schemes. The rate of convergence as well 

as the asymptotic distributions of the iterates have been studied and normality of 

the errors in the limit has been demonstrated for the two classical algorithms.

Finally, among the more general schemes proposed through the years notable 

is the one by Dvoretzky (Dvoretzky, 1956) which includes the above classical algo­

rithms as well as numerous others as special cases. For this procedure both almost 

sure convergence and mean square convergence have been proved under consider­

ably mild conditions, see (Dvoretzky, 1956). Then more systematic investigations 

have been carried out, and summarized, for example, in (Chen and Zhu, 1996), 

(Kushner and Clark, 1978), (Kushner and Yin, 1997), and (Ljung et ah, 1992). 

Also see, (Feng et ah, 2000) and (Tang et ah, 1999) for some new developments.

In the literature the theoretical analysis of the properties of gradient algorithms 

in the presence of stochastic errors and, in many cases, non-convexity of the 

objective function, is mainly based on two types of methods:

(1) Methods that involve a deterministic or stochastic descent argument, which,
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usually, employ either a Lyapunov function or a supermartingale convergence the­

orem. It worth noting at this point that the exploration of the theoretical proper­

ties of the SSC algorithms presented in the present study is based similarly on the 

martingale convergence theory. The majority of relevant results assume that /  is 

bounded below, while in some cases impose also a boundedness requirement on 

the sequence of iterates xk, or finally, show only that liminffc^oo 11 V/(rr*)11 =  0. 

For example, in the analysis presented in (Luo and Tseng, 1994) for the incre­

mental gradient method (which can be related to the “Backpropagation” training 

in neural networks), it is shown that lim^oo ||V/(xfc)|| =  0, but f (x )  is assumed 

bounded below. However, in (Bertsekas and Tsitsiklis, 2000) it is showed that ei­

ther f ( x k) — oo, or f(xk ) converges to a finite value and lim ^ ^  ||V/(:Tfc)|| =  0

while removing any type of boundedness assumption on /  and xk.

(2) Methods based on the Ordinary Differential Equations (ODE) analysis 

(Ljung, 1977; Kushner and Clark, 1978; Benveniste et ah, 1990; Kushner and Yin,

1997) , which track the evolution of the algorithm using trajectories of a differential 

equation dx/dk =  h{x). The corresponding ODE, for instance, for the stochastic 

steepest descent method xk+\ =  xk — tk(V f (x k) — ek), is dx/dk — —'V f(x). In 

this case assumptions are, usually, made to ensure that the average direction of 

update h(x) is a well-defined function of the current iterate x (Bertsekas and 

Tsitsiklis, 2000). Therefore this technique cannot be applied to gradient methods 

involving diagonal scaling depending on the past history of the algorithm. In such 

cases differential inclusions should be used rather than differential equations. As 

a further example, an asynchronous gradient iteration can be considered which 

normally updates a single component at a time. The average direction of update 

h(x) is not well-defined in this case, unless specific assumptions are made (Borkar,

1998) .

One of the key conditions in establishing convergence for the classical Stochas­

tic Approximation algorithms is, as we have already mentioned, that the step

sizes used tend to zero (or become sufficiently small) as the iterations proceed.
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Unfortunately, this condition cannot be met by our algorithm. Indeed, our exten­

sive numerical observations suggest that allowing jumps in step lengths is one of 

the main sources of its improved efficiency, and thus it cannot be alleviated. An 

important observation used in establishing our convergence theory is that in some 

stochastic sense these larger step lengths (proposed by the search engine) will be 

accepted (thus the jumps will happen) only when the objective function assumes 

lower values by using these step sizes than by using the diminishing pre-assigned 

step sizes tk— that is, only when some improvements in reducing the objective 

function values over the supervisor (SR) can be made. Therefore, the efficiency 

of the algorithms should not be lower than that of their supervisor. This critical 

observation has to be integrated into the existing classical techniques in order to 

establish convergence for our algorithm, and hence this will be one of the main 

focal points of the theoretical analysis presented in the remaining of this section.

2.3.1 Outline of Convergence Theory in the Stochastic 

Case

In the following we outline some general theoretical results for the SSC algorithms 

in the case the function and/or gradient estimators are corrupted by stochastic 

noises. We sketch and comment on the line of reasoning that leads to a convergence 

theory for this type of algorithms, for which a rigorous exposition can be found 

in (Sirlantzis et ah, 2001b). Details and proofs of the relevant theorems are 

included in Appendix B.

To this end, we first have to reformulate the problem and the corresponding 

definitions for the SSC algorithm.

Formulation

Assume that {Cfc}{fc>i}, {Vk}{k> 1} are independent random sequences of Rn vec­

tors and {Cfe}{fc>i}, {Xfc}{fc>i} are independent sequences of real-valued random

variables, all defined on space (Q, P, T) with F(||zzfc||2) < oo for vk =  £k,r]k and
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E(v'k)2 < 00 f°r u'k =  Ck,Xk- Furthermore { z ^ }  — where ukji denotes the zth 

component of vk—  and { u'k} are independent for k >  1 and i =  1 , . . . ,  d. Denote 

sub-cr-algebra Tt =  0-({6fc}fifc<*}, {Vk}{k<i}, {Cfc}{fc<i}> {XfclfiKZ}) for 1 =  1 ,2 ,.... 

Assume that F  E C 2(Rn). Let

\4}{fc>0}) {A}{fe>0}

be two positive sequences. Furthermore we sometimes assume that tk satisfies the 

following conditions:

(-0 J2k tk =  00;

(J / )

For a given T >  0 and a random variable xq, define, for k =  0,1,...

zk+x

■T/c+l — *

Vk+1

if T[F(a:fc -  tk(V F (xk) +  & +:)) +  Cfc+i]

< [F(xk -  f3k(VF(xk) + 77*+:)) + x*+i] 
otherwise

(2.5)

where

{%k+1 %k tk(^  F (x k) +  £*+1)

Uk+i =  xk -  fik(V F (xk) + r 7*+1)

Thus as F(**+1) +  Cfc+i, ¿',(j/*+1) +  x*+i, V F (x fe) +  f fc+1, and V F (x fc) +  77*+: 

are estimators of F (zk+i), F (yk+i),'V F (xk), it is clear that {a:*} is generated by 

a SSC algorithm with a given x0. The SSC-SABB, an algorithm which provides 

the major example in our experimental investigations of the SSC framework, is 

a particular case of this class of algorithms, and will be formally introduced in 

Chapter 3.

Sketch of Convergence Results

Let us first define

5  =  {x  : |VF(x)|| =  0}
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and dis(-, •) an appropriately chosen measure of the distance from a point in Rn 

to a set, and assume that the Hessian H  of F  is bounded over x G Rn. Then we 

can have, for instance, a basic convergence result, such as the following theorem, 

for the sequence {x^}.

Theorem 2.3 (Theorem f . 3 in (Sirlantzis et al., 2001b)) Suppose that {f,kiFk} 

(k >  1) is a sequence of martingale differences and T  < 1. Assume that the 

conditions (I) and (II) hold. Then if either Xk,Ck {k >  1) are bounded, or 

Xk ~  iV(0, j(k )) , Cfe ~  N (0,6(k)) for j(k )  > 0,0(k) > 0 such that the follow­

ing condition (III) is satisfied:

y(k) <  [o(C) + (1 -  T)C]2/[81og(fc +  1)]

and

m <  [0 +  (1 -  T)C]2/[8  log(* + 1 )],

then we have for k >  1

lim F ( x k)k—too

exist a.s. and

P(liminfdis(xfc,5) =  0) =  1,
k—>oo

provided C is large enough.

The above result requires that C  is large enough, but it is not always possible 

in practical problems. In real computation, one may add a positive constant to the 

objective function, as we have done in the following sections. This strategy always 

works provided that the objective functions have lower bounds. Clearly the larger 

of the added constant, more likely that the algorithms use the supervisors’s step 

size, thus more stable of the algorithms. However, adding a too large constant may 

affect efficiency of the algorithms - they may virtually always use the supervisors 

and then in fact become a Stochastic Approximation algorithm. Furthermore it 

was found through numerical experiments in (Sirlantzis et al., 2001b) that the
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performance of the algorithms is not very sensitive to the value of the added 

constant.

Let us make a few comments on the condition (III) in Theorem 2.3. Note 

that the requirement that 7 (n) <  [o(C) +  (1 — T)C]2/[8\og(k 4- 1)], 0(k) < 

[o(C) +  (1 — T)C]2/[8\og(k +  1)] is quite weak. In practical applications, one 

could take the average of c(T,C)  log(k +  1)1//2 samples of the function values to 

meet this condition, where c can be made smaller by taking a large C for a fixed 

T  < 1. As computation normally stops after, say 109 iterations, it is usually safe 

to simply assume that Xk, Cfc ~  iV(0, 1). Alternatively one could take the average 

of 0 (log (n + 1)1/2) samples of the function values to meet this condition, assuming 

that { 7 (k)}, {6{k)}  are bounded.

In practical applications we often use

1 ,F [xk +  ckekff F (xk ckekff . ^k+i,i ^k+i,i\ c \
2 +  2 j

as a gradient estimator to replace

VF(xk)i +  £k+i,i

where vk, vk , j  =  1, 2, k >  1 are i.i.d. random vector variables (e.g. uk =  Xk,Ck 

and =  £k \i7̂ ) ,  uk,i and denote the zth component of vk and

vk \ and V F (x k) respectively, uk>i, for i =  1 , . . . ,  d are also i.i.d., ekti is the 

standard unit vector across the ith coordinate, and ck > 0.

If we further assume that F  G C 3(Rn) and both its second and third order 

derivatives are bounded functions in Rn, we have the following results.

Theorem 2.4 (Theorem 4-6 in (Sirlantzis et al., 2001b)) Suppose that the above 

central difference gradient estimator is used, condition (I) holds and T < 1. As­

sume, also, that
OO OO

Y .tk c l  < 00, y ,  t2kck 2 < °°- 
1 1

Then, if either XkXk (k > 1) are bounded, or Xk r-u N(0,-y(k)) ,a ~  N(0,e(k))
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for  7 (k) > 0, 8(k) >  0, so that condition (III) holds as well,

lim F (x k)
fc-»oo

exist a.s., and

P(liminfdis(a;fc, S) =  0) — 1,
fc—»00

provided C is large enough.

As we shall see in the following chapters the above convergence theory holds 

directly for the basic types of algorithms developed within the Supervisor Searcher 

Co-operation framework, as well as for some of the extensions introduced in this 

study. While, on the other hand, no such claim can be made for other extensions, 

for which, nevertheless, shall be demonstrated to have rather desirable character­

istics. For the latter similar results can not be established without specifically 

exploring first the properties of the approximation to the function values we are 

using. Comments will be made on that during the development of the relevant 

formulations.

2.4 The Test Problems

We used up to 23 test problems in a series of experiments in order to empiri­

cally assess the properties of the algorithms developed within the Supervisor and 

Searcher Co-operation framework defined the previous section.

Problems 1 to 18 are drawn from (More et ah, 1981). They are well known 

deterministic benchmarking problems and their stochastic versions are certainly 

non-trivial. For example, most of them are not convex. The objective function 

for these unconstrained optimisation problems is obtained by:

m

F (x ) =  J 2 f i ( x )’ (2 J )
¿=i

where fi are the function components defined below.
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Problems 19 to 20 are stated in (Raydan, 1997). As mentioned there the

has n distinct eigenvalues, where n is the dimensionality of the problem. We adopt 

the initial values used in both the above works.

Problems 21-23 are a one-dimensional fourth order polynomial, a multi-dimen­

sional second order polynomial, and a one-dimensional quadratic, which represent 

“well-behaved” cases.

For all the functions the format adopted for the presentation is as follows: 

Name of the function (function index in the relevant reference)

(a) Dimensionality of the function domain

(b) Function or function component definition

(c) Starting Point xo

(d) Minimum function value and/or the point x* this value occurs

1. Helical valley function (7)

(a) n =  3, m — 3

Hessian of the former at x* is the identity matrix, while the Hessian of the latter

(b) /i(x )  =  10[rr3 -  10d(x1, x 2)] 

f 2(x) =  io[(xi +  x 22y / * - i ]  

f 3(x) =  x3

where

if X\ >  0,

(c) x0 =  ( - 1, 0, 0)

(d) F  =  0 at (1,0,0)

2. Biggs EXP6 function (18)

(a) n =  6, m > n variable
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(b) fi(x) =  x3 exp[—ijXi] -  x A exp[—tiX2] +  x e exp[-fjX5] -  y{ 

where U =  (0.1)*

and yi =  exp[— — 5exp[—10ij] +  3exp[—4fj]

(c) xQ =  (1, 2, 1, 1, 1, 1)

(d) F  =  5.65565 . . .  10~3 if m =  13, which is the case we used, or 

F  =  0 at (1 ,10,1,5,4,3)

3. Gaussian function (9)

(a) n =  3, m — 15

(b) fi{x) =  X\ exp  ̂ 2  ̂

where U =  (8 — i)/2 and
Vi

i y
1,15 0.0009

2,14 0.0044

3,13 0.0175

4,12 0.0540

5,11 0.1295

6,10 0.2420

7,9 0.3521

8 0.3989

(c) x0 =  (0.4,1,0)

(d) F  =  1 .12793...IQ '8

4. Powell badly scaled function (3)

(a) n — 2, m =  2

(b) /i (x )  =  104XiX2 -  1

/ 2(a:) =  exp[—xi] +  exp[—x2] — 1.0001

(c) x0 =  (0,1)

(d) F  =  0 at (1.098 . . .  10"5 * *, 9.106...)
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5. Box three-dimensional function(12)

(a) n =  3, m > n variable; we used m — 10

(b) fi(x) =  expt-i^x] -  exp[-tiX2] -  x3(exp[-ij] -  exp[-10fj])

where t* =  (0.1 )i

(c) x0 =  (0, 10, 20)

(d) F  =  0 at (1 ,10 ,1)(10,1, —1)

and wherever x\ =  x2 and x$ =  0

6. Variably dimensioned function (25)

(a) n variable, m — n +  2; we used n =  6

(b) fi(x) = X i -  1, i =  l , . . . , n

(c) x0 =  (fj) where £,■ =  1 -  (j/n)

(d) F  =  0 at (1 , . . . ,  1)

7. Watson function (20)

(a) 2 < n < 31, m =  31; we used n =  9

where U =  i/29, 1 <  i <  29

ho(x)  =  xi, /si 0*0 =  x2 -  X? -  1

(c) x0 =  (0, . . . ,  0)

(d) F  =  2.28767... 10~3 if n =  6 

F  =  1.39976... 10“ 6 if n =  9 

F  =  4.72238... 10_i0ifn  =  12

n

fn+l(x) =  ^2 j { Xj  ~ 1)

(b) fi(x) =  ~  l )xA  2
n

- 1

8. Penalty function I (23)
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(a) n variable, m =  n +  1; we used n — 8

(b) fi(x) =  a l/2(xi -  1), 1 < i <  n

fn+i(x) =  ~ \

where a  =  10~5

(c) x0 =  { Q  where & =  j

(d) F  =  2.24997... 10“ 5 i fn  =  4 

F  =  5.42150... lO“ 5 if n =  8 

F  =  7.08765 . . .  10“ 5 i fn  =  10

9. Penalty function II (24)

(a) n variable, m =  2n; we used n — 3

(b) fx(x) = x i -  0.2 

f i (x ) =  a 1/2 ^exp

fi(x) =  a 1/2 (exp

x.
l To J
Xi—n+1

10

+  exp Xi- 1
10

+  exp

2 < i <  n

10 - n <  i < 2n

f2n(x) = | ^ ( n  ~ 3 + “  1

where cr =  10~5 and yi =  exp 

(c) Xq ( 2’ ' ‘ ‘ > 2)
10

+  exp
z — 1 

10

(d) F  =  3.19940... 10~6 i fn  =  3 

F  =  9.37629... 10~6 i fn  =  4 

F  =  2.93660... 10" 4 if n =  10

10. Brown badly scaled function (4)

(a) n =  2, m =  3

(b) /i (x )  =  Xi -  106

f 2(x) =  x2 -  2 ■ 10-6 

f 3(x) =  x ix2 -  2

(c) Xq =  (1,1)
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(d) F  =  0 at (106, 2 - 10-6)

11. Brown and Dennis function (16)

(a) n — 4, m > n variable; we used m =  20

(b) fi(x) =  (zi +  Ux2 -  exp[ij])2 +  (s3 +  x4 sin(ij) -  cos(¿¿)))2 

where T — i/ 5

(c) a* =  (2 5 ,5 ,-5 ,-1 )

(d) F  =  85822.2... if m =  20

12. Gulf research and development function (11)

(a) n =  3, n <  m <  100; we used m — 99

(b) fi(x) =  exp 

where t.

\yi mix2
Xi

13

i/100

and yi =  25 +  (—50 ln(ij))2/3

(c) x0 =  (5,2.5,0.15)

(d) F  =  0 at (50,25,1.5)

13. Trigonometric function (26)

(a) n variable, m =  n; we used n — 20
n

(b) fi(x)  =  n — ^  cosXj +  i{ 1 — cosxf) — sinxi
3=1

(c) x0 =  (1/n , . . . , 1/n )

(d) F  =  0

14. Extended Rosenbrock function (21)

(a) n variable but even, m =  n; we used n =  14

(b) f 2i-\{x) =  10(sM -  ®?_i) 

f 2i{x) =  1 -  X2i_l

(c) x0 =  (fj) where f 2j- i  =  - 1.2, =  1
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(d) F  =  0 at (1 , . . . ,  1)

15. Extended Powell singular function (22)

(a) n variable but a multiple of 4, m =  n; we used n =  16

(b) fii-3(x) =  X 4i_ 3  +  lCte4j_2

h i -2(x) =  51̂ 2(x4j_1 -  x4i) 

fai-i(x) =  (a;4i_2 -  2x4i_ ! ) 2

/ 4j(x) =  101/2(a;4i_3 ~  ^4i)2

(c) z 0 =  (&)

where / 4j_3 =  3, £4j_2 =  -1 , Uj-1 =  0, / 4j =  1

(d) F  =  0 at the origin

16. Beale function (5)

(a) n =  2, m =  3

(b) /¿Or) = l / i - a ; i ( l - 4 ) >
where =  1.5, y2 =  2.25, y3 =  2.625

(c) x0 =  (1, 1)

(d) F  =  0 at (3,0.5)

17. Wood function (14)

(a) n =  4, m =  6

(b) /i(:r) =  10(a;2 -  x\) 

h (x )  =  1 -  xi

h (x )  =  (90)1//2(a:4 — £3)

/ 4(x) =  1 -  xz

fs(x) =  (10)1/2(x2 +  x 4 -  2)

/eOr) =  (10)~1/ 20r2 -  x4)

(c) x0 =  ( -3 ,  -1 ,  -3 ,  -1 )

(d) F  =  0 at (1,1,1,1)
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18. Chebyquad function (35)

(a) n variable, m >  n; we used n =  m =  8

(b) fi{x) =  - ' Y ^ T i{xj ) -  [  Ti{x)dx
n j=i

where Ti is the ith Chebyshev polynomial shifted to the interval [0,1] 

and hence,

f  Ti(x)dx — 0 for i odd, 
Jof Ti(x)dx =  — for i even

(r* -  1)
(c) XQ =  where ^  =  j/(n +  1)

(d) F  =  0 for m =  n, 1 <  n <  7, and n — 9 

F  =  3.51687... 10“ 3 for m =  n =  8 

F =  6.50395 . . .  10-3 for m =  n =  10

19. Strictly Convex (1)

(a) n variable
n

(b) F(x)  =  Y , ( e x‘ ~  Zi)
i=  1

(c) x0 =  1)
n n

(d) x* =  (0, . . . ,0)

20. Strictly Convex (2)

(a) n variable

(b) F(x)  =  ' £ ^ ( e « - x l)
i= 1

(c) x 0 =  (1, 1, . . . » 1)

(d) ar* =  (0,0....... 0)

21. One-dimensional 4th order Polynomial

(a) n =  1
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(b) F(x)  — xA +  x 2

(c) x 0 =  10

(d) x* =  0

22. Multidimensional 2nd order Polynomial

(a) n =  50

(b) +

(c) ar0 =  (1, 1, —  , 1)

(d) x* =  (0, 0, - - - , 0)

23. One-dimensional Quadratic

(a) n =  1

(b) F (x) =  100 +  x2

(c) x0 =  100

(d) x* =  0

The last function (Nr. 23) was, mainly, selected because, due its simplicity, 

facilitates better interpretability of the corresponding results and their compar­

isons. So, whenever all the compared versions of the tested algorithms produced 

identical results, this function is not present in the corresponding tables.

2.4.1 Deterministic Tests

In the tables presented in the following chapters for the deterministic optimisation 

cases we report the No. of iterations/No. of function evaluations/No. of 

gradient evaluations. The maximum number of function evaluations is set to 

9999, unless otherwise stated in the corresponding tables.
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2.4.2 Stochastic Tests

In these test we assume that we are not able to obtain the exact value of the 

function. Hence, we use

f (x )  =  F(x) +  e

as an estimate of the function value at x, with

£ =  CIE1

being the stochastic noise, with a a constant we shall call the ” noise scale factor” 

in the following, and e' a standard normal random variable (that is, P  ~  JV(0, 1)). 

Consequently, we use a number of different gradient estimators in our numerical 

experiments, the specific form of which we will define in the subsequent sections. 

It is clear that the noise can be dominant in the gradient estimation near a solution 

where V F  =  0. In fact, it is not difficult to observe that finding a solution to 

these noisy optimization problems is anything but a trivial task. In the following 

it is assumed that a — 0.1, unless if defined explicitly otherwise.

We run every experiment 10 times for every algorithm and each one of the 

problems, using different random seeds in the noise generator, and in the tables 

included in the following chapters referring to the stochastic case we report the 

number of successful runs. We have tried also three independent batches of 

ten runs and very similar outcomes have been observed. The maximum number 

of function evaluations is set to 9999.

In most of the results tables we report also, in parentheses, the Mean of the 

number of iterations needed to satisfy the stoping criteria, and the Mean Absolute 

Deviation (MAD) from the Mean, over the 10 independent runs.

Note that without any specific modification for the reduction of the number of 

function evaluations, an SSC-based algorithm will require two function evaluations 

at each iteration. However, it will need only one gradient estimation at each step, 

which is well known to be the most expensive part of the computational load.
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Noisy versions of the problems defined above have been used in a variety of 

studies of optimisation methods (Anderson and Ferris, 2001; Barton and Ivey, 

1996; Humphrey and Wilson, 1998; Elster and Neumaier, 1995; Elster and Neu- 

maier, 1997; Humphrey and Wilson, 1998; Neddermeijer et ah, 2000). However, 

many of them are using only a small subset of the problems. For instance, in (An­

derson and Ferris, 2001) and (Neddermeijer et al., 2000) only two of the above 

functions are included, while in (Humphrey and Wilson, 1998) only five of them 

are tested. Furthermore, noises are introduced in a variety of different ways and 

a wide range of different stopping criteria are used. For example in (Elster and 

Neumaier, 1995; Elster and Neumaier, 1997) the noisy function is defined as 

f (x )  =  F (x) (  1 +  e), where F  is the exact underlying mathematical model and e 

is the noise. In this case the effects of noise are diminished as we approach to the 

minimum, unlike the present study where the noise is additive and has the same 

effects in the whole range of the function values. In (Barton and Ivey, 1996), on the 

other hand, a truncated Gaussian distribution is used, which also imposes different 

conditions than the unbounded Gaussian used in our experiments. Additionally, 

an example of the use of an alternative stopping rule is given in (Humphrey and 

Wilson, 1998) where convergence is checked in terms of the percentage of im­

provement of the current distance from the solution with respect to the distance 

corresponding to the beginning of the iterations. Unfortunately, this diversity in 

parameters and criteria used in the above works renders comparisons of the results 

reported there as well as in the present study impossible.

2.5 Convergence criteria

2.5.1 Deterministic Case

For the deterministic version of the benchmarking problems presented above we 

used the following stopping rule:

|V/(xt )| < 1(T6. (2.8)
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2.5.2 Stochastic Case

When the noisy version of the benchmarking problems is employed we use the 

following stopping rules:

\xk -x*\ < eps, (2.9)

if x* is known, or otherwise

\(fk) -  F(x*)\ <  eps2, (2.10)

where eps =  0.01, x* is the minimizer and

19

x k — ^  ' Xk—j/20,
¿=o

19

fk =  J 2 f { x k-i)/20.
i=0

Note that these convergence criteria are rather hard to meet when strong noises 

are present. More so, when finite difference or other similar approximation to the 

gradients are used which tend to amplify the effects of the noise in the objective 

function.

2.6 Benchmarking Algorithms

In order to establish a better understanding of the behaviour of the algorithms 

proposed in this study in comparison to known algorithms used in the field of 

unconstrained optimisation we employed the following two as benchmarks:

The first is the classical Stochastic Approximation algorithm (henceforth de­

noted as SA) defined as:

Given x0

x k+1 =  x k -  tkgk, k =  0, 1, 2,...,

where gk is, as usual, an estimator of the gradient V F  at rj,. It is probably
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the most popular algorithm for stochastic optimization problems. It is, also, 

well-known that, although it is globally convergent in general, it is too slow to 

achieve high numerical accuracy. One of the main difficulties in practice is to 

select the appropriate sequences { tk}  for a particular problem (see Section 1.2.6 

for an introduction and (Kushner and Clark, 1978; Kushner and Yin, 1997) for 

a comprehensive discussion). The sequence of step sizes {tk}  (gain sequence), we 

used in the majority of the cases were:

tk =  1 /k, or tk =  1/k0'5.

Whenever a constant step size was used in our experiments it is explicitly men­

tioned in the corresponding tables of results. The choice of this algorithm as a 

benchmark for our comparisons, despite its drawbacks, was based on two reasons. 

First, due to its popularity, it is included in a large number of comparative stud­

ies, so it provides a common base for performance assessments. Second, as it will 

be shown in the next chapter, it constitutes the Supervisor algorithm (SR) of the 

basic SSC-based algorithm examined in this study. Hence, relevant comparisons 

can reveal the changes in the qualitative characteristics of the algorithms caused 

by the switching mechanism incorporated in the schemes designed according to 

the SSC framework.

The second benchmark is an algorithm introduced in (Raydan, 1997) under 

the name “Global Barzilai and Borwein Algorithm” (GBB), because it uses a step 

size originally proposed by (Barzilai and Borwein, 1988). It can be defined as 

follows (where the superscript T  denotes vector transposition):

Given x 0, a0, integer M  > 0, 7  G (0,1), 5 > 0, 0 < o\ < ct2 < 1,0 < e < 1, set 

k =  0 and:

Step 1: If || gk ||= 0 stop

Step 2: If ak < e or ak > 1/e then set ak — 5

Step 3 : Set A =  l/ak
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Step 4: (nonmonotone line search)

ff f{%k maXo<j<min(fc,Ai) (fk— j) y^9k9k

then set Ak — X,xk+i =  xk — Xkgk, and go to Step 6

Step 5: Choose a £ [¿xi, cr2], set A == crA, and go to Step 4

Step 6: Set ak+1 = -(glyk) / {Xkgk 9k), k =  k +  1, and go to Step 1.

Remarks:

(1) The object of Step 2 is to avoid uphill directions and to keep the sequence 

{Afc} uniformly bounded. In fact, for all k
*»

0 < min(e, 1/(5) < Xk < m ax(l/e, 1/(5).

(2) The algorithm cannot cycle indefinitely between steps 4 and 5.

The parameter values suggested in (Raydan, 1997)— and adopted in this study 

as well— are: 7  =  10~4, e =  10-10, oy =  0.1, a2 =  0.5, a0 =  1, and M  =  10. In 

step 5 a is chosen by a quadratic interpolation procedure and 6 in step 2 is chosen 

as follows:

1

<5 = I N I ? 1

105

if \\9k\\2 > 1,

if 10- 5 < M | 2 < 1,

if \\gk\\2 < 10~5.

As it can be seen GBB incorporates a non-monotone line search in order to 

ensure global convergence for general functions. In fact relevant theoretical results 

are reported in (Raydan, 1997) under rather mild assumptions. It was, also, re­

ported there that in the noise-free unconstrained optimisation setting the resulting 

algorithm, GBB, is rather fast— comparable to fast implementations of the Con­

jugate Gradient Algorithm (CG) in many cases. Furthermore, it was found to 

be faster than the CG for some large scale convex optimization problems. The 

reported speed was one of the reasons for the choice of GBB as benchmark in our 

experimental investigations. The second reason was to examine the performance
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of an algorithm using a non-monotone line search in comparison to the supervising 

principle of the SSC framework. And finally, the third reason was that the basic 

SSC algorithm— which will be defined formally in the next chapter— uses also the 

step size introduced in (Barzilai and Borwein, 1988) in its Search Engine (SE) 

constituent algorithm.



Chapter 3

A Basic SSC Algorithm — SABB

We start by introducing a basic algorithm developed within the Supervisor-Searcher 

Cooperation framework.

3.1 Formulation

First, we have to select an appropriate supervisor algorithm. The Stochastic Ap­

proximation (SA) algorithm is a suitable candidate, since it is simple and robust. 

Let {tk} (k =  0,1, 2,...) be such that

i) tk > 0;

ii) =  + °° ;
These conditions are assumed throughout this thesis, unless otherwise stated.

In the following we shall take srk =  tkgk, where gk =  V f ( x k), an estimate of 

V F ( x k). Therefore the supervisor (SR) is the following Stochastic Approxima­

tion algorithm:

Given xq

% k +1 =  % k  t k g k i  k  ~  0, 1, 2 , —

It is well known that the SA method is globally convergent and has been widely 

used for stochastic optimization problems. However, in general, it is too slow 

to achieve high numerical accuracy, and it is difficult to select the appropriate

67
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sequences { f fc} for a particular problem. More details can be found in (Benveniste 

et al., 1990; Kushner and Clark, 1978; Kushner and Yin, 1997; Ljung, 1986). The 

search engine (SE) is based on the following gradient algorithm:

Given x0

xk+i = x k -  rkgk, k =  0, 1, 2,..., 

where r0 =  1 and for k >  1

rk =  \xk -  x k-i\2/((xk -  x fc_ i)T( V f ( x k) -  V f ( x k-i) ) .

We are now in the position to define the SSC gradient algorithm:

Let x0 € Rn and r0 =  1 be given. Let Tk > 0 be given for k =  0 ,1 ,2 ,. . .  . 

Assume that f  > 0. Then define the following gradient optimization algorithm 

(SSC-SABB):

xk+i =  xk -  tkgk if Tkf ( x k -  tkgk) < f ( x k -  rkgk), (k =  1, 2,...),

otherwise

•Efc+l — *Efc 1"k9k-

The resulting algorithm is referred to as the SSC-SABB algorithm. We refer to 

the step length rk as the BB stepsize as it was initially proposed by Barzilai and 

Borwein in (Barzilai and Borwein, 1988) for deterministic problems. The gradient 

algorithm which uses the BB stepsize is further studied in (Raydan, 1993). In 

computations, { |r/t |} is normally forced to be bounded. This algorithm has been 

shown to be locally convergent and R-superlinear for the two dimensional convex 

quadratic functions, and much faster than the steepest descent method. It was 

also shown to be locally convergent and R-linear for general convex quadratic 

functions in (Raydan, 1993). In (Raydan, 1997), a non-monotone line search is 

added to the BB algorithm in order to make it globally convergent. It was reported 

there that when e =  0, the resulting algorithm, GBB, is rather fast— comparable 

to the CG in many cases. In fact, it is faster than the CG for some large scale
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convex optimization problems. This motivates us to use the BB algorithm as the 

SE. Some initial tests with the SSC-SABB have been carried out in (Liu et ah, 

1999b) and (Liu and Dai, 2001) mainly for deterministic but also a number of 

stochastic problems.

It is important to note that there is no line search in the SSC-SABB algorithm. 

The SSC-SABB switches between the two algorithms. All the switching is decided 

by an extra evaluation of the objective function value. This certainly should have 

less computational demand than an exact line search procedure, and should be, 

at least, comparable to an inexact line search procedure. Also since this extra 

evaluation can be easily done in parallel, it should not necessarily cause extra loss 

of speed in real computations.

It will be seen from the next section that to a large extent, the supervisor 

guarantees the global convergence of SSC-SABB algorithm and the search engine 

decides the local convergence rate, at least when e =  0. As far as the supervisor is 

concerned, the gain is a possible increase of the speed and efficiency, and as far as 

the search engine is concerned, it may be extra robustness and global convergence. 

The value of the “preference” switching parameter Tk: as mentioned previously, 

determines the monotonicity or not of the algorithm in the deterministic case. If 

the Search Engine is decreasing, as is the case for SA after k is large enough, values 

of Tk less than or equal to 1 imply monotonically decreasing function values for 

the SABB algorithm as well. Under the presence of stochastic noises, however, the 

SABB is always non-monotone and values of Tk greater than 1 give only increased 

preference to the steps proposed by the Search Engine (SE), which may cause the 

algorithm to overcome poor local minima.

Figure 1 gives two illustrative examples of the behaviour of the SABB algo­

rithm in comparison to that of the classical Stochastic Approximation (SA) in the 

deterministic case. In Figure 1(a), where a one-dimensional quadratic function is 

plotted, it can be easily seen that the SABB (dashed line with crosses) chooses 

the Search Engine steps arrives at the minimum much faster than the SA (dashed 

line with diamonds). The same observation holds also for Figure 1(b), where the
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-10  -5 0 5  10

(a) Quadratic

(b) Polynomial

Figure 1: Illustration of the paths followed by the SSCSABB (lines with crosses) 
and the SA (lines with diamonds) algorithms on a quadratic (a) and a polynomial 
(b) functions.
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Figure 2: Illustration of the paths followed by the SSCSABB (line with stars) 
and the SA (line with crosses) algorithms on a polynomial function with noise. 
Observe the SA’s premature convergence away from the minimum (0,0). Observe 
also the effect of non-monotonicity of the SSC algorithm allowing it to jump to a 
higher isoline (from point B to C) and finally reach the minimum’s neighbourhood 
(point D).

case of a one-dimensional 4th order polynomial is presented. However, in this 

case the SABB, although it initially overshoots the minimum, recovers fast while 

the SA algorithm converges prematurely and far away from the solution, due to 

the flatness of the function (small gradient value) in the neighbourhood of the 

minimum.

Figure 2 demonstrates the comparative behaviour of the same algorithms 

SABB (line with stars) and SA (line with crosses) in the case of a two-dimensional 

polynomial function (defined on the top of the figure) under the presence noise 

drawn from the Standard Normal distribution. There are two important points 

to be observed here. First, the SA’s premature convergence away from the mini­

mum (0,0), caused again by the flatness of the function at the ravine across the
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one diagonal of the plot. Second, and most interestingly, the effect of the non­

monotonicity of the SSC algorithm (T =  2.0 was used in this case) which allows 

it to jump to a higher isoline (from point B to C) and thus, finally, to reach the 

minimum’s neighbourhood (point D).

If /  is not non-negative, then the above definition may be modified as

xk+1 = x k -  tkgk if Tskl9n{f{Xk~tk9k))f { x k -  tkgk) < f { x k -  rkgk),

otherwise

-£fc+1 T"k9k-

However it was found that it is more efficient to add a positive constant to the 

objective function to make it non-negative. We can easily define also a multi- 

step version of the SSC-SABB algorithm, which for completeness of exposition 

is included in Appendix C along with some theoretic results about its behaviour 

presented originally in (Liu and Sirlantzis, 2001a; Liu and Sirlantzis, 2001b). 

However, in this study we shall concentrate on the basic version of SABB and a 

particular type of its variants and therefore we shall not go into further details 

about it.

3.2 Theoretical Results

In this section we examine convergence and speed of the SSC-SABB algorithm. 

We will assume that e =  0 in this section. However the analysis carried out here 

should pave the way for fuller theoretical investigations on the algorithm. Due 

to the special selection of SR in SSC-SABB, the resulting algorithm is always 

globally convergent for a wide selections of {Tk}. In SSC-SABB, {Tk} adjusts the 

balance of the robustness and efficiency of the SSC-SABB algorithm.

Theorem 3.1 (Theorem 4-1 in (Liu and Dai, 2001)) Let f  be twice continuously

differentiable and bounded below. Assume that V /  is Lipschitz with a global Lip-

schitz constant. Let {a;*,} be generated by the SSC-SABB algorithm. Assume that
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Tk <  1 fork  =  0,1, 2 , Then there is an e(f )  > 0 such that {Ylo tk\Vf (xk)\2} is 

convergent as k - »  oo for any sequence {tk} such that there is an N  > 0 satisfying 

that tk <  e(f )  after k > N.

It can be seen that this theorem is, in fact, a special case of Theorem 2.1, 

which, as we already noted, apply to quite a general class of engines. The proof 

of this theorem follows the same line of arguments of Theorem 2.1 and is included 

in Appendix B.

The case Tk >  1 is actually important, because in many cases, the larger Tk is, 

the faster the algorithm may be. There may be many different ways to cure this 

no-convergence problem. For instance, one may let Tk to tend to 1 as k —* oo. 

Another simpler way to ensure global convergence is to let a finite numbers of 

Tk — 1, and then let the rest of Tk =  T > 1. Global convergence can still be 

established, as it will be shown in the following theorem. We also examine the 

convergence rate of the SSC algorithm. In the following theorem, it is assumed 

that tk —* 0 though it is not difficult to see that it holds for the case where tk is 

very small after k is large enough, as in theorem 3.1.

Theorem  3.2 Let f  > 0 be three times continuously differentiable function and 

strictly convex. Let x* be the minimizer of f . Let {xj^} be defined by the SSC- 

SABB algorithm with the following choice of {Tk}. Let N  > 0 be a fixed integer 

and T > 1 a fixed real number. Let Tk =  1 for k =  0,1, 2,..., N  and Tk =  T >  1 

for k > N. Then there is a N (xo , f )  > 0 such that is convergent, whenever 

N  > N(xo , / ) .  Furthermore, the SSC-SABB algorithm is as fast the BB algorithm 

locally, at least R-linearly convergent, whenever N  > N (xo , f ) .

The proof of the above theorem is rather involved, as it has, first, to be proved 

that the BB algorithm is locally R-linearly convergent. Although its local con­

vergence has been proved for the quadratic objective function in (Raydan, 1993), 

R-linear convergence (or even simply convergence) of the BB algorithm for general 

convex objective functions still needs many extra tedious estimates to prove. On
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the other hand, the principle of the proof is quite simple. (Details of the proof 

from (Liu and Dai, 2001) are included in Appendix B.

In practical computations Tk is often fixed to a constant T > 1. The con­

vergence rate of the SSC-SABB algorithm is in general much better than that 

of SA algorithm, due to the faster search engine used in the algorithm - the BB 

algorithm is sometimes R-superlinear. This is indeed confirmed in our numerical 

tests. The condition /  > 0 may be met by adding a large positive number C  to 

the original objective function.

The above analysis confirms the expectation that is that the global convergence 

is largely decided by the supervisor SR while efficiency of the algorithm depends 

much on the search engine SE. In the next section we carry out some numerical 

tests for the SSC-SABB algorithm.

3.3 Deterministic Experiments

We present numerical experiments for deterministic test problems. The purpose of 

these tests is to see whether or not this SSC algorithm is efficient in the noise-free 

case. We use 22 test problems in this experiment.

We compare SSC-SABB with SA, and GBB. The latter was chosen because it 

was reported to be rather efficient and because it uses the BB step size as well. 

For GBB, we adopt all the recommended restrictions and procedures given in 

(Raydan, 1997), which we have already described along with a formal definition 

of the algorithm in Section 2.6. For SSC-SABB, we have no restriction for rk. We 

take Tk =  5 in all the tests. We have used three different sequences of { tk} in our 

experiments:

tk =  min(1.5/A;, 0.01), tk =  min(1.5/v/^, 0.01), tk =  0.01.
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Table 3.1: Comparisons between GBB and SSC-SABB with different types of step 
lengths in the Supervisor (SR).

Problem
No.

GBB min(1.5/A;, 0.01) min(1.5/\/fe, 0.01) 0.01

1 221/272/222 143/287/144 143/287/144 143/287/144
2 1073/1458/1074 45/91/46 45/91/46 45/91/46
3 4 /6 /5 5/11/6 5/11/6 5/11/6
4 >9999 >9999 >9999 >9999
5 266/352/267 14/29/15 14/29/15 14/29/15
6 12/18/13 19/39/20 19/39/20 19/39/20
7 >9999 >9999 >9999 >9999
8 145/150/146 >9999 >9999 >9999
9 14/17/15 20/41/21 20/41/21 20/41/21
10 > 9999 > 9999 >9999 >9999
11 50/61/51 128/257/129 128/257/129 128/257/129
12 > 9999 1/3 /2 1/3 /2 1/3 /2
13 82/87/83 92/185/93 92/185/93 92/185/93
14 75/107/76 415/831/416 289/579/290 289/579/290
15 > 9999 402/805/403 320/641/321 320/641/321
16 44/51/45 48/97/49 48/97/49 48/97/49
17 914/1238/915 668/1337/669 1573/3147/1574 1573/3147/1574
18 56/67/57 68/137/69 68/137/69 68/137/69
19 7/8 /8 7/15/8 7/15/8 7/15/8
20 105/119/106 104/209/105 104/209/105 104/209/105
21 14/18/15 17/35/18 17/35/18 17/35/18
22 113/128/114 101/203/102 101/203/102 101/203/102
23 1/3 /2 2 /5 /3 2 /5 /3 2 /5 /3

In the following tables we report the No. of iterations/No. of function evalua- 

tions/No. of gradient evaluations, with the stopping rule

|V/(xfc)| < 10- 6.

The maximum number of function evaluations is set to 9999. It is found that SA 

fails for most of the test problems so that it is not included here.

From an examination of Table 3.1, it follows that on average SSC-SABB is 

as efficient as GBB in terms of the number of function and gradient evaluations.
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It was found that SSC-SABB is faster than GBB in terms of CPU time - SSC 

solves the commonly solved problems in 0.42 (s) while GBB uses 0.78 (s) on a Sun 

UltraSparc 1 station. (The GNU g77 compiler was used without any optimization 

flags). This may be caused by the fact that in two cases, SSC finds different local 

minima thus consuming less CPU time. However, we should at least be able to 

state that the overall performances of these two algorithms are similar.

It can also be seen that the performance of the SSC is not very sensitive to the 

selection of {t fc}. It was found that taking a smaller value of T will somewhat slow 

down the algorithm, but will not change the number of solved problems. From 

our experience, T=5 seems to be the best choice for the deterministic case.

In the deterministic case, it is not difficult to speed up SSC-SABB. One can 

use, for example, the following rule: if \gk\ <  0.01, then only the BB step is used. 

Furthermore we can use line search in SE. The resulting algorithm will be referred 

to as SAGBB; that is, we use SA with tk — min(1.5/\/fc, 0.01) as supervisor and 

the GBB algorithm as search engine. The test results with these improvements 

are shown in the Table 3.2.

It can be seen that the speed of SSC-SABB is further increased. Particularly 

SAGBB solves almost all the test problems. In fact, it only needs an extra few 

tens of iterations to solve the only unsolved test problem 7.

3.4 Stochastic Experiments

We compare SSC-SABB and some of its variants with SA and GBB. The latter 

was chosen because it was reported to be rather efficient and because it uses the 

BB step size as well. For GBB, we adopt all the recommended restrictions given 

in Section 2.6. In SSC-SABB, we adopt for rk the restrictions and procedures 

recommended in (Raydan, 1997). We take 7*, =  1 in all the tests unless when 

otherwise stated. We have used a number of different sequences for {i*,}, but in the 

following it can be assumed tk =  c/(k +  1) in every case where no other sequence 

is defined explicitly. In contrast to the deterministic case, the value of c has to be
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Table 3.2: Comparisons between SAGBB and SSC-SABB with different types of 
step lengths in the Supervisor (SR) and modified switching rule.

Problem
No.

min(1.5/A;, 0.01) min(1.5/vT, 0.01) 0.01 SAGBB

1 112/209/113 112/209/113 112/209/113 128/278/129
2 45/74/46 45/74/46 45/74/46 76/123/77
3 5/7/6 5/7/6 5/7/6 5/7/6
4 >9999 >9999 >9999 4/16/5
5 14/25/15 14/25/15 14/25/15 20/49/21
6 19/38/20 19/38/20 19/38/20 19/38/20
7 >9999 >9999 >9999 >9999
8 32/51/33 32/51/33 32/51/33 31/53/32
9 20/36/21 20/36/21 20/36/21 18/37/19
10 >9999 >9999 >9999 174/608/175
11 128/248/129 128/248/129 128/248/129 130/250/131
12 1/3/2 1/3/2 1/3/2 1/3/2
13 192/249/193 192/249/193 192/249/193 535/648/536
14 416/828/417 266/529/267 266/529/267 61/133/62
15 261/412/262 214/356/215 214/356/215 546/823/547
16 36/63/37 36/63/37 36/63/37 33/67/34
17 564/1092/565 1537/2957/1538 1537/2957/1538 659/1357/660
18 68/117/69 68/117/69 68/117/69 75/140/76
19 7/13/8 7/13/8 7/13/8 7/13/8
20 104/151/105 104/151/105 104/151/105 83/132/84
21 17/33/18 17/33/18 17/33/18 17/35/18
22 101/154/102 101/154/102 101/154/102 117/178/118
23 2/5/3 2/5/3 2/5/3 2/5/3

adjusted according to the problem: for problems 3, 12, 17 and 18, c =  10~3; for 

problems 4, 6, 10 and 11 c =  10-6 ; for problems 19-23 c =  1.0; while for the rest 

of the test problems c =  0.1. Although SSC-SABB is not very sensitive to the 

selection of {tfc}, the starting value of to is important to ensure fast convergence, 

due to the stochastic nature of the test problems. We emphasize again that these 

stochastic problems are non-trivial and the above adjustments are commonly used 

in engineering computations in order to solve realistic problems. Furthermore, we 

sometimes deliberately select {t fc}, {ck} to just break the convergence conditions 

required in Theorems 3.1 and 3.2, in order to test robustness of these conditions.
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For example, we sometimes take tk =  l/ks with the critical value s =  0.5 to just 

break the condition (II) in Section 3.1.

3.4.1 Tests with Gradient Estimators of the Perturbation 

type

In the experiments presented in this section we use the following type of gradient 

estimators:

gk - V F ( x k) + e  (3.1)

where e — ae', with s' ~  N (0, 1.0).

Tables 3.3, 3.4 and 3.5 present the number of successful runs (out of ten) 

obtained with different values for a (called henceforth noise scale factor) both for 

the function value and for the gradient estimators. The tables contain results 

produced using three different Tk values; namely, we used Tk =  T >  0 in every 

case with T  =  5.0, T =  1.0, or T =  0.1.

It is easy to observe, as, in fact, predicted by our convergence analysis, that 

reasonable levels of noises (for example N (0, 1.0)) do not significantly influence 

the performance of the algorithm in terms of the number of problems solved. Note 

that here we used noise scale factors a equal to 0.1 and 0.01. However, there is an 

indication that the effect which the level of the noise will have to the SSC-based 

algorithm relates to how sensitive is to noise the parent algorithm which is given 

preference through the value of Tk (in this case Tk =  T).

In Table 3.6 we explore the effects of the choice of the sequences tk (i.e. the 

stepsizes of the supervisor SA algorithm) on the final performance of the SSC 

algorithm. We use Tk =  1 and again e =  O.le' with e' ~  N (0 ,1.0) for both the 

function value and the gradient estimators.

Although, from Table 3.6 it is easy to realise that the SSC-SABB algorithm 

is not particularly sensitive to the choice of the sequence { tk}, there is an indica­

tion that sequences which decrease at a rate lower than l/k tend to cause some 

improvement in the number of the solved problems.
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Table 3.3: Effect of noise level on SABB; function noise scale factor =  0.1, gradient 
noise scale factor =  0.1, tk =  c/(k +  1)

P rob lem
N o.

SA S S C -S A B B
T = 1 .0

S S C -S A B B
m a x .ite r .= 5 9 9 9 9

S S C -S A B B
T = 0 .1

S S C -S A B B
T = 5 .0

G B B

1 0 10 10 0 1 0
2 0 1 10 10 9 0
3 10 10 10 10 10 0
4 0 0 0 0 0 0
5 0 10 10 10 9 1
6 0 10 10 9 9 8
7 0 9 10 10 10 1
8 0 2 9 9 8 1
9 0 10 10 10 10 0

10 0 0 0 0 0 0
11 0 10 10 0 0 1
12 0 0 0 0 0 0
13 0 5 8 10 7 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 10 10 10 10 1
17 0 0 6 1 1 0
18 10 10 10 10 10 0
19 0 0 10 0 0 0
20 0 0 0 0 0 0
21 0 10 10 10 10 10
22 0 0 10 0 0 10

3.4.2 The Finite Difference Approximation to Gradients

As we have mentioned above we want to minimise, over the .Revalued parameter 

x, the function:

f ( x )  =  F(x)  +  e (3.2)

where F(x)  is continuously differentiable function and e is an error vector. Let Xk 

denote the kth estimate of the minimum. Let Ck —> 0 be a finite difference interval 

and let e* be the standard unit vector across the zth coordinate. Then, by the 

Kiefer-Wolfowitz version of the standard stochastic approximation algorithm the 

zth component of the A;th finite difference approximation to the function’s gradient
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Table 3.4: Effect of noise level on SABB; function noise scale factor =  0.01, 
gradient noise scale factor =  0.01, tk =  c/(k +  1)

Problem
No.

SA SSC-SABB
T=1.0

SSC-SABB
T=0.1

SSC-SABB
T=5.0

GBB

1 0 10 0 4 5
2 0 0 0 0 0
3 10 6 10 10 0
4 0 0 0 0 0
5 0 10 10 10 3
6 0 10 0 8 10
7 0 10 0 0 5
8 0 9 10 10 2
9 0 7 10 10 2
10 0 0 0 0 1
11 0 10 0 10 5
12 0 0 0 0 0
13 10 9 10 10 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 10 5 6 1
17 0 3 0 0 0
18 0 10 10 10 5
19 0 10 10 10 0
20 0 0 0 0 0
21 0 10 10 10 10
22 0 0 0 0 10

will be:

9k, i
f  {p̂ k +  CkC) f(,^k C-k&i) 

2 Cfc

then we can update xk by:

•Ek+1 %k £k9k•

(3.3)

(3.4)

Then define

tpk,i \f (%k T C/Ti) F (x k +  CfcCj)] \fiTk C-k&i) F(%k Ĉ Cj)] (3.5)



CHAPTER 3. A BASIC SSC ALGORITHM -  SABB 81

Table 3.5: Effect of noise level on SABB; function noise scale factor =  0.01, 
gradient noise scale factor =  0.1, tk =  c/(k +  1)

Problem
No.

SA SSC-SABB
T=1.0

SSC-SABB
T=0.1

SSC-SABB
T=5.0

GBB

1 0 10 0 1 2
2 0 0 0 0 0
3 10 10 10 10 1
4 0 0 0 0 0
5 0 10 10 10 2
6 0 10 4 3 9
7 0 9 0 0 7
8 0 10 10 10 3
9 0 10 10 10 4
10 0 0 0 0 0
11 0 10 0 0 5
12 0 0 0 0 0
13 0 10 10 10 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 10 0 0 4
17 0 0 0 0 0
18 0 10 10 10 8
19 0 0 0 0 0
20 0 0 0 0 0
21 0 10 10 10 10
22 0 0 0 0 10

and write
f{xk  +  ckei) -  f ( x k -  ckei)
----------------- 2^ ----------------- =  Jx{ M  -  Pk,i (3.6)

where —/3k)i is the bias introduced by estimating f ( x k) via central differences. If 

we set ipk — (V>jfc,i, • • •, V’fc.r) and /3k =  (Pk,i, ■ ■ ■, Pk,r) then the algorithm can be 

rewritten as
-»A,

x k+i =  x k -  ekV F (x k) +  ek— +6kl3k. (3.7)

From Eq. 3.7 we can see that in the beginning of the simulation, when xk is

most likely away from the solution x*, one can afford a higher bias so that the

variance of the effective noise (|^) will be reduced. However, as the simulation



Table 3.6: Effect of tk on SSC-SABB; function noise scale factor =  0.1, gradient noise scale factor =  0.1.

Problem SSC-SABB SSC-SABB SSC-SABB SSC-SABB SSC-SABB
No. tk =  c/k +  1 tk =  c/yf{k +  1) tk =  c tk =  min(c/(k +  1), 0.001) tk =  max(c/ -y/(A; +  1), 0.001)

1 10 (593/209) 10 (603/145) 10 (395/127) 10 (494/203) 10 (603/145)
2 2 (4626/336) 10 (3350/400) 8 (4196/394) 1 (4688/0) 10 (3350/400)
3 10 (1023/605) 9 (1488/808) 3 (493/116) 8 (605/331) 4 (1539/1407)
4 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
5 9 (1470/985) 6 (1273/994) 8 (1778/1281) 7 (2734/1381) 7 (1967/1176)
6 10 (53/35) 9 (45/14) 10 (28/0) 10 (71/48) 10 (158/235)
7 8 (1116/776) 5 (401/280) 3 (1852/1994) 8 (746/522) 7 (228/51)
8 o ( - / - ) 3 (4200/405) o ( - / - ) o ( - / - ) o ( - / - )
9 10 (1062/646) 3 (3762/186) 9 (1762/1314) 10 (1849/827) 5 (1965/1301)
10 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
11 10 (1055/1019) 5 (3108/1088) 10 (612/296) 9 (622/371) 10 (487/258)
12 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
13 o ( - / - ) 1 (4227/0) 2 (3393/1156) 1 (2247/0) 3 (1970/1545)
14 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
16 10 (451/288) 10 (258/132) 10 (320/149) 10 (371/214) 10 (256/99)
17 o ( - / - ) 7 (3210/596) 10 (3064/922) o ( - / - ) 10 (3262/735)
18 10 (866/672) 9 (2083/1243) 1 (1752/0) 10 (1069/826) 5 (1978/1054)
19 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
20 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
21 10 (34/5) 10 (35/4) 10 (39/7) 10 (41/7) 10 (37/5)
22 10 (94/40) 10 (88/33) 10 (841/274) 10 (1215/164) 10 (129/38)
23 10 (28/7) 10 (30/11) 10 (39/16) 10 (44/20) 10 (23/2)
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evolves to approach the solution one will desire to minimize bias in the expense 

of larger noise. So, we want to ck to decrease at least up to a small constant 

value c. There is however an alternative path to follow. Since the magnitude 

of the effective noise contribution in (3.7) is it is controlled by the rate

ek decreases. That is, if ek decreases by a rate faster than of equal to ck (i.e. 

ek =  1 /(k +  1) and ck =  1 /vT  +  1) then one can expect that the noise variability 

will have a diminishing effect as we approach the solution. However, in practical 

situations, roundoff errors can have a significant effect when the finite differences 

interval ck is near to 0, due to the subtraction of very similar function values at 

each step. So, it might be beneficial not to allow ck to get smaller than a specific 

value, although, it should be noted that the appropriate value depends on the 

problem in hand and it is not easily identified (Kushner and Yin, 1997).

In this section we shall use central finite differences of the values of /  as 

gradient estimators in our computations. Let xk denote the /cth estimate of the 

minimum. Let ck —» 0 be a finite difference interval and let e* be the standard unit 

vector across the zth coordinate. Then, define a two-point central finite differences 

estimator as:
f ( x k +  ckei) -  f ( x k -  ckei)

9ki = ----------------- 2^----------------- ' <3'8)

where ck satisfies the standard conditions stated in Theorem 2.4 on page 52. It 

is known (see (Kushner and Yin, 1997)) that, normally, the selection of suitable 

{ck} will depend on individual problems.

In Table 3.7 we report results produced by the SA, SSC-SABB and GBB 

algorithms using the two-point central finite differences estimators defined above 

with the following intervals:

for CFDSAl, SSC-CFDSABB1, and CFDGBB1 ck =  c/y/F-f l ,

for CFDSA2, SSC-CFDSABB2, and CFDGBB2 ckfi =  c(\xk̂  +  1),

where ck is the interval used to estimate the ¿th component of the gradient gkji

at the £;th iteration. In every case c was equal to 0.01.

A more accurate approximation to the gradients albeit more expensive in terms



Table 3.7: Two-Point Central Finite Difference estimator of the gradient; function noise scale factor =  0.1, tk =  c/(k +  1).

Problem
No.

CFDSAl CFDSA2 SSC-CFDSABB1 SSC-CFDSABB2 CFDGBB1 CFDGBB2

1 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) 1 (1001/0) o ( - / - )
2 0 ( - / - ) 0 ( - / - ) 2 (3254/1247) 1 (1291/0) 0 ( - / - ) o ( - / - )
3 10 (356/194) 10 (530/352) 10 (1403/1152) 6 (1363/935) 0 ( - / - ) 0 ( - / - )
4 o ( - / - ) o { - / - ) o ( - / - ) o ( - / - ) 0 ( - / - ) 0 ( - / - )
5 o ( - / - ) o ( - / - ) 9 (1249/796) 10 (584/396) 1 (364/0) 2 (216/57)
6 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
7 o ( - / - ) o ( - / - ) o ( - / - ) 3 (2040/580) o ( - / - ) 2 (124/11)
8 o ( - / - ) o ( - / - ) 3 (2051/306) 10 (423/325) 1 (598/0) o ( - / - )
9 o ( - / - ) o ( - / - ) 10 (2176/892) 9 (1230/785) 1 (138/0) 3 (66/2)
10 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
11 o ( - / - ) o ( - / - ) o ( - / - ) 10 (716/647) 2 (153/0) 1 (92/0)
12 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
13 o ( - / - ) o ( - / - ) o ( - / - ) 10 (764/295) o ( - / - ) o (-/ -)
14 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
16 o ( - / - ) o ( - / - ) 6 (1126/907) o ( - / - ) 4 (290/53) 3 (190/95)
17 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
18 1 (21/0) 1 (675/0) 8 (742/697) 9 (1214/1160) o ( - / - ) o ( - / - )
19 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
20 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
21 0 ( - / - ) o ( - / - ) 10 (176/106) 10 (74/39) 10 (125/52) 9 (79/32)
22 0 ( - / - ) o ( - / - ) o (-/ -) o ( - / - ) 10 (77/33) 10 (63/22)
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of function evaluations required at each step can be established by using a four- 

point estimator defined as:

f(xk +  2ckej) +  8f(xk +  ckej) -  8f(xk +  cfce,) +  f(xk -  2cfce,)
12 ck

(3.9)

Table 3.8 presents results produced again by the SA and SSC-SABB algorithms 

but using the four-point gradient estimators defined in Eq. 3.9, and the following 

finite difference intervals:

for 4CFDSA, SSC-4CFDSABB2, and 4CFDGBB2 ck =  0.01, and 

for SSC-4CFDSABB1, and 4CFDGBB1 ck =  0.1.

It is not difficult to realise from the comparison of Tables 3.7 and 3.8 that the 

four-point approximation improves the performance of the algorithm.

3.4.3 The Random Directions Approximation to Gradi­

ents

The central finite differences algorithms described in the previous section provide 

reasonably accurate estimates of the gradient but they are increasingly expensive 

in terms of computational load. For a n-dimensional problem the two-point esti­

mator requires 2n function evaluations for each gradient estimator and the four- 

point one requires 4n. One enticing alternative, known as Random Directions 

approximation, is to choose randomly one direction only to update by central fi­

nite differences at each iteration. In particular, the random directions algorithm 

we adopt in this work, introduced by Spall (Spall, 1992), showed advantages over 

the classical method in such multidimensional problems. This method, called also 

Simultaneous Perturbation approximation to the gradient, chooses the directions 

at random on the vertices of a n-dimensional unit hypercube with the origin at 

the centre. Given a sequence dk of n-dimensional random directions vectors, the 

gradient estimator is: (see also (Spall, 1998; Spall, 1999) for the details)

9k =  dk
f { x k +  ckdk) -  f ( x k -  ckdk) 

2 cfc
(3.10)



Table 3.8: Four-Point Central Finite Difference estimator of the gradient; function noise scale factor =  0.1, =  c/(k +  1).

Problem
No.

4CFDSA SSC-4CFDSABB1 SSC-4CFDSABB2 4CFDGBB1 4CFDGBB2

1 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) 1 (561/0)
2 o ( - / - ) 0 ( - / - ) 1 (829/0) o ( - / - ) o ( - / - )
3 10 (231/111) 8 (1007/734) 7 (2080/1384) 0 ( - / - ) o ( - / - )
4 o ( - / - ) 0 ( - / - ) o ( - / - ) 0 ( - / - ) o ( - / - )
5 o ( - / - ) 10 (1050/611) 9 (765/502) 1 (89/0) o ( - / - )
6 o ( - / - ) 6 (182/251) o ( - / - ) o ( - / - ) o ( - / - )
7 o ( - / - ) 9 (2635/797) 3 (1535/653) 1 (68/0) 1 (99/0)
8 o ( - / - ) 5 (707/905) 8 (383/251) 3 (57/13) 2 (223/37)
9 10 (1197/1713) 10 (1513/918) 10 (609/386) 1 (26/0) 2 (101/7)
10 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
11 o ( - / - ) 10 (697/675) 8 (1230/572) o ( - / - ) o ( - / - )
12 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
13 10 (280/207) 2 (208/98) 10 (945/238) o ( - / - ) o ( - / - )
14 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
16 o ( - / - ) 2 (1630/1323) 2 (3459/112) 1 (56/0) 2 (233/22)
17 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
18 o ( - / - ) o ( - / - ) 9 (708/586) o ( - / - ) o ( - / - )
19 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
20 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
21 o ( - / - ) 10 (59/29) 10 (65/31) 10 (39/8) 10 (57/17)
22 10 (55/30) 10 (39/18) 10 (175/111) 10 (25/2) 10 (91/33)
23 10 (42/18) 10 (38/11) 10 (61/22) 10 (39/8) 10 (88/31)
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where ck is again a sequence of finite difference intervals such that ck >  0, and 

either ck —> c, with c > 0 or ck =  c, with c > 0. The algorithm is then defined as 

follows:

%k+1 — %k k̂9k (3-11)

where gk is the Simultaneous Perturbation (SP) of the gradient gk =  X7F(xk). 

Then defining the finite differences noise at the A;th iteration, (f>k, as:

'ipk =  [.f ( x k +  ckdk) -  F (xk +  ckdk)] -  [ f (x k -  ckdk) -  F (x k -  ckdk)] (3.12)

Eq. 3.11 can then be expanded as follows:

xk+1 = x k -  ekdkd lV F (x k) +  ek/3k +  (3.13)
¿Cfc

where /3k is the bias due to the symmetric finite difference estimator of the gradient 

of V F ( x k), in the direction dk. Eq. 3.13 can now be rewritten as:

xk+i =  xk -  ek[V F (xk) -  /3k\ +  +  efct/tt, (3.14)

where

ipk =  [I ~  dkdl]W F(xk) (3.15)

can be defined as the random direction noise. From Eq. 3.15 it is apparent the 

advantage of the Spall’s Simultaneous Perturbation method as in this case 4>k =  0.

In Table 3.9 we present results produced using the above random directions es­

timator of the gradient for the SA, SABB and GBB algorithms and ck =  c/sjk +  1 

with c defined as follows:

for RDSA1, SSC-RDSABB1, and RDGBB1, c =  0.01, 

for RDSA2, SSC-RDSABB2, and RDGBB2, c =  0.1.

Table 3.10 reports results produced again by the SA, SABB and GBB algo­

rithms using a four-point random directions estimator of the gradient, analogous



Table 3.9: Two-Point Random Directions estimator of the gradient; function noise scale factor =  0.1, t̂  =  c/(k +  1).

Problem
No.

RDSA1 RDSA2 SSC-RDSABB1 SSC-RDSABB2 RDGBB1 RDGBB2

1 o ( - / - ) o ( - / - ) 0 ( - / - ) o ( - / - ) 1 (176/0) o ( - / - )
2 o ( - / - ) o ( - / - ) 1 (2726/0) 1 (2726/0) o ( - / - ) o ( - / - )
3 10 (226/183) 10 (366/203) 9 (1813/1026) 9 (1813/1026) o ( - / - ) 0 ( - / - )
4 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) 0 ( - / - )
5 o ( - / - ) o ( - / - ) 2 (1576/450) 2 (1576/450) o ( - / - ) 0 ( - / - )
6 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) 0 ( - / - )
7 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) 2 (254/60)
8 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) 1 (679/0) 1 (93/0)
9 o ( - / - ) 0 ( - / - ) 7 (1471/750) 7 (1471/750) 2 (81/31) o ( - / - )
10 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
11 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) 3 (476/107) 1 (477/0)
12 o ( - / - ) 0 ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
13 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) 1 (109/0) 1 (42/0)
14 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
16 o ( - / - ) 0 ( - / - ) 5 (2335/1455) 5 (2335/1455) 2 (228/91) 3 (116/35)
17 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
18 2 (1030/235) 1 (105/0) 9 (634/555) 9 (634/555) o ( - / - ) o ( - / - )
19 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
20 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
21 o ( - / - ) 0 ( - / - ) 10 (229/84) 10 (229/84) 10 (162/75) 10 (33/15)
22 o ( - / - ) 0 ( - / - ) o ( - / - ) o ( - / - ) 8 (107/52) 10 (49/8) oo
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Table 3.10: Four-Point Random Directions estimators of the gradient; function 
noise scale factor =  0.1.

Problem
No.

SSC-4RDSABB1 SSC-4RDSABB2 SSC-4RDSABB3

1 1 (586/0) o ( - / - ) o ( - / - )
2 o ( - / - ) 1 (1790/0) 1 (4866/0)
3 9 (1069/746) 3 (1938/784) 6 (2231/1404)
4 o ( - / - ) o ( - / - ) o ( - / - )
5 5 (1247/754) 5 (1557/978) 5 (1344/701)
6 o ( - / - ) o ( - / - ) o ( - / - )
7 o ( - / - ) o ( - / - ) o ( - / - )
8 o ( - / - ) o ( - / - ) o ( - / - )
9 10 (1017/540) 7 (656/538) 9 (881/647)
10 o ( - / - ) o ( - / - ) o ( - / - )
11 o ( - / - ) o ( - / - ) o ( - / - )
12 o ( - / - ) o ( - / - ) 0 ( - / - )
13 8 (1969/553) 8 (2289/848) 3 (1928/121)
14 o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - ) o ( - / - )
16 o ( - / - ) o ( - / - ) 1 (641/0)
17 o ( - / - ) o ( - / - ) o ( - / - )
18 o ( - / - ) 10 (573/405) 9 (855/638)
19 o ( - / - ) o ( - / - ) o ( - / - )
20 o ( - / - ) o ( - / - ) o ( - / - )
21 10 (51/16) 10 (107/64) 10 (63/22)
22 10 (65/23) 10 (127/76) 10 (138/51)
23 10 (55/33) 10 (65/17) 10 (113/85)

to the four-point finite difference estimator described in the previous section, de­

fined as:

-/ fi^k T  2cfcd/-) -f- 8/(x/j +  8/(x/j T  -(- /(x  ̂ 2cfcd)c') , .
9t=--------------------------------------------- 12^--------------------------------------------- <3' 16>

In particular, the sequences c* used, were: SSC-4RDSABBl:cfc =  0.1, 

SSC-4RDSABB2:cfc =  0.01,

SSC-4RDSABB3 :ck =  0.01/(A +  l ) 01.
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3.4.4 Robust Algorithms via Averaging of the Estimators

In many cases the accuracy achieved by any of the gradient estimators presented 

above is not satisfactory to address really hard stochastic optimisation problems, 

like some of the benchmarking test problems we are using. A classical proposal 

which emanates naturally from the suggestions in robust statistics is to incorporate 

an averaging process into the estimation to diminish the effects of the noises to 

the estimators. One can either average over the estimators of the gradient gk at 

the /cth iterate xk, defining:
i

&  =  £ &  (3.17)

where glk is the zth estimator of the gradient at xk. Alternatively, we can use 

averaging over the function value evaluations at the kth step:

i

h  =  '£fi(3-18)
i= 1

where f l  is the fth estimator of the function value at xk. Or, finally, we can use 

both averaging process at the same time.

The following tables present results of our experiments using the above type of 

averaging procedures for the two-point and four point central finite difference and 

random direction estimators we introduced in the previous section, with l =  4. 

For all the algorithms presented here the prefix (GA) denotes the use of Gradient 

Averaging, (FA) Function Averaging, and (FGA) Function and Gradient Aver­

aging. In particular, Table 3.11 present results produced by the SA, SABB, and 

GBB algorithms.

Table 3.12 includes results from corresponding averaged two-point random di­

rections gradient estimators as follows:

SSC-FARDSABB: SSC Function value Averaging Random Directions SABB, 

SSC-FGARDSABB: SSC Function value and Gradient estimator Averaging Ran­

dom Directions SABB.
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Table 3.11: Averaging of the Two-Point Central Finite Difference and Random 
Directions estimators of the gradient; function noise scale factor =  0.1, tk = 
c/{k +  1).

P rob lem
N o.

G A C F D S A S S C -G A C F D S A B B S S C -G A R D S A B B G A R D G B B

1 0 ( - / - ) 0 ( - / - ) 1 (7 7 3 /0 ) 0 ( - / - )
2 0 ( - / - ) 1 (3 2 5 3 /0 ) 1 (2 9 1 8 /0 ) 0 ( - / - )
3 10 (3 3 9 /1 8 9 ) 10 (24 5 1 /1 1 7 9 ) 9 (2 4 5 3 /1 2 2 7 ) 0 ( - / - )
4 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
5 0 ( - / - ) 10 (1 0 8 1 /7 0 2 ) 9 (1 3 2 5 /6 9 1 ) 2 (2 0 9 /9 6 )
6 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
7 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 1 (3 7 8 /0 )
8 0 ( - / - ) 9 (2 2 7 8 /9 6 5 ) 4 (1 8 8 4 /1 2 7 8 ) 1 (4 7 5 /0 )
9 6 (3 4 6 2 /2 8 2 7 ) 10 (7 5 7 /5 0 6 ) 10 (1 3 6 8 /6 8 3 ) 0 ( - / - )
10 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
11 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 1 (2 9 5 /0 )
12 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
13 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
14 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
15 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
16 0 ( - / - ) 4 (2 2 7 2 /8 1 8 ) 6 (2 0 4 9 /1 4 4 3 ) 1 (9 4 /0 )
17 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
18 10 (8 3 5 /7 9 2 ) 8 (5 6 6 /2 3 2 ) 9 (7 2 8 /6 8 0 ) 1 (9 2 /0 )
19 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
20 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
21 10 (4 3 6 /3 0 1 ) 10 (9 2 /5 7 ) 10 (1 4 4 /6 4 ) 9 (9 5 /4 2 )
22 0 ( - / - ) 0 ( - / - ) 0 ( - / - ) 9 (9 4 /5 5 )

And finally, Table 3.13 reports on the use of averaged four-point random direc­

tions gradient estimators with various sequences of finite difference approximation 

intervals ck as follows:

SSC-GA4CFDSABB: ck =  0.1,

SSC-GA4RDSABB1: ck =  0.01,

SSC-GA4RDSABB2: ck =  0.01/{k +  l ) 01.

Our findings, using these averaging processes, did not show significant improve­

ments in the performance of our algorithms with respect to either the number of 

iterations required to solution, or the number of the problems solved. We believe 

this is because we used only 4 values for the averages (n =  4) in every case, which
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Table 3.12: Function and Gradient Averaging of the Random Directions estima­
tors of the gradient; function noise scale factor =  0.1, tk =  c/(k +  1).

Problem
No.

SSC-FARDSABB SSC-FGARDSABB

1 o ( - / - ) 2 (2185/1175)
2 0 ( - / - ) o ( - / - )
3 10 (861/379) 9 (1363/808)
4 o ( - / - ) o ( - / - )
5 3 (382/250) 4 (1609/1223)
6 o ( - / - ) o ( - / - )
7 o ( - / - ) o ( - / - )
8 0 ( - / - ) 4 (1400/584)
9 10 (926/521) 10 (997/465)
10 o ( - / - ) o ( - / - )
11 o ( - / - ) o ( - / - )
12 o ( - / - ) o ( - / - )
13 o ( - / - ) o ( - / - )
14 o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - )
16 3 (1441/482) 3 (1279/646)
17 o ( - / - ) o ( - / - )
18 9 (195/135) 10 (208/137)
19 o ( - / - ) o ( - / - )
20 o ( - / - ) 0 ( - / - )
21 10 (103/63) 10 (69/41)
22 o ( - / - ) o ( - / - )

might not be adequate. However, increasing the number of estimator values used 

will cause a multiplicative increase in the number of function evaluations needed 

along with the associated computational cost, especially in the cases where a clas­

sical central finite differences estimating procedure is used. Thus, it seems that 

an adaptive averaging procedure will be needed.
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Table 3.13: Averaging of the Four-Point Central Finite Difference and Random 
Directions estimators of the gradient; function noise scale factor =  0.1.

Problem
No.

SSC-GA4CFDSABB SSC-GA4RDSABB1 SSC-GA4RDSABB2

1 o ( - / - ) 0 ( - / - ) 1 (370/0)
2 0 ( - / - ) o ( - / - ) o ( - / - )
3 4 (2543/1929) 9 (1768/1170) 6 (2805/1264)
4 o ( - / - ) o ( - / - ) o ( - / - )
5 9 (841/543) 7 (1300/650) 6 (1363/965)
6 o ( - / - ) o ( - / - ) o ( - / - )
7 4 (2466/972) o ( - / - ) o ( - / - )
8 9 (376/321) 2 (524/93) 2 (1565/785)
9 10 (1065/704) 10 (1194/910) 9 (670/270)
10 o ( - / - ) o ( - / - ) o ( - / - )
11 10 (824/418) o ( - / - ) o ( - / - )
12 o ( - / - ) o ( - / - ) o ( - / - )
13 9 (816/698) 10 (692/215) 10 (927/197)
14 o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - ) o ( - / - )
16 1 (4638/0) o ( - / - ) o ( - / - )
17 o ( - / - ) o ( - / - ) o ( - / - )
18 9 (937/723) 10 (609/373) 10 (668/495)
19 o ( - / - ) o ( - / - ) o ( - / - )
20 o ( - / - ) o ( - / - ) o ( - / - )
21 10 (71/33) 10 (81/50) 10 (133/95)
22 10 (93/46) 10 (114/60) 10 (86/29)

3.5 Some Additional Tests

3.5.1 Speed

In order to gain some insight on the comparative speed of the algorithms on a well 

understood test problem, we analyse the speed of the tested algorithms for problem 

Nr. 22 (the 2nd order multidimensional polynomial) with noise. Table 3.14 reports 

averages over 10 runs for each one of the algorithms shown in the first column.

It can be seen that SSC-SABB is much faster than SA in this classical test 

problem. We have also tested a similar problem (2nd order polynomial) where 

stochastic noises are present in the coefficients of the parameters x k (multiplicative
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Table 3.14: Speed comparisons

A lg orith m s N o. o f  Func. E val. N o. o f  G rad . E val. C P U  - secon ds
S A  (f*  =  0 .1 /(fc  +  1 )) >  9999 >  9999 -

S A  (tk =  0 . 1 / V k  +  l) >  9999 >  9999 -

S A  {tk =  0 .001) 2207 2207 128
G B B  (100 -R estarts) L ine search  failure L ine search  failure -

S S C -S A B B  (n = 5 0 ) 183 366 4
S S C -S A B B  (n = 1 0 0 ) 230 460 15

noise), and similar results were observed, though GBB and SA show improved 

performance since in that particular problem, the effect of the noises is diminishing 

when the approximation xk is approaching the real solution x* =  (0,..., 0).

3.5.2 Robustness

In Tables 3.15 and 3.16 we present as series of experiments aiming to test the 

robustness of the SSC type of algorithms with respect to the distance of the 

starting point x0 in each case from the solution x* =  0. Additionally, we wished to 

compare their performance with that of the classical SA algorithm under the same 

conditions. The problem used is the one-dimensional quadratic with added noise 

(stochastic version of problem Nr. 23 in Section 2.4). The algorithms compared are 

shown in the second column with the corresponding different switching parameters 

Tfc used for the SSC-SABB in the third column.

No generic quantitative claims can be made for general functions based on 

the outcomes of these experiments. Nevertheless, we believe it is reasonable to 

argue that they provide adequate demonstration of the qualitative differences, in 

terms of robustness with respect to the starting points, of the SSC algorithms as 

compared to the classical Stochastic Approximation (SA) algorithm. It is easily 

observed that as the starting point of the iterations is moving away from the 

solution x* — 0 only the SSC algorithm with T — 1.0 retains its robustness and 

efficiency achieving not only 10 out of 10 successful runs but also the fastest runs
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Table 3.15: Sensitivity to initial conditions and parameter values of the stan­
dard Stochastic Approximation (SA) and the SSC-SABB for the noisy univariate 
quadratic function on different accuracy levels (successful runs out of 10, and av­
erage number of iterations required in parantheses; tk — l/k for both algorithms).

Starting Algorithm Parameters Accuracy
Point 0.01 0.001 0.0001

T =  0.1 8(74) 7 (114) 1 (158)

SSC T =  1.0 10 (28) 10 (45) 10 (132)
x0 =  1.0 t  =  5.5 9 (87) 5 (115) 1 (276)

T =  10.0 10 (71) 5 (101) 1 (264)
SA - 10 (42) 9 (91) 3 (149)

T =  0.1 7 (40) 7 (124) 3 (139)

SSC T =  1.0 10 (31) 10 (38) 10 (93)
x0 =  41.0 T =  5.5 10 (38) 8 (158) 0 (-)

T =  10.0 10 (67) 5 (88) 1 (56)
SA - 10 (47) 8 (131) 3 (109)

T =  0.1 9 (104) 4 (126) 1 (43)

SSC T =  1.0 10 (42) 10 (42) 10 (74)
x0 =  81.0 T  =  5.5 10 (53) 4 (87) O(-)

T  =  10.0 10 (55) 6 (88) 0 (-)
SA - 10 (42) 8 (83) 4 (142)

in every case in terms of the average number of function evaluations required 

(presented in parentheses).

3.5.3 Consistency

Finally, we include results from two experiments we performed to explore the ad­

equacy of the number of replications we use to assess the average behaviour of the 

proposed algorithms. To this end we report in Tables 3.17 and 3.18 the outcome 

of a consistency test involving the comparison of the results obtained from three 

independent repetitions of the ten simulation runs setting, which form the basis of 

the experimental set up in this study. The version of the SABB algorithm select 

for these experiments is the on using Random Directions (Simultaneous Pertur­

bation) estimators of the gradients with Averaging in the function and gradient
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Table 3.16: Sensitivity to initial conditions and parameter values of the stan­
dard Stochastic Approximation (SA) and the SSC-SABB for the noisy univariate 
quadratic function on different accuracy levels (successful runs out of 10, and aver­
age number of iterations required in parentheses; tk =  1 /\fk for both algorithms).

Starting Algorithm Parameters Accuracy
Point 0.01 0.001 0.0001

T — 0.1 10 (38) 10 (112) 1 (94)

SSC T =  1.0 10 (32) 9 (82) 9 (187)
Xq =  1.0 T =  5.5 10 (43) 9 (160) 1 (186)

T  =  10.0 10 (40) 9 (127) 1 (110)
SA - 10 (57) 8 (70) 2 (107)

T — 0.1 10 (35) 7 (196) 1 (42)

SSC T =  1.0 10 (28) 10 (66) 7 (143)or-HIIOH T — 5.5 10 (43) 5 (140) 1 (263)
T =  10.0 10 (44) 7 (116) 0 (-)

SA - 10 (47) 9 (132) 1 (176)
T =  0.1 10 (54) 8 (114) 2 (91)

SSC T  =  1.0 10 (42) 10 (69) 9 (160)
x0 =  81.0 T =  5.5 10 (53) 8 (144) 0 (-)

T  =  10.0 10 (55) 4 (176) 0 (-)
SA - 10 (42) 10 (120) 2 (156)

values. This version was chosen due to the type gradient estimators used which 

imply increased effects of the noises, as it is already seen in the results presented 

previously. So, if discrepancies are to be observed among the independent sets 

of runs, this is the case in which is more likely to appear. The noise scale factor 

is the standard used in the majority of our experiments a =  0.1 and the noise 

distribution is again Gaussian.

Pairwise correlations between the columns of both tables, as measured by 

the Pearson r coefficient, indicate strong consistency for the three independently 

obtained sets of results in each case. The calculated correlation coefficient range 

from 0.96 to 0.99.
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Table 3.17: Function and Gradient Averaging Random Direction SABB: consis­
tency test; noise scale factor a =  0.1

P ro b le m
N o.

S S C -F G A R D S A B B
Set 1 Set 2 Set 3

1 2 (2 1 8 5 /1 1 7 5 ) 2 (2 1 1 6 /1 8 0 6 ) 0 ( - / - )
2 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
3 9 (1 3 6 3 /8 0 8 ) 9 (2 0 9 4 /1 0 2 8 ) 10 (1 6 1 1 /8 3 2 )
4 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
5 4 (1 6 0 9 /1 2 2 3 ) 5 (6 3 2 /3 4 3 ) 6 (1 5 6 1 /1 3 0 1 )
6 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
7 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
8 4 (1 4 0 0 /5 8 4 ) 0 ( - / - ) 1 (2 7 7 2 /0 )
9 10 (9 9 7 /4 6 5 ) 10 (6 6 3 /4 5 3 ) 10 (9 9 9 /5 6 6 )

10 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
11 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
12 0 ( - / - ) o  ( - / - ) 0 ( - / - )
13 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
14 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
15 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
16 3 (1 2 7 9 /6 4 6 ) 6 (1 1 5 0 /6 0 3 ) 3 (1 6 6 7 /1 4 2 1 )
17 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
18 10 (2 0 8 /1 3 7 ) 10 (1 1 0 /7 0 ) 10 (1 9 2 /1 3 0 )
19 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
20 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
21 10 (6 9 /4 1 ) 10 (7 6 /4 8 ) 10 (4 5 /1 9 )
22 0 ( - / - ) 0 ( - / - ) 0 ( - / - )

3.6 Concluding Remarks

This chapter aimed to examine the properties of algorithms constructed using 

the Supervisor Searcher Co-operation framework in a unconstrained optimisation 

setting. First, a basic algorithm was introduced. We subsequently, presented a 

theoretical analysis of the convergence properties and the speed of this SSC algo­

rithm, which shows that under quite mild conditions the algorithm will converge 

to a local optimum at least as fast as the search engine (SE) “parent” algorithm, 

in the noise-free case. Subsequently, we tested our algorithm on an extended set 

of non-trivial benchmarking problems. These experimental results show that our
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Table 3.18: Function and Gradient Averaging Random Direction SABB: consis­
tency test; noise scale factor a =  0.01

P ro b le m
N o.

S S C -F G A R D S A B B
Set 1 Set 2 Set 3

1 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
2 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
3 10 (6 9 7 /5 9 7 ) 9 (5 2 7 /3 4 6 ) 10 (5 9 4 /3 5 5 )
4 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
5 7 (4 9 2 /5 6 2 ) 4 (7 6 2 /7 0 5 ) 6 (1 2 3 5 /1 2 4 0 )
6 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
7 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
8 2 (2 2 2 /9 8 ) 1 (8 8 4 /0 ) 2 (3 6 7 /1 1 7 )
9 10 (1 8 5 /1 8 8 ) 10 (1 9 7 /1 6 4 ) 10 (5 7 6 /4 2 9 )

10 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
11 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
12 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
13 2 (1 9 8 6 /1 4 7 1 ) 1 (2 6 9 7 /0 ) 2 (2 2 3 9 /2 5 9 )
14 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
15 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
16 o ( - / - ) 1 (4 0 7 0 /0 ) 1 (3 0 7 0 /0 )
17 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
18 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
19 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
20 0 ( - / - ) 0 ( - / - ) 0 ( - / - )
21 10 (5 7 /4 1 ) 10 (4 3 /1 4 ) 10 (4 0 /1 7 )
22 0 ( - / - ) 0 ( - / - ) 0 ( - / - )

algorithm is significantly more efficient and robust, in terms of the numbers of 

problems solved and function and gradient evaluations required, than the classi­

cal SA algorithm in all cases examined, and at least as fast as an algorithm (GBB) 

claimed to be faster than the well-known Conjugate Gradient (CG) algorithm in 

the majority of the problems tested. However, as already pointed out, the main 

interest in practice lies with situations where the function values involve some 

kind of noise which usually affects the gradient estimates as well. Hence, initially, 

to simulate such cases we performed a series of experiments employing the same 

algorithms an the stochastic version of our benchmarking problems while using
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a gradient estimator of the perturbation type. The empirical evidence suggest 

that in this case also the SSC-based algorithm is more robust and faster than the 

SA and GBB for different levels of noises. It is also indicated that in the pres­

ence of stochastic noise a value of 1 for the switching parameter Tk is the more 

appropriate. Moreover it was demonstrated that the SABB algorithm was not 

particularly sensitive to the choice of the type of step sizes tk for its Supervisor 

(SR) algorithm. Additional comparative tests using gradient estimators of the 

finite differences type indicate that although there was a decrease in performance 

(as expected due to stronger noise in the gradient estimator) the algorithm pro­

posed here retained its robustness characteristics, compared to the SA and GBB 

algorithms, in accordance to the corresponding theoretical analysis we presented.



Chapter 4

Modifications and Extensions

4.1 Modifications

In this section we will introduce three alternative ways to exploit the SSC frame­

work to design variants of the algorithm defined in the previous chapter in order 

to satisfy specific requirements that may be of interest in real world applications.

4.1.1 Truncated Algorithms

In simulation experiments when the noise comes from an unbounded distribution, 

for example a Gaussian, an excessive sample value of a noise term is not unlikely 

and it might drive the algorithm iterate far from the solution. In real world 

applications, also, where we have got no control over the noisy observations similar 

effects may be observed. To anticipate for these undesirable events a procedure 

analogous to those suggested by robust statistics might be sought. The one we 

adopted here is to define a series of bounded real-valued functions

A{-) ,  * =  l , . . . , n ,

so that

V’(Pfc) =  (lpl(9k,l), • • ■ , M d k , n ) ) ,

100
TEMPLEMAN
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where gkii is, as previously, the fth component of an estimate of Wf(xk),  and

ipi(u) =  sign(u) min(|u|, Ki),

with Ki >  0 arbitrary constants. In effect we apply a truncation procedure on the 

noisy gradient estimates to avoid instability of the resulting iterates.

Experimental Results

Our aim is to test the basic SSC-SABB algorithm described in the previous chap­

ter against an algorithm which incorporates a robust procedure. If the original 

algorithm allows extreme noise values to influence the stability of the iterates, 

introducing the truncating procedure should produce significant performance im­

provements in terms of the numbers of test problems solved. In Table 4.1 we 

report results of the SSC-SABB and the following truncated versions: 

SSC-TRSABB1: with K  =  K  =  103,

SSC-TRSABB2: with K t =  K  =  104,

SSC-TRSABB3: with K { =  K  =  105.

A careful examination of Table 4.1 reveals that there is no improvement gained 

with the use of the truncation procedure in the SSC-SABB algorithm. We believe 

that this is a strong indication that the function value monitoring mechanism 

incorporated into SSC-based algorithms provides adequate control for possible 

extreme noise values, so an additional controlling procedure (like gradient trun­

cation) has no further gains to offer.

4.1.2 Continuously Switching Algorithm

In some applications computational load is of paramount importance so a basic 

SSC algorithm which involves two function evaluations at each iteration might 

not present such an attractive choice. However, the SSC framework provides 

the flexibility to modify the basic algorithm to accommodate such needs. In

UEHAR\ A’ A /VVSr A * /
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Table 4.1: SSC-Truncated SABB vs the original SABB; function noise scale fac­
tor =  0.1, gradient noise scale factor =  0.1, =  c/(k +  1), T  =  1.0.

Problem
No.

SSC-TRSABB1 SSC-TRSABB2 SSC-TRSABB3 SSC-SABB

1 10 (321/96) 10 (434/195) 10 (428/179) 10
2 2 (4420/476) 4 (4458/470) 1 (4941/0) 1
3 10 (879/588) 10 (833/287) 10 (1019/493) 10
4 o ( - / - ) o ( - / - ) o ( - / - ) 0
5 10 (1480/977) 10 (1754/1102) 10 (2552/779) 10
6 o ( - / - ) o ( - / - ) 10 (88/86) 10
7 6 (1091/514) 9 (807/930) 7 (1471/996) 9
8 4 (2116/453) 3 (1978/1326) 4 (2583/558) 2
9 10 (2389/1026) 10 (1159/706) 10 (1262/545) 10
10 o ( - / - ) o ( - / - ) o ( - / - ) 0
11 o ( - / - ) o ( - / - ) o ( - / - ) 10
12 o ( - / - ) o ( - / - ) o ( - / - ) 0
13 4 (2444/977) 2 (3162/832) 3 (3466/1305) 5
14 o ( - / - ) o ( - / - ) o ( - / - ) 0
15 o ( - / - ) o ( - / - ) o ( - / - ) 0
16 10 (264/84) 10 (416/230) 10 (383/188) 10
17 5 (1539/1016) 1 (4518/0) o ( - / - ) 0
18 10 (1061/678) 9 (931/552) 10 (948/711) 10
19 o ( - / - ) o ( - / - ) o ( - / - ) 0
20 o ( - / - ) o ( - / - ) o ( - / - ) 0
21 10 (32/3) 10 (24/3) 10 (27/6) 10
22 10 (51/14) 10 (40/14) 10 (78/9) 0

Tables 4.2 and 4.3 we present results obtained from two easily implemented mod­

ifications which show promising performance. A number of highly successful but 

distinctly different modifications of the basic algorithm to those presented here, 

which address the same issues will be introduced in 4.1.4.

Here we first define a simple SSC algorithm which alternates periodically be­

tween its two constituent “parent” algorithms. That is:

Given x0, define for (k =  1 , . . . ,  n) the following algorithm:

%k+l %k S&ki if — Æfc—1
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otherwise

%k+1 — %k

Experimental Results

For the results reported in Table 4.2 we used the SA algorithm as a supervisor 

(SR) and the BB algorithm as the search engine (SE). It can be easily observed 

that in contrast to the original SABB this algorithm does not involve monitoring 

the function values produced by either the supervisor step srk, or the search 

engine step sek, so we call it a Non-Monitored SABB algorithm (NMSABB). It is 

reasonable to consider that in this modification the supervisor stepsize sequence 

is of increased importance as it provides the only means of supervision to the 

resulting SSC algorithm, since the function values are not monitored. Therefore, 

we present results for a number of stepsizes which decrease at a variety of speeds. 

One should expect, of course, a natural trade-off between the lower computational 

load imposed by this algorithm and its performance. This can be, indeed, verified 

by the results included in the table.

4.1.3 Selectively Monitored Algorithm

Finally, we describe an algorithm which is based on the previous modification 

but balances the requirement for lower computational load with the losses in 

performance observed in the non-monitored version. It achieves that by selectively 

monitor the function value when there is an indication for abnormally big steps 

in the iterates. To this end, the search engine stepsize is compared to that of the 

supervisor, and when a pre-specified criterion of extremity is satisfied, the function 

values corresponding to the stepsizes proposed by the SR and the SE are both 

calculated and compared in the same way as in the original SABB. Otherwise, 

the algorithm is allowed to continuously accept the SE stepsize, without any 

additional function value check taking place. Formally, this algorithm, called 

Selectively Monitored SABB (SMSABB), can be defined as follows:



Table 4.2: SSC-Non-Monitored SABB vs the original SSC-SABB; function noise scale factor =  0.1, gradient noise scale fac­
tor =  0.1.

Problem SSC-NMSABB SSC-NMSABB SSC-NMSABB SSC-NMSABB
No. tk =  c/k +  l tk =  c / VT*; +  1) tk =  c/(k +  l ) 0'1 tk =  m ax(l/i/(fc  +  1), 0.001)

1 10 (295/225) 10 (477/77) o ( - / - ) 10 (541/137)
2 o ( - / - ) 4 (4179/2465) 9 (3012/555) 2 (4760/3366)
3 o ( - / - ) 2 (44/22) o ( - / - ) 1 (57/0)
4 0 ( - / - ) o ( - / - ) o ( - / - ) 0 ( - / - )
5 2 (1195/1089) 10 (587/464) 10 (209/139) 10 (754/533)
6 o ( - / - ) o ( - / - ) 8 (578/105) 9 (704/332)
7 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
8 10 (327/281) 10 (333/300) 10 (652/223) 10 (350/206)
9 o ( - / - ) 6 (162/107) 7 (219/162) 9 (318/211)
10 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
11 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
12 0 ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
13 10 (423/290) 10 (418/365) 10 (452/222) 10 (411/305)
14 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
15 o ( - / - ) o ( - / - ) o ( - / - ) o (-/ -)
16 o ( - / - ) o ( - / - ) 6 (148/61) 1 (266/0)
17 o ( - / - ) o (-/ -) o (-/ -) 1 (467/0)
18 o (-/ -) o ( - / - ) o ( - / - ) o ( - / - )
19 4 (9135/763) o ( - / - ) o ( - / - ) o ( - / - )
20 o ( - / - ) o ( - / - ) o ( - / - ) o ( - / - )
21 10 (88/9) 10 (396/9) 10 (3905/5) 10 (390/6)
22 10 (96/51) 10 (171/36) o ( - / - ) 10 (175/28)
23 10 (25/5) 10 (27/7) 10 (27/5) 10 (26/7)
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Given £0, to,(k =  1, 2 ,...) :

if rk < btk :

%k+l — %k Tk9ki

otherwise :

-£fc+i %k tk9k if Tkf ( x k tk9k) ^  f(Tk Tk9k) or, 

x k+1 =  xk -  rkgk otherwise,

where b is a constant, and tk and rk are the SA and BB stepsizes respectively, as 

defined previously.

Experimental Results

Table 4.3 presents results obtained using a number of sequences tk which decrease 

at different rates, and for two different values of b as follows:

SSC-SMSABB1: with b =  102,

SSC-SMSABB2: with b =  103.

In this particular table, instead of reporting only the Mean value of the number 

of iterations required to solve each problem and the Mean Absolute Deviation 

(MAD) from this Mean, we also show the Mean value of the number of function 

evaluations needed in every case and include the corresponding MAD. The gains 

obtained in comparison to the original SSC-SABB, due to this type of modification 

in the basic algorithm, can be easily observed using the above described statistics 

we report in parentheses.

4.1.4 Inexact Variants

Algorithms designed according to the SSC framework, typically, require, as al­

ready mentioned, additional evaluations of the objective function. Although the 

computational expense is not high in small or medium sized problems, it might 

cause some concern for very large scale problems. Motivated by these thoughts



Table 4.3: The original SSC-SABB vs the SSC-Selectively Monitored SABB; function noise scale factor =  0.1, gradient noise
scale factor =0.1.

P ro b le m S S C -S A B B S S C -S M S A B B 1 S S C -S M S A B B 1 S S C -S M S A B B 1 S S C -S M S A B B 2
N o. tk =  m a x i—fA— , 

0.001)

tk =  c/(A : +  1) tk =  0.001 tk =  m a x i - — , 
M f c + i  ) ’ 

0 .001)

it. =  m a x ( - A — , 

0.001)
1 10 (6 0 3 /1 2 0 5 /2 9 1 ) 10 (5 0 3 /5 4 7 /1 8 8 ) 10 (4 9 0 /5 3 2 /2 0 0 ) 10 (2 2 6 /2 2 9 /8 8 ) 10 (2 1 7 /2 1 7 /8 0 )
2 10 (3 3 5 0 /6 7 0 0 /8 0 0 ) 9 (6 6 9 9 /8 1 3 8 /1 4 2 3 10 (4 6 7 9 /5 1 4 1 /1 0 2 2 ) 10 (2 1 1 3 /2 1 9 2 /6 3 1 ) 10 (1 3 8 9 /1 3 9 0 /3 3 7 )
3 4 (1 5 3 9 /3 0 7 8 /2 8 1 4 ) 10 (3 8 8 /5 2 4 /3 0 5 ) 10 (2 2 1 /2 7 4 /1 9 8 ) 10 (2 6 9 /3 2 1 /2 2 1 ) 10 (3 6 8 /3 7 3 /2 9 7 )
4 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - )
5 7 (1 9 6 7 /3 9 3 3 /2 3 5 3 ) 10 (3 1 0 /3 7 9 /2 3 4 ) 10 (3 6 6 /4 4 7 /4 1 9 ) 10 (3 6 2 /3 7 2 /2 2 2 ) 10 (2 5 1 /2 5 1 /9 8 )
6 10 (1 5 8 /3 1 6 /4 7 1 ) 10 (3 2 /5 2 /5 ) 10 (3 1 /3 1 /0 ) 10 (3 1 /3 1 /0 ) 10 (4 5 7 /4 5 7 /7 5 6 )
7 7 (2 2 8 /4 5 5 /1 0 2 ) 10 (4 2 6 /4 3 3 /1 8 3 ) 10 (3 5 7 /3 6 7 /1 2 9 ) 10 (4 3 4 /4 3 4 /1 7 3 ) 10 (4 9 3 /4 9 3 /2 4 7 )
8 0 ( - / - / - ) 10 (2 8 4 /3 0 0 /1 9 7 ) 10 (2 6 0 /2 7 8 /1 8 2 ) 10 (2 9 7 /3 0 5 /2 0 3 ) 10 (5 8 1 /5 8 3 /2 7 6 )
9 5 (1 9 6 5 /3 9 3 0 /2 6 0 3 ) 10 (3 6 6 /4 5 1 /4 1 0 ) 10 (4 5 0 /5 2 6 /3 8 1 ) 10 (3 9 4 /3 9 9 /1 9 7 ) 10 (5 6 9 /5 7 0 /3 0 0 )
10 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - )
11 10 (4 8 7 /9 7 3 /5 1 6 ) 10 (3 0 7 /5 0 3 /1 9 6 ) 10 (3 3 6 /3 5 2 /1 9 9 ) 10 (3 1 3 /3 2 4 /2 1 0 ) 10 (1 4 2 9 /1 4 2 9 /1 2 6 7 )
12 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) o ( - / - / - ) o ( - / - / - )
13 3 (1 9 7 0 /3 9 3 9 /3 0 9 0 ) 10 (1 8 9 /1 9 1 /1 1 7 ) 10 (1 7 7 /1 8 1 /7 8 ) 10 (3 7 9 /3 7 9 /2 5 9 ) 10 (2 7 0 /2 7 0 /1 7 2 )
14 o  ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - )
15 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - )
16 10 (2 5 6 /5 1 2 /1 9 8 ) 10 (2 9 8 /3 5 2 /1 6 4 ) 10 (2 3 9 /2 8 1 /7 8 ) 8 (1 9 3 /1 9 3 /9 6 ) 8 (1 4 9 /1 4 9 /3 7 )
17 10 (3 2 6 2 /6 5 2 3 /1 4 7 0 ) 0 ( - / - / - ) 10 (3 2 6 6 /3 4 4 4 /6 5 6 ) 10 (3 4 7 7 /3 6 5 7 /6 8 2 ) 0 ( - / - / - )
18 5 (1 9 7 8 /3 9 5 6 /2 1 0 8 ) 10 (1 5 4 /1 8 8 /1 2 6 ) 10 (2 2 2 /2 2 5 /1 0 6 ) 10 (2 7 1 /2 7 5 /1 2 9 ) 8 (2 8 6 /2 8 6 /2 0 9 )
19 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - )
20 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - ) 0 ( - / - / - )
21 10 (3 7 /7 3 /1 1 ) 10 (3 5 /3 6 /2 ) 10 (4 3 /5 7 /1 0 ) 10 (3 7 /3 7 /4 ) 10 (3 8 /3 8 /4 )
22 10 (1 2 9 /2 5 7 /7 7 ) 10 (2 8 9 /2 8 9 /1 3 8 ) 10 (2 4 3 /2 4 4 /1 2 9 ) 10 (2 5 1 /2 5 1 /1 5 2 ) 10 (1 7 6 /1 7 6 /7 3 )
23 10 (2 3 /4 6 /5 ) 10 (2 4 /2 4 /4 ) 10 (3 1 /4 0 /1 3 ) 10 (3 0 /3 0 /1 0 ) 10 (2 4 /2 4 /2 )
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we introduced a cheaper, in terms of computational load, alternative. In this 

modification, instead of using an exact function evaluation in the first part of the 

algorithm (the switching decision part), we employ an approximation of the objec­

tive function value at the proposed point. In the following tables we present results 

for the SSC-SABB using three types of such approximations. The algorithm can 

be rewritten as follows:

Xk+1 Xk tk9k If Tkf  (xk tk9k) A f  {xk %k9k)i =  0, 1, 2, ...),

otherwise:

Xk+1 xk Zkgk,

where, for the linear approximation:

f {xk ~ Vk9k) =  I f ( x k) -  T}kg lgk\,

for the quadratic approximation:

f ( x k -  Vk9k) =  I f ( x k) -  Vk9k 9k +  -vlH 'kgk\,

and for the cubic approximation:

f { x k -  T)kgk) =  I f { x k) -  T]kg lg k +  ^r}2kH'kgk -  ^vlHkgk|.

Where the superscript T  denotes vector transposition and H'k =  (hbfc), with

Kij,k
0 i ^ j  

K,k i =  j

where h!i k — Ag^k/Ax^k and Ag^k and A x^k are the zth components of A gk and

A xk respectively;
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and H ” =  (/i"-fc), with

where

^ i,k { { ^ 9 i , k / { ^ 9 i , k —l/ A X jjfe—i ) ] / A X j )/c.

Subsequently, in the decision step of the SSC algorithm we take first r)k =  tk so 

that f ( x k — tkgk) is an approximation of f ( x k -  tkgk), and then gk =  Zk, with Zk 

taking any one of the forms defined in Sections 3.1 and 4.2.1, so that f ( x k — Zkgk) 

is an approximation of the function value f ( x k — Zkgk). Note that in the above 

algorithms we only need one evaluation of the function per iteration—which we 

will use to obtain the approximation of the function value in the next iteration— 

while in the exact version of the algorithms we need two evaluations to use in the 

decision phase.

Deterministic Experiments

We will first examine the deterministic case. The results presented in Table 4.4 

below have been obtained using Zk =  rkI , with /  the unit matrix, i.e. the BB 

step length, Tk — 5.0, tk =  min(l/£;, 0.01), and maximum number of function 

evaluations set to 9999. The stopping rule was kept the same as in the exact case 

to facilitate comparisons. The last column of the table contains results from a run 

with the maximum number of function evaluations increased to 14999 to check 

whether this would help the algorithm to solve more problems.

As it can be seen in the above table a considerable number of problems are 

solved, in comparison to the number solved by the exact version (see Table 3.1). It 

is not difficult to conclude that the approximations we used (i.e. linear, quadratic, 

and cubic) proved to be, in general, acceptable local approximations to the exact 

function values for a significant number of our test problems. Furthermore, the 

savings in computational load are easy to realise observing that the number of 

function evaluations in Table 4.4 is equal to the number of iterations, in contrast
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Table 4.4: Results for the deterministic test problems from the Inexact Variants 
of SSC-SABB; reported are the No. of function evaluations/No. of gradient 
evaluations/No. of iterations.

Prob.
Nr.

Linear Quadratic Cubic Cubic
(kmax =  14999)

1 132/133/133 90/91/91 172/173/173 172/173/173
2 527/528/528 539/540/540 93/94/94 93/94/94
3 5/6 /6 5 /6 /6 5 /6 /6 5 /6 /6
4 FL FL FL FL
5 51/52/52 51/52/52 66/67/67 66/67/67
6 19/20/20 19/20/20 19/20/20 19/20/20
7 FL FL FL FL
8 34/35/35 34/35/35 30/31/31 30/31/31/
9 31/32/32 31/32/32 39/40/40 39/40/40
10 FL FL FL FL
11 163/164/164 163/164/164 163/164/164 163/64/164
12 1/2/2 1/2/2 1/2/2 1/2/2
13 243/244/244 191/192/192 1005/1006/1006 1005/1006/1006
14 697/698/698 899/900/900 FL FL
15 276/277/277 458/459/459 539/540/540 539/540/540
16 FL FL FL FL
17 1053/1054/1054 1059/1060/1060 964/965/965 964/965/965
18 89/90/90 89/90/90 240/241/241 240/241/241
19 9 /9 /9 8 /9 /9 8 /9 /9 8/99
20 288/289/289 FL 203/204/204 203/204/204
21 18/19/19 18/19/19 18/19/19 18/19/19
22 117/118/118 117/118/118 110/111/111 110/111/111

to Table 3.1, where the former is double the latter.

However, there is a number of problems solved by the exact implementation 

which are not addressed successfully when the function approximation is em­

ployed. So, this inexact implementation offers an interesting and cheap alterna­

tive, in terms of the computational effort required, albeit at the expense of the 

range of problems that can be successfully addressed by it. Thus, it seems that 

when some prior knowledge about the “good” nature of the problem in hand is 

available, and computational resources are at a premium, an inexact SSC type 

algorithm it is worth a try.
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Stochastic Experiments

In this section, we report results for the same type of inexact versions of the SSC- 

SABB algorithm but for the set of the 22 stochastic test problems. We used the 

same noise level and stopping rule as in the exact versions. The maximum number 

of function evaluations was also set to 9999, T =  1.0, and tk =  C/k +  1. Table 4.5 

reports the number of successes for each algorithm out of 10 runs for each one 

of the problems. The column labelled ‘Linear2’ includes results from a modified 

version of the linear approximation in which T =  2.0 was used in the decision 

phase when y/\Axk\ < 10-2 . As it can be seen, from a comparison with the first 

column (labelled ‘Linear’), the number of successful runs was not significantly 

affected by this modification.

It is interesting to observe once again that the linear approximation presents 

more successes than the quadratic and cubic ones. We believe that this is caused 

mainly by the fact that the latter contain approximations of the values of the 

second and third order derivatives at the current point. The error in these ap­

proximations is likely to be amplified as a result of the presence of the strong 

stochastic noises. It is important to note that, for example, problem 22 which 

is a rather large but “well behaved” one, is solved by the inexact implementa­

tion in half the time required (2 secs CPU time) by the exact one (4 secs CPU 

time). It is useful to remind here that these inexact versions of the algorithm 

are much cheaper in computational load, especially for complex high-dimensional 

functions. They require half the number of function evaluations at each iteration, 

while the additional load for the calculation of the approximation can be con­

sidered negligible. These inexact variants seem to be much more significant for 

the stochastic case. For example, the “Linear” version achieves over 9 successful 

runs, out of a total of 10, in 15 problems while the corresponding exact version 

of SABB achieves the same for only 12 problems. It is not difficult to realise that 

in the stochastic case even the exact versions use approximations of the function 

values of the underlying mathematical model, due to the presence of noise. So,
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Table 4.5: Results for the stochastic test problems from the Inexact Variants 
of SSC-SABB; reported are the No. of function evaluations/No. of gradient 
evaluations/No. of iterations.

Problem
Nr.

Linear Linear2 Quadratic Cubic

1 10 10 1 0
2 10 9 0 0
3 10 10 10 10
4 0 0 0 0
5 10 10 10 10
6 9 9 10 6
7 10 10 10 10
8 10 10 10 10
9 10 10 10 10
10 0 0 0 0
11 10 10 10 0
12 0 0 0 0
13 10 10 10 10
14 0 0 0 0
15 0 0 0 0
16 10 10 7 0
17 10 10 0 0
18 10 10 10 10
19 0 0 5 0
20 0 0 0 0
21 10 10 10 10
22 10 10 10 10

using one of the inexact variants in this case might not have an adverse effect on 

the performance of the algorithm as in the deterministic case. Hence, taking into 

account the significant number of solved problems they achieve, in comparison 

to the corresponding exact version (see, for instance, Table 3.3), they seem to 

present an alternative worth considering. This is exactly what it is suggested by 

the results presented here.
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4.2 Extensions

4.2.1 Alternative Stepsizes -  SAQPROP

Quickpropagation (QPROP) was proposed as a heuristic (and indeed, a risky one, 

according to its creator, see (Fahlman, 1988)) neural networks training algorithm. 

However, it has been widely used in neural networks training since; see (Chichocki 

and Unbehauen, 1993) and (Veitch and Holmes, 1991). It was reported to be 

surprisingly efficient. In fact, it is much faster than the classical Backpropagation 

of Errors (BPR) algorithm (described in Section 5.2), which is essentially a variant 

of SA using a constant step size. White (White, 1989) provides an extensive 

discussion on the relation of the SA algorithm and the original Backpropagation 

in the neural networks training context. However, convergence— global or local— 

has never been proved for the QPROP algorithm. Thus, the Quickpropagation 

algorithm alone, being heuristic, cannot be applied with full confidence. As a 

matter of fact, it can be seen in our numerical results that QPROP is unlikely 

to converge for general objective functions, though it works exceptionally well for 

a particular class of objective functions. This may explain its success in neural 

networks training.

We start by selecting a supervisor algorithm. Clearly the Stochastic Approxi­

mation (SA) algorithm is a suitable candidate, since it is simple and robust.

Let { tk} (k =  0 ,1 ,2 ,...) be such that

i) tk >  0;

ii) =  + °° ;
These conditions are assumed throughout the paper. It should be noted that we 

do not assume that tk —* 0 as k —* oo.

In the following we shall take srk =  tkgk, where gk =  V f ( x k)\ that is, an estimate 

of VF(xjfe). Therefore the supervisor (SR) is the following Stochastic Approxima­

tion algorithm:

Given x0

f̂c+l ' tkdkj k — 0,1, 2,... .
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It is well known that the SA method is globally convergent and has been widely 

used for stochastic optimization problems. However, in general, it is too slow 

to achieve high numerical accuracy, and it is difficult to select the appropriate 

sequences { tk} for a particular problem. The readers are referred to (Benveniste 

et al., 1990), (Kushner and Clark, 1978), (Kushner and Yin, 1997), and (Ljung, 

1986) for more details.

The search engine can be defined as the following simple gradient algorithm: 

Given xo

%k+i — x k Dkgk, k — 0,1, 2,... , 

where B0 =  0.1 * I, and for k >  1 Bk =  (£>ij;fc), with

0 i
?

bi,k f — j

where

h,k (%i,k 9i,k—l))

where /  is the unit matrix and x itk and gtyk are the zth components of xk and 

X  f ( x k) respectively.

We will refer to this step length Bk as the QPROP1 step size, due to the original 

algorithm where it comes from, called the Quickpropagation (QPROP) algorithm 

(see (Fahlman, 1988)). An alternative to the above simple version is the following 

modification (which, in fact, is closer to the originally proposed Quickpropaga­

tion):

Given x 0

x k+1 = x k -  B'kgk, k =  0,1, 2,... ,

where B'k is also a diagonal matrix and B'0 =  B0, and for k >  1

K,k =  sign(6i,ifc) m in(6|^^|, \bitk\),
9i,k

where A Xitk =  x^k — Xiyk_i and b is a constant with most commonly suggested
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values 1.5 < b <  3.5. In (Fahlman, 1988) it was reported that a value of 6 ~  1.75 

seems to give the best results for a class of benchmark problems within the neural 

networks training context. This step length B'k will be referred to as the QPROP2 

step size.

An interesting observation at this point is that both the BB and QPROP 

stepsizes can be derived from the following iterative procedure:

*£fc+1 — %k T Zkgk,

where Z'k =  rkI, or Z'k =  Bk, then we can solve for

Z'k =  argmin \Axk -  Z'kAgk\2,

where A xk — xk — xk- i  and A gk =  gk — gk_i. The choice of this representation 

is motivated by the fact that it provides a two-point approximation to the secant 

equation underlying quasi-Newton methods. For more details the readers are 

referred to (Barzilai and Borwein, 1988) and the references therein.

We are now in the position to define the corresponding SSC gradient algo­

rithms:

Let x0 £ Rn and ro =  1, B0 =  B'0 — 0.1 * I  be given. Let Tk >  0 be given 

for k =  0 ,1 ,2 ,... . Assume that /  > 0. We define the following algorithms 

constructed via the SSC principle:

x k+l = x k -  tkgk if Tkf ( x k -  tkgk) <  f ( x k -  Zkgk), (k =  0,1, 2,...),

otherwise

x k+i — x k Zkgk.

Then for Zk =  rkI  we have the SSC-SABB algorithm, 

for Zk — Bk we have the SSC-SAQPROP1 algorithm, and 

for Zk =  B'k we have the SSC-SAQPROP2 algorithm.
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Note that for the convergence and speed properties of the SSC-SAQPROP algo­

rithm one can apply directly the results presented in Theorems 2.1 and 2.2 for the 

noise-free and the deterministic error cases.

If /  is not non-negative, then the first part of the above definitions may be 

modified as

xk+l = x k -  tkgk if Tskl9n{f{Xk tk9k))f { x k -  tkgk) < f ( x k -  Zkgk).

However, our practical experience indicates that it is more efficient to add a pos­

itive constant to the objective function to make it non-negative.

In the following sections we present numerical experiments for the determinis­

tic version of our test problems. The purpose of these tests is to examine whether 

the introduction of the SSC monitoring mechanism will reduce the instability 

inherent in the search engine (SE) algorithm, and therefore, the resulting SSC 

algorithm will be in practice, more efficient in the noise-free case, than its con­

stituent “parent” algorithms.

Experimental Results

We now proceed to present results obtained using the basic algorithm (SAQPROP) 

and its variant along with the original Quickpropagation (QPROP) algorithm for 

the same set of deterministic general test problems. We chose here to set T  =  1.0 

as the QPROP search engine seemed to be rather unstable-in (Fahlman, 1988) it 

was reported that in the neural network training case the algorithm is likely to 

diverge to infinity if the step lengths are not appropriately restricted. Having this 

in mind we used for the original QPROP a restriction parameter b =  1.75 (see 

Section 4.2.1), and a tighter supervision for SAQPROP1, while for SAQPROP2 

we used b =  3.5 and tested it also for T =  5.0.

It is easy to observe from Table 4.6 that the original QPROP algorithm fails 

in many problems, as it was expected. It also appears to need a significantly 

greater number of iterations than the SABB (c.f. Table 3.1) to converge in some
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Table 4.6: Comparison between QPROP and the two versions of SSC-SAQPROP 
for the deterministic problems; reported are the No. of function evaluations/No. 
of gradient evaluations/No. of iterations.

Problem
Nr.

QPROP SAQPROP1 SAQPROP2 
T =  1.0

SAQPROP2 
T =  5.0

1 9531 639/1279/640 918/1837/919 FL
2 5301 FL FL 4955/9911/4956
3 25 20/41/21 27/55/28 24/49/25
4 FL FL FL FL
5 340 FL FL 68/137/69
6 56 19/39/20 35/71/36 35/71/36
7 FL FL FL FL
8 FL FL FL 24/29/25
9 195 30/61/31 107/215/108 178/357/179

10 41 15/31/16 26/53/27 46/93/47
11 699 493/987/494 625/1251/626 696/1393/697
12 2 1/3/2 1/3/2 1/3/2
13 525 FL FL 894/1789/895
14 FL FL 1499/2999/1500 FL
15 FL FL FL FL
16 FL FL 9/19/10 9/19/10
17 FL FL FL FL
18 1451 177/355/178 272/545/273 1037/2075/1038
19 8 6/13/7 7/15/8 7/15/8
20 14 13/27/14 21/43/22 19/39/20
21 35 15/31/16 23/47/24 25/51/26
22 101 109/219/110 81/163/82 116/233/117

cases like problems 1 and 2. The invocation of the supervisor in the SSC based 

algorithms produces only marginal improvement either in the number of problems 

solved or in speed. This will be further discussed in the next section. It seems 

that for these algorithms the nature of the problem plays a significant role also. 

An interesting case is presented by problems 1 and 2 again. While problem 1 

is solved quite fast, in comparison to QPROP, by SAQPROP1 and SAQPROP2 

with T = 1 .0 , it is not solved by SAQPROP2 with T =  5.0. In contrast, the latter 

solves problem 2 which is not solved by any of the former ones. This seems to 

indicate that a balance between the restrictions to the step length and the degree
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of supervision is essential for the success of the SSC type algorithms employing 

QPROP as a search engine. The rather volatile characteristics of this search 

engine should be appropriately contained to obtain a useful algorithm. However, 

it is very important to note here that problem 10, which is not solved by the SABB 

algorithm, is easily and quickly solved by all algorithms incorporating QPROP. 

This observation seems to confirm our initial hypothesis that the QPROP is well 

suited for specific kinds of problems; a fact supported, also, by the continuous and 

successful use of the algorithm in the neural networks training context.

One of the reasons that neither SAQPROP1 nor SAQPROP2 obtained signif­

icant improvements in comparison to the original QPROP algorithm, in the set 

of the our test problems, seems to be that, by switching to SA, the SAQPROP 

destroys the information about previous iterations which is built in A xk and Agk. 

This “memory” , however, should play an important role in the success of the 

original QPROP for the class of optimization problems corresponding to neural 

networks training. A possible remedy for this case could be a multi-step or “the 

multi-stage” SSC algorithm, which will attempt to compensate for this loss of 

“memory” by allowing the search engine (SE) to run for a fixed number of iter­

ations before a switching is attempted. Such an extension has been introduced 

in (Liu and Sirlantzis, 2001a; Liu and Sirlantzis, 2001b) and its behaviour was 

studied theoretically. For completeness of our investigation of the SSC-type of 

algorithms we include the relevant material in Appendix C.

4.2.2 Combination of more than 2 algorithms

It can been seen from the previous numerical results that SABB is much better 

than QPROP or SAQPROP for general problems. However, a closer examination 

of the numerical results reveals that either QPROP or SAQPROP works extremely 

well on some particular problems, such as problem Nr. 10, on which SABB fails 

even to converge. This observation led us to consider an extension of the two 

basic algorithms introduced previously, namely the SABB and the SAQPROP. 

Our aim was to combine the desirable attributes of QPROP and BB in a new,
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possibly improved, SSC-type algorithm, by extending the co-operation principle 

to accommodate two search engines.

Let zo G Rn and r0 =  1, /?0 =  0.1 be given. Let Tk >  0 be given for k =  

0 ,1 ,2 ,.... Assume that /  > 0. Then define the following gradient optimization 

algorithm (SSC-SABBQPROP):

* £ f c - M  —  % k t k d k

if f ( x k -  tkgk) <  min(Tkf ( x k -  Zkgk), f ( x k -  rkgk)), (k =  0,1, 2,...), 

otherwise

if f ( x k -  rkgk) <  Tkf ( x k -  Zkgk)

% k+l %k 1"kgki

otherwise

%k+1 — %k Zkgk,

where rk is the BB step size, and Zk can be either Bk or B'k of the two QPROP 

step sizes presented in Section 4.2.1. The motivation is to make the BB and 

QPROP algorithms work together. We expect that this extended SSC algorithm 

shall be able to solve more test problems, and example problem 10, and this is 

indeed confirmed by our tests.

Although this extended algorithm is stated only for a particular pair of SR 

and SE, the general principle on which it is based is applicable to more general 

cases. Below we examine the convergence properties of such extensions.

We will assume that e =  0 in this section. However, the analysis carried out 

here should pave the way for a more rigorous theoretical investigation of this type 

of algorithms in the presence of stronger noises as well.

Theorem 4.1 Let f  be twice continuously differentiable and bounded below. As­

sume that V /  is Lipschitz with a global Lipschitz constant. Let xk be generated by

the SSC-SABBQPROP algorithm. Then, assuming tk —> 0, tk\^f(%k)\2} Is
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convergent as k —>■ oo provided [ ] ” niax(l, I/Tk) < oo.

Proof: Following the definition of the algorithm we have: 

either

f ( x k+l) =  f ( x k -  tkgk),

or

if min(Tkf ( x k -  Zkgk), f { x k -  rkgk)) < /(re* -  tkgk),

then

f { xk+1) 7̂  fiA'k tk9k)-

In the latter case, if f ( x k — rkgk) is the smallest between (Tkf { x k — Zkgk), f ( x k — 

rkgk)), then

/(z*+ i) =  f ( x k ~ rk9k) < /Ofc -

Otherwise

/Ofc+i) =  f ( x k -  Zkgk) < f ( x k -  tkgk)/Tk.

In summary, for both cases,

f ( x k+l) < max ( f ( x k -  tkgk), f ( x k -  tkgk)/Tk) =  max(l, 1/Tk) f ( x k -  tkgk). 

Then we have

f ( x k+i ) < max(l, 1/Tk) f ( x k -  tkgk).

From this we can easily apply exactly the same line of arguments used in the 

proof of Theorem 2.1 to show that the sequence f ( xk)\2}  is convergent

as k —> oo provided max(l, 1 /Tk) <  oo.

Note that convergence results can be established for the cases of either de­

terministic or stochastic bounded noises following the same line of arguments 

presented in Remark 2.2.

As a general observation for both the basic and extended versions we note 

that {Tk} seems to adjust the balance of the robustness and efficiency of the SSC
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type algorithms, by influencing the levels of co-operation among the participating 

“parent” algorithms. It also offers a mechanism to assign preference to a particular 

“parent” algorithm. This, in turn, can prove an efficient way of incorporating prior 

information about a particular class of problems, by allowing more frequent use 

of the “parent” algorithm which seems to possess the most suitable properties to 

tackle this class of problems.

Experimental Results

Next, we present results of our numerical experiments on the same set of the 22 

deterministic optimization problems obtained by the first of the extended algo­

rithms, namely the SSC-SABBQPROP, while results for the multi-stage extension 

will be presented in the second paper of this series for the neural networks training 

problem. As already mentioned, the purpose of this extension was twofold. On 

the one hand we aimed to enhance the efficiency and robustness of the SAQPROP 

algorithm for a wider range of problems, as it seemed to fail in a larger number 

of problems than SABB and to require a greater number of function evaluations 

for some of the problems it solved. On the other hand, we wished to infuse SABB 

with the ability of the QPROP search engine to solve quickly particular types of 

problems, like problem 10, because one of the main purposes of this extension 

was to develop efficient algorithms for the special problem posed by the neural 

networks training. The following results will be better appreciated if considered 

in conjunction with those presented in Tables 3.3-3.6 and 4.6.

In order to compensate for the unstable nature of the QPROP search engine 

we took a tighter view on the degree of supervision and used T =  2.0 in all 

experiments. However, due to the simultaneous presence of the SA and the BB, 

we decided to allow the steplength restriction constant of the QPROP engine to be 

quite large, i.e. b =  20.0. Table 4.7 reports the No. of iterations/No. of function 

evaluations/No. of gradient evaluations and in order to make the comparisons 

easier, we retain also the stopping rule, that is |V/(xfc)| < 10~6. The three 

columns of the table contain results for three different sequences tk, as indicated
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in the corresponding labels.

The first important observation from the table is the vast increase in the 

number of solved problems in comparison to the SAQPROP algorithm. One can 

notice easily that the number of iterations required to solve the problems has 

also been improved dramatically. The run with H =  0.01 seems to show better 

performance overall, although it requires an excessive number of iterations to solve 

problem 12. This should be caused by the fact that it converges to a different 

local minimum.

The second important outcome is that, in every trial, problem 10— which 

SABB was not able to solve, nor GBB for that matter— was easily solved in a 

minimal number of steps.

As a general, final observation one should acknowledge the fact that SAB- 

BQPROP presents more successes than SABB and SAQPROP alone, while the 

speed of the extended algorithm seems to be also of a magnitude comparable to 

that of the basic algorithms. Although the number of function evaluations needed 

for this extension is larger at each iteration due to the addition of one more 

component search engine, we do think that this should not increase the compu­

tational load dramatically, at least for moderate sized problems. For problems of 

rather large scale we could easily use one of the inexact variants presented above, 

appropriately modified for two search engines.

4.3 Concluding Remarks

The motivation for the studies included in this chapter stems from our interest to 

develop efficient algorithms that can be applied to a variety of real world applica­

tions involving noisy optimization. To this end we, first, proposed new algorithms 

developed using the Supervisor Searcher Co-operation (SSC) framework, which 

constitute either modifications of the basic algorithm defined in Section 3.1, or 

extensions of it based on the SSC principle. In order to verify that they are ro­

bust and efficient enough we tested the resulting algorithms using the whole set
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Table 4.7: Results from the three-algorithm extension SSC-SABBQPROP, with 
different step length (tk) types for the Supervisor, on the deterministic problems; 
reported are the No. of function evaluations/No. of gradient evaluations/No. of 
iterations.

Prob.
Nr.

SSC-SABBQPROP 
tk =  min(1.5/Vk, 0.01)

SSC-SABBQPROP 
tk =  0.01

SSC-SABBQPROP 
h  =  0.1

1 153/460/154 146/439/147 255/766/256
2 927/2782/928 45/136/46 792/2377/793
3 12/37/13 5/16/6 4 /1 3 /5 /
4 FL FL FL
5 2144/6433/2145 737/2212/738 32/97/33
6 19/58/20 19/58/20 19/58/20
7 FL FL FL
8 FL FL FL
9 22/67/23 20/61/21 15/46/16
10 18/55/19 18/55/19 22/67/23
11 73/220/74 63/190/64 66/199/67
12 1/4/2 2177/6532/2178 1/4/2
13 116/349/117 284/853/285 96/289/97
14 186/559/187 153/460/154 174/523/175
15 588/1765/589 642/1927/643 513/1540/514
16 FL 228/685/229 33/100/34
17 200/601/201 1564/4693/1565 1223/3670/1224
18 54/163/55 54/163/55 199/5598/200
19 7/22/8 7/22/8 7/22/8
20 94/283/95 104/313/105 80/241/81
21 13/40/14 13/40/14 18/55/19
22 97/292/98 101/304/102 88/265/89
23 2/7 /3 2 /7 /3 2 /7 /3
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of non-trivial benchmarking problems described in Section 2.4, either in their de­

terministic or stochastic form. The three modifications and three inexact variants 

of the basic SSC-SABB algorithm we designed form an example illustrative of the 

flexibility of the SSC framework. The aim was to address particular requirements 

often arising in real world applications, such as, for instance, reduced computa­

tional load. The corresponding results, especially in the stochastic case, proved 

to be surprisingly satisfactory.

We demonstrated, also, that the SSC constitutes a powerful and flexible frame­

work able to address a wide range of issues arising in the design of efficient and 

robust optimization algorithms. In its basic form it offers an appealing way to com­

bine two arbitrary algorithms— one of which could exhibit unstable behaviour— in 

a new more efficient one. To illustrate this point we presented an algorithm result­

ing from the combination of the classical Stochastic Approximation algorithm and 

an algorithm praised for its speed in the neural networks training context. Our nu­

merical results indicated that in the case of general functions (represented by the 

range of our benchmarking problems) the resulting algorithm showed marginally 

improved performance in comparison to the original one. Motivated by such con­

siderations we designed another possible extension developed again within the 

SSC framework. It allowed for the combination of more than two “parent” algo­

rithms. Subsequently, we established a generalization of our previous theoretical 

results about the convergence properties and the speed of the extension involv­

ing the combination of three algorithms. Our additional numerical experiments 

showed that this extension addressed the benchmarking problems with significant

success.



Chapter 5

Neural Networks Learning

In this chapter we introduce concepts and discuss issues which will be necessary 

in order to develop, navigate and explain our experimental investigations concern­

ing the application of the SSC type algorithms in the Artificial Neural Networks 

(ANNs) training which are presented in the next chapter.

5.1 A Theoretical Analysis of ANN Learning

The neural networks training problem is often paralleled to that of non-parametric 

non-linear regression while in other cases to that of the construction of discrim­

inators in classification (see for example (Bishop, 1995) and (Ripley, 1993)). In 

supervised learning (see Section 1.3.8), which is of our particular interest here, it 

is assumed that we have a set of data pairs D  =  {(£ ¿,2/*)}, i — 1 ,. ..,N }, also 

called training set, where { y j  are the desired outputs of the network. If we con­

sider the neural network as a directed graph then the input and output vectors 

are represented as nodes organised hierarchically in the so called input and output 

layers. Between them it may exist one or more layers of nodes called hidden layers 

and hidden nodes respectively. The nodes have assigned some activation function 

used to calculate the activation level or output of the node with respect to its 

input. Thus the nodes are the main processing units of the neural network. In 

this hierarchical structure a particular combination of the outputs of the nodes of

124
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each layer is propagated to become the input of each node of the next layer. Then 

a vector of adjustable parameters w =  [tui, ...,wM]T, called weights, represent the 

strength of the connections of this propagation procedure. These are the main pa­

rameters of the model which are adjusted during the training (or learning) phase. 

The aim is to estimate the parameter values of a particular function defined by the 

neural network architecture, which will produce optimal performance with respect 

to a predefined measure. It is, in fact, an unconstrained problem of optimization 

of the performance function. However, it could be a rather complex one mainly 

due to the uncertainty associated with the data on which the definition of the 

performance function itself is based. In the following we adopt the theoretical 

analysis of learning presented in (White, 1989), which is, also, suggestive of the 

relation between neural networks and statistics.

Assume now, that the observations of a phenomenon we are interested in, 

(xi, yt), are realizations of the random variables X t, yj. They are jointly distributed 

according to the (unknown) probability law v{X , Y). It is a well known fact that 

v can be decomposed into a probability law /r(X)which describes the behaviour of

X , and the conditional probability law , which completely summarises the relation 

between Y  and X . In this context the natural object of interest for a study of this 

relationship is the discovery of 7 . However, in neural networks training the goal is 

often for the network to perform acceptable well in using X  to predict or explain

Y. In such cases the primary aspect of 7  which becomes the focus of training is 

the conditional expectation of Y  given X , denoted E(Y\X) ,which is a function 

g(X ) of X , that is g (X ) =  E(Y\X). Then each realization yi can be represented 

as

Vi =  g ( x i )  + e t

where et are random errors for which E{e\X) — 0. That is, e is zero “on average” 

given any realizations of X , but it is non zero with positive probability for any 

particular realization Xi . The degenerate case where e =  0 for all realizations of X  

(as it happens in two-way classification problems or the so-called parity problem,
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where Y  is allowed to take only one of two possible values for each X ), is a special 

case in the above context. This fact actually reveals how the neural network 

training can be considered as an optimization problem with either stochastic of 

deterministic noises, as we will show in detail bellow.

