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Abstract

Memristor-based neural networks refer to the utilisation of memristors, the newly

emerged nanoscale devices, in building neural networks.

The memristor was first postulated by Leon Chua in 1971 as the fourth fun-

damental passive circuit element and experimentally validated by one of HP labs

in 2008. Memristors, short for memory-resistor, have a peculiar memory effect

which distinguishes them from resistors. By applying a bias voltage across it,

the resistance of a memristor, namely memristance, is changed. In addition, the

memristance is retained when the power supply is removed which demonstrates

the non-volatility of the memristor.

Memristor-based neural networks are currently being researched in order to

replace complementary metal-oxide-semiconductor (CMOS) devices in neuromor-

phic circuits with memristors and to investigate their potential applications. Cur-

rent research primarily focuses on the utilisation of memristors as synaptic con-

nections between neurons, however in any application it may be possible to allow

memristors to perform computation in a natural way which attempts to avoid ad-

ditional CMOS devices. Examples of such methods utilised in neural networks are

presented in this thesis, such as memristor-based cellular neural network (CNN)

structures, the memristive spiking-time dependent plasticity (STDP) model and

the exploration of their potential applications.

This thesis presents manifold studies in the topic of memristor-based neural

networks from theories and feasibility to approaches to implementations. Studies

are divided into two parts which are the utilisation of memristors in non-spiking

neural networks and spiking neural networks (SNNs). At the beginning of the

thesis, fundamentals of neural networks and memristors are explored with the

analysis of the physical properties and v − i behaviour of memristors. In the

studies of memristor-based non-spiking neural networks, a staircase memristor
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model is presented based on memristors which have multi-level resistive states

and the delayed-switching effect. This model is adapted to CNNs and echo state

networks (ESNs) as applications that benefit from memristive implementations.

In the studies of memristor-based SNNs, a trace-based memristive STDP model

is proposed and discussed to overcome the incompatibility issues of the previous

model with all-to-all spike interaction. The work also presents applications of

the trace-based memristive model in associative learning with retention loss and

supervised learning.

The computational results of experiments with different applications have

shown that memristor-based neural networks will be advantageous in building

synchronous or asynchronous parallel neuromorphic systems. The work presents

several new findings on memristor modelling, memristor-based neural network

structures and memristor-based associative learning. These studies address un-

explored research areas in the context of memristor-based neural networks to the

best of our knowledge, and therefore form original contributions.
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Chapter 1

Introduction

1.1 Brain-like computing

Distinct from traditional computing, brain-like computing is inspired by biological

mechanisms. It is composed of a large number of interconnected neurons working

in parallel to solve specific problems. The networks are not programmed since

the connections between neurons are “weighted” according to the correlations of

data they have already learned. This idea, named “synaptic plasticity”, is also

inspired by the studies of biological neural networks. Brain-like computing is a

complement to conventional computing rather than a replacement of it because

of the distinctions between them. Since conventional computing uses algorithmic

approaches, it is competent at fast arithmetic or with unambiguous tasks but

lacks abilities such as massive parallelism and fault tolerance. An example is

that cognition, perception, and learning on biological spatial and temporal scales

can be easily achieved by mammalian brains, however such tasks remain out

of reach for modern computers. As a complement, brain-like computing which

benefits from similar mechanisms of biological neural networks can do these jobs

that conventional computing cannot do well. Artificial neural networks that are

foundation stones for brain-like computing have become a thriving research field

nowadays. Since the first artificial neural network was proposed, research was

split into two distinct approaches which separately focus on biological processes

in the brain and the applications of neural networks to artificial intelligence.

Artificial neural networks are developed based on the understandings of the

distinctive features of the brain, such as its ability to learn and remember. Since

1



CHAPTER 1. INTRODUCTION 2

Donald Hebb proposed the famous Hebb’s postulate in his book “The organization

of Behaviour” in 1949, it is widely believed that learning and memory depend on

the changes in the efficacy of synaptic connections. Hebb brought together many

previous studies and findings on plasticity, learning and memory and suggested

an experimental testable prediction of synaptic plasticity [45]. Hebb’s postulate

summarised that if a presynaptic cell repeatedly takes part in firing a postsynaptic

cell, then the synaptic connection between them should be enhanced. The inverse

to Hebbian learning was hypothesised by Stent [95] to explain the loss of synap-

tic connections since Hebb’s postulate lacks a mechanism to weaken the synaptic

connection. Although, from the view of current research, Hebbian learning is

based on an oversimplified view of neuronal morphology [90], it is quantitatively

implemented in artificial neural networks through the changes of synaptic efficacy

between neuron units. Another mechanism called spiking-time dependent plastic-

ity (STDP) was originally proposed by Gerstner, Ritz and Van Hemmen [40] as

an advanced learning algorithm focusing on the temporal correlations of spikes.

There is a large and growing interest in spike-timing dependent plasticity, and

especially its applications in neuromorphic engineering, meanwhile experimental

evidence has been reported by neuroscience groups [6, 73] which shows that STDP

occurs in the brain.

Currently, there are many active projects that focus on brain-like computing

under the neuromorphic concept that was developed by Mead and Ismail [76]

in the late 1980s. The term neuromorphic [67] is used to describe very-large-

scale integration (VLSI) systems containing electronic analog circuits that mimic

neurobiological architectures present in the nervous system. Nowadays, not only

analog but also digital or mixed-mode analog/digital VLSI systems, which imple-

ment neural system models and software algorithms, are described by the term

neuromorphic. Neuromorphic engineering is an interdisciplinary study that takes

inspiration from biology, physics, mathematics, computer science and engineer-

ing. It demonstrated promising performance on artificial neural system, such as

vision systems, auditory processors and autonomous robots, whose physical ar-

chitecture and design principles are based on biological nervous systems. As the

term neuromorphic combines “neuro” and “morphic”, the key to neuromorphic

design is understanding the morphology of individual neurons, circuits, and over-

all architectures and how this creates the desired computations [67]. Furthermore,
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it is important to understand how the morphology influences the representation

of information, robustness, learning, development and evolutionary change of bio-

logical nervous systems. Such technologies have been adapted for several sophisti-

cated projects like Blue Brain, SpiNNaker, and MoNETA to simulate part of the

brain’s functions.

Blue Brain

The goal of the Blue Brain project is described by Markram [72] as

“to simulate the brains of mammalians with a high level of biological accuracy

and, ultimately, to study the emergence of biological intelligence.”

It provides a computational platform to simulate the mammalian brain down

to the molecular level, which has succeeded in simulating a rat cortical column

containing 10,000 neurons. Building on Blue Gene/L supercomputers, the Blue

Brain project can provide a better understanding of the biological neural networks,

and the obtained data could even help to study neurological diseases.

SpiNNaker

SpiNNaker, which stands for Spiking Neural Network Architecture which was

funded by EPSRC, is a hardware-based real-time simulator following an event-

driven computational approach [39]. Dedicated hardware and software are de-

veloped to simulate the features of biological neural networks in the following

ways:

1. Parallel computation

2. Spiking communications

3. Event-driven behaviour

4. Distributed memory

5. Reconfigurability

It mainly consists of the SpiNNaker chips which are the cores of the simulator and

the full-custom routers which are responsible for the communications between

cores and the input/output links. It is a successful project which contributes
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to the follow-up project of Biologically Inspired Massively Parallel Architectures

(BIMPA) in order to build a larger scale machine with SpiNNaker.

MoNETA

The recent project MoNETA, which stands for Modular Neural Exploring Trav-

elling Agent which was funded by the U.S. Defense Advanced Research Projects

Agency (DARPA), represents a family of neural modelling projects in the neuro-

morphics lab at Boston University [98]. The MoNETA project has been designed

in Cog Ex Machina that was jointly developed by HP and Boston University.

In the future, it will be based on hardware architecture with memristive devices

as the analog synaptic memories [92]. STDP-based learning is implemented in

the project, which aims to build neuromorphic chips with memristors. The first

version has been completed, and it was able to negotiate the Morris water maze

task [2] which is a behavioural procedure used in the study of spatial learning and

memory.

1.2 The fourth element: memristor

The memristor, short for memory-resistor, is a newly emerged device which was

postulated by Chua in 1971 as the fourth circuit element [25]. Following his

concept, there are four fundamental circuit elements, and each element represents

a two-variable relationship between the four basic circuit variables, namely, charge

q, current i, flux ϕ and voltage v. Including the two constitutive relationships

defined by

q(t) =

∫ t

−∞
i(t)dt (1)

and

ϕ(t) =

∫ t

−∞
v(t)dt (2)

there are six two-variable combinations of the four circuit variables in total as

shown in Table 1. In addition to the known links which are the resistor, capacitor

and inductor, the postulate of the memristor reveals the missing link between flux

ϕ and charge q. In general, the memristor is a two-terminal passive element whose

resistance varies according to the past history of current i because it integrates
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Circuit Element Relationship Representation

Resistor v − i dv = Rdi

Capacitor q − v dq = Cdv

Inductor ϕ− i dϕ = Ldi

Memristor ϕ− q dϕ = M(q)dq

N/A q − i q(t) =
∫ t
−∞ i(τ)dτ

N/A ϕ− v ϕ(t) =
∫ t
−∞ v(τ)dτ

Table 1: Four elements and the two-variable combinations of the four basic circuit
variables

the current i over time.

The memristor has been found in nanoscale by several groups utilising differ-

ent materials such as the titanium-dioxide based memristor [97], the ferroelectric

memristor [19], the tungsten-oxide based memristor [17, 53] and diamond-like

carbon based memristor [24]. During the development of the memristor, research

into its applications covers several scientific fields, in which applying the mem-

ristor in artificial neural networks is intensively studied because of its intrinsic

features. This will be covered by this thesis, and the problem and objectives

will be discussed in the following section. In addition, the memristor has been

applied to content-addressable memory (CAM) [22, 107] and the ternary CAM

(TCAM) [57] to reduce their size and power consumption. However, these are

just a few examples of possible applications of memristors. In following chapters,

more applications will be introduced for the sake of completeness.

1.3 Statement of the problem and objectives

Since the learning capability of artificial neural networks is desired in many ap-

plications, researchers from engineering fields are interested in implementing the

framework of artificial neural networks by adapting hardware elements. Neuro-

morphic engineering is a derivative of this research. In neuromorphic engineering,

the neurons and synapses are largely built by transistors which are based on CMOS

technology. However, current CMOS technology is approaching a bottleneck in
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terms of size. The fundamental barrier, the size of its constituting atoms, may

result in a cease in Moore’s Law. On the contrary, the neural networks imple-

mented by neuromorphic engineering have continued to expand in last decade.

Since it is estimated that a human brain has 1010 neurons and 1014 synapses (on

average, each neuron is connected to other neurons through approximately 10,000

synapses), any realistic implementation of a synapse should ideally be at least

four orders of magnitude smaller than that required to build a neuron. There-

fore, there are several challenges in current implementations which are based on

CMOS technology: the size of the neuron and the size of the synapse. The new de-

vice, namely the memristor, is a promising candidate to replace the CMOS-based

transistor in order to reduce the size of traditional neural network circuits.

Since both neural networks and memristors are promising technologies, they

can be combined together to improve current neuromorphic systems. However,

as newly emerging devices and compared to neural networks, memristors are not

well studied from theories to applications. To date, memristors are still at an

early development stage, and various physical implementations of memristors are

emerging. Depending on physical materials, memristors demonstrate different

physical properties and behaviour. It is yet unclear, to what extent, various mem-

ristors are beneficial to different kinds of neural networks and feasible applications.

In addition, there are some fundamental open problems in the implementations

of memristor-based neural networks. For example, to what extent can memristors

replace more conventional devices in neural networks, and exact improvement can

be achieved in terms of size and power consumption. Furthermore, certain mod-

ifications and specific learning rules are required to apply memristors to current

systems, which implies there is no general implementation for all tasks. Therefore,

we have to consider proper approaches to the utilisation of memristors in specific

neural network applications in order to achieve satisfactory results.

The aim of this research is to investigate memristor-based neural networks from

theories to feasible approaches. At the beginning of this thesis, fundamental theo-

ries are reviewed to show the advantages of memristors in different applications. In

the main part, it provides improved models and possible implementations for the

memristor-based neural networks both in non-spiking neural networks and spiking

neural networks. In non-spiking neural networks, it focuses on the applications of

piecewise linear memristors which have a significant delayed-switching effect and
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cellular neural network based structures where memristors are used as local con-

nections. The main idea is to take advantages of the structures and memristors

in order to enable large neighbourhood connections yet simple implementations.

In spiking neural networks, the research focuses on the applications of non-linear

memristors and STDP based learning. This aims to provide a memristive STDP

model which is compatible with both the nearest-neighbour and all-to-all inter-

actions. In addition, by introducing a rate-based term and supervised learning

implementation, this model provides an ability of retention loss and supervised

learning respectively which are unexplored research areas in this field. Thus, the

network which is built on the proposed models could provide more flexibility and

options for current and future research.

1.4 Contributions

In this thesis, the main contributions are presented next:

• A staircase memristor model: Based on the delayed switching effect and

experimental results, a staircase memristor model is proposed to take the

advantage of the delayed-switching effect, however, in other cases the delayed

switching effect should be avoided. It not only has the functionality of the

basic memristor model but also provides extra stability as a programmable

memristor.

• Staircase memristor based CNN structure and its applications: A

staircase memristor based CNN structure is proposed and applied to an

echo state network (ESN). It is a new learning algorithm with promising

performance in demonstrated applications such as pattern recognition and

data prediction.

• Memristive STDP model: While current memristive STDP models do

not cope with all-to-all interaction, a trace-based model to cope with both

nearest-neighbour and all-to-all interactions is presented, taking the advan-

tages of memristors and thus being suitable for memristor-based spiking

neural networks.
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• Applications of the proposed model to associative learning with re-

tention loss and supervised learning: The proposed memristive STDP

model for spiking neural networks is evaluated through associative learning,

retention loss and supervised learning, demonstrating its ability to adapt to

different tasks.

1.5 Structure of the thesis

The introductory chapter is followed by one background chapter, providing ad-

ditional information about neural networks, memristors and the research areas

related to the thesis.

Chapter 2

The second chapter presents the background of neural networks and memris-

tors. Biological mechanisms behind neural networks are briefly introduced and

discussed with artificial neural networks. Memristor fundamentals focus on the

delayed-switching effect and memristor models which are widely utilised in cur-

rent research fields and their applications. Numerous mathematical models and

simulators are proposed to describe the behaviour of the memristor but there is a

focus in this chapter on the HP memristor model, the piecewise linear memristor

model and the cubic polynomial memristor model.

Following the background chapter, the research of the thesis is presented in Chap-

ters 3 to 6.

Chapter 3

In this chapter, the staircase memristor model is investigated for specific tasks

where a stable programmable memristor is required such as the cellular neural

network. Then the memristive cellular neural network is implemented based on

the staircase memristor. This structure is adapted to the paradigm of reservoir

computing, which makes the implementation of echo state network applicable with

CNN circuits.
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Chapter 4

Chapter 4 presents the simulation results of the proposed memristive CNN in

image processing with selected template settings. Besides, the echo state network

which uses a similar structure is evaluated through a benchmark test which uses

the Mackey-Glass data.

Chapter 5

This chapter describes the proposed memristive STDP model for STDP learning

in spiking neural networks. Its compatibility with both nearest-neighbour and

all-to-all interactions is investigated with the memristor model. Furthermore,

a possible implementation of the proposed model in a neuromorphic system is

discussed.

Chapter 6

Chapter 6 presents the practical applications and evaluations of the proposed

memristive STDP model with both all-to-all and nearest-neighbour interactions.

Associative learning and retention loss are simulated by slightly modifying the

parameters of the model, which shows the proposed model can be adapted to

different applications. Furthermore, a supervised learning is presented using the

proposed model under a proper learning rule.

The thesis is concluded in Chapter 7. Whilst, Appendix A provides additional

information about the full publication list and research activities involved.

Chapter 7

This chapter draws conclusions, providing a summary of the contributions and

the analysis of the results obtained. In addition, the possible future research

directions are discussed.

Appendix A

All the publications and acronyms pertinent to this thesis are listed in this ap-

pendix and show the course of my research.
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Chapter 2

Memristor-based Neural

Networks: Fundamentals

Mathematical tools have been supporting development in various scientific fields,

such as offering a scope to understand the phenomena of the neural networks and

electronic systems. In 1971, a new device, namely the memristor, was postulated

by Chua [25] from the view of symmetry and completeness in mathematical links

among the four basic circuit variables, which was also proved on the grounds

of electromagnetics. However, the postulation was not of wide concern to re-

searchers until almost 40 years later when the titanium-dioxide based memristor

was realised by one of the HP labs in 2008 [97]. Hence, research on the memristor

was revived, and many studies have been dedicated to investigating the charac-

teristics of the memristor and its applications across many fields. In this chapter,

we first explore neural networks from the biological mechanisms behind them and

artificial neural networks which abstract and extract the biological mechanisms.

After this brief introduction, advantages of memristors in neural networks are

listed and discussed from different aspects. Following this, we trace back to the

original concept of the memristor and the broadened concept of the memristive

system. Then the delayed-switching effect is studied from its impacts on power

consumption and usage. Afterwards, several memristor models which focus on

different characteristics will be introduced. For the sake of completeness, other

applications of memristors are introduced at the end of this chapter.

11
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2.1 Biological mechanisms behind

neural networks

To establish new understanding of the human brain and the mechanisms behind

it, over the past few decades, a large number of experimental results on synap-

tic plasticity have been accumulated. Synaptic plasticity is where synapses, the

connection sites between neurons, have a plastic property which allows them to

mutate according to different rules. It is widely assumed to be the mechanism

behind memory and learning since it is believed that the learning and memory

of human beings is carried out by changing synapse strength [74]. In current

studies, such as that of artificial intelligence and neural networks, synaptic plas-

ticity is represented by “weight” which influences the amplitude of postsynaptic

response to an incoming potential. In this section, a brief introduction on biolog-

ical mechanisms of synaptic plasticity and the relevance with memristors will be

given.

Since there are a number of distinct types of neurons, in this introduction, we

are concerned with the structural features and operations of typical neurons. An

example of two interconnected neurons is illustrated in Fig. 1. For the sake of sim-

plicity, some detailed components are neglected but we fundamentally understand

that a neuron primarily consists of four parts: dendrite, cell body, axon and axon

terminal. Dendrites are organised in many of the dendritic trees where signals are

received and carried towards the cell body. A cell body contains the nucleus of the

cell and connects to the axon. Axon branches, at the end of the axon, conclude

at axon terminals where synapses are formed. The most common synapses are

chemical synapses as shown in Fig. 1 which convert electrical signals into chemical

signals and then transmit the signals to the postsynaptic neuron. When an action

potential is caused in the presynaptic cell body and arrives at synapses along the

axon, it triggers the migration of synaptic vesicles, which contain neuron transmit-

ters, towards the postsynaptic membrane. Vesicles will release neurotransmitters

into the synaptic cleft, which is the tiny gap between two nerve cells, when they

have fused with the presynaptic membrane. Neurotransmitters travel across the

synaptic cleft, bind with receptors of the postsynaptic neuron and influence the

excitability of the postsynaptic neuron. Eventually, the signals of the presynap-

tic neuron arrive at the postsynaptic neuron through synapses. All the signals
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Figure 1: Two neurons are connected through the connection sites - synapses. The
cell body collects signals from presynaptic neurons through dendrites. If an action
potential is caused and arrives at synapses along an axon, it will be converted into
chemical signals in synapses and then transmitted to the postsynaptic neuron.

from dendrites will be collected and added to cause an action potential in the

postsynaptic neuron if the total summation is large enough.

The example shown in Fig. 1 is a simplified case since the interconnections

of natural neurons are enormous and much more complex. It is estimated that

there are approximately 10 billion neurons in the human cortex, and each of

which is connected, on average, to 10 thousand other neurons. That makes the

brain astonishingly complex with highly interconnected networks of neurons and

trillions of synapses or synaptic connections [88].

2.1.1 Plasticity in biological neural networks

Hebbian learning

Hebbian learning is a biological process which describes the basic mechanism of

synaptic plasticity. Hebb’s postulate of learning is one of the oldest and most
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famous learning rules. It was introduced by Donald Hebb [45] in 1949, and the

main theory is summarised later as “cells that fire together, wire together”.

Hebbian learning can be developed and expanded into two parts: “cells that

fire together, the strength between them is enhanced” and “cells that fire asyn-

chronously, the strength between them is weakened”. However, in Hebb’s original

postulate, the mechanism of weakening synaptic strength has not been proposed.

A few years later, Stent [95] proposed the inverse to Hebbian learning to explain

the loss of synaptic connections. Obviously, Hebbian learning is a time dependent

mechanism since the strength changes depend on the exact time of the occurrence

of the cell’s signals.

As shown in Fig. 1, synapse is the connection site of the presynaptic neuron

and the postsynaptic neuron. According to Hebb’s postulate, if the presynaptic

cell repeatedly takes part in firing the postsynaptic cell, then the synaptic strength

should be enhanced. Otherwise, if the presynaptic cell does not take part in firing

the postsynaptic cell, the synaptic strength should be depressed.

Long-term potentiation and long-term depression

Long-term potentiation (LTP) and long-term depression (LTD) are important

mechanisms in biological neural networks. Both of them have been found in the

hippocampus but represent different phenomenons. They are possible evidence to

support both Hebb’s postulate and the inverse to Hebbian learning which suggest

that synaptic plasticity is achieved through changing the synaptic strength.

It has been found that excitatory postsynaptic potentials (EPSPs) evoked by

an electrical stimulation in a rabbit hippocampus increased after a repeated high-

frequency stimulation [11]. This phenomenon that induces a long-lasting increase

in the plasticity of a connection is called LTP. It is a possible mechanism for

information storage since the hippocampus is a region known to be crucial for long-

term memory formation. The repeated high-frequency stimulation presumably

leads to LTP that implies the connected cells are correlated, and therefore the

result of synaptic strengthening is consistent with Hebbian learning.

Conversely, LTD is the functional inverse of Hebbian learning, which induces a

long-lasting decrease in the synaptic response of neurons to a stimulation. There

are two types of LTD, which are heterosynaptic LTD and homosynaptic LTD.
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For heterosynaptic LTD, the depressing synapse is not active during LTD induc-

tion. Its electrophysiological evidence has been found in the hippocampus. When

attempts have been made to induce LTP of one pathway by a repeated high-

frequency stimulation, LTD occurs in the inactive pathways. Homosynaptic LTD

is input specific and restricted to the individual synapse. It was discovered in

the hippocampus as well as the heterosynaptic LTD. Typically the homosynaptic

LTD is induced by a low-frequency stimulation.

Spiking-time-dependent plasticity

Based on Hebbian learning, spiking-time dependent plasticity (STDP) was pro-

posed as an advanced learning algorithm focusing on the temporal correlations of

spikes [40], and experimental evidence has been reported by neuroscience groups

[6, 73]. Markram et al. [73] controlled pre- and postsynaptic spike timing and

discovered that the sign and magnitude of LTP and LTD indeed depend on the

order and timing of the pre- and postsynaptic spikes as predicted by Gerstner,

Ritz and Van Hemmen [40]. This had been investigated in detail and gave a typ-

ical STDP window by Bi and Poo [7]. It has been observed that, typically, LTP

is produced if the presynaptic cell fires a few milliseconds before the postsynaptic

cell; the opposite temporal order leads to LTD. In addition, longer delays only

have a trivial impact on synaptic plasticity. The observed result shows, under

STDP, that long-term plasticity critically depends on the millisecond timing of

presynaptic and postsynaptic spikes.

In the STDP paradigm, the synaptic connection strength is modified according

to the exact timings of the spikes of presynaptic and postsynaptic neurons. An

illustration of a typical STDP learning window is shown in Fig. 2.

Synaptic strength between two connected neurons is expressed as a function of

the time difference ∆T between the postsynaptic spike Tpost and the presynaptic

spike Tpre. Such correlation is described as

∆w = f(∆T )

∆T = Tpost − Tpre

For a positive time difference ∆T , the change of synaptic strength ∆w is

positive, and it reduces as |∆T | increases. That means the postsynaptic spike is
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Figure 2: A typical STDP learning window. Experimental data from [6] show
the impacts of different temporal orders of presynaptic spikes and postsynaptic
spikes on biological synapses. The modifications in excitatory postsynaptic cur-
rent (EPSC) amplitude are measured in pA and normalised to percentage. The
negative delays (∆T < 0) and positive delays (∆T > 0) are separately shown on
the left side and right side.

fired after the presynaptic spike reaches the postsynaptic cell, and therefore the

postsynaptic spike is very likely induced by the pre-synaptic spike. The synaptic

strength w between these two neurons is enhanced. For a negative time difference

∆T , there will be a negative synaptic weight change, and it reduces as |∆T |
increases. Consequently, the strength will be weakened, and w is depressed.

2.2 Artificial neural networks

2.2.1 Non-spiking neural networks

Non-spiking neural networks are considered as the 2nd generation of artificial

neural networks [69], which utilise activation neuron models such as the sigmoid

model, and the activation is representative of the “mean firing rate” of a neuron.

Such networks have been successfully adapted to many engineering applications
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and have proven effective at modelling some cognitive processes, which normally

involve a two-part computation. For the first part, inputs weighted by synapses

are added, whilst in the second stage, the sum is applied to the neurons. Normally,

a sigmoidal neuron applies a sigmoid transfer function which outputs real-valued

numbers in the range (0, 1). The neural networks are sets of connected artificial

neurons, for example, the multi-layer perceptron. The learning rules for such

neural networks determine how to adjust the weights to improve the performance

of the task.

2.2.2 Spiking neural networks

The nervous system requires a continuous energy supply to maintain the ability

to perceive, remember and react to the outside world, however the overall power

consumption is remarkably low, which inspires researchers to study spiking neural

networks [86]. In artificial intelligence, spiking neural networks (SNNs) are built

using biologically plausible spiking neuron models, and are considered as the 3rd

generation of artificial neural networks [69]. The distinct difference between SNNs

and the neural networks mentioned previously is the method by which neurons

communicate. In SNNs, spikes that are very short signals are utilised to deliver

information from one neuron to other neurons. By utilising spikes, the concept of

time is introduced into neural networks, and in addition, it resembles the biological

neural networks which also use spikes (electric pulses) for communications. Thus,

a significant advantage of SNNs is that they are innately embedded in time. For

example, spiking latencies, refractory periods and network oscillations all give rise

to an intrinsic ability to process time-varying data naturally compared to non-

spiking neural networks. In the mathematical model of SNNs, it mainly involves

computations of summing all the weighted inputs, integrating the sum over time

and comparing the result with a threshold. If the threshold is reached, a spike is

emitted by the neuron.

2.2.3 Learning in artificial neural networks

The most attractive capability of artificial neural networks is its ability to learn.

To some degree, it mimics the biological neural networks’ ability of adapting to

the surrounding environment to achieve specific tasks. As introduced in Section
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2.1, learning in biological neural networks is accomplished partially through the

concept of synaptic plasticity which modifies the connection strength in the net-

works. This concept is absorbed by artificial neural networks, and several learning

paradigms are developed based on it, such as supervised learning, unsupervised

learning and reinforced learning.

Supervised learning

In supervised training, a given set is split into input data and desired output data.

The input data refers to some sequence of sensory data such as a sound waveform

and image pixels. The desired output data refers to some sequence of goals that

should be achieved by the network and corresponding input data. During the

training phase, the pair of input and desired output data is passed through the

network, which alters the weights of the network. After all the epochs are com-

plete, the trained network is tested by test data to determine the performance of

the training. Supervised learning process normally involves minimising the error

between desired output and actual output by utilising various techniques such as

gradient descent.

Unsupervised learning

Distinct from supervised learning, unsupervised learning receives only input data

whilst the desired output data are not provided. By putting input data into the

network, the system learns to gain experience from the input and tries to find pat-

terns. Once the network has adapted to the input data, internal representations of

the features of input data are built, thus utilising it for decision making and pre-

dicting future inputs. The previously mentioned STDP is a kind of unsupervised

learning, which will be introduced and utilised in Chapter 5.

Reinforced learning

Reinforced learning involves actions and rewards or punishments, which somewhat

resemble the learning of animals in nature. It is closely related to the field of con-

trol theory in engineering and widely applied to engineering applications such

as robotics. The actions result in rewards if the desired outcome is produced,

conversely, a punishment is received if the desired outcome is not achieved. By
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introducing the rewards and punishments, the behaviours are corrected corre-

spondingly and learned to produce desired outcomes.

2.3 Memristor-based neural networks

Using memristors, especially as synapses in neural networks, has been proposed

and discussed in relation to various kinds of neural networks. Snider [94] pro-

posed a synchronous network based on digital circuits and memristors to im-

plement STDP learning. Asynchronous networks based on CMOS neurons and

memristors were proposed by [1, 67] using spike signals. A simplified memristor-

based neural network was demonstrated in [16, 80, 100], which shows that such

a network is capable of associative learning, and it reproduced the Pavlov’s dog

experiment. Researchers are interested in applying memristor in artificial neural

networks because the memristor has promising features which are primarily:

• memory effect

• nanoscale size

• non-volatility

• passivity

Memory effect As mentioned previously, the memristor’s resistance, namely

memristance M(q), varies according to the past history of current i, which implies

the memristor has a memory effect. This effect is, to some extent, very similar

to the learning process of animals and synaptic plasticity because the learning

outcomes depend on the past history. Moreover, similar behaviours to LTP and

LTD have been implemented by memristors in [54], in which positive 3.2 V pulses

were used to induce LTP and negative -2.8 V pulses induced LTD as shown in Fig

3. This shows the potential of memristors to mimic synaptic plasticity by applying

a stimulus for a certain time. Memristors are also related to synaptic plasticity

by STDP learning and the concept of back-propagation spikes which are used

in combination with a presynaptic spike to vary the conductance of memristors.

Linares-Barranco and Serrano-Gotarredona [66] used this concept to demonstrate
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Figure 3: Similar behaviours to LTP and LTD are induced by applying consecutive
pulses to the memristor (From [54]). (a) The conductance of the memristor is
increased or decreased by applying positive or negative pulses. (b) The variation of
the memristor’s conductance according to the mixed potentiating and depressing
pulses.

that LTP and LTD can be induced when memristors and STDP rule are used with

a specific spike shape. Even retention loss could be mimicked by a memristor with

a forgetting effect which occurs in the tungsten-oxide based memristor [17, 20].

A diffusion term is introduced to capture the forgetting effect and explain the

short-term memory behaviour of the memristor. This aforementioned research

explored the potential of a memristor’s memory effect and its applications in

synaptic plasticity, which only utilises one memristor but demonstrates promising

capabilities of synapses based on different physical materials or learning rules.

On the contrary, one CMOS transistor is not capable of producing these features

alone. Therefore, the memory effect of the memristor is the most advantageous

and significant feature that attracts researchers.

Nanoscale size Since the titanium-dioxide based memristor was fabricated by

one of the HP labs, more and more memristive devices have been developed by

nanoscale technology. The titanium-dioxide memristors are fabricated with 50nm

half-pitch in present research, however memristor based nano-crossbar circuit

could be fabricated with half-pitch down to 17nm by using nanoimprint lithogra-

phy in the future [56, 103]. At that time, memristor-based memory could provide
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the very promising capacity of as much as 100 Gbit/cm2, in contrast to CMOS-

based Dynamic Random Access Memory (DRAM) which could provide approx-

imately 46 Gbit/cm2 [50, 59]. Moreover, the LaAlO3/SrT iO3 junction presents

the identical pinched hysteresis loop of the memristor, which shows the potential

of the memristor to be scaled down to half a nanometer [37]. Although, in current

research, the size of the memristor varies depending on different physical materi-

als, it has the potential to be reduced in the future considering that memristor is

still a newly emerged device.

Non-volatility The memristor is also a non-volatile device which is able to

retain stored information even when not powered. Although volatile memristors

(tungsten-oxide based materials) exist and demonstrate a forgetting effect over

time, most memristors developed in the past 7 years are non-volatile or have a

good non-volatility, such as the HP memristor, the ferroelectric memristor and the

ZnO thin film memristor [48]. Non-volatility is a very promising feature for the

implementation of artificial neural networks, which could store synaptic weights

for a long time even without a power supply. Therefore, the last states of synapses

will not be lost and can be recalled instantly when the network is utilised again.

This would eliminate a period for setting up the previous states of synapses,

meanwhile, it saves the memory space required to store the synaptic weights.

Passivity Passivity was discussed by Chua [25] through investigating the con-

stitutive relation of the memristor, which gives the instantaneous power which is

dissipated by the memristor:

p(t) = M(q(t))i2(t) (3)

Hence, if the memristance M(q(t)) ≥ 0, the power dissipation is always a positive

term which shows that the memristor does not store any energy. Consequently,

the memristor is a passive device which only dissipates power. On the contrary,

the CMOS devices, for example transistors, are active devices which require an

external power supply for their operations, which implies these devices consume

more power than the passive devices in real applications. This feature is impor-

tant for large-scale implementation of neuromorphic systems in terms of green

computing and power saving.
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Non-linearity In contrast to a linear resistor, the memristor has a dynamic

relationship between current i and voltage v as defined in [25]:

M(q) = dϕ(q)/dq (4)

where the memristance M(q) is a charge dependent term and varies according to

the integration of current over time. As a non-linear analog device, it is suitable

for neural network applications since biological systems are non-linear systems in

nature. It implies that a single memristor is able to mimic the non-linear feature

of the synapse, however, a digital system requires several bits to store the same

information.

2.4 Memristive system

In 1976, Chua and Kang [28] gave the original definition of the memristor and

developed a broadened class of dynamical systems named the memristive system

which is defined by

ẋ = f(x, u, t) (5)

and

y = g(x, u, t)u (6)

where u and y denote the input and output of the system respectively. x is the

state of the system. In Eq. (6), the function g is a scalar function, which means

the output y is zero whenever the input u is zero and regardless of the state x

of the system. It recalls the passivity of the memristor introduced in Section 2.3

and implies no energy is stored in the memristive system.

By expanding the dimension of the state space of the dynamical system, an

nth-order current-controlled memristive system can be defined byẇ = f(w, i, t)

v = R(w, i, t)i
(7)

where the term w denotes the n dimensional state variable of the system. v and i

are the voltage and current respectively. Similarly, an nth-order voltage-controlled
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memristive system can be defined byẇ = f(w, v, t)

i = R(w, v, t)v
(8)

By introducing the n dimensional state variable, the memristive system is not

necessarily limited to the original postulate because the memristor is just a special

case of the memristive system which only depends on the charge or flux.

2.4.1 The memristor

The memristor is postulated through the constitutive relation between the flux ϕ

and charge q, however, a physical relation between ϕ and q is not necessary [26].

In electronics, the flux and charge can be mathematically defined as the integral

of voltage and current over time respectively:

ϕ(t) =

∫ t

−∞
v(τ)dτ (9)

and

q(t) =

∫ t

−∞
i(τ)dτ (10)

Since the memristor represents the relation between ϕ and q, it could also be

expressed by the derivative of ϕ (voltage v) and the derivative of q (current i)

according to Eq. (9) and (10). For a charge-controlled memristor, the voltage

across it is given by

v(t) = M(q(t))i(t) (11)

where

M(q) ≡ dϕ(q)/dq (12)

In this case, the M(q) is called memristance and has the unit of Ohms, which is

determined by the charge, or in other words the history of current i. The name

of the memristor derives from memory-resistor which combines the memory effect

and the resistor.
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Similarly, a memristor can be controlled by the flux, which gives

i(t) = G(ϕ(t))v(t) (13)

where

G(ϕ) ≡ dq(ϕ)/dϕ (14)

is called memductance and has the unit of Siemens. From the definition of M(q)

and G(ϕ) in Eq. (12) and (14), as a special case, if ϕ and q have a linear rela-

tion, the memristance M(q) and memductance G(ϕ) are actually equivalent with

resistance and conductance respectively. However, generally, the memristor is

considered as a non-linear element.

2.4.2 The pinched hysteresis loop

The pinched hysteresis loop shown in the v − i plane has been identified as the

fingerprint of the memristor by applying a sine-wave like signal, which is illustrated

in Fig. 4. The simulation results shown in Fig. 4 exhibit two important features:

Hysteresis and Zero crossing.

Hysteresis The movement of the v− i curve is indicated by the dashed arrows.

In the first quadrant, the v − i curve starts from a zero point and moves towards

the top-right. At first, the change rate of current i lags voltage’s until the v − i
curve reaches the turning point at the top-right. Then the current i begins to

precede the voltage v until the v − i curve returns to zero point. Conversely,

in the third quadrant, the situation is reversed, and the current i precedes the

voltage v at the beginning but lags the voltage v after the turning point at the

bottom-left. The hysteresis implies that the maxima and minima of the applied

sinusoidal input voltage v and the memristor current i do not occur at the the

same time, and hence there is always a hysteresis between voltage and current.

Zero-crossing It is worth noting that both of the current i and voltage v have

the same frequency, and they cross the zero point at the same time. This peculiar

characteristic is called zero-crossing which highlights that the memristor is a pas-

sive (no energy storing) element. Moreover, as shown in Fig. 4, by increasing the

frequency of the input voltage from ω to 10ω, these curves tend to be infinitely
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Figure 4: The pinched hysteresis loop of the memristor. When the frequency of
the applied sinusoidal signal increases, the loop tends to be a straight line but the
voltage and current always cross zero at the same time.
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Figure 5: A demonstration of the delayed-switching effect. (a) A typical q − ϕ
curve of the memristor which can be divided into three parts according to its
slope. (b) By applying a consecutive pulse, the time delay (as seen between t1
and t2) occurs when the memristor switches from Roff to Ron.

close to a straight line because, at a very high frequency, the charge q of the mem-

ristor has only changed a little during a very short time before it is swept away

quickly. As a result, the memristance remains more or less unchanged.

2.5 Delayed-switching effect

It was found that switching in a memristor takes place with a time delay and this

peculiar scenario is named the delayed-switching effect by Wang et al. [99].

From the definition of the memristance in Eq. (12), it is indicated that the

memristance is actually the slope of the q − ϕ curve. Hence, the q − ϕ curve

shown in Fig. 5(a) can be approximately divided into 3 parts: Roff (before

point 1), Ttran (between points 1 and 2) and Ron (after point 2). Therefore, it

gives a piecewise linear memristor which has a maximum memristance Roff and

a minimum memristance Ron. It can be described in a general form

Rmem =


Roff q < q1

Ron q > q2

M(q) q1 ≤ q ≤ q2

(15)
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where q1 and q2 are corresponding values of the charge at point 1 and 2. M(q)

varies according to the charge q during the transition time.

Between points 1 and 2 is the transition period where the memristance changes

from Roff to Ron or from Ron to Roff . In Fig. 5(b), the transition period Ttran

is observed by applying a consecutive voltage. The transition time between t1

and t2 indicates that the switching in the memristor between Ron and Roff takes

place with a time delay because the memristor possesses certain inertia. However,

in an ideal binary memristor, the transition period should not be shown in most

real applications.

Further research revealed that the time delay actually depends on the voltage

used which means a higher voltage produces a shorter delay because a higher

voltage induces a higher current. For a charge-controlled memristor, since the

memristance is a function of charge, a large current results in a sharp increment

of memristance during the transition period, and the transition period shrinks in

terms of time.

2.5.1 Impact of the delayed-switching effect

It has been considered that charge is the time integral of current, wherefore it

could be represented by the area covered by waveforms of current shown in Fig.

6. It clearly shows that, in Fig 6(a), a consecutive pulse signal leads to the state

change of the memristor and overcomes the time delay Ttran. The total charge

q(t) required to change the state from Roff to Ron is illustrated as the shaded

area. Under the same circumstance, to achieve the state change, the signal shown

in Fig.6(b) requires at least 4 pulses according to the shaded area. Hence, the

total charge required to overcome the time delay can be defined mathematically

by:

q(t) =

∫ t

−∞
i(τ)dτ =

∫ t

−∞

V

Roff

dτ =
V

Roff

Ttran (16)

In order to calculate the time delay Tdelay induced by the the pulse signal shown

in Fig. 6(b), we define

Tdelay =
q(t)

i(t)Tw
T = q(t)/(

V

Roff

D) = q(t)Roff/V D (17)
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Figure 6: A demonstration of the delayed switching caused by different pulse
signals. (a) The total time delay under a consecutive current pulse is measured
by Ttran, and the total charge q required is given as the shaded area. (b) By
applying a pulse signal with a period of 2Tw, the time delay Tdelay is obtained by
calculating the number of pulses required to meet the total charge q given by (a).

where Tw is the duration of the active state of the pulse signal in a period T . D

denotes the duty cycle which is defined by Tw/T . Consequently, if the duty cycle

D is a constant, the Eq. (17) elaborates that the time delay Tdelay is dependent

on the voltage of the applied signal.

Obviously, the time delay will affect the state of the memristor in actual ap-

plications since if the input voltage is removed before the switching takes place,

for example the applied time Ta is smaller than the time delay Tdelay, the mem-

ristance remains unaltered. Therefore, in order to switch a memristor, Ta should

be chosen in the way that Ta > T according to Eq. (17). Otherwise, the time

delay will lead to unexpected results in some applications, which should always

be avoided.
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Figure 7: The titanium-dioxide based memristor proposed by HP (From [97]).
(a) Once the semiconductor film is fully undoped or doped, the resistance of the
memristor equals Roff or Ron respectively. (b) The pinched hysteresis loop is
observed, and the hysteresis between applied voltage and current is shown at the
top.

2.6 HP memristor model

The memristor found by one of the HP labs is based on titanium dioxide, which

was an important discovery in the field because it revitalised the concept with

the claim “The Missing Memristor Found” [97]. Before the claim, there were

many elements which had similar behaviours to the memristor, for example as

mentioned in [26, 84], however, none of them have been related to the memristor.

Their research not only revives the studies of the memristor but also provides an

applicable device for real applications.

The HP memristor is constructed from two Pt nodes and a thin semiconductor

film sandwiched between them. Within the semiconductor film, it contains a layer
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of insulating TiO2 and a layer of doped oxygen-poor TiO2−x material. The effec-

tive transport mechanism in this device is through the drift of oxygen vacancies

originating within the oxygen deficient TiO2−x layer, which shifts the dividing line

between the TiO2 and TiO2−x layers. The region with a high concentration of

dopant has low resistance Ron, and conversely, the remainder with a low dopant

concentration has much higher resistance Roff as shown in Fig. 7(a). By applying

an external bias voltage, the boundary between the doped region and undoped

region will move towards the undoped region, and hence the width w of the doped

region will increase until it reaches the total width D of the semiconductor film

and switches to low resistance Ron.

Based on observations and experiments, a simple model is proposed by Strukov

et al. [97] to describe this device:

v(t) =

(
Ron

w(t)

D
+Roff

(
1− w(t)

D

))
i(t) (18)

where w(t) is the width of the doped region at time t. D is the full width or

thickness of the semiconductor film and must be on nanometer scale. i(t) and

v(t) imply the applied voltage and current which pass through the memristor.

Looking at the above equation (18), obviously it is very similar to the form

of Ohm’s Law but somewhat different. If the terms in the big parentheses are

treated as one term, it can be interpreted as the resistance of memristor M(q)

gives

M(q) = Ron
w(t)

D
+Roff

(
1− w(t)

D

)
(19)

Normally Roff � Ron is satisfied, and therefore the first term can be neglected in

some cases.

Consequently, equation (18) can be rewritten as v(t) = M(q)i(t) which applies

to Ohm’s Law. However, it is not sufficient to describe the behaviours of HP

memristor since we do not know the term w(t). Hence, another equation (20) was

given by HP to define w(t),

dw(t)

dt
= µv

Ron

D
i(t) (20)

where µv is the average ion mobility. By recalling the concept of the memristive

system, this model can be considered as a first-order memristive system since only
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Figure 8: The boundary effect and the window function. (a) The v− i curve with
boundary effect reduces the change rate of w when it reaches either boundaries.
(b) With an increasing value of p, the boundary effect disappears slowly since
f(x) is almost a constant for all the values of x.

one state variable w is defined. Moreover, as shown in Fig. 7, this model also

exhibits the pinched hysteresis loop which demonstrates that it is a memristor.

2.6.1 Boundary effect and window function

The HP memristor model mentioned above is based on linear ionic drift, however,

in nanoscale devices, a small voltage can produce significant non-linearities in ionic

transport. In order to model the non-linear drift when w is approaching zero or

D (boundaries of the device), a window function F (w) is normally multiplied to

the Eq. (20) which yields Eq. (21). Therefore, the ionic drift at the boundaries

is reduced drastically as shown in Fig. 8(a) using the original window function

proposed in [97].
dw(t)

dt
= µv

Ron

D
i(t)F (w(t)) (21)

However, in order to model different and more sophisticated memristor dynam-

ics, several models were proposed in the literature based on the HP memristor such

as Joglekar’s model [55], Biolek’s model [10], the Boundary Condition Memristor

(BCM) model [31] and the ThrEshold Adaptive Memristor (TEAM) model [62].
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Explicit comparisons between these models have been investigated by Ascoli et al.

[3] from theories to cases studies, and therefore we only briefly introduce selected

models in this section.

Joglekar and Wolf [55] proposed a window function in the form of

f(x) = 1− (2x− 1)2p (22)

where x = w/D and x ∈ (0, 1). The term p is a positive number and determines

the moving speed of w between 0 and D. The advantage of this function is that, by

selecting different values of p, it provides different non-linearities of the boundary

effect as shown in Fig. 8(b). In the special case, when p is a very large number,

as seen in Fig. 8 where p = 10, the non-linearity tends to disappear and turns

into linear ionic drift. Moreover, it guarantees the moving speed of w reaches zero

when it approaches the boundaries (x = 0 or x = 1). However, this function is

independent of the current i.

Another model, namely Biolek’s model, has been used in [9, 10] to build a

SPICE model of the memristor with non-linear dopant drift. The current i is

introduced into the this model as defined by

f(x, i) = 1− (x− stp(−i))2p (23)

where x = w/D and p is a positive integer which are similar to Jaglekar’s model.

stp(−i) is defined by

stp(i) =

1 for i ≥ 0

0 for i < 0
(24)

If the current i increases x, it is considered to be positive. Therefore, by reversing

the sign of the current, a discontinuous transition will occur to ensure that the

window function approaches 0 when the w/D approaches either boundary.

Corinto and Ascoli [31] offered a novel model which is based on boundary

conditions. It provides the opportunity to suitably tune the memristor dynamics

at boundaries to capture wide range of non-linear behaviour. By defining the
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boundary conditions Cn (where n = 1, 2, 3)

C1 = {x ∈ (0, 1) or (x = 0 and ηv > vth0)

or (x = 1 and ηv < −vth1)} (25)

C2 = {x = 0 and ηv ≤ vth0} (26)

C3 = {x = 1 and ηv ≥ −vth1} (27)

where x = w/D and x ∈ (0, 1). vth0 and vth1 are the threshold voltages which are

non-negative and needed to determine the states or conditions. For the sake of

simplicity, η = 1 in this case. Therefore, this model can be defined with conditions

above as

f(x, ηv) =

1 if (25) holds

0 if (26) or (27) holds
(28)

By this means, Eq. (28) mathematically demonstrates a window function with

vertical transitions which depend on the the threshold voltages. This model ben-

efits from the explicit boundary thresholds which determine the evolution of the

dynamics, and thus reflect the non-volatile feature of the memristor. Although

BCM is a simple model compared to other models, it is capable of accurately

capturing non-linear dynamics of various nano structures [3].

Different from above models, the TEAM model uses the undoped region as

state variable x which is defined by

dx

dt
=


koff

(
i

ioff
− 1
)αoff

foff (x) for i > ioff > 0

0 for ioff > i > ion

kon

(
i
ion
− 1
)αon

fon(x) for i < ion < 0

(29)

where koff is a positive constant, while kon is a negative constant. αoff and αon

are constants, while ioff and ion are current thresholds. foff and fon are window

functions that only allow the state variable varies within the range [xon, xoff ].
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Possible implementations of foff and fon were given asfoff (x) = exp
(
−exp(x−aoff

wc
)
)

fon(x) = exp
(
−exp(−x−aon

wc
)
) (30)

where wc is a fitting parameter. Reasonable values for bounds xoff and xon are

aoff and aon respectively since aoff and aon denote the points when both window

functions equal zero. Thus, this model suggests that a memristor has a non-linear

dependency on charge and state variable and exhibits current thresholds.

Another recently proposed window function [23], as defined in Eq. (31), uses

a piecewise function to simulate the asymmetric ionic drift at the boundaries

and provides the ability to mimic the symmetric boundary effect by selecting the

appropriate parameter a in the range of (0, 1).

f(w) =

1− (w − a)2/a2 0 ≤ w ≤ a

1− (w − a)2/(1− a)2 a ≤ w ≤ 1
(31)

It offers a flexible way to simulate the advanced non-linearity because the semi-

conducting film can be divided into several regions and each region can have a

different moving speed of w according to the experiments.

2.7 Piecewise-linear memristor model

The piecewise-linear memristor model is widely used in the studies of neuromor-

phic applications and memory designs. This model often has two states or multiple

states, and hence it can be divided in to two categories: binary memristor model

and multi-state piecewise memristor model. In both of these models, one threshold

or multiple thresholds exists to control the states.

2.7.1 Binary memristor model

A binary memristor model which only exhibits two states 0 and 1 represented by

Roff and Ron respectively is derived from the digital memristor which is used in
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digital circuits. It is generally modelled by taking the similar form of Eq. (15)

Rmem =


state 0 (Roff ) v < V T−

state 1 (Ron) v > V T+

unchanged V T− ≤ v ≤ V T+

(32)

but the memristance is unchanged if the applied voltage is within the range be-

tween the thresholds. Therefore, the states between state 0 and state 1 are ig-

nored. However, Eq. (15) shows a more general case that states between Roff

and Ron can be observed. Obviously, this model is controlled by the voltage and

the negative and positive thresholds voltages V T− and V T+.

Another binary memristor model is defined by Hu and Wang [47]

M(u(t)) =


M
′

u̇(t) > 0

M
′′

u̇(t) < 0

unchanged u̇(t) = 0

(33)

where u is the applied voltage of the memristor and u̇(t) is the the derivative of

u with respect to time t. By replacing M
′

with 0 and M
′′

with 1, it models a

digital memristor which is controlled by the applied voltage u and specifically its

derivative u̇(t). By increasing or decreasing the applied voltage u(t), the mem-

ristor switches between the two states 0 and 1 without the negative and positive

threshold voltages defined in Eq. (32). It provides another way to control the

switching of the memristor using the voltage and is used in analysing some fea-

tures of the memristor-based recurrent neural networks with time delays, such as

the global uniform asymptotic stability and passivity analysis.

Form Eq. (32) and (33) above, it is clear that a delayed-switching effect exists

with either case when the defined switching conditions are not satisfied. Since

the binary models only have two states, the transition period is concealed and

memristance remains unchanged to avoid violating the stability in digital circuits.
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Figure 9: The switching dynamics of a ferroelectric memristor (From [19]). By
applying consecutive pulses with different amplitudes, the switching dynamics of
(a) and (b) are different, and a higher voltage induces much wavier variations of
the state variable s.

2.7.2 Multi-state memristor model

In contrast to the binary memristor, a multi-state memristor has multi-level resis-

tance states rather than just 0 and 1. The multi-state memristor was mentioned

by Chua [25] when he postulated the memristor. Originally, it was proposed

by dividing the ϕ − q curve into several parts to achieve the piecewise linearity,

and hence memristance has multiple values. However, with the development of

the memristor, several multi-state memristors are found with intrinsic multi-level

resistance rather than with the help of peripheral circuits. The multi-level mem-

ristive mechanism and characterisations of the FeOx memristor are investigated

by [18], which demonstrates that the state can be tuned and controlled by exter-

nal electric conditions. Such behaviour can also be seen with CuxO and ZrO2

based devices which provide multi-level resistance switching, such as five-level

states [102], and can be used as the multi-level cell (MLC) in non-volatile mem-

ory. Similar behaviour also has been found in the ferroelectric memristor which is

based on ferroelectric tunnel junctions (FTJs), although the FTJs so far have only

been considered for binary storage [19]. FTJs are tunnel junctions compose of two

metal electrodes which are separated by a thin ferroelectric layer. The experiment

shows that, by applying a consecutive pulse, the resistance varies from OFF to
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ON in a wavy way as shown in Fig. 9. It is argued that ferroelectric domain dy-

namics dominate the resistance variations in the ferroelectric memristor and thus

the wavy variations signal the presence of several areas with different switching

dynamics. In this case, the peculiar behaviour is caused by the nucleation effects

in ferroelectric barriers because the nucleation centres need to be activated and

therefore yielding delays. Though it aims to provide a virtually continuous range

of resistance levels, it could also provide multi-level resistance by applying an

appropriate duration of voltage. Furthermore, real applications are investigated

based on the multi-state memristor by Kim et al. [60] who built a hybrid system

for data storage and neuromorphic applications, which is integrated on the top

of a CMOS chip. It demonstrates the promising performance of the multi-state

memristors which can store images in high-density hybrid systems which could

provide the ability to store data up to 10 different levels. However, modelling a

multi-state memristor is very challenging because specific materials have different

switching mechanisms. A general representation of the multi-state memristor can

be defined using a piecewise function

Rmem(q) =



R0 q ≤ q0

R1 q0 < q ≤ q1

R2 q1 < q ≤ q2

...
...

Rn qn−1 < q ≤ qn

(34)

where the resistance level is determined by the charge q, and the constitutive

relation of ϕ and q is implicit because it depends on the materials.

A SPICE model of the memristor with multi-level resistance states has been

proposed by Fang Xu-Dong [36] recently, which is an ideal piecewise linear mem-

ristor model and follows the similar approach of Eq. (34). In the following Chapter

3, a more sophisticated multi-state memristor model, namely staircase memristor,

is proposed to mimic the multi-level resistance based on the delayed-switching

effect, and further studies of the multi-state memristor will be demonstrated.
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2.8 Cubic polynomial memristor model

The pinched hysteresis loop is the fingerprint of the memristor. In order to analyse

such behaviour and the responses to the sine-wave-like input voltage source or

current source, the memristor with a cubic polynomial constitutive relationship is

presented as [26]

ϕ =
1

3
q3 + q (35)

Obviously, this model describes the constitutive relation of ϕ − q curve by a

monotone-increasing function. Since the memristance is the slope of the ϕ − q

curve, the derivative of Eq. (35) defines the memristance Rmem

Rmem(q) = dϕ(q)/dq = q2 + 1 (36)

In this case, the Rmem is always a positive term which has a minimum value 1 if

q = 0.

Its various characterisations can be investigated by simply applying a sinu-

soidal current source i(t) and t ≥ 0

i(t) = Asin(ωt) (37)

In order to obtain the v− i curve, it requires the calculation of charge q from the

integration of current. Thus assuming the initial charge q0 = q(0) = 0 we obtain

q(t) =

∫ t

0

Asin(ωτ)dτ =
A

ω
(1− cos(ωt)) (38)

Therefore, by substituting Eq. (38) into (35), the corresponding flux of the current

source is

ϕ(t) =
A

ω
(1− cos(ωt))

(
1 +

1

3
(
A2

ω2
(1− cos(ωt)2))

)
(39)

By differentiating the obtained flux ϕ, the voltage v across the memristor is

v(t) = A

(
1 +

A2

ω2
(1− cos(ωt))2

)
sin(ωt) (40)

So far, all the required variables are acquired through the Eq. (35) and (37),

subsequently, the v− i curve, ϕ− q curve and the variation of memristance Rmem
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can be illustrated for investigating the responses to the sinusoidal signals with

different A and ω. This model also exhibits the pinched hysteresis loop, which

proves that it is a memristor. The advantage of this model is, in contrast to the

HP model, that it has an explicit constitutive relation of ϕ and q, and hence it is

very convenient to theoretically analyse the basic properties of the memristor with

different sine-wave like signals by some simple calculations. However, this model

lacks the ability to mimic some physical details such as the boundary effect because

the memristance Rmem → ∞ if q → ∞. By introducing a window function F (x)

which limits the charge q, the memristance can be constrained within the range of

[Ron, Roff ], which will make it more applicable in simulations of memristor-based

applications.

2.9 Voltage-controlled memristor models with

threshold effect

Except the piecewise linear memristor model, the HP memristor model and the

cubic polynomial memristor model solely depend on the charge q, which does not

have explicit thresholds. In this case, even a very small current will eventually

switch a memristor, however, in the Si based memristive device, there exists a

threshold effect. Consequently, if the bias voltage is less than the threshold VT ,

the memristance will not be changed [53]. In titanium-dioxide based memristors,

a dynamical threshold effect also has been discovered, which requires a specific

voltage to switch the memristor. The threshold effect will make the memristor

more controllable since it is possible to perform read and write operations on the

memristor by applying a bias voltage below or above VT respectively. It will be

beneficial to some practical applications because a read operation will not affect

the state of the memristor, and therefore it is more reliable.

The voltage-controlled memristor normally follows the definition of the voltage-

controlled memristive system shown in Eq. (8) which givesi = g(w, v)v

dw
dt

= f(w, v)
(41)
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where w is a variety of physical state variables; i is the current across the mem-

ristor; v is the voltage drop across the device. The function g denotes the mem-

ductance, and hence, in this case the memristance is not only controlled by the

state variable but also the voltage applied to the memristor. The function f may

describe the ionic drift under the electric fields in the case of the titanium-dioxide

based memristor. In addition to the models introduced in Section 2.6.1, such as

BCM, Linares-Barranco et al. [67] assumed a possible non-linear f which depends

on the voltage

f(v) =

I0sign(v)
(
e|v|/v0 − evth/v0

)
if |v| > vth

0 otherwise
(42)

where I0 and v0 are parameters that may not depend on w; vth denotes the thresh-

old voltage.

Another similar function f has been proposed by Pershin and Di Ventra [78]

using the following equation

ẋ = (βVM + 0.5(α− β)(|VM + VT | − |VM − VT |)) θ(x−R1)θ(R2− x) (43)

where θ(·) is a step function, and VM is the voltage drop across the memristor. The

parameters α and β characterise the change rate of memristance when |VM | ≤ VT

or |VM | ≥ VT respectively. R1 and R2 are limiting values in the step functions

to guarantee that the memristance varies only between R1 and R2, otherwise the

change of x will be zero.

It is worth noting that although the voltage-controlled memristor model with

threshold aims to mimic the memristive devices with threshold effect, it is also ap-

plicable to other memristors without threshold effect. In applications, the thresh-

old could be a reference point which is often used in non-linear electronics. In

memristive devices, the change rate of conductance g normally follows a represen-

tative sinh-like curve, which means only larger voltages can induce much greater

changes in g [94]. Therefore, a reference point where the change rate starts to

increase sharply can be selected to represent the threshold.
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Model Linear Non-linear Discrete Threshold

HP model + +/− − −

Binary model − − + +

Multi-state model − − + +

Cubic polynomial
model

− + − −

Voltage-controlled
model with threshold

+ + − +

Table 2: A general comparison of the mentioned memristor models.

2.10 Applications

Since the memristor is still at the development stage in the research labs, it is dif-

ficult to obtain a uniform physical memristor for test or real applications. Thus,

the mentioned models are widely utilised in simulating memristor-based applica-

tions according to different properties. Table 2 shows a simple comparison of the

basic properties of the memristor models, in which, a “+” sign denotes the model

has the property, otherwise a “-” sign is utilised. It clearly shows that different

models focus on different properties, for example the HP memristor model focuses

on linear or non-linear dopant drift properties, the binary and multi-state mem-

ristor models focus on the discrete property and the voltage-controlled memristor

model with threshold focuses on the threshold effect. Hence, they lend themselves

to different applications.

Digital memory

Since current computers work on binary codes, a straightforward application of

a binary memristor is the digital memory, such as resistive random access mem-

ory (RRAM) and content addressable memory (CAM). Since CMOS technol-

ogy is reaching the bottleneck in terms of size, the emerging RRAM is expected

as a potential replacement in the future. According to the international tech-

nology roadmap for semiconductors [51], the advantages of the RRAM are the

significant short operation time and the ability to realise the three-dimensional
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Traditional Technologies Emerging Technologies

DRAM SRAM Flash
NAND

FeRAM PCRAM Memristive
device

Knowledge
level

mature mature mature product advanced early stage

Half pitch
(nm)

50 65 90 180 65 ≤ 50

Read time
(ns)

< 1 < 0.3 < 50 < 45 < 60 < 50

Write/Erase
time(ns)

< 0.5 < 0.3 106 10 60 < 50

Write
voltage

(V )

2.5 1 15 0.9− 3.3 3 < 3

Read
voltage

(V )

1.8 1 2 0.9− 3.3 3 < 3

Write
endurance

1016 1016
105 1014 109

1010

Write
energy

(fj/bit)

5 0.7 10 30 6× 103
< 103

Retention
(years)

seconds N/A > 10 > 10 > 10 > 10

Density
(Gbit/cm2)

6.67 0.17 2.47 0.14 1.48 100

Highly
scalable

major technology barriers poor promising promising

Table 3: Comparison of traditional and emerging memory technologies. Repro-
duced and modified from [35].
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CMOL (standing for CMOS + MOLecular scale devices hybrids) structure. A

typical comparison of the memory technologies is presented in Table 3 according

to [35, 64, 105, 106]. Although currently the development of memristive devices is

at a very early stage, it has highest density among these typical memory technolo-

gies. In terms of speed and endurance, its performance is worse than traditional

technologies such as DRAM and static RAM (SRAM), however, it is superior to

Flash memory. Since memristor is a kind of non-volatile memory, its retention

ability definitely outperforms DRAM and SRAM. Even compared to emerging

technologies such as ferroelectric memory (FeRAM) and phase-change memory

(PCRAM), it also has smaller half-pitch and promising scalability and similar

performances in terms of speed, endurance and retention. Considering that mem-

ristive devices are still at the very early stage of development compared to other

technologies, in the future, performances can be further improved along with its

development. Based on CMOL structures, the RRAM can achieve ultra-high den-

sity by stacking the memristive crossbar array at the top of a CMOS layer [96]. In

this structure, each memristive device is a binary cell, meanwhile, the CMOS layer

plays the role of coding, decoding and line driving. Hence, both the memristive

device layer and the CMOS can keep a relatively simple structure and the much

higher density can be achieved by RRAM compared to traditional technologies.

The binary memristor model is also beneficial to the CAM design to increase

the packing density and provide non-volatility. Different from conventional mem-

ory, CAM focuses on very-high-speed searching applications by searching the con-

tent rather than the address, and therefore a basic CAM cell has two basic func-

tions which are bit storage and bit comparison. Eshraghian et al. [35] investi-

gated several variations of hybrid CAM cells using different architectures where

two memristors are utilised as bit-storage in each cell, and the bit comparison is

performed by the CMOS logic circuits. Based on their simulation results, a reduc-

tion of approximately 96% in average power consumption has been found since

the root-mean-square (RMS) value of current is 47 µA less than the conventional

SRAM based CAM cell. At the same time, for a single cell, a 46% area reduction

is noted by the memristor-based CAM cell. In another CAM cell design [22], the

bit comparison is also implemented by the memristor which compares and stores

the comparison results, and therefore a further area reduction could be expected.
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On the other hand, because of the nature of the multi-state memristor, it is pos-

sible to store more information in one memristor, which has been investigated by

[60].

Neuromorphic engineering

As neuromorphic engineering aims to implement the biological architectures in

the nervous system by utilising the very-large-scale integration (VLSI) system

with analog elements, the memristor models with non-linear features are promis-

ing candidates to implement the memristor-based neuromorphic systems. In the

following sections, the related applications are summarised in two categories.

Hodgkin-Huxley model

The Hodgkin-Huxley model derives from the experiment on the giant axon of the

squid, which is a mathematical model to describe the ionic mechanisms involved

in excitation and inhibition of the nerve cell [46]. In this model, the total current

through the membrane is defined by summing the sodium ion current (INa), the

potassium ion current (IK) and the leaking current (Il). The voltage-gated sodium

and potassium ion channels are represented by two time varying conductance

gNa and gK respectively. Recently, these two time varying elements have been

replaced by two memristors, which demonstrates that gNa is in fact a second-order

memristor and gK is a first-order memristor [27]. By this means, the Hodgkin-

Huxley model can be implemented with memristors, since in basic circuit theory

gNa and gK cannot be prescribed as a function of time.

Synapse

In addition to the applications introduced in Section 2.3, the analog memristor is

also applied to other neuromorphic systems. The memristor-based adaptive, re-

current neural network is explored by Snider [93] for complex pattern recognition

problems using the non-linear feature and threshold of the device. The commu-

nication between neurons is based on pulse signals by a positive pulse V and a

negative pulse −V . Because of the threshold effect, voltage V can only cause a

very small change on the conductance of the memristor, however, if the positive

pulse V and the negative pulse −V are overlapped, a 2V voltage will change
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the conductance by a much great amount. Hence, the memristor is controlled

by the voltage drop across it, and the conductance change is proportional to the

width of the overlap. Similar mechanisms have been used in [21] to implement

unsupervised image learning, which used the model similar to Eq. (43).

Besides the threshold based model, it is possible to implement the instar and

outstar learning with binary memristor models [91]. In this case, the analog signal

in the range [0, 1] is converted by the “thermometer code” to a digital format using

an “M of N” bit encoding. Then the encoded value is weighted by the binary

memristors and summed as the output to the postsynaptic neuron. According to

the instar learning
dw

dt
= ηy(x− w) (44)

or the outstar learning
dw

dt
= ηx(y − w) (45)

the state of the binary memristor will be changed. x is the input signal; y is the

state variable of the postsynaptic neuron, and w is the binary synaptic weight.



Chapter 3

Memristive Non-spiking Neural

Networks

As introduced in Chapters 1 and 2, applications of memristors are widely studied

in spiking neural networks, especially using a pair of forward and backward spikes.

The learning process is implemented by applying a proper pulse voltage and pulse

width according to the weight update rule, and therefore the conductance of the

memristor can be adjusted by the rule itself rather than storing an explicit value

in the memristor. However, as mentioned previously, non-spiking neural networks

use real-valued numbers as the input and output. In particular, they require that

the conductance of the memristor is adjusted to a specific value. An example is the

cellular neural network (CNN) which normally uses the pre-defined, real-valued

numbers as the connection weights between neurons. Because of the non-linearity

of the analog memristor, setting its conductance to a specific value is more difficult

than with the binary memristor. In this chapter, a staircase memristor model

which has multi-level resistance is proposed based on the delayed-switching effect

and the multi-state memristor model. By applying the proposed model to the

CNN, a memristive CNN can be achieved with more convenient setup processes,

through which it is possible to implement a large neighbourhood. Based on the

structure of the memristive CNN, the application of memristors in an echo state

network (ESN) is investigated.

46
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3.1 Memristors as programmable weights

In non-spiking neural networks, synaptic weights primarily exist in three forms

which are

1. constant weights: the connection strength between neurons are pre-defined

during the network setup and are invariable

2. random weights: the synaptic weights are randomly generated during the

network setup and are invariable

3. plastic weights: the synaptic weights are generated in some form and varied

during the training phase

Theoretically, analog memristors can be utilised as these kinds of synaptic

weights, however, because of their non-linearity, precisely programming a mem-

ristor to a specific resistance is difficult, and especially as the synaptic weight has

to be changed quickly and frequently. In [26], from the current-voltage character-

istics of several memristor examples, it is shown that the variation of memristance

is not as smooth as with the theoretical memristor model but in fact quite fluc-

tuated. This implies, in realistic applications, that it is difficult to achieve a

specific and precise value. A general solution to programming a memristor to a

specific value is the use of a lookup table which contains the corresponding voltage

and duration required. Thus, a memristor has poor performance as a constant

weight or plastic weight in terms of speed and efficiency, which leads to research

in memristors with multi-level resistance.

3.2 Staircase memristor model

3.2.1 The concept of staircase memristor

The concept of the staircase memristor derives from the “delayed-switching effect”

of piecewise linear memristors [99]. As mentioned previously, this effect indicates

that switching in a memristor takes place with a time delay because the memristor

possesses certain inertia [100]. A staircase memristor is considered to have a

delayed-switching effect between several discrete resistance levels, and hence the
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variation of memristance is like a staircase. In practice, memristors with multi-

level resistance are observed in [18, 19, 102] and a theoretical SPICE model was

proposed in [36]. In particular, in ferroelectric memristors, significant delays of

resistive states are observed. In some applications, for example in neuromorphic

engineering, these delays should be avoided because they resist the change of the

conductance of memristors which will consume more time and power on training.

However, it is beneficial to some applications, such as programming a memristor

to a specific value, and therefore an alternative way to use delays rather than to

avoid them is presented.

3.2.2 Modelling a staircase memristor

A staircase memristor is obtained by dividing the q − ϕ curve into several linear

segments, which implements a piecewise linear memristor introduced in Chapter

2. Since the slope of the q − ϕ curve denotes the memristance of the memristor,

the same number of stairs on the memristance can be observed as shown in Fig.

12(a).

Non-linear drift model

To model the staircase memristor, we consider a charge-controlled piecewise mem-

ristor first. Based on the experimental results of the existing HP memristor model

with non-linear drift [97], by applying the window function w(1 − w)/D2 to the

right side of Eq. (21), it will result in the following equation

dw

w(1− w)
= µv

Ron

D
i

1

D2
dt (46)

Then, both sides could be integrated which yields

− ln

∣∣∣∣−w + 1

w

∣∣∣∣+ C = µv
Ron

D3
q (47)

Since D is normalised to 1 and 0 < w < 1, the absolute symbol can be removed.

If we assume that the initial value of charge q is q0 = q(0) = 0, we have

−w + 1

w
= e−qµv

Ron
D3 +C (48)
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Figure 10: A non-linear drift model which mimics the boundary effect of the HP
memristor model. The dash line denotes the voltage signal. A pinched hysteresis
loop is observed by applying a sinusoidal voltage signal.

Finally, by simplifying Eq. (48), we can have the solution and a state variable s

which has the following relation with charge q

s = w =
1

1 + e−qkp+ρ
(49)

where kp = µv
Ron
D3 and ρ is the constant C. In this case, the state variable s models

the boundary effect of the memristor and will be used in the proposed staircase

memristor model.

The derivative of (49) gives the change rate of state variable s

ds

dq
=

kpe
−qkp+ρ

(1 + e−qkp+ρ)2
(50)

where kp denotes the propagation speed of charge in memristor. ρ/kp is a constant

term which determines the middle point of the transition period of the memristor
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Figure 11: A schematic digram of a conceptual staircase memristor.

between ON and OFF. By substituting Eq. (49) into

R(q) = sRon + (1− s)Roff (51)

and

v(t) = R(q)i(t) (52)

we model the similar behaviour of an HP memristor model with non-linear drift

which is controllable by varying the parameters kp and ρ. If kp is a large number,

it requires less charges to change the state of the memristor. By varying ρ, a

virtual threshold (where the state begins to change much more) is controlled,

and therefore a larger ρ results in that more charges are required to switch the

memristor. In Fig. 10, the new model exhibits similar behaviour as shown in Fig.

8(a). In this case, a large amount of charge q is required to switch the memristor

when the state variable approaches the boundaries, and therefore the memristance

at ON and OFF states can be held longer and yield a time delay which is essential

for building a staircase memristor.

The staircase model

In the case of the staircase memristor model, we assume that it consists of several

non-linear drift models which are somehow connected in series with switches as

illustrated in the conceptual schematic diagram of Fig. 11. It demonstrates a

staircase memristor model with 6 resistance levels, and each non-linear drift model

is activated one by one. At the first, switch s12 is turned on and s11 is turned

off, and hence only the memristor M1 is connected to the circuit. When M1 is

switched from ON to OFF, switch s12 is turned off. Then the switches s11 and
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s22 are turned on, which only connect M2 to the circuit besides M1. Until all the

memristors are connected and switched to the OFF state, a staircase memristor

model with 6 resistance levels is achieved. In a word, the conceptual circuit works

somewhat like a digital potentiometer which is built by memristors.

Based on the conceptual circuit, each memristor in the circuit is considered as

a region which delays the variation of the resistance level. The delays are caused

by the activation processes of the regions, which make the staircase memristor

stay at one resistance level until a virtual threshold of the corresponding region

is reached. The proposed staircase memristor model has a similar mechanism

to that has been found in the ferroelectric memristor [19] which contains several

dynamic regions. Because of the nucleation effect in the ferroelectric memristor,

such dynamic regions need to be activated, which explains the delay observed in

the evolution of its state. Interestingly, these regions are dynamical in ferroelectric

memristors and depend on the applied voltage, meanwhile the switching dynamics

in these regions are different. However, in a staircase memristor model, for reasons

of stability and controllability, each region is considered to be constant rather than

varying dynamically.

If we assume a staircase memristor model has N regions that have the same

characteristics, for example the same kp, ρ and the fraction wi which is normalised

by the total width D, the conceptual circuit can be summarised by the following

equation:

s =
N−1∑
i=0

wp + s(i)

=
N−1∑
i=0

wp +
wi

1 + e−qkp+ρ+Qimin

(53)

where wp is defined by

wp = w0 + w1 + w2 + · · ·+ wi−1 (54)

which is the total width of the previous regions. s denotes the state variable of

the staircase memristor and varies between “0” and “1”. Theoretically, more than

one region is prohibited from activating at the same time as the implementation

of the conceptual circuit.
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Therefore, a Heaviside function H(i) is multiplied to (53) which gives

s =
N−1∑
i=0

H(i)(wp +
wi

1 + e−qk
i
p+ρi+Qimin

) (55)

where H(i) is defined by

H(i) = H(| − kipq| −Qi
min) (56)

Qi
min denotes the minimum quantity of charge required to enter current region i

with values i = 0, 1, 2, 3, · · · . If the total charge passed the staircase memristor

exceeds Qi
min, current region i is activated. If all the regions have the same width

wi, wi then equals Smax/N , and therefore wp equals i · wi. However, in the case

that the regions have a different proportion of total thickness, the term wi will be

replaced by a varied number according to the proportion of the region i as well as

wp.

Then the memristance R(q) of the staircase memristor is determined by re-

calling Eq. (51)

R(q) = sRon + (1− s)Roff (57)

where Ron and Roff are the memristance of ON and OFF states respectively.

Hence, all the equations required to model the proposed staircase memristor model

are presented. Since the ϕ− q relation and required thresholds have not been in-

vestigated in current research of memristors with staircase behaviour, experiment

results of physical staircase memristors with such parameters are not available yet.

Therefore, for illustrative purpose, we select possible parameters according to the

down-to-up domain experiment in the ferroelectric memristor [19]. It assumes a

staircase memristor with 4 regions and 5 resistance levels, which has been demon-

strated in [19]. Simulation results of the proposed staircase model is illustrated

in Fig. 12, where the fingerprint of the memristor, the pinched hysteresis loop of

V − I curve, has been observed by applying a periodic sinusoidal signal 5sin(πt).

By varying the frequency of the applied signal, similar behaviour to Fig. 4 will be

observed. Therefore, by increasing the frequency, the pinched loop tends to be a

straight line and always crosses the zero point. The rise and decline of the state

variable s along the sinusoidal signal is symmetric in Fig. 12(c), however, it could
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be asymmetric according to the observed behaviour of practical experiments by

defining a separate equation for the decline of s. Because the rise and decline

of s is symmetric, the rise curve and decline curve are overlapped in Fig. 12(d).

Since the proposed staircase model is based on the HP memristor model which has

been widely discussed and studied, it could be applied to the existing applications

conveniently. Moreover, this model provides non-linearity to the variation of state

variable s rather than changing s abruptly and a predictable resistance switching

time for a given input.

3.3 Memristive cellular neural network

CNN is a biologically motivated neural network and important for applications in

practice. The mainly uniform processing elements, called cells or artificial neurons,

are placed on a regular geometric grid (which could be a square, hexagonal, or

other patterns). The structure of CNN is defined “Any cell in a cellular neural

network is connected only to its neighbour cells” [29]. It consists of an array of

non-linear, locally coupled neurons. By limiting the connections of the neurons,

the complexity of cellular neural networks is reduced significantly. However, it

still has satisfactory capability to process large amounts of information in real

time. Although all the cells are only locally connected, the cells which are not

directly connected together can affect each other indirectly by the propagation

effect of cellular neural networks.

3.3.1 CNN cell

Theoretically, a CNN can be defined by any dimension depending on the appli-

cations. If we define a cellular network with size M × N such that all the cells

are arranged in m rows and n columns, the cell on the ith row and jth column is

called C(i, j). Therefore, the neighbour of C(i, j) is defined by C(k, l). According

to the generic definition of cellular neural networks, the state of the cell C(i, j) is
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Figure 12: Simulation results of the staircase memristor model. (a) A q−ϕ curve is
divided into 5 segments which represent 5 resistance levels. It means this staircase
memristor has 4 regions which are region 0:{0 → 1}, region 1:{1 → 2}, region
2:{2→ 3}, region 3:{3→ 4}. (b) A pinched hysteresis loop of current and voltage
of staircase memristor. (c) By applying a periodic sinusoidal signal 5 · sin(πt),
the state variable s of staircase memristor varies like a staircase waveform. (d)
The variation of s along the charge q. Parameters used here are: N = 4, Q0

min =
0C,Q1

min = 0.7C,Q2
min = 1.4C,Q3

min = 2.1C, kp = 20, ρ = 10, Roff = 40Ω, Ron =
1Ω.
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Figure 13: Memristor based CNN templates

given:

dxi,j
dt

= −xi,j + I +
M∑
k=1

N∑
l=1

B(i, j; k, l)uk,l

+
M∑
k=1

N∑
l=1

A(i, j; k, l)yk,l

(58)

and the output of C(i, j) is determined by a piecewise linear function:

yi,j =
1

2
(|xi,j + 1| − |xi,j − 1|) (59)

where I is the bias. k and l denote the row number and column number of

the neighbour. Both the feed-forward template B(i, j; k, l) and feedback template

A(i, j; k, l) have the same size in the neighbourhood. The feed-forward interaction

is a weighted sum of the input voltages uk,l of all the neighbours. Similarly,

the feedback interaction is a weighted sum of the output voltages yk,l of all the

neighbours.
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3.3.2 Memristor-based template

Templates of CNN are very important as they determine the cell states and out-

puts of the CNN network. After the invention of the CNN paradigm, lots of

templates were discovered. Currently, there exists a large template library for

various applications. Due to this case, for some existing applications, it is not

necessary to find new templates, and hence the main task is selecting appropriate

CNN templates from the template library and setting them in real CNN circuits.

Afterwards, the chosen templates will not be changed until another template is

required.

The CNN neighbourhood of the cell C(i, j) is defined by

Nr(i, j) = {C(k, l)|max{|k − i|, |l − j|} ≤ r,

1 ≤ k ≤M ; 1 ≤ l ≤ N}
(60)

where r is a positive integer number, and k and l are the row number and column

number of the neighbour. Usually, the r = 1, r = 2 and r = 3 neighbourhoods are

called 3×3 neighbourhood, 5×5 neighbourhood and 7×7 neighbourhood respec-

tively. Obviously, it shows that the neighbourhoods are symmetric in the sense

that if C(i, j) is a neighbour of C(k, l), then C(k, l) is a neighbour of C(i, j) as

well. By increasing the neighbourhood r, the number of connections of each CNN

cell is significantly increased. Thus, the memristor is a promising candidate for

neighbourhood connections, as it is possible to implement a large neighbourhood

size r.

Since using general HP memristors in CNN has been discussed in [65], here we

investigate memristor-based templates from the view of using staircase memris-

tors and the crossbar structure which could be adapted to the CMOL structure.

A schematic diagram is illustrated in Fig. 13 which consists of two templates

A and B based on the crossbar structure. The inputs ukl and feedback ykl are

weighted by corresponding memristors and summed together with a bias signal

to change the state of the cell C(i, j). The new architecture of CNN aims to take

advantages of memristors, such as nano-scale size, non-volatile and programmable

features. The implementation requires hybrid CMOS and memristor circuits with

some additional control circuitry, for example programming and inverting mod-

ules. Such additional circuitry may take up more space or consume more energy
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Resistance Expected R = 100 Ω R = 200 Ω R = 300 Ω

Frequency Staircase HP Staircase HP Staircase HP

(Hz) (%) (%) (%) (%) (%) (%)

10f 0.74 1.5 0.245 0.5 0.017 0.167

9f 0.74 6.5 0.245 1.0 0.007 1.33

8f 0.74 7.0 0.245 2.25 0.003 0.67

7f 0.74 4.5 0.245 3.0 0.1 2.33

6f 0.74 4.0 0.245 4.75 0.11 1.5

5f 0.74 1.0 0.245 0.495 0.1 0.0

4f 0.74 14.5 0.245 2.25 0.11 3.33

3f 0.72 13.5 0.245 4.5 0.1 1.33

2f 0.71 14.5 0.245 10.0 0.11 8.5

f 0.72 13.5 0.185 25.5 0.1 8.33

Table 4: Staircase memristor model vs general HP memristor model. It measures
differences between expected resistance values and actual resistance values of both
staircase and general HP memristor models in percentage. The base frequency f
of the applied pulse signal is 1

2π
with a duty cycle Dc = 0.5.

than the original CNN circuit in some cases. However, current investigations on

memristor-CMOS hybrid integrated circuits suggest a strong likelihood that these

hybrid circuits reducing the size or power consumption. Especially, when a large

number of CMOS devices can be replaced by memristive devices, the circuit is

more likely to take the advantage of memristive devices [35, 60, 104] since more

space is saved for additional circuitry. Otherwise, saved space is insufficient for

additional circuitry which will take up extra space. Therefore, considering CNN

circuits with a large number of connections, the memristor is still a promising

candidate to implement CNN connections in the future. Furthermore, using stair-

case memristors in CNN circuit is worth investigating because, in some specific

applications, it allows a simpler way to programme the CNN template compared

to general HP memristors.

A simple comparison between a staircase memristor model and a general HP

memristor model is shown in Table 4, which describes the errors between expected
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resistance levels and the actual resistance levels obtained by applying the same

pulse signal with an amplitude A = 5 V and a duty cycle Dc = 0.5. The HP

memristor model proposed in [97] and described by Eq. (18) and (20) is used for

comparison with parameters Ron = 1 Ω, Roff = 400 Ω, µv = 5 × 10−2 m2s−1V −1

and the width D is normalised to 1. In contrast to general HP memristor model, a

staircase memristor model proposed in this thesis and defined by Eq. (55) with 5

resistance levels is used. It models a staircase memristor containing five resistance

levels according to the ferroelectric memristor and other multi-level memristive

devices which exhibit five-level resistance states [19, 102]. The errors ε is measured

by

ε =
|Ra −Re|

Re

× 100 (61)

where Ra is the actual resistance obtained and Re is the expected resistance.

Both the staircase memristor model and the general HP memristor model are

programmed towards the expected resistance levels R = 100 Ω, R = 200 Ω and

R = 300 Ω. By decreasing the frequency of the pulse signal from 10f to f , the er-

ror of the general HP memristor grows significantly. It shows that the general HP

memristor model is very sensitive to the frequency, however, the staircase mem-

ristor model’s resistance is very reliable with a much smaller fluctuation around

the expected resistance level. By varying the expected resistance level, the stair-

case memristor model still have a reliable performance. In contrast, the errors

of the general HP memristor model fluctuate a lot because of the non-linearity.

As mentioned previously, the change rate of memristance is a non-linear function

with respect to charge q, and therefore if the expected resistance (in this case

R = 100Ω) is close to boundary Ron, the large current will lead to a larger charge.

Thus, the resistance may have a significant change in a short time. In the cases of

R = 200Ω or R = 300Ω which is close to the boundary of Roff , a small increment

in charge q will result in a large increment in actual resistance, and thus greater

errors are observed. The comparison result implies that the staircase memristor

is more reliable than the general HP memristor if a specific resistance level is

required.
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Figure 14: A possible circuit implementation of a CNN which is based on staircase
memristors. Each staircase memristor is a connection between the cell (i, j) and
one of its neighbours. Cell (i, j) receives all the weighted and summed inputs and
outputs from it neighbours and propagates its input Vij and output Yij to all its
neighbours. When programming a staircase memristor, S3 and S4 will be turned
off to isolate staircase memristors to avoid influence from CNN circuits. S1 and
S2 will be turned on to connect staircase memristors to programming circuits.
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3.3.3 Implementation design

According to the schematic diagram Fig. 13, a possible circuit implementation of

CNN connections based on staircase memristors is demonstrated in Fig. 14. All

the inputs and outputs of neighbour cells are weighted by staircase memristors

and then summed separately. The weighted and summed inputs and outputs of

neighbour cells will contribute to the state of the cell C(i, j). In order to pro-

gramme the staircase memristor according to different applications, the switch S3

and S4 will be disconnected to isolate staircase memristors, which avoids the in-

fluence from the CNN circuit. S1 and S2 will be turned on to connect the required

staircase memristors and the provided pulse signal, and hence the memristance of

a staircase memristor can be varied by controlling the duration of the pulse. After

all, the CNN cell interacts with its neighbours via the programmed memristive

templates until the template has to be changed again.

3.4 Memristive echo state network

Reservoir computing is an exciting approach that aims to overcome the train-

ing problem that exists in traditional recurrent neural networks (RNNs). It is

well-known that training RNNs is inherently difficult even with the important

yet powerful error back-propagation (BP) algorithm. It is a time-consuming and

computationally expensive job to train RNNs, however there is still a possibility

that the training may fail to converge. In the paradigm of reservoir computing,

a “reservoir” is a collection of states of neuron activations between the input and

output layers. It is generated with random connection weights and used to ex-

tract features from the input signals. Distinct from other neural networks, only

the readout weights between the “reservoir” and the output layer are trained. The

term “reservoir computing” comes mainly from the echo state network (ESN) [52]

and the liquid state machine (LSM) [70] which share the concept of a “reservoir”.

In principle, a “reservoir” is an excitable, dynamical medium and plays an impor-

tant role in reservoir computing networks. Theoretically, any dynamical systems

with rich dynamics are capable of building a reservoir. Since a memristive system

is also a non-linear dynamical system, using memristors as reservoir components

has been investigated by Kulkarni and Teuscher [61]. They used the graph-based
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approach to represent the reservoir network implemented by memristors. How-

ever, we propose an echo state network that is based on the memristive CNN

structure where memristors are used as the local connections between nodes.

3.4.1 Memristor-based reservoir

In the original ESN, the given training input signal and target output signal are

defined by u(n) ∈ RNu and ytarget(n) ∈ RNy respectively. n is the discrete time

in the dataset with values n = 1, 2, 3, 4, · · · . Nu and Ny are the number of inputs

and outputs in the network. The components of the reservoir are RNN type

units with leaky-integrated discrete-time continuous values. The typical update

equations are

x̃(n) = tanh(Win[1; u(n)] + Wx(n− 1)) (62)

where x̃ denotes the update of reservoir components, which collects both the in-

puts and the states of other units. [a ; b ] denotes the vertical vector concatenation

of vectors a and b.

The new states of the units are defined by

x(n) = (1− α)x(n− 1) + αx̃(n) (63)

where x(n) ∈ RNx is a vector of reservoir neuron activations at time step n. α

is the leaking rate of the neuron, which is normally within the range (0, 1]. Win

is the input weight matrix containing the connection weights between inputs and

the reservoir neurons, thus it has the size of Nx × (1 + Nu). W is the recurrent

weight matrix which consists of connection weights between the reservoir neurons

and has the size of Nx × Nx, which implies that the reservoir neurons are fully

connected.

The output yn is defined by

yn = Wout[1; u(n); x(n)] (64)

Thus, the output weight matrix Wout has a size of Ny× (1+Nu+Nx). So far, the

work-flow of original ESN is defined, and there are 3 main differences compared

to the CNN:
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Figure 15: A reservoir with local connections which are implemented by memris-
tors.

1. the network is randomly connected instead of locally connected

2. the network weights are randomly generated instead of a space-invariant

template

3. the output is a linear function instead of a piecewise linear function

Since the memristor-based CNN structure is used as the reservoir, only the reser-

voir network is adjusted to adopt the proposed structure.

From the definitions of the states of the units in Eq. (63) and the its update

in Eq. (62), the state vector x(n) is determined by its previous state x(n − 1),

the input u(n) and states of other units. Thus, according to the definition of

CNN, the reservoir network is redefined to have a regular geometric grid and local

connections by
M∑
k=1

N∑
l=1

Wx(i, j; k, l)x(n− 1) (65)

where we assume that the reservoir cell (i, j) has a neighbourhood size of M ×N
neighbours and then the update equation (62) can be rewritten as

x̃(n) = tanh(Win[1; u(n)] +
M∑
k=1

N∑
l=1

Wx(i, j; k, l)x(n− 1)) (66)

where Wx is the matrix that denotes the local connections and is implemented

by the memristors. This structure is slightly different from the traditional CNN
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which has a feedback loop containing the outputs of the CNN neurons. The feed-

back loop in traditional CNN is taken out because the reservoir size is independent

of the input size or output size which may not have neighbours. Based on the

proposed approach, the basic network is illustrated in Fig. 15 where the reser-

voir is implemented using local connections. If a reservoir has 100 neurons, the

original ESN has 100× 100 connections, however, this approach only has 100× 8

connections. Therefore, the required connections are significantly reduced.



Chapter 4

Computational Results of

Memristive Non-spiking Neural

Networks

In this chapter, the proposed staircase memristor model, described in Chapter

3, is further investigated to mimic the behaviours of the ferroelectric memristor.

Then, based on the staircase memristor, the proposed CNN structure is simulated

by software to implement some frequently-used applications in image processing.

Afterwards, the benchmark task, the Mackey-Glass signal dataset, is applied to

the echo state network using memristor-based local connections. The aim of

the experiments is firstly to assess the performance of the staircase memristor

in mimicking the ferroelectric memristor with respect to the constitutive relation

of q−ϕ; secondly, to assess how memristors perform as local connections in CNN

and ESN; and moreover, to demonstrate that such a structure is capable of real

applications.

4.1 Asymmetric behaviour of the staircase

memristor

In Chapter 2, some switching dynamics of the ferroelectric memristor were demon-

strated in Fig. 9 by applying consecutive pulses with different amplitudes. How-

ever, this only shows the variation of the state variable s from 1 to 0. In fact, in

64
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ferroelectric memristors, the switching dynamics from 0 to 1 is different from the

switching dynamics from 1 to 0, which shows that the switching is an asymmetric

process. Therefore, it is distinct from the symmetric staircase memristor demon-

strated in Chapter 3, and the results should be different as well. For the purpose

of demonstrating the ability of the staircase model in mimicking asymmetric be-

haviour, the similar behaviour of the ferroelectric memristor is simulated by the

staircase model.

4.1.1 Simulation results

Because of the asymmetry of switching dynamics in different switching directions,

two different paths exist which define an increment path (s varies from 0 to 1)

and a decrement path (s varies from 1 to 0). In the case of the ferroelectric

memristor, in the decrement path, s evolves towards 0 in a very wavy way. On

the contrary, s evolves sharply in the increment path and does not present an

obvious wavy dependence. Thus, we assume that the increment path has only

one region which instantly evolves from 0.9 to 1. Moreover, the decrement path

evolves from 1 to 0 and contains 4 regions. However, current research has only

investigated staircase memristors by the strength of the electric field. Thus, the

parameters can not be adapted to the proposed directly. In this simulation, we

choose possible parameters to fit the experiment results obtained in [19]. The

Roff/Ron = 300 was chosen as stated in [19]. By observing these phenomenon,

an asymmetric model is built by setting proper thresholds for each region. The

simulation result will show that parameters are reasonably chosen to reproduce

the experiment results of the ferroelectric memristor.

The similar behaviours illustrated in [19] are shown in Fig. 16 which varies

its resistance asymmetrically by applying a sinusoidal current source of 5sin(πt).

The fingerprint of the memristor is the pinched hysteresis loop of the I −V curve

which has been demonstrated in Fig. 16(a) for this asymmetric case. It is worth

noting that the peculiar I−V curve in Fig. 16(a) is somewhat similar to the hard-

switching case of the HP memristor, in which a small negative bias will switch the

HP memristor from the on state to the off state. However, in this case, a small

positive current is enough to switch s from 0 to 1. Thus, its resistance changes

significantly back to Rmin which leads to a very small voltage drop across the
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asymmetric memristor model. By investigating the relationship between charge

q and the state variable s as shown in Fig. 16(b), it clearly shows that the

rise and descent of s have two different paths as we defined. Consequently, a

loop is observed in this case, and it shows that s increases rapidly but decreases

much more slowly and behaves like a staircase. By comparing Fig. 16(c) and

(d), the state variable s in the increment path varies quite sharply in contrast

to the decrement path, and hence the increment path does not have a significant

delayed-switching effect.

4.2 Memristor-based cellular neural network

4.2.1 Experiment setup

Based on the CNN circuit in Fig. 14, software based simulation has been designed

to test the proposed memristor-based CNN. Since CNN is widely utilized in image

processing, two tasks are selected to demonstrate its actual performance. Firstly,

for the noise removal task, an image containing three objects and noise is selected.

Then, for the edge detection task, the processed image in the noise removal task

is used.

Flux-controlled memristor

Since the images are normally represented by voltage values in the CNN circuit,

during image processing tasks, the input is actually the voltage. The dynamics of

the CNN circuit can be described as:

dxi,j/dt = −xi,j + I + ioutput + iinput (67)

where

iinput =
M∑
k=1

N∑
l=1

Bi,j;k,luk,l (68)

and

ioutput =
M∑
k=1

N∑
l=1

Ai,j;k,lyk,l (69)
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Figure 16: Simulation results of asymmetric behaviours of the staircase memristor
model. (a) The I − V curve for the staircase model with asymmetric behaviours.
(b) The different switching dynamics of the increment path and decrement path
are demonstrated. (c) In the increment path, by applying a small current, the
state variable s varies from 0 to 1 in a very short time. (d) In the decrement
path, the staircase is observed by applying a negative current. Increment path
{N = 4, Q0

min = 0C,Q1
min = 14C,Q2

min = 28C,Q4
min = 42C, kp = 20, ρ = 10}.

Decrement path {N = 1, Q0
min = 0C, kp = 20, ρ = 0}. Roff/Ron = 300.
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assuming that a CNN has size of m × n cells. Thus, the templates A and B

which are the local connections are actually represented by the conductance. As a

result, a flux-controlled memristor is most suitable for this task. As we know, the

conductance is the inverse of the resistance, thus Rmax induces a low conductance

Gmin, and Rmin yields a high conductance Gmax. Most behaviours are very similar

to the charge-controlled memristor, and therefore the proposed model in Eq. (55)

is also applicable to flux-controlled memristors. Based on this assumption, the

Eq. (55) is adapted directly by introducing the flux term ϕ

s =
N−1∑
i=0

H(i)(wp +
wi

1 + e−ϕk
i
p+ρi+φimin

) (70)

For the following experiments, a flux-controlled memristor is modelled with

5 regions using Eq. (70), which can represent 6 conductance levels. The main

parameters are illustrated in Table 5. By dividing the whole width of an assumed

staircase memristor into 5 regions which have their own width wi, the model will

have 6 memductance levels represented by Gi. These levels are reasonably selected

and possible for physical memristors since so far current research shows that mem-

ristors can have up to 10 different state levels [60]. Although the threshold φi of

each region has not been studied in current research of physical memristors, it

could be tuned conveniently in the model when the real data on thresholds are

available. Tuning kp and φi jointly, the required time to activate different regions

can be changed according to actual data obtained in the future.

Black and white edge detection

In the experiment, we assume a basic machine vision task of edge detection, and

a black and white image containing three objects and Gaussian noise is captured.

Because noise is anywhere in digital and analog devices and unavoidable, noise

removal is normally the first step in image processing and related applications

which are sensitive to noise. Then the processed image can be used for the edge

detection task.

For the purpose of removing noises from the captured black and white image,

noise removal templates shown in Table 6 were programmed to staircase memristor

models by applying a pulse signal which has amplitude +0.1V and period 2π/6.
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Main parameters

Number of regions: N = 5 Propagation speed: kp = 20 Constant: ρ = 10

Region width wi (%)

w0 = 0.25 w1 = 0.25 w2 = 0.25 w3 = 0.125 w4 = 0.125

Threshold φimin (C)

φ0
min = 0 φ1

min = 14 φ2
min = 28 φ3

min = 42 φ4
min = 56

Conductance level G (S)

G0 = 2.0 G1 = 1.5 G2 = 1.0 G3 = 0.5 G4 = 0.25 G5 = 0.001

Table 5: Parameters of the flux-controlled staircase memristor model used in CNN
circuit simulation.

The bias current is set to I = 0.

Template A Template B

0 1 0 0 0 0

1 1 1 0 0 0

0 1 0 0 0 0

Table 6: Desired templates in the noise removal application

During the simulation time, for each iteration, the templates were applied to

all CNN cells. Therefore, cells’ states evolve along with each iteration in the sim-

ulation time. After some simulation time, several iterations were finished and by

observing cells’ states we can find that image noise is removed by the network.

Then, the memristors are programmed again to implement the black and white

edge detection templates as shown in Table 7 with bias current I = −1.5. How-

ever, since the memristor does not have negative resistance or conductance, extra

components are required to implement the same function. Possible approaches are

utilising negative resistance or inverting the corresponding input voltages before

sending them to the local connections.
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Figure 17: Simulation results of an edge detection task. (a) The original image
with Gaussian noise. Image size is 400 × 400 pixels. (b) The result obtained
after noise removal task. (c) The edges of the three objects are detected. (d) The
evolution of states of selected cells are illustrated which demonstrates that all the
cells converge from the initial points to stable points after certain evolutions.
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Template A Template B

0 0 0 -0.25 -0.25 -0.25

0 2 0 -0.25 2 -0.25

0 0 0 -0.25 -0.25 -0.25

Table 7: Desired templates in the edge detection application

4.2.2 Results

From the results shown in Fig. 17, the whole process from removing the noise

in captured images to detecting the edges of the three objects are undertaken by

the memristor-based connections. It demonstrates that by re-programming the

memristor-based connections to the desired templates, it is possible to undertake

several image processing tasks in one circuit. For the case that more complex

images are to be processed, the proposed memristive CNN is expected to have

promising results as the experiment demonstrated here. The reason is CNN tem-

plates dominate the results of a task. If a correct template could be provided,

satisfied results could be obtained as expected. One advantage of staircase mem-

ristors is its reliability on providing steady states and therefore correct and stable

templates can be achieved, which is critical for image processing task using CNN.

Although such tasks could be done by software, implementing them in hardware

is desirable in engineering applications such as machine vision. In this experi-

ment, the potential of staircase memristors in CNN is demonstrated. However,

currently discovered memristors with multi-level resistance can only represent 5 to

10 levels, which limits their possibility for more general applications. For specific

tasks, staircase memristors and their models are still very promising in terms of

stability and size compared with traditional approaches.

4.3 Memristor-based reservoir

4.3.1 Benchmark task

In order to test the performance of the proposed memristor-based reservoir, the

Mackey-Glass time series dataset is used in this task. The dataset is generated
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from the Mackey-Glass equation which is a non-linear time delay differential equa-

tion defined by

dm/dt = β
mτ

1 +mn
τ

− γm (71)

where mτ is the value of m at the time (t − τ) and τ denotes the delay of the

Mackey-Glass system. This equation is used by Mackey and Glass [71] to describe

the physiological control system where m denotes the concentration of circulating

blood cells. However, we only focus on the data itself rather than the physiological

representations. The parameters selected to generate the required dataset are

β = 0.2, γ = 0.1, n = 10 and τ = 17 which gives mild chaos. In this task, the

network aims to learn the generated dataset and predict the future values after

training.

4.3.2 Experiment setup

Before the experiment, the dataset is divided into two separate parts which are

the training set and test set. Each set contains 2000 values but only the values

in the training set are used for training the network. The test set is used for

comparing the actual results, thus evaluating the performance of the network in

this prediction task. The whole process of the experiment of memristive ESN is:

1. generating a reservoir with the size of 32× 32

2. programming the memristive connections to random conductance in the

range of [−0.5, 0.5)

3. running the training set and collecting the activation states of reservoir

neurons using Eq. (66) and (63) with a leakage rate α = 0.4

4. training the readout weights using ridge regression with a regularization

coefficient 1.0× 108

5. running the test set and evaluating the performance using mean-squared

error (MSE)

Since the Mackey-Glass equation only generates a time-series dataset, the network

only has one input and one output. For the purpose of comparison, the original

ESN is generated using the Python code developed by Mantas [68].
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4.3.3 Results

Test No. Memristive ESN Original ESN

1 2.04× 10−2 1.57× 10−2

2 1.11× 10−2 1.94× 10−2

3 1.69× 10−2 1.16× 10−2

4 2.15× 10−2 1.60× 10−2

5 3.61× 10−2 9.22× 10−3

6 1.93× 10−2 1.29× 10−2

7 2.12× 10−2 3.02× 10−2

8 2.34× 10−2 2.74× 10−2

9 3.06× 10−2 2.16× 10−2

10 1.93× 10−2 1.67× 10−2

Average 2.20× 10−2 1.81× 10−2

Table 8: Simulation results of both ESN networks in 10 trials. In both cases,
connection weights are randomly generated in the range of [−0.5, 0.5). Results
are measured by mean-squared error (MSE) following steps listed in Section 4.3.2.

In order to evaluate the performance of the memristor-based ESN, 10 running

results are obtained for both the original ESN and the proposed ESN as shown

in Table 8 using Python 2.7, Oger toolbox 1.1.3 and script developed by Mantas

[68]. The results are measured using mean-squared error (MSE) as shown in Eq.

(72) which computes the differences between the predicted results and the test set

of Mackey-Glass dataset.

MSE =
1

Ntest

Ntest∑
i=1

(Ŷi − Yi)2 (72)

It is noticed that, in Fig. 18(a), the predicted signal is somewhat shifted from

the target signal and thus a relatively large error is expected in this experiment.

For both cases, the average MSE is around 2.0 × 10−2 in Table 8. Therefore,
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the average root-mean-squared error (RMSE) is around 1.4 × 10−1. In order to

measure the average RMSE to the scale of the target signal, the normalised RMSE

can be obtained by
RMSE

|mmax −mmin|
(73)

where mmax and mmin are the maximum and minimum values of the target signal

respectively. It gives that the normalised RMSE is approximately 17.5% which

confirms the observed error in Fig. 18(a).

By setting the same reservoir size with 1024 neurons and the same leaking rate

α = 0.4, it shows that the original ESN has a better performance. This might

be caused by the simplified CNN structure of the proposed reservoir. Since the

proposed ESN is conceptually simple and computationally inexpensive, success-

fully applying ESN is sometimes empirical. Therefore, the further simplified ESN

with a memristor-based CNN structure may lead to more stability problems than

the original ESN and yield a slightly worse performance. In this comparison, the

weight matrix of the reservoir in original ESN is optimised through normalising

and setting its spectral radius. However, in memristive ESN, the weight matrix of

the reservoir is not optimised thus there are opportunities to improve its perfor-

mance by a proper optimisation. By investigating the example results shown in

Fig. 18(c), the readout weights Wout are distributed in the range (−6, 6) which

is larger than the original ESN’s range (−2, 2). According to the practical guide

[68], large output weights Wout may imply that the solution is sensitive and un-

stable because a tiny difference will be amplified by the output weights and lead to

large deviations from the expected values. Therefore, the proposed ESN is more

sensitive than the original ESN. For the purpose of improving the performance,

a practical approach is selecting the parameters carefully and tuning the param-

eters manually or automatically through grid search which exhaustively searches

for proper parameters by comparing the performance metric. Considering the

very simplified memristor-based CNN structure, the proposed ESN structure is

promising for some specific tasks which require smaller size and less computation,

and it is worth further investigation.
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Figure 18: Simulation results of the ESN with memristor-base reservoir and local
connections. (a) The predicted results (blue) of the trained network against target
signal (green). (b) The activation states of selected reservoir neurons from the
32× 32 reservoir. (c) The distribution of the readout weights Wout.



Chapter 5

Memristive Spiking Neural

Networks

Learning and memory are some of the most striking features of the brain. The

studies of the brain and neural networks have become increasingly of interest

to researchers and become interdisciplinary fields involving biology, psychology,

mathematics, engineering and computer science. Beyond the conventional neural

networks, spiking neural networks are usually used to study the behaviours of

the brain, biological neurons and networks by passing spikes. The famous Hebb’s

postulate proposed by Donald Hebb is an important step in exploring the brain.

Although, from the view of current research, Hebbian learning is based on an

oversimplified view of neuronal morphology [90], it is quantitatively implemented

in artificial neural networks through the changes of synaptic efficacy between neu-

ron units. Another mechanism called spiking-time dependent plasticity (STDP)

refines the traditional Hebbian learning. It was originally proposed by Gerstner,

Ritz and Van Hemmen [40] as an advanced learning algorithm focusing on the

temporal correlations of spikes. Nonetheless, experimental evidence has been re-

ported subsequently by neuroscience groups [6, 73]. However, these are just some

of the important discoveries in recent research and there are still numerous fields

that have not been explored. These new biological discoveries have inspired engi-

neers to realise intelligent systems and networks which, meanwhile, provide new

insights in understanding the biological mechanism of neural networks.

Recently, an exciting overlap of neural networks and nanotechnology has cre-

ated a pertinent research field which focuses on memristor-based spiking neural
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networks. This kind of network usually uses spiking neurons and memristor-based

synapses. In particular, current research is interested in STDP which is an im-

portant synaptic modification rule as we introduced earlier in Chapter 2. Linares-

Barranco and Serrano-Gotarredona [66] reveal that the memristor is intrinsically

similar to a synapse, which is between a pair of communicating neurons. Through

the changes of memristance, memristors can mimic LTD and LTP behaviours

under the STDP rule. This notable discovery shows a possible way to realise a

high-density and intelligent system based on the highly integrated nano devices —

memristors. Several research groups have proposed their possible schemes which

cover both synchronous and asynchronous implementations.

Jo et al. [54] and Snider [94] used similar methods of time-division multiplex-

ing (TDM) and CMOS neurons to implement the STDP rule. TDM is used to

create multiple logical communication channels between the presynaptic neurons

and the postsynaptic neuron. These channels are responsible for carrying the

computational communication from the presynaptic neuron to the postsynaptic

neuron, such as the LTP and LTD timing information. According to the LTP

and LTD timing, the square waveform based spike signals are subtracted and the

parts beyond thresholds will induce the conductance change of the memristor.

The advantage of this system is that it is compatible with digital systems which

use a global clock to synchronise the communications. Nevertheless, the biolog-

ical system is more or less like an asynchronous system without a global clock.

Accordingly, possible asynchronous memristive STDP systems are proposed in

[1, 63, 66]. Particular spike shapes are used to approximate the STDP learning

window but there is a degree of resemblance between these systems. This approach

uses the back-propagation concept to send the postsynaptic spike back through

the input terminal of the postsynaptic neuron. By applying the voltage differ-

ence of the presynaptic spike and the back-propagation spike to the memristor

between two neurons, the conductance between them is changed according to the

voltage difference. This pair protocol which consists of a nearest pair of presynap-

tic and postsynaptic spikes (we call it nearest-neighbour spike interaction) works

smoothly with these approaches. However, these memristive STDP models have

some conflicts in explaining more complicated patterns such as the all-to-all spike

interaction which is based on multiple spike interactions. A new memristive STDP

model is required to be compatible with nearest-neighbour spike interaction and
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some complicated interaction schemes. In this chapter, memristors are applied

to spiking neural networks using the STDP rule. A spike-trace based memristive

STDP model is proposed for memristive synapses. In this model, each spike leaves

a trace rather than a particular spike shape to implement the nearest-neighbour

and all-to-all spike interactions. In the following sections, we will first investigate

the pair-based memristive STDP models. Then we will discuss the incompatibility

issues of current pair-based models with the all-to-all interaction scheme. With

regards to any problems encountered, the incompatibility issues will be overcome

by the proposed memristive STDP model. At last, using the new model, how to

implement the nearest-neighbour and all-to-all interactions will be explained in

detail.

5.1 Memristive STDP models

It has been revealed that the spike shape is critical to reproduce the STDP func-

tion ξ(∆t) since different spike shapes will result in distinct STDP function[66].

In general, current asynchronous memristive STDP models assume that a spike

generates a spike shape that has a positive part and a negative part and lasts

for a set duration. For example, during the spike on-set, the spike shape has

a positive amplitude but after that it decreases quickly to a negative amplitude

until it reaches the end of a specific spike time. Currently, there are two typical

pair-based memristive STDP models, and both of them use piecewise functions

to generate a two-part spike. Since they are very similar, we will only explore the

model based on the shape of an action potential in detail.

The model based on square and triangular waveforms

The memristive STDP model which is based on square and triangular waveforms

has been demonstrated by Afifi, Ayatollahi and Raissi [1]. This model uses a

negative pulse followed by a positive triangular pulse to form a spike pattern

which is shown in Fig. 19. It is worth noting that the spike has a shorter negative

part compared to the positive part. The temporal extents of the learning window

are determined by the longer part of the spike. Because a negative pulse is followed

by a positive pulse, it makes this model distinct from other models, whereby, a
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Figure 19: A memristive STDP model which has a spike shape consists of square
and triangular waveforms.

positive pulse is followed by a negative pulse. However, such models can reproduce

the STDP learning curve approximately.

The model based on the shape of an action potential

Another asynchronous memristive STDP model was proposed by Linares-Barranco

and Serrano-Gotarredona [66]. This memristive STDP model places on the shape

of the action potentials and the thresholds which determine the changes in the

synaptic weight. The key to realise this model is the concept of back-propagation

spike which is sent by a neuron to its presynaptic neurons when it fires. Thus,

the time difference in STDP rule can be replaced by the voltage difference which

is applied to the memristor in the circuit. In this way, this model assumes that a

memristor with two thresholds can model the functionality of a synapse, and the

synaptic strength can be represented by the memristance.

As shown in Fig. 20, this model has a spike shape that is very similar to action

potentials which have a sharply and exponentially increased curve followed by a

smoothly and exponentially decreased curve. The spike shape can be expressed
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Figure 20: The spike shape produced by the piecewise function spk(t).

mathematically in the form of a piecewise exponential function as follows

spk(t) =


A+
mp

et/τ
+−e−t

+
ail
/τ+

1−e−t
+
ail

if − t+ail < t < 0

−A+
mp

e−t/τ
−−e−t

−
ail
/τ−

1−e−t
+
ail

if 0 < t < t−ail

0 otherwise

(74)

The memristance modification is controlled by its physical state variable w

and the voltage difference between the presynaptic and the postsynaptic spikes

over the defined thresholds
dw

dt
= f(v(∆t)) (75)

where v(∆t) denotes the voltage difference across the memristor. dw
dt

denotes the

rate of the intrinsic physical state variable.

The function f could have several forms as mentioned previously in Chapter

2. However, concerning Eq. (75) in [67], it is a piecewise function which is only

dependent on the voltage difference v(∆t) and defined by

f(v(∆t)) =

I0sign(v(∆t))(e|v(∆t)|/v0 − evth/v0) if |v(∆t)| > vth

0 otherwise
(76)
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Figure 21: The memristive STDP model which has a spike shape of an action
potential (Redrawn from [14]). The shaded areas beyond the thresholds are the
changes in state variable of the memristor. (a) LTP is demonstrated when the
presynaptic spike precedes the postsynaptic spike. In this case the time differ-
ence ∆t > 0. (b) LTD is demonstrated when the postsynaptic spike leads the
presynaptic spike. In this case, the time difference ∆t < 0.
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Thus, the memristance can only be changed if the voltage difference |v(∆t)| is

greater than the thresholds, and v(∆t) is defined by

v(∆t) = vpost(t+ ∆t)− vpre(t) (77)

Both the postsynaptic spike signal vpost and the presynaptic spike signal vpre have

the shape defined in Eq. (74) but with different parameters in real applications.

As an example, the voltage difference v(∆t) is illustrated at the bottom of Fig.

21.

By integrating Eq. (75), the expected change in the state variable w of the

memristor can be obtained by

∆w(∆t) =

∫
f(v(∆t))dt (78)

According to Eq. (75), only the part over the thresholds is involved in changing

the conductance, which is illustrated in Fig. 21. It is clear that the shaded area

beyond the thresholds represents ∆w(∆t) in Eq. (78). As a result, by applying

different ∆t to these equations mentioned above, the STDP learning window can

be predicted and shown in Fig. 22.

Figure 22: The STDP window function produced by the memristive STDP model
in [67].



CHAPTER 5. MEMRISTIVE SPIKING NEURAL NETWORKS 83

5.2 Incompatibility with all-to-all interaction

As we have discussed in Section 5.1, the current memristive STDP models can

work successfully with the nearest-neighbour interaction, however, they lack the

capabilities to implement the interaction schemes which are based on multiple

spike interactions such as the all-to-all scheme. In the all-to-all interaction, each

presynaptic spike interacts with all postsynaptic spikes and vice versa. It has

been used in studying pair-based and triplet rules and discussed by Pfister and

Gerstner [81, 82]. As described previously, in this scheme, in order to show that

the presynaptic spikes contribute equivalently to LTP, all the preceding presynap-

tic spikes are required to be summed together or the spike amplitude should be

increased according to the time differences between presynaptic spikes.

However, the memristive STDP models we introduced in Section 5.1 are not

designed for the multiple spike interactions. Mainly, this is due to the following

incompatibility issues:

• Since the positive part of the spike is significantly narrower than the negative

part, the pre- or postsynaptic spikes are required to be very close in order

to sum the positive parts.

• When the negative parts or positive parts of the pre- or postsynaptic spikes

are summed together, the summation itself may be larger than the thresholds

and induce the synaptic modification on the memristor.

By recalling Eq. (78), (77) and (76), we investigate the reasons behind the

problems. From these equations, it is clear that the synaptic modification on

the memristor is only based on the voltage difference v(∆t) beyond the constant

thresholds. However, in all-to-all interaction, the summation of the pre- or postsy-

naptic spikes may rise beyond the constant thresholds. This will lead to unwanted

LTP or LTD on memristors, which explains the incompatibility issues. As shown

in Fig. 23, two examples show that the summations of presynaptic spikes in-

duce changes on memristors. In (a) and (b), three spikes are summed together,

and therefore the negative threshold is reached which induces LTD on memristor.

However, there is no summation effect on positive parts because these spikes are

not close enough. In (c) and (d), the second presynaptic spike follows the first

spike closely, and both the positive and negative thresholds are reached. These
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Figure 23: The demonstration of the incompatibility of the action potential shape
based memristive STDP model. (a) Three presynaptic spikes are generated se-
quentially. (b) Three presynaptic spikes are summed to implement all-to-all in-
teraction. The summation of presynaptic spikes is beyond the negative threshold.
(c) Two presynaptic spikes are generated with small time intervals. (d) The
summation of two presynaptic spikes is beyond both the positive and negative
thresholds.
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two examples show that this kind of memristive STDP model is not suitable for

all-to-all interaction by its definition which is only dependent on the positive and

negative thresholds. Hence, a new memristive STDP model is required to over-

come these problems.

5.3 Trace-based memristive STDP model

Inspired by the work of Sjöström, Gerstner and Pfister [40, 81, 89] in SNNs and

STDP learning, we present a new memristive STDP model for memristive neural

networks based on spiking times of pre- and postsynaptic neurons and spike traces.

To derive this learning rule, we begin with the concepts of STDP learning. It has

been shown that postsynaptic spiking within a few milliseconds after presynaptic

activation results in synaptic enhancement, whereas postsynaptic spiking within a

few milliseconds before presynaptic activation results in synaptic depression. This

has been illustrated and shown in Fig. 24 which demonstrates how the timing of

spikes influences the synaptic modification from the experimental data obtained

by Bi and Poo [7].

It is clear that, in Fig. 24, there exists a critical window of spike timing for

synaptic modification. It is measured by defining how much time the postsynaptic

spike precedes or lags behind the presynaptic spike, and therefore we have a time

difference ∆t = tpost − tpre which consists of positive and negative intervals. The

fitting curves of both positive and negative intervals portray an identical tendency

of which a smaller time difference |∆t| has a distinct possibility of inducing a

larger synaptic modification. However, multiple forms of STDP exist with similar

scenarios but with different spiking time windows and synaptic modifications.

For instance, in some systems, the synaptic modification according to the timing

window is the exact opposite compared with the typical STDP which is illustrated

in Fig. 24 [5, 44].

To define the relation of time difference ∆t and synaptic modification, a pop-

ular choice to model this STDP window f(∆t) [41] is

f(∆t) =

A+e−∆t/τ+ if ∆t > 0

−A−e∆t/τ− if ∆t < 0
(79)
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Figure 24: A typical window of spike timing in synaptic modification (redrawn
from the biological experiment data in [7]). Data is fitted using Python, Numpy
and Matplotlib.

where A+ and A− denote the maximum synaptic modification of the positive and

negative time difference correspondingly. τ+ and τ− jointly determine the width

of the whole STDP window.

5.3.1 Trace-based memristive STDP model

Since the incongruity issues of current memristive models are caused by the shape

and the thresholds, the new memristive STDP model attempts to avoid the explicit

thresholds and a particular shape like the action potential. By investigating Eq.

(79), at different ∆t, the areas under its curve can reproduce the same tendency

of the STDP window. These areas can be represented by the charge q or flux ϕ

which is obtained by integrating the current or voltage. By applying the voltage

or current which has the shape of an exponential function to memristor, we found

the potential to use the exponential waveform to build a memristive STDP model.

Based on this, the new memristive STDP model is derived by supposing that each

arrival of a presynaptic or postsynaptic spike leaves a trace which has an amplitude
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Amp at the moment of the spike arrival and decays exponentially in the absence

of the spike. In the case where a postsynaptic spike lags behind a presynaptic

spike, the trace left by the presynaptic spike will be read out at the moment of

the arrival of the postsynaptic spike. By integrating the remaining trace after the

postsynaptic activation, the synaptic modification is therefore changed.

In order to realise this process, firstly, two traces, which are generated by the

pre- and postsynaptic spikes separately, have to be defined. The spike trace spk+
i

left by a presynaptic spike at time ti is defined by

spk+
i (t) =

A
+
mp

e(−t+ti)/τ
+−e−t

+
ail
/τ+

1−e−t
+
ail
/τ+

if ti < t < t+ail + ti

0 if otherwise
(80)

and the spike trace spk−j left by a postsynaptic spike at time tj is defined by

spk−j (t) =

−A
−
mp

e(−t+tj)/τ
−
−e−t

−
ail
/τ−

1−e−t
−
ail
/τ−

if tj < t < t−ail + tj

0 if otherwise
(81)

The terms τ+ and τ− are constants that determine the rate of synaptic modifica-

tion. The terms t+ail and t−ail denote the time points when the traces reach the end.

According to the experimental data obtained by Bi and Poo [7], the significant

synaptic modification happens in a critical window of [−80, 80], thus t+ail and t−ail
are normally equal to 80 and −80 correspondingly.

Consider the situation of LTP that a presynaptic spike spk+
i precedes a postsy-

naptic spike spk−j . The spike trace of the presynaptic spike will be read out from

the moment tj of the postsynaptic activation until the end of the trace spk+
i (t).

Accordingly, the voltage applied to the memristor is

V +
mem(t)|t0=tj = A+

mp

e(−t+ti)/τ+ − e−t+ail/τ+

1− e−t+ail/τ+
(82)

where the initial value of t is tj. Since the modification of the memristance is

governed by a function of its state variable w and the applied voltage Vmem:

dw

dt
= f(w, Vmem) (83)

the memristance can be changed by integrating Eq. (83). Therefore, we get the
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Figure 25: The enhancement of a memristive synapse. This graph sketches spike
timings of pre- and postsynaptic neurons and the corresponding trace left by the
spike of the presynaptic neuron. At the time of the postsynaptic spike, the trace
after it is read out until the trace reaches the end we defined.

total change in the state variable of the memristor:

∆w(t) =

∫ t+ail+ti

t0=tj

f(V +
mem(t))dt (84)

If we assume that f is a linear function and solely depends on voltage Vmem, the

Eq. (84) can be re-written as

∆w(t) = km

∫ t+ail+ti

t0=tj

V +
mem(t) (85)

This process is illustrated in Fig. 25, and LTP is induced at the time of the

postsynaptic spike. The shaded area represents the expected change on the state

variable w which is the integration of the trace V +
mem between the time of the

postsynaptic spike and the end of the trace.
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Figure 26: The depression of a memristive synapse. This graph sketches spike
timings of pre- and postsynaptic neurons and the corresponding trace left by the
spike of the postsynaptic neuron. At the time of presynaptic spike, the trace after
it is read out until the trace reaches the end we defined.

Conversely, for the case that the postsynaptic spike spk−j precedes the presy-

naptic spike spk+
i which induces LTD, the total change on the state variable w of

the memristor is

∆w(t) = km

∫ t−ail+tj

t0=ti

V −mem(t) (86)

where the voltage V −mem(t) is the spike trace generated by the postsynaptic spike

spk−j . This process is also illustrated in Fig. 26, and LTD is induced at the time

of presynaptic spike. The shaded area represents the expected change on state

variable w. ∆w is therefore obtained by integrating the trace V −mem between the

time of presynaptic spike and the end of the trace.
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Figure 27: The synaptic modification of the trace-based memristive STDP model.
The time difference ∆t lies in the range [−60, 60]. The positive ∆t induces LTP,
and smaller |∆t| leads to a larger synaptic modification on the memristor. The
negative ∆t induces LTD, and smaller |∆t| leads to a larger synaptic modification
on the memristor.

