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Abstract— Analysis of heart rate variability (HRV) can
reveal a range of useful information regarding the dynamics of
the autonomic nervous system (ANS). It is considered a robust
and reliable tool to understand even some subtle changes
in ANS activity. Here, we study the “hidden” characteristic
changes in HRV during visually induced motion sickness; using
nonlinear analytical methods, supplemented by conventional
time- and frequency-domain analyses. We computed HRV from
electrocardiograms (ECG) of 14 healthy participants measured
at baseline and during nausea. Primarily hypothesizing evident
differences in measures of physiologic complexity (SampEn;
sample entropy, FuzzyEn; fuzzy entropy), chaos (LLE; largest
Lyapunov exponent) and Poincaré/Lorenz (CSI; cardiac
sympathetic activity, CVI; cardiac vagal index) between the
two states. We found that during nausea, participants showed
a markedly higher degree of regularity (SampEn, p = 0.0275;
FuzzyEn, p = 0.0006), with a less chaotic ANS response
(LLE, p = 0.0004). CSI significantly increased during nausea
compared to baseline (p = 0.0005), whereas CVI did not
appear to be statistically different between the two states (p
= 0.182). Our findings suggest that motion sickness-induced
ANS perturbations may be quantifiable via nonlinear HRV
indices. These findings have implications for understanding
the malaise of motion sickness and in turn, aid development of
therapeutic interventions to relieve motion sickness symptoms.

Clinical relevance— The study suggests potential indices
of physiologic complexity and chaos that may be useful in
monitoring motion sickness during clinical studies.

I. INTRODUCTION

Motion sickness is a syndrome that has been ailing hu-
mans since antiquity. Given intact vestibular apparatus (i.e.,
labyrinthine function), and sufficient intense stimulus; ev-
eryone can succumb to motion sickness [1]. This unpleasant
experience arises when the brain receives incongruent sen-
sory signals from systems regulating proprioception, balance
(i.e., vestibular function), and vision [2], [3].

The onset of motion sickness is marked by a constel-
lation of symptoms which include, for example, eyestrain,
dizziness, headache, sweating, nausea and vomiting. While
motion sickness symptoms might feel benign at first, their
insidious onset can negatively influence cognitive and task
performance [4], [5]. Physiologically, motion sickness symp-
tom development can elicit perturbations in autonomic func-
tional state; whereby, the neural activity of the sympathetic
nervous system is increased and that of the parasympathetic
nerves is reduced.
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There are numerous studies that have investigated the
changes in autonomic modulation induced by motion sick-
ness, using heart rate (HR) and heart rate variability (HRV).
HRV – the time-interval variations between adjacent heart-
beats – is a non-invasive objective marker of the autonomic
nervous system (ANS) functional state. Using a combined
HRV-fMRI approach, authors in [6] found increased HR and
decreased high frequency (HF) HRV power while evaluating
cortical control of cardiovagal modulation of motion sick-
ness. Low frequency (LF) HRV power has also been found
to increase during motion sickness [7], together with cardiac
sympathetic index (CSI) [8]. Cardiac vagal tone (CVI) and
CSI indices were proposed and validated by Toichi et al. [9]
to robustly assess short-term cardiac autonomic function, and
thus explored here as part of our Poincaré/Lorenz analysis.

Although many studies have sought to understand ANS re-
sponse to motion sickness, nonlinear HRV measures, specif-
ically sample entropy (SampEn), fuzzy entropy (FuzzyEn),
and the largest Lyapunov exponent (LLE), have never been
evaluated in this context, to the authors knowledge. Both
SampEn and FuzzyEn are measures of time series regularity;
LLE gives an estimate of levels of chaos and complexity.
The rationale to investigate these nonlinear metrics emanates
from the long-held assertion that the HRV signal comprises
nonlinear characteristics [10]. Moreover, there exists dis-
crepancies across studies among the widely reported linear
HRV measures in response to motion sickness, particularly so
regarding LF/HF ratio. For example, [11] reported no change
in LF/HF during malaise whereas [12] and [13] observed
increase and decrease respectively.

