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Abstract:	 This	paper	 presents	a	 new	multi-objective	mathematical	model	 for	 the	 hub	 location	and	
routing	problem	under	uncertainty	in	flows,	costs,	times	and	number	of	job	opportunities.	This	model	
aims	at	minimizing	the	total	transportation	cost	consisting	of	routing	and	fixed	cost,	and	maximizing	
the	 employment	 and	 regional	 development	 as	 social	 responsibility.	 An	M/M/c/K	 queue	 system	 is	
applied	to	estimate	 the	waiting	 time	at	hub	nodes	and	maximize	 the	responsiveness.	 In	addition,	 a	
fuzzy	queuing	method	is	applied	to	model	the	uncertainties	in	this	network.	A	powerful	evolutionary	
meta-heuristic	 algorithm	 based	 on	 the	 fuzzy	 invasive	 weed	 optimization	 (FIWO),	 variable	
neighborhood	search	(VNS)	and	game	theory	is	developed	to	solve	the	introduced	model	and	obtain	
near-optimal	Pareto	solutions.	Many	experiments	as	well	as	a	real	transportation	case-study	show	the	
superiority	of	the	proposed	approaches	compared	to	the	state-of-the-art	algorithm.	
	
Keywords:	Hub	location-routing	problem;	Queue	system,	Responsiveness;	Social	responsibility;	Fuzzy	
meta-heuristic	algorithm.	

	
1. Introduction	
Hub	 Location	 Problems	 (HLP)	 are	 nowadays	 attracting	 a	 lot	 of	 attention	 in	 the	 field	 of	 location	

problems.	Hubs	are	special	facilities,	that	are	being	used	for	transportation,	telecommunication,	cargo	
delivery	and	many-to-many	flow	distribution	systems.	In	other	words,	hub	networks	are	involved	in	
delivering	 people,	 commodities	 or	 information	 between	 different	 origin-destination	 (O-D)	 nodes	
(Zhalechian	et	al.,	2017a).		
The	hub	location-routing	problem	is	concerned	with	the	location	of	hub	facilities,	the	allocation	of	

non-hub	nodes	and	the	establishment	of	local	tours	among	the	nodes	allocated	to	them.	When	the	nodes	
do	not	have	sufficient	demand,	it	is	not	economically	feasible	to	set	a	direct	connection	between	them.	
In	 this	 situation,	 consolidation	 must	 be	 performed	 from	 origins	 to	 hubs	 and	 hubs	 to	 destinations	
(Mohammadi	et	al.,	2016).	An	HLP	is	called	a	p-hub	location	problem	when	the	number	of	hub	nodes	is	
pre-determined	to	be	equal	 to	p.	 In	 the	 literature,	several	 types	of	HLPs	are	being	developed:	p-hub	
center,	 p-hub	 median	 and	 hub	 covering	 location	 problems.	 There	 are	 two	 primary	 assumptions	
characterizing	most	of	the	HLPs:	(i)	there	is	no	direct	connection	between	each	non-hub	nodes	so	all	the	
flow	must	pass	by	at	least	one	hub	on	its	route	and	(ii)	the	network	between	hub	nodes	is	a	complete	
graph,	which	means	there	is	a	link	between	each	pair	of	hub	nodes	(Eiselt	and	Marianov,	2009).	There	
are	two	main	types	of	allocation	in	a	hub	and	spoke	networks,	namely	single-	and	multiple-allocation.	
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In	 single-allocation,	 each	 non-hub	 node	must	 be	 allocated	 to	 just	 one	 hub	 node	 while	 in	multiple-
allocation,	each	non-hub	node	can	be	allocated	to	more	than	one	hub	node.		
In	a	classical	HLP,	the	objective	is	to	find	the	location	of	hubs	and	non-hub	nodes	in	order	to	minimize	

the	total	costs.	Nevertheless,	the	massive	arrival	rate	of	the	flows	at	hub	nodes	ends	in	a	queue	and	long	
waiting	time	that	often	affects	the	customer	satisfaction.	The	responsiveness	of	a	hub	network	should	
be	considered	as	one	of	the	main	factors	in	designing	a	hub	and	spoke	network	(Van	Woensel	et	al.,	
2006).	A	hub-and-spoke	network	problem	is	considered	with	crowdedness	or	congestion	in	the	system.	
The	transportation	time	and	the	rate	of	arrived	flows	to	each	hub	are	random	variables.	In	addition,	a	
hub	cannot	serve	all	the	demands	simultaneously	since	it	has	some	restrictions,	such	as	capacity	and	
service	time	limitations.	Hubs,	which	are	the	most	crowded	parts	of	the	network,	are	usually	modeled	
as	a	M/M/c/K	queuing	system.	In	this	paper,	several	efforts	have	been	done	to	calculate	the	waiting	time	
and	improve	the	responsiveness	in	the	network.	
In	the	context	of	hub	network	design,	Social	Responsibility	(SR)	is	becoming	one	of	the	noticeable	

topics	of	interest	in	recent	years.	It	is	concerned	with	the	organization’s	impact	on	the	social	system.	In	
general,	all	the	individuals	and	companies	have	a	duty	to	act	in	the	best	interests	of	their	environment	
and	 society	 as	 a	 whole.	 It	 follows	 the	 logic	 of	 sustainable	 development,	 with	 the	 company	 being	
responsible	for	the	impact	of	its	decisions	and	activities	on	society	and	the	environment	(Zhalechian	et	
al.,	2017b).	Nowadays	organizations	and	companies	are	attempting	to	highlight	SR	elements	in	their	
strategies,	visions	and	development.	Also,	from	the	companies’	managers	viewpoint,	SR	can	improve	the	
social	image	and	the	brand	of	corporate	in	addition	to	risk	reduction.	To	provide	a	complete	framework	
for	social	matters,	an	international	standards	organization	(ISO)	has	represented	a	new	standard	(i.e.,	
International	Guidance	Standard	on	Social	Responsibility-ISO	26000),	which	categorize	the	social	issues	
into	the	following	major	groups:	corporate	governance;	human	rights;	labor	practices;	the	environment;	
correct	business	conduct,	questions;	relative	to	consumers;	and	commitment	to	society	(Pishvaee	et	al.,	
2012).	
Due	to	the	multi-stakeholder	nature	of	SR,	it	is	hard	to	measure	all	aspects	of	SR.	In	this	paper,	the	

aspect	of	SR	related	to	the	strategic	decision	will	be	considered	in	designing	a	hub-and-spoke	network.	
In	 both	 GRI	 guidelines	 (www.globalreporting.org)	 and	 ISO	26000,	 the	 importance	 of	 improving	 the	
community	 and	 environment	 around	 the	 workplace	 has	 been	 recommended.	 Moreover,	 there	 is	 a	
considerable	concern	for	the	job	opportunity	and	economic	development	as	strategic	decisions.	Hence,	
implementing	 SR	 in	 a	 hub-and-spoke	 networks	 can	 represent	 a	 valuable	 contribution	 towards	
addressing	the	concern	about	employment	opportunities	and	economic	development	(Mota	et	al.,	2015;	
Pishvaee	et	al.,	2014).	
The	 first	 goal	 of	 this	 paper	 is	 to	 develop	 a	 new	 multi-objective	 mixed-integer	 mathematical	

programming	 model	 with	 a	 quadratic	 objective	 function	 to	 (1)	 minimize	 the	 total	 investment	 and	
transportation	costs,	(2)	maximize	the	employment	and	economic	development	and	(3)	maximize	the	
responsiveness	by	minimizing	the	transportation	time	between	each	pair	of	O-D	nodes.	
The	 rest	 of	 this	 paper	 is	 organized	 as	 follows.	 Section	 2	 presents	 a	 brief	 review	 of	 the	 related	

literature.	 In	 Section	 3,	 the	 problem	 description	 and	 mathematical	 formulation	 are	 described.	 The	
proposed	solution	method	is	presented	in	Section	4.	Our	computational	experiments	are	summarized	in	
Section	5	and,	finally,	some	conclusions	are	drawn	in	Section	6. 
	

2. Literature	review	
In	this	section,	the	literature	review	of	HLPs	is	presented.	O’kelly	(1987)	presented	the	first	known	

quadratic	integer	programming	formulation	for	the	single	allocation	p-hub	median	problem.	Campbell	
(1994)	 simplified	 this	model	by	 introducing	a	 linear	 integer	programming	version	of	 the	 suggested	
model.	Ernst	et	al.	(1998)	presented	a	more	practical	LP	formulation	for	single-allocation	p-hub	problem	
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with	 fewer	 variables	 and	 constraints	 than	 those	 used	 in	 previous	works.	 de	 Camargo	 et	 al.	 (2008)	
developed	a	new	mixed-integer	formulation	that	decided	on	the	location	of	hubs	and	the	allocations	of	
tours	to	the	hubs.	They	also	assumed	a	time	limitation	for	each	tour	and	defined	a	set	of	possible	arcs	
that	can	form	a	local	tour	to	decreases	the	number	of	variables.	They	proposed	a	Benders	decomposition	
algorithm	in	order	to	obtain	an	exact	solution.	Meier	(2017)	defined	a	new	model	for	the	uncapacitated	
single	 allocation	p-hub	 median	 problem	 that	 minimizes	 the	 number	 of	 used	 vehicles,	 instead	 of	
considering	 the	 transport	 costs	 as	 a	 linear	 function	 of	 the	 volume.	 A	 new	 mixed	 integer	 program	
formulation	with	fewer	variables	but	more	constraints	is	introduced.	
Due	to	the	importance	of	responsiveness	in	a	hub-and-spoke	network,	the	queuing	theory	has	been	

used	for	managing	the	congestion.	The	first	study	that	addressed	this	important	aspect	was	due	to	Grove	
et	 al.	 (1986).	 Elhedhli	 et	al.	 (2005)	 considered	a	 single-allocation	p-hub	model	with	 congestion	and	
extended	their	model	by	adding	a	non-linear	cost	term	in	the	objective	function.	Marianov	and	Serra	
(2003)	developed	a	single-allocation	model	as	an	M/D/c	queuing	system	for	an	airport	system.	They	
used	a	capacity	constraint	 for	 limiting	 the	waiting	 time	at	each	hub	node	 to	a	predefined	value	and	
considered	two	objectives:	(i)	the	facilities	number	that	is	treated	by	limiting	the	capacity,	and	(ii)	the	
percentage	 of	 demand	 that	 may	 be	 lost	 because	 of	 the	 model’s	 limitation.	 Rahmati	 et	 al.	 (2014)	
developed	a	bi-objective	model	for	the	facility	location–allocation	problem,	which	is	immobile	service	
and	stochastic	demands	with	the	M/M/1/K	queue	system.	The	objectives	of	the	model	were	to	minimize	
the	total	cost	of	server	providers	and	minimize	the	total	time	of	serving	customers.	Ishfaq	et	al.	(2012)	
modeled	a	hub	operation	as	a	GI/G/1	and	studied	the	effect	of	 limited	hub	sources	on	 the	design	of	
multiple	job	classes	with	deterministic	routing.	Rodríguez	et	al.	(2007)	presented	a	hub	network	for	a	
cargo	transportation,	in	which	the	trucks	should	wait	in	a	queue	if	unloading	services	are	busy	and	each	
hub	node	is	modeled	as	an	M/M/1	queue	system.	Tavakkoli-Moghaddam	et	al.	(2017)	presented	a	new	
multi-objective	model	for	a	facility	location	problem	with	the	pricing	policy	and	congestion	of	immobile	
service	 facilities	by	a	stochastic	demand	and	an	M/M/m/K	queue	system.	They	proposed	 the	multi-
objective	 vibration	 damping	 optimization	 (MOVDO)	 and	 non-dominated	 ranking	 genetic	 algorithm	
(NRGA)	for	solving	large-sized	problems.	
In	spite	of	the	significance	of	social	responsibility,	the	relevant	literature	is	very	scares	in	the	context	

of	hub-and-spoke	networks.	However,	some	insights	can	be	gained	from	the	studies	that	addressed	the	
supply	chain	network	design	(SCND)	with	social	responsibility	and	corporate	sustainability.	Dehghanian	
et	al.	(2009)	developed	a	three-objective	mathematical	programming	model	to	maximize	the	economic	
and	social	benefits	and	minimize	negative	environmental	impacts,	simultaneously.	Several	measures	of	
SR	including	employment,	local	development	and	damage	to	workers	were	considered	in	this	model.	
Pishvaee	et	al.	(2012)	designed	a	socially	responsible	supply	chain	with	the	aim	of	minimizing	the	total	
cost	and	maximizing	 the	SR	of	 the	supply	chain.	The	created	 job	opportunities,	amount	of	produced	
waste	and	number	of	potentially	hazardous	products	were	considered	as	the	social	metrics.	Devika	et	
al.	 (2014)	presented	 a	mixed-integer	programming	model	with	 a	multi-objective	 closed-loop	 supply	
chain	network	problem.	Workers	safety	and	job	opportunities	are	the	two	measures	of	SR	that	were	
quantified	 and	 modelled	 as	 separate	 objective	 functions.	 Pishvaee	 et	 al.	 (2014)	 proposed	 a	 multi-
objective	possibilistic	programming	model	for	the	design	of	a	sustainable	medical	supply	chain	under	
uncertainty	 considering	 economic,	 environmental	 and	 social	 objectives.	 Ahmadi-Javid	 and	 Seddighi	
(2012)	 considered	an	 integrated	problem	with	 location,	 inventory	and	 routing	decisions	 in	a	multi-
source	distribution	network	design	that	minimizes	the	total	related	cost.	They	proposed	a	three-phase	
heuristic	 algorithm	 for	 solving	 large-sized	 problems.	 Mousavi	 et	 al.	 (2013)	 presented	 a	 fuzzy	
possibilistic	two-phase	mixed-integer	programming	model	for	a	cross-docking	system.	They	considered	
the	multi-period	location	of	multiple	cross-docks	and	scheduling	of	vehicle	routing	problems	under	a	
fuzzy	environment.	
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Designing	a	hub-and-spoke	network	that	can	fulfill	multiple	objectives	at	the	same	time	has	drawn	a	
lot	of	attention	recently.	Da	Graça	Costa	et	al.	(2008)	presented	a	capacitated	single-allocation	model,	in	
which	the	first	objective	is	to	minimize	the	total	cost	and	the	second	one	limits	the	number	of	flows	that	
can	be	 received	by	 the	hub	nodes.	 They	 applied	 an	 interactive	decision-aid	method	 to	 solve	 the	bi-
objective	model.	Ghodratnama	et	al.	(2015)	developed	a	multi-objective	single-allocation	model	with	a	
supply	chain	overview.	Three	objective	functions	include	the	total	transportation	and	installation	costs,	
the	total	greenhouse	gas	emitted	and	the	weighted	sum	of	service	times	in	the	hub	nodes.	Masoumzadeh	
et	 al.	 (2016)	 proposed	 a	multi-objective	 p-hub	 protection	model	 with	 backup	 hub	 nodes.	 The	 first	
objective	 function	 in	 their	 model	 maximizes	 the	 potential	 flow	 between	 the	 O-D	 nodes	 with	 the	
minimum	potential	flow,	and	the	second	one	minimizes	the	total	installation	costs.	Mohammadi	et	al.	
(2016)	 and	 Parvaresh	 et	 al.	 (2014)	 introduced	 a	bi-objective	 single-allocation	p-hub	 center-median	
problem	 under	 uncertainty	 in	 flows,	 times,	 costs	 and	 hub	 operations.	 The	 first	 objective	 tends	 to	
minimize	 the	 total	 transportation	 cost	 and	 the	 fixed	 cost	 of	 locating	 the	 hub	 and	 the	 second	 one	
minimizes	 the	maximum	 travel	 time	between	each	pair	 of	O-D	 in	 the	network.	Rahimi	 et	al.	 (2016)	
suggested	a	new	M/M/c/K	queue	model	for	a	location-allocation	problem	that	minimizes	concurrently	
two	objectives:	(i)	the	total	transportation	cost	of	the	hub	network	and	(ii)	the	maximum	travel	time	
between	each	O-D	pair.	Zhalechian	et	al.	(2017a)	presented	a	multi-objective	mathematical	model	for	a	
multi-model	HLP	with	the	aim	of	minimizing	the	total	transportation	and	traffic	noise	pollution	costs.	In	
addition,	they	minimized	the	maximum	transportation	time	between	O-D	nodes	in	order	to	ensure	a	
high	 probability	 of	 guarantying	 the	 service	 deliveries.	 Furthermore,	 Zhalechian	 et	 al.	 (2017b)	
introduced	a	new	multi-objective	model	for	a	hub	location	problem	under	uncertainty	that	considers	
economic,	responsiveness	and	social	responsibility	at	the	same	time.	They	also	used	an	M/M/c	queuing	
system	to	calculate	the	waiting	time	at	each	node	and	increase	the	responsiveness.	
According	to	the	above	discussion,	the	literature	review	shows	that	there	is	a	gap	in	incorporating	

social	responsibility	in	designing	hub-and-spoke	networks.	Although	there	are	a	number	of	studies	that	
considered	total	costs,	responsiveness	and	SR	in	their	literature	separately,	a	few	papers	have	employed	
all	of	them	at	once.	There	are	also	three	main	assumptions	in	routing	problems	that	have	never	been	
simultaneously	considered	so	far.	These	three	assumptions	are	(i)	the	set	of	nodes	where	local	tour	can	
be	established	is	the	same	as	the	set	of	demand	nodes,	(ii)	there	is	no	limitation	on	the	number	of	local	
tours,	and	(iii)	there	is	limitation	for	the	flow	capacity	for	each	local	tour.	Moreover,	there	is	no	any	
study	in	the	context	of	routing	problems	that	incorporates	the	routing	cost	in	the	local	tour	as	a	function	
of	both	distance	traversed	and	flow	carried	and	there	is	a	gap	in	proposing	a	network	that	considers	
location,	allocation	and	establishment	of	local	tours	simultaneously.		
To	overcome	these	deficiencies,	we	propose	a	mathematical	model	for	the	HLP	that	addresses	in	an	

integrated	way	the	trade-off	between	the	total	cost,	responsiveness	and	social	responsibility.	Also,	an	
iterative	two-phase	clustering-routing	heuristic	model	is	developed	in	order	to	obtain	a	near-optimal	
solution	with	a	reasonable	CPU	time.	Thus,	 the	main	contributions	of	 this	paper	with	respect	 to	 the	
previous	related	studies	can	be	summarized	as	follows:	
• Introducing	 a	 new	 multi-objective	 mixed-integer	 mathematical	 model	 with	 a	 quadratic	 cost	
function	to	design	a	hub-and-spoke	network;	

• Developing	a	generalized	version	of	 the	hub	 location-routing	problem	that	 jointly	considers	 the	
location,	allocation	and	establishment	of	local	tours;	

• Introducing	a	new	objective	 function	 in	 the	HLP	that	maximizes	 the	employment	and	economic	
development	based	on	the	unemployment	rate	and	the	level	of	regional	development;	

• Developing	an	M/M/c/K	queuing	system	to	calculate	the	waiting	times	at	hub	nodes	and	enhance	
the	responsiveness	of	the	designed	network.	
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3. Problem	description	and	proposed	model	
	

3.1.	Modeling	framework	
This	 paper	 introduces	 a	multi-objective	 single-allocation	 hub	 location-routing	 problem.	 The	 first	

objective	aims	at	reducing	the	transportation	and	installation	costs.	The	cost	of	routing	per	unit	of	flow	
from	node	i		to	node	j	is	defined	as	𝑐#$	and	𝑔#$ 	is	the	cost	of	using	arc	(i,	j).	These	cost	parameters	are	
dependent	on	the	traversed	distance	between	each	pair	of	nodes.	By	establishing	local	tours	and	direct	
links	with	a	hub,	each	non-hub	node	has	two	options:	either	being	directly	connected	to	a	hub	or	be	
visited	through	a	local	tour.	Local	tours	have	the	maximum	capacity	of	Q	units	of	flow.	The	parameters	
α	and	β	are	discount	factors	for	the	routing	costs	of	the	traffic	and	flow	through	local	tours,	respectively.		
The	 model	 involves	 two	 additional	 new	 objective	 functions.	 The	 first	 one	 maximizes	 the	 social	

responsiveness	by	creating	both	fixed	and	variable	job	opportunities	through	establishing	a	hub	node	
and	also	by	promoting	the	economy	in	the	region	where	the	hub	node	is	set	up.	The	second	one	aims	at	
minimizing	the	maximum	travel	time	between	each	pair	of	O-D	nodes.	Due	to	the	finite	capacity	of	hub	
nodes,	the	arrival	flow	must	wait	in	a	queue	for	receiving	service.	The	total	service	time	is	the	sum	of	
queue	waiting	time	and	the	processing	time.	In	order	to	calculate	the	waiting	time	within	the	stochastic	
flow	setting,	a	queue	model	needs	to	be	developed.	Each	queue	has	a	limited	capacity	K	to	control	and	
limit	the	arrival	flow	(see	Fig.	1).	Service	and	average	entering	rates	are	constant	and	follow	a	Poisson	
distribution	during	peak	hours.	
	

	
Fig.	1.	M/M/c/k	queuing	system	at	hub	node.	

	
Van	Woensel	et	al.	(2006)	developed	a	queuing	system	by	using	both	simulation	and	empirical	data.	

Peterson	 et	 al.	 (1995)	 proposed	 queue	 system	 algorithms	 for	 transient	 congestion	 at	 airports	 and	
concluded	that	arrival	rates	and	capacity	levels	follow	a	Poisson	distribution	when	there	is	variation	
over	the	scheduled	time.	Aykin	(1994),	Ebery	et	al.	(2000)	and	Sasaki	et	al.	(2003)	added	a	capacity	level	
constraint	at	a	network	in	order	to	control	the	congestion.	Rahimi	et	al.	(2016)	studied	an	M/M/c/K	
queue	system	with	different	capacity	levels	for	the	hub.	In	their	study,	hubs	with	more	capacity	need	
higher	cost	and	equipment	to	be	built	and	in	return,	they	attract	a	higher	volume	of	flow	and	control	
better	the	congestion.	In	this	paper,	a	Poisson	distribution	will	be	used	to	calculate	the	waiting	time	from	
the	arrival	flow	at	hub	nodes	and	an	M/M/c	model	for	the	queue	management	is	proposed.	
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3.2.	Mathematical	Model	
Before	presenting	our	model,	sets,	parameters,	and	decision	variables	are	defined	below.		

	

Indices	
𝑖, 𝑗, 𝑘, 𝑙	 Indices	representing	the	non-hub	nodes	(set	I)	and	hub	nodes	(set	J)	
	
Decision	variables		
𝑥#$	 1,	if	node	i	is	assigned	to	hub	j;	0	otherwise	
𝑦#$-	 1,	if	node	i	precedes	node	j	at	the	route	that	completes	on	hub	k;	0	otherwise	
𝑓$/# 	 Flow	that	originates	at	node	i	and	travels	from	hub	j	to	hub	l	

𝑟#$-	 Flow	that	travels	from	node	i		to	node	j	in	the	route	that	completes	on	hub	k	
Φ	 Maximum	traveling	time	between	each	O-D	nodes	
	
Queuing	system	parameters	
𝑊-	 Total	service	time	at	hub	node	k		
𝑊𝑞-	 Total	queue	waiting	time	at	hub	node	k	
𝜆-	 Arrival	rate	of	flow	units	to	hub	k	
𝜇-	 Service	rate	of	hub	k	
𝑐-	
𝐾-	

Number	of	service	providers	at	hub	k	
Finite	capacity	of	a	queue	at	hub	k	

𝑃78,-	 Probability	of	n	flow	units	in	the	queue	at	hub	node	k		
𝐿𝑞-	 Length	of	the	queue	at	node	k	
𝑊:#$	 Flow	units	between	nodes	i	and	j	

𝑂<# =>𝑊:#$
$

	 Total	amount	of	flow	units	originating	from	node	i	

𝐷:# =>𝑊:$#
$

	 Total	amount	of	flow	units	delivering	at	node	i	

	 	
Based	on	the	above	notation,	the	arrival	rate	of	flow	unit	to	hub	k	is	calculated	by:	
	

𝜆- =>(𝑂<# + 𝐷:#)𝑥#-
#

	 (1)	

	

Moreover,	the	total	service	time	(𝑊-)	is	calculated	as	the	sum	of	waiting	time	in	the	queue	and	the	
process	time,	as:	
	

𝑊- = 𝑊𝑞- +
C
D8
,	 (2)	

	

and	the	waiting	time	of	the	arrival	flow	unit	into	hub	k	is	defined	as.	
	

𝑊𝑞- =
𝐿𝑞-

𝜆-(1 − 𝑃78,-)
	 (3)	

	

And	according	to	the	queuing	theory	laws,	the	involved	entities	can	be	calculated	by	means	of	the	
following	equations:	
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𝑃78,- =
(𝜆-)G8

𝐾-! (𝜇-)G8
𝑃I-	

(4)	

𝐿𝑞- =
(𝑎-)K8(𝜌-)
𝑐-! (1 − 𝜌-)M

𝑃I-[1 − (𝜌-)G8OK8PC − (1 − 𝜌-)(𝐾- − 𝑐- + 1)(𝜌-)G8OK8]		
(5)	

𝑃I- = [
(𝑎-)K8(1 − (𝑎-)G8OK8PC)

𝑐-! (1 − 𝑎-)
+ >

(𝑎-)R

𝑣!

K8OC

RTI

]OC 
(6)	

𝑎- =
𝜆-
𝜇-
	 (7)	

𝜌- =
𝜆-
𝑐-𝜇-

	 (8)	

	 	
Fuzzy	parameters	
𝐹𝚥W-	 Number	of	fixed	job	opportunities	created	through	establishing	a	hub	at	node	k	
𝑉𝚥W-	 Number	of	variable	job	opportunities	created	through	establishing	a	hub	at	node	k	
𝐸𝑣W-	 Economic	value	of	hub	node	k	
𝑔Z#$ 	 Cost	of	using	arc	(i,	j)	
𝑐̃#$	 Cost	of	routing	a	unit	of	flow	from	node	i	to	node	j	
𝑇<#$ 	 Transportation	time	between	nodes	i	and	j	
	

Deterministic	parameters	
𝑟𝑑-	 Level	of	regional	development	at	node	k	
𝑤_` 	 Importance	weight	of	the	employment	measure	
𝑤_a 	 Importance	weight	of	the	economic	development	measure	
𝑢𝑟-	 Unemployment	rate	at	node	k	
p	 Number	of	hubs	that	must	be	located	in	the	network	
𝛼	 Node-hub	transportation	discount	factor	
𝛽	 Local	tour	transportation	discount	factor	
Q	 Maximum	units	of	flow	that	a	vehicle	can	carry	
	
On	the	basis	of	the	above	notation,	our	suggested	model	can	be	expressed	as:	
	

𝐌𝐢𝐧	𝑍C =>> > 𝛼
/∈j\{$}$∈j#∈n

𝑐̃$/𝑓$/# + > >>2𝛽
-∈j$∈n#∈n\{$}

𝑐̃#$𝑟#$- +>>2𝑂<#
$∈j#∈n

𝑐̃#$𝑥#$

+ > >>𝑔Z#$𝑦#$-
-∈j$∈n#∈n\{$}

	

	

																+>>𝑔Z#$𝑥#$
$∈j

+ > >𝑔Z$-𝑥$$𝑥--
-∈j$∈j:$q-

									
#∈n

																			

	
	
	
	

(9)	