5.3.2 The relation with time difference

Since STDP learning window demonstrates the relationship of the time difference

∆t and the synaptic modification ξ, a satisfactory memristive STDP model should

be capable of showing that the change on state variable w depends on the time

difference ∆t. By investigating Eq. (84), the length of V +
mem depends on the

postsynaptic spike at time tj, and hence, V +
mem starts from tj to t+ail + ti. As we

know that ∆t = tj − ti, tj and ti can be substituted by ∆t + ti and tj − ∆t

respectively.

Hence, if we substitute the ti and tj in Eq. (85) and (86), the total change on

w for LTP is

∆w(t) = km

∫ t+ail

∆t

V +
mem(t) if ti = 0 (87)

and for LTD is

∆w(t) = km

∫ t−ail

−∆t

V −mem(t) if tj = 0 (88)
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Because t+ail and t−ail are constant terms, it is clear that ∆w only depends on the

time difference |∆t|. By varying ∆t, the relation between ∆t and the change of

state variable ∆w of the new memristive STDP model can be established. This

relation is demonstrated in Fig. 27 which shows the synaptic modification of the

new memristive STDP model is an exponential function of ∆t in the positive and

negative time intervals. It also resembles the shape of the standard STDP learning

window which fits the biological experiment.

5.4 Memristive plasticity

It is notable that the synaptic modification we discussed in the new memristive

STDP model is the total change on the state variable w depending only on ∆t,

rather than the actual change on the memristance Rmem. In this section, the

modification on actual memristance Rmem is investigated by using the existing

memristor model and the new memristive STDP model.

5.4.1 Change of memristance based on the new model

Herein we provide a theoretical analysis to prove that the synaptic modification

of memristive synapse on time difference ∆t obeys the standard STDP learning

window. By combining the equations (87) and (88) together, we have the update

of w by leaving out the constant term km

∆w =

−A+τ+(e−t
+
ail/τ+ − e−∆t/τ+) if ∆t > 0

A−τ−(e−t
−
ail/τ− − e∆t/τ−) if ∆t < 0

(89)

∆w will be the increment or decrement of the state variable of the memristor.

Since the HP memristor model is well-known and a popular choice in studying

memristors, we first take the HP memristor model as an example.

Since the memristance in HP model is defined by

Rmem = Ron
w

D
+Roff

(
1− w

D

)
(90)
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the change on memristance Rmem can be defined by

∆Rmem = Rmem(w0 + ∆w)−Rmem(w0) (91)

where w0 denotes the initial value of state variable w of the memristor. By sub-

stituting Eq. (90) into (91), the total change of memristance ∆Rmem is

∆Rmem = (Ron −Roff )
∆w

D
(92)

Apparently, the total change of memristance is a linear function of ∆w. It will

have the same shape with ∆w as well as the standard STDP window function.

Influence of the boundary effect

In the case of the non-linear drift model with boundary effect, the term w/D is

bounded into the range [0, 1]. However, this does not affect the new memristive

STDP model between the boundaries. When the initial value of w/D is close to

the boundaries, the shape of ∆Rmem will be slightly different with the standard

STDP window. This is caused by the definition of the boundary effect that the

w/D has to vary slowly when it is reaching the boundaries. Accordingly, the

expected change on w/D will be smaller and, in extraordinary circumstances, it

barely changes.

5.4.2 STDP variations

Besides the standard STDP learning, there are also some special cases of STDP

learning. In fact, the size of the LTD timing window usually varies in differ-

ent brain regions. Another case is the anti-STDP learning window, in which,

the temporal requirements are the exact opposite compared with the standard

STDP window. These variations exist in different brain regions and neuronal

types, which are important for the synaptic plasticity. That the STDP varies dra-

matically from one neuronal type to another, which is hardly coincidental, but a

reflection of the specific functionality of these neuronal types in the brain circuitry

[90]. Therefore, we demonstrate the abilities of the new memristive STDP model

in reproducing the STDP variations.
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The anti-STDP learning

As to the case of the anti-STDP learning, there are two possible means to imple-

mentation in the new model. Since the memristor has polarity, implementation

can be achieved by switching its polarity as shown in Fig. 28(a). This means it

works like an inhibitory synapse between the pre- and postsynaptic neurons. It is

worth noting that, for anti-STDP learning with a kind of HP memristor model,

when the time difference ∆t > 0, the presynaptic trace will be read out. How-

ever, the positive ∆w leads to an increase in memristance (a decrease in synaptic

strength) because the polarity of the memristor is switched. Conversely, when the

time difference ∆t < 0, the postsynaptic trace will be read out. The negative ∆w

leads to a decrease in memristance (an increase in synaptic strength). Another

means to implement the anti-STDP learning is achieved by changing the signs of

the amplitudes Amp of the pre- and postsynaptic spikes. In this case, a positive

∆t leads to a negative ∆w which decreases the synaptic strength. However, the

negative ∆t leads to a positive ∆w which enhances the synaptic strength. In a

word, whether a memristor works like an excitatory or inhibitory synapse is de-

termined by the integration of the trace read out by the model and the polarity

of the memristor.

In order to implement STDP learnings with different timing windows or synap-

tic modifications, the parameters τ+, τ−, A+
mp and A−mp can be tuned separately

or jointly. As shown in Fig. 28(b), particular values of the mentioned parameters

can be seen for illustrative purposes only.

5.5 Spike interactions with trace-based

memristive STDP model

Since the new memristive STDP model aims to overcome the incompatibility

problems of the current models with the all-to-all spike interaction, herein we

focus on how the new model works with the all-to-all interaction as well as the

nearest-neighbour interaction. Although there are several possible spike interac-

tion schemes in standard STDP, the basic spike interactions are based on the

form of one-to-one, one-to-multiple and multiple-to-one interaction. The all-to-all
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Figure 28: The STDP variations obtained through the actual changes in the
memristance and the time difference ∆t. (a) The anti-STDP learning that a
positive ∆t induces LTD in the memristive synapse. However, a negative ∆t
induces LTP in the memristive synapse. (b) A variation of the STDP learning is
that a negative ∆t is likely to produce a larger modification than a positive ∆t.
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interaction scheme is basically based on the form of one-to-multiple and multiple-

to-one interaction. Meanwhile the nearest-neighbour interaction scheme is based

on one-to-one interaction. Hence, by investigating these two interaction schemes,

it is possible to implement other interaction schemes based on them and the new

memristive STDP model.

5.5.1 All-to-all interaction

In all-to-all interaction, each presynaptic spike interacts with all postsynaptic

spikes and vice versa [81, 82]. It means all the spike pairs contribute equally to

inducing LTP and LTD. With regard to LTP, a postsynaptic spike spk−j at time

tj interacts with all the presynaptic spikes before it and induces LTP. Similarly,

as to LTD, a presynaptic spike spk+
i at time ti interacts with all the postsynaptic

spikes before it.

All-to-all interaction is implemented by using two separate traces ypre and ypost

for both the pre- and postsynaptic spikes. Take the trace ypre as an example; it

is constructed by all the presynaptic spikes spk+
i with the following conditions:

1. each presynaptic spike spk+
i (t) ends at the moment of the arrival of the next

spike spk+
i+1(t)

2. the amplitude of a presynaptic spike spk+
i+1(t) depends on the last value

spk+
i (ti+1) of the previous spike spk+

i (t)

Hence, the new spk+
i+1(t) is

ˆspk
+

i+1(t) = (A+
mp + spk+

i (ti+1))
e(−t+ti+1)/τ+ − e−t+ail/τ+

1− e−t+ail/τ+
(93)

It can be rewritten using Eq. (80)

ˆspk
+

i+1(t) = spk+
i+1(t) + spk+

i (ti+1)
e(−t+ti+1)/τ+ − e−t+ail/τ+

1− e−t+ail/τ+

= spk+
i+1(t) + ˆspk

+

i (t)

(94)

The second term in Eq. (94) is the part truncated from the spike spk+
i (t) by the

condition 1. ˆspk
+

i (t) denotes the new spike trace at time ti. If i = 1, clearly the
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trace ypre constructed by spike spk+
i (t) and spk+

i+1(t) in fact is the summation of

them. In summary, the ypre can be defined by

ypre =
M∑
i=1

spk+
i (t) (95)

where i, which has values i = 1, 2, 3, ..., labels the number of the presynaptic

spikes. This reveals that all the presynaptic spikes leave an accumulated trace ypre.

Consequently, when the postsynaptic spike arrives at time tj, the accumulated

trace ypre will be read out from the moment of the postsynaptic spike by an

amount left by ypre until the arrival of the next presynaptic spike.

Similarly, for the trace of postsynaptic spikes, ypost is defined by

ypost =
N∑
j=1

spk−j (t) (96)

where j, which has values j = 1, 2, 3, ..., labels the number of the postsynaptic

spikes. The accumulated trace of postsynaptic spikes will be read out from the

moment of the presynaptic spike.

As an example, LTP is demonstrated in Fig. 29(a) and (b) using the all-to-all

interaction which shows the summed trace of the three presynaptic spikes interacts

with a later postsynaptic spike. The first presynaptic spike fires at time 10 and

leaves a trace which is summed by the second spike trace and later the third spike

trace at time 20 and 30. At the arrival of the postsynaptic spike (at time 35),

the presynaptic trace after postsynaptic spike is read out. Eventually, the shaded

area contributes to the change on state variable ∆w and leads to the enhancement

of memristor synapse.

5.5.2 Nearest-neighbour interaction

If the interactions are restricted, and therefore only the nearest spike pairs in-

teract, this instance is classed as a nearest-neighbour spike interaction. All the

pre- or postsynaptic spikes leave separate spike traces and all the traces will not

be accumulated to produce the trace ypre and ypost. To implement the nearest-

neighbour spike interaction, the summation effect in Eq. (95) and (96) has to
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Figure 29: (a) All-to-all interaction. All the three presynaptic spikes (blue bars) at
time 10, 20 and 30 interact with a postsynaptic spike (red bar) at time 35. (b) The
presynaptic traces left by presynaptic spikes are accumulated and read out from
the moment of the postsynaptic spike. The shaded area contributes to the change
of state variable ∆w and leads to a decrease in memristance (enhancement in
synaptic strength). (c) Nearest-neighbour interaction. All the three presynaptic
spikes (blue bars) leave a trace with a constant amplitude at time 10, 20, 30
without summation effect. (d) In this case, only the nearest presynaptic spike at
30 interacts with a postsynaptic spike (read bar) at 35 and its trace is read out
from the moment of the postsynaptic spike. The shaded area contributes to LTP
and a decrease in memristance (enhancement in synaptic strength).
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be eliminated. Take the trace ypre as an example; it is constructed by all the

presynaptic spikes spk+
i with following conditions:

1. each presynaptic spike spk+
i (t) ends at the moment of the arrival of next

spike spk+
i+1(t)

2. the amplitude of presynaptic spike spk+
i+1(t) is constant and independent of

the previous spike spk+
i (t)

Hence, based on these conditions, the ypre can be defined by

ypre =
M∑
i=1

spk+
i (t)H((t− ti)(ti+1 − t)) (97)

where H((t− ti)(ti+1 − t)) is the Heaviside step function

H(n) =

0 if n < 0

1 if n ≥ 0
(98)

As a result, each presynaptic spike has a constant amplitude and is only activated

before the arrival of the next presynaptic spike. When the postsynaptic spike

arrives at time tj, it only interacts with the nearest presynaptic spike before it.

Similarly, the trace ypost of postsynaptic spikes is defined by

ypost =
N∑
j=1

spk+
j (t)H ((t− tj)(tj+1 − t)) (99)

When the presynaptic spike arrives at time ti, it only interacts with the nearest

postsynaptic spike before it and the trace ypost will be read out from the moment

of the presynaptic spike until the next postsynaptic spike arrives. An example of

nearest-neighbour interaction to produce LTP is demonstrated in Fig. 29(c) and

(d). In this case, because there is no summation effect in producing the trace ypre,

only the nearest presynaptic spike at 30 actually interacts with postsynaptic spike

at 35. Then the trace is read out from the moment of the postsynaptic spike and

applied to the memristor. The shaded area is independent of other presynaptic

spikes and contributes to the enhancement in synaptic strength.
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Figure 30: A schematic diagram of the basic units of the trace based memristive
STDP model and the memristive synapse. (a) pre- and postsynaptic trace is
delivered through the spk+(t) and spk−(t) terminals. (b) The memristive synapse
is programmed when the write terminal is enabled.

5.6 The memristive neuromorphic system

We have introduced in previous sections a trace based memristive STDP model

which is compatible with both the all-to-all and nearest-neighbour interactions.

Neural networks implementations containing memristors are believed to be feasible

with a comprehensive rule. Some neuromorphic structures have been proposed in

[1, 63, 66] using memristive STDP models with similar neuron circuits. However,

the proposed structures are not fully compatible with the trace based memristive

STDP model because of the back-propagation concept in their models. Based on

their studies, several changes are required to build a new neuromorphic structure

which works with the trace based model. In this section, the possible means to

apply the new memristive STDP model to the spiking neural network (SNN) are

explored.

5.6.1 The neuron circuit

Since the SNN uses spiking neurons to produce spike signals which are more

biologically plausible, firstly a neural block is needed to integrate the presynaptic
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spikes until the threshold is reached. At the moment of reaching the threshold,

a postsynaptic spike should be fired and leaves a trace as proposed in the trace

based model. By this means, it implements a simple leaky integrate-and-fire

neuron. A possible structure for the basic unit is shown in Fig. 30(a). When the

trace generator is triggered by the leaky integrator, a spike trace is generated and

delivered to the neuron output. Meanwhile, the trace is multiplied by the factor

A−mp and A+
mp, subsequently, the pre- and postsynaptic traces are obtained.

This structure can be further arranged to be compatible with current neuro-

morphic systems. To this end, the original spike shape of the existing neuron

circuit is preserved instead of using the proposed trace. The proposed model is

purely a model used to monitor the spikes and the timing, generate pre- and

postsynaptic traces and change the memristance according to the case of LTP or

LTD. It is unnecessary to build a trace generator and have many modifications in

existing neuron circuits.

5.6.2 The memristive synapse

The presynaptic spikes are delivered through the memristive synapse shown in

Fig. 30(b). Only when LTP or LTD is induced, will the write terminal be

enabled and the expected trace be applied to the memristor through the input.

In such a circuit, it is important to ensure that the current from a synapse does

not spread to its neighbours. This can be achieved by placing diodes on the right

side of the memristor and before the postsynaptic neuron. To avoid the spike

trace influencing the neuron circuit when updating the memristance, a diode can

be placed before the synaptic input.

5.6.3 The architecture

For the purpose of building a network, the possible architecture can be arranged by

using the memristor crossbar structure. This structure has been used by [53, 97]

to fabricate the very high density memristor array because of the simple structure

of the memristor. Based on the crossbar structure, the hybrid networks have been

proposed in [13, 96, 104] which demonstrate the integrated circuits with memris-

tors and CMOS components. The hybrid circuit uses the concept of the CMOL
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Figure 31: A schematic diagram of the architecture of the memristive neuromor-
phic system. (a) A neuromorphic structure with two layers of neurons implements
the standard STDP. (b) A neuromorphic structure with two layers of neurons im-
plements the anti-STDP.

(standing for CMOS + MOLecular scale devices hybrid) which builds a three-

dimensional circuit. Typically, it consists of two layers which are the memristor

crossbar layer and the CMOS layer. The memristor crossbar layer is arranged on

the top of the CMOS layer, which could be further expanded from one to several

layers. In this case, the schematic diagrams of two possible implementations of

the standard STDP and the anti-STDP are illustrated in Fig. 31. For instance,

in Fig. 31(a), a two-layer and 3 × 3 network is implemented based on the mem-

ristor crossbar structure. By reversing the polarity of memristors, shown in Fig.

31(b), the anti-STDP can be achieved as introduced in Section 5.4.2. Since the

neurons are made by the conventional CMOS technology, they can be arranged

underneath the memristor crossbar following the CMOL-like arrangement. The

presynaptic neurons connect the positive terminals of memristors in the crossbar

layer and then the negative terminals connect back to the postsynaptic neurons

in the CMOS layer. Multiple-layer networks can be realised conveniently by re-

peating this connecting process.

Another possible scheme to implement a neuromorphic structure with the pro-

posed memristive STDP model is the similar method used in [54, 94]. By this

means, the presynaptic trace, the postsynaptic trace and the read-out trace will be

modulated into logical signals. Based on the trace and the pre- and postsynaptic
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spikes timings, the modulated read-out trace will be applied to the memristors,

and therefore implementing the STDP with the proposed model. However, these

are only possible implementations giving a hint as to how to construct a neuromor-

phic system. There might be multiple different circuit implementations possible

based on the above mentioned methods to realise the STDP with the proposed

model but to explore this further is beyond the scope of this research.



Chapter 6

Computational Results for

Memristive Spiking Neural

Networks

In this chapter, the proposed trace based memristive STDP model, described in

Chapter 5, is implemented and assessed empirically against the original memristive

STDP model, namely the model based on the spike shape of the action potential

[66, 67]. Both the nearest-neighbour spike interaction and the all-to-all spike

interaction are applied to the proposed memristive STDP model by implementing

small scale neural networks with spiking neurons and memristors.

The aim of the experiments is to firstly implement the all-to-all interaction and

the nearest-neighbour interaction which are two important interaction schemes in

standard STDP learning. Associative memory based on memristive neural net-

works is simulated with these two interaction schemes, given that the proposed

memristive STDP model is able to cope with the basic multiple-to-one, one-to-

multiple and one-to-one interactions. Secondly, to assess how the proposed model

compares to the original model with respect to its all-to-all interaction. The origi-

nal model has been studied from the theory to the circuit simulations which use the

memristive FET-like devices to build a 4×4 feed forward memristive perceptron

network [67]. It has become a significant work in the field of memristive STDP

learning, and it has inspired the construction of variations to deal with various

STDP learnings [15, 87]. Besides, the supervised STDP learning is discussed to

demonstrate the benefit of the proposed model in supervised learning.

103
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The remainder of this chapter is organised as follows. We explore associative

memory which is based on memristive neural networks by implementing both the

all-to-all and nearest-neighbour interactions. This experiment demonstrates that

the proposed model can mimic the famous Pavlovian experiment on conditional

reflex. The delayed-switching effect is discussed to show its role in such learning

networks. The proposed model is later compared to the original model in terms

of the all-to-all interaction which is based on the basic one-to-all and all-to-one

interactions. Its compatibility is demonstrated through the comparison. Then, to

conclude, we will implement the supervised learning in memristive spiking neural

networks using the proposed model.

6.1 Associative memory with trace-based

memristive STDP models

In Chapter 5, we demonstrated that the memristor indeed can implement a

synapse with a proper learning rule. Its behaviour can easily be tuned to function

as various STDP learning windows. For the purpose of this section, we have built

a simplified memristive spiking neural network as shown in Fig. 32 based on the

network used in [80, 99]. We then show that, with the proposed model, such

networks are capable of simulating associative memory.

6.1.1 The network setup

As shown in Fig. 32, we consider a simplified neural network which comprises

three neurons (two presynaptic neurons and one postsynaptic neuron) and the

pre- and postsynaptic neurons are coupled by two memristive synapses (S1 and

S2). As an example of the functionality that this network can provide, we can

think about the Pavlovian experiment on the conditional reflex, in which the

dog learns to associate a sound with food and eventually salivate without the

intervention of vision. The first presynaptic neuron N1 (presumably located in

the visual cortex) activates under various specific external stimuli namely “sight

of food”. The second presynaptic neuron N2 (presumably located in the auditory

cortex) activates under certain external auditory events such as the “sound of a

bell”. The postsynaptic neuron N3 activates depending on previous training and
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Figure 32: A spiking neural network using memristors as synapses.

leads to the “salivation” of the dog. However, in the beginning, only the “sight of

food” can trigger “salivation” which means the “sight of food” and the “sound of

a bell” are irrelevant events.

In order to associate the “sight of food” and the “sound of a bell”, certain

conditions are fulfilled:

1. the “sight of food” and “sound of a bell” must be coexistent in time

2. the previous condition must be repeated several times

3. the “sound of a bell” should somewhat precede the “sight of food”

After a sufficient number of repeats of the above conditions simultaneously, the

network should start establishing the association of the “sound of a bell” and

the “sight of food” and eventually the “sound of a bell” can trigger “salivation”

without the presence of food. This process of learning can be considered as a

typical realisation of the famous Hebbian learning and can be further applied to

standard STDP learning.

The spiking neuron

A classic and efficient spiking neuron is a leaky integrate-and-fire (LIF) neuron

model which normally consists of a capacitor C in parallel with a resistor R. The
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LIF neuron model is driven by the current I. This circuit can be described as

τm
du

dt
= −u(t) +RI(t) (100)

where the term τm denotes the time constant of the leaky integrator and is defined

by

τm = RC (101)

The input current I is integrated by this RC circuit, and a spike is fired

when the threshold voltage Vth is reached. Then the voltage u is reset to zero,

and after an absolute refractory period trp the capacitor begins integrating the

input current again. Usually, the voltage u refers to the membrane potential, and

the time constant τm refers to the membrane time constant of the neuron. In

this classic LIF neuron model, the form of an action potential is not described

explicitly because it will be used to trigger the proposed trace based memristive

model.

The memristive synapse

Memristors S1 and S2 in this experiment determine the connection strength be-

tween the presynaptic and postsynaptic neurons. Two flux-controlled memristor

models with boundary (given in Eq. (102) and (103)) are applied to the network,

which means the conductance of memristors are bounded between Goff and Gon.

G = (1− s)Goff + sGon (102)

where the state variable s is defined by

s =
1

1 + e−ϕkp+ρ
(103)

In the beginning, the conductance of the memristive synapse S1 is inherently

high (Gon), however, the memristive synapse S2 has a low conductance (Goff ).

During the experiment, the conductance of synapse S1 is constant since the strong

connection is innate. Synapse S2 should be trained by the proposed model to build

the connection between the “sound of a bell” and “salivation”.
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6.1.2 Spike interaction algorithms

Nearest-neighbour interaction algorithm

In order to discover the nearest spike pair, the timing of all the spikes are moni-

tored and recorded. Algorithm 6.1 presents a high-level pseudocode of the nearest-

neighbour interaction procedure employed in the network. The procedure starts

with a list of the timings of all the presynaptic spikes and generates the presynaptic

trace. At each iteration, if a spike arrives, the pre- or postsynaptic trace will be up-

dated to a constant amplitude by GeneratePreTrace() or GeneratePostTrace().

These two methods are responsible for generating the spike trace described in the

proposed model.

If a presynaptic spike arrives just after a postsynaptic spike which is wait-

ing for a presynaptic spike, the postsynaptic trace will be passed to the method

GetUpdateW (). Then, in this method, the postsynaptic trace will be read out

to change the conductance of the memristor. After the arrival of each presynap-

tic spike, the wait for post is set to “1”, and a similar setting applies to the

postsynaptic spike which sets wait for pre to “1”.

All-to-all interaction algorithm

Similar to nearest-neighbour interaction, in order to implement the all-to-all inter-

action, the timing of all the spikes has to be monitored and recorded. Algorithm

6.2 presents a high-level pseudocode of the all-to-all interaction procedure em-

ployed in the network. The procedure starts with a list of the timings of all

the presynaptic spikes and generates the presynaptic trace. Pre- and postsynap-

tic spikes are monitored at each iteration, and hence if a spike arrives, a spike

trace will be added to the previous spike traces. From the moment of the presy-

naptic spike, the postsynaptic trace will be read out and passed to the method

GetUpdateW (). Consequently, the conductance of the memristor will be changed

accordingly.

6.1.3 The parameters

The same parameters are used for both the nearest-neighbour and all-to-all inter-

action experiments which consist of LIF neurons, the memristive synapses, and
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Algorithm 6.1 High-level pseudocode of the nearest-neighbour spike interaction
procedure employed in the simulation

Input: the timing of all presynaptic spikes
Output: the update ∆w on the memristor
1: procedure nearest alg(pre timing, sim time)
2: Begin
3: t← 0
4: wait for pre← 0
5: wait for post← 0
6: while t < sim time do
7: if t == pre timing then
8: pre trace← GeneratePreTrace()
9: if wait for pre == 1 then
10: GetUpdateW (post trace)
11: wait for pre = 0
12: end if
13: wait for post = 1
14: end if
15: post spike← UpdateResult()
16: if post spike then
17: post trace← GeneratePostTrace()
18: if wait for post == 1 then
19: GetUpdateW (pre trace)
20: wait for post = 0
21: end if
22: wait for pre = 1
23: end if
24: end while
25: End
26: end procedure
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Algorithm 6.2 High-level pseudocode of the all-to-all spike interaction procedure
employed in the simulation

Input: the timing of all presynaptic spikes
Output: the update ∆w on the memristor
1: procedure all2all alg(pre timing, sim time)
2: Begin
3: t← 0
4: while t < sim time do
5: if t == pre timing then
6: pre trace← pre trace+GeneratePreTrace()
7: if post trace! = 0 then
8: GetUpdateW (post trace)
9: end if
10: end if
11: post spike← UpdateResult()
12: if post spike then
13: post trace← post trace+GeneratePostTrace()
14: if pre trace! = 0 then
15: GetUpdateW (pre trace)
16: end if
17: end if
18: end while
19: End
20: end procedure
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stimuli. Parameter details are shown in Table 9. Typical values of parameters

were chosen with reference to [77] for the simulation components. The memristor

synapse uses Eq. 102 and 103 which models a general HP memristor model with

the original window function proposed in [97]. The chosen parameters can be

tuned to memristors with different physical properties. However, the OFF/ON

ratio should be sufficiently large. Thus, when the memristor is at low conduc-

tance, the presynaptic neuron is not able to fire the postsynaptic neuron. The

high conductance should be large enough such that the presynaptic neuron is able

to fire the postsynaptic neuron.

6.2 Simulation results

In this section, simulation results of both nearest-neighbour and all-to-all inter-

actions are given with simulation procedures which are divided into three phases:

Probing phase 1, Training phase and Probing phase 2. Since the experimental

setups are the same for both nearest-neighbour and all-to-all interactions, the

results will be discussed together.

6.2.1 Probing phase 1

In probing phase 1, the stimulus was firstly and only applied to the “sight of food”

neuron N1 and then only applied to the “sound of a bell” neuron N2, which means

firing periods of N1 and N2 are not overlapped. The purpose of this phase is to

ensure that:

1. the “salivation” neuron N3 can be activated by the “sight of food” neuron

N1 before training

2. neuron N3 cannot be activated by the “sound of a bell” neuron N2 before

training

3. no association between “food” and “sound”

From the results shown in Fig. 33(c) and 34(c), before training, the “sali-

vation” neuron fired only when the “sight of food” neuron was activated which
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Simulation Summary

Simulation Time: T = 1000 ms

Time resolution: dt = 0.05 ms

Neural Model

Type description: Leaky integrate-and-fire (LIF) neuron

Membrane time constant τm = 10 ms

Membrane resistance R = 1 MΩ

Parameters: Spike threshold vth = 0.5 V

Reset potential v0 = 0 V

Refractory period τm = 4 ms

Synaptic Model

Type description: Flux-controlled memristor

High conductance Gon = 7 Ω−1

Low conductance Goff = 2 Ω−1

Parameters: Propagation factor kp = 1

Constant ρ = 7

The state variable s ∈ [0, 1]

Inputs of N1 and N2

Type: Constant stimulus st = 5 µA

Table 9: Descriptions and parameters of the experimental setup
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absolutely satisfies all the conditions mentioned above. Because the synapse S1 is

always at the high conductance Gon but the synapse S2 is at the low conductance

Goff initially which disconnects the neurons N2 and N3. Hence, before training,

the connection between “sound of a bell” and “salivation” cannot be enhanced

without postsynaptic spikes and LTP when only the neuron N2 is activated.

6.2.2 Training phase

During the training phase, stimuli were simultaneously applied to both of the neu-

rons N1 and N2. Because neuron N3 was activated by neuron N1, the postsynaptic

spikes were observed. This phase aims to:

1. stimulate the “sight of food” and “sound of a bell” neurons together

2. build the connection between the neurons N2 and N3 by applying the pro-

posed model

3. train the network to learn the association between “food” and “sound”

In the proposed model, these aims can be achieved by overlapping the firing

periods of the neurons N1 and N2. Since the long overlapping period implies that

these two events are correlated, it is critical to build the correlation. As a result,

the activation of neuron N3 led to the time difference ∆t between the postsynaptic

spikes and the presynaptic spikes from neuron N2. In the training phase, the

postsynaptic spikes mostly arrived after the presynaptic spikes from neuron N2

with a positive time interval, thus LTP was induced and connection strength

between the “sound of a bell” and “salivation” was enhanced. The conductance

of the memristive synapse S2 was increased according to the STDP leaning and

the proposed model. From the results shown in Fig. 33(d) and 34(d), in both spike

interaction schemes, the enhancement was repeated many times which is sufficient

to switch the memristor from Goff to Gon. Consequently, the connection between

the neurons N2 and N3 became very strong as shown in the figures mentioned

previously. At the end of the training, we can assume that the overlapped firing

periods of the neurons N1 and N2 enabled the network to associate the “sight of

food” and the “sound of a bell”.
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6.2.3 Validation and results

After the training, probing phase 2 was applied to the network in order to validate

the assumption that was stated at the end of the training phase by:

1. stopping stimulating the “sight of food” neuron N1

2. stimulating the “sound of a bell” neuron N2

3. recording spikes from the “salivation” neuron N3

As shown in Fig. 33(c) and 34(c), in both nearest-neighbour and all-to-all

interactions, neuron N3 was activated by neuron N2 without the help of neuron

N1. In other words, a strong connection between the neurons N2 and N3 was

established. Without the stimulation of “food”, the network presumed that “food”

would be presented because of the stimulation of “sound” and began to produce

the “salivation” spikes , and therefore we can confirm that the association between

the “sight of food” and the “sound of a bell” was developed by the proposed model

and proved by the results. The Pavlovian experiment was clearly reproduced by

this simplified memristive spiking neural network.

It is worth noting that, according to the Fig. 33(d) and 34(d), the increment

of the conductance G of the memristive synapse S2 is different although both of

the experiments have the same simulation parameters. The increment of S2 in

the all-to-all interaction is significantly sharper than the increment in the nearest-

neighbour interaction since it rose to the highest conductance Gon rapidly before

400ms. The difference on the increment of S2, to some extent, reveals the basic

distinction between the two interaction schemes.

In the all-to-all interaction, since all the previous presynaptic spikes contribute

to the postsynaptic spike directly or indirectly (and vice versa), the history of the

neuron spikes play an important role in the interactions. By the means of sum-

ming all the traces of the previous presynaptic spikes, the timing-based plasticity

(herein the STDP) is linked with the rate-based plasticity more tightly than the

nearest-neighbour interaction. As a result, a higher frequency of spikes with a

right timing pattern is more likely to induce LTP or LTD with a larger synaptic

modification which can be reproduced by the proposed memristive STDP model.

The tight collaboration is important in studying synaptic plasticity since rate-

based plasticity is critical in explaining the learning of the brain [90] and was
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used to model the development of orientation tuning and ocular dominance in

cat visual cortex by Bienenstock, Cooper and Munro [8]. In addition, from the

previous research on synaptic activity [30, 58, 108], it is generally believed that

long-term plasticity makes a fair contribution to the refinement of neural networks

during their development. This implies that the development of neural networks

relies on the participation of several synaptic plasticity rules of involved neurons

and their history of activity. Therefore, to some extent, applying the proposed

model with the all-to-all interaction scheme to the current neuromorphic system is

important for applications which study the development of the neuronal circuits,

and it is beneficial to current neuromorphic circuits through the application of

nano-scale memristors with a simpler structure.

Delayed-switching effect in the synapse

In both experiments shown in Fig. 33(d) and 34(d), the conductance of the

memristor evolves from the low conductance Goff towards Gon and the switching

takes place with a time delay in the memristor. The time delay, in fact, implies

that the memristor possesses certain inertia which delays the switching process.

In particular, if we assume the memristor is a piecewise linear memristor with

only two states OFF and ON , there will be a significant delayed-switching effect

as mentioned previously in these two experiments. According to our discoveries

in [99], a high voltage will induce a shorter time delay which, from another view,

explains the experiment results that the increment of conductance in the all-to-

all interaction is sharper than in the nearest-neighbour interaction. However,

in the original postulate of the memristor [25] and some existing models [97,

19], the discoveries also imply that a small voltage may vary the status of the

memristor if a sufficiently long duration is applied. Therefore, in this case, the

time delay may be overtaken and the synapse S2 will eventually change its state.

Clearly this scenario violates the Hebbian and STDP learning which needs the

pre- and postsynaptic neurons to fire together. To avoid violating the learning

rule, small voltage thresholds in memristors will help the circuits work properly

by introducing a programming voltage above the threshold and a reading voltage

below the threshold. Hence the programming and reading operations can be

separated to prevent mis-operation. Furthermore, for the purpose of changing

the state of the memristive synapse, a sufficiently long training period is critical
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Figure 33: Simulation results of the proposed model with the nearest-neighbour
interaction. (a) The output (spikes) of the “sight of food” neuron N1. It was
immediately activated only at the beginning of the probing phase 1 and then
activated again during the training phase. (b) The output of the “sound of a
bell” neuron N2. It was activated in all the simulation phases for the purposes
of probing and training. (c) The output of the “salivation” neuron N3. After the
training, it cold be activated by the neuron N2 itself. (d) The modification of the
conductance of the memristive synapse S2.
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Figure 34: Simulation results of the proposed model with the all-to-all interaction.
(a) The output (spikes) of the “sight of food” neuron N1. It was immediately
activated only at the beginning of the probing phase 1 and then activated again
during the training phase. (b) The output of the “sound of a bell” neuron N2.
It was activated in all the simulation phases for the purposes of probing and
training. (c) The output of the “salivation” neuron N3. After the training, it
could be activated by neuron N2 without the help of N1. (d) The modification
of the conductance of the memristive synapse S2 increased more sharply than the
modification in the nearest-neighbour experiment.
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otherwise the state will not be changed as expected, and it will lead to failed

training. In conclusion, the delayed-switching effect should be carefully considered

when training some memristive spiking neural networks such as the networks

mentioned previously.

6.2.4 Retention loss

So far, the memristive spiking neural network with our proposed model has demon-

strated associative learning using both nearest-neighbour and all-to-all interac-

tions. Because of the non-volatile nature of the memristor, the training outcome

will be retained for a long period of time even if the power is shut down. This

means that once the association is built by the training, it will exist permanently,

and therefore further training is unnecessary. Indeed, it is a desirable feature in

neural networks which demand a long-term memory such as that of the brain.

However, it does not demonstrate short-term memory or retention loss as seen in

the networks of [80, 100], which is also critical for associative learning since the

brain is unlikely to hold all information permanently. In Pavlov’s classic experi-

ment, another two conditions are required to be fulfilled:

1. reinforce the association periodically

2. lose the association after a certain time if only the “sound of a bell” is

activated

The first condition implies that the association could be lost if it is not pe-

riodically reinforced, which indicates the exhibition of a somewhat short-term

memory. The second condition suggests that, without activating the “sight of

food” neuron N1, the stimulated “sound of a bell” neuron will lead to a penalty

on the memristive synapse S2 therefore weakening the connection strength. After

a sufficient time period, the connection will eventually be lost, and therefore the

association between “food” and “sound” will be broken. Following these afore-

mentioned conditions, it suggests that inhibition is induced if the “sight of food”

neuron N1 is not participating in activating the “salivation” neuron N3. In or-

der to achieve retention loss, we have to re-examine the results obtained in the

previous simulations.
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Since the joint activation of a neuron depends on multiple presynaptic neurons,

the frequency of the postsynaptic spikes somewhat depend on the combination of

presynaptic spikes with its presynaptic neurons. As shown in Fig. 33(c) and

34(c), when both of the presynaptic neurons N1 and N2 are fired together, the

rate of the postsynaptic spike is higher than when only one presynaptic neuron

is applied. Hence, we assume that the frequency of postsynaptic spikes can more

or less indicate whether there is a joint contribution of neurons N1 and N2 in the

given network. Thus, under the same strength of stimuli, the lower frequency has

a larger possibility to inhibit the connection strength of S2 therefore weakening

the association. Such an assumption recalls the discussion of the joint work of

rate-based plasticity and timing-based plasticity. Therefore, a rate-based term is

introduced to vary the amplitude of the postsynaptic trace

A−mp = e
fpost−ρ
−τr (104)

Hence the Eq. (81) of the postsynaptic spike trace could be altered as

spk−j (t) =

−e
fpost−ρ
−τr

(
e(−t+tj)/τ

−
−e−t

−
ail
/τ−

1−e−t
−
ail
/τ−

)
if tj < t < t−ail + tj

0 if otherwise

(105)

where ρ and τr are two constants which jointly determine the variation of the

amplitude A−mp along the rate fpost of the postsynaptic spikes.

By introducing the rate-based term, the amplitude A−mp decreases when the

rate fpost increases. Consequently, if only the stimulus of “sound of a bell” is

applied, the postsynaptic spike trace amplitude A−mp will remain at a larger value.

As a result, LTD has a larger impact on memristive synapse S2 than LTP.

Validation and results

A similar validation process to the previous experiments was used to evaluate the

newly introduced term. It consists of three phases:

1. the probing phase

2. the training phase

3. the retention loss phase
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As shown in Fig. 35, the modified nearest-neighbour interaction experiment, the

probing phase and the training phase are the same as with the previous exper-

iments which enhance the connection strength of S2. It shows that learning of

the network was not affected by the rate-based term that was introduced and the

network learned the association properly.

Retention loss phase

In the retention loss phase, during 900ms - 2000ms, the simulation time is longer

than the training phase’s since it takes more time to weaken the connection. When

only the “sound of a bell” neuron N2 was fired, the frequency fpost of postsynaptic

spikes was lower than in the training phase’s. Although, at the beginning of the

retention loss phase, neuron N3 still fired without the help of neuron N1, LTD

began to take precedence and decreased the conductance of S2 gradually. At some

point, the conductance began to decline significantly and eventually dropped to a

value where the “salivation” neuron N3 stopped firing spikes. The results shown

in Fig. 35(c) and (d) indicate that the proposed model with the newly introduced

rate-based term is capable of reproducing all the conditions required by associative

learning, in the form of both building the association and losing the association

under certain circumstances.

Hence, all the outcomes of leaning and forgetting are preserved once the learn-

ing and forgetting processes terminate, which implies the outcomes are trans-

formed into long-term memory which lasts for a much longer time period than

the short-term memory. In order to implement short-term memory, we need a

memristor that has a volatile feature to mimic retention loss with time. A possi-

ble and proper candidate is the nano-scale memristive device based on tungsten

oxide which shows the typical memristor behaviours with a peculiar forgetting ef-

fect [17]. With this type of memristor, because the concentration gradient induced

ion diffusion is opposite from the ion migration, it leads to a particular behaviour

which resembles the forgetting curve in biological systems. The latest research

[20] shows the conductivity of the memristor can constantly decline to different

stable points from different initial conductivity, which resembles the transition

from short-term memory to long-term memory because it may not lose all its

conductivity. With these kinds of memristors which have forgetting effect, it is

possible to refine our proposed memristive spiking neural network to mimic more
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advanced and desirable biological behaviours. Again, it demonstrates the variety

and future potentials of memristive devices in neural networks from the aspect of

their intrinsic characteristics which are similar to the biological behaviours.

6.3 Supervised learning with trace-based mem-

ristive STDP models

As mentioned previously, the STDP, in fact, is an unsupervised learning rule

which is solely based on the timing of pre- and postsynaptic spikes, and it has

been used to perform complex recognition tasks [43, 75]. In Section 6.1, it was

shown that the STDP and proposed model enable associative learning using the

memristive synapse. Moreover, the applications of unsupervised STDP learning

with memristive devices are discussed in [54, 67, 87, 94], however, the supervised

STDP learning with memristive devices has not been investigated. In fact, for

specific task-oriented engineering applications that require an explicit goal defini-

tion, supervised learning might be more favourable than unsupervised learning.

The supervised learning which normally involves an error back propagation pro-

cess has been widely used in training conventional neural networks. Meanwhile,

supervised learning in spiking neural networks has been developed using different

approaches such as gradient descent [12], learning window [83] and Delta learning

rule [77]. However, these rules are designed for training general spiking neural

networks which are somewhat different from memristive spiking neural networks,

especially in neuromorphic applications. It is required to find a proper supervised

learning rule for the proposed memristive STDP model and its applications.

6.3.1 The network setup

In order to present supervised learning with the proposed memristive STDP

model, a network will consist of 10 input neurons which produce input spike

patterns and one LIF neuron which responds to all the inputs. The network is

arranged in a feed-forward way which is similar to the simple perceptron network.

Each input neuron is connected to the output LIF neuron through the memris-

tive synapse thus all the input spikes are summed before sending them to the

output neuron Nout as shown in Fig. 36. The task of the network is to learn
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Figure 35: Simulation results of retention loss. (a) The output of the “sight of
food” neuron N1. (b) The output of the “sound of a bell” neuron N2. (c) The
output of the “salivation” neuron N3. After training, it could be activated by
neuron N2 without the help of N1. (d) The strength of the memristive synapse
S2 increases at the training phase but decreases at the retention loss phase. The
terms used are: ρ = 6.75 and τr = 1.76.
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Figure 36: The memristive spiking neural network set for supervised learning.

the target spike pattern which is randomly generated. Initially, the connection

strength, represented by the memristor’s conductance Gmem(w), is randomly gen-

erated within the range Gmin < Gi
mem(w) < Gmax where w is the state variable

which determines the update of the conductance Gmem.

6.3.2 The learning rule

Similar to other supervised learning rules, such as the spike pattern association

neuron (SPAN), training a memristor-based spiking neural network requires the

iteration of all the spike patterns. The connection strength is updated iteratively

to approach the desired spike patterns by the predefined input spikes. Deploying

this method, the same approach as with SPAN is followed, which adapts the

Delta rule to train the memristor-based spiking neural network. The Delta rule

is defined by

∆w = αxi(yd − yout) (106)

where (yd − yout) can be represented by ∆y which implies the distance between

the desired and the actual outputs. xi is the input of the presynaptic neuron i.

It is designed for real-valued applications, and hence it is incompatible with the
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spike timings which usually are considered as the Dirac delta function.

As previously mentioned in Chapter 5, each spike will leave a trace with the

shape of an exponential function at its arrival thus the spike trains which are

implemented by the Dirac delta function are naturally transformed into spike

traces. By defining some important terms the Delta rule used in SPAN can be

adapted to train the memristor-based spiking neural network with the proposed

model.

Error of the output

The error of the output is defined in Eq. (106), ∆y, which is the difference between

the target output and the actual output. In the trace-based memristive STDP

model, the postsynaptic trace ypost is chosen to suit the Delta rule, and therefore

the error of the output is defined by

Edr = ∆y = ydpost − yrpost (107)

where d and r denote the target and real outputs respectively. It compares the

real postsynaptic trace yrpost to the desired postsynaptic trace ydpost directly and can

be used as one of the evaluation metrics to assess the performance of the super-

vised learning. A well trained and performed neural network normally produces

a sufficiently small number.

Another metric of the output is the time difference between the desired postsy-

naptic spike δpost d and the real postsynaptic spike δpost r. However, it requires the

sets δpost d and δpost r have the same size in terms of the number of postsynaptic

spikes, otherwise it is inaccurate in comparing all the spikes in pair from the two

sets. If the requirement of the size is satisfied, the error can be evaluated using

root-mean-squared error (RMSE) which measures the average of the squares of

the errors in the form of:

RMSE(δpost) =

√√√√ 1

n

n∑
i=1

(δipost d − δipost r)2 (108)

where the δipost d and δipost r denote the arrival time of the postsynaptic spike i in

desired output and the real output respectively.
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Error of the update of synaptic weight

The actual result of the supervised training should be exactly or approximately

the same as the desired result, and hence the actual synaptic enhancement induced

by LTP and the actual synaptic depression induced by LTD should be the same

as the desired result in the best case. Thus, the difference between the actual and

desired synaptic enhancement can be defined by

EwLTP = wdLTP − wrLTP (109)

and similarly the error on synaptic depression is defined by

EwLTD = wdLTD − wrLTD (110)

In fact, the Eq. (109) and (110) can be combined into one equation to represent

the total error of the change of synaptic weight, however it is unnecessary in most

cases because the error of the synaptic enhancement is capable of assessing the

performance of the supervised learning. Firstly, the postsynaptic spike is induced

by several presynaptic neurons which means there must be some neurons stimu-

lating the postsynaptic neuron. Secondly, a direct result of the postsynaptic spike

is the synaptic enhancement (LTP) if a presynaptic spike precedes it. Thirdly, the

synaptic depression (LTD) is induced after the postsynaptic spike which implies

generating precise postsynaptic spikes is more important.

6.3.3 Simulation and results

Simulation setup

The training and testing patterns are generated by the same network with constant

connection weights. Each presynaptic neuron generates 10 presynaptic spikes at

different times and the postsynaptic spikes are recorded and hence a pair of an

input set and an output set is obtained. In an output set, each postsynaptic spike

is considered as a class, and therefore the number of postsynaptic spikes in an

output set denotes the number of the classes to be learned or verified. In this

experiment, 8 desired output patterns are utilised and each pattern comprises at

least 11 classes. Only one of them is used as the training pattern during training
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process, while the testing patterns are used to evaluate the generalisation ability

of the trained network. For each training, it allows 50 epochs, and the training is

repeated for 10 independent runs with different patterns.

Training

During the training, the memristive connections are programmed to random values

and the postsynaptic neuron learns to fire at a specific time when certain patterns

of the presynaptic spikes are generated by the presynaptic neurons. The desired

postsynaptic trace ydpost is compared to the actual postsynaptic trace yrpost, and the

result is represented by Edr. According to the Delta rule, each presynaptic trace

is multiplied by Edr to get the required update trace V i
update. Finally, the update

trace V i
update will be applied to the memristive synapse to change the connection

strength. Hence the update of the memristor i is defined by

∆wi = α

∫ T

0

V i
update = α

∫ T

0

yipreEdr (111)

where T is the simulation time of one iteration. By this way, the memristive

synapse is updated after each iteration. Once a training set is finished, another

training set will be utilised until all the training is finished. Therefore, the net-

work is trained to minimise the output error Edr by the first training set and

then slightly adjusted by the following training sets. It has been found that this

training approach provides an efficient way to converge the network, however, the

first training patter may lead to a poor performance in some circumstances. If the

training results are found to be well below expectation, changing the first training

pattern can sometimes significantly improve the performance. Normally, this hap-

pens when the first training pattern is quite complex and dense, or the synaptic

weights are not well distributed, which makes it complicated for the network to

capture and learn in the beginning.

Evaluation of a single task

A single spike pattern was randomly generated for the purposes of training and

testing in this task. The task is to learn mapping from the presynaptic spikes to

the desired output set which contains 13 classes occurring at different times, for
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Figure 37: There are 35 epochs in the training and results of each epoch are
compared with the target spikes (red bars at the top). It shows that actual
postsynaptic spikes are trained to learn the target spikes.

example {90.0, 102.5, 173.0, 198.5, 209.0, 223.0, 240.5, 301.0, 317.5, 333.5, 342.5,

353.5, 386.5}ms. During training, the update of memristors are corrected by Eq.

(111) using the differences between the desired output set and actual output spikes

with a learning rate α = 0.3. Fig. 37 demonstrates the learning process of the

memristive spiking neural network towards desired output pattern through the

learning rule in Eq. (111).

The desired postsynaptic spikes (red bars) at the top of Fig. 37 along with the

postsynaptic spikes (black bars) are produced by the postsynaptic neuron. In the

beginning, the timings of postsynaptic spikes are very different from the desired

spike sequence, however, after several iterations the output spikes are approach-

ing and moving towards the desired spike sequence. This has been validated by

the evolution of the enhancement error EwLTP and the output error Edr shown

in Fig. 38(a) and (b) that clearly demonstrate the network learns and converges
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Figure 38: The evolution of the errors and synaptic weights. (a) The enhancement
error of each connection is illustrated in different colours. It shows the tendency
of the enhancement error along the training epochs. (b) The output error clearly
converges to a small value, which means the network is well trained by the current
training set. (c) The conductance of all the memristive synapses before training
(green bars) and after training (red bars). The deviations are also illustrated to
demonstrate the differences from the target synaptic weights.
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to the desired output spike sequence. It is worth noting that the evolution of

the enhancement errors EwLTP of the memristive synapses fluctuate a lot in con-

trast to the output error Edr, which implies that the enhancement error EwLTP

measures the influence of current postsynaptic spikes to the individual synaptic

connection. Clearly, at a certain output error, the enhancement error of each

synaptic connection is different because the enhancement error is very sensitive to

each postsynaptic spike timing. As a result, a slight difference in the timings of

some postsynaptic spikes may result in a large enhancement error, which makes

the enhancement error very volatile during the learning. For a well trained net-

work, most enhancement errors of synaptic connections should have only a small

difference between them as shown in Fig. 38(a) after 25 iterations.

The conductance of memristive synapses before training (green bars) and af-

ter training (red bars) are illustrated in Fig. 38(c). After training, the deviations

of the conductance of memristive synapses between the trained network and the

desired network is significantly reduced in contrast to the network before train-

ing. Interestingly, Barbour et al. [4] studied synaptic plasticity from the view of

synaptic weights distribution, and by analysing the measurements obtained from

somatic recording, it shows that the analysis of weights distribution has the po-

tential to become a powerful tool for studying the mechanisms of learning in the

brain. Hence, the proposed model and learning rule have the optimistic potential

to provide a platform to analyse the distribution of the conductance of memristors

in real applications, which may also help biological studies as a complement.

Evaluation of multiple tasks

After the experiment of the single task, we investigate the abilities of the memris-

tive spiking neural network to reproduce the desired spike patterns and timings.

After the training process used in the single task, 7 testing patterns shown in

Table 10 are utilised to probe the trained network, and the results are compared

to the desired output set by the output error RMSE(δpost) and the class error

RMSE(δclass) based on Eq. (108).

Since both of these two measurements adopt the approach of RMSE to deter-

mine the performance, in some worst-case scenarios, there is a problem that the

number of spikes in the desired set and the actual set may be different. The best
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Desired output patterns

Pattern 0:

{ 90.0, 102.5, 173.0, 198.5, 209.0, 223.0, 240.5, 301.0, 317.5, 333.5, 342.5,
353.5, 386.5 }
Pattern 1:

{ 43.5, 56.0, 69.5, 90.0, 107.0, 147.5, 163.0, 269.0, 290.0, 315.0, 342.5 }
Pattern 2:

{ 44.5, 63.5, 88.5, 105.0, 126.5, 146.0, 162.0, 271.0, 293.0, 312.5, 323.5, 352.0 }
Pattern 3:

{ 44.0, 60.5, 72.0, 90.5, 106.0, 146.0, 161.0, 271.5, 293.5, 316.0, 348.5 }
Pattern 4:

{ 44.0, 64.5, 89.0, 105.0, 131.5, 149.0, 164.0, 281.5, 298.5, 315.5, 343.5 }
Pattern 5:

{ 43.5, 56.5, 68.5, 89.0, 104.5, 129.5, 150.0, 164.0, 283.5, 301.5, 317.5, 350.5 }
Pattern 6:

{ 43.5, 56.0, 69.5, 90.0, 106.0, 129.5, 156.5, 283.0, 298.0, 315.5, 341.0 }
Pattern 7:

{ 44.0, 63.0, 89.0, 104.5, 145.5, 162.5, 265.5, 288.0, 313.0, 324.5, 350.5 }

Table 10: Desired output patterns used for evaluation of multiple tasks.

solution to overcome this issue is re-training the network by adjusting the learn-

ing rate α or epochs to achieve a satisfactory result. Another option is utilising

the output error Edr to measure the differences in outputs rather than utilising

the difference in timings. When evaluating a single class, we avoid measuring the

performance in terms of percentage accuracy since it is difficult to calculate the

accuracy in temporal patterns. For example, in statistics, the percentage error is

defined by

δ = 100× |vd − vr|
|vd|

(112)

It implies that the desired value vd sometimes dominates the percentage especially

in temporal patterns. If an output set {10, 30}ms is obtained from a trained

network and the desire output set is {5, 25}ms, percentage errors are 100% and

20% respectively for the first spike and the second spike though the absolute
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errors of these two spikes are the same. To avoid the influence induced by the

spike time, the absolute error is utilised in evaluating the trained network with

the RMSE approach. If there are more classes in the actual output set than in

the desired output set, the extra classes will be ignored and labelled as useless

classes. Conversely, if there are less classes in the actual output set, the missed

classes will be labelled as failed recognitions.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Class
RMSE

Class 1 0 -0.5 0 0 0 0 0 0.189

Class 2 -0.5 -1 1.5 0 0 0 -0.5 0.732

Class 3 -0.5 -0.5 1.5 0 0 0 0 0.627

Class 4 0 -1 0.5 0 -0.5 0 0 0.463

Class 5 0 -0.5 0.5 2 0 0 -1 0.886

Class 6 -0.5 0 -1 1 -0.5 -0.5 -1 0.732

Class 7 -0.5 0.5 -0.5 0.5 -2 -0.5 0 0.866

Class 8 -0.5 0.5 0.5 -1 -2 0 0 0.906

Class 9 -1 1.5 0.5 -0.5 -0.5 0 -0.5 0.779

Class 10 0 0.5 0 0 0.5 0 -1 0.463

Class 11 0.5 1 0 -5.5 5.5 -0.5 0 2.952

Class 12 0.5 1.5 1.118

Test RMSE 0.477 0.764 0.783 1.828 1.860 0.261 0.564

Table 11: Results obtained by probing the trained network with testing spike
patterns. Each actual class is evaluated in absolute error between the actual spike
timing and target spike timings, and then the results of actual classes and tests
are evaluated by RMSE in Section 6.3.2.

The analysis of the results shown in Table 11 suggest that the learning rule

is capable of reproducing the desired testing output patterns within the average

RMSE of 1ms. In each testing pattern, most classes are captured with errors

within the range of [−1, 1]ms, and some classes are reproduced precisely with

approximate error of zero. The largest errors appear in testing patterns 4 and 5
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which both contain large errors in producing the class 11, however, other classes in

these two testing patterns are well recognised. By comparing the performance in

reproducing the classes, the worst cases were seen in class 11 because of the large

errors caused in testing patterns 4 and 5. Except for the class 11, other classes are

well reproduced, and the RMSE errors of the classes are also well distributed with

a mean class error below 1ms. From results of testing patterns and the classes, the

network is not well trained for testing patterns 4 and 5, which lead to large errors

in test RMSE and class RMSE. If these two patterns are taken out from testing

results, all the results are well distributed around the mean error. It implies

that the network is not well trained by the training patterns, and hence some

specific testing patterns and classes can not be correctly reproduced. However, it

is capable of proving that, by training the network with more training patterns,

the learning rule can lead the memristive spiking neural network to converge to

an acceptable mean error both in spike patterns and individual classes.

6.3.4 Neuromorphic implementation

Figure 39: A schematic diagram of the possible neuromorphic structure of the
supervised network.

A possible supervised learning rule was introduced previously, which can be

adopted to the proposed memristive STDP model with a simpler neuromorphic

structure compared with other learning rules. In this section, we show a possible
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scheme of its neuromorphic implementation. As shown in Fig. 39, additional ele-

ments are required to implement the supervised learning rule, however, still based

on the spike trace model. During the training, the postsynaptic trace spk−(t)

will be inverted and then summed with the target spike trace dspk−(t) by the

summation circuits. The summation result will be multiplied by the presynaptic

trace spk+(t) through the multiplication circuits. At last, the processed signal

V i
update will be applied to the memristor to update its conductance. Therefore, the

connection strength will be updated, and the learning of the current connection

will be complete.

As shown in Fig. 39 and the update processes, mainly three additional circuits

(inverter circuit, addition circuit and multiplication circuit) are required to imple-

ment the supervised learning compared to the neuromorphic structure proposed in

Chapter 5. Therefore, it is more applicable than implementing supervised learn-

ing based on the complex gradient approach which normally involves intensive

computations in solving partial differential equations.



Chapter 7

Conclusions and Future Research

The research described in this thesis has presented studies of memristor-based

neural networks of a wide range, from memristor-based models, structure to their

potential applications. Several problems that have arisen with this topic have

been addressed. The results presented in this work indicate that memristors

are well-suited for neural networks and the neuromorphic systems. Memristor-

based neural networks overcome limitations of purely CMOS-based neuromorphic

systems in terms of size, complexity and power consumption. We first made a

review on the fundamentals of neural networks and memristors. Memristors are

studied from theories and physical properties to widely used models. The basic

concepts, approaches and current research on memristor-based neural networks

are introduced. The main context of this thesis has divided the studies into two

separate topics: (1) memristor-based non-spiking neural networks which focus

on unexplored research areas of staircase memristors and the memristor-based

structures; (2) memristor-based spiking neural networks which focus on STDP

learning with all-to-all spike interaction.

In the context of memristor-based non-spiking neural networks, this thesis has

studied the staircase memristor which has a wavy variation on memristance. Given

the comparison results of staircase memristors and analog memristors, staircase

memristors are more stable in terms of errors between actual and expected mem-

ristance with same pulse signals. Furthermore, memristor-based CNNs and ESNs

are explored by presenting possible implementations and potential applications

in machine vision and prediction. The memristor-based spiking neural networks

part is aimed at discovering the implementation of all-to-all spike interaction. The

133



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 134

proposed approaches with trace-base spikes were evaluated by comparing them to

previous models in terms of compatibility. Associative learning and supervised

learning are applied to the proposed networks in order to show their feasibility

and comparability.

The remainder of this chapter is organised as follows. Section 7.1 presents a

summary of the contributions of this thesis, followed by a discussion of potential

avenues for future research in Section 7.2.

7.1 Contributions

A summary of the contributions to the memristor-based neural networks research

area in the context of feasibility, theories and approaches, discussed in Chapters

3 to 6, is presented in this section.

A staircase memristor model to describe and utilise the wavy behaviour of

ferroelectric memristors is proposed, which assumes that there exists multiple re-

gions in a memristor. The basic idea is to utilise the delayed-switching effect of

memristors rather than avoiding them, thus staircase memristors could be applied

to applications where a few stable states are required. An example of symmet-

ric behaviour of staircase memristors was investigated by illustrating the pinched

hysteresis loop and the evolution of states. The comparison to analog memristors

was studied in Chapter 3, which demonstrated that analog memristors are more

sensitive to frequency and memristance variations thus leading to larger errors.

This model was outlined through simulations and by reproducing the asymmetric

behaviour of ferroelectric memristors which show different dynamics for their rise

and descent paths. It was also proposed that a digital potentiometer controlled by

a microcontroller could be used to emulate the staircase memristor. Based on the

delayed-switching effect, the number of pulses determines the level of the mem-

ristance and the sign of pulses determines the direction of memristance variation.

By applying staircase memristors as local connections, a new CNN implementa-

tion was presented in conventional CNNs and ESNs. The motivation for applying

memristors in CNN lies in that large local connections are available to CNN im-

plementations, since current CNN circuits are not realised in large scale or local

connections. It is expected that with this new approach it will be possible to

reduce the size, power consumption and complexity of the conventional circuits,
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especially in an ESN where a reservoir normally consists of very large connec-

tions between nodes. On the other hand, it was proposed that ESNs could adapt

memristor-based local connections within the reservoir by modifying the original

algorithm, and therefore nodes are only locally connected. The results from the

experiment which are presented in Chapter 4 support the theories and proposed

approaches in the previously mentioned memristor-based neural networks. Fo-

cusing on machine vision tasks, including noise removal and edge detection, and

the Mackey-Glass data set prediction, the new structures produced satisfactory

performance. It is worth noting that the proposed ESN with memristive local

connections had a slightly lower performance than the original ESN and lacked

stability in terms of precision. This issue was caused by the simplified structure

and could be improved by choosing proper parameters in empirical or grid search

ways.

Focusing on STDP, memristor-based spiking neural networks were presented

and discussed. Concerning the nearest-neighbour and all-to-all spike interactions,

a trace-based STDP model was presented to overcome the compatibility problems.

In existing memristive STDP models, STDP learning is adapted to memristor-

based spiking neural networks using pre- and postsynaptic spikes which have the

shape of a typical action potential. Through propagating postsynaptic spikes

back to presynaptic neurons, memristors are controlled by the voltage difference

between pre- and postsynaptic spike signals. We have studied existing memristive

STDP models and therefore found that presynaptic or postsynaptic spikes can

not be added which is the case of all-to-all spike interaction. Since the proposed

trace-based memristive STDP model leaves exponentially decreased traces when

spikes arrive, presynaptic or postsynaptic spikes can be added to demonstrate

the effect of all previous spikes. Therefore, it could be used to cope with the

all-to-all spike interaction whilst being compatible with the nearest-neighbour

spike interaction. We have pointed out that existing research focuses on building

associations on memristor-based neural networks, which lack the ability to forget

established associations. It should be noted that, by introducing a rate-based term

to make spikes’ amplitudes adaptive, retention loss can be achieved by utilising the

proposed model in a simplified neural networks. Therefore, after the association

between two correlated events is established, the association would be weakened

if only the learning neuron is stimulated. This scenario is similar to the famous
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Pavlov’s dog experiment when the bell rings without the presence of food. In

such a way, the proposed model takes advantages of both spiking-time dependent

plasticity and rate-based plasticity. In addition, delta rule was adapted to the

proposed model in order to demonstrate the capability of supervised learning of

memristor-based spiking neural networks. The experiments have shown that the

trace-based memristive STDP model is compatible with both nearest-neighbour

and all-to-all spike interactions. The memristor-based spiking neural networks

presented in Chapter 6 learned to associate correlated events “sound of a bell”

and “sight of food” when both events occurred. If only “sound of a bell” was given

after the association established, retention loss occurred to forget the association.

The simulation results of supervised learning indicate that memristor-based neural

networks are capable of learning single or multiple tasks in terms of spike patterns.

The research described in this thesis has presented theories, novel ideas and

feasible approaches to the utilisation of memristors in neural networks through

new memristor models, new memristive STDP models and applications in CNNs,

ESNs and spiking neural networks. These studies are unexplored research areas or

improve existing systems and broaden the applications of memristor-based neural

networks. The next decades will show the impact of memristors and memristor-

based neural networks in both research and engineering fields. It is hoped that the

explorations presented in this thesis will motivate more investigations and studies

in this field and lead to sophisticated systems in the future.

7.2 Future Research

Following the ideas presented in this thesis, there are several potential directions

for future research especially in the domain of memristor-based spiking neural

networks.

The utilisation of memristors in neural networks is a thriving research field

which has led to studies in multilayer neural networks, cellular non-linear networks

and chaotic neural networks. However, memristor-based reservoir computing is a

relatively new research area which has not been widely studied. Even the concept

of reservoir computing itself is a new research branch in neural networks, and

thus there are lots of interesting and note-worthy directions in the combination of



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 137

memristors and reservoir computing. In this thesis, we have studied a memristor-

based reservoir where memristors are the local connections of nodes, which is an

initial attempt at investigating this area. In the following discussions, we attempt

to extend the existing research and discover more potential directions.

In relation to adapting the proposed trace-based memristive STDP model to

sophisticated spiking neural networks, a potential direction is to utilise the liquid

state machine (LSM) which is a branch of reservoir computing and focusing on

biological studies. LSM is proposed as a computational model for describing

computations in biological neural networks. Similar to ESNs, nodes in its reservoir

are randomly connected and are capable of real-time computation on continuous

streams of data. Based on this network, spiking-time dependent plasticity and the

proposed memristive model can be implemented to build a memristor-based LSM

with spiking neurons and memristors. In this case, memristors become synaptic

connections, and therefore we may explore whether the locally connected CNN

structure could be adapted to such a network. Furthermore, memristor-based

LSM could be evaluated by several benchmark tasks to demonstrate its capabilities

in real applications and thus proving another avenue in memristor-based spiking

neural networks.

Another interesting direction to explore is to evaluate different memristor-

based dynamical systems in reservoir. As introduced previously, non-linear dy-

namical systems with rich dynamics are possible to implement the reservoir. Cur-

rently, non-linear dynamics of memristor-based circuits are widely studied such as

the memristor oscillators [32, 49]. Thus, networks of memristor oscillators may be

good candidates for the realisation of a reservoir. In fact, memristor models for

building memristor oscillatory neurocomputers have been studied in [33] which

gives novel insights into the non-linear dynamics of different memristor models.

Following this study, we may build reservoirs with different memristor oscillator

circuits to demonstrate different dynamics and performances in benchmark tasks,

and thus we may investigate how different memristor models or oscillators out-

perform each other in various tasks. By this means, it provides in-depth studies

in the utilisation of memristive dynamical systems in memristor-based reservoir

computing. Meanwhile, this study may enable comparison to other dynamical

systems such as Mackey-Glass oscillator used in reservoir computing and yield

studies of reservoir computing from the view of memristive reservoirs.
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Finally, as another direction for future research, it would be interesting to

investigate memristor oscillators in adaptive learning. As we know in biological

neural networks, firing is composed of oscillations of spikes. In fact, oscillations

happen in neurons, especially correlated firing [34]. Thus, the neurons involved

fire together is a simple kind of correlated firing. It has been found that correlated

firing which occurs in olfactory systems and visual cortex has the form of oscilla-

tion of firing [38, 42]. Oscillations and rhythm also have been found in amoebae

but utilised to adapt to their environment and to anticipate periodic events [85].

This research makes us think that neurons may not only learn from the asso-

ciation of stimuli but also the frequency or oscillation of stimuli. In addition,

from long-term research, exogenous timing has been proposed in chronobiology

which studies the timing mechanism in biological systems. Associated with the

amoebae experiment, oscillation may explain why amoebae could predict periodic

events so precisely. Such behaviour has been studied in [79, 101] which attempt

to model amoebae learning using memristor-based oscillation circuits. Follow-

ing these studies, we can find a way to design adaptive learning which utilises

the memory effect of memristive devices to adapt stimuli and synchronise itself

with stimuli. Therefore, this extended study may provide an interesting way to

study chronobiology and correlated firing where the system itself correlates with

exogenous stimuli.
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[90] Sjöström, P. J. et al. (2008). Dendritic excitability and synaptic plasticity.

Physiological Reviews, 88(2), pp. 769–840.

[91] Snider, G. (2011). Instar and outstar learning with memristive nanodevices.

Nanotechnology, 22(1), p. 015201.

[92] Snider, G. et al. (2011). From synapses to circuitry: Using memristive mem-

ory to explore the electronic brain. Computer, 44(2), pp. 21–28.

[93] Snider, G. S. (2007). Self-organized computation with unreliable, memristive

nanodevices. Nanotechnology, 18(36), p. 365202.



BIBLIOGRAPHY 148

[94] Snider, G. S. (2008). Spike-timing-dependent learning in memristive nan-

odevices. Nanoscale Architectures, IEEE International Symposium on, pp.

85–92.

[95] Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learn-

ing. Proceedings of the National Academy of Sciences, 70(4), pp. 997–1001.

[96] Strukov, D. et al. (2010). Hybrid CMOS/memristor circuits. In Circuits and

Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,

pp. 1967–1970.

[97] Strukov, D. B. et al. (2008). The missing memristor found. Nature,

453(7191), pp. 80–83.

[98] Versace, M. and Chandler, B. (2010). The brain of a new machine. IEEE

Spectr, 47, pp. 30–37.

[99] Wang, F. et al. (2010). Delayed switching in memristors and memristive

systems. IEEE Electron Device Letters, 31(7), pp. 755–757.

[100] Wang, F. Z. et al. (2012). Delayed switching applied to memristor neural

networks. Journal of Applied Physics, 111(7), pp. 07E317–07E317.

[101] Wang, F. Z. et al. (2013). Adaptive neuromorphic architecture (ANA). Neu-

ral Networks, 45, pp. 111–116.

[102] Wang, S.-Y. et al. (2010). Multilevel resistive switching in Ti/CuxO/Pt

memory devices. Journal of Applied Physics, 108(11), 114110.

[103] Williams, R. S. (2008). How we found the missing memristor. IEEE Spec-

trum, 45(12), pp. 28–35.

[104] Xia, Q. et al. (2009). Memristor-CMOS hybrid integrated circuits for recon-

figurable logic. Nano Letters, 9(10), pp. 3640–3645.

[105] Yang, J. J. et al. (2008). Memristive switching mechanism for

metal/oxide/metal nanodevices. Nature Nanotechnology, 3(7), pp. 429–433.

[106] Yang, J. J. et al. (2010). High switching endurance in TaOx memristive

devices. Applied Physics Letters, 97(23), 232102.



BIBLIOGRAPHY 149

[107] Yang, X., Chen, W. and Wang, F. Z. (2013). A memristor-CAM (content

addressable memory) cell: New design and evaluation. International Con-

ference on Computer Science and Information Technology, pp. 1045–1048.

[108] Zhang, L. I. and Poo, M.-m. (2001). Electrical activity and development of

neural circuits. Nature Neuroscience, 4(11), p. 1207.



Appendix A

Publications and Acronyms

All the publications with my contribution has been listed in chronological order:

1. Frank Z. Wang, Na Helian, Sining Wu, Xiao Yang, Yike Guo, Guan Lim,

and Md Mamunur Rashid. “Delayed switching applied to memristor neural

networks.” Journal of Applied Physics, 2012, 111, 07E317-07E317.

2. Frank Z. Wang, Leon O. Chua, Xiao Yang, Na Helian, Ronald Tetzlaff,

Torsten Schmidt, Caroline Li, Jose Manuel Garcia Carrasco, Wanlong Chen,

and Dominique Chu. “Adaptive neuromorphic architecture (ANA).” Neural

Networks, 2013, 45, 111-116.

3. Xiao Yang, Wanlong Chen, and Frank Z. Wang. “A memristor-CAM (Con-

tent Addressable Memory) cell: new design and evaluation.” Computer Sci-

ence and Information Technology, International Conference on, 2013, 1045-

1048.

4. Wanlong Chen, Xiao Yang, and Frank Z. Wang. “Delayed switching applied

to memristor content addressable memory cell.” In Proceedings of the World

Congress on Engineering, 2013, 354-357.

5. Xiao Yang, Wanlong Chen, Frank Z. Wang. “A supervised spiking time

dependent plasticity network based on memristors.” Computational Intelli-

gence and Informatics (CINTI), 2013 IEEE 14th International Symposium

on, 2013, 447-451.

150



APPENDIX A. PUBLICATIONS AND ACRONYMS 151

6. Wanlong Chen, Xiao Yang, Frank Z. Wang. “Memristor content address-

able memory.” Nanoscale Architectures (NANOARCH), 2014 IEEE/ACM

International Symposium on, 2014, 83-87.

7. Wanlong Chen, Xiao Yang, and Frank Z. Wang. “HSMM: Hard switching

memristor model.” In Proceedings of the World Congress on Engineering

and Computer Science, 2014, 11-14.

8. Xiao Yang, Wanlong Chen, Frank Z. Wang. “The memristor-based associa-

tive learning network with retention loss.” Computational Intelligence and

Informatics (CINTI), 2014 IEEE 15th International Symposium on, 2014,

249-253.

9. Wanlong Chen, Xiao Yang, Frank Z. Wang. “A new memristor model for

content addressable memory.” Computational Intelligence and Informatics

(CINTI), 2014 IEEE 15th International Symposium on, 2014, 335-338.

10. Xiao Yang, Wanlong Chen, Frank Z. Wang. “The staircase memristor and

its applications.” Electronics Circuits and Systems (ICECS), 2014 IEEE

21st International Conference on, 2014, 259-262.



Acronyms

BCM Boundary Condition Memristor.

BIMPA Biologically Inspired Massively Parallel Architectures.

BP Back-Propagation.

CAM Content-Addressable Memory.

CMOL CMOS MOLecular.

CMOS Complementary Metal-Oxide-Semiconductor.

CNN Cellular Neural Network.

DRAM Dynamic Random Access Memory.

EPSC Excitatory Postsynaptic Current.

EPSP Excitatory Postsynaptic Potential.

ESN Echo State Network.

FeRAM Ferroelectric Random Access Memory.

FTJ Ferroelectric Tunnel Junction.

HP Hewlett-Packard.

LIF Leaky Integrate-and-Fire.

LSM Liquid State Machine.
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Acronyms 153

LTD Long-Term Depression.

LTP Long-Term Potentiation.

MLC Multi-Level Cell.

MoNETA Modular Neural Exploring Travelling Agent.

MSE Mean-Squared Error.

PCRAM Phase-Change Random Access Memory.

RMSE Root-Mean-Squared Error.

RNN Recurrent Neural Network.

RRAM Resistive Random Access Memory.

SNN Spiking Neural Network.

SPAN Spike Pattern Association Neuron.

SPICE Simulation Program with Integrated Circuit Emphasis.

SpiNNaker Spiking Neural Network Architecture.

SRAM Static Random Access Memory.

STDP Spiking-Time Dependent Plasticity.

TCAM Ternary Content-Addressable Memory.

TDM Time-Division Multiplexing.

TEAM ThrEshold Adaptive Memristor.

VLSI Very-Large Scale Integration.


