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Abstract

The functional programming language Haskell is examined from the point
of view of proving programs correct� Particular features explored include
the data type de�nition facilities� classes� the behaviour of patterns and
guards and the monad approach to IO in the Glasgow Haskell compiler�

� Introduction

Haskell �Hudak et al�� 	

�� Hudak and Fasel� 	

�� is a lazy functional pro�
gramming language which is likely to become a de facto as well as a de jure
standard academically and commercially� It is often said that a crucial part
of the appeal of functional languages is the ease with which proofs concerning
functional programs can be written� It is also widely accepted that if proof is
to be taken seriously� it needs to be formalised� and to be checked by machine��

The aim of this paper is to initiate discussion on the form that a logic for
Haskell might take� It is based to some degree on the author�s previous work on
devising a logic for Miranda� �Thompson� 	


�� which in turn builds on earlier
work in the area� Implementation of the logic for Miranda is in progress at the
University of Kent �funded by SERC grant GR�F �
	���� and it is expected
that the system will be freely available within the next year�

The paper begins with a discussion of the carrier logic for the axiomati�
sation� and the relation between the semantics of the language and the logic�
Next types and their operators� including equality� are axiomatised� Classes
are unique to Haskell� and their e�ect on veri�cation is discussed in Section ��
The logical form of de�nitions is described next� and in particular the unfortu�
nate interaction between pattern matching and guards is explored� IO in the
Glasgow Haskell compiler is de�ned in terms of an IO monad � we show how
the monadic approach is amenable to formal treatment in section �� The paper
concludes with a number of miscellaneous points�

One issue addressed throughout the paper is the choice of which parts of
the language are amenable to formal treatment� For example� only some of the
numeric types are logically tractable�

�To appear in J� Launchbury � P�M� Sansom �eds��� Functional Programming� Glasgow

����� Springer Verlag� Workshops in Computing� ���	�
�This paradigm is di
erent from that prevailing in mathematics� where proofs are subject

to social scrutiny� but the nature of proofs about programs seems to be su�ciently di
erent
to make this sort of check highly unlikely�



� Logic

The basic intuition behind a functional program is that expressions denote
values and expressions of ground type are evaluated to give printable values or
results� It seems sensible for the logic to be one of equations between expressions
of the language� These will be written

e � f
where e and f are Haskell expressions� The symbol � is used in preference to
� and �� for reasons which will become clear� The relation � is an equivalence
relation� and obeys Leibniz�s law� equals may be substituted for equals in terms
and formulas�

Since the language is typed� so should the logic itself� making an equation
of the form above invalid unless e and f have the same �or uni�able� types�
�Logicians call this a many�sorted logic��

Expressions in Haskell need not denote a de�ned value � evaluation of an ex�
pression may loop inde�nitely� for instance� This phenomenon may be rendered
logically in a number of ways� expressions can be permitted not to take values�
giving a partial logic� or their value may be the unde�ned value� or �bottom��
�� The latter �LCF� approach is adopted here� it is both simple and su�ciently
expressible� further discussion of the issue can be found in �Thompson� 	


��

What should be the logic in which these equations are embedded� Lacking
arguments to the contrary� the simplest option of �rst�order �many�sorted�
predicate calculus seems appropriate� It is open whether it should be classical
or constructive� note however that for simple �� �or ��

�
� statements� such as

the assertion that a function from Int to Int is total� their strength is the
same�

As a part of the standardisation exercise� it seems that a formal semantics
for the language will emerge� This allows the possibility that the soundness
of a proposed logic can be veri�ed� every assertion or theorem of the system
can be checked to see whether it is indeed valid in the formal interpretation�
Soundness is clearly a minimal requirement� but can be problematic depending
upon the form of semantics adopted� issues of full abstraction and the case of
parallel or come to mind�

Again given the semantics� the converse to soundness can be examined� is
every assertion validated by the semantics derivable in the logic� Such a result
is unlikely in view of G�odel�s incompleteness results� but relative completeness
results have been established for Hoare logics of imperative languages�

� Types

This section examines the way that types and operations over them are to be
axiomatised�

��� Algebraic Types

Algebraic types can be treated in a uniformway� as they come with constructors
and de�nition by pattern matching� but no prede�ned operators�

The Boolean type is a typical example of a simple algebraic type� it is an
enumerated type� Its elements are True� False and �� and therefore theorems



valid in Boolean algebra� like
x �� not x � True

will fail to be valid� since
� �� not � � �

This was taken as one justi�cation for introducing the quanti�er �def in the
logic for Miranda� Familiar theorems are rendered thus

��def x �� Bool��x �� not x � True�
In a similar way� the induction principle �or elimination rule� for the type can
take two forms

P�True� P�False�

��def x �� Bool��P�x�

and

P�True� P�False� P���

�� x �� Bool��P�x�

It is a matter of general principle that from the latter rule can be derived the
rule of exhaustion�

�� x �� Bool��x � True � x � False � x � ��
On the other hand� an axiom to assert the distinctness of the constructors is
required�

�False �� True � � �� False � � �� True�
It is logically su�cient to assert one such axiom� as from this those at other
types can be derived�

A general algebraic type like that of lists is rather more complex� The
type is inhabited by �nite lists like 	
���
�� but also by partial lists� such as
	
����� and 
������ and by in�nite lists like 	�������� Some theorems for
lists are valid over the whole type

map �f�g� � map f � map g
whilst others are only valid for �nite lists �possibly containing ��

reverse �reverse x� � x
and still others are restricted to �nite lists of de�ned elements

product x �� � � elem � x
Properly to re�ect these di�erences� in �Thompson� 	


� restricted quanti�ers
and induction rules were introduced� Typical of such a rule is

P�	�� ��def x �� a���def l �� 	a���P�l� �P�x�l�

��def l �� 	a���P�l�

This characterises the �nite lists of de�ned elements� Note that often the proof
of the second hypothesis will be a consequence of

��def x �� a��� l �� 	a���P�l� �P�x�l�

in which the list l will simply be an arbitrary list�
The in�nite lists are described quite di�erently� They can be seen as

members of a greatest �xed point� with equality over them characterised by
a bisimulation�like co�induction principle �Pitts� 	

��� Pitts characterises the
in�nite elements as a greatest �xed point of an inductive de�nition� and de�nes
the equality relation over the set of elements in a similar way� For lists the
principle states that two lists l and m are equal if l 	 m for some pre�equality



relation 	� The relation 	 is a pre�equality relation if and only if for all l and
m�

l 	 m� �l � � � � m� � �l � a � l� � m � b � m� � a � b � l� 	 m��

The attractive feature of his approach is that it works for all algebraic types�
such as solutions of

data LambdaModel � Fun �LambdaModel �� LambdaModel�
giving a characterisation of equality of these elements of a model of the untyped
��calculus� The disadvantage of his approach is that the principle requires
a second�order logic for its formulation� since two elements are equal if for
some pre�equality relation � � � � A similar problem presents itself with induction
principles� of course� and the usual expedient is to replace the characterisation
by a schema� restricting the pre�equality relations to those which are de�nable
in the logic�

Alternatively� mathematical induction may be used to de�ne equality over
types which appear only in the range position of a function�space constructor
on the right�hand side of their de�nitions� For lists we have�

l � m if and only if ��def n �� Nat��take n l � take n m�
where take is de�ned in the standard prelude�

This fragmentation of the principles of induction over the type of lists seems
to be unavoidable� the general principle of induction for lazy lists is too weak to
include the others as special cases� since it is restricted to admissible predicates�
�Paulson� 	

�� contains details of the general rule as well as providing a good
background reference to the LCF approach�

��� Built�in Types

Built�in types are akin to abstract types� no direct access is given to the �ma�
chine� representation� rather manipulation is through prede�ned operators� Ax�
ioms for these types therefore have to re�ect as much of the structure of the
type as is thought necessary� In the case of �oating�point and complex num�
bers� it seems highly unlikely that any satisfactory �but sound�� axiomatisation
exists� and we would argue that this part of the language be omitted from the
logic�

It is therefore appropriate to restrict attention to the integral and ratio�
nal types� Even then� giving a su�ciently abstract presentation of the �xed�
precision integers� Int� is di�cult� so we restrict attention to the full integers�
Integer� In the Miranda logic a subtype of the integers� Nat� is introduced�
allowing theorems on properties of natural number�functions to be expressed
directly� This means that Miranda de�nitions have to be read as being over�
loaded in a limited way� but it presents no theoretical di�culties�

How are the integers and operations over them axiomatised� The system
will include the graphs of the operations� giving their values at each argument
sequence� This will not be enough to axiomatise the primitive operations�
primQuotRem and the like� which will also be speci�ed by their primitive re�
cursive de�nitions� From these de�nitions can be derived the usual theorems
such as associativity of ���� or indeed the results themselves may be included

�The IEEE characterisation of �oating point operations seems to be too low level to be
usable in veri
cation� It is perfect for the speci
cation of a �oating�point unit� for instance�



as primitives� �From the point of view of a logical characterisation� any built�in
operation adds some uncertainty as to its precise behaviour��

Function types are characterised by function composition� which is a de�ned
operation� and �logical� equality between functions� Basic to functional pro�
gramming is that functions are characterised by their behaviour� meaning the
values they return� and that programs have the same behaviour when equals
are substituted for equals� Equality on functions is given by the extensionality
rule�

��x �� a�� f x � g x �

f � g

This rule is adhered to by Haskell � it is a matter of some delicacy in language
design to ensure that this is the case� Tuples do not obey the extensionality
condition� This is because

fst ����� � � fst � � �
snd ����� � � snd � � �

giving ����� and � the same components� but because of the behaviour of
pattern matching over pairs� the function

test �x�y� � 
�
returns 
� on ����� and � on �� This adds a slight complication to the
characterisation of equality� Any advantage of such a de�nition is at the im�
plementation level� to check whether a member of a product type is de�ned
�i�e� unequal to �� simply requires a check that it is a pair� if � and ����� are
identi�ed� the pair �e�� e�� is de�ned if and only if one of the expressions e�� e�
is de�ned� so a parallel evaluation of the expressions e� and e� is required� More
is said about pattern matching in general in Section ��

� Classes

Classes give a general treatment of overloading or ad hoc polymorphism� Func�
tions which are polymorphic in the usual sense of parametric polymorphism
are amenable to uniform treatment� At each type the same de�ning equation
is used� with the same logical characterisation� How much will this be true of
type classes� in other words� how much can logical structure be built on top of
the class structure�

There seem to be two distinct cases� On the one hand� classes like Text and
all the numeric classes will in general fail to share any signi�cant properties�
In the �rst case this is plain� but for numeric classes� it is an unfortunate
truth that� for example� addition on Int and Integer behave in fundamentally
di�erent ways� even though the two types inhabit the same classes�

More optimistically� for the classes Eq and Ord the intention is that opera�
tions of equality and ordering are de�ned on their members� Even if the imple�
mentations are di�erent� all equality relations should be �partial� equivalence
relations on their domains� all orderings should be pseudo�partial orderings�
�They will not be total since they will in general fail to be re�exive�� In the
logic this could be re�ected by a logical class�



logical class �Eq a� �� Equality a
where
symm is �� x�y �� a�� x��y � y��x �
trans is �� x�y�z �� a�

� x��y � True � y��z � True � x��z � True�
For a type to inhabit this logical class� proofs of the theorems symm and trans
have to be given�

The method of derived instantiations could be extended to the logic� A
symmetrical and transitive relation on type a will be extended to a similar
relation on type 	a� by the standard de�nition of equality� for instance�

A similar treatment of ordering is possible�
class �Eq a� �� DefEq a
where
defined �� a �� Bool
defined x � x��x

logical class �Ord a� �� Ordering a
where
asymm is �� x�y �� a�

� x��y � True � y��x � True � x��y � True�
total is ��def x�y �� a�� x��y � True � y��x � True �
trans is ���

In these examples� the same name is given to occurrences of the same formula
at di�erent type instances� the polymorphism in the formula is parametric�
The proofs of the formulae are de�ned di�erently at di�erent types� an ad hoc
overloading� It is also possible to give an ad hoc overloading to names with�
for instance� exhaustion� used to name the appropriate axiom of exhaustion
at each type�

exhaust�Bool is �� x �� Bool��x � True � x � False � x � ��
exhaust�Nat is

�� x �� Nat��x � � � x � � � �� df y �� Nat��x � y����
Whether this mechanism has other than mnemonic value remains to be seen�

� De�nitions

Haskell de�nitions have the form of equations� so it is plausible that the �
symbol of the language can simply be replaced by the � of the logic� In a
simple de�nition of the form

f x y � x�y�y
this is the case� but the addition of pattern matching� guards and scopes �in the
form of where and let� makes the situation substantially more complicated� A
function will be de�ned by a sequence of equations� and the order of these will
be signi�cant� Take the case of

g 	��� � 
�
g �a�b�x� � �


Given the argument 	bot�
���� when bot is de�ned by
bot � bot

the result of evaluating g 	bot�
��� is unde�ned �at least with Gofer and
the Glasgow prototype � hbi gives a result��� Re�ordering the equations gives



the result �� on the same argument� A thorough analysis of the sequential
nature of pattern matching both within and between clauses of a de�nition is
required to give a full rendering of a de�nition by pattern matching� Details of
the transformation are explained in �Thompson� 	


�� with the example of g
above giving

g 	��� � 
� � �a��a � True � g �a�b�x� � �
�
The rules mentioned cover pattern matching and guards within function de��
nitions�

��� Patterns � Guards

One aspect of de�nitions is particularly complicated to explain� this is the
interaction of pattern matching and guards� In de�nitions without guards�
such as

f p� � e�
f p
 � e

���

if an argument matches more than one pattern� the �rst matching equation will
be used� In the case that guards are added�

f p� � g�� � e��
� g�
 � e�


�����
f p
 � g
� � e
�

� g

 � e


�����

���
it may be possible for an argument to match p�� but to fail the guards g��� g�
�
� � �and so to �fall through� to the subsequent equation� The �entry conditions�
for this equation are no longer being in the complement of the pattern p�� since
now there is the possibility of being in the uni�cation of p� and p
 combined
with failing the conjunction of the guards g��� g�
� � � � � In such a case the
logical translation must treat the second equation in two di�erent ways� The
�rst gives a rewrite of the second equation to

f �� p
� � �� g
�� � �� e
��
� �� g

� � �� e

�
�����

���
where � is the most�general substitution unifying the patterns p� and p
�
guarded by the expression

�� g��� �� �� g�
� �� � � �
whilst the second is given by unifying the complement of p� with p
�

This problem is made worse still if the �rst equation has local de�nitions
given by a where clause� In such an eventuality� the guards will use the identi�
�ers de�ned locally� and it is not enough to use the same de�nitions rede�ned
to use the pattern variables given by the substitution �� since name clashes may
result with de�nitions local to the second equation� renaming of local de�nitions
will be necessary in general�

A simple way of removing this problem is to add a compulsory Else or True
case�



f p� � g�� � e��
� g�
 � e�


�����
� True � e�k

so that once a pattern is matched by an argument� the function is committed
to using this pattern� Many functions have this feature� and it is not clear that
the extra power of avoiding it in certain circumstances is worth the extra e�ort
required to understand function de�nitions� This undesirable feature is shared
by Miranda� but not by Standard ML� in which guards are replaced by the

if ��� then ��� else ���
expression�

One feature di�erentiating Haskell from Miranda is the strength of the ex�
pression language� In Miranda� functions can only be de�ned in a series of
equations� there is no explicit lambda� and in particular� case analyses are
always in the form of a series of equational clauses� This restricts the pro�
grammer somewhat� but is an advantage when explaining the language in a
logical form� The description of Haskell needs to include in some way or an�
other how the case and lambda expression forms evaluate� these will need a
collection of axiom schemes to cover all eventualities� In Miranda� by contrast�
the explanation is given in the logical translation of the function de�nitions�

��� Irrefutable Patterns

Haskell introduces the notion of an irrefutable pattern� a pattern which is
only matched on demand� All top�level pattern bindings are irrefutable by
default� and it is useful to make irrefutable the argument patterns in interactive
functions �for background discussion see �Thompson� 	

 ��� An example is

f
�

�a�x� � a � f x
This can be described either by

f y � �head y� � f �tail y�
or by

f y � a � f x
where
�a�x� � y

The latter seems to be more in the spirit of the de�nitions than does the former�
The e�ect of a pattern binding can be a program error � what is the e�ect

in the logic� If an axiom of the form
�a�x� � e

is introduced� and the expression e evaluates to 	�� the e�ect is to give
�a�x� � 	�

which contradicts the distinctness of the list constructors� and is indeed a logical
contradiction� To safeguard against this in the logic� it is necessary to write

matches e �� True � �a�x� � e
where matches has the de�nition�

matches �a�x� � True
This has the e�ect of leaving a and x unde�ned when matches e is not True�
As patterns are explained in a similar way� by the translation from

f p�q � blah
to



f p � blah
where
q � p

��� Scopes

A local de�nition is given either by a let� giving a de�nition local to an ex�
pression� or a where� giving a de�nition local to the right hand side of a clause
of a de�nition� The simple e�ect of a de�nition is a conjunction of the logical
e�ect of the local and the global� with a restriction on the scope of the names
involved� In other words� the logic will naturally inherit the scoping of Haskell�

The scope of some de�nitions in where clauses can be restricted to a subset
of the right hand sides� Given the type

data mo � Eenie Int � Meenie Bool
de�nitions like

f �� mo �� ���
f x � isEenie x � ��� a ���

� isMeenie x � ��� b ���
where
�Eenie a� � x
�Meenie b� � x

are common� The scope of a is the �rst equation and of b the second� Thus
where is eliminated in favour of let�

Similarly� modules and abstract data types provide control on the visibility
of de�nitions� This can be re�ected in the logic �for ADTs� say� by making
visible outside the implementation scope only those theorems which do not
refer to the underlying representation�

� Input�Output

Input�output in Haskell can be programmed by means of streams or continu�
ations� Stream programs are simply lazy�list manipulating functions� and the
methods of verifying them are inherited from lists� An advantage of the stream
approach is that it introduces explicit notations for the values on input and
output� but a major disadvantage is a consequence of the absence of interleav�
ing information in the functions� Much work is needed to translate stream
functions into descriptions of traces of input�output behaviour� A trace is a
sequence of input and output actions of the form

	 r c � w c �
which describes the action of reading c followed by writing c� Details of how
to translate stream programs into traces can be found in �Thompson� 	

 ��

The Glasgow Haskell compiler supports input�output by a third� primitive
mechanism� monads� �Peyton Jones and Wadler� 	

�� Wadler� 	

��� Prelim�
inary work suggests that a trace description of monadic IO is quite straightfor�
ward� An interaction of type

IO a
will have a trace of the form

��rc� wc� ����� x�



where 	 r c � w c � ��� � is a trace of I�O actions and x is a value of type
a� The basic operations of the monad can then be described by their traces�
Getting a character� getcIO� which is of type IO Char will have traces of the
form

� 	 r ch � � ch �
where ch is a character� putcIO is a function from Char to IO ��� putcIO ch
will have the trace

� 	 w ch � � �� �
The combination operator� bindIO has type

IO a �� �a �� IO b� �� IO b
We can describe traces of bindIO m f in terms of traces of m and f c �with x
in type a� thus� If �s�x� is a trace of m and �t�y� a trace of f x then

� s��t � y �
is a trace of bindIO m f�

These trace descriptions can be seen as primitive� or can be proved on the
basis of the implementations of the operations in �Peyton Jones and Wadler�
	

��� assuming a suitable axiomatisation of the underlying C compiler� The
simple operation of the bindIO functional is due to the data dependencies
evident in the underlying implementation� for instance�

Whether this approach can scale up to tackle real problems is open� as
indeed is the �eld of verifying interactive programs itself�

	 Other Issues

In discussing the interpretation of de�nitions� such as
fac x � x �� � � �

� x � � � x � fac �x���
the equational rendering

x �� � � True � fac x � �
x � � � True � fac x � x � fac �x���

implies that fac is a �xed point of the de�nition� but not necessarily the least
one� It is open whether this needs to be incorporated � further discussion can
be found in �Thompson� 	


��


 Conclusion

The paper addresses the design of the Haskell programming language from the
point of view of giving �formal� proofs of correctness of functional programs�
It is evident that Haskell share the elegance and simplicity of other lazy lan�
guages� but that certain features cause di�culties for the veri�er� The ability
freely to combine pattern matching� guards and local de�nitions causes di��
culties beyond the advantage gained� Classes come in two forms� ones like
the numerical classes where the overloading is conventional or mnemonic� since
the operations share little but name� and the others� like the equality class�
in which the operations have a common axiomatisation� It is the latter form
which the veri�er can work with more e�ectively�

I am grateful to Gareth Howells and Mark Longley for discussions about



Haskell and functional program veri�cation� The referees made useful sugges�
tions about both presentation and content�
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