Kent Academic Repository

Hopkins, Tim and Morse, David R. (1992) Cumulative Index to the Applied Statistics Algorithms. Technical report. , University of Kent, Canterbury, UK

Downloaded from
https://kar.kent.ac.uk/21027/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version UNSPECIFIED

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

Cumulative Index to the Applied Statistics Algorithms

Tim Hopkins and David Morse
University of Kent
Canterbury
Kent, CT2 7NF, UK

October 6, 1992

Chapter 1

Introduction

We present an index of all the algorithms which have been published in Applied Statistics between 1968 and 1991 inclusive. The algorithms have been classified using a modified version of the GAMS (Guide to Available Mathematical Software) Problem Classification Scheme given by Boisvert et al. [2]. This is an updated version of the scheme which appeared in Boisvert et al. [1] and has been considerably expanded especially in the statistical area. GAMS is a variable depth classification scheme. The first character, which is always a capital letter, gives the major subject area, further subdivisions are recursively denoted by alternating numbers and lower case letters. Thus, for example, D3a4 is in the main classification area of Linear Algebra (D), subarea Determinants (3), sub-subarea Real Nonsymmetric Matrices (a), sub-sub-subarea Sparse (4). The full classification list is reproduced in Chapter 4.

Although each algorithm has been classified using the full GAMS index, only the first two fields have been used to generate the cumulative index presented in Chapter 2. Each algorithm entry consists of three fields. The first field gives the algorithm number. An asterisk in this field indicates that the algorithm appears in the book of Griffiths and Hill [3]. The second field is the title of the algorithm followed by the implementation language (F for Fortran, A for Algol 60, P for Pascal and PL1 for PL/1). If the algorithm appears in Griffiths and Hill [3] then the implementation language is given as that used in the book. The final field gives all published references to the algorithm: the original publication (in bold) followed by any remarks and corrections to the algorithm which have subsequently been published. All references are of the form ASvolume:page. The full GAMS classification for each algorithm is given in Chapter 3.

The form of the database entries from which the index was generated is described by Hopkins and Morse in [6] and [4]. A short description has been given in Appendix B. The database will be updated at regular intervals and the authors would be pleased to be informed of any errors or omissions.

We have also added a perl script for performing a number of transformations on the original database. This is faster and more easily modified than the original Fortran routines. It is described in more detail in Appendix A.

An earlier version of Chapter 2 of this report appeared as [5]. In addition, this report also contains the full GAMS classification of each algorithm (Chapter 3), the GAMS classification list (Chapter 4), a description of how to obtain tools to operate on the database to generate a number of more useful output forms, where to obtain sources of the algorithms, and details of the database from which the index of algorithms was generated Appendix B.

Chapter 2

Index to the Applied Statistics Algorithms

In this chapter we present a cumulative index classified using the first two fields of the GAMS classification index. All algorithms published in Applied Statistics between 1968 and 1991 inclusive are included along with references to any remarks and corrections which may have appeared subsequently. The GAMS index has been slightly modified as follows

- C7 Gamma has been changed to Gamma and Beta distributions
- C8 Error functions has been changed to Normal distributions and Error functions

C : Elementary and special functions (search also class L5)		
C1 : Integer-valued functions (e.g., floor, ceiling, factorial, binomial coefficient, permutations, combinations)		
88	Generation of All ${ }_{N} C_{R}$ Combinations by Simulating Nested Fortran $D O$ Loops (F)	AS24:374
94	Coefficients of the Zonal Polynomials (F)	AS25:82
179	Enumeration of All Permutations of Multi-sets with Fixed Repetition Numbers (F)	AS31:169
227	Efficient Generation of all Binary Patterns by Gray Code Counting (A60)	AS36:245
C3 : Polynomials		
10	The Use of Orthogonal Polynomials (F)	$\begin{aligned} & \text { AS17:283 AS20:117 } \\ & \text { AS20:216 } \end{aligned}$
42	The Use of Orthogonal Polynomials with Equal x-values (F)	AS20:209
C7 : Gamma and beta		
32	The Incomplete Gamma Integral (F)	$\begin{aligned} & \text { AS19:285 AS34:326 } \\ & \text { AS38:423 } \end{aligned}$
63	The Incomplete Beta Integral (F)	AS22:409 AS26:111
64	Inverse of the Incomplete Beta Function Ratio (F)	AS22:411 AS26:111
103	Psi (Digamma) Function (F)	AS25:315
109	The Incomplete Beta Integral and the Inverse of the Incomplete Beta Function Ratio (F)	AS26:111 AS39:309
121	Trigamma Function (F)	AS27:97 AS40:514
123	Mixtures of Beta Distributions (F)	AS27:104
147	A Simple Series for the Incomplete Gamma Integral (F)	$\begin{aligned} & \text { AS29:113 AS29:229 } \\ & \text { AS34:326 AS38:423 } \end{aligned}$
187	Derivatives of the Incomplete Gamma Integral (F)	AS31:330
226	Computing Noncentral Beta Probabilities (F)	AS36:241 AS39:311
239	Chi-squared and Incomplete Gamma Integral (F)	AS37:466
245	A Robust and Reliable Algorithm for the Logarithm of the Gamma Function (F)	AS38:397
C8 : Normal distributions and error functions		
2	The Normal Integral (F)	AS17:186 AS18:299
24	From Normal Integral to Deviate (F)	AS18:290
66	The Normal Integral (F)	AS22:424
70	The Percentage Points of the Normal Distribution (F)	AS23:96
111	The Percentage Points of the Normal Distribution (F)	AS26:118
195	Multivariate Normal Probabilities with Error Bound (F)	AS33:81 AS34:103
241	The Percentage Points of the Normal Distribution (F)	AS37:477

D : Linear Algebra
 D1: Elementary vector and matrix operations

D2 : Solution of systems of linear equations (including inversion, $L U$ and related decompositions)

7 Inversion of a Positive Semi-definite Symmetric Matrix (F)
34 Sequential Inversion of Band Matrices (F)
37 Inversion of a Symmetric Matrix (A60)

D3 : Determinants

D4 : Eigenvalues, eigenvectors
60 Latent Roots and Vectors of a Symmetric Matrix (F)

D5 : $Q R$ decomposition, Gram-Schmidt orthogonalization
Gram-Schmidt Orthogonalization (F)

G: Optimization (search also classes $K, L 8$)
G1: Unconstrained
47
Function Minimization using a Simplex Procedure (F)

133 Optimization of One-Dimensional Multimodal Functions (F)

G2 : Constrained
13 Minimum Spanning Tree (A60)
14 Printing the Minimum Spanning Tree (A60)
40 Updating a Minimum Spanning Tree (F)
263 Construction of Irredundant Test Sets (F)

J : Integral transforms

J1 : Trigonometric transforms including Fast Fourier transforms

83 Complex Discrete Fast Fourier Transform (F)
AS24:153
97 Real Discrete Fast Fourier Transform (F)
AS25:166
117 The Chirp Discrete Fourier Transform of General Length (F)
AS26:351
186 Fast Algorithm of Data Permutation in Discrete Fast Fourier Transform (F)

AS22:260 AS23:101

AS20:335

AS20:338 AS23:252
AS23:250 AS25:97
AS27:380
AS27:367

AS18:103
AS18:105
AS20:204
AS40:213
AS17:195 AS23:477
AS27:379 AS31:336
AS17:198 AS31:336
AS19:290
AS20:111 AS23:100

AS24:150

AS31:327

K : Approximation (search also class L8)

K1 : Least squares (L_{2}) approximation

228 Finding I-Projections Subject to a Finite Set of Linear Inequality Constraints (F)

AS30:204 AS30:357
AS37:484
AS36:234

AS36:377

K5: Smoothing

101 Distribution-free Confidence Intervals (F)
119 Tabulating Sparse Joint Frequency Distributions (F)
131 Tabulating Frequency Distributions for Variables with Structured Code Sets (F)
143 The Mediancentre (F)
180 A Linear Estimator of Standard Deviation in Symmetrically Trimmed Normal Samples (F)
235 Number tally (F)
240 Updating the Inverse of the Dispersion Matrix (F)

L2 : Data manipulation

Probabilities and Standardized Differences for Selecting Subsets

AS40:495
AS17:289
AS18:110 AS26:122
AS36:119
AS18:197
AS20:206
AS21:226
AS23:466 AS24:390
AS25:309
AS26:364
AS27:359 AS38:582

AS28:325
AS31:174

AS37:285
AS37:474 Containing the Best Populations (F)

L3 : Elementary statistical graphics (search also class Q)

AS18:206 AS20:118
AS23:248
AS19:192 AS20:118
AS21:351
AS20:327 AS23:248

45	Histogram Plotting (F)	AS20:332 AS22:274
61	Six-line Plots (F)	AS22:265 AS26:368
96	A Simple Algorithm for Scaling Graphs (F)	AS25:94
130	Moving Statistics for Enhanced Scatter Plots (F)	AS27:354
168	Scale Selection and Formatting (F)	AS30:339
169	An Improved Algorithm for Scatter Plots (F)	$\begin{aligned} & \text { AS30:345 AS31:340 } \\ & \text { AS33:370 } \end{aligned}$
	L4 : Elementary data analysis	
29	The Runs Up and Down Test (A60)	AS19:190 AS25:193
31	Operating Characteristic and Average Sample Size for Binomial Sequential Sampling (A60)	AS19:197
35	Probabilities Derived from Finite Populations (A60)	$\begin{aligned} & \text { AS20:99 AS20:346 } \\ & \text { AS21:352 AS26:221 } \end{aligned}$
48	Uncertainty Function for a Binary Sequence (A60)	AS21:97
49	Autocorrelation Function for a Binary Sequence (A60)	AS21:100
50	Tests of Fit for a One-hit vs. Two-hit Curve (F)	AS21:103
54	Kendall's S Frequency Distribution (F)	AS21:345
55	The Generalized Mann-Whitney U Statistic (PL1)	AS21:348
56	Permutational Significance Testing (A60)	AS22:112
62	A Generator for the Sampling Distribution of the Mann-Whitney U Statistic (F)	AS22:269
67	The Evaluation of Absorption Probabilities in Sequential Binomial Sampling (F)	AS23:83
68	A Program for Estimating the Parameters of the Truncated Negative Binomial Distribution (F)	AS23:87
71	The Upper Tail Probabilities of Kendall's Tau (F)	AS23:98
80	Spherical Statistics (A60)	AS24:144
81	Circular Statistics (A60)	AS24:147
84	Measures of Multivariate Skewness and Kurtosis (F)	AS24:262
85	Critical Values of the Sign Test (A60)	AS24:265
90	One-sided Multi-variable Inference (F)	AS24:380
92	The Sample Size for a Distribution-free Tolerance Interval (F)	AS24:388
93	A Generator for the Null Distribution of the Ansari-Bradley W Statistic (F)	AS25:75
95	Maximum-likelihood Estimation of Location and Scale Parameters from Grouped Data (F)	AS25:88
98	The Spectral Test for the Evaluation of Congruential Pseudo-random Generators (F)	$\begin{aligned} & \text { AS25:173 AS25:324 } \\ & \text { AS27:375 } \end{aligned}$
100	Normal-Johnson and Johnson-Normal Transformations (F)	$\begin{aligned} & \text { AS25:190 AS30:106 } \\ & \text { AS32:345 } \end{aligned}$
107	Operating Characteristics and Average Sampling Number for a General Class of Sequential Sampling Plans (F)	AS26:98

114	Computing the Numerator of Ordinal Measures of Association when the Data are Ordered Categories (F)	AS26:211
122	Weights for One-sided Multivariate Inference (F)	AS27:100 AS30:352
124	Sample Sizes for One-sided and Strong Two-sided Distribution-free Tolerance Limits (A60)	AS27:188
138	Maximum Likelihood Estimation from Confined and Censored Normal Data (F)	AS28:185
146	Construction of Joint Probability of Selection for Systematic P.P.S. Sampling (F)	AS29:107
148	The Jackknife (F)	AS29:115 AS35:89
157	The Runs-Up and Runs-Down Tests (F)	AS30:81
162	Multivariate Conditional Logistic Analysis of Stratum-matched Case-control Studies (F)	AS30:190 AS33:123
171	Fisher's Exact Variance Test for the Poisson Distribution (F)	AS31:67
174	Multivariate Multisample Non-Parametric Tests (F)	AS31:80
176	Kernel Density Estimation using the Fast Fourier Transform (F)	$\begin{aligned} & \text { AS31:93 AS33:120 } \\ & \text { AS35:235 } \end{aligned}$
181	The W Test for Normality (F)	$\begin{aligned} & \text { AS31:176 AS32:224 } \\ & \text { AS35:232 } \end{aligned}$
188	Estimation of the Order of Dependence in Sequences (F)	AS32:185
189	Maximum Likelihood Estimation of the Parameters of the Beta Binomial Distribution (F)	AS32:196
193	A Revised Algorithm for the Spectral Test (F)	AS32:328 AS34:102
202	Data-based Non-parametric Hazard Estimation (F)	AS33:248
203	Maximum Likelihood Estimation of Mixtures of Distributions (A60)	AS33:327
214	Calculation of Monte Carlo Confidence Intervals (F)	AS34:296
215	Maximum-likelihood Estimation of the Parameters of the Generalized Extreme-value Distribution (F)	AS34:301 AS38:198
217	Computation of the Dip Statistic to Test for Unimodality (F)	AS34:320
218	Elements of the Fisher Information Matrix for the Smallest Extreme Value Distribution and Censored Data (F)	AS35:80
221	Maximum Likelihood Estimation of a Mixing Distribution (F)	AS35:302 AS39:176
248	Empirical Distribution Function Goodness-of-fit Tests (F)	AS38:535
249	Evaluation of the Mean and Covariance of the Truncated Multinormal Distribution (F)	AS38:543
250	Tests of the Equality of Dispersion Matrices (F)	AS38:553
254	Maximum Likelihood Estimation from Grouped and Truncated Data with Finite Normal Mixture Models (F)	AS39:273
259	Estimating Confidence Intervals by the Robbins-Monro Search Process (F)	AS39:413
262	A Two-sample Test for Incomplete Multivariate Data (F)	AS40:202
266	Maximum Likelihood Estimation of the Parameters of the Dirichlet Distribution (F)	AS40:365

L5: Function evaluation (search also class C)

3	The Integral of Student's t-distribution (F)	AS17:189 AS18:118
4	An Auxiliary Function for Distribution Integrals (F)	AS17:190 AS18:118 AS19:204 AS22:428
5	The Integral of the Non-central t-distribution (F)	AS17:193 AS18:118 AS22:428 AS34:102
17	The Reciprocal of Mill's Ratio (A60)	AS18:115
27	The Integral of Student's t-distribution (A60)	AS19:113
33	Calculation of Hypergeometric Sample Sizes (F)	AS19:287
59	Hypergeometric Probabilities (F)	AS22:130
76	An Integral Useful in Calculating Non-central t and Bivariate Normal Probabilities (F)	$\begin{aligned} & \text { AS23:455 AS27:379 } \\ & \text { AS28:113 AS28:113 } \\ & \text { AS28:336 AS34:100 } \\ & \text { AS35:310 AS38:580 } \end{aligned}$
77	Null Distribution of the Largest Root Statistic (F)	AS23:458
86	The von Mises Distribution Function (A60)	AS24:268
89	The Upper Tail Probabilities of Spearman's Rho (F)	AS24:377
91	The Percentage Points of the χ^{2} Distribution (F)	AS24:385 AS40:233
106	The Distribution of Non-negative Quadratic Forms in Normal Variables (F)	AS26:92 AS33:366
118	Approximate Rankits (F)	AS26:362
126	Probability Integral of the Normal Range (F)	AS27:197 AS31:99
128	Approximating the Covariance Matrix of Normal Order Statistics (F)	AS27:206 AS37:151
145	Exact Distribution of the Largest Multinomial Frequency (F)	AS28:333
152	Cumulative Hypergeometric Probabilities (F)	$\begin{aligned} & \text { AS29:221 AS31:339 } \\ & \text { AS38:199 AS40:374 } \end{aligned}$
153	Pan's Procedure for the Tail Probabilities of the Durbin-Watson Statistic (A60)	$\begin{aligned} & \text { AS29:224 AS30:189 } \\ & \text { AS33:363 AS33:366 } \end{aligned}$
155	The Distribution of a Linear Combination of χ^{2} Random Variables (A60)	AS29:323 AS33:366
158	Calculation of the Probabilities $\{P(l, k)\}$ for the Simply Ordered Alternative (F)	AS30:85
170	Computation of Probability and Non-centrality Parameter of a Non-central Chi-squared Distribution (F)	AS30:349
177	Expected Normal Order Statistics (Exact and Approximate) (F)	AS31:161 AS32:223
184	Non-central Studentized Maximum and Related Multiple- t Probabilities (F)	AS31:309
190	Probabilities and Upper Quantiles for the Studentized Range (F)	$\begin{aligned} & \text { AS32:204 AS34:104 } \\ & \text { AS36:119 } \end{aligned}$
192	Approximate Percentage Points using Pearson Curves (F)	AS32:322
200	Approximating the Sum of Squares of Normal Scores (F)	AS33:242
204	The Distribution of a Positive Linear Combination of χ^{2} Random Variables (A60)	AS33:332
209	The Distribution Function of Skewness and Kurtosis (F)	AS34:87

231	The Distribution of a Noncentral χ^{2} Variable with Nonnegative Degrees of Freedom (P)	AS36:402 AS38:204
234	Approximating the Percentage Points of Simple Linear Rank Statistics with Cornish-Fisher Expansions (F)	AS37:278
243	Cumulative Distribution Function of the Non-central t Distribution (F)	AS38:185
251	Multivariate Normal Probability Integrals with Product Correlation Structure (F)	AS38:564
256	The Distribution of a Quadratic Form in Normal Variables (P)	AS39:294
260	Evaluation of the Distribution of the Square of the Sample Multiple-correlation Coefficient (F)	AS40:195
261	Quantiles of the Distribution of the Square of the Sample Multiple-correlation Coefficient (F)	AS40:199
L6: Random number generation		
53	Wishart Variate Generator (F)	AS21:341
127	Generation of Random Orthogonal Matrices (F)	AS27:199 AS31:190
134	The Generation of Beta Random Variables with one Parameter Greater than and one Parameter Less than 1 (F)	AS28:90
137	Simulating Spatial Patterns: Dependent Samples from a Multivariate Density (F)	AS28:109
144	Random $R \times C$ Tables with Given Row and Column Totals (F)	AS28:329
159	An Efficient Method of Generating Random $R \times C$ Tables with Given Row and Column Totals (F)	AS30:91
183	An Efficient and Portable Pseudo-random Number Generator (F)	$\begin{aligned} & \text { AS31:188 AS33:123 } \\ & \text { AS34:198 AS35:89 } \end{aligned}$
205	Enumeration of $R \times C$ Tables with Repeated Row Totals (F)	AS33:340 AS35:88
213	Generation of Population Correlation Matrices with Specified Eigenvalues (F)	AS34:193
236	Recursive Enumeration of $R \times C$ Tables for Exact Likelihood Evaluation (P)	AS37:290

L7 : Analysis of variance (including analysis of covariance)

19 Analysis of Variance for a Factorial Table (A60)
22 The Interaction Algorithm (F)
23 Calculation of Effects (A60)
25 Classification of Means from Analysis of Variance (F)
65 Interpreting Structure Formulae (F)
72 Computing Mean Vectors and Dispersion Matrices in Multivariate Analysis of Variance (F)
104 BLUS Residuals (A60)

AS18:199
AS18:283
AS18:287
AS18:294
AS22:414 AS39:167
AS23:234

AS25:317

120	A Fortran Algorithm for the Additive Model in a Two-way Unbalanced MANOVA (F)	AS27:92
139	Maximum Likelihood Estimation in a Linear Model from Confined and Censored Normal Data (F)	$\begin{aligned} & \text { AS28:195 AS29:228 } \\ & \text { AS30:105 } \end{aligned}$
156	Combining Two Component Designs to form a Row-and-Column Design (F)	AS29:334
166	Generation of Polynomial Contrasts for Incomplete Factorial Designs with Quantitative Levels (F)	AS30:325
167	Screening Algorithm for Experimental Designs with Quantitative Levels (F)	AS30:334
173	Direct Design Matrix Generation for Balanced Factorial Experiments (F)	AS31:74
216	Fitting Models with a Linear Part and Auxiliary Parameters (F)	AS34:310
224	Combining Component Designs to form a Design with Several Orthogonal Blocking Factors (F)	AS36:228
246	An Analysis of Variance Table for Repeated Measurements with Unknown Autoregressive Parameter (F)	AS38:402
L8 : Regression (search also classes D5, D6, D9, G, K)		
38	Best Subset Search (A60)	AS20:112
74	L_{1}-norm Fit of a Straight Line (F)	AS23:244 AS25:96
75	Basic Procedures for Large, Sparse or Weighted Linear Least Squares Problems (A60)	$\begin{aligned} & \text { AS23:448 AS25:323 } \\ & \text { AS31:340 } \end{aligned}$
79	Gram-Schmidt Regression (A60)	AS23:470
108	Multiple Linear Regression with Minimum Sum of Absolute Errors (F)	$\begin{aligned} & \text { AS26:106 AS27:378 } \\ & \text { AS36:118 } \end{aligned}$
110	L_{p} Norm Fit of a Straight Line (F)	AS26:114 AS28:112
132	Least Absolute Value Estimates for a Simple Linear Regression Problem (F)	AS27:363
135	Min-Max Estimates for a Linear Multiple Regression Problem (F)	AS28:93 AS32:345
141	Inversion of a Symmetric Matrix in Regression Models (F)	$\begin{aligned} & \text { AS28:214 AS28:336 } \\ & \text { AS30:356 } \end{aligned}$
163	A Givens Algorithm for Moving from one Linear Model to another without going back to the Data (F)	AS30:198
178	The Gauss-Jordan Sweep Operator with Detection of Collinearity (F)	AS31:166 AS38:420
206	Isotonic Regression in Two Independent Variables (F)	$\begin{aligned} & \text { AS33:352 AS35:312 } \\ & \text { AS36:120 } \end{aligned}$
211	The F-G Diagonalization Algorithm (F)	$\begin{aligned} & \text { AS34:177 AS37:147 } \\ & \text { AS37:317 } \end{aligned}$
212	Fitting the Exponential Curve by Least Squares (F)	AS34:183
223	Optimum Ridge Parameter Selection (F)	AS36:112
229	Computing Regression Quantiles (F)	AS36:383
238	A Simple Recursive Procedure for the L_{1} Norm Fitting of a Straight Line (P)	AS37:457

L9 : Categorical data analysis

Exact Confidence Limits for the Odds Ratio in a 2×2 Table (F) Log-linear Fit for Contingency Tables (F)

AS20:105

87 Calculation of the Polychoric Estimate of Correlation in Contingency Tables (F)
112 Exact Distributions derived from Two-way Tables (F)

115 Exact Two-sided Confidence Limits for the Odds Ratio in a 2×2 Table (F)
116 The Tetrachoric Correlation and its Asymptotic Standard Error (F)
129 The Power Function of the 'Exact' Test for Comparing Two AS27:212 AS29:118 Binomial Distributions (F)
142 Exact Tests of Significance in Binary Regression Models (F)
160 Partial and Marginal Association in Multidimensional Contingency Tables (F)
161 Critical Regions of an Unconditional Non-randomized Test of Homogeneity in 2×2 Contingency Tables (F)
185 Automatic Model Selection in Contingency Tables (F)
201 Combined Significance Test of Differences Between Conditions and Ordinal Predictions (F)
207 Fitting a General Log-Linear Model (F)
244 Decomposability and Collapsibility for Log-linear Models (P)
Updating the Sufficient Configurations for Fitting ZPA Models to Multidimensional Contingency Tables (P)
252 Generating Classes for Log-linear Models (F)
253 Maximum Likelihood Estimation of the $R C(M)$ Association Model (F)
255 Fitting of Two-way Tables by Means for Rows, Columns and Cross-term (A60)

AS26:199 AS27:109
AS30:106 AS35:86
AS26:214

AS30:108
AS28:319 AS30:97

AS30:182

AS31:317 AS40:376
AS33:245

AS33:358
AS38:189
AS21:218 AS25:193
AS24:272 AS26:121

AS26:343

AS38:412

AS39:143
AS39:152

AS39:283

L10: Time series analysis (search also class J)
73 Cross-spectrum Smoothing via the Finite Fourier Transform (F)
AS23:238 AS30:354
AS29:211
150 Spectrum Estimate for a Counting Process (F)
AS29:214 the Data (F)
154 An Algorithm for Exact Maximum Likelihood Estimation of Autoregressive Moving Average Models by means of Kalman Filtering (F)
175 Cramér-Wold Factorization (F)
182 Finite Sample Prediction from ARIMA Processes (F)

AS31:86
AS31:180
An Algorithm for Approximate Likelihood Calculation of ARMAand Seasonal ARMA Models (F)
194 An Algorithm for Testing Goodness of Fit of $\operatorname{ARMA}(P, Q)$ Models (F)
197 A Fast Algorithm for the Exact Likelihood of Autoregressive AS33:104 Moving Average Models (F)
232 Computation of Population and Sample Correlation and Partial AS37:127 Correlation Matrices in $\operatorname{MARMA}(P, Q)$ Time Series (F)
237 The Corner Method for Identifying Autoregressive Moving Average Models (F) AS37:301
242 The Exact
Model (F)AS38:161
L12 : Discriminant analysis
165 An Algorithm to Construct a Discriminant Function in Fortran forCategorical Data (F)AS30:313
L14 : Cluster analysis
15
58 Euclidean Cluster Analysis (F)
102 Ultrametric Distances for a Single Linkage Dendrogram (F)AS18:106
AS22:126 AS24:160AS25:313
113 A Transfer Algorithm for Non-hierarchical Classification (F)
136 A K-Means Clustering Algorithm (F)AS26:206
140 Clustering the Nodes of a Directed Graph (F)AS28:100 AS30:355AS28:206
L15 : Life testing, survival analysis
125 Maximum Likelihood Estimation for Censored ExponentialAS27:190 AS30:355Survival Data with Covariates (F)
196 Conditional Multivariate Logistic Analysis of Stratified AS33:95Case-control Studies (F)
M : Simulation, stochastic modelling (search also classes L6 and L10)
M2 : Queueing
230 Distribution of Customers in $M / E_{T} / m$ Queues using Hokstad's AS36:394Approximation (F)

M3 : Reliability

AS39:402

N: Data handling (search also class L2)
N1: Input, output

43	Variable Format in Fortran (F)	AS20:213 AS20:346
57	Printing Multidimensional Tables (F)	AS22:118
264	Printing of Bit Patterns (F)	AS40:229
	N4 : Storage management (e.g., stacks, heaps, trees)	
1	Simulating Multidimensional Arrays in One Dimension (A60)	AS17:180 AS18:116
20	The Efficient Formation of a Triangular Array with Restricted	AS18:203
	Storage for Data (F)	
39	Arrays with a Variable Number of Dimensions (A60)	AS20:115
172	Direct Simulation of Nested Fortran DO-LOOPS (F)	AS31:71
219	Height Balanced Trees (F)	AS35:220

N6 : Sorting

26 Ranking an Array of Numbers (A60)
AS19:111 AS22:133

N8: Permuting
Transposing Multiway Structures (A60)
AS19:115

Z: Other
69 Knox Test for Space-Time Clustering in Epidemiology (F)
99 Fitting Johnson Curves by Moments (F)
105 Fitting a Covariance Selection Model to a Matrix (F)
149 Amalgamation of Means in the Case of Simple Ordering (F)
198 The Level Probabilities of Order Restricted Inference (F)
199 A Branch and Bound Algorithm for Determining the Optimal Feature Subset of Given Size (F)

AS23:92
AS25:180 AS30:106
AS26:88
AS29:209
AS33:115
AS33:236 AS35:314
AS40:376
208 Fitting a Multivariate Logistic Normal Distribution by the Method of Moments (F)
210 Fitting Five Parameter Johnson S_{B} Curves by Moments (F)
220 Operating Characteristics of James-Stein and Efron-Morris Estimators (F)
233 An Improved Branch and Bound Algorithm for Feature Subset Selection (F)

AS34:81

AS34:95
AS35:226

AS37:139

Chapter 3

Full GAMS Classification

This table provides the full classification given to each algorithm, only the first two fields were used to generate the index in Chapter 2.

AS	GAMS	AS	GAMS	AS	GAMS	AS	GAMS
1	N4	36	L9a	71	L4b1b	106	L5b1n
2	C8a	37	D2	72	L7e	107	L4a1a2
3	L5a1t	38	L8c1a2	73	L10b3a4	108	L8c3
4	L5a1	39	N4	74	L8a2	109	C7f
5	L5a1	40	G2d2	75	L8c1	110	L8a2
6	D2b1	41	L1c1b	76	L5a1	111	C8a
7	D2b1	42	C3a	77	L5b1	112	L9b
8	L7d	43	N1	78	L1c1	113	L14a1b
9	L7d	44	L3b4a	79	L8c1b1	114	L4b1b
10	C3a	45	L3a1	80	L4b1a4	115	L9a
11	D1b	46	D5	81	L4a1a2	116	L9a
12	L1c1b	47	G1b1a	82	D3a1	117	J1a
13	G2d2	48	L4a1d	83	J1a2	118	L5a2n
14	G2d2	49	L4a1d	84	L4c1a	119	L1c1d
15	L14a1a1	50	L4b3	85	L4a1b1	120	L7e
16	L1a3	51	L9c	86	L5a1v	121	C7d
17	L5a1n	52	L1a1	87	L9b	122	L4c1a
18	L1c1d	53	L6b3	88	C1	123	C7b
19	L7d1	54	L4b1b	89	L5a2	124	L4a1b
20	N4	55	L4b1b	90	L4c1a	125	L15
21	L3a	56	L4b1b	91	L5a2c	126	L5a1n
22	L7d1	57	N1	92	L4a1b	127	L6b15
23	L7d1	58	L14a1a	93	L4b1b	128	L5a2n
24	C8a	59	L5a1h	94	C1	129	L9a
25	L7a1	60	D4a1	95	L4a3	130	L3b4a
26	N6a1b	61	L3a3	96	L3	131	L1a1d
27	L5a1t	62	L4b1b	97	J1a1	132	L8a2
28	N8	63	C7f	98	L4a1d	133	G1a1a
29	L4a1d	64	C7f	99	Z	134	L6a2
30	L3a2	65	L7	100	L4a1a2	135	L8c3
31	L4a1a2b	66	C8a	101	L1	136	L14a1
32	C7e	67	L4a1a2b	102	L14a1a2	137	L6b
33	L5a1h	68	L4a1a2n	103	C7c	138	L4a1a2n
34	D2b1	69	Z	104	L7d3	139	L7d3
35	L4a4	70	C8a	105	Z	140	L14a1b

AS	GAMS	AS	GAMS		AS	GAMS	AS
GAMS							
141	L8i	176	L4a1b2	211	L8i	246	L7b
142	L9b	177	L5a2n	212	L8e1b3	247	L9c
143	L1c1	178	L8i	213	L6b3	248	L4a1a4
144	L6b3	179	C1	214	L4a1b	249	L4c1a
145	L5a1	180	L1a1b	215	L4a1a4	250	L4c1b
146	L4a4	181	L4a1a4n	216	L7d3	251	L5b1n
147	C7e	182	L10a2d3	217	L4a1b1	252	L9c
148	L4a1b	183	L6a21	218	L4a1a4	253	L9b
149	Z	184	L5b1	219	N4	254	L4a1a4n
150	L10a3a3	185	L9c	220	Z	255	L9d
151	L10b3a3	186	J1a1	221	L4a1b2	256	L5b1n
152	L5a1b	187	C7e	222	K5	257	L8a1a2
153	L5a1	188	L4a1d	223	L8e2	258	M3a
154	L10a2e	189	L4a1a4b	224	L7d2	259	L4a1b
155	L5a1c	190	L5a1	225	K1a2a	260	L5a1b
156	L7f	191	L10a2d	226	C7b	261	L5a1b
157	L4a1d	192	L5a2	227	C1	262	L4c1b
158	L5a1	193	L4a1d	228	K1b2a	263	G2d2
159	L6b3	194	L10a2d1	229	L8c3	264	N1
160	L9	195	C8a	230	M2	265	M2
161	L9a	196	L15	231	L5a1c	266	L4c1a
162	L4c1a	197	L10a2d	232	L10c	267	L2c
163	L8i	198	Z	233	Z	268	L8c1a3
164	K1a2a	199	Z	234	L5a2		
165	L12	200	L5a2n	235	L1a1d		
166	L7d2	201	L9d	236	L6b3		
167	L7d	202	L4a1b	237	L10a2d1		
168	L3	203	L4a1a4	238	L8a2		
169	L3b4a	204	L5a1c	239	C7e		
170	L5a1c	205	L6b3	240	L1c1b		
171	L4a1a2p	206	L8c1b	241	C8a		
172	N4	207	L9c	242	L10a2d1		
173	L7d1	208	Z	243	L5a1t		
174	L4c1b	209	L5a1	244	L9c		
L10a1c	210	Z	245	C7a			
175							

Chapter 4

The GAMS index

In this chapter we reproduce the full GAMS index produced by Boisvert et al. [2]. We are indebted to Ron Boisvert for providing us with a machine readable copy of this index and for permission to reproduce it.

Integer

Rational
Real
Standard precision Extended precision Extended range
Complex Standard precision Extended precision
Extended range
Interval
Real Complex
Change of representation
Type conversion
Base conversion
Decomposition, construction
Sequences (e.g., convergence acceleration)
Number theory
Elementary and special functions (search also class L5)
Integer-valued functions (e.g., floor, ceiling, factorial, binomial coefficient, permutations, combinations)
Powers, roots, reciprocals
Polynomials
Orthogonal
Trigonometric
Chebyshev, Legendre
Laguerre
Hermite
Non-orthogonal
Elementary transcendental functions
Trigonometric, inverse trigonometric
Exponential, logarithmic
Hyperbolic, inverse hyperbolic Integrals of elementary transcendental functions
Exponential and logarithmic integrals
Cosine and sine integrals
Gamma
Gamma, log gamma, reciprocal gamma
Beta, log beta
Psi function
Polygamma function
Incomplete gamma
Incomplete beta
Riemann zeta
Error functions
Error functions, their inverses, integrals, including the normal distribution function
Fresnel integrals
Dawson's integral
Legendre functions
Bessel functions
J, Y, H_{1}, H_{2}

C10a1	Real argument, integer order
C10a2	Complex argument, integer order
C10a3	Real argument, real order
C10a4	Complex argument, real order
C10a5	Complex argument, complex order
C10b	I, K
C10b1	Real argument, integer order
C10b2	Complex argument, integer order
C10b3	Real argument, real order
C10b4	Complex argument, real order
C10b5	Complex argument, complex order
C10c	Kelvin functions
C10d	Airy and Scorer functions
C10e	Struve, Anger, and Weber functions
C10f	Integrals of Bessel functions
C11	Confluent hypergeometric functions
C12	Coulomb wave functions
C13	Jacobian elliptic functions, theta functions
C14	Elliptic integrals
C15	Weierstrass elliptic functions
C16	Parabolic cylinder functions
C17	Mathieu functions
C18	Spheroidal wave functions
C19	Other special functions
D	Linear Algebra
D1	Elementary vector and matrix operations
D1a	Elementary vector operations
D1a1	Set to constant
D1a2	Minimum and maximum components
D1a3	Norm
D1a3a	L_{1} (sum of magnitudes)
D1a3b	L_{2} (Euclidean norm)
D1a3c	L_{∞} (maximum magnitude)
D1a4	Dot product (inner product)
D1a5	Copy or exchange (swap)
D1a6	Multiplication by scalar
D1a7	Triad ($\alpha x+y$ for vectors x, y and scalar α)
D1a8	Elementary rotation (Givens transformation)
D1a9	Elementary reflection (Householder transformation)
D1a10	Convolutions
D1a11	Other vector operations
D1b	Elementary matrix operations
D1b1	Set to zero, to identity
D1b2	Norm
D1b3	Transpose
D1b4	Multiplication by vector
D1b5	Addition, subtraction
D1b6	Multiplication
D1b7	Matrix polynomial
D1b8	Copy
D1b9	Storage mode conversion
D1b10	Elementary rotation (Givens transformation)
D1b11	Elementary reflection (Householder transformation)
D2	Solution of systems of linear equations (including inversion, $L U$ and related decompositions)

