
Musicante, Martin A. and Lins, Rafael D. (1992) GMC A Graph Categorical
Multi-Combinator Machine. Technical report. , University of Kent, Canterbury,
UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21021/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21021/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

GM�C

A Graph Categorical Multi�Combinator Machine

Martin A�Musicante � Rafael D�Lins �

Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brazil
Computing Laboratory � The University of Kent � Canterbury � England�

Introduction

Semantic elegance� referential transparency� and expressive power are some of the important
features which make lazy functional languages an interesting alternative to solve the problems
of programming known as the software crisis ����� The property of referential transparency
brings an intuitive suitability for implementing functional languages in parallel machines�
However� to make the use of functional languages viable today� we need to have fast imple�
mentations running on conventional von�Neumann computers�

A milestone in this quest for e	ciency was Turner
s graph reduction machine� Turner ����
showed how to compile functional languages into a set of combinators based on Combinatory
Logic of Curry� His machine was based on graph interpretation� The performance of this
machine was an order of magnitude faster than its ancestor� Landin
s SECD machine ���� It
was still at least an order of magnitude slower than conventional imperative languages�

With the aim of providing an alternative to the e	cient implementation of lazy functional
languages we developed Categorical Multi�Combinators �
�� This system was the result of
the evolution of several other rewriting systems ��� ��� which have similar aims� and are based
on the original system of Categorical Combinators ����

In Johnsson ��� an abstract machine for compiling lazy functional languages is presented�
This machine puts together the best features of Turner
s and Landin
s machines with new
code optimisation techniques� Johnsson
s G�machine was a major achievement in the e	cient
implementation of lazy functional languages�

We present here GM�C� a Graph Categorical Multi�Combinator Machine� a new machine
for the compilation of lazy functional languages� The performance �gures presented in this
work show that GM�C can be faster than a G�Machine� which was implemented with a much
higher degree of sophistication �����

� Categorical Multi�Combinators

Categorical Multi�Combinators are a generalisation of Linear Categorical Combinators ����
The code for a ��expression compiled into Categorical Multi�Combinators is more compact

�Authors� permanent address� Dept�de Inform�atica � U�F�PE� � ���	
� � Recife � PE � Brazil

�

than its Linear Categorical Combinators equivalent� Categorical Multi�Combinators reduc�
tions are of a coarser degree of computation than Linear Categorical Combinators� Each
rewriting step of the Multi�Combinator code is equivalent to several rewritings of Linear
Categorical Combinators� The core of the system of Categorical Multi�Combinators con�
sists only of two rewriting laws with a very low pattern�matching complexity and avoids the
generation of trivially reducible sub�expressions� In Categorical Multi�Combinators function
application is denoted by juxtaposition� We take juxtaposition to be left�associative�

We assume that programs have already been ��lifted ��� to remove non�local references
from the bodies of functions� The compilation algorithm �
� for translating each function in
the script into Categorical Multi�Combinators is�

�T ��� �fun xi � � � xj� �z �
n

� a� � fun �� Ln���R
xi�����xj

n��������a�

�T ��� �a � � �b� � �a� � � � �b�

�T ��� �c� � c� where c is a constant

�T ��� R
xi���xj
ni���nj �a � � �b� � �R

xi���xj
ni���nja� � � ��R

xi���xj
ni���njb�

�T ��� R
xi���xj
ni���njb �

�
b � if b is a constant

nk � if b � xk

If whenever applying rule T�� above a variable b can be associated with more than one xk then
one must choose the minimum correspondent nk � In doing so we preserve locality of binding
because a greater nk means that a more internal binder is connected to the variable xk� There
follows an example of the translation of a function into Categorical Multi�Combinators using
the algorithm above�

�tw f x � f �f x��
T��
� tw �� L��Rf�x

����f �f x���

T��
� tw �� L���Rf�x

���f� �R
f�x
����f x���

T��
� tw �� L��� �Rf�x

����f x���

T��
� tw �� L��� ��Rf�x

���f� �R
f�x
���x���

T��
� tw �� L��� �� �Rf�x

���x���

T��
� tw �� L��� �� ���

The core of the Categorical Multi�Combinator machine enriched with arithmetic operations
is expressed by the following rewriting laws�

�M��� � �x�x�x� � � �xn� �P ym � � � y�y��� �x��x
�

� � � �x
�

n��

where

���
��

x�i � xi if xi is a constant or of type La�b�
� yk if xi is a variable k

� � xi �P ym � � � y�y��� otherwise

�

�M��� Ln�y� x�x� � � �xnxn�� � � �xz

���
��

� y xn�� � � �xz if y is a constant

� xn�yxn�� � � � xz if y is a variable

� � � y �P x� � � �xn��xn�� � � �xz � otherwise

�	� �xy � x� y

��� Cond x m n

�
� m� if x � True

� n� otherwise

The � rule above� which stands for all arithmetic and binary boolean operators� It means
evaluate the �rst argument� evaluate the second argument� and then add them together� In
the case of � it means evaluate the condition �x� �rst� test the result of evaluation� and then
branch�

Let us now present an example of the execution of a �program� using Categorical Multi�
Combinators� The expression

tw id �

with tw and id de�ned as� �we use boldface to represent constants��

tw f x � f �f x�

id y � y

translates into Categorical Multi�Combinators using the compilation algorithm above as

L��� �� ��� L���� �

which using the laws above can be rewritten as�

M��
� � �� �� ��� �P L���� ��
M��
� L���� � � �� �� �P L���� ��
M��
� L���� �L���� ��
M��
� L���� �
M��
� �

As one can observe in the sequence of reductions above the Categorical Multi�Combinator
code su�ers a metamorphosis under rewriting� The application of rule �M��� changes the
structure of the code and generates an �environment�� in which to each variable there is
associated a �local� value� This �evaluation environment� is distributed through the body of
the multi�abstraction �Ln� and then variables fetch their value by successive application of
rule �M����

� GM�C

We will present GM�C as a state transition machine� The state of the GM�C Machine is a
��uple

hC�B� T�H�O�Ei

in which each component is interpreted in the following way�

�

C
 The code to be executed�
This code is generated by the translation rules presented in Appendix A�

B
 The basic�value stack� used for the evaluation of arithmetic and logic expressions�

T
 The reduction stack� The top of T points to the part of the graph to be evaluated�

H
 The heap where graphs are stored� The notation H �d � e� � � � en� means that there is in
H a n�component cell named d� The �elds of d are �lled with e� � � � en� in this order�

O
 The output�

E
 The environment stack� Its top contains a reference to the current environment�

GM�C is de�ned as a set of transition rules� The transition

hC�B� T�H�O�Ei � hC�� B�� T �� H �� O�� E �i

must be interpreted as� �when the machine arrives at state hC�B� T�H�O�Ei� it can get to
state hC�� B�� T �� H �� O�� E�i��

The full set of transition laws is presented in Appendix B� In ��� we formalise the notion
that GM�C �implements� Categorical Multi�Combinators�

��� Compiling into GM�C Code

The compilation of Categorical Multi�Combinator expressions into GM�C code is performed
by using three di�erent schemes�

Scheme E
 This compilation scheme drives the evaluation process� besides construction the
graph of expressions�
It is the �rst scheme called for the compilation of an expression to be evaluated� If we
have a program e its compilation will be performed by

E �e�� print

Scheme T
 constructs a cell containing a representation of a term� pushing its address onto
the stack T�

Scheme G
 is called by the other schemes to �ll in the �elds of the cells�

The complete set of compilation rules for the schemes above can be found in Appendix A�

����� Example of Compilation

The identity function
id y � y

translates into Categorical Multi�Combinators as

id �� L����

�

The expression�
id �

compiles into GM�C code as�

E �L���� ��� print
xi
� MKcell����G�����

TransTE� E ����
popENV� print�

vii
� MKcell����MKcteN�����

TransTE� E ����
popENV� print�

xiii
� MKcell����MKcteN�����

TransTE�MKcell����G�����
popENV� print�

viii
� MKcell����MKcteN�����

TransTE�MKcell����MKvar�����
popENV� print�

��� Running GM�C Code

Now let us use the expression above as an example of execution of GM�C� The initial state
of the machine is�

h MKcell����MKcteN�����
TransTE�MKcell����MKvar�����
popENV� print�

� B� �� T � �� H � �� O� �� E� �i

which yields

�
� h MKcteN�����

TransTE�MKcell����MKvar�����
popENV� print�

� B� �� d�� H �d� � u��� O� �� E� �i

�
� h TransTE�MKcell����MKvar�����

popENV� print�
� B� �� d�� H �d� � ��� O� �� E� �i

��
� h MKcell����MKvar�����

popENV� print�
� B� �� T � �� H �d� � ��� O� �� d�i

�
� hMKvar����� popENV� print� � B� �� d�� H �d� � u�� �d� � ��� O� �� d�i
�
� hpopENV� print� � B� �� d�� H �d� � �� �d� � ��� O� �� d�i
��
� hprint� � B� �� d�� H �d� � �� �d� � ��� O� �� E� �i
��
� h� �� B� �� d�� H �d� � �� �d� � ��� �� E� �i

�

� GM�C � the G�Machine

There are both di�erences and similarities between the GM�C machine and the G�Machine�
The G�machine places arguments to a function on the evaluation stack� Variables are repre�
sented by o�sets in relation to the top of this stack� We can say that the environment to a
given function is simulated by the evaluation stack� GM�C follows the tradition of Categorical
Multi�Combinators and works with environments in an explicit manner�

The G�machine uses a dump for saving and restoring the machine state� GM�C uses
closures for this purpose�

The philosophy of the G�machine is to evaluate expressions eagerly� whenever safe� to
avoid generating graphs� GM�C may in some cases use closures to avoid evaluating expres�
sions� This is a compromise with evaluating eagerly something which may not be needed for
computation� as in the G�machine� and generating the whole graph�

GM�C and the G�machine also di�ers in the way they represent graphs� Our machine
uses an unboxed variable�length cell representation� The G�machine adopts a fully�boxed
representation for cells� These cells are of �xed size� The G�machine uses variable�length
cells only as an optimisation to represent a sequence of nested applications� These are called
vector apply nodes� Vector apply nodes are used only to represent the application of a function
to a number of arguments equal to its arity�

Amongst the similarities between the two machines there is the way prede�ned operators
are implemented�

� An Implementation of GM�C

GM�C was implemented in C ���� as follows�

C is loaded with the GM�C code� which is obtained from the application of the translation
laws in Appendix A to the original expression�
Each of the GM�C machine instruction was implemented as a macro written in C�

B is implemented as an integer stack� In future implementations the system stack and stack
pointers may be used�

T is a stack of references to the heap�

H is a large heap area divided into two equally sized halves used one at a time�

O is the standard output�

E was implemented together with T�

The process of evaluating an expression is driven by the printing routine� We used a copying
garbage collector�����

�

��� Performance

We present here four simple programs which make extensive use of the most important
features of lazy functional languages� such as recursion� higher�order functions� and lazy
evaluation� They are�

Fibonacci
 the Fibonacci number of ���

Sieve
 Erathosthenes
 sieve to �nd all prime numbers up to ����

InsOrd
 sorting by insertion of a list of ��� numbers generated at random�

SimLog
 a program which takes a list of ��� random numbers and produces ��� random
boolean values�

These programs were used to compare the performance of GM�C with the G�machine de�
scribed in ��� ���� and also with Simon Croft
s implementation of Turner
s KRC ���� and ML
���� a strict functional language� We also provide performance �gures for two of chosen bench�
mark programs in C� These programs were implemented in a functional style� A di�erent
implementation of these algorithms in C may bring a better performance�

InsOrd and SimLog make use of lazy evaluation� for this reason we do not produce their
performance �gures in ML and C�

For the sake of simplicity and portability our implementations use C under VMS� All
data presented here was obtained from a Vax
��� For each test program at least �ve time
measures were taken� We present the worst ones�

The heap is of ������� bytes� The number of cells we present below correspond to the
number of units of information used� A data structure with two �elds� for instance� counts
as two cells� During garbage collection all cells copied count as a new cell� The time �gures
below correspond to c�p�u� user time in seconds�

Program Fibonacci Sieve InsOrd SimLog

Implem� time cells time cells time cells time cells

KRC ����� �� ����� �� ����l �� ���� ��

G ���� ����

� ���� �
���� ���� ������ ��
� ����

GM�C ���� ������ ���� ������ ���� ������ ���� �����

ML ���� �� ���� �� �� �� �� ��

C ���� �� ���� �� �� �� �� ��

In this implementation lists were introduced in a similar way to the G�machine ��� ��� ����
However� we think we can optimise the way GM�C works with lists� For this reason we
have omitted the part which deals with data structures from the description of GM�C� The
performance �gures obtained for the programs which use lists are close to the ones for the
non�optimised G�machine �����

In the case of Fibonacci GM�C presented a performance of around ��� better than the
G�machine� We would like to stress that many important optimisations for the G�machine�
as described in ��� ��� ���� are still to be tested in GM�C�

� Conclusions

GM�C is a simple and e	cient machine for implementing lazy functional languages� The
performance �gures presented here show that GM�C can� in some cases� be ��� faster than a
G�machine implemented with a much higher degree of sophistication� In the authors
 opinion�
GM�C still gives room for several optimisations� which we hope will bring great improvements
on its time and space performance�

References

�� P�L�Curien� Categorical Combinators� Sequential Algorithms and Functional Program�
ming� Research Notes in Theoretical Computer Science� Pitman Publishing Ltd�� �������

�� T�Johnsson� Compiling Lazy Functional Languages� Ph�D� Thesis� Chalmers Tekniska
H ogskola� G oteborg� Sweden� January ���
�

�� B�W�Kernighan ! D�M�Ritchie� The C Programming Language� Prentice Hall� Engle�
wood Cli�s� N�J�� ��
��

�� P�J�Landin� The Mechanical Evaluation of Expressions� Comput�J��� ���������

�� R�D�Lins� A New Formula for The Execution of Categorical Combinators� Proceedings
of �th� International Conference on Automated Deduction� Oxford� England� July �����
LNCS ���� p �� � ��� Springer Verlag�

�� R�D�Lins� On the E	ciency of Categorical Combinators as a Rewriting System� Soft�
ware Practice ! Experience� Vol �
���� ��
����� �August ���
��

� R�D�Lins� Categorical Multi�Combinators� Proceedings of Third International Confer�
ence on Functional Programming and Computer Architecture� Portland� USA� Septem�
ber ���
� LNCS �
�� p ���
�� Springer Verlag�

�� R�Milner� Standard ML proposal� Polimorphism� The ML"LCF"Hope Newsletter� �����
January �����

�� M�A�Musicante ! R�D�Lins� On optimising and proving the correctness of GC�MC� in
preparation�

��� S�Peyton�Jones� The Implementation of Functional Languages� Prentice Hall� ����
��

��� P�G�Soares ! R�D�Lins� Implementing the G�Machine� UKC Computing Laboratory
Report N���� The University of Kent at Canterbury� August ����� �submitted for
publication in Software Practice ! Experience��

��� D�A�Turner� A New Implementation Technique for Applicative Languages� Software
Practice and Experience� Vol �� ����� ���
���

�

��� D�A�Turner� Recursion Equations as a Programming Language� Functional Program�
ming and its Applications� J�Darlington� P�Henderson� and D�A�Turner eds�� Cambridge
University Press �������

�

