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We discuss polynomials orthogonal with respect to a
semi-classical generalized higher-order Freud weight

ω(x; t, λ) = |x|2λ+1 exp(tx2 − x2m), x ∈ R,

with parameters λ > −1, t ∈ R and m = 2, 3, . . .. The
sequence of generalized higher-order Freud weights
for m = 2, 3, . . ., forms a hierarchy of weights, with
associated hierarchies for the first moment and the
recurrence coefficient. We prove that the first moment
can be written as a finite partition sum of generalized
hypergeometric 1Fm functions and show that the
recurrence coefficients satisfy difference equations
which are members of the first discrete Painlevé
hierarchy. We analyse the asymptotic behaviour of the
recurrence coefficients and the limiting distribution
of the zeros as n → ∞. We also investigate structure
and other mixed recurrence relations satisfied by the
polynomials and related properties.

1. Introduction
In this paper we consider polynomials orthogonal with
respect to the generalized higher-order Freud weight

ω(x; t, λ) = |x|2λ+1 exp(tx2 − x2m), x, t ∈ R, m = 2, 3, . . . ,
(1.1)

with λ > −1 a parameter. The main goal of this article
is to bring a comprehensive self-contained analysis
of these polynomials when the parameter m takes
integer values higher than 1 and for any values
of λ > −1 and t ∈ R. The analysis for the particular
cases of m = 2, 3 was considered in [1–6], with an
emphasis on the study of the corresponding recurrence

2023 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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coefficients. We significantly extend existing studies on Freud type weights whilst providing a
coherent and consistent approach, using techniques which are also likely to be adopted in the
study of other semi-classical type weights. Throughout, we link and explain the connections
to the existing theory. After giving a short mathematical background in §2, in §3, we give a
closed-form expression for the moments with respect to the weight (1.1), which corresponds
to a finite partition sum of generalized hypergeometric 1Fm functions. The corresponding
recurrence coefficients in the three-term recurrence relation are investigated in §4. Therein,
we prove a recursive method that gives nonlinear recurrence relations satisfied by these
recurrence coefficients (proposition 4.4) and give them explicitly for the cases where m = 4, 5,
whilst recovering the already known relations for m = 2, 3. We prove structure relations and
mixed recurrence relations satisfied by generalized higher-order Freud polynomials in §5.
The asymptotic behaviour of the recurrence coefficients proved in §4 determines the limiting
distribution of the zeros, and this, as well as other properties of the zeros, is investigated in §6.
We conclude with the quadratic decomposition of the generalized higher-order Freud weight in
§7.

2. Mathematical background
Let ν be a positive measure on the real line for which the support is not finite and all the moments

μk =
∫∞

−∞
xk dν(x), k = 0, 1, . . . , (2.1)

exist. The corresponding monic orthogonal polynomial sequence {Pn(x)}n≥0 is defined by

∫∞

−∞
Pm(x)Pn(x) dν(x) = hnδm,n, hn > 0,

where δm,n denotes the Kronekar delta. A fundamental property of orthogonal polynomials is that
they satisfy a three-term recurrence relation of the form

Pn+1(x) = (x − αn)Pn(x) − βnPn−1(x), (2.2)

with βn > 0 and initial values P−1(x) = 0 and P0(x) = 1. The recurrence coefficients αn and βn are
given by the integrals

αn = 1
hn

∫∞

−∞
xP2

n(x) dν(x) and βn = 1
hn−1

∫∞

−∞
xPn−1(x)Pn(x) dν(x).

Relevant for this article is the case of a measure that admits a representation via a positive weight
function ω(x) on the real line as follows dν(x) = ω(x) dx. Henceforth, we will only work with a
weight function representation.

The coefficient βn in the recurrence relation (2.2) can also be expressed in terms of the Hankel
determinant

�n = det
[
μj+k

]n−1
j,k=0 =

∣∣∣∣∣∣∣∣∣∣

μ0 μ1 . . . μn−1
μ1 μ2 . . . μn
...

...
. . .

...
μn−1 μn . . . μ2n−2

∣∣∣∣∣∣∣∣∣∣
, n ≥ 1, (2.3)

with �0 = 1 and �−1 = 0, whose entries are given in terms of the moments (2.1) associated with
the weight ω(x). Specifically

βn = �n+1�n−1

�2
n

. (2.4)
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The monic polynomial Pn(x) can be uniquely expressed as the determinant

Pn(x) = 1
�n

∣∣∣∣∣∣∣∣∣∣∣∣

μ0 μ1 . . . μn

μ1 μ2 . . . μn+1
...

...
. . .

...
μn−1 μn . . . μ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣
,

and the normalization constants as

hn = �n+1

�n
and h0 = �1 = μ0. (2.5)

Also from (2.4) and (2.5), we see that the relationship between the recurrence coefficient βn and
the normalization constants hn is given by

hn = βnhn−1.

For symmetric weights, since ω(x) = ω(−x), it follows that αn = 0 in (2.2). Hence, for symmetric
weights, the sequence of monic orthogonal polynomials {Pn(x)}n≥0, satisfy the three-term
recurrence relation:

Pn+1(x) = xPn(x) − βnPn−1(x). (2.6)

The monic orthogonal polynomials Pn(x) associated with symmetric weights are also
symmetric, i.e. Pn(−x) = (−1)nPn(x). This implies that each Pn contains only even or only odd
powers of x, and we can write

P2n(x) = x2n +
n∑

k=1

c(2n)
2n−2kx2n−2k = x2n + c(2n)

2n−2x2n−2 + · · · + c(2n)
0

and

P2n+1(x) = x2n+1 +
n∑

k=1

c(2n+1)
2n−2k+1x2n−2k+1 = x2n+1 + c(2n+1)

2n−1 x2n−1 + · · · + c(2n+1)
1 x.

By substituting these expressions into the recurrence relation (2.6) and comparing the coefficients
on each side, we obtain

β2n = c(2n)
2n−2 − c(2n+1)

2n−1 and β2n+1 = − c(2n+2)
0

c(2n)
0

= −P2n+2(0)
P2n(0)

. (2.7)

It follows from (2.1) that, for symmetric weights, μ2k−1 = 0, k = 1, 2, . . . , and hence, it is possible
to write the Hankel determinant �n given by (2.3) in terms of the product of two Hankel
determinants obtained by matrix manipulation, interchanging columns and rows. The product
decomposition, depending on n even or odd, is given by

�2n =AnBn and �2n+1 =An+1Bn, (2.8)

where An and Bn are the Hankel determinants

An=

∣∣∣∣∣∣∣∣∣∣

μ0 μ2 . . . μ2n−2
μ2 μ4 . . . μ2n
...

...
. . .

...
μ2n−2 μ2n . . . μ4n−4

∣∣∣∣∣∣∣∣∣∣
and Bn=

∣∣∣∣∣∣∣∣∣∣

μ2 μ4 . . . μ2n

μ4 μ6 . . . μ2n+2
...

...
. . .

...
μ2n μ2n+2 . . . μ4n−2

∣∣∣∣∣∣∣∣∣∣
, (2.9)

with A0 =B0 = 1. Consequently, for a symmetric weight, by substituting (2.8) into (2.4), the
recurrence coefficient βn is given by

β2n = An+1Bn−1

AnBn
and β2n+1 = AnBn+1

An+1Bn
.
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Semi-classical orthogonal polynomials are natural generalizations of classical orthogonal
polynomials and were introduced by Shohat in [7]. Maroni provided a unified theory for semi-
classical orthogonal polynomials (cf. [8,9]). The weights of classical orthogonal polynomials
satisfy a first-order ordinary differential equation, the Pearson equation,

d
dx

{σ (x)ω(x)} = τ (x)ω(x), (2.10)

where σ (x) is a monic polynomial of degree at most 2 and τ (x) is a polynomial with degree 1. For
semi-classical orthogonal polynomials, the weight function ω(x) satisfies a Pearson equation (2.10)
with either deg(σ (x)) > 2 or deg(τ (x)) �= 1 (cf. [8,10]). The generalized higher-order Freud weight
given by (1.1) is a symmetric weight that satisfies the Pearson equation (2.10) with σ (x) = x and
τ (x) = 2(tx2 − mx2m + λ + 1) and therefore is a semi-classical weight.

3. Moments of the generalized higher-order Freud weights
The existence of the first moment μ0(t; λ, m) associated with the generalized higher-order Freud
weight (1.1) follows from the fact that, at ∞, the integrand behaves like exp(−x2) and, at x = 0,
the integrand behaves like xλ, which, for λ > −1, is integrable.

Theorem 3.1. Let x ∈ R, λ > −1, t ∈ R and m = 2, 3, . . .. Then, for the generalized higher-order Freud
weight (1.1), the first moment is given by

μ0(t; λ, m) =
∫∞

−∞
|x|2λ+1 exp(tx2 − x2m) dx =

∫∞

0
sλ exp(ts − sm) ds

= 1
m

m∑
k=1

tk−1

(k − 1)!
Γ

(
λ + k

m

)
× 2Fm

(
λ + k

m
, 1;

k
m

,
k + 1

m
, . . . ,

m + k − 1
m

;
(

t
m

)m)

= 1
m

Γ

(
λ + 1

m

)
1Fm−1

(
λ + 1

m
;

1
m

, . . .
m − 1

m
;
(

t
m

)m)

+ 1
m

m−1∑
k=2

tk−1

(k − 1)!
Γ

(
λ + k

m

)

× 1Fm−1

(
λ + k

m
;

k
m

,
k + 1

m
, . . . ,

m − 1
m

,
m + 1

m
, . . . ,

m + k − 1
m

;
(

t
m

)m)

+ tm−1

m!
Γ

(
λ

m
+ 1

)
1Fm

(
λ

m
+ 1;

m + 1
m

,
m + 2

m
, . . . ,

2m − 1
m

;
(

t
m

)m)
,

where pFq(a; b; z) is the generalized hypergeometric function (cf. [11, eq. 16.2.1].

Proof. By using the power series expansion of the exponential function, we obtain

μ0(t; λ, m) =
∫∞

−∞
|x|2λ+1 exp(tx2 − x2m) dx =

∫∞

0
sλ exp(ts − sm) ds

=
∫∞

0
sλ exp(−sm)

∞∑
n=0

(ts)n

n!
ds

=
∞∑

n=0

tn

n!

∫∞

0
sn+λ exp(−sm) ds
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= 1
m

∞∑
n=0

tn

n!

∫∞

0
y(n+λ−m+1)/m exp(−y) dy

= 1
m

∞∑
n=0

tn

n!
Γ

(
λ + n + 1

m

)
,

where Γ (x) denotes the Gamma function defined in [11, eq. 5.2.1], and the fourth equal sign
follows from the Lebesgue’s dominated convergence theorem. By letting n = mk + j for j =
0, 1, . . . , m − 1, we can write

μ0(t; λ, m) = 1
m

∞∑
k=0

m−1∑
j=0

Γ

(
λ + j + 1

m
+ k

)
tmk+j

(mk + j)!
.

Using the Gauss multiplication formula [11, eq. 5.5.6] yields

(mk + j)! = j! mmk
m∏

�=1

(
j + �

m

)
k

,

where (a)k denotes the Pochhammer symbol (cf. [11, §5.2(iii)], while it follows from [11, eq. 5.5.1]
that

Γ

(
λ + j + 1

m
+ k

)
=
(

λ + j + 1
m

)
k
Γ

(
λ + j + 1

m

)
,

and hence, we have

μ0(t; λ, m) = 1
m

∞∑
k=0

m−1∑
j=0

((λ + j + 1)/m)kΓ ((λ + j + 1)/m)
mmk((j + 1)/m)k((j + 2)/m)k · · · ((j + m)/m)k

tmk+j

j!

= 1
m

m−1∑
j=0

Γ

(
λ + j + 1

m

)
tj

j!

∞∑
k=0

× ((λ + j + 1)/m)k

((j + 1)/m)k((j + 2)/m)k · · · ((j + m)/m)k

(
t
m

)mk

= 1
m

m−1∑
j=0

Γ

(
λ + j + 1

m

)
tj

j!
× 2Fm

(
λ + j + 1

m
, 1;

j + 1
m

,
j + 2

m
, . . . ,

m + j
m

;
(

t
m

)m)
,

as required. �

Remark 3.2. In our earlier studies of semi-classical orthogonal polynomials, we proved special
cases of theorems 3.1 and 3.3, namely, for m = 2 in [4] and for m = 3, 4, 5 in [3].

In the following theorem, we derive a differential equation satisfied by the first moment
μ0(t; λ, m). It is often much easier to derive properties of a function from the differential equation
it satisfies rather than from an integral representation or, as in this case, a sum of generalized
hypergeometric functions.

Theorem 3.3. Let x ∈ R, λ > −1, t ∈ R and m = 2, 3, . . .. Then, for the generalized higher-order Freud
weight (1.1), the first moment

μ0(t; λ, m) =
∫∞

−∞
|x|2λ+1 exp(tx2 − x2m) dx =

∫∞

0
sλ exp(ts − sm) ds,

satisfies the ordinary differential equation:

m
dmϕ

dtm − t
dϕ

dt
− (λ + 1) ϕ = 0. (3.1)
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Proof. Following [3,12], we look for a solution of (3.1) in the form

ϕ(t) =
∫∞

0
estv(s) ds. (3.2)

For (3.2) to satisfy (3.1), it is necessary that

dmϕ

dtm − t
m

dϕ

dt
− λ + 1

m
ϕ =

∫∞

0
est
(

sm − ts
m

− λ + 1
m

)
v(s) ds = 0.

By using integration by parts, this is equivalent to
∫∞

0
est
{

smv(s) + 1
m

v(s) + s
m

dv

ds
− λ + 1

m
v(s)

}
ds = 0,

under the assumption that lims→∞ sv(s)est = 0. Hence, for ϕ(t) to be a solution of (3.1), we need to
choose v(s) so that

(msm − λ)v(s) + s
dv

ds
= 0.

One solution of this equation is v(s) = sλ exp(−sm). �

For the generalized higher-order Freud weight (1.1), the even moments can be written in terms
of derivatives of the first moment, as follows:

μ2k(t; λ, m) =
∫∞

−∞
x2k|x|2λ+1 exp(tx2 − x2m) dx

= dk

dtk

∫∞

−∞
|x|2λ+1 exp(tx2 − x2m) dx

= dk

dtk
μ0(t; λ, m), k = 0, 1, 2, . . . , (3.3)

where the interchange of integration and differentiation is justified by Lebesgue’s dominated
convergence theorem. Furthermore, from the definition we have,

μ2k+2(t; λ, m) = μ2k(t; λ + 1, m), k = 0, 1, 2, . . . , (3.4)

and therefore,

μ2k+2(t; λ, m) = μ0(t; λ + k + 1, m), k = 0, 1, 2, . . . ,

which illustrates the importance of the first moment.

4. Recurrence coefficients for generalized higher-order Freud weights
Theorem 4.1. For the generalized higher-order Freud weight (1.1), the recurrence coefficient βn is given

by

β2n = d
dt

ln
Bn

An
and β2n+1 = d

dt
ln

An+1

Bn
, (4.1)

with A0 = B0 = 1 and

An = Wr

(
μ0,

dμ0

dt
, . . . ,

dn−1μ0

dtn−1

)
and Bn = Wr

(
dμ0

dt
,

d2μ0

dt2 , . . . ,
dnμ0

dtn

)
, (4.2)

where

μ0 = μ0(t; λ, m) =
∫∞

0
xλ exp(ts − sm) dx,
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and Wr(ϕ1, ϕ2, . . . , ϕn) denotes the Wronskian given by

Wr(ϕ1, ϕ2, . . . , ϕn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 ϕ2 . . . ϕn

ϕ
(1)
1 ϕ

(1)
2 . . . ϕ

(1)
n

...
...

. . .
...

ϕ
(n−1)
1 ϕ

(n−1)
2 . . . ϕ

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, ϕ

(k)
j = dkϕj

dtk
.

Proof. It follows from (2.9) and (3.3) that An and Bn can be written in terms of the Wronskians
given by (4.2). Furthermore,

An
dBn

dt
− Bn

dAn

dt
=An+1Bn−1 and Bn

dAn+1

dt
− An+1

dBn

dt
=An+1Bn (4.3)

(cf. [13, §6.5.1]) and (4.3), together with (2) yields (4.1). �

Theorem 4.2. Let ω0(x) be a symmetric positive weight on the real line for which all the moments
exist, and let ω(x; t) = exp(tx2)ω0(x), with t ∈ R, is a weight such that all the moments of exist. Then the
recurrence coefficient βn(t) satisfies the Volterra, or the Langmuir lattice, equation:

dβn

dt
= βn(βn+1 − βn−1).

Proof. See, e.g. Van Assche [14, Theorem 2.4]. �

Theorem 4.3. For the generalized higher-order Freud weight (1.1), the associated monic polynomials
Pn(x) satisfy the recurrence relation:

Pn+1(x) = xPn(x) − βn(t; λ)Pn−1(x), n = 0, 1, 2, . . . , (4.4)

with P−1(x) = 0 and P0(x) = 1, where

β2n(t; λ) = An+1(t; λ)An−1(t; λ + 1)
An(t; λ)An(t; λ + 1)

= d
dt

ln
An(t; λ + 1)
An(t; λ)

and

β2n+1(t; λ) = An(t; λ)An+1(t; λ + 1)
An+1(t; λ)An(t; λ + 1)

= d
dt

ln
An+1(t; λ)
An(t; λ + 1)

,

where An(t; λ) is the Wronskian given by (4.2) with

μ0(t; λ, m) = 1
m

m∑
k=1

tk−1

(k − 1)!
Γ

(
λ + k

m

)

× 2Fm

(
λ + k

m
, 1;

k
m

,
k + 1

m
, . . . ,

m + k − 1
m

;
(

t
m

)m)
.

Proof. It follows from substituting (3.4) into the expression for Bn(t; λ) given in (4.2) that Bn =
An(t; λ + 1) and then the result immediately follows from (2) and (4.1). �

(a) Nonlinear recursive relations
We follow the approach found in [9, §7] whose key results are summarized in [15, Proposition
3.1].
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Note that for a given m ≥ 1, we can write

x2mPn(x) =
m∑

�=−m

C(2m)
n,n+2�

Pn+2�, (4.5)

where

C(2m)
n,n+2�

= 1
hn+2�

∫∞

−∞
x2mPn+2�(x)Pn(x)ω(x) dx for � = −m, . . . , m.

Observe that C(2m)
n,n+k = C(2m)

n+k,n = 0 for |k| ≥ 2m + 1 and

C(2m)
n,n+2�

= hn

hn+2�

C(2m)
n+2�,n = 1

βn+1 · · · βn+2�

C(2m)
n+2�,n for � = 1, . . . , m.

From the recurrence relation (2.6), it follows

x2Pn(x) = Pn+2 + (βn + βn+1)Pn + βn−1βnPn−2, n ≥ 0. (4.6)

In particular, one has C(2)
n,n = βn + βn+1, C(2)

n,n−2 = βn−1βn and C(2)
n,n+2 = 1. The computation of

the coefficients
{
C(2m+2)

n−2�,n
}m+1
�=0 can be derived from the coefficients

{
C(2m)

n−2�,n
}m
�=0 as follows:

C(2m+2)
n−2�,n = βn+2βn+1C(2m)

n−2�,n+2 + (βn + βn+1)C(2m)
n−2�,n + C(2m)

n−2�,n−2, � = 0, . . . , m, (4.7)

which is a direct consequence of (4.5) multiplied by x2 and (4.6).

Proposition 4.4. The recurrence coefficient βn for the generalized higher-order Freud weight (1.1)
satisfies the discrete equation:

2mV(2m)
n − 2tβn = n +

(
λ + 1

2

)
[1 − (−1)n], (4.8)

where

V(2m)
n = C(2m−2)

n,n−2 + βnC(2m−2)
n,n . (4.9)

Alternatively, (4.9) can be written as follows:

V(2m)
n = 1

hn−2

∫∞

−∞
x2m−2Pn−2(x)Pn(x)ω(x) dx + βn

hn

∫∞

−∞
x2m−2P2

n(x)ω(x) dx.

