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GM�C

A Graph Categorical Multi�Combinator Machine

Martin A�Musicante � Rafael D�Lins �

Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brazil
Computing Laboratory � The University of Kent � Canterbury � England�

Introduction

Semantic elegance� referential transparency� and expressive power are some of the important
features which make lazy functional languages an interesting alternative to solve the problems
of programming known as the software crisis ����� The property of referential transparency
brings an intuitive suitability for implementing functional languages in parallel machines�
However� to make the use of functional languages viable today� we need to have fast imple�
mentations running on conventional von�Neumann computers�

A milestone in this quest for e	ciency was Turner
s graph reduction machine� Turner ����
showed how to compile functional languages into a set of combinators based on Combinatory
Logic of Curry� His machine was based on graph interpretation� The performance of this
machine was an order of magnitude faster than its ancestor� Landin
s SECD machine ���� It
was still at least an order of magnitude slower than conventional imperative languages�

With the aim of providing an alternative to the e	cient implementation of lazy functional
languages we developed Categorical Multi�Combinators �
�� This system was the result of
the evolution of several other rewriting systems ��� ��� which have similar aims� and are based
on the original system of Categorical Combinators ����

In Johnsson ��� an abstract machine for compiling lazy functional languages is presented�
This machine puts together the best features of Turner
s and Landin
s machines with new
code optimisation techniques� Johnsson
s G�machine was a major achievement in the e	cient
implementation of lazy functional languages�

We present here GM�C� a Graph Categorical Multi�Combinator Machine� a new machine
for the compilation of lazy functional languages� The performance �gures presented in this
work show that GM�C can be faster than a G�Machine� which was implemented with a much
higher degree of sophistication �����

� Categorical Multi�Combinators

Categorical Multi�Combinators are a generalisation of Linear Categorical Combinators ����
The code for a ��expression compiled into Categorical Multi�Combinators is more compact
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than its Linear Categorical Combinators equivalent� Categorical Multi�Combinators reduc�
tions are of a coarser degree of computation than Linear Categorical Combinators� Each
rewriting step of the Multi�Combinator code is equivalent to several rewritings of Linear
Categorical Combinators� The core of the system of Categorical Multi�Combinators con�
sists only of two rewriting laws with a very low pattern�matching complexity and avoids the
generation of trivially reducible sub�expressions� In Categorical Multi�Combinators function
application is denoted by juxtaposition� We take juxtaposition to be left�associative�

We assume that programs have already been ��lifted ��� to remove non�local references
from the bodies of functions� The compilation algorithm �
� for translating each function in
the script into Categorical Multi�Combinators is�

�T ��� �fun xi � � � xj� �z �
n

� a� � fun �� Ln���R
xi�����xj

n��������a�

�T ��� �a � � �b� � �a� � � � �b�

�T ��� �c� � c� where c is a constant

�T ��� R
xi���xj
ni���nj �a � � �b� � �R

xi���xj
ni���nja� � � ��R

xi���xj
ni���njb�

�T ��� R
xi���xj
ni���njb �

�
b � if b is a constant

nk � if b � xk

If whenever applying rule T�� above a variable b can be associated with more than one xk then
one must choose the minimum correspondent nk � In doing so we preserve locality of binding
because a greater nk means that a more internal binder is connected to the variable xk� There
follows an example of the translation of a function into Categorical Multi�Combinators using
the algorithm above�

�tw f x � f �f x��
T��
� tw �� L��Rf�x

����f �f x���

T��
� tw �� L���Rf�x

���f� �R
f�x
����f x���

T��
� tw �� L��� �Rf�x

����f x���

T��
� tw �� L��� ��Rf�x

���f� �R
f�x
���x���

T��
� tw �� L��� �� �Rf�x

���x���

T��
� tw �� L��� �� ���

The core of the Categorical Multi�Combinator machine enriched with arithmetic operations
is expressed by the following rewriting laws�

�M��� � �x�x�x� � � �xn� �P ym � � � y�y��� �x��x
�

� � � �x
�

n��

where

���
��

x�i � xi if xi is a constant or of type La�b�
� yk if xi is a variable k

� � xi �P ym � � � y�y��� otherwise
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�M��� Ln�y� x�x� � � �xnxn�� � � �xz

���
��

� y xn�� � � �xz if y is a constant

� xn�yxn�� � � � xz if y is a variable

� � � y �P x� � � �xn��xn�� � � �xz � otherwise

�	� �xy � x� y

��� Cond x m n

�
� m� if x � True

� n� otherwise

The � rule above� which stands for all arithmetic and binary boolean operators� It means
evaluate the �rst argument� evaluate the second argument� and then add them together� In
the case of � it means evaluate the condition �x� �rst� test the result of evaluation� and then
branch�

Let us now present an example of the execution of a �program� using Categorical Multi�
Combinators� The expression

tw id �

with tw and id de�ned as� �we use boldface to represent constants��

tw f x � f �f x�

id y � y

translates into Categorical Multi�Combinators using the compilation algorithm above as

L��� �� ��� L���� �

which using the laws above can be rewritten as�

M��
� � �� �� ��� �P L���� ��
M��
� L���� � � �� �� �P L���� ��
M��
� L���� �L���� ��
M��
� L���� �
M��
� �

As one can observe in the sequence of reductions above the Categorical Multi�Combinator
code su�ers a metamorphosis under rewriting� The application of rule �M��� changes the
structure of the code and generates an �environment�� in which to each variable there is
associated a �local� value� This �evaluation environment� is distributed through the body of
the multi�abstraction �Ln� and then variables fetch their value by successive application of
rule �M����

� GM�C

We will present GM�C as a state transition machine� The state of the GM�C Machine is a
��uple

hC�B� T�H�O�Ei

in which each component is interpreted in the following way�
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C
 The code to be executed�
This code is generated by the translation rules presented in Appendix A�

B
 The basic�value stack� used for the evaluation of arithmetic and logic expressions�

T
 The reduction stack� The top of T points to the part of the graph to be evaluated�

H
 The heap where graphs are stored� The notation H �d � e� � � � en� means that there is in
H a n�component cell named d� The �elds of d are �lled with e� � � � en� in this order�

O
 The output�

E
 The environment stack� Its top contains a reference to the current environment�

GM�C is de�ned as a set of transition rules� The transition

hC�B� T�H�O�Ei � hC�� B�� T �� H �� O�� E �i

must be interpreted as� �when the machine arrives at state hC�B� T�H�O�Ei� it can get to
state hC�� B�� T �� H �� O�� E�i��

The full set of transition laws is presented in Appendix B� In ��� we formalise the notion
that GM�C �implements� Categorical Multi�Combinators�

��� Compiling into GM�C Code

The compilation of Categorical Multi�Combinator expressions into GM�C code is performed
by using three di�erent schemes�

Scheme E
 This compilation scheme drives the evaluation process� besides construction the
graph of expressions�
It is the �rst scheme called for the compilation of an expression to be evaluated� If we
have a program e its compilation will be performed by

E �e�� print

Scheme T 
 constructs a cell containing a representation of a term� pushing its address onto
the stack T�

Scheme G
 is called by the other schemes to �ll in the �elds of the cells�

The complete set of compilation rules for the schemes above can be found in Appendix A�

����� Example of Compilation

The identity function
id y � y

translates into Categorical Multi�Combinators as

id �� L����
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The expression�
id �

compiles into GM�C code as�

E �L���� ��� print
xi
� MKcell����G�����

TransTE� E ����
popENV� print�

vii
� MKcell����MKcteN�����

TransTE� E ����
popENV� print�

xiii
� MKcell����MKcteN�����

TransTE�MKcell����G�����
popENV� print�

viii
� MKcell����MKcteN�����

TransTE�MKcell����MKvar�����
popENV� print�

��� Running GM�C Code

Now let us use the expression above as an example of execution of GM�C� The initial state
of the machine is�

h MKcell����MKcteN�����
TransTE�MKcell����MKvar�����
popENV� print�

� B� �� T � �� H � �� O� �� E� �i

which yields

�
� h MKcteN�����

TransTE�MKcell����MKvar�����
popENV� print�

� B� �� d�� H �d� � u��� O� �� E� �i

�
� h TransTE�MKcell����MKvar�����

popENV� print�
� B� �� d�� H �d� � ��� O� �� E� �i

��
� h MKcell����MKvar�����

popENV� print�
� B� �� T � �� H �d� � ��� O� �� d�i

�
� hMKvar����� popENV� print� � B� �� d�� H �d� � u�� �d� � ��� O� �� d�i
�
� hpopENV� print� � B� �� d�� H �d� � �� �d� � ��� O� �� d�i
��
� hprint� � B� �� d�� H �d� � �� �d� � ��� O� �� E� �i
��
� h� �� B� �� d�� H �d� � �� �d� � ��� �� E� �i
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� GM�C � the G�Machine