A neural network can be represented with a function /  (usually non-linear) 

which, given a parameter vector w, associates each input vector X{ with an output 

vector Oi =  f{x^ w ). Note that w is not considered here as a random vector 

(such an approach would transfer us to the realm of the Bayesian approach to 

neural networks, which is out of the scope of the present discussion). We can now 

define a function 7r which expresses in an appropriate sense how well the neural 

network represents the relation between X{ and xji using the outputs o*, so that 

7T(oi,yi) =  7r(f(x i,w ),yi). Given the set of observations D and the corresponding 

values of 7T a natural measure of performance is:

K w) =  E{*(f(X,w),Y))  =  j  n(f(x,w),y)v(dx,dy)

or

X'(w) = E(n(f(X,w),Y)\X) =  J n(f(x,w),y)'y(dy\x)

where the integrals are Lebesgue integrals. The first formula expresses A as the 

average performance over the population from which D  has been drawn, and the 

second expresses the average performance given a particular value of x. The aim 

of training is consequently to estimate the parameter vector w* which optimizes 

A. If A is an error function, this becomes a minimization problem while in the case 

of a likelihood function it is a maximisation one. We can then in general state the 

problem as:

min A(w)wew

where W  is the set of allowable parameter values, usually a subset of Rn, within



CHAPTER 5. NEURAL NETWORKS LEARNING 127

which hopefully exists the solution (assuming maximisation of a performance func­

tion):

w* =  argmaxA(w;)

for the above problem, so that

A(w) <  A(w*) Vw e  W.

Typically, 7r(-) depends on the available pairs of data.

There is an important and revealing observation to be made here: The func­

tion 7r is a function of the random variable Y , hence a random quantity itself, and 

as neither of the probability laws v and 7  are known, we can only estimate its 

expected value for particular values of w. Following this observation the problem 

becomes one of estimating the parameter value w* for which the expected value of 

a random quantity, known only from observations at levels Wk k =  1, N, attains 

its extremum (either minimum or maximum value). This is exactly the problem 

of stochastic optimization investigated initially by Robbins & Monro in (Robbins 

and Monro, 1951) and Kiefer & Wolfowitz in (Kiefer and Wolfowitz, 1952). A 

number of prominent researchers investigating the relations between neural net­

works training and statistics have revealed and discussed this correspondence (see 

for example (Kushner and Yin, 1997) and (White, 1989)).

As an example regarding the discussion above, let us consider the performance 

measure to be the squared error, i.e. 7r(o, y ) =  ||o—y||2. This is the most frequently 

used measure in training of Multilayer Perceptrons (MLPs), on which the present 

study is focused. Then X(w) can be rewritten as follows:

A(w) =  E{\Y -  S (X ,w )f)

=  E([Y- E(y|A')]2) +  -  f (X ,w )}2)

The first part of the second formula in the right hand side is just the variance of 

Y  while the second part describes how well “on average” / ( X ,w ) approximates
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the regression function g(X ) =  E(Y\X) (often called the bias of / .  Recall that 

expectations are taken with respect to the unknown probability law v from which 

a particular sample D  is drawn. So the quantities in the second formula are esti­

mators of the real population parameters. This is the primary source of stochastic 

noise in A(w). Observe that if f (X ,  w) =  E(Y\X), that is /  is an unbiased estima­

tor of E(Y\X) then the variance of Y  is the only source of noise in A. In the special 

case, mentioned early in this section, where e =  0 for all Xi then E ([Y  — E i Y ^ y f )  

becomes zero so that the bias is the only source of noise in A. If additionally to 

that the data available is an exhaustive set of the possible cases, i.e. it is the whole 

population, the noise in A is deterministic and is, in fact, the square of the error 

of approximating g with / .  If the network architecture is flexible and rich enough 

to contain g then /  can become an unbiased estimator of g and in this special case 

the training problem becomes a deterministic optimization problem. The above 

mentioned parity problem and its variations is an example of this special case.

In the context of tx being a random quantity, and the fact that it is based on 

the incomplete information available to us, we can only obtain an estimator A(w) 

of its expected value A(w). In the light of the available data, a reasonable thing 

to do is to estimate A with the corresponding sample mean, that is:

N

A =  N - lŜ T x ( f ( x u w ) , yi).
i= 1

Hence A(w) is also a random quantity. The characteristics of A depend, in general, 

on how representative the available data is with respect to the probability law v, 

and how flexible is the set of allowable network output functions f (X ,w ).  The 

MLPs training problem can then be approximated by:

max A(w).
w e w

Thus one may use (an approximator of) the maximizer of A as the estimator of

the real maximizer w* of A. This is obviously a stochastic optimization problem,
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though for a fixed set of observations, A may appear to be a deterministic function 

of w. The quality of the solution depends on how close the estimator w* is to 

the real solution w*, NOT necessarily on how close the estimator is to the real 

maximizer of A for any fixed set of observations. This provides an explanation 

to the fact that it is common in neural networks literature to suggest “early 

stopping” of the training process, in an attempt to avoid the poor quality of 

w* if this, for some reason, happens to be far away from the real solution w*. 

Similar situations can be found in many application areas like in the Maximum 

Likelihood estimation problem, where what matters is not only the speed of the 

algorithms used on deterministic optimization problems, but also (and, in fact, 

more importantly) the overall robustness of these algorithms. For instance, it 

seems that the Newton’s algorithm often fails to produce better estimates in the 

MLPs training problem than the slower Stochastic Approximation algorithm

5.1.1 Backpropagation

The most well known and widely used method for training multilayer feedforward 

neural networks is the Error Backpropagation (EBP) or Generalized Delta Rule 

which was introduced by Werbos (Werbos, 1974) but only found widespread use 

after it was independently re-invented by Rumelhardt et al. (Rumelhardt et ah, 

1986). Our special interest in this learning algorithm is because it is one of the 

more suitable and general rules that can be applied to Multilayer Perceptrons, 

which are the most widely used neural networks for regression and classification 

purposes. Its power resides in its ability to efficiently handle the learning proce­

dure in ordered-systems, such as the multilayer feedforward networks, where the 

arrangement of the nodes admits a hierarchical structure. In these, to produce 

and output the flow of information is allowed only in one direction, from input 

to output layers. This is usually called a forward pass. Then the error associated 

with each one of the nodes is calculated by applying the chain rule of differenti­

ation and backpropagating the corresponding error in the opposite direction, that 

is from the output to the input layers. This is called a backward pass. Finally,
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the weight values are updated according to the calculated errors. A full cycle 

of training, often called epoch comprises a forward and a backward pass through 

all the available training data pairs and the corresponding weight updates. As 

we shall discuss in more detail bellow there are two ways to perform the weight 

updates. The first, called online training corresponds to one update after a single 

pairs is propagated through the network, while the second, called batch training 

corresponds to a single update after all the available data has been processed. The 

revolutionary (but with hindsight obvious) idea in the Backpropagation method, 

is the chain rule of differentiation as commented by its inventor:

At the core of backpropagation is a method for calculating derivatives 

exactly and efficiently in any large system made up of elementary sub­

systems or calculations which are represented by known, differentiable 

functions (Werbos, 1990, p. 1550).

According to (Reed and Marks, 1999) the term ‘Backpropagation’ refers usu­

ally to two different things. First, it describes, as we have already mentioned, a 

particular method to calculate the derivatives of the training error with respect to 

current weight values. Second, it defines a training algorithm (sometimes equiv­

alent to gradient descent, as we shall see below), which is using the calculated 

derivatives to minimise the error function.

In our previous set up, we may define:

y\ =  the desired output of pattern pair t corresponding to the kth output unit, 

s\ =  the network output of the /cth output unit,

Wij =  the weight of the link from the zth unit (being either input or hidden) to the 

jth  unit(being either hidden or output). Notice here that we do not refer to any 

particular kind of connection weights, to allow for general multilayer networks. 

Then for a network with one hidden layer we can define:

<Ji,i =  1, ,p.  is the zth input unit activation state,

Sj,j =  1 , . . . ,  q. is the j th hidden unit activation state,

And:
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Figure 3: Schematic representation of a Feedforward Neural Network with one 
hidden layer.

T  =  f(x i),

Sj =  f (h j ) where hj =  JA uiijOi, and is the connection weight between the jth  

hidden and the zth input units,

sk =  f{hk) where hk =  ^jW jS j, and Wjk is the connection weight between the 

j th hidden unit and the /cth output unit.

A commonly used set of activation functions are the following: 

f {z )  — z (identity input unit activation function),

f (z )  — 1/(1  +  e~z) or tanh(z) (sigmoid hidden unit activation function), 

f (z )  =  z (identity output unit activation function).

See Figure 3 for a graphical representation of the structure of an MLP with one 

node S in the output layer.

First, to consider, Backpropagation as a method for calculating the error 

derivatives we define the per-pattern t error function as follows:

(5.1)
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where as above k indexes the output nodes. Then the total or epoch error is:

S  =  E £ ' (5-2>
t t

where for t =  1 ,.. .  ,N , the whole set of examples forms the epoch. Then for any 

weight w the error derivative is:

And:

dE_
dw E dEt

dw

dEl
dw E dEt dak 

dak dw

(5.3)

(5.4)

where ak denotes the input to node k. Then, in our previous setting of a single 

hidden layer network, for u)ij and Wjk being the input-to-hidden and hidden-to- 

output weights respectively the error derivatives can be calculated as follows:

dE _  dE dsk dsj 
dwjk dsk dsj dwjk (5.5)

and:
dE _  dE dsk dsj doj

du)ij dsk dsj dai dwij v ’

In these formulas the index t has been dropped for simplicity. After defining a 

suitable error function simple manipulations of the above formulas give the exact 

expressions used to update the weights in every case. The sigmoid functions 

mentioned above are usually chosen due to the simplicity of their first derivatives 

which will finally be used in these exact expressions.

The advantage of backpropagation applied in an ordered system, such as feed­

forward networks, is that it allows us to determine the change 5w of every weight 

w independently and hence possibly in parallel, by simply applying the differen­

tiation chain rule to the appropriate error function. Its disadvantage is that it 

requires the latter function to be continuously differentiable.
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Now, considering the Backpropagation as a training algorithm (denoted hence­

forth BPR) which aims to minimize E  by applying adjustments to the weights, 

the corresponding learning rule can be defined as follows:

wnew =  wold +  6wold (5.7)

Note that ‘old’ and ‘new’ here denotes an update in general either in the on-line or 

the batch mode of the algorithm. In order to find a minimum (ideally global) on 

the surface defined by the corresponding error function, a gradient descent path 

is followed by defining:

5w =  —rj
h e

dw
(5.8)

where 77 is a suitably chosen small positive value (usually less than 1) named the 

learning rate in the neural networks jargon. The method works as the gradient 

always points in the direction of strongest change of the function, hence, the 

negative gradient follows a descent direction on the error surface .

The most commonly used, and a natural choice in regression problems, for the 

error measure would be the squared error:

E =  E ‘ =  \ -  4  (5.9)
k

for which we discuss in more detail along with other possible error functions in 

Section 5.3.1.

The version of the algorithm called pattern mode (it assumes updates after each 

pattern (example pair) has been presented to the network) is also characterised as 

stochastic updating, because it assumes a random search of the error surface via a 

randomization of the order of presentation of the patterns. So the weight updates 

do not fall into a pre-specified cyclic pattern. This is often useful and produces 

better results when the order of the patterns is irrelevant for the application, like 

in the classification problems. Alternatively in batch or epoch updating the error 

is computed or averaged over the whole training set, before applying the updates
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the error function.

In the latter case it can be considered that the gradient is calculated exactly 

and the weight changes are proportional to the gradient of the error function, 

so this mode approximates gradient descent for small step sizes (learning rates). 

In general, the batch mode approaches pure gradient descent when the learning 

rate becomes infinitesimal (Reed and Marks, 1999, p. 57), while the pattern 

or on-line mode is related to stochastic gradient descent or to the Stochastic 

Approximation algorithm (Robbins and Monro, 1951). This analogy has been 

noticed and investigated both in the optimisation field (Kushner and Yin, 1997) 

and in the neural networks community (White, 1989). Bishop (Bishop, 1995, p. 

264) notes that on-line training, also called sequential learning, "... is reminiscent 

of the Robbins-Monro procedure” , and “The analogy becomes precise and we are 

assured of convergence, if the learning rate parameter is made to decrease at each 

step of the algorithm ...” . According to relevant theoretical results appropriate 

requirements for the rate of decrease are satisfied, for example, by choosing ek oc 

1/k, where k is the iteration number. However, Bishop also notes that in practice 

the guarantee of convergence is often sacrificed in exchange to faster convergence. 

In general, using a constant learning rate, is usually reported to be more efficient.

5.1.2 Improvements and Extensions

Stochastic Algorithms

From an analytical point of view the on-line variant of Backpropagation is no 

longer a simple approximation to gradient descent. The gradients based on the 

single patterns can be viewed as noisy estimates of the true gradient. So, if the 

gradient is strong at a point the sum of these estimates has a positive projection 

on the gradient causing the error to decrease after most of the weight updates. 

However, there can still be a number of single-pattern estimates with either neg­

ative projections, or large orthogonal deviations from the true gradient, forcing 

the error to increase after some of the updates (Reed and Marks, 1999).
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One of the disadvantages of the stochastic nature of single-pattern learning is 

that, especially when a relatively large learning rate is used to accelerate training, 

it tends to result in weights jittering around the error surface and occasionally 

moving uphill. The magnitude of the jitter is proportional to that of the learning 

rate used and if significantly large can obscure any useful information about the 

true (deterministic) gradient. Additionally, the weight vector will never settle to a 

stable value even when a ‘good’ minimum has been reached. Since the randomness 

arises by the constantly changing random order of presentation of the patterns, 

cyclic fixed orders can cause convergence to limit cycles. The addition of a mo­

mentum term, which is equivalent to an exponentially weighted moving average 

of recently presented patterns and will be discussed further below, is often added 

to Eq. 5.8 in order to smooth the gradient estimates and dampen the oscilla­

tions (Ripley, 1993). Although this can be considered as an alternative method to 

epoch (batch) updating, which usually follows a smooth path on the error surface, 

in some implementations of Backpropagation are used simultaneously.

On the plus side, however, the stochastic behaviour in the on-line gradient 

estimation process allows the algorithm to escape from shallow local minima and 

hence to have higher probability of finding better (even optimal) solutions (min­

ima). When the pure gradient descent (bach mode), on the other hand, arrives at 

a local minimum (even a poor one) it simply gets stuck. This, in general, is not 

an exclusive characteristic of the latter, but can be considered typical behaviour 

of algorithms with the property that each step is guaranteed not to increase the 

objective function. In the following we shall discuss some of these algorithms, 

mostly drawn from the numerical optimisation field, which are usually called ex­

act or deterministic, and when at a local minimum tend to remain indefinitely 

there (Bishop, 1995, pp. 264, 272-292).

The difference between the two training modes (on-line and batch) becomes 

minimal when the learning rate is very small. In general it should be noted that 

in the optimisation community gradient descent is not highly regarded due to its 

slow rates of convergence, especially in the cases where the Hessian of the function
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is ill-conditioned, i.e. when the gradient changes much faster in some directions 

than others such as in the case of the so-called ‘ravines’ of the error surface (Reed 

and Marks, 1999, p. 155).

Heuristic Algorithms

A large number of modifications and extensions to the basic Backpropagation 

algorithm have been proposed from the early years of its appearance to present 

date. They mainly attempt to address the issues of low speed, oscillations of 

the weights, and convergence to local minima, although in some cases there are 

also concerns about theoretical guarantees for global convergence. They can be 

categorised, broadly, in two classes: (i) those based on heuristics and, (ii) those 

adapted directly from the field of numerical optimisation. In the following we will 

briefly introduce the most important of these training procedures and attempt 

to draw some conclusions about their comparative performance. The aim of this 

discussion is to identify an algorithm adequately diverse and more efficient than 

the basic BPR in order to enhance the basis of comparisons with the SSC-based 

training algorithm proposed in this study.

Most of the modern texts about neural networks being either introductory 

(Fausett, 1994), or look into ANNs from the perspective of a particular application 

area, such as (Bishop, 1995; Ripley, 1993) for pattern recognition, (Refenes, 1995) 

for financial forecasting, or, finally, provide practical guides for the use of the 

techniques, such as the recent “Neural Smithing” (Reed and Marks, 1999), include 

some sections on modifications of the basic BPR which due to theoretical, but 

mainly, to practical reasons seem to have survived the test of time. Most of these 

texts agree on the above categorisation of these algorithms into ‘heuristic’ and 

‘deterministic’ or ‘exact’ . An alternative classification would, naturally, be into 

‘first’ and ‘second’ order methods depending on the order of information they use 

about the error function gradient. Our exposition shall follow here the former 

while commenting about the latter as we proceed.

The first and most commonly used extension to the basic BPR has already
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been mentioned previously to be the addition of a momentum term to the weight 

update formula which aims to restrict oscillations and improve speed. The weights 

wk update formula becomes:

wk+i -  wk +  6wk +  hSwk- 1,

where Swk~i is the momentum term and h a gain parameter, usually less than 

1. This has been reported to generally achieve its goals but it introduces an 

additional (to the learning rate) parameter to be tuned. Subsequent modifica­

tions that belong in both of the above mentioned classes have basically proposed 

techniques to adapt either or both of these parameters dynamically during the 

evolution of training, often taking into account the topology of the error func­

tion surface. Among them first to be mentioned is the Delta-bar-Delta (Jacobs, 

1988) rule which proposes individual changes to the stepsizes for each weight ac­

cording to sign changes between the current partial derivative and an exponential 

average of the partial derivatives of past iterations. The Resilient Backpropaga- 

tion (known as RPROP) (Riedmiller, 1994) monitors the changes in the sign of 

the gradients only to propose an increase in the learning rates when no change 

is observed and a decrease according to an exponential schedule in the opposite 

case. Quickprop (Fahlman, 1988) (QPROP) introduces independent stepsizes for 

each direction of the gradient (every weight) as a result of an approximate secant 

solution to a local quadratic approximation of the error surface.

In empirical studies, Delta-bar-Delta was among the fastest method for clas­

sification problems but slow in other cases (Alpsan et ah, 1995). According to 

some reports it showed greater sensitivity to its parameter values than RPROP 

and QPROP (Reed and Marks, 1999, p. 139). The latter seem to be the fastest 

and most reliable heuristic algorithms, reported to be faster in some cases even 

to second-order gradient methods such as the conjugate gradient or Levenberg- 

Marquardt (see below) (Reed and Marks, 1999, pp. 144, 147, 152). For other 

heuristic adaptive methods such as the ‘Bold Driver’ (Yogi et ah, 1988), the Silva
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and Almeida (Silva and Almeida, 1990) modification to Delta-bar-Delta rule and 

the ‘SuperSAB’ (Tollenaere, 1990), the results reported in the literature are in­

consistent and rather problem dependent (Alpsan et ah, 1995).

Deterministic Methods

On the other hand, in the ‘deterministic’ category one could start with adaptations 

of the Newton’s method for neural networks (Bello, 1992; Buntine and Weigend, 

1994). This suggests learning rates based on the (exact) calculation of the Hessian 

matrix of the second partial derivatives of the error function H — V 2E  as a result 

of a quadratic local approximation. The weights {w k} update formula, in this 

case, is :

Wk+1 = w k -  H~lgk,

where gk =  V E  defines the search direction.

However, exact calculation of the Hessian can be expensive in large scale prob­

lems and Newton’s method requires H  to be positive definite, so approximations 

are often used. Among them, the Gauss-Newton and Levenberg-Marquardt tech­

niques seem to give good results in comparison to the basic Backpropagation in 

a neural network training setting for only moderately sized problems (Hagan and 

Menhaj, 1994). Another class is the quasi-Newton, often also called variable 

metric methods, among which major variations are the Davidon-Fletcher-Powell 

(DFP) and the Broyden-Fletcher-Goldforb-Shanno (BFGS) methods (see, for in­

stance, (Reed and Marks, 1999) for definitions regarding ANN training). These 

build approximations of the Hessian matrix iteratively using only first-order gra­

dient information. According to (Alpsan et ah, 1994) in a neural network setting 

they both converged to good local minima only half of the runs tried, they were 

slower than standard Backpropagation in classification problems and exhibited 

poor generalisation. Finally, methods that use conjugate gradients (CG) to define 

the search directions such as the Fletcher-Rieves (FR) or the Polak-Ribiere (PR) 

variants, are usually praised for their speed, which in some cases can be greater
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than that of second-order methods. They either use line search procedures to 

determine the learning rate or not as it is the case with the Scaled Conjugate 

Gradient algorithms (Moller, 1993). A large number of comparative studies with 

the Backpropagation has been published. It seems that the outcomes of these 

comparisons are problem dependent. In (Lee and Lippmann, 1990), for example, 

CG algorithms appear to work effectively in simple problems while they quickly 

converge to poor local minima in more difficult problems.

5.1.3 Comparative Studies

A large number of other modifications have, and still are, being put forward in the 

literature (indicatively see (Lee, 1997; Cho and Chow, 1999; Ghorbani and Bayat, 

2000; Amari et ah, 2000)). They correspond to a diverse range of solutions and 

starting points, but they are usually tested in specific application areas, hence no 

general deductions can be made about their properties.

During the past years a significant amount of reports have been accumulated 

about comparisons of the main modifications presented previously either with 

BPR and its variations, or among themselves, or both (Magoulas et ah, 1999; 

Sperduti and Starita, 1993; Jacobs, 1988; Battiti, 1989; Robitaille et ah, 1996; 

Kinsella, 1992; Vrahatis et ah, 2000a; Schiffmann et ah, 1993). It should be noted, 

as an initial word of caution, that assessments in these works are based on such 

a wide and diverse set of measures that renders them usually incomparable. In 

general, the results presented in these and other studies, are at best controversial. 

An initial observation could be that when the authors consider learning in neural 

networks as a deterministic problem and present results only on the minimisation 

of the error on the training set, the deterministic methods appear to be favorable. 

Similar claims are made, also, when the examples used do not involve noise, or 

use exhaustive samples (as is the case, for example, in the XOR problem, or its 

extension, the n-parity problem), and/or the problems are of small to moderate 

size. Methods that involve line searches tend to show poor performance, as it is 

expected, in cases with noisy data.
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Finally, general remarks in (Bishop, 1995, p. 264), (Reed and Marks, 1999, 

pp. 152,156,168,182), and (Alpsan et al., 1995) tend to agree in the following 

two points. First, for classification problems, where tolerance in the final error 

achieved is higher, simpler methods, mainly based on heuristics, tend to be the 

favorable choice. However, in the case of ‘function approximations’ (regression) 

deterministic methods seem to perform better. Second, fast ( “greedy” ) methods, 

such as the majority of the deterministic algorithms we discussed, show tendency 

either to overshoot the minima, or, when combined with a monotone requirement 

for error reduction at every iteration, to get trapped at poor local minima.

As a result of our previous review we decided to choose the Quickprop (QPROP) 

algorithm as the one to form, along with the basic BPR, the group against which 

the SSC training algorithm proposed here will be tested. The main properties of 

QPROP supporting this choice are:

(i) its simplicity (Fahlman, 1988),

(ii) it uses second-order information,

(in) it uses different learning rates for every weight in the network so it belongs 

to the more sophisticated end of the spectrum. In contrast, the SSC algorithm 

we propose here uses a global learning rate for all the weights (as we shall see in 

the next section), and finally,

(iv) whenever QPROP was included in comparative studies, either with the Back- 

propagation algorithm and its variants, or the deterministic type of algorithms, 

it was reported either to outperform them or at least to exhibit equal speed and 

generalisation ability (Fahlman, 1988; Schiffmann et ah, 1993; Hasenjager and 

Ritter, 1999).

Although it has been reported to present some sensitivity to the values used 

to bound the learning rates produced by its update rule (Vrahatis et ah, 2000b; 

Hasenjager and Ritter, 1999), and more elaborate schemes have been proposed 

to remedy the situation (Vrahatis et al., 2000b), it seems that it is generally 

accepted that Quickprop performs favourably if its constructor suggestions are
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followed (Reed and Marks, 1999, pp. 147,152). Thus, we use the basic form of 

the algorithm which we shall introduce formally in the next section.

5.2 Definition of the Algorithms

We are now in the position to formally define the three algorithms selected to 

be used in the experiments presented in the next Chapter. Namely we introduce 

the standard Backpropagation, the Quickpropagation (QPROP), and the SABB 

as adapted for use in neural network training. The formalism we adopt helps to 

identify the similarities with the algorithms used in the first part of this thesis. We 

also use the standard notation for the neural network parameters with wk denoting 

the weight vector at iteration k. Note that all the algorithms we used update the 

weights in batch mode, so the values of weights at iteration k correspond to those 

resulting after an update was performed at the end of the kth epoch.

BPR

The first algorithm is the classical standard Backpropagation training algorithm 

(henceforth denoted BPR to identify it from the Error Backpropagation (EBP) 

method for derivative calculation discussed previously) defined as follows:

Given an initial weight vector w0,

wk+1 =  wk -  Zgk, k — 0,1, 2,...,

where Z  =  p i  is a diagonal matrix and /  denotes the unit matrix. Also, gk 

is, as usual, an estimator of the gradient X7E(D,wk) at wk, with E (D ,w k) the 

network error function as defined by Eq. 5.2. This notation is used to emphasise 

the dependence of the error function to the training set D. The same notation for 

the error function is used for the definitions of the remaining algorithms as well. 

As already mentioned previously, 77 is typically a small positive constant, usually 

less than 1.
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QPROP

The Quickpropagation can be defined as the following gradient-based algorithm: 

Given an initial weight vector wo,

wk+l =  wk -  Bkgk, k =  0,1, 2,... ,

where
I B0 if k =  0, orAwijk =  0 

Bk -  < ,
B'k otherwise

where B0 =  II, I  is the unit matrix, l is a small positive constant, usually less 

than 1, indicated as “alternative stepsize” in the tables presented in the next 

chapter, and w^k and g^k are the ith components of wk and \7E(D, wk) (as defined 

previously) respectively. For k >  1 B'k =  with

0 i ±  j

where

sign(bitk) min(6|
9i,k

?\biA),

and

bi,k i,k ^i,k—\)/^9i,k 9i,k—1)>

with A Wiik =  w^k — w^k-1, and b a constant with most commonly suggested values 

1.5 < b < 3.5. We followed the advise given in (Fahlman, 1988) and used a value 

of b & 1.75, which was reported to give the best results for a class of benchmark 

problems within the neural networks training context.

SABB

The original SSC-based SABB algorithm defined in Section 3.1 can be adapted

to the neural network training formalism in the following way. First, we have to
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redefine the Supervisor algorithm (SR), which is the classical Stochastic Approx­

imation (SA) algorithm:

Given an initial weight vector w0,

wk+i =  wk -  tkgk, k =  0,1, 2,....

where gk =  'VE(D, wk), an estimate of the gradient of the network error function 

E(D, wk). In the following we assume, as usual, the following assumptions to hold 

for the gain sequences {t*,}:

i) tk > 0;

ii) ^  =  + °° ;

Then the search engine (SE) can be formulated based on the following gradient 

algorithm:

Given wo

wk+i = w k -  rkgk, k =  0,1, 2,..., 

where tq =  1 and for k >  1

rk =  \wk -  u;fc_i|2/((^fc -  W k-xflyE ^ D , wk) -  V E (D , tufc_i)).

where the step length rk is the BB stepsize, as usual, proposed by Barzilai and 

Borwein in (Barzilai and Borwein, 1988) (see also Section 3.1). We are now in the 

position to define the SSC-based algorithm in the neural network training context 

as follows:

Let Tk >  0 be given for k =  0,1,2,... . Then define the following algorithm 

(SSC-SABB):

wk+l =  wk -  tkgk if TkE(D, wk -  tkgk) <  E (D , wk -  rkgk), (k =  1,2,...),
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otherwise

wk+i =  w h -  rkgk.

In our computations, {|r*;|} is normally forced to be bounded to avoid instabilities.

5.3 Performance Measures and Comparisons

5.3.1 Error Functions

The role of the objective or error function used in the learning process is, as

respect to the targets and thus to guide the search for a solution. In this sense it 

has a fundamental effect on the outcome so it is important to choose the function 

accurately reflecting the experiments design goals. Furthermore, it was already 

pointed out that whether the error is evaluated over the training or the test set or 

on both has implications for the type of performance we are interested to assess, 

be it memorisation or generalisation.

The most commonly used error function has already been described previously 

while introducing the Backpropagation algorithm. This is the sum-of-squares 

which, given the notation introduced previously, can be written for the batch 

training mode as:

where, as usual, t indexes the patterns and k the output nodes. Assuming 

linear activation functions in the output nodes g(ak) =  ak, where ak is the input 

to the kth output node, the error derivative with respect to ak is:

already noted, to define the difference between good and bad performances with

k

This function is obtained by the maximum likelihood principle under the as­

sumption that the targets are generated from a smooth deterministic function
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with added Gaussian noise (Bishop, 1995). Although this is a reasonable starting 

point for regression problems, it is clearly inappropriate for the case of classifica­

tion where the targets are binary variables and the activation of the output nodes 

is often interpreted as probabilities.

For the two-class problems we usually have a single target assuming the values 

0 or 1 and a single corresponding output node. The probability model used for the 

target in such cases is a particular case of the binomial family called the Bernouli 

distribution. The error function corresponding to this model is the so-called “cross 

entropy” function (Hopfield, 1987; Solla et ah, 1988):

In (Bishop, 1995, pp. 82-84) it is shown that for the activation of an output node 

to be interpreted as a probability it is appropriate to use the logistic activation

discrimination in statistics. Then the derivative of the error function can be 

written, after some algebraic manipulations, as:

Following the same line of reasoning in the multiclass case, where the targets 

can belong to 1-of-A: classes and the network has k output nodes, an error function 

analogue to the “cross entropy” , based on the assumption of binomially distributed 

target values, is the following:

E  =  y* In s*(l — y1) ln(l — s*)

function, g(a) =  [1 +  exp(—a)] x, which is often associated also with the logistic

In this case, the appropriate activation function to use, so that the output 

values sum up to unity, is a generalisation of the logistic, often called the “softmax”
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function (Bridle, 1990) defined as follows:

with k! 7  ̂ k, which can be rewritten as:

g(ak) =  [l +  e x p (-A k)] 1

with

A k = a k -  ln {J ^  exp (a*/)}
k '^ k

Again after some algebraic manipulations the error derivative turns up to be :

It is easy to see that considering all three cases we examined there is a natural 

pairing between the error functions and the corresponding activation functions. 

These functions have a number of desirable properties that justify their popularity. 

First, they are smooth and easily differentiable. Second, they are well-understood 

and they allow valuable theoretical study by simplifying analysis considerably. Al­

though, as pointed out in (Michie et ah, 1994, p. 86), “it might seem more natural 

to use a percentage misclassification error measure in classification problems” it 

is advantageous to use the above functions during the learning process and utilise 

the recognition rate as an additional measure of evaluation. This exactly the 

strategy we adopted in the experiments we shall present in the next chapter.

As consequence of the above discussion, in this study we adopted an exper­

imental strategy according to which we run a number of simulations for every 

benchmarking problem we use and measure the errors both on training and test 

sets at different stages of the simulation. We then use these estimates to construct 

statistical comparisons of the mean performance of the algorithms we test. Sub­

sequently, we assess the convergence properties of the algorithms by comparing
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the number of runs they converged and the epochs required to achieve a pre­

specified level of error in the test set, thus evaluating their generalisation ability. 

Finally, in the classification examples we also report the misclassification rate on 

the unknown data.

5.3.2 Assessment Methods

A ‘naive’ estimator of generalisation would be the level of error reached by the 

network over the training set. But, this measure is well known in statistics that 

is downward biased measuring the minimum risk, that is the expectation of the 

error over the whole ensemble of possible cases, so it is overoptimistic with respect 

to the generalisation ability.

