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Abstract

In this thesis we studied a novel class of algorithms for unconstrained optimisation
with particular focus to the issues arising in noisy optimisation. These algorithms
were developed using an innovative framework for design of efficient and robust
algorithms, namely the Supervisor and Searcher Co-operation (SSC) framework.
This framework provides a systematic way to incorporate desirable characteristics
of existing algorithms into a new improved scheme.

The aim was to explore the properties of the SSC-based algorithms focusing
on their behaviour in practice under the presence of stochastic noises. To this end,
first, a basic algorithm was proposed along with a number of modifications and ex-
tensions to it. Then, their properties were evaluated in a systematic way through
a variety of experiments involving a wide range of non-trivial deterministic and
stochastic problems. Our findings suggest that the SSC algorithms are demon-
strably efficient in the deterministic case, but, mainly, that they are robust enough
to successfully address the difficulties arising in the presence of stochastic noises.
Also, they can easily be modified to meet specific application requirements, while
the resulting algorithms retain the desirable properties of the original algorithm.

Finally, to assess the applicability of the SSC algorithms in real world prob-
lems an adaptation to the basic SSC algorithm was proposed for use in Multilayer
Neural Network training. The corresponding evaluations were performed through
statistical experiments on a number of regression and classification problems, de-
signed to cover the complex issues associated with neural networks learning, such
as overtraining, and mainly generalisation ability. The SSC-based algorithm ex-
hibited significantly better performance than the two algorithms used as bench-
marks for comparisons. Specifically, it was demonstrably faster with respect to
reduction of the error in the training set, but more importantly, it showed in-
creased ability to avoid overtraining and hence to generalise (perform successfully
in unknown samples), which is the ultimate goal of learning in neural networks.
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Chapter 1

Introduction

This thesis studies a class of algorithms for optimisation of noisy functions devel-
oped within a novel framework, namely the Supervisor and Searcher Co-operation
framework (SSC). This framework provides an effective mechanism to design new
efficient optimisation algorithms by combining desirable features of two (or more)
existing ones. The principle underlying the SSC framework can be viewed as a
systematic way of exploring possible combinations of existing optimisation algo-
rithms (synthesis of algorithms).

To verify the flexibility provided by the SSC framework a number of algorithms
are introduced and experimentally evaluated in a series of benchmarking problems.
Furthermore, the ability of an algorithm designed according to this framework
to successfully address complex realistic tasks is explored through comparative
statistical experiments in the challenging field of Artificial Neural Network (ANN)
training.

In order to place the research reported in this study within the relevant cog-
nitive contexts the remainder of the chapter is divided in two parts:

In the first part, the class iterative gradient-based deterministic optimisation
algorithms is initially discussed briefly to provide an introduction to related meth-
ods used for optimisation problems in the presence of noise. Then, the noisy op-

timisation problem is formally defined followed by a critical review of the most
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popular categories of algorithms associated with it. Consequently, the discus-
sion is naturally led to the methods of Stochastic Approximation with which the
Supervisor and Searcher Co-operation framework is more closely related.

The second part of this chapter considers concepts and theoretical aspects
of the field of Artificial Neural Networks (ANNs), and discuss their relationship
with noisy optimisation. Also, it demonstrates the importance of ANNs not as
a single application but as a cognitive area in its own right based on both their
theoretical attributes as well as the wide variety of real world problems they have
been employed to address. These problems cover both the two main categories of
function approximation, those of regression and classification. Subsequently, the
points of the preceding discussion providing motivation to the present work are
summarised and the corresponding research objectives are stated. The chapter

concludes with an outline of the contents of the remaining chapters of the thesis.

1.1 Deterministic Optimisation

The classical deterministic unconstrained minimisation problem can be formally
defined as follows:

min F(z).

In this section we limit our discussion to gradient-based iterative algorithms
because they are the most closely related to the algorithms studied in the present
work. Although a large number of alternative methods exist to address the above
optimisation problem, e.g. the class of trust region-based algorithms, such an
extensive survey is out of the scope of this thesis.

From a historical point of view, Cauchy was the first to apply the steepest
descent method to solve unconstrained minimisation problems (Cauchy, 1847).
The theory of local optimization provides powerful tools for the optimisation a
smooth function F'. A well-known method in the class of steepest descent methods
(Avriel, 1976; Luenberger, 1973; Rao, 1984) for unconstrained minimisation of

functions having Lipschitz continuous first partial derivatives is given by Armijo
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in (Armijo, 1966). Under suitable assumptions for the function to be optimised
this method always converges to a local minimum. It is, in fact, a modification
of Cauchy’s original method and allows for the possibility of variable step size.
Furthermore, it does not require knowledge of the value of the Lipschitz constant.

The well-known Newton and Newton-type methods show superlinear conver-
gence in the vicinity of a non-degenerate optimiser. Additionally, global conver-
gence results for quite wide classes of problems have been stated, for example, for
strictly convex functions. These methods combine robustness and the property
of being locally fast. They use a (local) quadratic approximation of F, and in
the case of Newton-type methods through a, possibly modified, Hessian. How-
ever, these methods assume the ability to acquire knowledge about the gradient
or the Hessian, in contrast to other optimisation techniques like the Nelder-Mead
(Nelder and Mead, 1965) method, or the direction set method of Powell (Powell,
1992).

Another efficient class of methods is known under the names quasi-Newton
and variable metric methods, typified by the Davidon-Fletcher-Powell (DFP) algo-
rithm (Avriel, 1976; Davidon, 1959; Fletcher and Powell, 1963; Luenberger, 1973;
Press et al., 1992; Rao, 1984). Closely related are, also, the so-called Fletcher-
Powell (FP), and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms. In
contrast to Newton methods they employ an approximation of the Hessian, built
up iteratively. These methods are very stable and they converge superlinearly (Or-
tega and Rheinboldt, 1970). On the other hand, they require storage of order n?
(where n is the dimensionality of the problem) and they need derivative calcu-
lations. Moreover, they approximate the inverse of the Hessian matrix and they
involve one-dimensional subminimisation procedures.

Finally, the class of methods called nonlinear conjugate gradient methods, are
typified by the Fletcher-Reeves (FR) algorithm (Polak, 1971; Press et al., 1992).
Their convergence for general nonlinear problems, is linear (Luenberger, 1973;

Ortega and Rheinboldt, 1970). They require storage of order only a few times n,
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but they, also, involve derivative calculations as well as one-dimensional submin-
imisation and, finally, they exhibit high sensitivity to round-off errors (Vrahatis

et al., 1996).

1.2 Noisy Optimisation

The methods mentioned previously require precise function and gradient values.
In many optimisation problems of practical interest, however, the values of the
objective functions are known only within some (often low) precision. For instance,
when the function and gradient values are the result of numerical simulations,
precise values may be difficult to be obtained. Or, when the available function
values result from the numerical integration of a system of differential equations
the precision of the computed values is necessarily limited.

This imprecise knowledge of the function values means that although the un-
derlying function may be smooth, the values observed show a discontinuous be-
haviour. Hence, the function values corresponding to small variations around
some point z do not reflect the local behaviour of the function but that of the
noise. Therefore, methods employing finite difference estimators of the gradient,
such as the quasi-Newton methods, often fail. Nevertheless it has been argued
by many authors (Fletcher, 1987; Gill et al., 1981; Nocetal, 1992) that quasi-
Newton methods using a finite difference approximation for the gradients seem to
be among the more efficient for the optimisation of smooth functions when only
the function values are available (Elster and Neumaier, 1997).

However, for the cases where substantial noise is present, (Gill et al., 1981,
Section 8.6.2.2) suggest that a remedy could be the use of larger difference intervals
in the finite difference estimation process, although this requires knowledge of the
precision of the function to be optimised and hence the level of variability of
the noise. The latter can also be estimated (see, for example, (Gill et al., 1981,
Section 8.5.2.3)), but only at the expense of additional function evaluations, and

the estimation should be repeated regularly when the noise depends on z.
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1.2.1 Formulation of the Problem

In real world applications, various types of noises are present in most of the
available data. Here the noises are conceived in a broad sense. In some cases,
these noises can be ignored, but more often than not, they play an important role
in the mathematical modelling of the application. The purpose of this thesis is
to study a class of new algorithms to handle such cases. We are interested in the
noisy unconstrained minimisation problem formally defined as follows:

min F(z),

where it is difficult or impossible to evaluate F'(z) exactly. Then, let f(z) be an

estimator of F'(z) in the sense

then F'is the underlying exact mathematical model, and either:

1) € represents some kind of deterministic error (e.g. round-off or truncation errors
due to inexact computations), or

2) € is stochastic noise, which may depend on z.

In the first case, it is possible that € is negligible in function value evaluation, but
it becomes significant if an estimator of the gradient is needed (Mathews, 1992,
pp. 28-40). In the second case, also, € can rise to levels which will significantly
affect the smoothness of the objective function and its gradient.

Henceforth, whenever we refer to the function value or the gradient of f at a
point z € R"™, we mean an estimator of the corresponding value or gradient of F’
at z. When we refer to a minimizer of f, we, in fact, mean a minimizer of F.
- Obviously, in the degenerate case where € = 0, the estimators are identical to the

corresponding exact values.
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1.2.2 Some Examples of Noisy Optimisation

It is possible to identify to main categories of problems where stochastic mod-
els arise in optimisation. In the first belong cases where we have to consider a
quantity that is only measurable with error. For instance, we may wish to find
a combination of controls maximising the output of an industrial plant, but we
can only estimate the output from an experiment. Such an example occurs when
attempting to optimise settings to achieve the maximum yield from a chemical
reaction. The objective function is, consequently, evaluated by carrying out chem-
ical experiments which are subject to random errors. For a given set of parameter
values the experiment can be repeated many times over and then the average
yield over the whole set of experiments can provide an improved estimate of the
objective function.

In the second category the interest is focused on parameter estimation in com-
plex statistical models. Such problems are the maximisation of a likelihood or
the minimisation of a goodness-of-fit statistic when the appropriate distributions
are so complex that they are not tractable analytically. Examples of this type of
problems are given by (Diggle and Gratton, 1984) and (Ruppert et al., 1984). In
maximum likelihood estimation methodology, for instance, part of the likelihood
(e.g. the normalising constant) may be needed to be estimated by simulation
methods or in a moment-based estimator the theoretical moments could be found
by simulation. Another example of this type occurs when the evaluation of the
function to be optimised involves the numerical solution of a system of Partial
Differential Equations (PDE), where the accuracy depends on the grid size used.
Finally, in this category can be classified also the increasingly important area of
simulation optimisation (see (Fu, 1994) for a recent review).

In all the above cases finding the best choice of parameter values requires the
judicious balancing of the time spent on improving the accuracy of the objec-
tive function estimator at a single point against the time spent in evaluating the

function at different parameter settings.
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Desired Features of the Algorithms

Noisy optimisation (and especially the case of stochastic noises) introduces re-
quirements which are beyond the scope of most popular algorithms for determin-
istic function optimisation.

On one hand, many deterministic methods rely heavily on the objective func-
tion’s derivatives calculation. However, if, for example, the objective function
value is the expected response of a simulation process, the relationship between
the simulation input and the expected response is often too complicated to find
analytical expressions for the derivatives (Glasserman, 1991b; Glynn, 1987). On
the other hand, the behaviour of the optimisation method should be insensitive
to small perturbations in the observed function values, since these are subject to
uncertainty due to either finite precision calculations or random errors.

Hence, these variations in the function values and in the corresponding estima-
tors of the derivatives limit the applicability and the effectiveness of deterministic
gradient-based algorithms. We anticipate that a desirable algorithm will combine
efficiency in the easier problems with robustness and reliability when the prob-
lems become noisier, since it is difficult to control the level of noise in real world

applications.

1.2.3 Categories of Methods

One possible classification of the methods proposed to tackle stochastic optimisa-

tion problems is reflected in the following two categories:

1. Methods based on functional estimation, which construct an estimate of the

objective function over its entire domain, and then optimise the estimate.

2. Iterative methods, which start at some initial design point, and move by
(usually small) steps at successive iterations, based on local information
about the objective function, e.g. by using a gradient estimator at each

iteration.
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3. Direct-search methods, which do not require gradient estimates but utilise

only evaluations of the objective function to approach the optimum.

Approaches that belong in the first category are sometimes called stochastic
counterpart methods, because they optimise a stochastic estimate of the actual
objective function. Any deterministic optimisation algorithm can be used once the
estimate has been constructed. In principle, the methods of nonparametric regres-
sion, which aim to approximate an unknown function over its entire domain solely
on the basis of noisy data from selected parts within the domain, are applicable to
the stochastic counterpart approach. For example, in (Miiller, 1985; Miiller, 1989)
this idea is used within the framework of kernel regression techniques. Newer ap-
proaches such as the so-called sample path optimisation (Plambeck et al., 1996), or
the retrospective optimisation (see (Andradéttir, 1998) and the references therein),
belong also to this category.

In the second category, usually, an “efficient” gradient estimator is needed,
e.g. unbiased and/or with bounded variance (see (L’Ecuyer and Yin, 1998) for
details). For certain classes of functions, methods such as perturbation analy-
sis (Fu, 2001a), score function, or likelihood ratio, or finite differences with com-
mon random numbers, can provide gradient estimators with the required efficiency
(see (Glasserman, 1991b; Glynn, 1990; L’Ecuyer, 1991; Rubinstein and Shapiro,
1993)). However, due to the fact that these methods are often hard to implement,
one should often rely on the less efficient but straightforward finite differences and
their variations (Spall, 1992).

Algorithms that are often characterised as direct-search methods constitute
another category of techniques. These are 