There are both di�erences and similarities between the GM�C machine and the G�Machine�
The G�machine places arguments to a function on the evaluation stack� Variables are repre�
sented by o�sets in relation to the top of this stack� We can say that the environment to a
given function is simulated by the evaluation stack� GM�C follows the tradition of Categorical
Multi�Combinators and works with environments in an explicit manner�

The G�machine uses a dump for saving and restoring the machine state� GM�C uses
closures for this purpose�

The philosophy of the G�machine is to evaluate expressions eagerly� whenever safe� to
avoid generating graphs� GM�C may in some cases use closures to avoid evaluating expres�
sions� This is a compromise with evaluating eagerly something which may not be needed for
computation� as in the G�machine� and generating the whole graph�

GM�C and the G�machine also di�ers in the way they represent graphs� Our machine
uses an unboxed variable�length cell representation� The G�machine adopts a fully�boxed
representation for cells� These cells are of �xed size� The G�machine uses variable�length
cells only as an optimisation to represent a sequence of nested applications� These are called
vector apply nodes� Vector apply nodes are used only to represent the application of a function
to a number of arguments equal to its arity�

Amongst the similarities between the two machines there is the way prede�ned operators
are implemented�

� An Implementation of GM�C

GM�C was implemented in C ���� as follows�

C is loaded with the GM�C code� which is obtained from the application of the translation
laws in Appendix A to the original expression�
Each of the GM�C machine instruction was implemented as a macro written in C�

B is implemented as an integer stack� In future implementations the system stack and stack
pointers may be used�

T is a stack of references to the heap�

H is a large heap area divided into two equally sized halves used one at a time�

O is the standard output�

E was implemented together with T�

The process of evaluating an expression is driven by the printing routine� We used a copying
garbage collector�����
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��� Performance

We present here four simple programs which make extensive use of the most important
features of lazy functional languages� such as recursion� higher�order functions� and lazy
evaluation� They are�

Fibonacci
 the Fibonacci number of ���

Sieve
 Erathosthenes
 sieve to �nd all prime numbers up to ����

InsOrd
 sorting by insertion of a list of ��� numbers generated at random�

SimLog
 a program which takes a list of ��� random numbers and produces ��� random
boolean values�

These programs were used to compare the performance of GM�C with the G�machine de�
scribed in ��� ���� and also with Simon Croft
s implementation of Turner
s KRC ���� and ML
���� a strict functional language� We also provide performance �gures for two of chosen bench�
mark programs in C� These programs were implemented in a functional style� A di�erent
implementation of these algorithms in C may bring a better performance�

InsOrd and SimLog make use of lazy evaluation� for this reason we do not produce their
performance �gures in ML and C�

For the sake of simplicity and portability our implementations use C under VMS� All
data presented here was obtained from a Vax 
��� For each test program at least �ve time
measures were taken� We present the worst ones�

The heap is of ������� bytes� The number of cells we present below correspond to the
number of units of information used� A data structure with two �elds� for instance� counts
as two cells� During garbage collection all cells copied count as a new cell� The time �gures
below correspond to c�p�u� user time in seconds�

Program Fibonacci Sieve InsOrd SimLog

Implem� time cells time cells time cells time cells

KRC ����� �� ����� �� ����l �� ���� ��

G ���� ����

� ���� �
���� ���� ������ ��
� ����


GM�C ���� ������ ���� ������ ���� ������ ���� �����

ML ���� �� ���� �� �� �� �� ��

C ���� �� ���� �� �� �� �� ��

In this implementation lists were introduced in a similar way to the G�machine ��� ��� ����
However� we think we can optimise the way GM�C works with lists� For this reason we
have omitted the part which deals with data structures from the description of GM�C� The
performance �gures obtained for the programs which use lists are close to the ones for the
non�optimised G�machine �����

In the case of Fibonacci GM�C presented a performance of around ��� better than the
G�machine� We would like to stress that many important optimisations for the G�machine�
as described in ��� ��� ���� are still to be tested in GM�C�






� Conclusions

GM�C is a simple and e	cient machine for implementing lazy functional languages� The
performance �gures presented here show that GM�C can� in some cases� be ��� faster than a
G�machine implemented with a much higher degree of sophistication� In the authors
 opinion�
GM�C still gives room for several optimisations� which we hope will bring great improvements
on its time and space performance�
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