A natural and more effective way of assessing performance in cases out-of- 

sample, has been proposed by Hecht-Nielsen (Hecht-Nielsen, 1990), as far as train­

ing (learning phase) is concerned. It is suggested to use two sets of examples. The 

first will be the training set and the other the validation set of examples. These 

two sets are disjoint and the main idea consists of measuring the value of the error 

function over the validation set, which contains unknown cases, at intervals dur­

ing the training. As long as the error over the validation set decreases, training is 

continued, while, when it begins to increase, although it might continue decreas­

ing over the training set, learning is stopped. The fact that this is the case, is 

illustrated with examples in (Geman et al., 1992). The authors show that the 

total error in the whole ensemble of possible cases will follow this path (decrease- 

increase) through a decomposition of it to its bias and variance components. The 

bias component is minimized as a result of continuing the adjustment to weights 

in order to fit the given data, while the variance is increased, due to an increasing 

sensitivity of the resulting network, introduced by the more close fit to certain 

cases represented in the training set. This is the case when, trying to fit noisy 

data, the network begins to learn the noise as well as the underlying signal. The 

best generalisation performance is then accomplished when a compromise between 

variance and bias is achieved, thus minimizing the total error.
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5.3.3 Comparisons Methodology

Following the preceding discussion it is not difficult to deduce that, unlike the 

simple comparison of optimization algorithms of different benchmarking func­

tions, effective comparisons of neural networks training algorithms bear signifi­

cant complexity due to the diversity of the additional parameters involved. In 

such cases, a well-established field to draw ideas from is that of designs of exper­

iments, being the area of statistical inference which studies in a structured way 

the effects of different conditions (often called ‘treatments’) to the outcomes of 

experiments, denoted as ‘responses’ . A well-known result in this field is that given 

two treatments and their corresponding responses Yx and Y2 we can analyse their 

differences (Yx — Y2) as independent samples. Denoting the variance, covariance 

and correlation by ‘var’, ‘cov’ , and ‘corr’ respectively, we can write:

var(Fi -  Y2) =  v a r ^ )  +  var(T2) -  2cov(y , Y2)

Then it is obvious if corr(Y!,Y2) > 0 we will obtain a more accurate estimate 

of the mean difference, since it will result in lower variance. The formula also 

demonstrates that the estimation procedure will be more effective if the treatments 

affect the mean responses but not their variance.

In order to transfer the comparison of neural networks simulation experiments 

to this framework, we should first consider the characteristics of the networks 

we would like to compare as different treatments to the problem of learning the 

relations underlying the data. According to our previous discussion, the parame­

ters that affect the outcome (responses) of the experiments, that is the observed 

error (and its bias/variance components), are the network architecture, quality 

and quantity of the available data, and the training algorithms used. Therefore, 

if our focus is the comparative assessment of the training algorithms, as it is the 

case in this study, we should limit the influence of the remaining parameters to 

the resulting responses. To this end, we keep invariant across all the repetitions
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of our experiment both the network architectures and the training/test set parti­

tions for the same benchmarking problem. Furthermore, since the starting point, 

namely the initial weight vector, can affect the quality of the solution found by a 

training algorithm we use common random seeds for all the methods compared, 

changing them only over the successive runs of the same simulation experiment. 

This corresponds to the variance reduction method known as common random 

variates in the field of stochastic simulation (see (Ripley, 1993) for additional de­

tails). Finally, it is notable that by following the above methodology we further 

achieve to restrict the effects to the variability of the observed responses (being 

either the training or the generalisation error) only to those induced by the com­

pared training algorithms themselves, causing our analysis of their differences to 

be more effective.



Chapter 6

Empirical Comparisons

In this chapter we present a series of empirical investigations aiming to assess 

the the SSC algorithm we propose for training feedforward neural networks. The 

properties we are interested in are efficiency and robustness in training under var­

ious types of noises, but mainly and most importantly the generalisation ability 

of the resulting trained network, since the latter constitutes the ultimate goal of 

learning. Furthermore, we compare our proposal with the two algorithms cho­

sen as benchmarks, namely the standard batch Backpropagation (BPR) and the 

Quickprop (QPROP).

6.1 Experimental Design

For every problem we examine and for all the algorithms we repeat the training 

process ten times, initialising the weights to random values uniformly distributed 

in the interval [—0.01,+0.01]. This is a common practice in the neural network 

community. The results obtained from these repetitions (also called ‘runs’) provide 

the basis to perform valid statistical analyses of the performance characteristics 

of the training algorithms we are interested in. The quantities included in the 

following tables correspond to mean values calculated over the whole set of runs 

and, where appropriate, are annotated by the corresponding standard deviations. 

It should be noted here that all versions of the algorithms start from the same

150
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initial weight vector for the same run. For example, for the first of the ten runs 

all versions of BPR, QPR, and SSC-SABB start training using the same vector 

of randomly assigned weights. However, this vector differs from the one used in 

the second training run. This is done, following the discussion in Section 5.3.3, in 

order to reduce the variance of the resulting performance measure estimator and 

hence the variance of the estimators of their differences. As a consequence of the 

same argument, we also decided to use the same partition of the available data 

to disjoint training and test sets for all the algorithms during the same run. This 

way we restrict the parameters influencing the differences observed in performance 

only to the effects due to the use of different training methods.

The experiments we conduct aim to evaluate the performance, first, with re­

spect to a range of of values for the adjustable parameters of the SSC-SABB 

algorithm, namely the preference switch Tk and the supervisor algorithm’s step- 

size tk. The objective is to explore the level of sensitivity to these parameters 

under various conditions (different tasks), and provide possible guidelines for ef­

fective values. At the same time, we try different values for the control parameters 

of the benchmark algorithms, in order to facilitate a comparative view of their 

sensitivity as well. For BPR we use two different learning rates 77, while for the 

QPROP two alternative stepsizes l. The full set of different versions we have used 

for each algorithm along with the corresponding parameter values are included in 

Table 6.1.

In order to observe the effect these parameters have in the training speed and 

accuracy of the algorithms, we report the error levels obtained at the middle and 

at the end of the simulation runs. Although in some of our examples we use 

the cross-entropy as error function (see Section 5.3.1) during training, due to the 

nature of the problems (classification), as we shall discuss below, in the relevant 

tables, for uniformity of exposition we present the corresponding Mean Squared 

Error (MSE) in all cases.

As a final remark, it should be noted that we chose not to report on the CPU 

time required for our simulation runs as this seems to be controversial issue among
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Table 6.1: Parameters of algorithms tested; rj: learning rate of BPR; l: alternative 
stepsize for QPROP; tk: supervisor’s stepsize; T : switching parameter for SABB.

Algorithms Ver. Parameters

BPR 1 -3 II
> 

O ‘ o
 

o I—
1

2 rj =  U.l

QPROP
1 l =  0.001
2 l =  0.1
1 tk =  0.001/&, T =  1
2 tk =  0.1 /k, T  =  1
3 tk =  10.0/k, T =  1
4 tk =  0.1 /Vk, T =  1

SSCSABB 5 tk =  0.1, T =  1
6 tk =  0.1/fc, T =  5
7 tk =  OA/Vk, T =  5
8 tk =  0.1, T =  5
9 tk =  OA/k, T =  2.5
10 tk =  0.1, T =  2.5

the research community. We believe that most probably CPU time is an unsafe 

measure which is likely to cause misleading observations. In fact, it has been 

argued (Demuth and Beale, 1999) that observed time of CPU usage in neural net­

work learning algorithm implementations may vary according to whether or not 

one of them can exploit particular structures of the computational engine or the 

compiler used for the development of the corresponding programme. Such cases 

result in floating point operations savings, and consequently CPU time reductions, 

even if the algorithms do not have any differences in the number of function or 

gradient evaluations. It has been also demonstrated, in the same work, that even 

the number floating point operations does not have a linear relation to the time 

of CPU usage observed, due to the same fact. Following this line of reasoning we 

base all our results on the notion of epoch, as a measure of time in the experiments 

we report. An epoch consists of full forward and backward pass through all the 

training patterns, including, of course, the corresponding error function and gra­

dient evaluations. Furthermore, many authors (Kinsella, 1992; Magoulas et ah,
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1999; Reed and Marks, 1999; Riedmiller, 1994) argue that one gradient evaluation 

amounts to 2 to 3 times the computational expense needed for a function evalu­

ation. This provides additional support to our decision since all three algorithms 

we use require the same number of gradient operations per epoch.

To form a broad basis for our evaluation experiments we employ four examples 

for each of the categories of applications identified in the previous chapter to be 

most frequently associated with neural networks, namely regression and classifica­

tion. The problems that belong to each of these categories, can be further divided 

into two groups either of which covers a specialised area of application.

The group of the first two examples in the regression category represent con­

ventional regression problems with Normally distributed noises in both cases, but 

with the presence of outlier values in the second one. The second group of the 

same category, however, deals with a rather more complex area, that of time series 

observations produced by dynamical systems which exhibit chaotic behaviour. In 

the first example of this group, the added noise component has again Gaussian 

distribution but it is incorporated in the evolution of the system dynamics. In the 

second case the noise is the result of the integration process of a continuous time 

system. Therefore, under the name of regression we effectively consider a wide 

variety of disturbances, namely symmetrically and asymmetrically distributed ad­

ditive noises, dynamic noise, and finally, discretisation noise. This is, in fact, a 

range of noise types representative of those most frequently met in real world 

applications.

On the other hand, both problems of the first group in the classification cat­

egory represent the well-known problem of Parity, a two class problem in which 

all possible cases can be enumerated (details will be presented below). They were 

included here to illustrate the difference between memorisation and generalisation 

even when no noise is present in the data. In the first example, the sample avail­

able for training includes all possible cases so the issue of generalisation does not 

arise. However, in the second task, half of the cases are kept as a test set so gen­

eralisation is relevant since the networks are required to deduce the input-output
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mapping from the incomplete information of the training set. Although noise is 

not incorporated in the input-target pairs, the uncertainty induced by restricting 

the information available gives rise to the issue of generalisation which can be 

measured by the performance in the test set.

The last two classification tasks are well-known real world problems which 

involve different types of noises in the measurements. In the first, the objective 

is to identify mines from rocks based on sonar signals corrupted by measurement 

noise. The second task is a digit pattern recognition problem in which the input 

patterns consist of Fourier coefficients extracted as features of the raw binary 

digit images. The uncertainty, and hence the noise component in the data, in this 

case, is introduced by the feature extraction process and the corresponding loss 

of information.

In the following, we first discuss in detail each one of the above tasks, the 

procedures used to generate the corresponding data sets, some of their charac­

teristics, as well as the architectures and the training parameters of the neural 

networks employed to tackle them. Additionally, we shall comment, based on 

exploratory inspection of the corresponding learning curves, on the differences 

observed between the behaviour of the algorithm proposed here and that of the 

two algorithms used as benchmarks. Finally, we shall proceed in presenting the 

statistical results obtained according to the experimental schedule described pre­

viously and further discuss a series of statistical analyses based on them. As a 

final note, it is worth reminding here that the main interest of our investigations 

is focussed on the generalisation ability of the learning process as opposed to the 

memorisation of the training sample.

6.2 Regression Problems

Before proceeding in discussing the individual details for each one of the regression

tasks, it is useful to note, as a general remark, that all the networks employed
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Table 6.2: Parameters used in the simulation runs for the Regression problems; 
i-h-o: number of input,hidden, output nodes

Problems Architecture
i-h-o

M ax Nr. 
o f  E p o ch s

Convergence 
Criterion (M SE )

Regression 1-8-1 10000 0.12
Regression with Outliers 1-15-1 10000 0.1
Logistic Map 1-30-1 10000 0.05
M ackey-G lass 1-50-1 10000 0.02

this class of problems had identity activation functions for their input and out­

put nodes and symmetric sigmoids (hyperbolic tangent) for their hidden nodes. 

Furthermore, they were all trained to minimise a Mean Squared Error function, 

according to suggestions arising from the discussion in the previous chapter. Ta­

ble 6.2 presents the network architectures employed for each one of the regression 

problems we examined as well as other parameter values used in the training 

evaluation process.

6.2.1 Simple Regression

We first consider a simple regression example. Our data consists of realisations of 

two real-valued variables and Y  of which the former is taking values X{ from a

standard Normal distribution while the values yi for the latter are sampled from 

a Normal distribution with mean:

HVi =  0.3 +  0 Axi +  0.5 sin(2.7:Ci) (6.1)

For both cases the standard deviation is 0.01. In fact this represents a sinusoidal 

wave with a trend and an added noise component. We generated 200 values 

from this model. The networks’ task is to estimate the conditional expectation 

function of Y  given X . Furthermore, we wish to use our estimator to predict yi 

when Xi is known. To this end we divide the data set in two sets of pairs of the
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form {(x i, yi), . . . ,  (xN, Vn)}- The first set of 100 pairs is used to train the neural 

networks (i.e. to approximate the regression function), and the remaining 100 

pairs are used to evaluate the predictive power (or generalisation ability) of the 

trained neural networks.

Fig. 4(a) presents a plot of Xi against yi for the data set used for training 

(crosses). The actual regression function is plotted as a line. It is not difficult 

to observe the noise in the available data, as well as its symmetric distribution 

around the regression function. The networks trained by the three algorithms 

(BPR,QPROP,SSCSABB) had 1 input node, 8 hidden nodes and 1 output node. 

Training was continued in this case for 10000 epochs. Fig. 4(b) gives a typical 

example of the learning curves (number of epochs against the Mean Squared Error) 

obtained on the test set by the networks trained with the most successful version 

of each of the three algorithms. It is easy to observe that in this simple example 

they all exhibit similar generalisation behaviour with the BPR only slightly slower 

to achieve the same error level.

6.2.2 Regression with Outliers

This example is based on the same setup as the simple regression problem de­

scribed above. The input variables Xj are sampled from a standard Normal dis­

tribution and the targets yi are coming from a distribution with mean:

=  0.3 +  DAxi +  0.5 sin(2.7xj) (6.2)

Although in most of the cases the distribution about this mean was Normal with 

standard deviation 0.1, in some cases, occurring with probability 0.05, an “outlier” 

appears for which the corresponding standard deviation is 1.0. The effects of this 

process can be seen in Fig. 5(a) where again the training pairs (xj, y¿) are plotted 

as crosses along the line representing the regression function. However, in this 

case some of the crosses are located at considerably longer distances from the 

line, indicating much wider dispersion.
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(a) Scatterplot of the training data

X Graph
M S E  x  IO “3

(b) Learning curves on the test set

Figure 4: Simple Regression with noise
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(a) Scatterplot of the training data

X Graph
M S E  x  I O '3

(b) Learning curves on the test set

Figure 5: Simple Regression with noise and outliers
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This is a much harder problem than the one presented previously especially 

for neural network training procedures based on the minimisation of a squared 

error function. In such cases the outliers tend to be given excessive weight leading 

to estimators biased towards them. The standard BPR is not, normally, expected 

to show this behaviour, since the constant learning rate would not allow it to 

penetrate very deeply in narrow wells of the error surface. For greedy algorithms 

with adaptive stepsizes to avoid learning the characteristics of the outlying val­

ues (and hence generalise poorly) the remedy often suggested is “early stopping” 

of the training. The results of this phenomenon are easily observed in Fig. 5(b) 

presenting typical examples of the learning curves corresponding to the three algo­

rithms. While initially their behaviour is similar to that in the regression example 

without outliers, as training is continued the generalisation error of QPROP is 

starting to increase until it saturates at a higher level than the error of the other 

two algorithms. It is worthwhile noting that SSCSABB, along with BPR, does 

not exhibit this type of behaviour. We postulate that this is a consequence of 

the presence of SA as a Supervisor algorithm. Again, in this case, the training 

phase lasted 10000 epochs and the networks used had an architecture of 1 input, 

15 hidden, and 1 output nodes.

6.2.3 Logistic Map

This is an one-dimensional dynamic system expressed by the simple formula:

x t =  axt- i ( l  -  x t- i )  (6.3)

It is well known that this system can exhibit considerable chaotic behaviour for 

values of its parameter (a) around 4 (Muller and Reinhardt, 1990, p. 62-63). 

In our study we add small amounts of noise to the model, aiming to create a 

stochastic system, that has a chaotic skeleton, in order to obtain a more interesting 

and realistic behaviour for our tests. The actual form of the model we used to
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generate the series is:

x t -  3.92a;f_ i( l  -  x t^ )  +  et, t >  1 (6.4)

where f =  0,1, . . .  is a discrete time indicator and et —>■ iV(0, 0.01). The error term 

has bounded support which is necessary for the stationarity of the series to hold, 

as suggested in (Yao and Tong, 1994). Expression (6.4) represents a stochastic 

version of the logistic map (6.3) in the chaotic regime (a  =  3.92). A sample 

of 600 values was generated for x 0 =  0.1. The level of noise in this set is on 

average approximately 18%. The task is, again, for the networks to approximate 

the mapping underlying the data given a sample of input-target pairs of the form 

(x (t),x (t +  r)) where r  =  1, 2, . . .  usually indicates how far in time we wish the 

network to learn to predict. A widely known property of chaotic systems is their 

sensitive dependence to initial conditions. This means that an infinitesimal change 

in the initial values results in exponentially growing deviations of the values in 

the future. As a consequence, the ability to predict the behaviour of a chaotic 

system dramatically diminishes as the distance from the current point in time (t) 

increases. In our case, the effects of this phenomenon are further amplified by the 

presence of the random disturbances. For r  =  1 the mapping is a hyperbola and 

it was shown in (Lapedes and Farber, 1987b) that multilayered neural networks 

can produce good approximations relatively easy. In the present study, however, 

in order to test our training algorithm in really demanding task we adopt a time 

interval of 2. In this case the noise free mapping (often called skeleton) is formed 

from a superposition of two hyperbolas on a parabola. From the 600 values 

generated we construct disjoint training and test sets consisting of 250 pairs of 

the form (x (t),x (t  +  2)).

A graphical representation of the training set is shown in Fig. 6(a) where 

input-target pairs are indicated as crosses. In the figure xt is plotted against xt+2- 

The dynamic skeleton of the system, represented as a line in the plot, is disturbed 

by the added noise, and moreover the variation of the disturbances is attenuated
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(a) Scatterplot of the training data

X Graph
M S E  x  1 0 " 3

(b) Learning curves on the test set

Figure 6: The Logistic Map
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through time at a rate depending on the values of initial conditions (xt). This 

phenomenon is amplified as the time interval between successive data points is 

increased (for example, a plot of xt versus x t+z would display significantly wider 

dispersion of the crosses away from the skeleton). The networks used in this case 

had 1 output, 30 hidden and 1 output nodes. Training was also continued for 

10000 epochs like in the two previous examples. Fig. 6(b) shows typical learning 

curves on the test set for the three training algorithms we used. It can be easily 

observed that while QPROP reduces the error fast it saturates at a higher value 

than the one finally achieved by SSCSABB. We believe that this is the result 

of the state dependent rate of the noise amplification. As shown in Fig 6(a) 

noise is stronger at the lower part of the parabola than at the higher parts of the 

hyperbolas. This has similar effects with the outliers in the previous problem. So 

QPROP is affected in an analogous way.

6.2.4 Mackey-Glass Time Series

The so-called Mackey-Glass time series pose a highly demanding test to the pre­

dictive power of the neural networks and hence the corresponding learning algo­

rithms. They series is generated by the following nonlinear delayed differential 

equation:

dx a x(t — r)
Tt =  i  +  [Mt -  tT  ”  (t) (6.5)

where t is the time index and r  is a time delay parameter. With a  =  | and 

b =  A it was first investigated in (Mackey and Glass, 1977). For r =  17 and r =  30 

it was shown in (Lapedes and Farber, 1987b) that x(t +  nA) with fixed step length 

A =  6 exhibits chaotic behaviour. The data set we use here was obtained from the 

CMU Machine Learning Benchmark archive (Kantrowitz, 1993). It is generated 

for r =  17 and using a second order Runge-Kutta method as an integration 

process with stepsize of 0.1. As mentioned previously, the discretisation process 

infuses deterministic noise (truncation errors) in the resulting data. The task is
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to use currently available points in the series to predict a future point, t +  P. For 

values of P  greater than the characteristic period of the underlying dynamical 

system, which is approximately 50, the problem bears considerable difficulty (see 

for example, (Lapedes and Farber, 1987b)). The most commonly used form of the 

problem, which we adopt here also, is to use four points (x (t—18), x (t—12), x (t—6), 

and x(t)) to predict a point later in the series, usually x(t+85). From the available 

training data generated for t =  200 to t =  3200 we used the first 485 points to 

form a training set consisting of 400 patterns.

Fig. 7(a) presents a two-dimensional projection of our training data, where x(t) 

is plotted against x(t +  85). The complex nature of the underlying mapping can 

be easily realised. From the original test data corresponding to t — 5000 up to t =  

5500, we formed similarly our test set of 400 patterns. Although many experiments 

have been performed with this series concerning neural network training (see for 

example (Lapedes and Farber, 1987b; Moody and Darken, 1988)), unfortunately, 

variations in the setup used render the corresponding results incomparable. The 

networks we trained consisted of 4 input, 50 hidden and 1 output units. The 

maximum number of training epochs was, again, set to 10000. Similarly to the 

previous problems, Fig. 7(b) illustrates the generalisation ability resulting from 

the three training algorithms by means of learning curves obtained on the test 

set. It is easily observed that BPR and QPROP exhibit very similar rate of error 

reduction while SSC-SABB is much faster. However, they all saturate at the same 

level of error. Neither of them show any indication of overtraining in this example.

6.2.5 Statistical Analysis and Discussion

Observations based on the learning curves, such as the ones included in the previ­

ous discussion, are useful exploratory tools. However, they cannot form the basis 

for valid statistical analyses of the phenomena under consideration, especially in 

simulation experiments such as the training of neural networks. In these cases, 

the outcomes strongly depend on random quantities, in our cases being the ran­

dom initialisation of the weight vectors. So the analysis should start from the
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(a) Scatterplot of the training data
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(b) Learning curves on the test set

Figure 7: The Mackey-Glass problem
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Table 6.3: Mean Squared Error (MSE), in the training set, and its Standard 
Deviation (Std) in parentheses at the middle of the simulation runs for the 
algorithms tested.

Mean Squared Error (Standard Deviation)
Algorithms Ver. Regression Regression Logistic M ackey-Glass

with Outliers Map

BPR 1 0.14803 0.23926 0.09434 0.03160
(0.00726) (0.00577) (0.00163) (0.01770)

2 0.02296 0.10318 0.08398 0.01197
(0.00191) (0.00563) (0.00472) (0.00006)

QPROP 1 0.01116 0.08185 0.01779 0.01173
(0.00114) (0.00734) (0.01004) (0.00029)

2 0.01072 0.07999 0.01892 0.01168
(0.00121) (0.00724) (0.00758) (0.00031)

SSCSABB 1 0.01082 0.10134 0.05993 0.01195
(0.00045) (0.04712) (0.01631) (0.00007)

2 0.01067 0.08731 0.06861 0.01196
(0.00041) (0.00045) (0.00687) (0.00005)

3 0.09354 0.14214 0.08152 0.05043
(0.04640) (0.03790) (0.02294) (0.00182)

4 0.01086 0.08742 0.06885 —

(0.00028) (0.00038) (0.00599)
5 0.01043 0.08524 0.02588 0.01194

(0.00019) (0.00079) (0.01411) (0.00005)
6 0.01057 0.08793 0.05262 —

(0.00433) (0.04802) (0.04156)
7 0.01454 0.08618 0.05414 —

(0.00887) (0.01683) (0.03227)
8 0.01045 0.06940 0.02960 —

(0.00358) (0.00470) (0.02269)
9 0.03140 — 0.0842 —

(0.03643) (0.01315)
10 0.01380 — 0.0541 —

(0.00438) (0.02175)
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Table 6.4: Mean Squared Error (MSE), in the training set, and its Standard De­
viation (Std) in parentheses at the end of the simulation runs for the algorithms 
tested.

Mean Squared Error (Standard Deviation)
Algorithms Ver. Regression Regression Logistic M ackey- Glass

with Outliers Map

BPR 1 0.13365 0.22981 0.09307 0.01995
(0.00708) (0.00572) (0.00042) (0.00571)

2 0.01439 0.09081 0.07348 0.01194
(0.00089) (0.00320) (0.00143) (0.00005)

QPROP 1 0.01021 0.07191 0.01196 0.01147
(0.00080) (0.00402) (0.00803) (0.00037)

2 0.00955 0.07424 0.01396 0.01143
(0.00065) (0.00652) (0.00772) (0.00042)

SSCSABB 1 0.01000 0.09748 0.02743 0.01191
(0.00023) (0.04851) (0.01954) (0.00006)

2 0.01000 0.08461 0.03191 0.01192
(0.00013) (0.00090) (0.01400) (0.00005)

3 0.08652 0.13817 0.07623 0.05030
(0.05170) (0.04226) (0.03289) (0.00216)

4 0.01006 0.08475 0.03218 —

(0.00013) (0.00077) (0.01422)
5 0.00984 0.08159 0.01641 0.01189

(0.00011) (0.00225) (0.00825) (0.00005)
6 0.01115 0.08555 0.05261 —

(0.00469) (0.04938) (0.04158)
7 0.01442 0.08519 0.04431 —

(0.00887) (0.01789) (0.03259)
8 0.00865 0.06640 0.01369 —

(0.00034) (0.00407) (0.01683)
9 0.02951 — 0.08420 —

(0.03706) (0.01315)
10 0.00877 — 0.03955 —

(0.00367) (0.02436)
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Table 6.5: Mean Squared Error (MSE), in the test set, and its Standard Deviation 
(Std) in parentheses at the middle of the simulation runs for the algorithms 
tested.

Mean Squared Error (Standard Deviation)
Algorithms Ver. Regression Regression Logistic M ackey-Glass

with Outliers Map

BPR 1 0.20181 0.22684 0.09854 0.03175
(0.01073) (0.01133) (0.00202) (0.01989)

2 0.01900 0.07882 0.08425 0.01122
(0.00181) (0.00242) (0.00684) (0.00006)

QPROP 1 0.00982 0.08448 0.01606 0.01104
(0.00070) (0.00451) (0.00849) (0.00021)

2 0.01017 0.08500 0.01762 0.01099
(0.00088) (0.00375) (0.00672) (0.00023)

SSCSABB 1 0.00924 0.09532 0.05447 0.01121
(0.00025) (0.04474) (0.01477) (0.00009)

2 0.00918 0.08076 0.06240 0.01122
(0.00024) (0.00077) (0.00684) (0.00006)

3 0.48780 18.03302 0.08390 0.05052
(0.96568) (45.32298) (0.02617) (0.00169)

4 0.00927 0.08072 0.06259 —

(0.00023) (0.00075) (0.00603)
5 0.00912 0.08192 0.02367 0.01119

(0.00023) (0.00076) (0.01303) (0.00005)
6 0.01175 0.09715 0.05228 —

(0.00261) (0.03150) (0.04329)
7 0.01445 0.08305 0.05188 —

(0.00580) (0.00237) (0.03248)
8 0.01195 0.08889 0.02668 —

(0.00152) (0.00537) (0.02051)
9 0.03455 — 0.08504 —

(0.05009) (0.01638)
10 0.01242 -— 0.04883 —

(0.00236) (0.01988)
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Table 6.6: Mean Squared Error (MSE), in the test set, and its Standard Deviation 
(Std) in parentheses at the end of the simulation runs for the algorithms tested.

M ea n  S quared  E rror (S tan d ard  D ev ia tion )
Algorithms Ver. Regression Regression Logistic M ackey-Glass

with Outliers Map

B P R 1 0.18128 0.21077 0.09686 0.01942
(0 .01156) (0 .01076) (0 .00056) (0 .00655)

2 0.01094 0.07822 0 .06747 0.01119
(0 .00070) (0 .00173) (0 .00227) (0 .00005)

Q P R O P 1 0.00953 0.09101 0.01084 0.01085
(0 .00055) (0 .00750) (0 .00731) (0 .00028)

2 0 .00994 0.08609 0.01275 0.01082
(0 .00086) (0 .00291) (0 .00694) (0 .00032)

S S C S A B B 1 0.00897 0.09752 0.02496 0.01117
(0 .00017) (0 .04398) (0 .01780) (0 .00006)

2 0.00895 0.08226 0 .02887 0.01118
(0 .00012) (0 .00070) (0 .01287) (0 .00004)

3 0.47620 15.92715 0.07909 0.05040
(0 .92341) (38 .89990) (0 .03496) (0 .00202)

4 0.00897 0.08218 0.02911 —

(0 .00015) (0 .00067) (0 .01307)
5 0.00891 0.08400 0.01512 0.01115

(0 .00008) (0 .00129) (0 .00772) (0 .00004)
6 0.01239 0.10355 0.05229 —

(0 .00292) (0 .03357) (0 .04328)
7 0.01509 0.08557 0.04172 —

(0 .00568) (0 .00827) (0 .03158)
8 0.01207 0.09020 0.01247 —

(0 .00160) (0 .00747) (0 .01522)
9 0.03326 — 0.08504 —

(0 .05046) (0 .01638)
10 0.01044 — 0.03556 —

(0 .00398) (0 .02277)
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Table 6.7: Best performing versions of the algorithms tested, at the middle of 
the simulation runs, in the training and test sets respectively.

B est P erform ances
Algorithms Regression Regression Logistic M a ck ey-
Compared with Outliers Map -G lass

Train Test T rain Test T rain Test Train Test

B P R 0.022 0.019 0.103 0.078 0.083 0.084 0.011 0.011
(2) (2) (2) (2) (2) (2) (2) (2)

Q P R O P 0.010 0.009 0.079 0.084 0.017 0.016 0.011 0.010
(2) (1) (2) (1) (1) (1) (2) (2)

S S C S A B B 0.010 0.009 0.069 0.080 0.025 0.023 0.011 0.011
(5) (5) (8) (4) (5) (5) (5) (5)

Table 6.8: Best performing versions of the algorithms tested, at the end of the 
simulation runs, in the training and test sets respectively.

B est P erform ances
Algorithms Regression Regression Logistic M ackey-
Compared with Outliers Map -G lass

Train Test T rain Test T rain Test Train Test

B P R 0.014 0.010 0.090 0.078 0.073 0.067 0.011 0.011
(2) (2) (2) (2) (2) (2) (2) (2)

Q P R O P 0.009 0.009 0.071 0.086 0.011 0.010 0.011 0.010
(2) (1) (1) (2) (1) (1) (2) (2)

S S C S A B B 0.008 0.008 0.066 0.082 0.013 0.012 0.011 0.011
(8) (5) (8) (4) (8) (8) (5) (5)
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Table 6.9: T-statistic values for the differences between the mean MSEs of the best 
performing version of the algorithms tested, at the middle of the simulation runs, 
in the training and test sets respectively (critical value ¿{1- 0.05/2,18} =  2.109).

T -S ta t is t ic
Algorithms
Compared

Regression Regression 
with Outliers

Logistic
Map

M a ck ey-
-G lass

T rain Test T rain Test Train Test T rain Test

B P R -Q P R O P 17.15 14.93 7.99 -3 .50 18.87 19.78 2.97 3.03
B P R -S S C S A B B 20.69 17.09 14.57 -2 .3 7 12.35 13.02 1.43 1.12
S S C S A B B -Q P R O P 0.74 2.97 3.88 2.61 -1 .48 -1 .55 -2 .62 -2 .68

Table 6.10: Hypothesis testing for differences between the average Mean Squared 
Errors of the best performing version of the algorithms tested, at the middle of 
the simulation runs, in the training and test sets respectively (0: accept null 
hypothesis H0, 1: reject H0, where the alternative hypothesis is that the first algo­
rithm performs better than the second, and (*) denotes equality of performances).

H yp oth esis  T estin g
Algorithms
Compared

Regression Regression 
with Outliers

Logistic
Map

M a ck ey- 
-  Glass

Train Test T rain Test T rain Test Train Test

Q P R O P -B P R 1 1 1 0 1 1 1 1
S S C S A B B -B P R 1 1 1 0 1 1 0* 0*
S S C S A B B -Q P R O P 0* 1 1 1 0* 0* 0 0

presentation of descriptive statistics over a number of repeated measurements. 

Consequently, we begin by presenting in Tables 6.3 and 6.4 the average of Mean 

Square Error (MSE) values achieved on the training set by all versions of the 

algorithms at the middle and at the end of the training period respectively. These 

tables include results for all regression problems so that exploratory comparison 

of the performances can be also performed. In addition, every value in the ta­

bles is annotated with the corresponding standard deviations as a measure of the 

variability around the average behaviour expressed by the mean values. Under an
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Table 6.11: T-statistic values for the differences between the mean MSEs 
of the best performing version of the algorithms tested, at the end of the 
simulation runs, in the training and test sets respectively (critical value 
{̂1—0.05/2,18} =  2.109).

T -S ta t is t ic
Algorithms
Compared

Regression Regression 
with Outliers

Logistic
Map

M a ck ey- 
~Glass

Train Test T ra in Test Train Test Train Test

B P R -Q P R O P 13.85 5.04 11.63 -7 .36 23.86 23.40 3.86 3.60
B P R -S S C S A B B 19.00 9.12 14.91 -6 .75 11.19 11.30 2.10 1.58
S S C S A B B -Q P R O P 3.92 3.55 3.05 4.15 -0.29 -0 .30 -3 .50 -3 .28

alternative interpretation, these quantities could give an indication of the sensi­

tivity of the training algorithms to different values for the starting points (initial 

weights). To complete the picture, similar tabulations of the results obtained in 

the test sets are shown in Tables 6.5 and 6.6 for the same points in time during 

learning. These bear particular significance for us since the main focus of our 

interests is performance assessment with respect to generalisation.