D2a	Real nonsymmetric matrices
D2a1	General
D2a2	Banded
D2a2a	Tridiagonal
D2a3	Triangular
D2a4	Sparse
D2b	Real symmetric matrices
D2b1	General
D2b1a	Indefinite
D2b1b	Positive definite
D2b2	Positive definite banded
D2b2a	Tridiagonal
D2b4	Sparse
D2c	Complex non-Hermitian matrices
D2c1	General
D2c2	Banded
D2c2a	Tridiagonal
D2c3	Triangular
D2c4	Sparse
D2d	Complex Hermitian matrices
D2d1	General
D2d1a	Indefinite
D2d1b	Positive definite
D2d2	Positive definite banded
D2d2a	Tridiagonal
D2d4	Sparse
D2e	Associated operations (e.g., matrix reorderings)
D3	Determinants
D3a	Real nonsymmetric matrices
D3a1	General
D3a2	Banded
D3a2a	Tridiagonal
D3a3	Triangular
D3a4	Sparse
D3b	Real symmetric matrices
D3b1	General
D3b1a	Indefinite
D3b1b	Positive definite
D3b2	Positive definite banded
D3b2a	Tridiagonal
D3b4	Sparse
D3c	Complex non-Hermitian matrices
D3c1	General
D3c2	Banded
D3c2a	Tridiagonal
D3c3	Triangular
D3c4	Sparse
D3d	Complex Hermitian matrices
D3d1	General
D3d1a	Indefinite
D3d1b	Positive definite
D3d2	Positive definite banded
D3d2a	Tridiagonal
D3d4	Sparse
D4	Eigenvalues, eigenvectors
D4a	Ordinary eigenvalue problems ($A x=\lambda x$)
D4a1	Real symmetric

D4a2	Real nonsymmetric
D4a3	Complex Hermitian
D4a4	Complex non-Hermitian
D4a5	Tridiagonal
D4a6	Banded
D4a7	Sparse
D4b	Generalized eigenvalue problems (e.g., $A x=\lambda B x$)
D4b1	Real symmetric
D4b2	Real general
D4b3	Complex Hermitian
D4b4	Complex general
D4b5	Banded
D4c	Associated operations
D4c1	Transform problem
D4c1a	Balance matrix
D4c1b	Reduce to compact form
D4c1b1	Tridiagonal
D4c1b2	Hessenberg
D4c1b3	Other
D4c1c	Standardize problem
D4c2	Compute eigenvalues of matrix in compact form
D4c2a	Tridiagonal
D4c2b	Hessenberg
D4c2c	Other
D4c3	Form eigenvectors from eigenvalues
D4c4	Back transform eigenvectors
D4c5	Determine Jordan normal form
D5	$Q R$ decomposition, Gram-Schmidt orthogonalization
D6	Singular value decomposition
D7	Update matrix decompositions
D7a	$L U$
D7b	Cholesky
D7c	$Q R$
D7d	Singular value
D8	Other matrix equations (e.g., $A X+X B=C$)
D9	Singular, overdetermined or underdetermined systems of linear equations, generalized inverses
D9a	Unconstrained
D9a1	Least squares (L_{2}) solution
D9a2	Chebyshev (L_{∞}) solution
D9a3	Least absolute value (L_{1}) solution
D9a4	Other
D9b	Constrained
D9b1	Least squares (L_{2}) solution
D9b2	Chebyshev (L_{∞}) solution
D9b3	Least absolute value (L_{1})
D9b4	Other
D9c	Generalized inverses
E	Interpolation
E1	Univariate data (curve fitting)
E1a	Polynomial splines (piecewise polynomials)
E1b	Polynomials
E1c	Other functions (e.g., rational, trigonometric)
E2	Multivariate data (surface fitting)
E2a	Gridded

E2b	Scattered
E3	Service routines for interpolation
E3a	Evaluation of fitted functions, including quadrature
E3a1	Function evaluation
E3a2	Derivative evaluation
E3a3	Quadrature
E3b	Grid or knot generation
E3c	Manipulation of basis functions (e.g., evaluation, change of basis)
E3d	Other
F	Solution of nonlinear equations
F1	Single equation
F1a	Polynomial
F1a1	Real coefficients
F1a2	Complex coefficients
F1b	Nonpolynomial
F2	System of equations
F3	Service routines (e.g., check user-supplied derivatives)
G	Optimization (search also classes $K, L 8$)
G1	Unconstrained
G1a	Univariate
G1a1	Smooth function
G1a1a	User provides no derivatives
G1a1b	User provides first derivatives
G1a1c	User provides first and second derivatives
G1a2	General function (no smoothness assumed)
G1b	Multivariate
G1b1	Smooth function
G1b1a	User provides no derivatives
G1b1b	User provides first derivatives
G1b1c	User provides first and second derivatives
G1b2	General function (no smoothness assumed)
G2	Constrained
G2a	Linear programming
G2a1	Dense matrix of constraints
G2a2	Sparse matrix of constraints
G2b	Transportation and assignments problem
G2c	Integer programming
G2c1	Zero/one
G2c2	Covering and packing problems
G2c3	Knapsack problems
G2c4	Matching problems
G2c5	Routing, scheduling, location problems
G2c6	Pure integer programming
G2c7	Mixed integer programming
G2d	Network (for network reliability search class M)
G2d1	Shortest path
G2d2	Minimum spanning tree
G2d3	Maximum flow
G2d3a	Generalized networks
G2d3b	Networks with side constraints
G2d4	Test problem generation
G2e	Quadratic programming
G2e1	Positive definite Hessian (i.e., convex problem)

G2e2	Indefinite Hessian
G2f	Geometric programming
G2g	Dynamic programming
G2h	General nonlinear programming
G2h1	Simple bounds
G2h1a	Smooth function
G2h1a1	User provides no derivatives
G2h1a2	User provides first derivatives
G2h1a3	User provides first and second derivatives
G2h1b	General function (no smoothness assumed)
G2h2	Linear equality or inequality constraints
G2h2a	Smooth function
G2h2a1	User provides no derivatives
G2h2a2	User provides first derivatives
G2h2a3	User provides first and second derivatives
G2h2b	General function (no smoothness assumed)
G2h3	Nonlinear constraints
G2h3a	Equality constraints only
G2h3a1	Smooth function and constraints
G2h3a1a	User provides no derivatives
G2h3a1b	User provides first derivatives of function and constraints
G2h3a1c	User provides first and second derivatives of function and constraints
G2h3a2	General function and constraints (no smoothness assumed)
G2h3b	Equality and inequality constraints
G2h3b1	Smooth function and constraints
G2h3b1a	User provides no derivatives
G2h3b1b	User provides first derivatives of function and constraints
G2h3b1c	User provides first and second derivatives of function and constraints
G2h3b2	General function and constraints (no smoothness assumed)
G2i	Global solution to nonconvex problems
G3	Optimal control
G4	Service routines
G4a	Problem input (e.g., matrix generation)
G4b	Problem scaling
G4c	Check user-supplied derivatives
G4d	Find feasible point
G4e	Check for redundancy
G4f	Other
H	Differentiation, integration
H1	Numerical differentiation
H2	Quadrature (numerical evaluation of definite integrals)
H2a	One-dimensional integrals
H2a1	Finite interval (general integrand)
H2a1a	Integrand available via user-defined procedure
H2alal	Automatic (user need only specify required accuracy)
H2a1a2	Nonautomatic
H2alb	Integrand available only on grid
H2alb1	Automatic (user need only specify required accuracy)
H2alb2	Nonautomatic
H2a2	Finite interval (specific or special type integrand including weight functions, oscillating and singular integrands, principal value integrals, splines, etc.)
H2a2a	Integrand available via user-defined procedure
H2a2al	Automatic (user need only specify required accuracy)

H2a2a2	Nonautomatic
H 2 a 2 b	Integrand available only on grid
H2a2b1	Automatic (user need only specify required accuracy)
H2a2b2	Nonautomatic
H2a3	Semi-infinite interval (including exp $-x$ weight function)
H2a3a	Integrand available via user-defined procedure
H2a3a1	Automatic (user need only specify required accuracy)
H2a3a2	Nonautomatic
H2a4	Infinite interval (including exp $-x^{2}$ weight function)
H2a4a	Integrand available via user-defined procedure
H2a4a1	Automatic (user need only specify required accuracy)
H2a4a2	Nonautomatic
H2b	Multidimensional integrals
H2b1	One or more hyper-rectangular regions (includes iterated integrals)
H2bla	Integrand available via user-defined procedure
H2b1a1	Automatic (user need only specify required accuracy)
H2b1a2	Nonautomatic
H2b1b	Integrand available only on grid
H2b1b1	Automatic (user need only specify required accuracy)
H2b1b2	Nonautomatic
H2b2	n -D quadrature on a nonrectangular region
H2b2a	Integrand available via user-defined procedure
H2b2a1	Automatic (user need only specify required accuracy)
H2b2a 2	Nonautomatic
H2b2b	Integrand available only on grid
H2b2b1	Automatic (user need only specify required accuracy)
H2b2b2	Nonautomatic
H 2 c	Service routines (e.g., compute weights and nodes for quadrature formulas)
I	Differential and integral equations
I1	Ordinary differential equations (ODE's)
I1a	Initial value problems
I1a1	General, nonstiff or mildly stiff
I1a1a	One-step methods (e.g., Runge-Kutta)
I1a1b	Multistep methods (e.g., Adams' predictor-corrector)
I1a1c	Extrapolation methods (e.g., Bulirsch-Stoer)
I1a2	Stiff and mixed algebraic- differential equations
I1b	Multipoint boundary value problems
I1b1	Linear
I1b2	Nonlinear
I1b3	Eigenvalue (e.g., Sturm-Liouville)
I1c	Service routines (e.g., interpolation of solutions, error handling, test programs)
I2	Partial differential equations
I2a	Initial boundary value problems
I2a1	Parabolic
I2a1a	One spatial dimension
I2a1b	Two or more spatial dimensions
I2a2	Hyperbolic
I2b	Elliptic boundary value problems
I2b1	Linear
I2b1a	Second order
I2b1a1	Poisson (Laplace) or Helmholtz equation
I2b1a1a	Rectangular domain (or topologically rectangular in the coordinate system)

I2b1alb	Nonrectangular domain
I2b1a2	Other separable problems
I2b1a3	Nonseparable problems
I2b1c	Higher order equations (e.g., biharmonic)
I2b2	Nonlinear
I2b3	Eigenvalue
I2b4	Service routines
I2b4a	Domain triangulation (search also class P2a2c1)
I2b4b	Solution of discretized elliptic equations
I3	Integral equations
J	Integral transforms
J1	Trigonometric transforms including Fast Fourier transforms
J1a	One-dimensional
J1a1	Real
J1a2	Complex
J1a3	Sine and cosine transforms
J1b	Multidimensional
J2	Convolutions
J3	Laplace transforms
J4	Hilbert transforms
K	Approximation (search also class L8)
K1	Least squares (L_{2}) approximation
K1a	Linear least squares (search also classes D5, D6, D9)
K1a1	Unconstrained
K1a1a	Univariate data (curve fitting)
K1a1a1	Polynomial splines (piecewise polynomials)
K1a1a2	Polynomials
K1a1a3	Other functions (e.g., rational, trigonometric, user-specified)
K1a1b	Multivariate data (surface fitting)
K1a2	Constrained
K1a2a	Linear constraints
K1a2b	Nonlinear constraints
K1b	Nonlinear least squares
K1b1	Unconstrained
K1b1a	Smooth functions
K1b1a1	User provides no derivatives
K1b1a2	User provides first derivatives
K1b1a3	User provides first and second derivatives
K1b1b	General functions
K1b2	Constrained
K1b2a	Linear constraints
K1b2b	Nonlinear constraints
K2	$\operatorname{Minimax}\left(L_{\infty}\right)$ approximation
K3	Least absolute value (L_{1}) approximation
K4	Other analytic approximations (e.g., Taylor polynomial, Pade)
K5	Smoothing
K6	Service routines for approximation
K6a	Evaluation of fitted functions, including quadrature
K6a1	Function evaluation
K6a2	Derivative evaluation
K6a3	Quadrature
K6b	Grid or knot generation
K6c	Manipulation of basis functions (e.g., evaluation, change of basis)

K6d	Other
L	Statistics, probability
L1	Data summarization
L1a	One-dimensional data
L1a1	Raw data
L1a1a	Location
L1a1b	Dispersion
L1a1c	Shape
L1a1d	Frequency, cumulative frequency
L1ale	Ties
L1a3	Grouped data
L1b	Two dimensional data (search also class L1c)
L1c	Multi-dimensional data
L1c1	Raw data
L1c1b	Covariance, correlation
L1c1d	Frequency, cumulative frequency
L1c2	Raw data containing missing values (search also class L1c1)
L2	Data manipulation
L2a	Transform (search also classes L10a, N6, and N8)
L2b	Tally data
L2c	Subset
L2d	Merge (search also class $N 7$)
L2e	Construct new variables (e.g., indicator variables)
L3	Elementary statistical graphics (search also class Q)
L3a	One-dimensional data
L3a1	Histograms
L3a2	Frequency, cumulative frequency, percentile plots
L3a3	EDA (e.g., box-plots, stem-and-leaf plots)
L3a4	Bar charts
L3a5	Pie charts
L3a6	X_{i} vs. i (including symbol plots)
L3a7	Lag plots (e.g., plots of X_{i} vs. X_{i-1})
L3b	Two-dimensional data (search also class L3e)
L3b1	Histograms (superimposed and bivariate)
L3b2	Frequency, cumulative frequency
L3b3	EDA
L3b4	Scatter diagrams
L3b4a	Y vs. X
L3b4b	Symbol plots
L3b4c	Lag plots (i.e., plots of X_{i} vs. Y_{i-j})
L3c	Three-dimensional data (search also class L3e)
L3e	Multi-dimensional data
L3e1	Histograms
L3e2	Frequency, cumulative frequency, percentile plots
L3e3	Scatter diagrams
L3e3a	Superimposed scatter diagrams of two or more Y-variables vs. one or more X-variables
L3e3c	Superimposed scatter diagrams of X_{i} vs. i for two or more X-variables
L3e3d	Matrices of bivariate scatter diagrams
L3e4	EDA
L4	Elementary data analysis
L4a	One-dimensional data
L4a1	Raw data
L4a1a	Parametric analysis

L4a1a1	Plots of empirical and theoretical density and distribution functions
L4a1a2	Parameter estimates and hypothesis tests
L4a1a2b	Beta, binomial
L4a1a2c	Cauchy, chi-squared
L4a1a2d	Double exponential
L4a1a2e	Exponential, extreme value type 1, extreme value type 2
L4a1a2f	F distribution
L4a1a2g	Gamma, geometric
L4a1a2h	Halfnormal
L4a1a21	Lambda, logistic, lognormal
L4a1a2n	Negative binomial, normal
L4a1a2p	Pareto, Poisson
L4a1a2s	Semicircular
L4a1a2t	t distribution, triangular
L4a1a2u	Uniform
L4a1a2w	Weibull
L4a1a3	Probability plot correlation coefficient plots
L4a1a3c	Chi-squared
L4a1a3e	Extreme value type 2
L4a1a3g	Gamma, geometric
L4a1a31	Lambda
L4a1a3n	Normal
L4a1a3p	Pareto, Poisson
L4a1a3t	t distribution
L4a1a3w	Weibull
L4a1a4	Parameter estimates and tests
L4a1a4b	Binomial
L4a1a4e	Extreme value
L4a1a4n	Normal
L4a1a4p	Poisson
L4a1a4u	Uniform
L4a1a4w	Weibull
L4a1a5	Transformation selection (e.g., for normality)
L4a1a6	Tail and outlier analysis
L4a1a7	Tolerance limits
L4alb	Distribution-free (nonparametric) analysis
L4a1b1	Estimates and tests regarding location (e.g., median), dispersion, and shape
L4a1b2	Density function estimation
L4a1c	Goodness-of-fit tests
L4a1d	Analysis of a sequence of numbers (search also class L10a)
L4a3	Grouped (and/or censored) data
L4a4	Data sampled from a finite population
L4a5	Categorical data
L4b	Two dimensional data (search also class L4c)
L4b1	Pairwise independent data
L4b1a	Parametric analysis
L4b1a1	Plots of empirical and theoretical density and distribution functions
L4b1a4	Parameter estimates and hypothesis tests
L4b1b	Distribution-free analysis (e.g., tests based on ranks)
L4b1c	Goodness-of-fit tests
L4b3	Pairwise dependent data
L4b4	Pairwise dependent grouped data
L4b5	Data sampled from a finite population
L4c	Multi-dimensional data (search also classes L4b and L7al)

L4c1	Independent samples
L4c1a	Parametric analysis
L4c1b	Distribution-free analysis (e.g., tests based on ranks)
L4e	Multiple multi-dimensional data sets
L5	Function evaluation (search also class C)
L5a	Univariate
L5a1	Cumulative distribution functions, probability density functions
L5a1b	Beta, binomial
L5a1c	Cauchy, chi-squared
L5a1d	Double exponential
L5a1e	Error function, exponential, extreme value
L5alf	F distribution
L5a1g	Gamma, general, geometric
L5a1h	Halfnormal, hypergeometric
L5a1k	Kendall F statistic, Kolmogorov-Smirnov
L5a11	Lambda, logistic, lognormal
L5a1n	Negative binomial, normal
L5a1p	Pareto, Poisson
L5alt	t distribution
L5a1u	Uniform
L5a1v	Von Mises
L5a1w	Weibull
L5a2	Inverse distribution functions, sparsity functions
L5a2b	Beta, binomial
L5a2c	Cauchy, chi-squared
L5a2d	Double exponential
L5a2e	Error function, exponential, extreme value
L5a2f	F distribution
L5a2g	Gamma, general, geometric
L5a2h	Halfnormal
L5a21	Lambda, logistic, lognormal
L5a2n	Negative binomial, normal, normal order statistics
L5a2p	Pareto, Poisson
L5a2t	t distribution
L5a2u	Uniform
L5a2w	Weibull
L5b	Multivariate
L5b1	Cumulative multivariate distribution functions, probability density functions
L5b1n	Normal
L5b2	Inverse cumulative distribution functions
L5b2n	Normal
L6	Random number generation
L6a	Univariate
L6a2	Beta, binomial, Boolean
L6a3	Cauchy, chi-squared
L6a4	Double exponential
L6a5	Exponential, extreme value
L6a6	F distribution
L6a7	Gamma, general (continuous, discrete), geometric
L6a8	Halfnormal, hypergeometric
L6a12	Lambda, logistic, lognormal
L6a14	Negative binomial, normal, normal order statistics
L6a16	Pareto, Pascal, permutations, Poisson
L6a19	Samples, stable distribution
L6a20	t distribution, time series, triangular
L6a21	Uniform (continuous, discrete), uniform order statistics

L6a22	Von Mises
L6a23	Weibull
L6b	Multivariate
L6b3	Contingency table, correlation matrix
L6b5	Experimental designs
L6b12	Discrete linear L_{1} (least absolute value) approximation test problem
L6b13	Multinomial
L6b14	Normal
L6b15	Orthogonal matrix
L6b21	Uniform
L6c	Service routines (e.g., seed)
L7	Analysis of variance (including analysis of covariance)
L7a	One-way
L7a1	Parametric
L7a2	Distribution-free
L7b	Two-way (search also class L7d)
L7c	Three-way (e.g., Latin squares) (search also class L7d)
L7d	Multi-way
L7d1	Balanced complete data (equal number of observations in every cell, e.g., factorial designs)
L7d2	Balanced incomplete data (equal number of observations in cells containing data, e.g., fractional factorial designs)
L7d3	General linear models (unbalanced data)
L7e	Multivariate
L7f	Generate experimental designs
L7g	Service routines
L8	Regression (search also classes D5, D6, D9, G, K)
L8a	Simple linear (i.e., $\left.y=b_{0}+b_{1} x\right)($ search also class L8h)
L8a1	Ordinary least squares
L8a1a	Parameter estimation
L8a1a1	Unweighted data
L8a1a2	Weighted data
L8a1c	Inference (e.g., calibration) (search also class L8ala)
L8a2	L_{p} for p different from 2 (e.g., least absolute values, minimax)
L8a3	Robust least squares
L8a4	Errors in variables
L8b	Polynomial (e.g., $y=b_{0}+b_{1} x+b_{2} x^{2}$) (search also class L8c)
L8b1	Ordinary least squares
L8b1a	Degree determination
L8b1b	Parameter estimation
L8b1b1	Not using orthogonal polynomials
L8b1b2	Using orthogonal polynomials
L8b1c	Analysis (search also class L8blb)
L8b1d	Inference (search also class L8b1b)
L8c	Multiple linear (i.e., $y=b_{0}+b_{1} x_{1}+\ldots+b_{p} x_{p}$)
L8c1	Ordinary least squares
L8c1a	Variable selection
L8c1a1	Using raw data
L8c1a2	Using correlation or covariance data
L8c1a3	Using other data
L8c1b	Parameter estimation (search also class L8c1a)
L8c1b1	Using raw data
L8c1b2	Using correlation data
L8c1c	Analysis (search also classes L8c1a and L8c1b)
L8c1d	Inference (search also classes L8cla and L8clb)

L8c2	Several multiple regressions
L8c3	L_{p} for p different from 2
L8c4	Robust least squares
L8c5	Measurement error models
L8c6	Models based on ranks
L8d	Polynomial in several variables analysis)
L8e	Nonlinear (i.e., $y=F(X, b)$) (search also class L8h)
L8e1	Ordinary least squares
L8e1a	Variable selection
L8e1b	Parameter estimation (search also class L8e1a)
L8e1b1	Unweighted data, user provides no derivatives
L8e1b2	Unweighted data, user provides derivatives
L8e1b3	Weighted data, user provides no derivatives
L8e1b4	Weighted data, user provides derivatives
L8e2	Ridge
L8e5	Measurement error models
L8f	Simultaneous (i.e., $Y=X b+\varepsilon$)
L8g	Spline (i.e., piecewise polynomial)
L8h	EDA (e.g., smoothing)
L8i	Service routines (e.g., matrix manipulation for variable selection
L9	Categorical data analysis
L9a	2-by-2 tables
L9b	Two-way tables (search also class L9d)
L9c	Log-linear model
L9d	EDA (e.g., median polish)
L10	Time series analysis (search also class J)
L10a	Univariate (search also classes L3a6 and L3a7)
L10a1	Transformations
L10a1a	Elementary (search also class L2a)
L10a1b	Stationarity (search also class L8a1)
L10a1c	Filters (search also class K5)
L10alc 1	Difference filters (nonseasonal and seasonal)
L10a1c2	Symmetric linear filters (e.g., moving averages)
L10a1c3	Autoregressive linear
L10alc4	Other
L10a1d	Taper
L10a2	Time domain analysis
L10a2a	Summary statistics
L10a2a1	Autocovariances and autocorrelations
L10a2a2	Partial autocorrelations
L10a2b	Stationarity analysis (search also class L10a2a)
L10a2c	Autoregressive models
L10a2c1	Model identification
L10a2c2	Parameter estimation
L10a2d	ARMA and ARIMA models (including Box-Jenkins methods)
L10a2d1	Model identification
L10a2d2	Parameter estimation
L10a2d3	Forecasting
L10a2e	State-space analysis (e.g., Kalman filtering)
L10a2f	Analysis of a locally stationary series
L10a3	Frequency domain analysis (search also class J1)
L10a3a	Spectral analysis
L10a3a1	Pilot analysis
L10a3a2	Periodogram analysis
L10a3a3	Spectrum estimation using the periodogram
L10a3a4	Spectrum estimation using the Fourier transform of the autocorrelation function

L10a3a5	Spectrum estimation using autoregressive models
L10a3a6	Spectral windows
L10a3b	Complex demodulation
L10b	Two time series (search also classes L3b3c, L10c, and L10d)
L10b2	Time domain analysis
L10b2a	Summary statistics (e.g., cross-correlations)
L10b2b	Transfer function models
L10b3	Frequency domain analysis (search also class J1)
L10b3a	Cross-spectral analysis
L10b3a2	Cross-periodogram analysis
L10b3a3	Cross-spectrum estimation using the cross-periodogram
L10b3a4	Cross-spectrum estimation using the Fourier transform of the cross-correlation or cross-covariance function
L10b3a6	Spectral functions
	Multivariate time series (search also classes J1, L3e3 andL10c
L10d	Two multi-channel time series
L11	Correlation analysis (search also classes L4 and L13c)
L12	Discriminant analysis
L13	Covariance structure models
L13a	Factor analysis
L13b	Principal components analysis
L13c	Canonical correlation
L14	Cluster analysis
L14a	One-way
L14a1	Unconstrained
L14a1a	Nested
L14a1a1	Joining (e.g., single link)
L14a1a2	Divisive
L14a1a3	Switching
L14a1a4	Predict missing values
L14alb	Non-nested
L14a2	Constrained
L14b	Two-way
L14c	Display
L14d	Service routines (e.g., compute distance matrix)
L15	Life testing, survival analysis
L16	Multidimensional scaling
L17	Statistical data sets
M	Simulation, stochastic modelling (search also classes L6 and L10)
M1	Simulation
M1a	Discrete
M1b	Continuous (Markov models)
M2	Queueing
M3	Reliability
M3a	Quality control
M3b	Electrical network
M4	Project optimization (e.g., PERT)
N	Data handling (search also class L2)
N1	Input, output
N2	Bit manipulation
N3	Character manipulation
N4	Storage management (e.g., stacks, heaps, trees)
N5	Searching

N5a	Extreme value
N5b	Insertion position
N5c	On a key
N6	Sorting
N6a	Internal
N6a1	Passive (i.e. construct pointer array, rank)
N6a1a	Integer
N6a1b	Real
N6a1c	Character
N6a2	Active
N6a2a	Integer
N6a2b	Real
N6a2c	Character
N6b	External
N7	Merging
N8	Permuting
O	Symbolic computation
P	Computational geometry (search also classes G and Q)
Q	Graphics (search also class L3)
R	Service routines
R1	Machine-dependent constants
R2	Error checking (e.g., check monotonicity)
R3	Error handling
R3a	Set criteria for fatal errors
R3b	Set unit number for error messages
R3c	Other utilities
R4	Documentation retrieval
S	Software development tools
S1	Program transformation tools
S2	Static program analysis tools
S3	Dynamic program analysis tools
Z	Other

Appendix A

Availability of Data, Tools and Algorithm Sources

In addition to the Fortran code described in Appendix B there is a perl script for transforming the original database files into a number of more useful formats. Currently the perl script will generate

1. a $\mathrm{Bib}_{\mathrm{E}} \mathrm{Xdatabase}$ entry for each algorithm,
2. a cumulative index based on the SHARE classification like the one in [6],
3. a cumulative index based on the GAMS classification like the one in [7].

The algorithm databases available are

1. The Calgo algorithms published in Communications of the ACM from 1960-1975 and in ACM Transactions on Mathematical Software from 1975-,
2. The Applied Statistics algorithms published in Applied Statistics 1968-.

The databases and software are available via electronic mail or anonymous ftp from unix.hensa.ac.uk. The files are

- acm.dbase - the CALGO algorithms database,
- acm.bib - BibTEXdatabase of the calgo algorithms,
- as.dbase - the Applied Statistics algorithms database,
- as.bib - BibTEXdatabase of the Applied Statistics algorithms,
- bibeg.f, lib.f, shared.f - Fortran 77 codes for operating on the database files. These codes are described in Appendix B,
- bibop.sh - a shar file containing the perl script, data files and man page as described above.

To obtain these files by electronic mail send mail of the form
send misc/netlib/bib/file
to archive@unix.hensa.ac.uk where file is replaced by the name of the file you require.

To obtain files via anonymous ftp, connect to unix.hensa.ac.uk (129.12.21.7) - the files are in the directory misc/netlib/bib. Compressed PostScript versions of [6] and [7] are also available for ftp in misc/ukc.reports/reports/64 and misc/ukc.reports/reports/71 respectively.

Please send bug reports, extensions to the perl script or further algorithm databases to trh @ukc.ac.uk.

Availability of algorithms

The sources to all algorithms published in TOMS and a number of those published in the Communications to the ACM are available via both e-mail and ftp.

To obtain copies via e-mail send a message of the form
send number from apstat
where number is the number of the algorithm you require, e.g., to obtain algorithm 276 the message would be
send 276 from apstat to statlib@unix.hensa.ac.uk (UK/Europe) or statlib@temper.stat.cmu.edu (US).

Using anonymous ftp connect to unix.hensa.ac.uk (129.12.21.7) from the UK and Europe or lib.stat.cmu.edu (US) \log in as anonymous to unix.hensa.ac.uk and statlib to lib.stat.cmu.edu. In both cases use your e-mail address as a password. To access the Applied Statistics algorithms cd statlib/apstat on unix.hensa.ac.uk and cd apstat on lib.stat.cmu.edu.

The algorithms currently available are
$3,5-7,13-15,22,27,30,32,34,38,40,41,45-47,51-53,57$, $58,60,62-66,75-78,83,84,88,89,91,93,95,97,99,100,103$, $107,108,109,111,114,116,117,121,123,125-128,132-136$, 138-143, 145, 147-155, 157-202, 205-278.

Appendix B

A Remark on ACM TOMS Algorithm 620

We report on an enhanced version of the database originally reported in [10]. In this new version we have included all the information necessary to generate full bibliographic references. Extra information includes the author's name (including any accents), the page range of the original reference (rather than just the starting page), the month and year of publication and an abbreviated journal name. The programming language used to code the algorithm is also given. Any mathematical notation used within the algorithm title and accents in the author's name have been defined using $\mathrm{T}_{\mathrm{E}} \mathrm{X}[8]$. Following the practice used with $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}[9]$, all letters within the title which need to remain capitalised in a printed version of the reference (e.g., Fortran, Bessel) are enclosed in braces.

The keywords and SHARE classification associated with each algorithm have been included with the main entry information rather than in a separate list as in [10]. Finally we have included references to all published remarks for each algorithm. These are in a compressed form which provides type (Remark or Certification), journal in which it appeared, volume, number, month and year of publication, page range and author.

The entry for each algorithm consists of either four or five records depending on whether there have been any published remarks. Each line in the file is restricted to 80 characters; records longer than this are continued on successive lines using a + in the first character position to denote that the line is a continuation line. Only the first record begins in character position one.

The first record gives details of the primary reference. The second and third are the author's name and title of the algorithm respectively. The keywords make up the fourth record. The first four records are always present. The final record provides details of remarks; individual fields within each remark reference are separated by commas and a semicolon is used to terminate each reference. Multiple remark references are treated as a single record.

As an example, the following entry is for algorithm 487

```
487 cacm 703 704 17 12 December 1974 s14 F
    J. Pomeranz;
    Exact Cumulative Distribution of the {K}olmogorov-{S}mirnov Statistic for
+ Small Samples
    goodness-of-fit testing;k-s statistic;k-s test;Kolmogorov-Smirnov test;
    R,toms,111,2,1,March,1976,J. Pomeranz;
+R,toms,285--294,3,3,September,1977,R. Kallman;
```

The first line should be interpreted as 'ACM CALGO Algorithm 487 appeared in Commun. ACM, Volume 17, Number 12, December 1974, pages 703-704'. The algorithm was implemented in Fortran and the modified SHARE classification is S14 (a sub-classification of the Special Functions).

The title spans two lines and contains two letters which must remain in upper case. The second remark is interpreted as being a Remark which appeared in ACM TOMS, Volume 3, Number 3 (second of the threes) in September 1977, pages 285-294. The author was R. Kallman.

We have provided Fortran routines which read in a reference in this compressed form and split the information up into a number of variables stored in a pair of common blocks. A template showing how to use these routines is given in Figure B.1. The two common blocks CREFNO and CREFST,

```
*
* TEMPLATE FOR USE OF GETREF
*
    LOGICAL GETREF
*
* Insert COMMON block definitions here
*
* Set up i/o channels and open data file
* (This routine contains a possibly machine dependent
* OPEN statement)
    CALL SETUP
*
* Set up output file -- application dependent routine
    CALL OUTFIL
*
* Initialize input buffer for references
* a call to initrf must precede calls to getref
    CALL INITRF
*
* Process all references
    10 IF (GETREF()) THEN
* process current reference
            GO TO 10
        END IF
*
*
```

Figure B.1: Template code for processing references
holding numerical and character data respectively, are defined by

```
    INTEGER NUMBER,PAGEND,PAGEST,VOLUME,YEAR
    COMMON /CREFNO/VOLUME,NUMBER,YEAR,PAGEST,PAGEND
    INTEGER AUTLEN,TITLEN,KEYLEN,OTHLEN
    PARAMETER (AUTLEN=80,TITLEN=160,KEYLEN=400
+ ,OTHLEN=300)
CHARACTER AUTHOR(AUTLEN), KEYWDS(KEYLEN),
+ OTHERS (OTHLEN),TITLE(TITLEN)
CHARACTER ALABEL* (6), JOURNL* (4),MONTH* (9),
+ LANG* (3),SHARE* (3)
```

```
COMMON / CREFST/ALABEL, JOURNL,MONTH, LANG,SHARE, AUTHOR,
+ TITLE,KEYWDS,OTHERS
```

where

- JOURNL contains the journal in which the algorithm was published (possible values are cacm, toms or topl),
- VOLUME, NUMBER, MONTH and YEAR store the volume, number, month and year of publication of the main reference,
- PAGEST and PAGEND give the page range of the main reference,
- the author and title are stored in the arrays AUTHOR and TITLE,
- the algorithm number (in two instances this contains a letter), implementation language ($\mathrm{F}=$ Fortran, A60 $=$ Algol 60, PLI $=$ PL1, $\mathrm{R}=$ Ratfor, $\mathrm{N}=$ None), and the Share index are placed in ALABEL, LANG and SHARE respectively;
- KEYWDS is an array containing the list of keywords separated by semicolons,
- the array OTHERS stores associated Remarks and Certifications. Each remark is separated by a semicolon and contains, as a list separated by commas
- type of remark ($\mathrm{R}=$ Remark, $\mathrm{C}=$ Certification),
- journal of publication (cacm or toms)
- page range - either a pair of number separated by -- or a single integer for a one page remark,
- the volume, number, month and year of the publication,
- the author.

Two example programs are included which use these routines to generate a BIBTEX database and a cumulative index sorted by the SHARE index.

Bibliography

[1] Boisvert, R. F., Howe, S. E., and Kahaner, D. K. GAMS : A framework for the management of scientific software. ACM Trans. Math. Softw. 11, 4 (December 1985), 313-355.
[2] Boisvert, R. F., Howe, S. E., Kahaner, D. K., Springmann, J. E., and Brown, D. E. The guide to available mathematical software. Tech. rep., Center for Computing and Applied Mathematics, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, 1989.
[3] Griffiths, P., and Hill, I. D., Eds. Applied Statistics algorithms. Ellis Horwood, Chichester, U.K., 1985.
[4] Hopkins, T., And Morse, D. Index of statistical algorithms. Appl. Statist. 39, 1 (1990), 177-187.
[5] Hopkins, T., and Morse, D. Remark on algorithm 620. ACM Trans. Math. Softw. 16, 4 (December 1990), 401-403.
[6] Hopkins, T., And Morse, D. Cumulative index to the ACM algorithms. Tech. Rep. 64 (Revised), Computing Laboratory, University of Kent, Canterbury, UK, Oct. 1992.
[7] Hopkins, T., and Morse, D. Cumulative index to the Applied Statistics algorithms. Tech. Rep. 71 (Revised), Computing Laboratory, University of Kent, Canterbury, UK, Oct. 1992.
[8] Knuth, D. E. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1984.
[9] Lamport, L. ATEX User's Guide \& Reference Manual. Addison-Wesley, Reading, Massachusetts, 1986.
[10] Rice, J. R., and Hanson, R. J. References and keywords for Collected Algorithms from ACM. ACM Trans. Math. Softw. 10, 4 (December 1984), 359-360.