Thus this paper is aimed at examining nonlinear HRV
metrics (i.e., SampEn, FuzzyEn, LLE) as potential candidate
markers of motion sickness-induced nausea. Keeping with
the theme of complexity loss theory, we hypothesize primar-
ily that there would be evident differences in these metrics
between rest and during nausea. Crucially, the nonlinear
metrics examined here may deepen our understanding of
the underlying dynamics of autonomic function in response
to motion sickness. Supplementarily, we also report time-
and frequency-domain metrics that are well-studied in the
literature.

II. METHODS

A. Participants

All experimental protocols were conducted in accordance
with the Declaration of Helsinki standards for human re-
search and were approved by the Central Research Ethics
Advisory Group (ref: CREAG015-12-2021) of the University
of Kent. Participants were 14 healthy volunteers (mean age ±



S.D. 26.7 ± 4.0 years, 12 female) with normal or corrected-
to-normal vision. All participants provided written informed
consent, and received a small honorarium (£30 Amazon gift
voucher) for their participation.

B. Experimental Setup and Protocol

The protocol contained three contiguous sections (i.e.,
baseline, nauseogenic visual stimulus, recovery) with du-
ration 5-min, 20-min and 5-min respectively (Fig. 1). A
nauseogenic visual stimulus (visual display of stripes with
62.5°/s circular shift) was developed to induce motion sick-
ness. Participants provided nausea intensity ratings via a
keypad press. Presentation of the stimulus was performed
using the Psychophysics Toolbox Version 3 running on
MATLAB (The MathWorks, Inc., Natick, MA, USA).

Continuous ECG

Baseline Nauseogenic visual stimulus Recovery

5’ 5’20’

Fig. 1. Experimental overview illustration.

C. Data Acquisition, Processing and Analysis

Electrocardiogram (ECG) signal acquisition was per-
formed using a BioSemi ActiveTwo system (BioSemi B.
V., Amsterdam, Netherlands) at a sampling rate of 256 Hz.
The obtained raw ECG data was processed and analysed
using custom MATLAB scripts in accordance with recom-
mended HRV standards [14]. After a visual inspection of the
ECG data for disturbances/distortions, 5-min epochs were
extracted corresponding to “baseline” and “nausea” (based
on nausea intensity subjective ratings) states. To generate the
RR time-series, R-peak detection was first performed using
the Pan-Tompkins algorithm [15]. We computed the spectra
of the HRV using the Lomb-Scargle periodogram. Subse-
quently, we computed the total power of HRV spectra (Total
Power; ≤ 0.40 Hz), and the power of very low frequency
(VLF; ≤ 0.04 Hz), LF (0.04-0.15 Hz), HF (0.15-0.40 Hz)
and LF/HF ratio. The LF and HF powers were computed in
normalized units (n.u.), that is, LFnorm = LF/(TotalPower−
V LF) ∗ 100 and HFnorm = HF/(TotalPower −V LF) ∗ 100.
We took the natural logarithm (ln) of the LF/HF ratio, that is,
LF/HFratio = ln(LF/HF). Nonlinear Poincaré analysis was
performed by computing CSI and CVI from SD1 and SD2
values using, CSI = SD2/SD1 and CV I = log10(SD1∗SD2).
We further performed nonlinear dynamical analysis on the
RR series via the following chaos and complexity algorithms:

1) Sample Entropy (SampEn): The SampEn family of
statistics is detailed in the early work of Richman and Moor-
man [16]. Briefly, given N points, embedding dimension
m and radius of similarity r, define the correlation integral

Cm
i (r) =

Nm
i (r)

N−m , then compute average regularity with (1). The
SampEn value can then be computed using (2) [16]. In this
study, we use m = 2 and r = 0.2, based on previous findings
by others [16], [17].