Proof. For any monic polynomial sequence {Pn(x)}n≥0, one can always write

x
dPn

dx
(x) =

n∑
j=0

ρn,jPn−j(x), for n ≥ 1,

with ρn,0 = n. The assumption that {Pn(x)}n≥0 is orthogonal with respect to the semi-classical
weight ω(x) satisfying the differential equation (2.10) with σ (x) = x and τ (x) = 2(tx2 − mx2m + λ +
1) gives, using integration by parts,

ρn,jhn−j =
∫∞

−∞
x

dPn

dx
(x)Pn−j(x)ω(x) dx

= −
∫∞

−∞
{τ (x)Pn−j(x) + x

dPn−j

dx
(x)}Pn(x)ω(x) dx,

where hk =
∫∞

−∞
P2

k(x)ω(x) dx > 0. Therefore, ρn,j = 0 for any j ≥ 2m + 1 and the symmetry of the

weight implies ρn,j = 0 for any j odd. Therefore, we have

x
dPn

dx
(x) =

m∑
�=0

ρn,2� Pn−2�(x), for n ≥ 0. (4.10)
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Recall (4.6) to write

1
hn

∫∞

−∞
x2P2

n(x)ω(x) dx = (βn + βn+1)

and
1

hn−2

∫∞

−∞
x2Pn−2(x)Pn(x)ω(x) dx = βnβn−1,

and hence,

ρn,2� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2m
hn

∫∞

−∞
x2mP2

n(x)ω(x) dx

−2t(βn + βn+1) − (2λ + 2 + n), if � = 0,

2m
hn−2

∫∞

−∞
x2mPn−2(x)Pn(x)ω(x) dx − 2t βnβn−1, if � = 1,

2m
hn−2�

∫∞

−∞
x2mPn−2�(x)Pn(x)ω(x) dx, if 2 ≤ � ≤ m − 1,

2m βn · · · βn−2m+1, if � = m,

0, otherwise.

(4.11)

Take � = 0 in (4.7) and note that C(2m−2)
n,n−2 = C(2m−2)

n−2,n βnβn−1 to obtain

C(2m)
n,n = βn+1(C(2m−2)

n,n+2 βn+2 + C(2m−2)
n,n ) + βn(C(2m−2)

n−2,n βn−1 + C(2m−2)
n,n ).

The symmetric orthogonality recurrence relation (2.6) implies that

Pn+2(x)Pn(x) = P2
n+1(x) + βnPn−1(x)Pn+1(x) − βn+1P2

n(x),

which gives the relation

C(2m−2)
n,n+2 βn+2 + C(2m−2)

n,n = C(2m−2)
n−1,n+1βn + C(2m−2)

n+1,n+1, (4.12)

and consequently, we have

C(2m)
n,n = V(2m)

n+1 + V(2m)
n where V(2m)

n = βn(βn−1C(2m−2)
n−2,n + C(2m−2)

n,n ). (4.13)

On the other hand, expressions for the coefficients ρn,2j can be obtained through a purely
algebraic way and therefore expressed recursively. For that, we differentiate with respect to x
the recurrence relation (2.6) and use the structure relation (4.10) to obtain

Pn(x) +
m∑

�=0

ρn,2�Pn−2�(x) = dPn+1

dx
(x) + βn

dPn−1

dx
(x).

We multiply the latter by x and use again (4.10) and then (2.6) to obtain a linear combination of
terms of {Pn(x)}n≥0, and this gives

Pn+1(x) + βnPn−1(x) =
m+1∑
�=0

(ρn+1,2� − ρn,2� + βnρn−1,2�−2 − βn−2�+2 ρn,2�−2)Pn−2�+1(x).

Since the terms are linearly independent, we equate the coefficients of Pn+1, Pn, . . . , Pn−2m−1 to
obtain ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρn,0 = n,

ρn+1,2 − ρn,2 = 2βn,

ρn+1,2� − ρn,2� = βn−2�+2 ρn,2�−2 − βn ρn−1,2�−2, for � = 2, . . . , m − 1,

βn−2m ρn,2m = βn ρn−1,2m, for j = m − 1.

(4.14)

We combine (4.11) with (4.14) to conclude that the first equation (when � = 0) gives

mV(2m)
n+1 + mV(2m)

n − t(βn + βn+1) = n + (λ + 1),
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which implies (4.8). �

The expressions for V(2m)
n can then be obtained recursively using (4.9), (4.7) and (4.13) to write

V(2m)
n = βn

(
V(2m−2)

n+1 + V(2m−2)
n

)
+ (βn + βn+1)V(2m−2)

n

− βn(βn + βn+1)
(

V(2m−4)
n + V(2m−4)

n+1

)
+ βnβn−1

(
V(2m−4)

n−2 + V(2m−4)
n−1

)
+ βnβn−1βn+1βn+2C(2m−4)

n−2,n+2. (4.15)

Combining (4.12) with (4.13) gives

V(2m)
n − V(2m)

n−1 = βn

(
V(2m−2)

n+1 + V(2m−2)
n

)
− βn−1

(
V(2m−2)

n−1 + V(2m−2)
n−2

)
.

By using the latter relation, we replace the term (βn + βn+1)V(2m−2)
n in (4.15) to obtain

V(2m)
n = βn

(
V(2m−2)

n+1 + V(2m−2)
n + V(2m−2)

n−1

)
+ βn+1V(2m−2)

n−1

− βn+1βn−1

(
V(2m−4)

n−1 + V(2m−4)
n−2

)
+ βn+2βn+1βnβn−1C(2m−4)

n−2,n+2. (4.16)

Consider n → n − 1 and m → m − 1 in the latter expression, and replace it in (4.16) and this yields

V(2m)
n = βn

(
V(2m−2)

n+1 + V(2m−2)
n + V(2m−2)

n−1

)
+ βn−1βn+1V(2m−4)

n + βnβn+1V(2m−4)
n−2

− βn+1βnβn−2

(
V(2m−6)

n−2 + V(2m−6)
n−3

)
+ βn+1βnβn−1

(
βn+1βn−2C(2m−6)

n−3,n+1 + βn+2C(2m−4)
n−2,n+2

)
.

If we replace the term V(2m−4)
n−2 by the corresponding expression given by the latter relation and

successively continuing the process, then one can deduce the following expressions for V(2m)
n as

follows:

V(2)
n = βn,

V(4)
n = V(2)

n

(
V(2)

n+1 + V(2)
n + V(2)

n−1

)
,

V(6)
n = V(2)

n

(
V(4)

n+1 + V(4)
n + V(4)

n−1 + V(2)
n+1V(2)

n−1

)
.

For higher orders, we compute the coefficients V(2m)
n recursively as stated below. We opted for not

giving the expressions in terms of βn since those are rather long. For m = 4, 5, we have

V(8)
n = V(2)

n

(
V(6)

n+1 + V(6)
n + V(6)

n−1

)
+ V(4)

n V(2)
n+1V(2)

n−1

+ V(2)
n+1V(2)

n V(2)
n−1

(
V(2)

n+2 + V(2)
n−2

)
and

V(10)
n = V(2)

n

(
V(8)

n+1 + V(8)
n + V(8)

n−1

)
+ V(6)

n V(2)
n+1V(2)

n−1

+ V(2)
n+1V(2)

n V(2)
n−1

(
V(4)

n+2 + V(4)
n−2

)
+ V(2)

n+1V(2)
n V(2)

n−1

×
{(

V(2)
n + V(2)

n−1

)
V(2)

n+2 +
(

V(2)
n+1 + V(2)

n

)
V(2)

n−2 + V(2)
n+2V(2)

n−2

}
.

Remark 4.5.

(i) For the case when λ = − 1
2 , proposition 4.4 was proved by Benassi & Moro [16], using a

result in [17]. Although it is straightforward to modify the proof presented therein for the
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case when λ �= − 1
2 , we hereby present an alternative approach purely depending on the

structure relation of the semi-classical polynomials.
(ii) Equations such as (4.8) for recurrence relation coefficients are sometimes known as

Laguerre-Freud equations [18,19]; see also [6,20–23].
(iii) When m = 2, the discrete equation is

4βn
(
βn−1 + βn + βn+1

)− 2tβn = n +
(

λ + 1
2

)
[1 − (−1)n)], (4.17)

which is dPI, and when m = 3, the discrete equation is

6βn
(
βn−2βn−1 + β2

n−1 + 2βn−1βn + βn−1βn+1 + β2
n + 2βnβn+1

+ β2
n+1 + βn+1βn+2

)− 2tβn = n + (λ + 1
2 )[1 − (−1)n)], (4.18)

which is a special case of dP(2)
I , the second member of the discrete Painlevé I hierarchy.

For further information about the discrete Painlevé I hierarchy, see [24,25]. Equations
(4.17) and (4.18) with t = 0 were derived by Freud [18]; see also [5,14]. Further, equations
(4.17) and (4.18) with λ = − 1

2 are also known as ‘string equations’ and arise in important
physical applications such as two-dimensional quantum gravity, cf. [26–31].

(b) Asymptotics for the recurrence coefficients as n→ ∞
In 1976, Freud [18] conjectured that the asymptotic behaviour of recurrence coefficients βn in the
recurrence relation (2.6) satisfied by monic polynomials {Pn(x)}n≥0 orthogonal with respect to the
weight

ω(x) = |x|ρ exp(−|x|m),

with x ∈ R, ρ > −1, m > 0 could be described by

lim
n→∞

βn

n2/m =
[

Γ ((1/2)m)Γ (1 + (1/2)m)
Γ (m + 1)

]2/m
. (4.19)

Freud stated the conjecture for orthonormal polynomials, proved it for m = 2, 4, 6 and also showed
that (4.19) is valid whenever the limit on the left-hand side exists. Magnus [5] proved Freud’s
conjecture for the case when m is an even positive integer and also for weights

w(x) = exp{−Q(x)},
where Q(x) is an even degree polynomial with positive leading coefficient. We refer the readers to
[32, §4.18] for a detailed history of solutions to Freud’s conjecture up to that point. The conjecture
was settled by Lubinsky et al. in [33] as a special case of a more general result for recursion
coefficients of exponential weights, see also [34]. In [35], Lubinsky & Saff introduced the class
of very smooth Freud weights of order α with conditions on Q that are satisfied when Q is of the
form xα , α > 0. Associated with each weight in this class, one can define an as the unique, positive
root of the equation (cf. [33, p. 67] and the references therein)

n = 2
π

∫ 1

0

ansQ′(ans)√
1 − s2

ds. (4.20)

Theorem 4.6. Consider the generalized higher-order Freud weight (1.1). Then the recurrence
coefficients βn associated with this weight satisfy

lim
n→∞

βn(t; λ)
n1/m = 1

4

(
(m − 1)!
(1/2)m

)1/m
.

Proof. Let Q(x) = 1
2 x2m, then evaluating (4.20) yields n = a2m

n ( 1
2 )m/(m − 1)! and the result is

a straightforward consequence of the more general result in [33, Theorem 2.3] taking W(x) =
exp{−Q(x)}, w = |x|λ+1/2, P(x) = 1

2 tx2 and Ψ (x) = 1. �
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Remark 4.7. Taking m = 2 in theorem 4.6, we recover [1, Corollary 4.2 (ii)] for the recurrence
coefficients associated with the generalized quartic Freud weight |x|2λ+1 exp(tx2 − x4), which
satisfy

lim
n→∞

βn(t; λ)√
n

= 1√
12

,

while, for m = 3, the recurrence coefficients associated with the generalized sextic Freud weight
|x|2λ+1 exp(tx2 − x6) satisfy

lim
n→∞

βn(t; λ)
3
√

n
= 1

3
√

60
,

as shown in [3, Corollary 4.8].

5. Generalized higher-order Freud polynomials

(a) Differential equations
The second-order differential equations satisfied by generalized higher-order Freud polynomials
can be obtained by using ladder operators as was done for the special cases m = 2 and m = 3 in
[4, Theorem 6] and [2, Theorem 4.3], respectively. An alternative approach is given by Maroni in
[8,9].

Proposition 5.1. The polynomial sequence {Pn(x)}n≥0 orthogonal with respect to the generalized
higher-order Freud weight (1.1) is a solution to the differential equation:

J(x; n)
d2Pn+1

dx2 (x) + K(x; n)
dPn+1

dx
(x) + L(x; n)Pn+1(x) = 0,

where

J(x; n) = xDn+1(x),

K(x; n) = C0(x)Dn+1(x) − x
dDn+1

dx
(x) + Dn+1(x),

L(x; n) =W( 1
2 (Cn+1(x) − C0(x)), Dn+1(x)) − Dn+1(x)

n∑
j=0

1
βj

Dj(x),

with

Cn+1(x) = −Cn(x) + 2x
βn

Dn(x)

and Dn+1(x) = −x + βn

βn−1
Dn−1(x) + x2

βn
Dn(x) − xCn(x),

subject to the initial conditions C0(x) = −1 + 2(tx2 − mx2m + λ + 1), D−1(x) = 0 and

D0(x) = 2x

⎧⎨
⎩m

m∑
j=1

μ2j−2(t, λ)x2m−2j − tμ0(t, λ)

⎫⎬
⎭ .

(b) Mixed recurrence relations
We first consider the connection formula between the corresponding sequences of generalized
higher-order Freud orthogonal polynomials in the framework of Christoffel transformations
when the measure is modified by multiplying with a polynomial. In our case, the measure is
modified by a quadratic factor.
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Theorem 5.2. Let {Pn(x; λ)}n≥0 be the sequence of monic generalized higher-order Freud polynomials
orthogonal with respect to the weight (1.1), then, for m, n fixed,

xP2n(x; λ + 1) = P2n+1(x; λ) (5.1a)

and

x2P2n−1(x; λ + 1) = xP2n(x; λ) −
{

β2n(λ) + P′
2n+1(0; λ)

P′
2n−1(0; λ)

}
P2n−1(x; λ). (5.1b)

Proof. Let Pn(x; λ + 1) be the polynomials associated with the even weight function:

ω(x; λ + 1) = |x|2λ+3 exp
(
tx2 − x2m)= x2ω(x; λ), m = 2, 3, . . . .

The factor x2 by which the weight ω(x; λ) is modified has a double zero at the origin, and therefore,
Christoffel’s formula (cf. [36, Theorem 2.5], [37, Theorem 2.7.1]), applied to the monic polynomials
Pn(x; λ + 1), is

x2Pn(x; λ + 1) = 1
Pn(0; λ)P′

n+1(0; λ) − P′
n(0; λ)Pn+1(0; λ)

∣∣∣∣∣∣∣
Pn(x; λ) Pn+1(x; λ) Pn+2(x; λ)
Pn(0; λ) Pn+1(0; λ) Pn+2(0; λ)
P′

n(0; λ) P′
n+1(0; λ) P′

n+2(0; λ)

∣∣∣∣∣∣∣ .

Since the weight ω(x; λ) is even, we have that P2n+1(0; λ) = P′
2n(0; λ), while P2n(0; λ) �= 0 and

P′
2n+1(0; λ) �= 0, and hence,

x2Pn(x; λ + 1) = −1
P′

n(0; λ)Pn+1(0; λ)

∣∣∣∣∣∣∣
Pn(x; λ) Pn+1(x; λ) Pn+2(x; λ)

0 Pn+1(0; λ) 0
P′

n(0; λ) 0 P′
n+2(0; λ)

∣∣∣∣∣∣∣ ,

for n odd, while, for n even,

x2Pn(x; λ + 1) = 1
Pn(0; λ)P′

n+1(0; λ)

∣∣∣∣∣∣∣
Pn(x; λ) Pn+1(x; λ) Pn+2(x; λ)
Pn(0; λ) 0 Pn+2(0; λ)

0 P′
n+1(0; λ) 0

∣∣∣∣∣∣∣ .

This yields

x2Pn(x; λ + 1) = Pn+2(x; λ) − anPn(x; λ), (5.2)

where

an =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pn+2(0; λ)
Pn(0; λ)

, for n even,

P′
n+2(0; λ)

P′
n(0; λ)

, for n odd.

By using the three-term recurrence relation (2.6) to eliminate Pn+2(x; λ) in (5.2), we obtain

x2Pn(x; λ + 1) = xPn+1(x; λ) − (βn+1(λ) + an)Pn(x; λ).

It follows from (2.7) that, for n even, βn+1(λ) + an = 0, and the result follows. �

Theorem 5.3. For a fixed m = 2, 3, . . ., let {Pn(x; λ)}n≥0 be the sequence of monic generalized higher-
order Freud polynomials orthogonal with respect to the weight (1.1). Then, for n fixed,

P2n+1(x; λ) = P2n+1(x; λ + 1) + β2n(λ + 1)P2n−1(x; λ + 1) (5.3a)

and

P2n(x; λ) = P2n(x; λ + 1) − β2n(λ)β2n−1(λ + 1)P′
2n−1(0; λ)

P′
2n+1(0; λ)

P2n−2(x; λ + 1). (5.3b)
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Proof. Substitute (5.1a) into the three-term recurrence relation

P2n+1(x; λ) = xP2n(x; λ) − β2n(λ)P2n−1(x; λ), (5.4)

to eliminate P2n+1(x; λ) and obtain

xP2n(x; λ + 1) = xP2n(x; λ) − β2n(λ)P2n−1(x; λ).

Let a2n = P′
2n+1(0; λ)/P′

2n−1(0; λ). Substitute (5.1b) into (5.4) to eliminate P2n−1(x; λ) and obtain

xP2n(x; λ + 1) = xP2n(x; λ) − β2n(λ)
β2n(λ) + a2n

(xP2n(x; λ) − x2P2n−1(x; λ + 1)). (5.5)

Simplification and rearrangement of terms in (5.5) yields(
1 − β2n(λ)

β2n(λ) + a2n

)
P2n(x; λ) = P2n(x; λ + 1) − β2n(λ)

β2n(λ) + a2n
xP2n−1(x; λ + 1),

then, by using the three-term recurrence relation to eliminate xP2n−1(x; λ + 1), we obtain(
1 − β2n(λ)

β2n(λ) + a2n

)
P2n(x; λ) =

(
1 − β2n(λ)

β2n(λ) + a2n

)
P2n(x; λ + 1)

+ β2n(λ)
β2n(λ) + a2n

β2n−1(λ + 1)P2n−2(x; λ + 1),

which simplifies to (5.3b). Substituting (5.1a) into the three-term recurrence relation

P2n+1(x; λ + 1) = xP2n(x; λ + 1) − β2n(λ + 1)P2n−1(x; λ + 1),

yields (5.3a). �

Theorem 5.3 gives the connection formula between the corresponding sequences of
generalized higher-order Freud polynomials in the framework of Geronimus transformations,
the inverse of a Christoffel transformation. For more on quadratic Geronimus transformations
of a weight ω(x), where (x2 − c)v(x) = ω(x), see [38]. The generalized Christoffel formula, where
the weight is modified by a rational function, often referred to as an Uvarov transformation,
can also be considered as the Darboux transformation of an integrable system (cf. [37,39]) and
is considered in the framework of Gaussian quadrature rules in [40,41].

(c) Quasi-orthogonality forλ ∈ (−2,−1)
Theorem 5.3 yields the quasi-orthogonality of generalized higher-order Freud polynomials for
−2 < λ < −1.

Theorem 5.4. Suppose −2 < λ < −1. For each fixed m = 2, 3, . . ., the generalized higher-order Freud
polynomial Pn(x; λ) is quasi-orthogonal of order 2 on R with respect to the weight

|x|2λ+3 exp
(
tx2 − x2m), t ∈ R.