To start with the BPR, it is not difficult to conclude that there are differences 

between the two versions in both Tables 6.3 and 6.4. This observation holds for 

all the regression tasks and, furthermore, for the results of the testing sets as well 

(Tables 6.5 and 6.6). As expected, the version with the smaller learning rate (ver­

sion 1) is slower in training resulting also in higher error rates in the test set for the 

same number of epochs. However, as pointed out previously, very large learning 

rates can also lead to poor performance as a result of oscillation. QPROP, how­

ever, does seem to be too sensitive, at least to the values of alternative stepsizes 

we tried, as it can be deduced by the very similar behaviour exhibited by its two 

versions in all cases. On the other hand, conclusions about SSC-SABB are not 

so straightforward since we have tried a greater number of different values for the 

adjustable parameters. The combinations of the range of values for the switching
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Table 6.12: Hypothesis testing for differences between the average Mean Squared 
Errors of the best performing version of the algorithms tested, at the end of 
the simulation runs, in the training and test sets respectively (0: accept null 
hypothesis H0, 1: reject H0, where the alternative hypothesis is that the first algo­
rithm performs better than the second, and (*) denotes equality of performances).

H yp oth esis  T estin g
Algorithms
Compared

Regression Regression 
with Outliers

Logistic
Map

M ackey-  
-G lass

T rain Test T rain Test Train Test T rain Test

Q P R O P -B P R 1 1 1 0 1 1 1 1
S S C S A B B -B P R 1 1 1 0 1 1 1 0*
S S C S A B B -Q P R O P 1 1 1 1 0* 0* 0 0

Table 6.13: Number of successful runs (out of 10) in the test sets, with the cor­
responding mean number of epochs and their standard deviations in parentheses 
(rounded to the nearest integer).

Convergence statistics
Algorithms Ver. Regression Regression Logistic Mackey-

with Outliers Map - Glass
BPR 1 0 0 0 10 (1822/1321)

2 10 (4567/831) 10 (817/159) 0 10 (22/10)
QPROP 1 10 (431/167) 10 (117/55) 10 (498/535) 10 (17/6)

2 10 (430/136) 10 (92/32) 10 (312/120) 10 (20/9)
SSCSABB 1 10 (656/247) 9 (112/42) 9 (5812/2003) 10 (11/3)

2 10 (641/228) 10 (109/41) 9 (7003/1326) 10 (6/2)
3 1 (9060/0) 2 (4270/5939) 2 (4065/21) 0
4 10 (1000/218) 10 (1194/229) 9 (7530/1334) -
5 10 (694/76) 10 (562/155) 10 (3722/1669) 10 (15/7)
6 9 (127/25) 8 (185/126) 4 ( 202/25) -
7 7 (127/21) 7 (125/25) 5 (2088/3769) -
8 10 (1044/1526) 10 (783/1323) 10 (2802/2716) -
9 4 (125/5) - 0 -
10 10 (1860/1344) - 7 (5097/2870) -
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(preference) parameter (T), with the different types and initial values for the step- 

sizes (tk) of the supervising algorithm (SA), result in 10 different versions of the 

algorithm which are represented in the tables. However, this number of different 

versions is necessary in order to adequately explore the effective ranges of values 

for the parameters influencing the behaviour of SSC-SABB. It is worth reminding 

here that very purpose of the switching parameters is to provide additional pref­

erence to either the fast part of the SSC algorithm (search engine), by assuming 

values greater than 1, or to the conservative slower part (supervisor) when T < 1. 

Thus adjusting the balance between speed and robustness, hence the behaviour 

of the SSC algorithm according to the requirements of the task in hand. It should 

be pointed out that the existence of such an additional adjustable parameter is 

not necessarily a disadvantage since according to (Wolpert and Macready, 1996) 

no algorithm is uniformly better than any other for all possible tasks. Therefore, 

the flexibility to obtain a modified version of the algorithm by adjusting only one 

parameter provides the class of SSC algorithms with the ability to successfully 

overcome this limitation.

Although an initial exploration of the results concerning SSC-SABB in Ta­

bles 6.3 to 6.6 may appear to present an inconclusive picture, this is not the case 

after a more careful observation. First, we can say that version 2, which has values 

tk — 0.1/k and T =  1, consistently outperforms BPR both in the training and test 

sets. Second, the same version, which can be thought as having a standard choice 

of parameters, performs reasonably close to QPROP for the simple Regression and 

the Mackey-Glass problems. It can be observed that in these problems, as already 

discussed, the noises involved are quite easier to tackle being normally distributed 

in the first case and bounded approximation error in the second. However, in the 

other two problems, the Regression with Outliers and the Logistic Map, noises 

are much more difficult to address and in these cases different combinations of 

parameters (versions) perform comparably with the QPROP. In the first case, 

version 8, which gives preference to the fast search engine algorithm (T =  5), is 

better. It seems that, in this case, a more aggressive and flexible choice of learning
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rates is needed to overcome the significant influence of the outliers in the process 

of the error minimisation, as we have already discussed. The same observation, 

however, does not hold for the corresponding results in the Tables 6.5 and 6.6 

where the error in the test set (generalisation) is depicted. In these tables, version 

4 appears to offer the best performance. This change in the favourable version 

between training and test sets demonstrates clearly the effects of overtraining as 

well as the importance of the switching parameter which allows to define versions 

of the algorithm that do not overtrain. The same is not true for the QPROP the 

generalisation error of which increases as training proceeds from the middle of the 

run (Table 6.5) to the end of it (Table 6.5). As a general observation from all the 

Tables 6.3 to 6.6, it seems that only in the case of the Logistic Map there is a 

significant decrease of MSE between the middle and the end of the corresponding 

training period, both in the training and the test set for all the algorithms. This 

provides an indication that this is the most difficult task to address. The results 

discussed previously provide useful exploratory information. It is common in the 

neural network research to produce similar tabulations with respect to different 

parameter values in order to select the most successful network for further analy­

sis. In that sense, we now turn to a set of more comprehensive statistical analysis. 

The most successful versions of each algorithm is selected and the corresponding 

MSE is included in Tables 6.7 and 6.8 again for the training and test set at the 

middle and at the end of the training period. The version numbers are shown in 

parentheses. First, it is easy to realise that these tables provide additional support 

to the points raised in our previous discussion. As a general observation, we can 

state that SSC-SABB outperforms BPR in all cases and, with the exception of 

the Logistic Map at the middle of the simulation run, performs comparably with 

QPROP.

Now, in order to obtain a measure of the significance of the performance dif­

ferences we observe between the best versions of the algorithms, we calculate the 

values of the T-statistic corresponding to the differences of the means of the MSEs 

over the 10 training runs for every problem. Tables 6.9 and 6.11 include the values
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of the statistic corresponding to training and test sets for the middle and the end of 

the runs respectively. The first column of the tables shows the pairs of algorithms 

compared. For 18 degrees of freedom (10+10-2) and a significance level of 0.05 

the critical value of the statistic is ¿97,5,18 =  2.109. Therefore values in the tables 

outside the critical region [-2.109, 2.109] indicate rejection of the null hypothesis 

of equality of means. In our case, this null hypothesis can be interpreted as equal­

ity in performances whatever the observed differences in the average MSE are. A 

noteworthy case from Table 6.9 is that of the comparison between SSC-SABB and 

QPROP for the Logistic Map. From the corresponding entries in Table 6.7 we 

observe a difference of the MSE in favour of QPROP. However, the corresponding 

t-statistics in Table 6.9 suggest that these differences both in the training and 

test set errors are superficial and do not hold statistical significance. So, we can 

conclude that, even in this case, despite the initial observations SSC-SABB and 

QPROP perform equivalently. In general, when equality of the means is rejected, 

additional tests are required to decide the direction of the relation. Tables 6.10 

and 6.12 present the result of such tests for the alternative hypothesis (Hi) that 

the first algorithm from the pair shown in the first column outperforms the second. 

These tests are based on the values in Tables 6.9 and 6.11 respectively. A value 

of 0 in Tables 6.10 and 6.12 denotes acceptance of the null hypothesis that the 

first algorithm performs equally or worst than the second, with (*) indicating the 

case of equality. The opposite conclusion holds for a value of 1. Hence, through a 

quick overview of the two tables we can safely conclude that SSC-SABB performs 

better or at least equally with QPROP (indicated by Is or 0*) with respect to 

both training efficiency and generalisation, for all problems but the Mackey-Glass 

series.

We conclude our analysis with a comparison of the number of runs each of 

succeeded in achieving a prespecified level of MSE (i.e. converged) in the test 

sets. The corresponding results are included in Table 6.13 along with the average 

number of the epochs required and their standard deviations in parentheses. The 

error levels used for each problem are included in Table 6.2. It is not difficult
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Table 6.14: Parameters used in the simulation runs for the Classification prob­
lems; i-h-o: number of input,hidden, output nodes

Problems Architecture
i-h-o

Max Nr. 
of Epochs

Convergence 
Criterion (MSE)

Parity 8 8-16-1 90 0.0001
Parity 8 Generalisation 8-16-1 90 0.001
Sonar 60-24-2 2500 0.12
Digits 76-40-10 2500 0.25

to observe in Table 6.13 that for all problems, with the exception of the Logistic 

Map, at least one version of the SSC based algorithm is as robust (with respect 

to the number of times converged) and as fast as QPROP if not better.

6.3 Classification Problems

Again, as a general remark, it is useful to note here, that all the networks trained 

to address the classification tasks we examine in this study had identity activation 

functions for their input nodes and symmetrical sigmoid nonlinearities (hyperbolic 

tangent) for their hidden nodes. However, unlike the networks used in the regres­

sion cases, their output nodes were assigned logistic sigmoid activation functions, 

so that their outputs can be interpreted as class membership probabilities. The 

error function used for the two-class problems was the cross-entropy, while for the 

multi-class case its multivariate analogue (see Section 5.3.1). The network archi­

tectures corresponding to each of the problems along with the values for other 

parameters used during the performance assessment experiments are summarised 

in Table 6.14.

6.3.1 Parity

The parity problem is one of the best established benchmarks for neural network 

learning methods. It can be expressed as the sum, mod2, of n binary inputs. In
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other words, the target value is ‘true’ (1) if and only if an odd number of inputs 

are ‘true’, otherwise it is ‘false’. A special case of this task where there are only to 

binary input variables is the well-known ‘exclusive or’ (XOR) problem. Despite 

the simple underlying rule the parity class of problems is surprisingly hard to be 

addressed by neural networks trained by the backpropagation of error (Thornton, 

1996). The particular significance of the parity task as an impossible problem 

for linear first-order perceptrons was pointed out by Minsky and Papert (Min­

sky and Papert, 1988). It belongs in the category of the so-called “statistically 

neutral” problems, for which the probability (i.e. observed frequency) to assign 

any particular input to a specific output class is always the chance value. For the 

two-class problem like the one we use here this value is 0.5. It has been argued 

that exactly this fact prevents learning methods based on extracting relationships 

from examples, such as the neural networks, from performing well in the parity 

problems (Ghorbani and Owrangh, 2001). In this study we use one of the harder 

versions which involves 8 input variables (characterised in the following as ‘Parity 

8’). The exhaustive set of cases includes 28 =  256 patterns (input-target pairs). 

In (Fahlman, 1988) it is reported that QPROP performs favourably, in terms of 

speed, in the two-input equivalent ‘XOR’ problem even in comparison to a neural 

network trained by a “BFGS” based algorithm. We follow the advice given in 

the CMU Benchmark Learning Archive (Kantrowitz, 1993)that for n input parity 

problems the networks should have at least n hidden nodes. So, we train networks 

with 8 input, 16 hidden, and 1 output nodes, to a maximum of 90 epochs.

When training involves all possible cases the issue of generalisation is not rel­

evant. Therefore, in order to test our algorithm in a much harder problem we 

constructed a second task from the same data set which involves performance 

in unseen data. This problems is denoted in the following as ‘Parity Generali­

sation’. In this case the original data from the parity problem for 8 inputs was 

divided to two disjoint sets of equal size, one for training and one for testing. 

It has been reported recently in (Ghorbani and Owrangh, 2001) that networks 

trained with the standard Backpropagation algorithm exhibit poor generalisation
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Figure 8: Parity 8 problem: Typical examples of learning curves of the QPROP
and SSCSABB , in the training (a) and test(b) sets, compared to the corresponding
curve for BPR in the test set.
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ability even when minimal numbers of patterns are excluded from the training 

set. This can be verified from Fig. 8(b) where the corresponding learning curve 

(solid line) decreases much slower than those of the QPROP (dotted line) and the 

SSC-SABB (dashed line). Furthermore, BPR fails to achieve error levels similar 

to those achieved by the other two algorithms both in the training (Fig. 8(a)) 

and the test (Fig. 8(b)) sets. Another interesting observation from these graphs 

concerns the behaviour of QPROP. In the training set it achieves the same level of 

MSE as SSC-SABB and with the same speed, although it seems to be somewhat 

unstable (observe the spikes in the corresponding line). However, in the test set 

(Fig. 8(b)) it shows a completely different behaviour. After it reaches a minimum 

level the error increases significantly up to the end of the training period and the 

learning curves assumes the ‘U’ shape characteristic of the case of overtraining. In 

contrast, the generalisation error of the SSC-SABB decreases steadily as training 

continues and saturates at a very low level. Conclusions and possible reasons for 

this difference in behaviour between the two algorithms will be explored in the 

following section where statistical analyses of the results are discussed.

6.3.2 Sonar, Mines vs Rocks

This is a classical benchmarking data set for evaluating learning algorithms in the 

field of artificial neural networks. Since its first use in (Gorman and Sejnowski, 

1988), it has been used extensively by researchers in the field (Ripley, 1993). 

However, due to the fact that there numerous ways to construct evaluating exper­

iments with this data (see relevant comments in the CMU Learning Benchmark 

Archive (Kantrowitz, 1993)) comparisons are not straightforward. The task is to 

discriminate between sonar signals bounced off a metal cylinder (mine) from those 

obtained from a rock with roughly the same shape. The original data set consists 

of 208 cases each of which comprises a 60-dimensional vector of continuous real 

values serving as inputs and one enumerated variable, acting as target.

The data used in the present study was obtained from the CMU Learning 

Benchmark Archive (Kantrowitz, 1993) and is the one characterised as the ‘aspect
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Figure 9: Sonar problem: Typical examples of learning curves of the QPROP and
SSCSABB , in the training (a) and test (b) sets, compared to the corresponding
curve for BPR in the test set.
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angle dependent’ set. Since the original sonar measurements did not include aspect 

angle information the contributors used clustering to create two disjoint sets in 

each of which a representative number of samples from all aspect angles would 

be included. Both sets contain 104 cases. We employ one of the set to train 

networks with 60 input, 24 hidden, and two output nodes. We allowed training 

to continue for 2500 epochs. Fig. 9 illustrates the training and generalisation 

behaviour of QPROP and SSC-SABB as compared to the generalisation obtained 

from the networks trained by BPR (solid line in both subfigures). It not difficult to 

observe that in this task also, QPROP tends to overtrain the networks and hence 

its predictive performance degrades. Once more SSC-SABB shows resilience to 

this phenomenon and its generalisation ability saturates at a level equal to that 

achieved by BPR, but at a much faster rate. In (Gorman and Sejnowski, 1988), 

a recognition rate of 89.2% in the test set is reported to have been achieved by 

a network with similar architecture to ours, and trained by a modified version 

of the BPR. As we shall see below, where we discuss similar type of results, our 

algorithm achieved comparable performance.

6.3.3 Handwritten Digit Recognition

In this example we employ a more complex and realistic task from the character 

recognition domain. The dataset consists of 76 Fourier coefficients extracted from 

each of 2000 binarised images of handwritten numerals (0-9), with an original 

resolution of 30 x 48 pixels, obtained from Dutch utility maps. More details about 

this dataset can be found in (Blake and Merz, 1998) under the name ‘mfeat’ . In 

the same form the set was used in (Duin and Tax, 2000). Samples are distributed 

equally over the classes (200 samples per class) and form a non-trivial 10-class 

pattern recognition problem. A training set was generated by randomly selecting 

125 samples per class while the remaining 750 samples (75 per class) were used 

as a testing set.

All the networks trained for this task had 76 input, 40 hidden, and 10 output
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Figure 10: Handwritten Digit recognition: Typical examples of learning curves of
the QPROP (a) and SSCSABB (b), in the training and test sets, compared to the
corresponding curve for BPR in the test set.
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Table 6.15: Mean Squared Error (MSE), in the training set, and its Standard 
Deviation (Std) in parentheses at the middle of the simulation runs for the 
algorithms tested.

M ean  S quared  E rror (S tan d ard  D ev ia tion )
Algorithms Ver. Parity 8 Parity 8 Sonar Digits

Generalisation

B P R 1 0.27365 0.26945 0.24063 0.89120
(0.03482) (0 .04023) (0 .01465) (0 .00832)

2 0 .11417 0.10756 0.05263 0.25099
(0 .01849) (0 .03091) (0 .00456) (0 .00347)

Q P R O P 1 0.01264 0 .09267 0.02494 0.12445
(0 .03873) (0 .29303) (0 .07879) (0 .00581)

2 0.00741 0.00000 0.00103 0.12614
(0 .01869) (0 .00000) (0 .00308) (0 .00587)

S S C S A B B 1 0.00000 0.00000 0.04645 0.13415
(0 .00000) (0 .00000) (0 .08325) (0 .00501)

2 0.00000 0.00000 0.02586 0.13655
(0 .00000) (0 .00000) (0 .05028) (0 .00822)

3 0.00004 0 .00000 0.04738 0.15305
(0 .00013) (0 .00000) (0 .06194) (0 .00989)

5 0.00000 0 .00000 0.00101 0.12428
(0 .00000) (0 .00000) (0 .00093) (0 .00203)

nodes. Training was continued for 2500 epochs. Fig. 10 shows characteristic learn­

ing curves of the QPROP and the SSCSABB obtained on the training and test 

sets. Additionally, for comparison, it includes, in both subfigures, the curve cor­

responding to BPR for the test set. It is not difficult to observe in Fig. 10(a) that 

the generalisation error of QPROP (dotted line) after reaching a minimum value 

starts to increase as the training error (dashed line) decreases further. This illus­

trates clearly the results of memorisation of the training patterns (overtraining). 

Fig. 10(b) demonstrates that the same does not hold for the SSC-SABB, which 

exhibits a behaviour qualitatively more similar to that of BPR, and succeeds to 

avoid overtraining.
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Table 6.16: Mean Squared Error (MSE), in the training set, and its Standard 
Deviation (Std) in parentheses at the end of the simulation runs for the algo­
rithms tested.

M ean  S quared  E rror (S tan d ard  D ev ia tion )
Algorithms Ver. Parity 8 Parity 8 Sonar Digits

Generalisation
B P R 1 0.27054 0.26563 0.23105 0.87256

(0 .03421) (0 .03860) (0 .01319) (0 .00957)
2 0.03362 0 .02977 0.01018 0.21153

(0 .00852) (0 .01358) (Q.00172) (0 .00253)
Q P R O P 1 0.00003 0.03961 0.02520 0.09165

(0 .00009) (0 .12527) (0 .07969) (0 .00935)
2 0.00000 0.00000 0.00000 0.09323

(0 .00000) (0 .00000) (0 .00000) (0 .00821)
S S C S A B B 1 0.00000 0.00000 0.04099 0.10679

(0 .00000) (0 .00000) (0 .08609) (0 .00421)
2 0.00000 0.00000 0.01733 0.11122

(0 .00000) (0 .00000) (0 .05311) (0 .00996)
3 0.00000 0.00000 0.03888 0.12658

(0 .00000) (0 .00000) (0 .06222) (0 .01038)
5 0.00000 0.00000 0.00001 0.09319

(0 .00000) (0 .00000) (0 .00001) (0 .00388)

Table 6.17: Mean Squared Error (MSE), in the test set, and its Standard Devia­
tion (Std) in parentheses at the middle of the simulation runs for the algorithms 
tested.

M ea n  S quared  E rror (S tan d ard  D ev ia tion )
Algorithms Ver. Parity 8 

Generalisation
Sonar Digits

B P R 1 0.26891 (0 .04299) 0.24775 (0 .01923) 0 .89036 (0 .00934)
2 0.11608 (0 .02705) 0.09976 (0 .00543) 0 .25707  (0 .00485)

Q P R O P 1 0.10067  (0 .28455) 0.19131 (0 .03971) 0 .26142 (0 .00746)
2 0 .02562 (0 .06739) 0.19132 (0 .04215) 0.26158 (0 .01740)

S S C S A B B 1 0.00000 (0 .00000) 0.11915 (0 .05052) 0 .20792 (0 .00374)
2 0 .00000 (0 .00000) 0.10240 (0 .02062) 0 .20807  (0 .00382)
3 0.00002 (0 .00004) 0.11889 (0 .03316) 0 .20985 (0 .00514)
5 0 .00000 (0 .00000) 0.10129 (0 .00772) 0 .20784  (0 .00379)
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Table 6.18: Mean Squared Error (MSE), in the test set, and its Standard Devi­
ation (Std) in parentheses at the end of the simulation runs for the algorithms 
tested.

M ean  Squared  E rror (S ta n d a rd  Deviation^
Algorithms Ver. Parity 8 

Generalisation
Sonar Digits

B P R 1 0.26566 (0.04160) 0.23771 (0 .01783) 0.87165 (0 .01112)
2 0.04350 (0 .01195) 0 .09499 (0 .00458) 0.23049 (0 .00443)

Q P R O P 1 0.04119 (0 .13026) 0.19931 (0 .03702) 0 .28847 (0 .01847)
2 0.02570 (0 .05097) 0 .20605 (0 .04203) 0.28235 (0 .01734)

S S C S A B B 1 0.00000 (0 .00000) 0 .12208 (0 .04916) 0.20891 (0 .00413)
2 0.00000 (0.00000) 0 .10544  (0 .01977) 0.20850 (0 .00330)
3 0.00000 (0.00000) 0 .11924  (0 .03086) 0.20861 (0 .00525)
5 0.00000 (0.00000) 0 .10337  (0 .00959) 0.21080 (0 .00483)

Table 6.19: Best performing version of the algorithms tested, at the middle of 
the simulation runs, in the training and test sets respectively.

B est p erform a n ces
Algorithms
Compared

Parity 8 Parity 8 
Generalisation

Sonar Digits

Train Test Train Test T rain Test Train Test

B P R 0.114

(2)

- 0.107

(2)

0.116

(2)

0.052
(2)

0.099
(2)

0.250

(2)

0.257

(2)
Q P R O P 0.007

(2)
0.000

(2)

0.025

(2)

0.001
(2)

0.191

(1)

0.124

(1)

0.261

(1)
S S C S A B B 0.000

(-)

0.000

(-)

0.000

(-)

0.001

(5)
0.101

(5)
0.124

(5)
0.207

(5)
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Table 6.20: Best performing version of the algorithms tested, at the end of the 
simulation runs, in the training and test sets respectively.

B est p erform a n ces
Algorithms
Compared

Parity 8 Parity 8 
Generalisation

Sonar Digits

T rain Test T ra in Test T rain Test T rain Test

B P R 0.033

(2)

- 0.029
(2)

0.043
(2)

0.010

(2)

0.094

(2)

0.211

(2)

0 .230

(2)
Q P R O P 0.000

(2)
” 0.000

(2)
0.025

(2)

0.000

(2)

0.199

(1)

0.091

(1)

0.282

(2)
S S C S A B B 0.000

(-)

0 .000

(-)

0 .000

(-)

0 .000
(5)

0.103

(5)
0.093

(5)
0.208

(2)

6.3.4 Statistical Analysis and Discussion

In the classification problems we perform the same type of analyses we presented 

previously. However, here the picture, formed by the corresponding results pre­

sented, appears to be much clearer in favour of the SSC-SABB algorithm. We 

start by reporting again the average MSEs over the ten training runs for each 

of the four benchmarking problems. Results in Tables 6.15 and 6.16 refer to the 

training set while these in Tables 6.17 and 6.18 to the test set. Note that for the 

conventional Parity problem (denoted as ‘Parity 8’ in the tables) where all possi­

ble cases are used for training, there are no results corresponding to the test set. 

In this task, as discussed, measurement of generalisation is not relevant. As men­

tioned previously, these tables provide the means to identify which of the versions 

of each algorithm are favourable as well as to monitor the evolution of the training 

error and the generalisation error (often called predictive error in statistics). It 

is not difficult to realise from these tables that, for the BPR, version 2 which has 

a learning rate of 0.1 (see Table 6.1) is the one exhibiting the best performance. 

In all problems tested the training error of BPR decreases considerably from the 

middle to the end of the training period. The same observation is, however, true 

only for the ‘Parity 8-Generalisation’ problem when the MSE in the test set is
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Table 6.21: T-statistic values for the differences between the mean MSEs of 
the best performing version of the algorithms tested, at the middle of the 
simulation runs, in the training and test sets respectively (critical value 
¿{1-0.05/2,18} =  2.109).

T -S ta t is t ic
Algorithms
Compared

Parity 8 Parity 8 
Generalisation

Sonar Digits

T rain Test T ra in Test T rain Test T rain Test

B P R -Q P R O P 12.84 - 11.00 3.94 29.65 -7.22 59.15 -1 .55
B P R -S S C S A B B 19.53 - 11.00 13.57 35.06 -0.51 99.67 25.28
S S C S A B B -Q P R O P 1.25 - 1.37 1.20 0.03 7.04 0.09 20.25

considered. It is important to note here that the latter (generalisation error) does 

not increase as training continues from the middle to the end of the run. The 

same, however, cannot be argued for QPROP as well. In all the problems in­

cluded in Tables 6.17 and 6.18 the generalisation error of QPROP is, noticeably, 

higher at the end of the training period than in the middle. In fact, QPROP 

seems to present considerably different behaviour in the classification than that 

observed in the Regression ones. It can be seen from the corresponding entries in 

Tables 6.15 and 6.16 that for all the problems, except the Digits recognition, the 

performance appears to be sensitive to the choice of the alternative learning rate 

l, with the version having the larger value being favourable. The same observa­

tion holds only for ‘Parity 8-Generalisation’ task with respect to predictive error 

(Tables 6.17 and 6.18). We do not have any apparent explanation for this change 

in the behaviour of QPROP in the class of problems. Let us know consider SSC- 

SABB. First, we employ a smaller number of value combinations (versions) in the 

classification problems. Second, we employ only version with switching parameter 

value T  =  1. This is because, as we discussed in previous chapter, it has been 

argued in the literature that more conservative (even slower) algorithms, such as 

the BPR, can perform better than faster algorithms in classification tasks (Reed 

and Marks, 1999, pp. 152,156). The argument is based on the observation that
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Table 6.22: Hypothesis testing for differences between the average Mean Squared 
Errors of the best performing version of the algorithms tested, at the middle of 
the simulation runs, in the training and test sets respectively (0: accept null 
hypothesis H0, 1: reject H0, where the alternative hypothesis is that the first algo­
rithm performs better than the second, and (*) denotes equality of performances).

Hypothesis Testing
Algorithms
Compared

Parity 8 Parity 8 
Generalisation

Sonar Digits

Train Test Train Test Train Test Train Test
QPROP-BPR 1 - 1 1 1 0 1 0*
SSCSABB-BPR 1 - 1 1 1 0* 1 1
SSCSABB-QPROP 0* - 0* 0* 0* 1 0* 1

in such tasks high accuracy in the approximation of the minimum in error is 

not required as long as the network outputs identify unambiguously the correct 

class. Furthermore, avoiding overtraining appears to be much more important in 

classification tasks so that algorithms incorporating some kind of mechanism to 

saturate before memorising the particular training patterns are preferable. The 

Stochastic Approximation algorithm (SA), which forms the supervising part of 

the SSC algorithm, can be considered to have such a mechanism.

Unlike the other two algorithms, all versions of SSC-SABB seem to tackle the 

Parity task very easily since they produce virtually zero MSE from the middle of 

the training period both on the training and the test sets. Diversification in the 

behaviour of the SSC-SABB versions is observed, however, in the other two tasks, 

the Sonar problem and the Digits recognition. The version with constant stepsize 

(version 5) seems to be favourable with respect to training error for all the prob­

lems. However, the same picture is not retained when the error in the test set is 

considered (Tables 6.17 and 6.18), where all versions exhibit similar performance. 

From the same tables, no considerable increase in the generalisation error can be 

observed, unlike the case of QPROP we discussed above. This provides support 

to our previous hypothesis that the supervisor algorithm along with the switching
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Table 6.23: T-statistic values for the differences between the mean MSEs 
of the best performing version of the algorithms tested, at the end of the 
simulation runs, in the training and test sets respectively (critical value
¿{1—0.05/2,18} =  2.109).

T -S ta t is t ic
Algorithms
Compared

Parity 8 Parity 8 
Generalisation

Sonar Digits

T rain Test Train Test T ra in Test T rain Test

B P R -Q P R O P 12.47 - 6.93 1.08 18.68 -8 .84 39.11 -9 .1 7
B P R -S S C S A B B 12.47 - 6.93 11.51 18.66 -2 .49 80.71 12.59
S S C S A B B -Q P R O P 1.00 - 1.00 1.59 -2 .77 7.93 -0 .48 13.23

mechanism form a successful device to tackle the problem of overtraining.

The results corresponding to the most successful versions for each algorithm 

from the previous tables are summarised in Tables 6.19 and 6.20 (rounded to three 

decimal points). Version number indicators are included in parentheses. The 

examination of the entries in the tables verify the superiority of the SSC-SABB 

for all the tasks with respect both of the training efficiency and generalisation. 

They also provide clear empirical evidence in support of the points raised in our 

previous discussion about the issue of overtraining.

We proceed by discussing a series of hypotheses testing analyses in order to 

define the statistical significance of the pairwise differences in performance ob­

served among the versions of the algorithms selected to be included in Tables 6.19 

and 6.20. To this end, we calculate and present in Tables 6.21 and 6.23 the 

t-statistic values corresponding to the differences of the means of MSEs over the 

10 runs for the pairs of algorithms shown in the first column of the tables. Since 

the number of the runs is the same as in the Regression problems the critical 

region, corresponding to the t-statistic with 18 degrees of freedom (10+10-2) and 

at a significance level of 0.05, is again [-2.109, 2.109]. Values out of this interval 

suggest rejection of the null hypothesis (H0) of equality for the means. This is 

actually the case for the generalisation error difference between SSC-SABB and
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Table 6.24: Hypothesis testing for differences between the average Mean Squared 
Errors of the best performing version of the algorithms tested, at the end of 
the simulation runs, in the training and test sets respectively (0: accept null 
hypothesis H0, 1: reject H0, where the alternative hypothesis is that the first algo­
rithm performs better than the second, and (*) denotes equality of performances).

H yp oth esis  T estin g
Algorithms
Compared

Parity 8 Parity 8 
Generalisation

Sonar Digits

Train Test T rain Test T rain Test Train Test

Q P R O P -B P R 1 - 1 0* 1 0 1 0
S S C S A B B -B P R 1 - 1 1 1 0 1 1
S S C S A B B -Q P R O P 0* - 0* 0* 0 1 0* 1

Table 6.25: Number of successful runs (out of 10) in the test sets, with the cor­
responding mean number of epochs and their standard deviations in parentheses 
(rounded to the nearest integer).

C on vergen ce  sta tistics
Algorithms Ver. Parity 8 Parity 8 

Generalisation
Sonar Digits

B P R 1 0 0 0 0
2 10 (5 2 9 /2 6 ) 1 (4 9 6 /0 ) 10 (6 7 5 /1 0 7 ) 10 (1 5 1 0 /1 5 1 )

Q P R O P 1 10 (4 0 /1 6 ) 10 (3 8 /7 ) 3 (1 8 5 /4 2 ) 7 (4 5 7 /1 5 7 )
2 10 (3 3 /1 4 ) 10 (6 9 /8 2 ) 2 (2 3 0 /1 4 ) 7 (3 1 0 /1 0 8 )

S S C S A B B 1 10 (1 5 /2 ) 10 (1 3 /5 ) 8 (7 5 /4 4 ) 10 (1 5 1 /3 2 )
2 10 (1 7 /2 ) 10 (1 2 /3 ) 9 (1 3 6 /5 9 ) 10 (1 4 1 /2 2 )
3 10 (2 6 /9 ) 10 (1 8 /8 ) 7 (1 8 7 /1 4 2 ) 10 (2 1 6 /7 5 )
5 10 (1 7 /2 ) 10 (1 4 /5 ) 10 (5 5 /2 2 ) 10 (1 1 4 /1 7 )



CHAPTER 6. EMPIRICAL COMPARISONS 191

Table 6.26: Average classification error rates and the corresponding standard 
deviations, in the test set, at the end of simulation runs.

C la ssifica tion  E rror R ates (% )
Algorithms Ver. Parity 8 Parity 8 Sonar Digits

Generalisation
M ean Std M ean Std M ean Std M ean Std

B P R 1 51.80 3.03 46.64 4.38 40.87 4.79 76.34 1.88
2 0.04 0.04 0.16 0.11 11.63 3.15 16.06 1.65

Q P R O P 1 0.00 0.00 4.45 0.44 22.11 4.01 18.88 1.75
2 0.00 o .o o  • 2.66 0.70 21.15 3.99 18.50 1.74

S S C S A B B 1 0.00 0.00 0.00 0.00 17.21 3.49 14.92 1.59
2 0.00 0.00 0.00 0.00 12.98 3.27 14.82 1.59
3 0.00 0.00 0.00 0.00 15.77 3.50 14.80 1.59
5 0.00 0.00 0.00 0.00 11.44 3.13 14.58 1.58

Table 6.27: Average classification error rates and the corresponding standard 
deviations, in the test set, after 10 epochs.

C la ssifica tion  E rror R ates (% )
Algorithms Ver. Parity 8 Parity 8

Generalisation
M ean Std M ean Std

B P R 1 52.11 3.04 48.13 4.40
2 33.13 2.92 30.00 3.74

Q P R O P 1 48.67 3.08 48.59 4.33
2 20.78 2.14 23.05 3.23

S S C S A B B 1 0.00 0.00 1.41 0.52
2 0.00 0.00 0.08 0.08
3 20.82 1.99 9.06 1.24
5 0.00 0.00 0.00 0.00
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QPROP for the Sonar and Digits problems both at the middle (Table 6.21) and 

at the end (Table 6.23) of the simulation runs. The corresponding entries in Ta­

bles 6.22 and 6.24 respectively, can help us define the direction of this difference. 

In these tables, values of 1 indicate acceptance of the alternative hypothesis (Hi), 

that the first algorithm of the pair shown in the first column has achieved statis­

tically significant lower error than the second algorithm. Hence, it can be easily 

verified that the previous comparison both for the Sonar and Digits tasks turns in 

favour of SSC-SABB. In the rest of the cases, it is indicated that the SSC-SABB 

performs equally to QPROP. Additionally, SSC-SABB clearly outperforms BPR.

The next comparisons are performed with respect to robustness as expressed 

by the number of runs the learning algorithm achieved a prespecified level of 

generalisation error (MSE in the test set). The MSE values used as convergence 

criterion for every task are shown in Table 6.14. From Table 6.25 we can safely 

conclude that our training algorithm (SSC-SABB) outperforms the other two both 

in robustness and in speed.

However, the ultimate test for a classification system is the rate of misclassifica- 

tion it achieves when presented with unknown pattern. Consequently, Table 6.26 

presents the average percentage of classification error rates for all the versions 

of the algorithms measured over the test sets at the end of the training period. 

It is worth pointing out that even the worst performing version of SCC-SABB 

outperforms the best version of either of the other algorithms. Finally, because 

in the Parity problems QPROP also presented satisfactory behaviour at the end 

of the training phase, we present in Table 6.27 the same type of results for the 

Parity problems but after only 10 epochs of training. It is easily observed that 

SSC-SABB clearly excels in both tasks with considerably significant magnitude 

for the performance differences.
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6.4 Concluding Remarks

In summary, the algorithm proposed in this study (SSC-SABB) for application 

to Neural Network training produced in all cases and tasks tested performance 

superior to that of BPR at least by an order of magnitude. In the regression 

problems, SSC-SABB shows at least the same training behaviour as the QPROP 

and in many cases much better generalisation performance. However, in the clas­

sification problems excels in all cases both in training speed and generalisation 

due, we believe, its resistance to overtraining as a result of the supervision process 

imposed by the switching mechanism. In general, we can safely conclude that the 

neural networks trained with the SSC-SABB are not only excellent classifiers but 

also at least as competent function approximators (both for simple and complex 

(chaotic) functions) as those trained by algorithms (e.g. QPROP) reported to be 

among the most successful (Schiffman et ah, 1994). This was supported in this 

study by a series of elaborate statistical analyses ranging from initial exploratory 

comparisons to statistical hypothesis testing for the observed differences in per­

formances.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis we studied a novel class of algorithms for unconstrained optimisation 

with particular focus to the issues arising in the field of noisy optimisation. These 

algorithms were developed using an innovative framework for design of efficient 

and robust algorithms, namely the Supervisor and Searcher Co-operation (SSC) 

framework. This framework provides a systematic way to incorporate desirable 

characteristics of existing algorithms into a new scheme with improved qualitative 

properties. Thus, it constitutes an algorithmic synthesis tool which can be used 

to design algorithms which meet the complex requirements needed to successfully 

tackle noisy optimisation problems.

A detailed survey of the most popular classes of algorithms of currently used 

algorithms in the area of noisy unconstrained optimisation (Chapter 1) revealed 

that, on one hand, although gradient based algorithms compare favourably to 

those that do not use gradient information in terms of efficiency (speed), they 

suffer significant inconsistency of their performances under the presence of strong 

(possibly stochastic) noises in the gradient estimators and increased sensitivity to 

the selection of the appropriate stepsizes. Similar observations have been reported 

to hold also — and indeed verified in this work as well —  for versions of these 

algorithms which utilise line search procedures of the inexact or non-monotone

194
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type (see the results in Chapter 3 for the GBB algorithm which uses inexact line 

search). On the other hand, schemes that are based only on the function values, 

although proven to be, in general, more robust to the effects of noises, they need 

significantly greater number of function evaluations, especially as the accuracy 

required increases.

Therefore, based on these observations, a natural and logical conclusion is 

that an apparatus is needed to facilitate the synthesis of the diverse qualities of 

different algorithms (such as the one offered by the SSC framework), to success­

fully address the deficiencies of individual algorithms reported in the literature. 

The aim of the study reported in this thesis was to explore the properties of al­

gorithms developed within the SSC framework, focusing in particular on their 

behaviour in practice under the presence of stochastic noises. In summary, the 

findings of the research suggest that the algorithms developed according to the 

Supervisor and Searcher Co-operation framework are demonstrably efficient in the 

deterministic optimisation case but their main advantage is that they are able to 

successfully address the difficulties arising in optimisation under the presence of 

strong (stochastic) noises. They are also amenable to modifications and extensions 

aiming to meet specific application requirements, while the resulting algorithms 

retain the desirable properties of the original algorithm on which they are based. 

Finally, in real world applications involving training neural networks for regres­

sion and classification problems, the SSC-based algorithm exhibited significantly 

better performance than the two algorithms used as benchmarks for comparisons, 

in the majority of the cases examined. Specifically, it was demonstrably faster 

with respect to reduction of the error in the training set but more importantly it 

showed increased ability to avoid overtraining and hence to generalise (perform 

successfully in unknown examples), which is the ultimate goal in neural network 

training.

When examining the results in detail, there are a number of notable findings 

that should be mentioned. To begin with, the common characteristic shared by 

the algorithms designed according to the SSC framework is that they all operate
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in two phases. In the first phase, which can be characterised as the “switching” 

decision phase, the functions are evaluated at the points proposed by the different 

participant “parent” algorithms, the Supervisor and the Searcher, and a decision 

is made to switch or not from one to the other, according to a criterion which, 

depending on the value of a “preference” (switching) parameter T, favours the 

proposals of either the former or the latter.

There are two important points to note here. First, in the noise-free case the 

value of the switching parameter defines whether the algorithms would be mono­

tone or not in terms of successive function values. For example, if the Supervisor is 

decreasing and T <  1, the SSC algorithm will be also decreasing in the noise-free 

case. In such cases, preference is placed on the Supervisor algorithm which is usu­

ally slower so, as mentioned in Chapter 3, the corresponding SSC algorithm will 

be slower. Values of T greater than 1 cause the algorithm to be non-monotone 

which may be beneficial in terms of performance on a number of problems, as 

indeed it is indicated by results in the same chapter.

Second, in the stochastic noises case, the SSC algorithms are always non­

monotone, and the preference parameter T  controls the level of non-monotonicity. 

In doing so, in effect, it controls the balance between efficiency, in terms of speed 

to convergence, and robustness, in terms of the range of problems in which the 

algorithms can consistently be successful. For example, increased preference on 

the steps proposed by the Search Engine “parent” algorithm combined with the 

occasional appearance of extreme values of the disturbances in the stochastic 

case, may lead the algorithm to a point far from the solution, from which a larger 

number of iterations may be needed in order to recover. On the other hand, 

higher levels of non-monotonicity allow the algorithm to easily overcome poor 

local optima of the noisy objective function. In fact, our results in Chapters 3, 4 

and 6 indicate that in the majority of the noisy optimisation cases a value of 1 in 

the switching parameter T  will provide a satisfactory trade-off between efficiency 

and robustness.

Based on the above discussion, it is not difficult to realise that a thorough study
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of the properties of the SSC algorithms, and especially their behaviour in practice 

under a variety of conditions, e.g. different types of noises, is not a straightforward 

task. It involves their assessment with respect to a number of different criteria 

including efficiency, robustness, and amenability to modifications (flexibility), as 

well as practical applicability to realistic applications. To the best of our knowl­

edge, no such work has been reported in the literature to date. Therefore, the 

present study constitutes an original and innovative contribution which enriches 

the body of scientific knowledge in the field of optimisation algorithms, as well as 

it provides useful insights for the practitioners in the area.

In order to evaluate the properties of algorithms developed using the SSC 

framework in a systematic way we started by defining a basic algorithm and eval­

uating its performance through a series of experiments involving a wide range 

of non-trivial deterministic and stochastic problems. Our corresponding results 

indicate that, in agreement to relevant theoretical analysis, the basic algorithm is 

more efficient in terms of speed, and robust in terms of the number of problems 

solved that the algorithm used as Supervisor, which was the classical Stochastic 

Approximation algorithm. It is also indicated that the SSC algorithm is at least 

as fast as its Search Engine algorithm in both the deterministic and stochastic 

cases. Additional tests, with respect to various levels of noises and a range of 

different types of gradient estimators, showed consistent behaviour and not signif­

icant sensitivity to the choice of controlling parameters for its constituent “parent” 

algorithms.

Subsequently, in order to test the flexibility of the SSC-based algorithm to 

adapt in particular requirements arising in realistic application areas, such as re­

duced computational cost, we introduced and tested a number of modifications 

of the basic algorithm. These included also inexact variants which utilise ap­

proximations to the objective function values during the switching decision phase, 

instead of exact function evaluations, as well as an SSC algorithm involving the 

combination of more than two “parent” algorithms. The corresponding results 

demonstrate that these algorithms were significantly successful in tackling the
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issues designed to address.

Finally, in order to assess the applicability of the SSC algorithms in real world 

problems we proposed an adaptation to the basic algorithm examined in the 

present work for use in Multilayer Neural Network training. The correspond­

ing evaluations were performed through a series of experiments on a number of 

regression and classification problems, designed to cover the complex issues associ­

ated with neural networks learning, such as overtraining and mainly generalisation 

ability. To this end, the results obtained were subjected to comprehensive statisti­

cal analyses involving also statistical hypothesis testing of the observed differences 

in performances. It is notable that this type of analysis with respect to learning 

algorithms is not often met in the relevant literature, so it can be considered an 

original methodological contribution of the present study in the area of the as­

sessment of the properties of neural network training algorithms. The outcome 

of these investigations verified all the observations presented previously about the 

properties of the SSC algorithms. In addition, it can be safely argued that the 

neural networks trained with the SSC-based algorithms are not only excellent 

classifiers but also at least as competent function approximators as those trained 

by algorithms reported to be among the most successful in this field.

We consider this study to make an original contribution to the novel research 

area emerging in a number of science and engineering fields, that of combination or 

synthesis of methods. Examples of the new concepts developed and investigated 

in this area, which seems to flourish the last few years, can be found for instance 

in the field of pattern recognition, image analysis or biometrics, in the form of 

the design of Multiple Classifier Systems. In these, effective methods are sought 

to combine the outputs of a variety of individual classifiers (either at the decision 

or raw output (posterior probabilities of classes)) in order to obtain systems with 

improved performance. An extensive collection of current work in this area can 

be found in (Kittler and Roli, 2001). A second example of these ideas can be 

drawn from the combination of various types of neural networks into ensembles or 

committees (see, for instance, (Bishop,. 1995, pp. 365-369)) and (Sharkey, 1999)
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or alternatively in the same field the fusion of neural networks and fuzzy logic 

methodologies (Lin and Lee, 1996). In most of the above cases a common charac­

teristic is that the participant component algorithms (be it a statistic classifier or 

a trained network) are combined after they have produced individually some kind 

of output. The additional innovative contribution of the material reported in this 

thesis, about algorithms developed within the Supervisor Searcher Co-operation 

framework, although focused here in the field of noisy optimisation, is that, in 

general, it investigates a method to perform a synthesis at the algorithmic (as 

opposed to output) level. So, it goes a step further in providing an understand­

ing of possible ways to successfully integrate in a single scheme diverse desirable 

properties of existing methods.

7.2 Pointers to Future Research

It is a natural consequence of every scientific research, for every answer discov­

ered, to open a number of new questions, thus identifying possible paths for future 

research to be pursued. This work although orientated mainly towards the empiri­

cal exploration of SSC-based algorithms in noisy optimisation problems, indicates 

paths for possibly fruitful further research in a number of areas both in the side 

of theoretical analysis and that of applications, to which we shall provide some 

pointers in the following.

On one hand, regarding the theoretical analysis of algorithms designed us­

ing the SSC framework, we have presented results establishing the corresponding 

asymptotic behaviour in the presence of Normally distributed independent noise 

variates either in the objective function values or in the gradient estimators. How­

ever, in practice, such i.i.d. disturbances are a rare occurrence. Usually, the error 

components exhibit some kind of dependence across the sequence of the iterations 

of the algorithms, and indeed the asymptotic behaviour, for instance, of classical 

Stochastic Approximation algorithms have been studied extensively in the litera­

ture under a variety of assumptions and models for this dependence. Therefore,
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it would be an intriguing albeit highly challenging task to further the above men­

tioned results for the SSC algorithms to cover the asymptotic behaviour under 

such interdependent stochastic errors in the estimators used.

On the other hand, the application/development orientated side of possible 

lines for future research can be divided in two areas. In the first, one can con­

sider the natural and direct extension of the work presented in this thesis, that is 

applying the algorithms already developed to new cases. These can involve noisy 

optimisation as their main subject or as a subproblem to be addressed in order 

to achieve their final goal. Examples of the former can be drawn, for instance, 

from the wide and increasingly important field of Simulation Optimisation, and 

of course the more classical area of Constrained Optimisation. For the latter, a 

perfect example is the neural network training task, as introduced in the present 

work. The ultimate goal in this case is not optimisation over the error function 

but generalisation ability of the network, which however requires optimisation of 

an error function at some stage. So, the application of the variants and inexact 

versions of the basic algorithm, introduced here, to neural network training to 

perform either regression or classification tasks forms an interesting and straight­

forward line in our research plans.

In the second path of future research leading towards the application and 

development side, again, the field of Neural Network training can be a prominent 

candidate. In particular, regarding the development of new types of algorithms 

within the SSC framework, the design of an on-line training version, for instance, of 

the basic algorithm (SABB) examined here, would be of particular interest. This is 

because, as explained in Chapter 5, the on-line version will use gradient estimators, 

analogous to stochastic gradients in the conventional optimisation setting, a case 

in which SSC algorithms have not yet been tested. Also, it is reported that, at 

least in the classical Backpropagation case, the on-line version is usually faster. 

It would be interesting to explore whether or not the same holds for the SSC 

algorithms as well. Finally, to return to the area of classical noisy optimisation a 

really interesting continuance of the present work appears to be the development
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of practical algorithms with a varying sequence of switching parameters Tk along 

the iterations of the algorithm. Although most of the theoretical results presented 

here indicate that this can produce effective novel SSC algorithms, these ideas have 

not yet been tried in practice.

All the above form only a small sample of the open questions, arising from 

the work reported in this thesis, which lead to promising fruitful paths for further 

explorations. The adventure continues.
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Appendix B

Proofs of Theorems

Theorem 2.3

The results in this section are reproduced from (Sirlantzis et ah, 2001b). The 

author wishes to acknowledge major contributions to this material by Prof. WB. 

Liu, and Dr. F. Feng.

In order to prove Theorem 2.3 the following intermediate results are necessary: 

First, it is crucial for our proofs to observe that (see also the definition in 

Section 2.3.1)

F(xk+1) < F(xk - t k(VF(xk) +  €k+i))IA +  [TF(xk - t k(VF(xk) + t k +1))
— (Xfc+i ~ T(k+1)]IAc

=  F ( x k -  tk( V F ( x k) +  &+i)) +  [(T -  1 ) F ( xk -  tk( V F ( x k) +  6 + i))  

~ ( X k + 1 ~  T ( k + i ) ] I A c 

=  F( xk - t k( V F ( x k) + £ k+1)) +  Uk
(B.l)

where

A =  {T[F(xk - t k( V F ( x k) +  £k+i))+C*+i] < [F ( x k -/3k( V F ( x k) +  rjk+1))+Xk+i ]}

Denote Rk =  E(Uk\Tk), and assume that supxyeRd(F(x) — F(y))  < oo. It is 

essential to estimate Rk in order to apply the martingale convergence theory.

204
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Lem m a B .l  Let C  =  minieKd F(x)  and suppose that Xk w (o ,7  (*)),<*

iV(0, 0(h)) for  7 (k) > 0, 9{k) >  0 then for k >  1

*  < exp ( _  w o  +  a  -  t )c ?
V27T

provided that C is large enough and T <  1.

Proof: First of all we note that

2(7 (fc) +  9{k)T2)

< u2\A l \ f°° / w2\,i
exp(- y ) ( ; - # ) =  X exp ( - y K i  -  ^

for u > 0. Hence

/ 00 w2
exP ( - ^ - ) ^  > e x p ( -^ - ) ( -  -  -^ )2 u uA

(B.2)

holds true for any u > 0.

Furthermore

Rk =  E ( [ ( T - l ) F ( x k - t k(WF(xk) +  f k+1) ) - ( x k +i - T ( k+1)}IAc\Tk)

=  E{E([ (T -  1 )F(xk -  tk( V F ( x k) +  & +1)) -  (Xfc+i -  T f k+l)\IAc\Fk 

D{£fc+i i Vk+1}) Î Ft)

where T k U {£fc+i, 77/c+i} is the sigma-algebra o {T k U % +i})- Define

Rk =  E ( [ ( T - l ) F ( x k- t k( VF (x k) + f k+1)) -  (xk+i - T ( k+1)]IAc |.FfcU {& +i, 77fc+i}),

we have

Rk —
J[F(xk-/3k(VF(xk)+Tik+1)) -T F (x k- t k(VF(xk)+£k+1))]

•[(T -  1 ) F ( xk -  tk( V F ( x k) +  6 + l))  +  u]

1 1°°

exp
u

2(y(k) +  9(k)T2)
1

y/2ir(j(k) +  9(k)T2)
du

J[F(xk-l3k(VF(Xk)+r,k+1))-TF(xk-t k(VF(Xk)+Zk+1)}/v/'y(k)+e(k)Ti

•[(T -  1 ) F ( xk -  tk( V F ( x k) +  &+i)) +  y/y(k) +  9(k)T2u]du

exp
u
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Since

F ( x k -  /3k(VF(xk) +  Vk+i)) ~ T F ( x k -  tk( V F ( x k) +  £k+1)) 

=  F(xk -  f3k(X7F(xk) +  r/h+i)) -  F(xk -  tk(\7F(xk) +  £k+1)) 

+(1 -  T )F( x k -  tk( y F ( x k) +  &+i))

=  o(C) +  (1 -  T )F( x k -  tk( V F ( x k) +  e*+i))

> 0

we obtain, using inequality (B.2)

Rk <
(T -  1 )F(xk -  tk( V F ( x k) +  Cfe+i))y /7 (k) +  6 ( k ) T*_________________________________________________________

[F ( xk -  pk( X F ( x k) +  Tfr+i)) -  T F ( x k -  tk( V F ( x k) +  &+i))
_______________(T -  1 ) F( xk -  tk( V F ( x k) +  6 m ))_____________

[F{xk -  ¡3k( X F ( x k) +  Vk+1)) -  T F ( x k -  tk( V F ( x k) +  £fc+i))]3
[F(xk -  (3k( X F ( x k) +  %+i)) -  T F ( x k -  tk( V F ( x k) +  &+i))]2+1] exp

y/l ( P P r (T
2 (7 (fc) +  6{k)T2)

1 )F(xk -  tk( V F ( x k) +  ffc+i))

( T -
o(C) +  (1 -  T )F (x fc -  tk( V F ( x k) +  & +1)) 

1 ) F( xk -  tk(NF(xk) +  f*+i))
[o{C) +  (1 -  T )F( x k -  tk( X F ( x k) +  6 + i))]3

[F(xk -  Pk( V F ( x k) +  Vk+1)) -  T F ( x k -  tk( V F ( x k) +  ^ +i))]2+1] exp

V l { k )  +  e { k ) T F { T - l ) F ( x k

2{j{k)  +  6(k)T2)

t k(^F(xk) +  f̂c+i))
o ( l )

+1] exp

y/2n \ l - T ) F ( x k - t k( X F ( x k) +  £k+i))
[F(xk -  /3k( V F ( x k) +  r}k+i)) -  T F ( x k -  tk( V F ( x k) ■e*+i))]s

0 ( 1)
y/7 (k) +  e(k)T2 

VTk
exp -

2 (7 (fc) +  0{k)T2)

[ o ( C ) p { \ ~ T ) C r  
2(7 (fc) +  0(/c)T2)

which implies the conclusion of the lemma.

If (& >  1) are bounded, then we have the following stronger estimates

for Rk.

Lem m a B.2 Let C  =  minx£jid F(x)  and suppose that Xk, Ck (k > 1) are bounded 

then

Rk < 0
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provided that C is large enough and T  < 1.

Proof: Denote Mi as the bound of \xk\ +  \(k\- We have

Rk < [ ( T - l ) C  +  Mi]E(IAc\Fk)

Thus Rk < 0 if C  is large enough. This completes the proof.

We can now proceed to the Proof of Theorem 2.3:

Proof: From Eq. (B .l), we see that

E(F(xk+i)\3~k) <  E(F(xk — tk(XF(xk) +  £k+i))\Pk) +  Rk-

Using Taylor formula and the fact that F  E C2(IRd), the equation above turns 

out to be

E (F (xk+i)\Fk) < E (F( xk ) \Fk) - t kE( (XF( xk))T( VF (x k) + ^ +1))\Fk)

+  2 t l F ( ( V F ( x k) +  f k+i)T Hk( VF (x k) +  f k+i)\Fk) +  Rk 

=  F( xk) - t k ( V F ( x k))TX F ( x k)

+ \ t l ( V F ( x k))THkV F ( x k) +  ( £  Eek+vl i O  +  n k
i= 1

(B.3)

where h\f =  \Xk, i , j  =  l , . . . , d , H k =  [hf^] the Hessian of F  at x k, and we 

have used the property that {£fc}(fc>i} is a martingale difference with respect to 

Tk-
1 ^

Denoting M  =  supXk[ - ( V F ( x k))THkX F ( x k) +  C ^ E f l + ^ h ^ ) ] ,  then Eq.
i=1

(B.3) becomes

F ( F ( x k+i)\Fk) < F ( x k) -  tk( V F ( x k))TV F ( x k) +  t2kM  +  Rk (B.4)

Existence of lim^oo F(rr*;) follows from Lemma 4.2 and Lemma 1.10 on page

9 in (Ljung et al., 1992) if Xk,Ck are bounded.

When fk ~  N(0,j(k))  and \k ~  N(0,9(k)), by combining Lemma B.l and
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Lemma 1.10 on page 9 in (Ljung et al., 1992), we see that the limit also exists 

almost surely.

Now we turn to the second conclusion. Suppose that there is a set B  with 

P(B)  > 0 and

lim inf dis(xk, S) — S > 0
k—foo

for S € B. If Xk, Ck are bounded, Lemma B.2 and Eq. (B.4) infer that

E ( E ( F ( x k+1)\Fk)IB) < E(F(xo)IB) - E k t k E ( ( X F ( x k))TX F ( x k)IB) +  Z k tkMlB

-» —(X).

However F  is a function bounded below and E ( E( F ( x k+i)\Fk)IB) > — oo. Thus 

the second conclusion follows for the first case. When £k ~  N(0,'y(k)) and \k ~  

N(0,9(k)),  the same conclusion can be similarly proved.

Theorem 2.4

Remark B .l The proof of Theorem 2.4 is similar to the proof of Theorem 2.3 

above.

Theorem 3.1

The results in this section are reproduced from (Liu and Dai, 2001).

Proof: For ease of exposition, we assume that /  >  0. It follows from the definition 

of the algorithm that for any k >  0

f ( x k+i ) <  min ( f ( x k -  tkgk),Tkf ( x k -  tkgk)) < f ( x k -  tkgk)

=  f ( x k) -  tkhlgk +  t\gTkHkgk/2,

where Hk is the Hessian matrix of /  at a point 9k in the line segment [xk, x k+i]. 

Therefore for k >  1

k k
f { x k+i) < f ( x o) -  ^2h\gk\2 +  ^ C t 2k\gk\2,

0 0
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where C  only depends on / .  Then there is an e > 0 such that

tk( 1 -  Ctk) > c'tk, after tk <  e,

where c! > 0 is a constant independent of k. Therefore if there is a ./V > 0 such that 

tk <  e after k >  N, then tk\gk\2 is convergent as k —» oo as /  is bounded below.

Theorem 3.2

The results in this section are also reproduced from (Liu and Dai, 2001).

Proof: The proof of this theorem could be made rather technical, as first it should 

be proved that the BB algorithm is locally R-linearly convergent. Although its 

local convergence has been proved for the quadratic objective function in (Raydan, 

1993), R-linear convergence (or even simply convergence) of the BB algorithm for 

general convex objective functions still needs many extra tedious estimates to 

prove. On the other hand, the principle of the proof is quite simple. Therefore 

here the details for these estimates are skipped.

First the R-linear convergence of the BB algorithm is shown if xk is sufficient 

close to x*, where x k is generated by the BB formula. For any k, given xk =  x k 

and Xk+\ =  x k+i, we define { x k+j : j  =  0,1, 2 , . . . }  to be the iterations generated 

by the BB algorithm for the quadratic function

f ( x )  =  f (x*)  +  -  x*)TH(x  -  x*),

where H  is the Hessian matrix of /  at x*. It follows from (Raydan, 1993) that 

{£k+j} converges to x* as j  —>• oo, if x k is very near x*.

Then for any 1 < l <  m, where m is some fixed integer, if

|Xk+j -  x*\ > cx\xk -  x*|, j  =

where c\ > 0 is constant, it can be proved by induction that there exists a positive
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constant c2 > 0 =  c2(m, c4, H), independent of k: such that

\xk+j -  xk+j\ <  c2\xk -  x*\2, j  =  (B.5)

Furthermore, it can be shown (see (Dai and Liao, 1999)) that there exist a constant 

C3 E (0,1) and an integer m which depends only on C3 and H  such that for any 

k >  2, there exists an integer l E [1 ,m] such that

\xk+i -  x*\ <  c3\xk -  x*\. (B.6)

Now we denote S =  and let k0 be so large that

\xko-x*\ <6 .  (B.7)

For this k0, we let Xk0 — Xk0 and Xk0+i =  Xk0+1, and denote k\ to be the least 

index for which

\xkl ~ X*\ < c3\xko -  x*\. (B.8)

It is obvious that kx — k0 < m. Then by (B.5), (B.8), (B.7) and the choice of <5, 

we can show that

\xkl -  x*\ <  \xkl -  x*\ +  \xkl - x kl\< c4\xko -  x*\,

where c4 =  < 1. Repeating this procedure, we then can obtain an infinite

subsequence {ki : i =  1, 2, . . . }  such that

k i + i  -  k i  < m (B.9)

and

\xki+l -  X*\ < c4\xki -  x*\, i =  1,2, . . . (B.10)
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In addition, note that there exists a constant C5 >  0 such that the relation

xk+i -  z*| <  c5\xk -  X* (B.11)

holds for any large k. By (B .9)-(B .ll), we then can prove that

IX k o + j  ~  £*| < A fcj\xko -  x*\,

where M  =  c j  1c™~1 and c6 =  C41 < 1. The above relation shows that the BB 

algorithm is R-linearly convergent.

In the following, it is shown that the SSC-SABB will only take the BB step 

sizes when it starts from a point very near the minimizer x*, and then we prove 

that there is a subsequence of { 2;^ } very close to x* provided N  is chosen large 

enough.

As f(x* ) >  0, there is a r0 > 0 such that

T f (x k -  tkgk) > f ( y k).

as long as \xk — x*| < r0 and \yk — x*| < r0, since T > 1 and { tk} is bounded.

Now let {y k} (k=0,l,2,...) be generated by the SSC-SABB with y0 =  x0 and 

Tk =  1. Then from Theorem 4.1 in (Liu and Dai, 2001) (see Theorem 3.1 in the 

present thesis), there will be a k0 >  0, depending on x 0 and / ,  such that

Iyko ~ x*\ <  min(f0, 6)/M,

where fo < r0 and 5 is defined above, since /  is strictly convex. Let the sequence 

{ x be generated via the SSC-SABB from xo by letting T  =  1 for k =  1, 2,.., N  

and T =  T  > 1 for k — N  +  1,...,. Let N0 =  k0. Note that the first elements 

{ x q , X i  ,..., x^0} of this sequence are identical with {y0, y i ,..., yN0} provided N  >  

N0. Let x ko+i (i=l,2,..) be the sequence generated by the BB algorithm from 

xj?° =  x^l =  x^Q (N > No). Clearly f 0 can be made so small that \xko+\ — x*\ <
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min (ro, 5)/M. Therefore

\xko+i -  x*\ <  Mc\\x^° -  x*\ < min(r0,6 ),i =  1 , 2 , .

Therefore the SSC-SABB will only use the BB step sizes after ko =  N0 according 

to its switching rule. Therefore the sequence {x %} generated via the SSC-SABB 

by letting T =  1 for k =  1, 2 , jV and T  =  T >  1 for k — N  +  1,..., is as fast as 

the BB algorithm, as least R-linearly convergent for any N  > N0.



Appendix C

Multi-step Variant

We reproduce here material originally included in (Liu and Sirlantzis, 2001a; Liu 

and Sirlantzis, 2001b).

The multi-step SSC gradient algorithm can be defined formally as follows:

Let Xq E Rn be given. Let Tk > 0 be given for k =  0,1, 2,..., let m >  0. Assume 

that /  > 0. Assume that we have x k, then define

xk+m ~  xk ~  tkdkt 

Xk+m =  Vk+mi

where yk+m is defined by yk =  xk,

Vk+i+i =  Vk+i ~ Zk+lVf(yk+i), 1 =  0,1 ,..., m -  1,

where Zk can be any of the rkI , Bk, or B'k (defined in Section 4.2.1). Then define 

x k+l =  x\+m, if Tkf(x\ +m) <  f ( x 2k+J ,

otherwise

Xk+1 — xk+m-

213
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Theorem  C .l  (Theorem 4.2 in (Liu and Sirlantzis, 2001b)) Let f  be twice con­

tinuously differentiable and bounded below. Assume that V f  is Lipschitz with a 

global Lipschitz constant. Let x k be generated by the multi-stage SSC algorithm 

defined above. Then, assuming tk —> 0, tk\^ f { xk)\2} is convergent as k —» oo

provided max(l, Tk) < oo.

Proof: From the definition of the multi-stage SSC algorithm we have also: 

either

f { xk+1) f { xk lk9k)i 

or,

f(xk+i) =  f ( x l+m) if Tkf { x k -  tkgk) > f ( x l+m).

Therefore, for both cases

f(xk+ 1) <  m ax(/(x fc -  tkgk),T kf  (xk -  tkgk)) =  m ax(l,Tk) f ( x k -  tkgk).

It is trivial to see that from this point we can also apply the same line of arguments 

used in the proof of Theorem 2.1 to show that the sequence - £ o  tk\Xf(xk)\2}  is 

convergent as k —> oo provided J~Î ° max(l, Tk) <  oo.
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