𝐌𝐚𝐱	𝑍M = 𝑤_` u>v𝐹𝚥W- + 𝑉𝚥W-w
-

𝑢𝑟-𝑥--x + 𝑤_a u>𝐸𝑣W-(1−
-

𝑟𝑑-)𝑥--x	
	

(10)	

Min	𝑍y	=	ϕ	 (11)	

Subject	to:	 	



8	
 

>𝑥#$
$∈j

+ > >𝑦#$-
-∈j$∈n\{#}

≥ 1	 ∀𝑖 ∈ 𝐼	 (12)	

> 𝑦#$-
#∈n\{$}

− > 𝑦$#-
#∈n\{$}

= 0	 ∀𝑗 ∈ 𝐼	, 𝑘 ∈ 𝐽	 (13)	

𝑦#-- + 𝑦-#- ≤ 1	 ∀𝑘 ∈ 𝐽	, 𝑖 ∈ 𝐼 ∶ 𝑖 ≠ 𝑘	 (14)	
𝑦#$- ≤ 𝑥-- 	 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗	 (15)	
𝑥#$ ≤ 𝑥$$ 	 ∀𝑖 ∈ 𝐼	, 𝑗 ∈ 𝐽	 (16)	
v𝑇<#- +𝑊- + 𝑇<-/ +𝑊/ + 𝑇</$w𝑦#$- ≤ ϕ	 ∀𝑖 ∈ 𝐼	, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽	 (17)	

>𝑥$$
$∈j

= 𝑝	 	 (18)	

> (𝑓$/#

/∈j\{$}

− 𝑓/$# ) = >𝑊:#`
`∈n

( > 𝑦#-$
-∈n\{#}

)

− > 𝑊:#`
`∈n\{$}

( > 𝑦`-$
-∈n\{`}

) +>𝑊:#`
`∈n

(𝑥#$

− 𝑥`$)	

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗	 (19)	

> (𝑓$/
$

/∈j\{$}

− 𝑓/$
$) = >𝑊:$`

`∈n

(𝑥$$ − 𝑥`$ − > 𝑦`-$
-∈n\{`}

)	 ∀𝑗 ∈ 𝐽	 (20)	

> (𝑟#$-

$∈j\{#}

− 𝑟$#-) = 𝑂<# > 𝑦#`-
`∈n\{#}

	 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐽 ∶ 𝑖 ≠ 𝑘	 (21)	

0≤	𝑟#$-	≤𝑄𝑦#$-	 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗	 (22)	

𝑓$/# ≥ 0	 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐽	\{𝑗}	 (23)	

𝑦#$- ∈ {0,1}	 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼,	𝑘 ∈ 𝐽 ∶ 𝑖 ≠ 𝑗	 (24)	
𝑥#$ ∈ {0,1}	 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼	 (25)	
	
The	objective	function	(9)	minimizes	the	total	transportation	cost	that	consists	of	six	terms:	(1)	the	

routing	cost	of	flows	sent	in	the	hub	network	that	takes	into	account	the	discount	factor	α,	(2)	the	routing	
cost	of	flows	sent	through	the	local	tours,	taking	into	account	the	discount	factor	β,	(3)	the	routing	cost	
of	flows	sent	directly	from	single-assigned	non-hub	nodes	to	nodes,	(4)	the	fixed	cost	of	travelling	the	
local	tours	expressed	as	a	function	of	the	distance	traversed,	(5)	the	fixed	cost	of	travelling	from	single	
assigned	non-hub	nodes	to	hub	nodes	expressed	as	a	function	of	distance	traversed,	and	(6)	the	fixed	
cost	 of	 travelling	 through	 the	 hub	 network.	 It	 is	 to	 be	 noted	 that	 the	 second	 and	 third	 terms	 are	
multiplied	by	two	in	order	to	count	for	the	delivery	and	pick-up	costs.	The	second	objective	function	
(10)	 aims	 at	 maximizing	 the	 employment	 and	 economic	 development.	 The	 third	 objective	 (11)	
minimizes	the	maximum	transportation	time	between	each	pair	of	O-D	nodes.	
Constraint	(12)	ensures	that	each	node	in	the	set	I	will	be	assigned	directly	to	a	hub	or	to	a	tour	that	

completes	its	tour	on	a	hub.	Constraint	(13)	imposes	that	the	number	of	incoming	arcs	to	any	node	i	is	
equal	to	the	number	of	outgoing	arcs	from	any	node	i	that	are	assigned	to	a	tour	that	completes	its	tour	
on	hub	k.	Constraint	(14)	ensures	that	there	is	no	local	tour	with	just	one	node.	Constraints	(15)	and	
(16)	impose	that	if	a	node	is	not	chosen	to	be	a	hub	node,	any	demand	node	that	is	either	part	of	a	local	
tour	or	single	cannot	be	assigned	to	this	node.	Constraint	(17)	calculates	the	maximum	transportation	
time	between	O-D	nodes.	Constraint	(18)	indicates	that	p	nodes	should	be	chosen	as	hub	locations.		
Constraints	(19)	and	(20)	are	flow	balance	constraints	for	the	hub	network.	If	node	 j	 is	not	a	hub	

node,	then	the	right	sides	of	both	constraints	will	be	zero,	which	means	there	cannot	be	any	flow	sent	
through	the	hub	network	that	visits	node	j.	More	specifically,	constraint	(19)	apply	when	i	node	i	is	not	
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a	hub	node,	but	node	j	is	a	hub	node,	then	node	i	is	either	directly	assigned	to	a	hub	node	or	to	a	local,	
tour	as	stated	by	constraint	(12).	If	node	i	is	assigned	to	hub	node	j,	then	𝑥#$ + ∑ 𝑦#-$-∈n\{#} = 1	and	the	
total	flow	emanating	from	node	i	will	be	∑ 𝑤#``∈n (∑ 𝑦#-$-∈n\{#} ) + ∑ 𝑤#``∈n 𝑥#$.	Some	flow	will	not	go	
through	the	hub	network	but	will	be	sent	to	nodes	either	individually	or	by	a	local	tour	to	hub	j,	which	
is	calculated	by	∑ 𝑤#``∈n\{$} (∑ 𝑦`-$-∈n\{`} ) + ∑ 𝑤#``∈n 𝑥`$ .	Therefore,	the	flow	emanating	from	node	
i	and	going	through	the	hub	network	will	be	the	total	flow	emanating	from	node	i	minus	the	flow	sent	to	
nodes	 either	 individually	 or	 by	 a	 local	 tour	 to	 hub	 j,	 ∑ 𝑤#``∈n (∑ 𝑦#-$-∈n\{#} ) −
∑ 𝑤#``∈n\{$} (∑ 𝑦`-$-∈n\{`} ) + ∑ 𝑤#``∈n (𝑥#$ − 𝑥`$).	 If	 node	 i	 is	 assigned	 to	 hub	 node	 j	 then	 𝑥#$ +
∑ 𝑦#-$-∈n\{#} = 0	that	ensures	the	flow	originating	node	i	cannot	be	sent	from	node	j.	
	In	the	case	of	Constraint	(20)	in	which	node	j	is	a	hub	node,	the	total	flow	emanating	from	node	j	will	

be	∑ 𝑤$``∈n 𝑥$$ ;	however,	some	flow	will	not	go	through	the	hub	network,	but	will	be	sent	to	nodes	
either	individually	or	by	a	local	tour	to	hub	 j,	which	is	calculated	by	∑ 𝑤$`(`∈n 𝑥`$ + ∑ 𝑦`-$-∈n\{`} ).	
Hence,	 the	 flow	 emanating	 from	 node	 j	 and	 going	 through	 the	 hub	 network	 will	 be	 the	 total	 flow	
emanating	from	node	j	minus	the	flow	sent	to	the	nodes	either	individually	or	by	a	local	tour	to	hub	j	
(i.e.,	∑ 𝑤$`(𝑥$$ −`∈n 𝑥`$ − ∑ 𝑦`-$-∈n\{`} )).	
Set	of	constraints	(21)	represents	the	flow	balance	for	local	tours.	The	total	outgoing	flow	minus	the	

total	incoming	flow	from	non-hub	node	i	will	be	equal	to	its	demand.	Constraint	(22)	ensures	that	the	
capacity	on	the	tours	is	not	exceeded.	Finally,	constraints	(23)	to	(25)	are	the	variable	restriction.		
The	objective	function	(9)	of	above	problem	is	non-linear	but	can	be	easily	linearized	by	defining	a	

new	variable	𝑧$- = 𝑥$$𝑥--	and	adding	new	constraints	as	follows:		
	

𝑧$- ≥ 𝑥$$ + 𝑥-- − 1	 ∀𝑗 ∈ 𝐽	, 𝑘 ∈ 𝐽: 𝑗 < 𝑘	 (26)	
𝑧$- ≤ 𝑥$$ 	and	𝑧$- ≤ 𝑥--	 ∀𝑗 ∈ 𝐽	, 𝑘 ∈ 𝐽: 𝑗 < 𝑘	 (27)	
	

4. Proposed	solution	approach	
Solving	large-sized	instances	of	the	proposed	model	is	computationally	challenging.	Our	preliminary	

computational	 experiments	have	 shown	 that	 solving	 large-sized	problems,	 i.e.	 having	more	 than	15	
nodes,	required	a	huge	computational	time	that	is	not	compatible	with	the	decisional	process	timing.	To	
overcome	this	limitation,	a	two-phase	approach	is	developed	in	this	section:		
	
Phase	1:	Convert 	the	fuzzy	model	(9)—(27)	to	its	equivalent	auxiliary	crisp	form		
	
Phase	2:	Develop	a	new	multi-objective	meta-heuristic	algorithm	to	find	optimal	Pareto	solutions	 

	
4.1	Phase	1  — Converting the	model	to	its	equivalent	auxiliary	crisp	form	
The	HLP	model	(9)—(27)	is	a	fuzzy	multi-objective	linear	program.	Several	approaches	have	been	

developed	in	the	literature	to	transform	a	possibilistic	model	into	an	equivalent	crisp	one.	The	literature	
review	illustrates	that	credibility-based	possibilistic	approaches,	such	as	expected	value	(Liu	et	al.	2002)	
and	chance-constrained	programming	(Lie	et	al.	1998),	are	the	two	most	applied	methods	to	handle	the	
uncertainty	in	parameters	of	objective	functions	and	constraints.	There	are	several	fuzzy	measurements	
to	 transform	 a	 possibilistic	 chance	 constraint	 into	 its	 crisp	 form.	 Among	 them,	 Pos	 (possibility	
measures)	and	Nec	(necessity	measure)	are	the	basic	fuzzy	measures	to	calculate	the	optimistic	and	
pessimistic	attitudes	of	the	DM	(Rabbani	et	al.	2018).	The	Cr	(credibility)	is	another	fuzzy	measure,	that	
can	be	defined	as	an	average	of	the	Pos	and	Nec,	to	measure	and	demonstrate	the	certainty	degree	of	
occurrence	of	an	uncertain	event.		
Xu	and	Zhou	(2013)	presented	a	more	flexible	measure	Me	to	avoid	extreme	attitudes.	This	approach	

is	an	extension	of	the	Cr	measure.	It	can	also	consider	the	combined	attitude	of	the	DM,	which	is	between	
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optimistic	and	pessimistic	views.	The	concepts	of	possibility,	necessity	and	credibility	of	a	fuzzy	event	
is	 defined	 below.	 The	 triple	 set	 (θ,	 P(θ),	 Pos),	 according	 to	 Dubois	 and	 Prade	 (2012),	 is	 called	 the	
possibility	space,	where	θ	is	a	non-empty	set,	P(θ)	is	the	power	of	set	θ,	and	Pos	is	a	possibility	measure.	
The	fuzzy	measure	Me	is	defined	by:	

	

Me	{A}	=	Nec	{A}	+	ԑ(Pos	{A}-	Nec	{A}),	 (28)	
	 	

where	A	is	a	set	in	P(θ)	and	ԑ	is	the	pessimistic-optimistic	parameter	to	be	depend	on	the	decision-maker	
preferences.	The	necessity	and	credibility	measures	of	A	are,	respectively,	defined	as:	

	

Nec	{A}	=1-	Pos	{𝐴K}	 				(29)	
	 	

Cr	{A}	=	C
M
(Pos	{A}+	Nec{A})	 (30)	

	

Several	 kinds	 of	 definitions	 for	 the	 expected	 value	 of	 the	 triangular	 fuzzy	 variable	 have	 been	
mentioned	 in	 the	 literature.	 Based	 on	 	 Xu	 and	 Zhou	 (2013),	 the	 expected	 value	 of	 triangular	 fuzzy	
variable	ξ = (ξC, ξM, ξM)	when	ξC ≥ 0	can	be	calculated	as:	

	

E[ξ]=	(COԑ)
M

ξC +
C
M
ξM +

ԑ
M
ξy		 (31)	

	

In	 order	 to	 deal	with	 such	 uncertainty	 in	 the	 parameters,	 the	 chance-constrained	 programming	
approach	is	used	in	this	study,	as	briefly	explained	in	the	sequel.	

	

Min	𝑐̃𝑥	 (32)	
Subject	to:	 	
Me	{𝐴�𝑥	≥	𝑏<}	≥	α	 	
Me	{𝑁:𝑥	≤	𝑑�}	≥	β	 	
𝑥 ≥ 0	 	

	

where	𝑐̃ = (𝑐̃C, 𝑐̃M … , 𝑐̃7)	,	𝐴� = [𝑎Z#$]`×7	,	𝑁: = [𝑛Z#$]`×7	,	𝑏< = (𝑏<C, 𝑏<M … , 𝑏<7)�,	and	𝑑� = (𝑑�C, 𝑑�M … , 𝑑�7)�	show	
the	triangular	fuzzy	numbers	in	the	objective	functions	and	constraints.	Also,	α	and	β	are	the	decision	
maker’s	minimum	satisfaction	levels	of	possibilistic	constraints.	
The	 foregoing	 model	 can	 be	 transformed	 into	 two	 approximation	 models,	 namely	 UAM	 (upper	

approximation	model)	and	LAM	(lower	approximation	model)	defined	as	follows:	
	
			UAM:	

Min	E	[𝑐̃]𝑥	
	 subject	to:	
	 		Pos	{𝐴�𝑥	≥	𝑏	:}	≥	α																															(33)				
	 		Pos	{𝑁:𝑥	≤	𝑑�}	≥	β	

	 		𝑥 ≥ 0	

			LAM:								
Min	E	[𝑐̃]𝑥	

	 subject	to:	
	 		Nec	{𝐴�𝑥	≥	𝑏	: }	≥	α.																																(34)	
	 		Nec	{𝑁:𝑥	≤	𝑑�}	≥	β	

	 		𝑥 ≥ 0													
The	above	possibilistic	models	can	be	transformed	into	two	crisp	equivalent	linear	models	as:		

	

UAM:	 (35)	
	 Min	((COԑ)

M
c(C) +

C
M
c(M) +

ԑ
M
c(y))𝑥	

	 𝐴(M)𝑥 + (1 − 𝛼)v𝐴(y) − 𝐴(M)w𝑥 ≥ 𝑏(M) − (1 − 𝛼)(𝑏(M) − 𝑏(C))	
	 𝑁(M)𝑥 − (1 − 𝛽)v𝑁(M) − 𝑁(C)w𝑥 ≤ 𝑑(M) + (1 − 𝛽)(𝑑(y) − 𝑑(M))	
								𝑥 ≥ 0	
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and	
	

LAM:	 (36)	
Min	((COԑ)

M
c(C) +

C
M
c(M) +

ԑ
M
c(y))𝑥	

	 𝐴(M)𝑥 − 𝛼v𝐴(M) − 𝐴(C)w𝑥 ≥ 𝑏(M) + (1 − 𝛼)(𝑏(y) − 𝑏(M))	
	 𝑁(M)𝑥 + (1 − 𝛽)v𝑁(y) − 𝑁(M)w𝑥 ≤ 𝑑(M) − 𝛽(𝑑(M) − 𝑑(C))	
								𝑥 ≥ 0	
By	calculating	the	UAM	and	LAM,	the	decision	maker	has	both	the	upper	and	lower	bounds	of	the	

optimal	solution.	Therefore,	more	information	is	made	available	to	select	the	final	solution.	Accordingly,	
the	proposed	model	will	be	approximated	by	means	of	the	following	auxiliary	crisp	equivalent	problems	
with	triangular	fuzzy	parameters:	
	

UAM:	

𝐌𝐢𝐧	𝑍C =>> > 𝛼
/∈j\{$}$∈j#∈n

(
1 − 𝜀
2

𝑐$/(C) +
1
2
𝑐$/(M) +

𝜀
2
𝑐$/(y))𝑓$/# + > >>2𝛽

-∈j$∈n#∈n\{$}

(
1 − 𝜀
2

𝑐#$(C)

+
1
2
𝑐#$(M) +

𝜀
2
𝑐#$(y))𝑟#$- +>>2(

1 − 𝜀
2

𝑂#(C) +
1
2
𝑂#(M) +

𝜀
2
𝑂#(y))

$∈j#∈n

(
1 − 𝜀
2

𝑐#$(C)

+
1
2
𝑐#$(M) +

𝜀
2
𝑐#$(y))𝑥#$ + > >>(

1 − 𝜀
2

𝑔#$(C) +
1
2
𝑔#$(M) +

𝜀
2
𝑔#$(y))𝑦#$-

-∈j$∈n#∈n\{$}

+>>�
1− 𝜀
2

𝑔#$(C) +
1
2
𝑔#$(M) +

𝜀
2
𝑔#$(y)�	𝑥#$

$∈j#∈n

+ > >�
1− 𝜀
2

𝑔$-(C) +
1
2
𝑔$-(M)

-∈j$∈j:$q-

+
𝜀
2
𝑔$-(y)� 𝑥$$𝑥--																																																																																																											

(37)	

𝐌𝐚𝐱	𝑍M = 𝑤_` u>��
1 − 𝜀
2

𝐹𝐽-(C) +
1
2
𝐹𝐽-(M) +

𝜀
2
𝐹𝐽-(y)�

-

+ �
1 − 𝜀
2

𝑉𝐽-(C) +
1
2
𝑉𝐽-(M) +

𝜀
2
𝑉𝐽-(y)��𝑢𝑟-𝑥--x

+ 𝑤_a u>�
1− 𝜀
2

𝐸𝑣-(C) +
1
2
𝐸𝑣-(M) +

𝜀
2
𝐸𝑣-(y)� (1 −

-

𝑟𝑑-)𝑥--x	

(38)	