Proof. Suppose −2 < λ < −1, then λ + 1 > −1. When n is even, we have from (5.3b) that
∫∞

−∞
xkPn(x; λ)|x|2λ+3 exp

(
tx2 − x2m)dx

=
∫∞

−∞
xkPn(x; λ + 1)|x|2λ+3 exp

(
tx2 − x2m)dx

− βn(λ)βn−1(λ + 1)P′
n−1(0; λ)

P′
n+1(0; λ)

×
∫∞

−∞
xkPn−2(x; λ + 1)|x|2λ+3 exp

(
tx2 − x2m)dx, (5.6)
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while, for n is odd, it follows from (5.3a) that
∫∞

−∞
xkPn(x; λ)|x|2λ+3 exp

(
tx2 − x2m)dx

=
∫∞

−∞
xkPn(x; λ + 1)|x|2λ+3 exp

(
tx2 − x2m)dx

+ βn(λ + 1)
∫∞

−∞
xkPn−2(x; λ + 1)|x|2λ+3 exp

(
tx2 − x2m)dx. (5.7)

Since λ + 1 > −1, it follows from the orthogonality of the generalized higher-order Freud
polynomials that

∫∞

−∞
xkPn(x; λ + 1)|x|2λ+3 exp

(
tx2 − x2m)= 0 for k = 0, . . . , n − 1,

and we see that all the integrals on the right-hand side of (5.6) and (5.7) are equal to zero for
k = 0, . . . , n − 3. �

6. Zeros of generalized higher-order Freud polynomials

(a) Asymptotic zero distribution
The asymptotic behaviour of the recurrence coefficients of generalized higher-order Freud
polynomials orthogonal with respect to (1.1), satisfying Freud’s conjecture, given by (4.19), is
independent of the values of t and λ. The asymptotic behaviour implies that the recurrence
coefficients are regularly varying, irrespective of t and λ. To consider the asymptotic distribution
of the zeros of generalized higher-order Freud polynomials orthogonal with respect to the weight
(1.1) as n → ∞, we use an appropriate scaling and apply the property of regular variation as
detailed in [42].

Theorem 6.1. Let φ(n) = n1/(2m) and assume that n, N tend to infinity in such a way that the ratio
n/N → �. Then, for the sequence of scaled monic polynomials Pn,N(x) = (φ(N))−nPn(φ(N)x) associated
with the generalized higher-order Freud weight (1.1), the asymptotic zero distribution, as n → ∞, has
density

am(�) = 2m
cπ (2m − 1)

(
1 − x2

c2

)1/2

2F1

(
1, 1 − m;

3
2

− m;
x2

c2

)
, (6.1)

where

c = 2a�1/(2m) with a = 1
2

(
(m − 1)!
(1/2)m

)1/(2m)
,

defined on the interval (−2a�1/(2m), 2a�1/(2m)).

Proof. The scaled monic polynomials Pn,N(x) = (φ(N))−nPn(φ(N)x) associated with the
generalized higher-order Freud weight (1.1) have recurrence coefficient βn,N(t; λ) = βn(t; λ)/(φ(N))2.
Since φ : R

+ → R
+ and, for every � > 0, we have

lim
x→∞

φ(x�)
φ(x)

= �1/(2m),

where φ is regularly varying at infinity with exponent of variation 1/2m (cf. [43]). Since it follows
from (4.6) that

lim
n/N→�

√
βn,N(t; λ) = lim

n/N→�

√
βn(t; λ)
φ(n)

φ(n)
φ(N)

= a�1/(2m),

the recurrence coefficients βn·N(t; λ) are said to be regularly varying at infinity with index 1/2m
(cf. [42, Section 4.5]). From the property of regular variation, using [42, Theorem 1.4], it follows

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 A

pr
il 

20
23

 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220788

..........................................................

–0.5 0.5

0.2

0.4

0.6

Figure 1. The zeros of Pn,N(x) (red) for λ = 0.5, t = 1, m= 3, n= N = 10 and � = 1 with the corresponding limiting
distribution (6.1) (blue) and endpoints (−2a, 0) and (2a, 0) (green).

that the asymptotic zero distribution has density

1
π�

∫ �

0
s−1/(2m)

(
2a − xs−1/(2m)

)−1/2 (
2a + xs−1/(2m)

)−1/2
ds

= m
aπ�

∫ �1/(2m)

0
y2m−2

(
1 −

(
x

2ay

)2
)−1/2

dy

= m
aπ�

∫ �1/(2m)

0
y2m−2

∞∑
k=0

(1/2)k

k!

(
x

2ay

)2k
dy

= m
aπ�

∞∑
k=0

( 1
2 )k

k!

( x
2a

)2k ∫ �1/(2m)

0
y2m−2k−2 dy

= m
aπ�1/(2m)

∞∑
k=0

( 1
2 )k

k!
1

2m − 2k − 1

(
x

2a�1/(2m)

)2k

= m
aπ�1/(2m)(2m − 1)

∞∑
k=0

(1/2)k((1/2) − m)k

((3/2) − m)kk!

(
x

2a�1/(2m)

)2k

= m
aπ (2m − 1)�1/(2m) 2F1

(
1
2

,
1
2

− m;
3
2

− m;
(

x
2a�1/(2m)

)2
)

.

�

Figure 1 shows the zeros and the asymptotic distribution according to theorem 6.1.
Figure 2 shows the asymptotic distribution of zeros according to theorem 6.1 for various values

of �.

Remark 6.2. Note that the formula on [42, p. 189, line 22] should be (1/t)
∫t

0(1/sλ)ω′
[b−2a,b+2a]

(xs−λ) ds.

(b) Bounds for the extreme zeros
From the three-term recurrence relation (4.4), we obtain bounds for the extreme zeros of monic
generalized higher-order Freud polynomials.
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Figure 2. The limiting distribution of the zeros a3(�) for � = 0.5 (green), � = 1 (blue) and � = 2 (red).

Theorem 6.3. For each n = 2, 3, . . ., the largest zero, x1,n, of monic generalized higher-order Freud
polynomials Pn(x) orthogonal with respect to the weight (1.1), satisfies

0 < x1,n < max
1≤k≤n−1

√
cnβk(t; λ),

where cn = 4 cos2
(

π

n + 1

)
+ ε, ε > 0.

Proof. The upper bound for the largest zero x1,n follows by applying [44, Theorem 2 and 3],
based on the Wall–Wetzel Theorem to the three-term recurrence relation (4.4). �

(c) Monotonicity of the zeros
Theorem 6.4. Consider 0 < x
n/2�,n < · · · < x2,n < x1,n, the positive zeros of monic orthogonal

polynomials Pn(x) with respect to the generalized higher-order Freud weight (1.1), where 
k� denotes
the largest integer less than or equal to k. Then, for λ > −1, t ∈ R and for a fixed value of ν, ν ∈
{1, 2, . . . , 
n/2�}, the ν-th zero xn,ν increases when (i) λ increases; and (ii) t increases.