Φ
m(r) =

∑
N−m
i=1 Cm

i (r)
N −m

, (1)

SampEn(m,r,N) =− ln
Φ(m+1)(r)
Φ(m)(r)

. (2)

2) Fuzzy Entropy (FuzzyEn): Methodologically, FuzzyEn
resembles SampEn with some exceptions; importantly, using
the distance dm

i j between vectors’ similarity, similarity degree
is obtained by a fuzzy membership function µ(dm

i j ,r) =

e− ln(2)(dm
i j/r)2

. From here (1) gets applied and the FuzzyEn
value calculated using (3). Chen et al. expatiated on the
FuzzyEn mechanism [18].

FuzzyEn(m,r,N) =− ln
Φ(m+1)(r)
Φ(m)(r)

. (3)

3) Largest Lyapunov Exponent (LLE): The largest Lya-
punov exponent (λ1) is a quantitative measure enabling
characterization of chaos in HRV signals. Elaborate details
of calculating λ1 have been presented by Rosenstein et
al. [19]. Briefly, defining λ1 as d(t) = Ceλ1t where d(t) is
the average divergence of trajectories at time t, and constant
C normalizes their initial separation; [19] shows that λ1 can
thus be computed precisely using a least-squares fit to the
“average” line defined by

y(i) =
1
∆t

⟨lnd j(i)⟩ , (4)

where ⟨ ⟩ indicates averaging over all values of j. Because
of the time component in (4), we perform cubic spline
interpolation at 4 Hz prior to computing the LLE value.

D. Statistical Analysis

All statistical analyses were performed using MATLAB.
Data are reported as mean ± standard error of the mean
(SEM). We compared HRV variables between baseline and
nausea states using paired t-tests. Further, we computed
Pearson’s correlation coefficient among autonomic variables
that reached statistical significance from the t-tests. All
statistical tests were two-tailed at (p < 0.05).

III. RESULTS

We observed that during motion sickness-induced nausea,
participants exhibited a high degree of regularity; that is,
lower values of SampEn and FuzzyEn, compared to baseline
(Table I). All values of the LLE were positive; a feature
of physiologic chaos. Contrasting LLE responses at baseline
with those during nausea state showed significantly reduced
chaos activity in the physiology of the participants (Table I).

Fig. 2 shows Poincaré plots from two example participants
during baseline and nausea states. The shapes of the Poincaré
plots reveal to us alterations of sympathetic and parasympa-
thetic modulation [20] between baseline and nausea. We can
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Fig. 2. Poincaré plots illustrations for Baseline and Nausea states for two example participants.

TABLE I
A SUMMARY OF THE RESULTS. DATA ARE MEAN ± SEM.

Autonomic parameters Baseline Nausea p-value
HR (bpm) 70.06 ± 2.91 72.57 ± 2.73 0.0258
SDNN (ms) 62.07 ± 6.94 73.14 ± 8.09 0.0136
RMSSD (ms) 53.45 ± 7.68 50.04 ± 7.29 0.0962
LF (n.u.) 46.26 ± 4.91 60.82 ± 6.02 0.0021
HF (n.u.) 53.74 ± 4.91 39.18 ± 6.02 0.0021
LF/HF (ln) -0.19 ± 0.23 0.49 ± 0.29 0.0026
SDNN/RMSSD 1.24 ± 0.09 1.57 ± 0.13 0.0006
CSI 2.25 ± 0.19 2.97 ± 0.27 0.0005
CVI 3.39 ± 0.10 3.45 ± 0.09 0.1082
SampEn 1.67 ± 0.06 1.52 ± 0.08 0.0275
FuzzyEn 1.27 ± 0.05 1.14 ± 0.06 0.0006
LLE 0.67 ± 0.01 0.64 ± 0.01 0.0004

see that as CSI increases from baseline to nausea state (Fig.
2a,b), there is a tendency toward parasympathetic blockade or
unopposed sympathetic activity, thus giving the nausea state
subplots a “cigar shape”. CSI was significantly higher during
nausea than at baseline (Table I), and highly correlated with
all metrics (p < 0.05) but SDNN (Fig. 3).
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Fig. 3. Pearson correlation matrix of autonomic parameters.

Average SDNN/RMSSD was significantly increased from
baseline (Table I) and strongly correlated with HR (p =

0.0184) and all other metrics (p < 0.01) except SDNN (Fig.
3). Consistent with the initial findings by [21], we found
that SDNN/RMSSD index correlates strongly with LF/HF
ratio (p = 5.97e-05; Fig. 4) suggesting these indices may be
characterizing HRV similarly but from different analytical
standpoints.

Extending our analyses to HR and linear HRV indices;
we found that average HR, SDNN, LF, and LF/HF were
significantly increased during malaise (Table I). Moreover,
as expected, HF power was markedly lower during nausea
than at baseline; in particular, HF was strongly negatively
correlated with SDNN/RMSSD (p = 1.78e-04) and CSI
(p = 1.30e-04), and positively correlated with LLE (p =
4.42e-03), SampEn (p = 2.40e-02) and FuzzyEn (p = 8.65e-
03), Fig. 3. While there is a noticeable decrease in average
RMSSD (Table I) during nausea compared to baseline; this
however, did not reach statistical significance.
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Fig. 4. ln(LF/HF) ratio responses of participants during nausea relate to
increases in SDNN/RMSSD. ln – natural logarithm.

IV. DISCUSSION

This paper presents first insights on the potential of
nonlinear HRV metrics (i.e., SampEn, FuzzyEn and LLE), in



monitoring and assessing visually induced motion sickness;
and thus advance our understanding of its elusive nature. We
found a significant decrease in physiologic complexity and
chaos during nausea compared to baseline. That is, patterns
in the HRV signal were more predictable (more regular)
during malaise that at rest.

The autonomic nervous function plays a large part in
adapting to daily life stressors. This ability is driven by
complex interactions owing to regulatory processes operating
over multiple temporospatial scales [22]. Hence the long-
held view that healthy heart rate dynamics are complex, and
chaotic. In fact, aging and disease have long been implicated
with negative affect on physiologic complexity [23]. In this
light, our findings could be understood as diminution of
irregularity and spontaneity during motion sickness-induced
autonomic arousal. Denaturing this highly complex system,
as we show here through an aversive experience such as
motion sickness, or due to physical stress [17], the adaptive
coping mechanisms of the system tend to reduce. This may
also explain the polysymptomatic onset of motion sickness.

We utilised Poincaré maps to visually compare the to-
pography of autonomic dynamics at rest and during nausea.
Visually, the fitted ellipsoids during nausea state, shift to a
longer and narrower area, depicting a “cigar-shape” (Fig. 2);
as such, CSI response increases. This increase in cardiac
sympathetic function was consistent with a previous study
that used a motion video to induce motion sickness [8].
Accordingly, this suggests intensifying motion sickness may
be triggering negative emotional valence; thereby, eliciting
agitation. Moreover, it suggests interventions that alter sym-
pathetic neural activity may prove efficacious in decreasing
or hindering autonomic arousal arising from motion sickness.

Our results additionally support the association between
SDNN/RMSSD and LF/HF during nausea (Fig. 4), whereas
[21] introduced it while examining participants undergoing
a 70° upright tilt test. Given its relatively straightforward
computation, and proving sensitive to measuring motion
sickness suggests it may be a useful complement or surrogate
index to the LF/HF ratio in the context of motion sickness.
Taken together, the newly reported measures herein may help
us get closer to disentangling motion sickness-induced ANS
perturbations.

V. CONCLUSION

In conclusion, our results indicate in particular that (Sam-
pEn, FuzzyEn, LLE, SDNN/RMSSD) may be sensitive mea-
sures of motion sickness-induced nausea. Suggesting they
could be used to complement the conventionally reported
HRV indices when examining motion sickness. Moreover,
these markers may have important implications as potent
therapeutic targets for motion sickness. In addition to prac-
tical significance, that is, helping in automated malaise
detection. Future studies are required to replicate our findings
using a larger sample size. By extension, investigating other
nonlinear indices (e.g., conditional, distribution and permu-
tation entropies, etc.) may further enhance understanding of
motion sickness.
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