Min	𝑍y	=	ϕ	 (39)	
	

Subject	to:	
	

	

𝜆- =>([𝑂#(M) + (1 − 𝛼)v𝑂#(y) − 𝑂#(M)w] + [𝐷#(M) + (1 − 𝛼)v𝐷#(y) − 𝐷#(M)w)𝑥#-
#

	 (40)	

v[𝑇#-(M) − (1 − 𝛼)v𝑇#-(M) − 𝑇#-(C)w] + 𝑊- + [𝑇-/(M) − (1 − 𝛼)v𝑇-/(M) − 𝑇-/(C)w] + 𝑊/ + [𝑇/$(M)
− (1 − 𝛼)v𝑇/$(M) − 𝑇/$(C)w]w𝑦#$- ≤ ϕ	

(41)	
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> (𝑓$/#

/∈j\{$}

− 𝑓/$# ) = >[𝑊#`(M) + (1 − 𝛼)v𝑊#`(y) − 𝑊#`(M)w]
`∈n

( > 𝑦#-$
-∈n\{#}

)

− > [𝑊#`(M) + (1 − 𝛼)v𝑊#`(y) −𝑊#`(M)w]
`∈n\{$}

( > 𝑦`-$
-∈n\{`}

)

+>[𝑊#`(M) + (1 − 𝛼)v𝑊#`(y) −𝑊#`(M)w]
`∈n

(𝑥#$ − 𝑥`$)	

(42)	

> (𝑓$/
$

/∈j\{$}

− 𝑓/$
$) = >[𝑊$`(M) + (1 − 𝛼)v𝑊$`(y) −𝑊$`(M)w]

`∈n

(𝑥$$ − 𝑥`$ − > 𝑦`-$
-∈n\{`}

)	 (43)	

> (𝑟#$-

$∈j\{#}

− 𝑟$#-) = [𝑂#(M) + (1 − 𝛼)v𝑂#(y) − 𝑂#(M)w] > 𝑦#`-
`∈n\{#}

	 (44)	

	

The	other	relevant	constraints.	
	
	
LAM:	

Min	𝐸[𝑍C]	 (45)	

Max	𝐸[𝑍M]	 (46)	

Min	𝑍y=ϕ	
	

(47)	

Subject	to:	
	

	

𝜆- =>([𝑂#(M) − 𝛼v𝑂#(M) − 𝑂#(C)w] + [𝐷#(M) − 𝛼v𝐷#(M) − 𝐷#(C)w)𝑥#-
#

	 (48)	

v[𝑇#-(M) + (1 − 𝛼)v𝑇#-(y) − 𝑇#-(M)w] + 𝑊- + [𝑇-/(M) + (1 − 𝛼)v𝑇-/(y) − 𝑇-/(M)w] + 𝑊/ + [𝑇/$(M)
+ (1 − 𝛼)v𝑇/$(y) − 𝑇/$(M)w]w𝑦#$- ≤ ϕ	

(49)	

> (𝑓$/#

/∈j\{$}

− 𝑓/$# ) = >[𝑊#`(M) − 𝛼v𝑊#`(M) − 𝑊#`(C)w]
`∈n

( > 𝑦#-$
-∈n\{#}

)

− > [𝑊#`(M) − 𝛼v𝑊#`(M) −𝑊#`(C)w]
`∈n\{$}

( > 𝑦`-$
-∈n\{`}

)

+>[𝑊#`(M) − 𝛼v𝑊#`(M) −𝑊#`(C)w]
`∈n

(𝑥#$ − 𝑥`$)	

(50)	

> (𝑓$/
$

/∈j\{$}

− 𝑓/$
$) = >[𝑊$`(M) − 𝛼v𝑊$`(M) −𝑊$`(C)w]

`∈n

(𝑥$$ − 𝑥`$ − > 𝑦`-$
-∈n\{`}

)	 (51)	

> (𝑟#$-

$∈j\{#}

− 𝑟$#-) = [𝑂#(M) − 𝛼v𝑂#(M) − 𝑂#(C)w] > 𝑦#`-
`∈n\{#}

	 (52)	

	

The	other	relevant	constraints.	
	
4.2		Phase	2—Developing the	meta-heuristic	algorithm	
In	 order	 to	 solve	 the	 resulting	deterministic	 equivalent	model	we	adapted	 the	method	GVIWO,	 first	
introduced	by	Mohammadi	et	al.	(2016),	to	find	optimal	Pareto	solutions.	The	algorithm	GVIWO	is	a	new	
multi-objective	meta-heuristic	approach	that	is	based	on	a	combination	of	three	different	components:	
the	 fuzzy	 invasive	 weed	 optimization	 (Mehrabian	 and	 Lucas,	 2006),	 the	 variable	 neighborhood		
algorithm,	and	game	theory.	
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5. Computational	experiments	
This	 section	 in	 dedicated	 to	 the	 numerical	 experiments	 that	 have	 carried	 out	 to	 validate	 the	

proposed	model	 and	 to	 compare	 the	 performance	 of	 our	 developed	method	 (that	 we	 will	 still	 call	
GVIWO)	 with	 respect	 to	 the	 very	 well-known	 multi-objective	 algorithms	 NSGA-II	 (Non-dominated	
Sorting	 Genetic	 Algorithm-II,	 by	 Deb	 et	 al.,	 2002)	 and	 MOPSO	 (multi-objective	 particle	 swarm	
optimization,	by	Coello	and	Lechunga,	2002).	
	

5.1. Parameters	Setting	
It	 is	particularly	important	to	 tune	 each	parameter	of	 a	meta-heuristic	 algorithm	given	 its	great	

impact	on	 the	quality	of	 the	produced	solution.	 In	our	 case,	 statistical	approaches	such	 as	response	
surface	methodology	(RSM)	can	be	employed	to	identify	the	best	set	of	factor	levels	(Mohammadi	et	al.	
2013).	Tables	1	and	2	show	the	values	of	NSGA-II	and	MOPSO	as	well	as	the	values	of	GVIWO	parameters	
used	along	all	the	experiments,	respectively.	

	
Table	1.	NSGA-II	and	MOPSO	parameters	settings.	

NSGA-II	 	 MOPSO	
Parameter	 Value	 	 Parameter	 Value	

Population	size	
Crossover	rate	

400	
0.78	

	 Max	iterations	
No.	of	particles	

200	
30		

NFC	 30000	 	 Date	of	damping	 0.989	
Mutation	rate	 0.1	 	 C1	 1.3	

	 	 	 C2	 2.7	
	 	 	 	𝛼		 6%	

	

	
Table	2.	GVIWO	parameters	settings.	

Algorithm	 Parameters		and	values	

GVIWO 

𝑃𝑜𝑝£#¤_ 	 𝑃𝑜𝑝`¥¦ 	 𝑖𝑡𝑒𝑟 ¥¦	 𝑆`¥¦ 	
30	 96	 180	 8	
𝑆`#7 	 𝑠𝑑`#7 	 𝑠𝑑`¥¦ 	 𝑝𝑜𝑤	
2	 0.7	 0.017	 1	
𝑃« 	 𝐼𝑡𝑉𝑁𝑆`¥¦ 	 𝑛¬_­_¥� 	 𝐼𝑡𝑟 ¥¦	
0.45	 19	 7	 250	

	
5.2	Quality	of	the	Pareto	Solutions	
In	order	to	validate	the	proposed	model	and	to	check	the	quality	of	the	Pareto	solution	produced	by	

our	GVIWO	method	we	start	by	considering	two	small-sized	test	problems	:	(i)		Problem	1	has	8	total	
nodes	and	3	hub	nodes	and	(ii)	Problem	2	with	10	nodes	and	4	hub	nodes.	The	distribution	functions	of	
the	randomly	generated	parameters	for	both	problems	are	shown	in	Table	3.		

	

Table	3.	Source	of	randomly	generated	parameters	
	 Generated	values	

Parameters	 Problem	1	(8#3)	 Problem	2	(10#4)	
𝛼, 𝛽	 ~U(0,1)	 ~U(0,1)	
𝑤_`	 ~U(5,10)	 ~U(6,11)	
𝑤_a	 ~U(10,15)	 ~U(12,17)	
𝑢𝑟-	 ~U(0,1)	 ~U(0,1)	
𝑔#$	 ~U(15,40)	 ~U(17,44)	
𝑇#$	 ~U(0,10)	 ~U(0,12)	
𝑐#$  ~U(20,50)	 ~U(22,55)	
𝐹𝑗-	 ~U(10,20)	 ~U(11,22)	
𝑉𝑗- ~U(50,100)	 ~U(55,110)	
𝐸𝑣- ~U(50,100)	 ~U(55,110)	
𝑟𝑑-	 ~U(0,1)	 ~U(0,1)	
𝑤#$	 ~P(100)	 ~P(110)	
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The	exact	Pareto	frontier	has	been	obtained	by	coding	the	developed	models	in	GAMS	software	that	
used	BARON	as	solver	(Branch	and	Reduce	Optimization	Navigator)	solver.	The	aim	here	is	to	assess	the	
gap	between	the		optimal	solution	attained	by	GAMS	and	the	Pareto	solutions	generated	by	GVIWO,	as	
well	as	 the	other	 two	methods.	Figs.	2	and	3	depict	 the	Pareto	 frontiers	of	 the	GVIWO,	NSGA-II	and	
MOPSO	 algorithms	 compared	 to	 the	 exact	 solution	 identified	 by	 GAMS	 package	 for	 both	 the	 test	
problems,	respectively.	The	figures	show	that	the	proposed	GVIWO	method	can	obtain	Pareto	solutions	
that	 are	 very	 close	 to	 the	 optimal	 Pareto	 frontier	 extracted	 by	 GAMS.	 It	 is	 clear	 that	 the	 different	
components	constituting	our	proposed	GVIWO	algorithm	have	contributed	in	reaching	such	high	quality	
solution.	In	particular,	the	competition	between	the	different	objectives	(that	have	the	role	of	players	in	
the	game	theory)	succeeded	to	search	better	the	solution	space	and	to,	consequently,	reach	high-quality	
solutions	with	respect	to	the	classical	NSGA-II	and	MOPSO	algorithms.	

	

	
Fig.	2.	Pareto	frontier	of	GAMS,	GVIWO,	NSGA-II	and	MOPSO	for	Problem	1	

	

	
Fig.	3.	Pareto	frontier	of	GAMS,	GVIWO,	NSGA-II	and	MOPSO	for	Problem	2	

	
5.3 Comparative	study	
The	GVIWO	algorithm	is	applied	to	a	number	of	test	problems	and	its	performance	is	compared	with	

MOPSO	and	NSGA-II	with	respect	to	four	different	comparison	metrics,	namely	quality	(QM),	spacing	
(SM),	diversity	(DM)	and	mean	ideal	distance	(MID)	metrics	(for	the	significance	of	each	metric	check	
Kaveh	et	al.	2020).		
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The	parameters	of	 the	GVIWO,	NSGA-II	and	MOPSO	algorithms	are	 first	 tabulated	 for	small-sized	
problems	consisting	of	10	and	15	nodes.	Problem	instances	are	indicated	as	“number	of	nodes	#	number	
of	hubs”	(e.g.,	10#3	means	10	nodes	and	3	hubs	to	be	located).	Tables	4	and	5	show	the	comparison	of	
the	 four	 QM,	 DM,	 SM	 and	 MID	 metrics	 considering	 these	 small–sized	 problems	 (best	 values	 are	
highlighted	in	bold	font).	The	tables	show	that	our	GVIWO	performs	better	than	NSGA-II	and	MOPSO	
algorithms	for	all	the	metrics.	

	
Table	4.	Quality	and	spacing	metrics	for	small-sized	problems	

Problem	No.	
Quality	Metric	(QM)	 	 Spacing	Metric	(SM)	

MOPSO	 NSGA-II	 GVIWO	 	 MOPSO	 NSGA-II	 GVIWO	
10#3	 0.2	 0.1	 0.25	 	 0.434	 0.479	 0.389	
10#4	 0	 0	 0.1	 	 0.476	 0.511	 0.357	
15#3	 0.3	 0.1	 0.4	 	 0.328	 0.586	 0.29	
15#4	 0.1	 0.05	 0.15	 	 0.572	 0.611	 0.478	

	
	

Table	5.	Diversity	and	mean	ideal	distance	metrics	for	small-sized	problems	

Problem	No.	
Diversity	metric	(DM)	 	 Mean	ideal	distance	(MID)	

MOPSO	 NSGA-II	 GVIWO	 	 MOPSO	 NSGA-II	 GVIWO	
10#3	 0.933	 0.812	 0.998	 	 0.308	 0.469	 0.23	
10#4	 0.946	 0.874	 1	 	 0.579	 0.654	 0.345	
15#3	 0.961	 0.552	 0.988	 	 0.519	 0.458	 0.399	
15#4	 0.725	 0.728	 0.878	 	 0.447	 0.468	 0.255	

	
The	proposed	algorithm	 is	then	applied	 to	solve	 large-sized	problems	ranging	 from	30	 to	70	

nodes	with	different	numbers	of	hubs	to	be	located.	The	results	reported	in	Table	6	(for	QM	and	SM)	
and	Table	7	(for	DM	and	MID)	show	again	that	GVIWO	outperforms	the	other	methods	for	all	the	metrics.		
	

	
Table	6.	Quality	and	spacing	metrics	for	large-sized	problems	

Problem	No.	
Quality	metric	(QM)	 	 Spacing	metric	(SM)	

MOPSO	 NSGA-II	 GVIWO	 	 MOPSO	 NSGA-II	 GVIWO	
30#7	 0	 0	 0.2	 	 0.638	 0.759	 0.634	
30#8	 0	 0	 0.1	 	 0.968	 1.011	 0.678	
40#8	 0	 0	 0.1	 	 0.601	 0.780	 0.54	
40#10	 0	 0	 0.3	 	 0.457	 0.746	 0.234	
50#8	 0.1	 0	 0.2	 	 0.511	 0.484	 0.4	
50#10	 0	 0	 0.25	 	 0.638	 0.632	 0.234	
50#12	 0.05	 0	 0.1	 	 0.695	 0.558	 0.55	
70#10	 0.1	 0.05	 0.15	 	 0.547	 0.637	 0.35	
70#12	 0	 0	 0.1	 	 0.757	 1.063	 0.45	

	
	

Table	7.	Diversity	and	mean	ideal	distance	metrics	for	large-sized	problems	

Problem	No.	
Diversity	metric	(DM)	 	 Mean	ideal	distance	(MID)	

MOPSO	 NSGA-II	 GVIWO	 	 MOPSO	 NSGA-II	 GVIWO	
30#7	 0.974	 0.818	 0.96	 	 0.464	 0.677	 0.367	
30#8	 0.754	 0.624	 0.89	 	 0.456	 0.529	 0.4	
40#8	 0.917	 0.879	 0.957	 	 0.609	 0.669	 0.5	
40#10	 0.857	 0.583	 0.89	 	 0.575	 0.575	 0.5	
50#8	 0.999	 0.784	 0.999	 	 0.645	 0.734	 0.589	
50#10	 0.765	 0.594	 0.879	 	 0.664	 0.708	 0.543	
50#12	 0.731	 0.847	 0.99	 	 0.597	 0.667	 0.589	
70#10	 0.733	 0.643	 0.879	 	 0.400	 0.745	 0.367	
70#12	 0.819	 0.780	 0.89	 	 0.660	 0.796	 0.555	
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The	above	results	have	been	combined	and	depicted	 in	graph	 form,	as	reported	 in	the	Appendix.	
Among	the	four	metrics,	QM	is	the	most	important	since	it	affects	directly	the	solution	quality	and,	with	
a	lower	extend,	spacing	metric	that	measures	the	uniformity	of	the	spread	and	spacing	of	the	solutions.	
For	both	these	metrics,	the	results	reported	in	the	above	tables	and	those	depicted	in	Fig.	10–13	in	the	
Appendix	show	a	clear	superiority	of	GVIWO	with	respect	to	the	other	two	algorithms.	
Finally,	we	aim	at	testing	further	the	performance	of	GVIWO	compared	to	NSGA-II	and	MOPSO	in	

terms	of	the	DM,	SM	and	MID	metrics.	For	this	purpose	perform	the	“non-parametric	Friedman	test”	
(Scheff,	2016)	on	56	test	problems	while	using	the	SPSS	software	for	analyzing	the	data.	Table	8	shows	
how	for	55	degrees	of	freedom	the	significances	(2-tailed)	are	nearly	0.000.	The	table	also	shows	that	
there	are	significant	statistical	differences	between	the	solutions	obtained	by	GVIWO	and	the	other	two	
algorithms.	

	
Table	8.	Detailed	statistics	of	paired	t-test	

	 Paired	Differences	 t	 df	 Sig.	(2-tailed)	

Metric	 Pair	 Mean	 Std.	
Deviation	

Std.	
Error	
Mean	

95%	Confidence	
Interval	of	the	
Difference	 Mean	 Std.	

Deviation	
Std.	Error	
Mean	

Lower	 Upper	
SM	 MOPSO	-	GVIWO	 -.32184	 .17026	 .02080	 -.36336	 -.28031	 -15.473	 55	 .001	
DM	 	 .30881	 .19944	 .02436	 .26016	 .35745	 12.674	 55	 .002	
MID	 	 -.39251	 .16623	 .02031	 -.43306	 -.35196	 -19.327	 55	 .000	
SM	 NSGA-II	-	GVIWO	 -.22330	 .14833	 .01812	 -.25948	 -.18712	 -12.322	 55	 .000	
DM	 	 .20752	 .18412	 .02249	 .16261	 .25243	 9.226	 55	 .000	
MID	 	 -.22188	 .18467	 .02256	 -.26692	 -.17684	 -9.835	 55	 .000	

	
	

5.4 Sensitivity	analysis	
In	order	to	assess	the	effect	of	the	various	parameters	on	the	objective	functions,	some	sensitivity	

analyses	are	performed	and	the	results	are	depicted	in	this	subsection.	First,	the	sensitivity	of	all	three	
objective	functions	upon	increasing	the	number	of	hub	nodes	is	investigated.	More	specifically,	Fig.	4	
(left)	shows	that	increasing	the	number	of	hub	nodes,	will	result	in	an	increase	in	the	total	cost	(i.e.,	the	
first	objective	function).	Establishing	a	higher	number	of	hub	nodes	will	clearly	involve	a	higher	fixed	
cost	and	more	significant	routing	cost.	
	

	 	 	
	

Fig.	4.	Total	cost,	Social	responsibility	and	Responsiveness	vs.	number	of	hub	nodes	
	

	
On	the	other	hand,	increasing	the	number	of	hubs	has	positive	effect	on	the	social	responsibility.	Fig.	

4	(middle)	shows	that	establishing	more	hubs	will	contribute	in	creating	more	job	opportunities	(thus,	
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in	 decreasing	 the	 rate	 of	 unemployment)	 and	 impact	 positively	 on	 the	 regional	 economical	
development.	Concerning	the	third	objective	function,	a	higher	number	of	hub	nodes	will	lead	to	a	lower	
congestion	at	the	hubs,	which	will	reduce	the	waiting	time	and	raise	the	responsiveness	of	the	network.	
However,	such	an	attractive	effect	can	be	observed	till	a	certain	extent.	Indeed,	Fig.	4	(right)	shows	that	
when	the	number	of	hub	nodes	exceeds	9,	the	systems	cannot	achieve	further	significant	improvement	
in	the	third	objective	function	value.		
The	second	set	of	analyses	the	mean	value	of	flow	units	increases,	the	first	objective	function	will	

increase	not	only	because	of	the	augmented	transportation	cost	but	also	because	of	it	will	be	necessary	
to	activate	more	hubs	with	larger	capacity	(see	Fig.	5,	left).	In	return	to	cope	up	with	an	increased	flow,	
more	hub	nodes	having	 larger	capacity	should	be	built	which	will	engender	more	 job	vacancies	and	
more	development	in	the	region.	This	can	be	seen	in	Fig.	5	(middle)	where	the	value	of	SR	increases,	
even	 though	 not	monotonically,	with	 the	mean	 flow.	 Not	 surprisingly,	when	 the	mean	 of	 flow	 unit	
increases,	the	congestion	at	each	hub	node	will	also	increase	and	that	will	lead	to	a	higher	flow	waiting	
time	which	will	deteriorate	the	network’s	responsiveness	(as	depicted	in	Fig.	5,	right).	
	

	 	 	
	

Fig.	5.	Total	cost,	Social	responsibility	and	Responsiveness	vs.	mean	flow	
	

	
As	a	final	experiment	within	this	section,	we	will	check	the	effect	of	the	queue	capacity	on	the	most	

important	criteria	related	to	the	customers	satisfaction,	the	responsiveness.	Fig.	6	shows	that	a	higher	
finite	capacity	of	the	queue	will	allow	more	flow	to	enter	the	hubs	which	will	increase	the	congestion	
and	 the	 waiting	 time	 in	 the	 hubs	 and	will,	 consequently,	 reduce	 the	 responsiveness	 ability	 of	 the	
network.	

	

	
Fig.	6.	Responsiveness	vs.	finite	capacity	of	a	queue	

410

430

450

470

490

510

1000 1500 2000 2500 3000 3500 4000

Re
sp
on
si
ve
ne
ss

Finite	capacity	of	a	queue



18	
 

5.5 Case	study	
In	this	section,	a	real-case	study	of	transportation	in	Iran	is	used	to	validate	further	the	performance	

of	 the	 proposed	 model.	 The	 statistical	 data	 we	 employed	 are	 related	 to	 an	 instance	 of	 the	 Road	
Transportations	of	 Iran	(ROI)	 involving	37	cities,	whose	details	 (distance	and	 fixed	costs)	are	made	
available	by	the	company.	In	this	case,	the	costs	of	establishing	hubs,	hub-hub	transportation	and	hubs-
non-hubs	transportation	are	minimized.	The	factors	σ	and	β	are	set	to	0.75	and	0.	8,	respectively.		
We	 solved	 the	ROI	 instance	by	using	our	proposed	GVIWO	algorithm	 for	 two	different	 values	of	

number	of	hubs	 to	be	activated,	 i.e.	p	=	4	and	p	=	5.	Fig.	7	depicts	the	solution	of	 the	transportation	
network	that	consists	in	activating	the	following	4	hub	nodes:	Mashhad,	Tehran,	Isfahan	and	Kerman,	
given	 their	 population	 and	 their	 importance	 in	 the	 country’s	 economy.	 Each	 of	 the	 adjacent	 city	 is	
connected	to	one	of	the	hubs	either	with	a	direct	link	or	with	a	local	tour.	For	instance,	the	figure	shows	
that	the	city	of	Rasht	is	directly	connected	to	Tehran	given	its	high	level	of	demand;	On	the	other	hand,	
the	cities	of	Qom	and	Arak	are	assigned	to	Tehran	by	a	local	tour.	Likewise,	Fig.	8	shows	the	produced	
network	involving	5	hub	nodes.	In	this	new	topography,	the	city	of	Tabriz	has	been	also	selected	as	a	
hub	and	Ardabil,	Zanjan,	Sanandaj	and	Uroomieh	are	now	connected	to	Tabriz	instead	of	Tehran.	The	
detailed	 results	 for	 the	 4-hub	 and	 5-hub	 scenarios	 are	 shown	 in	 Table	 9.	 The	 last	 three	 columns	
demonstrate	 the	 first,	 second	 and	 third	 objective	 function	 values,	 respectively	 It	 is	 clear	 that	 by	
activating	one	more	hub,	the	overall	cost	will	decrease	since	the	new	topology	succeed	to	reduce	the	
transportation	connections.	
One	may	wonder	if	further	savings	can	be	achieved	if	more	hubs	are	to	be	activated	in	the	network.	

Our	last	experiment,	whose	results	are	summarized	in	Fig.	9,	address	this	question	and	show	that	the	
total	cost	reaches	its	minimum	when	5	hub	nodes	are	established.	

	

	
	

Fig.	7.	Hub	topography	for	4	hub	nodes	 Fig.	8.	Hub	topography	for	5	hub	nodes	
	

	
Table	9.	Detailed	cost	of	the	real-case	study	

p	 Hub	cities	 OF1	(Z1)	 OF2	(Z2)	 OF3	(Z3)	

4	 Tehran,	Isfahan,	Mashhad,	Kerman	 62340000	 171243	 845	
5	 Tehran,	Isfahan,	Mashhad,	Kerman,	Tabriz	 59340000	 185456	 794	
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Fig.	9.	Total	cost	vs.	number	of	hub	nodess	

	
	

6 Conclusion	
This	 paper	 proposes	 a	 multi-objective	 mixed-integer	 single-allocation	 hub	 location	 and	 routing	

problem	 considering	 the	 economic	 aspect,	 social	 responsibility	 and	 responsiveness	 of	 the	 network.	
Within	this	hub	location-routing	problem,	every	non-hub	node	has	two	options	to	be	served:	(i)	either	
directly	assigned	to	a	hub	node	or	(ii)	visited	through	a	local	tour.	Furthermore,	to	calculate	the	waiting	
time	and	minimize	the	maximum	transportation	cost	between	each	pair	O-D	nodes,	an	M/M/c/K	queue	
system	was	applied.	One	of	the	major	contribution	of	this	study	is	to	attempt	to	boost	the	employment	
and	regional	development	through	incorporating	the	social	responsibility	as	objective	function.	Given	
the	 complexity	 of	 the	 resulting	model,	 an	 efficient	 evolutionary	 approach	 (GVIWO)	 based	 on	 fuzzy	
invasive	weed	optimization,	on	the	variable	neighborhood	algorithm	and	on	game	theory	was	developed	
to	 solve	 small-	 and	 large-sized	 problems	 and	 obtain	 the	 near-Pareto	 solutions.	 The	 intensive	
computational	experiments	we	carried	out	showed	that	GVIWO	overperformed	well	known	approaches	
such	as	MOPSO	and	NSGA-II.	Moreover,	sensitivity	analysis	was	carried	out	to	show	the	influence	of	the	
mean	flow,	number	of	hubs,	and	queue	capacity	on	the	objective	functions.	Finally,	a	real	transportation	
case	in	Iran	was	studied	to	validate	the	applicability	of	the	proposed	model	and	solution	approach	in	the	
real	world.		
As	possible	future	extensions	on	the	presented	study	we	can	suggest	incorporating	the	stochastic	

nature	 of	 the	 demand	 and	 also	 of	 the	 capacity	 on	 both	 hub	 and	 hub-to-hub	 flow	 into	 the	 model.	
Moreover,	the	transportation	medium	can	be	enriched	by	involving	different	shipping	channels	(modes)	
to	enhance	the	capacity	of	the	hub-to-hub	links	and	reduce	the	disruption	risk.		
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Appendix:		
Fig.	10,	11,	12	and	13	summarize	the	behavior	of	the	three	meta-heuristic	algorithms	with	

respect	to	each	of	the	four	QM,	DM,	SM	and	MID	metrics.	All	the	four	figures	show	clearly	the	
good	performance	of	our	GVIWO	compared	to	both	NSGA-II	and	MOPSO	algorithms.	
	
	
	

	
Fig.	10.	Comparing	the	three	multi-objective	meta-heuristic	algorithms	with	respect	to	Quality	Metric	

	
	

	

	
Fig.	11.	Comparing	the	three	meta-heuristic	algorithms	with	respect	to	Spacing	metric		
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Fig.	12.	Comparing	the	three	meta-heuristic	algorithms	with	respect	to	Diversity	metric		

	
	

	
Fig.	13.	Comparing	the	three	meta-heuristic	algorithms	with	respect	to	Mean	ideal	distance		
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