Proof. This follows from [2, Lemma 4.5], taking C(x) = x, D(x) = x2, ρ = 2λ + 1 and ω0(x) =
exp(−x2m). �

(d) Interlacing of the zeros
Next, for fixed λ > −1, t ∈ R and k ∈ (0, 1], we consider the relative positioning of the zeros of
the monic generalized higher-order Freud polynomials {Pn(x; λ)} orthogonal with respect to the
weight (1.1), and the zeros of {Pn(x; λ + k), k ∈ (0, 1], orthogonal with respect to the weight

ω(x; t, λ) = |x|2λ+2k+1 exp(tx2 − x2m), m = 2, 3, . . . .

The zeros of monic generalized higher-order Freud polynomials {Pn(x; λ)} orthogonal with
respect to the symmetric weight (1.1) are symmetric around the origin. We denote the positive
zeros of P2n(x; λ) by

0 < xλ
n,2n < xλ

n−1,2n < · · · < xλ
2,2n < xλ

1,2n,

and the positive zeros of P2n+1(x; λ) by

0 < xλ
n,2n+1 < xλ

n−1,2n+1 < · · · < xλ
2,2n+1 < xλ

1,2n+1,

noting that xn+1,2n+1 = 0.
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Figure 3. The zeros of P7(x; λ) (green), P7(x; λ + 1) (red) and P8(x; λ) (blue) forλ = 0.5 and t = 1.

Theorem 6.5. Let λ > −1 and t ∈ R. Let {Pn(x; λ)} be the monic generalized higher-order Freud
polynomials orthogonal with respect to the weight (1.1). Then, for � ∈ {1, . . . , n − 1} and k ∈ (0, 1), we
have

xλ
�+1,2n < xλ

�,2n−1 < xλ+k
�,2n−1 < xλ+1

�,2n−1 < xλ
�,2n, (6.2)

and, for � ∈ {1, . . . , n},
xλ
�+1,2n+1 < xλ

�,2n < xλ+k
�,2n < xλ+1

�,2n = xλ
�,2n+1. (6.3)

Proof. The zeros of two consecutive polynomials in the sequence of generalized higher-order
Freud orthogonal polynomials are interlacing, i.e.

0 < xλ
n,2n < xλ

n−1,2n−1 < xλ
n−1,2n < · · · < xλ

2,2n < xλ
1,2n−1 < xλ

1,2n (6.4)

and
0 < xλ

n,2n < xλ
n,2n+1 < xλ

n−1,2n < · · · < xλ
2,2n+1 < xλ

1,2n < xλ
1,2n+1. (6.5)

On the other hand, we proved in theorem 6.4 that the positive zeros of generalized higher-
order Freud polynomials monotonically increase as the parameterλ increases. This implies that,
for each fixed � ∈ {1, 2, . . . , n} and k ∈ (0, 1),

xλ
�,2n < xλ+k

�,2n < xλ+1
�,2n (6.6)

and
xλ
�,2n−1 < xλ+k

�,2n−1 < xλ+1
�,2n−1. (6.7)

Next, we prove that the zeros of P2n(x; λ) interlace with those of P2n−1(x; λ + 1). From (5.1b),

P2n−1(x; λ + 1) = xP2n(x; λ) − (β2n(λ) + P′
2n+1(0; λ)/P′

2n−1(0; λ))P2n−1(x; λ)

x2 . (6.8)

By evaluating (6.8) at consecutive zeros x� = x(λ)
�,n and x�+1 = x(λ)

�+1,n, � = 1, 2, . . . , n − 1, of
P2n(x; λ), we obtain

P2n−1(x�; λ + 1)P2n−1(x�+1; λ + 1)

= (β2n(λ) + P′
2n+1(0; λ)/P′

2n−1(0; λ))2P2n−1(x�; λ)P2n−1(x�+1; λ)

x2
�x2

�+1
< 0,

since the zeros of P2n(x; λ) and P2n−1(x; λ) separate each other. So there is at least one positive
zero of P2n(x; λ + 1) in the interval (x�, x� + 1) for each � = 1, 2, . . . , n − 1 since there are exactly n
positive zeros, and this implies that

0 < xλ
n,2n < xλ+1

n−1,2n−1 < xλ
n−1,2n < xλ+1

n−2,2n−1 < · · · < xλ+1
2,2n−1 < xλ

2,2n < xλ+1
1,2n−1 < xλ

1,2n. (6.9)

Equations (6.4), (6.7) and (6.9) yield (6.2). To prove (6.3), we note that by (5.1a), the n positive
zeros of P2n(x, λ + 1) and P2n+1(x; λ) coincide, i.e. xλ+1

�,2n = xλ
�,2n+1 for � ∈ {1, 2, . . . , n}, and the result

follows using (6.5) and (6.6). �

Figure 3 shows the interlacing of the zeros of polynomials orthogonal with respect to the
generalized higher-order Freud weight (1.1) for m = 3 as described in (6.4) of theorem 6.5.
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Figure 4. The zeros of P8(x; λ) (green), P8(x; λ + 0.5) (red), xP8(x; λ + 1) (blue) and P9(x; λ) (blue) forλ = 1.5 and t = 2.3.

Figure 4 illustrates the interlacing of the zeros of polynomials orthogonal with respect to the
generalized higher-order Freud weight (1.1) for m = 3 as described in (6.5) of theorem 6.5.

7. Quadratic decomposition of the generalized higher-order Freud weight
We apply known results [45, Chapter 1, theorem 9.1] on the quadratic decomposition of
any symmetric polynomials to this particular case of generalized higher-order Freud weights.
Precisely, if

P2n(x; t, λ) = Bn(x2; t, λ) and P2n+1(x; t, λ) = xRn(x2; t, λ), for all n ≥ 0,

then from the recurrence relation (2.6), we have

Bn+1(x; t, λ) = Rn+1(x; t, λ) + β2n+2Rn(x; t, λ)

and

xRn(x; t, λ) = Bn+1(x; t, λ) + β2n+1Bn(x; t, λ),

and this gives second-order recurrence relations for both {Bn}n≥0 and {Rn}n≥0 as follows:{
Bn+1(x; t, λ) = (x − β2n − β2n+1)Bn(x; t, λ) − β2n−1β2nBn−1(x; t, λ), n ≥ 1,
B1(x; t, λ) = x − β1, B0(x; t, λ) = 1,

and {
Rn+1(x; t, λ) = (x − β2n+2 − β2n+1)Rn(x; t, λ) − β2n+1β2nRn−1(x; t, λ),
R1(x; t, λ) = x − β1 − β2, R0(x; t, λ) = 1.

Furthermore, {Bn}n≥0 and {Rn}n≥0 satisfy the orthogonality relations:
∫∞

0
Bk(x; t, λ)Bn(x; t, λ)xλ exp(tx − xm) dx = h2n(t, λ)δn,k

and ∫∞

0
Rk(x; t, λ)Rn(x; t, λ)xλ+1 exp(tx − xm) dx = h2n+1(t, λ)δn,k, n, k ≥ 0.
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