
Thompson, Simon (1992) Formulating Haskell. Technical report. University
of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21020/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21020/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Formulating Haskell�

Simon Thompson

Computing Laboratory� University of Kent

Canterbury� CT� �NF� U�K�

E�mail� sjt�ukc�ac�uk

Abstract

The functional programming language Haskell is examined from the point
of view of proving programs correct� Particular features explored include
the data type de�nition facilities� classes� the behaviour of patterns and
guards and the monad approach to IO in the Glasgow Haskell compiler�

� Introduction

Haskell �Hudak et al�� 	

�� Hudak and Fasel� 	

�� is a lazy functional pro�
gramming language which is likely to become a de facto as well as a de jure
standard academically and commercially� It is often said that a crucial part
of the appeal of functional languages is the ease with which proofs concerning
functional programs can be written� It is also widely accepted that if proof is
to be taken seriously� it needs to be formalised� and to be checked by machine��

The aim of this paper is to initiate discussion on the form that a logic for
Haskell might take� It is based to some degree on the author�s previous work on
devising a logic for Miranda� �Thompson� 	

�� which in turn builds on earlier
work in the area� Implementation of the logic for Miranda is in progress at the
University of Kent �funded by SERC grant GR�F �
	���� and it is expected
that the system will be freely available within the next year�

The paper begins with a discussion of the carrier logic for the axiomati�
sation� and the relation between the semantics of the language and the logic�
Next types and their operators� including equality� are axiomatised� Classes
are unique to Haskell� and their e�ect on veri�cation is discussed in Section ��
The logical form of de�nitions is described next� and in particular the unfortu�
nate interaction between pattern matching and guards is explored� IO in the
Glasgow Haskell compiler is de�ned in terms of an IO monad � we show how
the monadic approach is amenable to formal treatment in section �� The paper
concludes with a number of miscellaneous points�

One issue addressed throughout the paper is the choice of which parts of
the language are amenable to formal treatment� For example� only some of the
numeric types are logically tractable�

�To appear in J� Launchbury � P�M� Sansom �eds��� Functional Programming� Glasgow

����� Springer Verlag� Workshops in Computing� ���	�
�This paradigm is di
erent from that prevailing in mathematics� where proofs are subject

to social scrutiny� but the nature of proofs about programs seems to be su�ciently di
erent
to make this sort of check highly unlikely�

� Logic

The basic intuition behind a functional program is that expressions denote
values and expressions of ground type are evaluated to give printable values or
results� It seems sensible for the logic to be one of equations between expressions
of the language� These will be written

e � f
where e and f are Haskell expressions� The symbol � is used in preference to
� and �� for reasons which will become clear� The relation � is an equivalence
relation� and obeys Leibniz�s law� equals may be substituted for equals in terms
and formulas�

Since the language is typed� so should the logic itself� making an equation
of the form above invalid unless e and f have the same �or uni�able� types�
�Logicians call this a many�sorted logic��

Expressions in Haskell need not denote a de�ned value � evaluation of an ex�
pression may loop inde�nitely� for instance� This phenomenon may be rendered
logically in a number of ways� expressions can be permitted not to take values�
giving a partial logic� or their value may be the unde�ned value� or �bottom��
�� The latter �LCF� approach is adopted here� it is both simple and su�ciently
expressible� further discussion of the issue can be found in �Thompson� 	

��

What should be the logic in which these equations are embedded� Lacking
arguments to the contrary� the simplest option of �rst�order �many�sorted�
predicate calculus seems appropriate� It is open whether it should be classical
or constructive� note however that for simple �� �or ��

�
� statements� such as

the assertion that a function from Int to Int is total� their strength is the
same�

As a part of the standardisation exercise� it seems that a formal semantics
for the language will emerge� This allows the possibility that the soundness
of a proposed logic can be veri�ed� every assertion or theorem of the system
can be checked to see whether it is indeed valid in the formal interpretation�
Soundness is clearly a minimal requirement� but can be problematic depending
upon the form of semantics adopted� issues of full abstraction and the case of
parallel or come to mind�

Again given the semantics� the converse to soundness can be examined� is
every assertion validated by the semantics derivable in the logic� Such a result
is unlikely in view of G�odel�s incompleteness results� but relative completeness
results have been established for Hoare logics of imperative languages�

� Types

This section examines the way that types and operations over them are to be
axiomatised�

��� Algebraic Types

Algebraic types can be treated in a uniformway� as they come with constructors
and de�nition by pattern matching� but no prede�ned operators�

The Boolean type is a typical example of a simple algebraic type� it is an
enumerated type� Its elements are True� False and �� and therefore theorems

valid in Boolean algebra� like
x �� not x � True

will fail to be valid� since
� �� not � � �

This was taken as one justi�cation for introducing the quanti�er �def in the
logic for Miranda� Familiar theorems are rendered thus

��def x �� Bool��x �� not x � True�
In a similar way� the induction principle �or elimination rule� for the type can
take two forms

P�True� P�False�

��def x �� Bool��P�x�

and

P�True� P�False� P���

�� x �� Bool��P�x�

It is a matter of general principle that from the latter rule can be derived the
rule of exhaustion�

�� x �� Bool��x � True � x � False � x � ��
On the other hand� an axiom to assert the distinctness of the constructors is
required�

�False �� True � � �� False � � �� True�
It is logically su�cient to assert one such axiom� as from this those at other
types can be derived�

A general algebraic type like that of lists is rather more complex� The
type is inhabited by �nite lists like 	
���
�� but also by partial lists� such as
	
����� and
������ and by in�nite lists like 	�������� Some theorems for
lists are valid over the whole type

map �f�g� � map f � map g
whilst others are only valid for �nite lists �possibly containing ��

reverse �reverse x� � x
and still others are restricted to �nite lists of de�ned elements

product x �� � � elem � x
Properly to re�ect these di�erences� in �Thompson� 	

� restricted quanti�ers
and induction rules were introduced� Typical of such a rule is

P�	�� ��def x �� a���def l �� 	a���P�l� �P�x�l�

��def l �� 	a���P�l�

This characterises the �nite lists of de�ned elements� Note that often the proof
of the second hypothesis will be a consequence of

��def x �� a��� l �� 	a���P�l� �P�x�l�

in which the list l will simply be an arbitrary list�
The in�nite lists are described quite di�erently� They can be seen as

members of a greatest �xed point� with equality over them characterised by
a bisimulation�like co�induction principle �Pitts� 	

��� Pitts characterises the
in�nite elements as a greatest �xed point of an inductive de�nition� and de�nes
the equality relation over the set of elements in a similar way� For lists the
principle states that two lists l and m are equal if l 	 m for some pre�equality

relation 	� The relation 	 is a pre�equality relation if and only if for all l and
m�

l 	 m� �l � � � � m� � �l � a � l� � m � b � m� � a � b � l� 	 m��

The attractive feature of his approach is that it works for all algebraic types�
such as solutions of

data LambdaModel � Fun �LambdaModel �� LambdaModel�
giving a characterisation of equality of these elements of a model of the untyped
��calculus� The disadvantage of his approach is that the principle requires
a second�order logic for its formulation� since two elements are equal if for
some pre�equality relation � � � � A similar problem presents itself with induction
principles� of course� and the usual expedient is to replace the characterisation
by a schema� restricting the pre�equality relations to those which are de�nable
in the logic�

Alternatively� mathematical induction may be used to de�ne equality over
types which appear only in the range position of a function�space constructor
on the right�hand side of their de�nitions� For lists we have�

l � m if and only if ��def n �� Nat��take n l � take n m�
where take is de�ned in the standard prelude�

This fragmentation of the principles of induction over the type of lists seems
to be unavoidable� the general principle of induction for lazy lists is too weak to
include the others as special cases� since it is restricted to admissible predicates�
�Paulson� 	

�� contains details of the general rule as well as providing a good
background reference to the LCF approach�

��� Built�in Types

Built�in types are akin to abstract types� no direct access is given to the �ma�
chine� representation� rather manipulation is through prede�ned operators� Ax�
ioms for these types therefore have to re�ect as much of the structure of the
type as is thought necessary� In the case of �oating�point and complex num�
bers� it seems highly unlikely that any satisfactory �but sound�� axiomatisation
exists� and we would argue that this part of the language be omitted from the
logic�

It is therefore appropriate to restrict attention to the integral and ratio�
nal types� Even then� giving a su�ciently abstract presentation of the �xed�
precision integers� Int� is di�cult� so we restrict attention to the full integers�
Integer� In the Miranda logic a subtype of the integers� Nat� is introduced�
allowing theorems on properties of natural number�functions to be expressed
directly� This means that Miranda de�nitions have to be read as being over�
loaded in a limited way� but it presents no theoretical di�culties�

How are the integers and operations over them axiomatised� The system
will include the graphs of the operations� giving their values at each argument
sequence� This will not be enough to axiomatise the primitive operations�
primQuotRem and the like� which will also be speci�ed by their primitive re�
cursive de�nitions� From these de�nitions can be derived the usual theorems
such as associativity of ���� or indeed the results themselves may be included

�The IEEE characterisation of �oating point operations seems to be too low level to be
usable in veri
cation� It is perfect for the speci
cation of a �oating�point unit� for instance�

as primitives� �From the point of view of a logical characterisation� any built�in
operation adds some uncertainty as to its precise behaviour��

Function types are characterised by function composition� which is a de�ned
operation� and �logical� equality between functions� Basic to functional pro�
gramming is that functions are characterised by their behaviour� meaning the
values they return� and that programs have the same behaviour when equals
are substituted for equals� Equality on functions is given by the extensionality
rule�

��x �� a�� f x � g x �

f � g

This rule is adhered to by Haskell � it is a matter of some delicacy in language
design to ensure that this is the case� Tuples do not obey the extensionality
condition� This is because

fst ����� � � fst � � �
snd ����� � � snd � � �

giving ����� and � the same components� but because of the behaviour of
pattern matching over pairs� the function

test �x�y� �
�
returns
� on ����� and � on �� This adds a slight complication to the
characterisation of equality� Any advantage of such a de�nition is at the im�
plementation level� to check whether a member of a product type is de�ned
�i�e� unequal to �� simply requires a check that it is a pair� if � and ����� are
identi�ed� the pair �e�� e�� is de�ned if and only if one of the expressions e�� e�
is de�ned� so a parallel evaluation of the expressions e� and e� is required� More
is said about pattern matching in general in Section ��

� Classes

Classes give a general treatment of overloading or ad hoc polymorphism� Func�
tions which are polymorphic in the usual sense of parametric polymorphism
are amenable to uniform treatment� At each type the same de�ning equation
is used� with the same logical characterisation� How much will this be true of
type classes� in other words� how much can logical structure be built on top of
the class structure�

There seem to be two distinct cases� On the one hand� classes like Text and
all the numeric classes will in general fail to share any signi�cant properties�
In the �rst case this is plain� but for numeric classes� it is an unfortunate
truth that� for example� addition on Int and Integer behave in fundamentally
di�erent ways� even though the two types inhabit the same classes�

More optimistically� for the classes Eq and Ord the intention is that opera�
tions of equality and ordering are de�ned on their members� Even if the imple�
mentations are di�erent� all equality relations should be �partial� equivalence
relations on their domains� all orderings should be pseudo�partial orderings�
�They will not be total since they will in general fail to be re�exive�� In the
logic this could be re�ected by a logical class�

logical class �Eq a� �� Equality a
where
symm is �� x�y �� a�� x��y � y��x �
trans is �� x�y�z �� a�

� x��y � True � y��z � True � x��z � True�
For a type to inhabit this logical class� proofs of the theorems symm and trans
have to be given�

The method of derived instantiations could be extended to the logic� A
symmetrical and transitive relation on type a will be extended to a similar
relation on type 	a� by the standard de�nition of equality� for instance�

A similar treatment of ordering is possible�
class �Eq a� �� DefEq a
where
defined �� a �� Bool
defined x � x��x

logical class �Ord a� �� Ordering a
where
asymm is �� x�y �� a�

� x��y � True � y��x � True � x��y � True�
total is ��def x�y �� a�� x��y � True � y��x � True �
trans is ���

In these examples� the same name is given to occurrences of the same formula
at di�erent type instances� the polymorphism in the formula is parametric�
The proofs of the formulae are de�ned di�erently at di�erent types� an ad hoc
overloading� It is also possible to give an ad hoc overloading to names with�
for instance� exhaustion� used to name the appropriate axiom of exhaustion
at each type�

exhaust�Bool is �� x �� Bool��x � True � x � False � x � ��
exhaust�Nat is

�� x �� Nat��x � � � x � � � �� df y �� Nat��x � y����
Whether this mechanism has other than mnemonic value remains to be seen�

� De�nitions

Haskell de�nitions have the form of equations� so it is plausible that the �
symbol of the language can simply be replaced by the � of the logic� In a
simple de�nition of the form

f x y � x�y�y
this is the case� but the addition of pattern matching� guards and scopes �in the
form of where and let� makes the situation substantially more complicated� A
function will be de�ned by a sequence of equations� and the order of these will
be signi�cant� Take the case of

g 	��� �
�
g �a�b�x� � �

Given the argument 	bot�
���� when bot is de�ned by
bot � bot

the result of evaluating g 	bot�
��� is unde�ned �at least with Gofer and
the Glasgow prototype � hbi gives a result��� Re�ordering the equations gives

the result �� on the same argument� A thorough analysis of the sequential
nature of pattern matching both within and between clauses of a de�nition is
required to give a full rendering of a de�nition by pattern matching� Details of
the transformation are explained in �Thompson� 	

�� with the example of g
above giving

g 	��� �
� � �a��a � True � g �a�b�x� � �
�
The rules mentioned cover pattern matching and guards within function de��
nitions�

��� Patterns � Guards

One aspect of de�nitions is particularly complicated to explain� this is the
interaction of pattern matching and guards� In de�nitions without guards�
such as

f p� � e�
f p
 � e

���

if an argument matches more than one pattern� the �rst matching equation will
be used� In the case that guards are added�

f p� � g�� � e��
� g�
 � e�

�����
f p
 � g
� � e
�

� g

 � e

�����

���
it may be possible for an argument to match p�� but to fail the guards g��� g�
�
� � �and so to �fall through� to the subsequent equation� The �entry conditions�
for this equation are no longer being in the complement of the pattern p�� since
now there is the possibility of being in the uni�cation of p� and p
 combined
with failing the conjunction of the guards g��� g�
� � � � � In such a case the
logical translation must treat the second equation in two di�erent ways� The
�rst gives a rewrite of the second equation to

f �� p
� � �� g
�� � �� e
��
� �� g

� � �� e

�
�����

���
where � is the most�general substitution unifying the patterns p� and p
�
guarded by the expression

�� g��� �� �� g�
� �� � � �
whilst the second is given by unifying the complement of p� with p
�

This problem is made worse still if the �rst equation has local de�nitions
given by a where clause� In such an eventuality� the guards will use the identi�
�ers de�ned locally� and it is not enough to use the same de�nitions rede�ned
to use the pattern variables given by the substitution �� since name clashes may
result with de�nitions local to the second equation� renaming of local de�nitions
will be necessary in general�

A simple way of removing this problem is to add a compulsory Else or True
case�

f p� � g�� � e��
� g�
 � e�

�����
� True � e�k

so that once a pattern is matched by an argument� the function is committed
to using this pattern� Many functions have this feature� and it is not clear that
the extra power of avoiding it in certain circumstances is worth the extra e�ort
required to understand function de�nitions� This undesirable feature is shared
by Miranda� but not by Standard ML� in which guards are replaced by the

if ��� then ��� else ���
expression�

One feature di�erentiating Haskell from Miranda is the strength of the ex�
pression language� In Miranda� functions can only be de�ned in a series of
equations� there is no explicit lambda� and in particular� case analyses are
always in the form of a series of equational clauses� This restricts the pro�
grammer somewhat� but is an advantage when explaining the language in a
logical form� The description of Haskell needs to include in some way or an�
other how the case and lambda expression forms evaluate� these will need a
collection of axiom schemes to cover all eventualities� In Miranda� by contrast�
the explanation is given in the logical translation of the function de�nitions�

��� Irrefutable Patterns

Haskell introduces the notion of an irrefutable pattern� a pattern which is
only matched on demand� All top�level pattern bindings are irrefutable by
default� and it is useful to make irrefutable the argument patterns in interactive
functions �for background discussion see �Thompson� 	

 ��� An example is

f
�

�a�x� � a � f x
This can be described either by

f y � �head y� � f �tail y�
or by

f y � a � f x
where
�a�x� � y

The latter seems to be more in the spirit of the de�nitions than does the former�
The e�ect of a pattern binding can be a program error � what is the e�ect

in the logic� If an axiom of the form
�a�x� � e

is introduced� and the expression e evaluates to 	�� the e�ect is to give
�a�x� � 	�

which contradicts the distinctness of the list constructors� and is indeed a logical
contradiction� To safeguard against this in the logic� it is necessary to write

matches e �� True � �a�x� � e
where matches has the de�nition�

matches �a�x� � True
This has the e�ect of leaving a and x unde�ned when matches e is not True�
As patterns are explained in a similar way� by the translation from

f p�q � blah
to

f p � blah
where
q � p

��� Scopes

A local de�nition is given either by a let� giving a de�nition local to an ex�
pression� or a where� giving a de�nition local to the right hand side of a clause
of a de�nition� The simple e�ect of a de�nition is a conjunction of the logical
e�ect of the local and the global� with a restriction on the scope of the names
involved� In other words� the logic will naturally inherit the scoping of Haskell�

The scope of some de�nitions in where clauses can be restricted to a subset
of the right hand sides� Given the type

data mo � Eenie Int � Meenie Bool
de�nitions like

f �� mo �� ���
f x � isEenie x � ��� a ���

� isMeenie x � ��� b ���
where
�Eenie a� � x
�Meenie b� � x

are common� The scope of a is the �rst equation and of b the second� Thus
where is eliminated in favour of let�

Similarly� modules and abstract data types provide control on the visibility
of de�nitions� This can be re�ected in the logic �for ADTs� say� by making
visible outside the implementation scope only those theorems which do not
refer to the underlying representation�

� Input�Output

Input�output in Haskell can be programmed by means of streams or continu�
ations� Stream programs are simply lazy�list manipulating functions� and the
methods of verifying them are inherited from lists� An advantage of the stream
approach is that it introduces explicit notations for the values on input and
output� but a major disadvantage is a consequence of the absence of interleav�
ing information in the functions� Much work is needed to translate stream
functions into descriptions of traces of input�output behaviour� A trace is a
sequence of input and output actions of the form

	 r c � w c �
which describes the action of reading c followed by writing c� Details of how
to translate stream programs into traces can be found in �Thompson� 	

 ��

The Glasgow Haskell compiler supports input�output by a third� primitive
mechanism� monads� �Peyton Jones and Wadler� 	

�� Wadler� 	

��� Prelim�
inary work suggests that a trace description of monadic IO is quite straightfor�
ward� An interaction of type

IO a
will have a trace of the form

��rc� wc� ����� x�

where 	 r c � w c � ��� � is a trace of I�O actions and x is a value of type
a� The basic operations of the monad can then be described by their traces�
Getting a character� getcIO� which is of type IO Char will have traces of the
form

� 	 r ch � � ch �
where ch is a character� putcIO is a function from Char to IO ��� putcIO ch
will have the trace

� 	 w ch � � �� �
The combination operator� bindIO has type

IO a �� �a �� IO b� �� IO b
We can describe traces of bindIO m f in terms of traces of m and f c �with x
in type a� thus� If �s�x� is a trace of m and �t�y� a trace of f x then

� s��t � y �
is a trace of bindIO m f�

These trace descriptions can be seen as primitive� or can be proved on the
basis of the implementations of the operations in �Peyton Jones and Wadler�
	

��� assuming a suitable axiomatisation of the underlying C compiler� The
simple operation of the bindIO functional is due to the data dependencies
evident in the underlying implementation� for instance�

Whether this approach can scale up to tackle real problems is open� as
indeed is the �eld of verifying interactive programs itself�

	 Other Issues

In discussing the interpretation of de�nitions� such as
fac x � x �� � � �

� x � � � x � fac �x���
the equational rendering

x �� � � True � fac x � �
x � � � True � fac x � x � fac �x���

implies that fac is a �xed point of the de�nition� but not necessarily the least
one� It is open whether this needs to be incorporated � further discussion can
be found in �Thompson� 	

��

 Conclusion

The paper addresses the design of the Haskell programming language from the
point of view of giving �formal� proofs of correctness of functional programs�
It is evident that Haskell share the elegance and simplicity of other lazy lan�
guages� but that certain features cause di�culties for the veri�er� The ability
freely to combine pattern matching� guards and local de�nitions causes di��
culties beyond the advantage gained� Classes come in two forms� ones like
the numerical classes where the overloading is conventional or mnemonic� since
the operations share little but name� and the others� like the equality class�
in which the operations have a common axiomatisation� It is the latter form
which the veri�er can work with more e�ectively�

I am grateful to Gareth Howells and Mark Longley for discussions about

Haskell and functional program veri�cation� The referees made useful sugges�
tions about both presentation and content�

References

�Hudak and Fasel� 	

�� Paul Hudak and Joseph H� Fasel� A gentle introduc�
tion to Haskell� ACM SIGPLAN Notices� ������ 	

��

�Hudak et al�� 	

�� Paul Hudak� Simon Peyton Jones� and Philip Wadler �Ed�
itors�� Report on the Programming Language Haskell� version 	��� ACM
SIGPLAN Notices� ������ 	

��

�Paulson� 	

�� Lawrence C� Paulson� Logic and Computation � Interactive
proof with Cambridge LCF� Cambridge University Press� 	

��

�Peyton Jones and Wadler� 	

�� Simon L� Peyton Jones and Philip Wadler�
Imperative functional programming� In Twentieth Annual Symposium on
Principles of Programming Languages �POPL�� ACM� 	

��

�Pitts� 	

�� Andrew M� Pitts� A co�induction principle for recursively de�ned
domains� Preprint � Computer Laboratory� University of Cambridge� 	

��

�Thompson� 	

� Simon J� Thompson� A logic for Miranda� Formal Aspects
of Computing� 	� 	

�

�Thompson� 	

 � Simon J� Thompson� Interactive functional programs� a
method and a formal semantics� In David A� Turner� editor� Research Topics
in Functional Programming� Addison Wesley� 	

 �

�Wadler� 	

�� PhilipWadler� The essence of functional programming� InNine�
teenth Annual Symposium on Principles of Programming Languages �POPL��
ACM� 	

��

