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Abstract

The region-based association analysis has been proposed to capture the collective behavior

of sets of variants by testing the association of each set instead of individual variants with

the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes

with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse

distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are

computationally inferred from genotypes, followed by a haplotype co-classification. In the second

stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is

unevenly distributed between the case and control samples, this haplotype is labeled as a risk

haplotype. Unfortunately, the in-silico reconstruction of haplotypes might produce a proportion

of false haplotypes which hamper the detection of rare but true haplotypes. Here, to address the

issue, we propose an alternative approach: In Stage 1, we cluster genotypes instead of inferred

haplotypes and estimate the risk genotypes based on a finite mixture model. In Stage 2, we

infer risk haplotypes from risk genotypes inferred from the previous stage. To estimate the finite

mixture model, we propose an EM algorithm with a novel data partition-based initialization.

The performance of the proposed procedure is assessed by simulation studies and a real data

analysis. Compared to the existing multiple Z-test procedure, we find that the power of genome-

wide association studies can be increased by using the proposed procedure.
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1 Introduction

The advanced genotyping technology has made it possible to conduct genome-wide association

studies (GWAS) on complex diseases in recent years (Hindorff et al., 2009; Stranger et al., 2011).

Genome-wide association studies systematically analyze genetic variation across the genome by its

effects on phenotypic traits. The early landmark study using these technologies was the Wellcome

Trust Case Control Consortium (WTCCC), which reported genetic association results for over

500,000 single nucleotide polymorphisms (SNPs) in seven disease sample sets of 2000 individuals

each and 3000 control individuals (WTCCC, 2007). Most of these studies were based on the so-

called common-disease-common-variant hypothesis that the variants being sought are common to

many individuals with the disease. To date, these studies have identified hundreds of signposts as-

sociated with disease. But the search for causative variants derived from them has been remarkably

less successful, with only a handful of causative variants discovered in follow-up sequencing studies.

The so-called winner’s curse, where the detected effect is likely stronger in the GWAS sample than

in the general population, is one of factors underpinning this phenomenon (Zöllner and Pritchard,

2007; Zhong and Prentice, 2008). On the other hand, many of the variants found have had only a

weak effect on the risk of disease and therefore explained only a small proportion of the risk. More-

over, the signals in these studies might not always be pointing to a few common genetic variants

but instead to many rare variants, each of which causes relatively few cases (Robinson, 2010; Li et

al., 2010). The rapid increase in the number and the volume of GWAS provides an unprecedented

opportunity to examine effects of rare variants on disease susceptibility. This also gives rise to a

challenging problem of search for multiple variant sets in a high-dimensional genotype space. A

popular strategy, suggested by the block-like structure of the human genome, is to segment each

chromosome into a list of genetically meaningful regions. The multilocus haplotype, the ordered

allele sequences on a chromosome, provides a unit of analysis for capturing linear and non-linear

correlations among variants (Schaid et al., 2002; Zhang et al., 2003; van Greevenbroek et al., 2008;

Li et al., 2011). In general, if a particular haplotype of a pre-specified group of SNPs is unevenly

distributed between the case and control samples, this haplotype is highlighted as a risk haplotype.

Identifying risk haplotypes is an important but hard task in genetics, because haplotypes are often

unknown and sparsely distributed. In practice, what we can observe are genotypes not haplotypes.

As each genotype is made up by two unknown haplotypes, the underlying haplotypes have to be

inferred. Direct, laboratory-based haplotyping to infer the unknown phase are expensive ways to
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obtain haplotypes. So, people prefer to infer haplotypes from observed genotypes by using the

computational software such as PHASE (Stephens et al., 2001; Scheet et al., 2006). Many existing

procedures suffers from the problem caused by sparsely distributed genotypes, where the resulting

haplotype can also be sparsely distributed. To deal with the haplotype distribution sparsity, a

number of haplotype clustering methods have been developed in literature (Molitor et al., 2003;

Tzeng et al., 2006; Browning and Browning, 2007; Zhu et al., 2010, and references therein). How-

ever, computational inferred haplotypes may contain both true and false haplotypes, resulting in

a high false discovery rate of risk haplotypes. This paper aims to improve over PHASE to achieve

a more precise classification of haplotypes and subsequently improve the power of identifying risk

haplotypes.

We first propose a finite mixture model for directly clustering genotypes on the basis of their

prospective frequencies. The main advantage of the proposed model over the other existing methods

is that it can reduce haplotyping-error effects on grouping rare haplotypes. Moreover, using the

estimated prospective frequencies derived from a retrospective study to estimate genotype (and

haplotype) disease odds ratio is known to be asymptotically consistent even though the prospective

frequency estimators may not be (Prentice and Pyke, 1979). The rationale behind the proposal

is as follows. We assume that haplotypes of a specific chromosome segment can be classified as

risk or non-risk (neutral and protective) and that the corresponding genotypes can be grouped into

three categories ν = 0, 1, 2, where in category ν, the genotypes contain ν risk haplotypes. Given

the total number of individuals with genotype j and risk category ν, we further split the number

into the accounts of individuals with disease or without disease. This gives rise to the genotype

frequency contingency table, where rows stand for the disease status (case or control) and columns

for genotypes. We can directly assess whether two genotypes belong to the same group by their

column similarity in the table. Formally, given its risk category, we regard each genotype account

in cases as a random variable following a binomial distribution. Then, integrating over its risk

category, each genotype account in cases can be viewed as a random variable following a three-

component binomial mixture model. So, we fit each column in the above contingency table by a

binomial distribution with the disease-penetrance as the success probability and infer the grouping

of these columns through use of three-component binomial mixtures. The fitted mixture model is

then utilized to decide whether or not a specific genotype belong to a risk group. Consequently,

the number of potential risk genotypes to be examined further is substantially reduced. This helps

us reduce the error of identifying risk haplotypes in the haplotype thresholding stage.
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We employ the expectation-maximization (EM) algorithm to calculate the maximum likelihood

estimator for the proposed mixture model. The EM algorithm can guarantee monotone convergence

to a local maximum. On the other hand, it needs to choose initial values in order to reach a

local maximum which is close to the global maximum. The existing methods for initialization

include: multiple random initializations, initially grouping the data and among others (Karlis and

Xekalaki,2003). In this paper, we propose a new initialization procedure by grouping the estimated

genotype frequencies. We conduct simulation studies on the proposed method in both prospective

and retrospective design settings, showing that our method can outperform the approach of Zhu et

al. (2010) in most cases. We also apply both the proposed method and the method of Zhu et al.

(2010) to the Coronary Artery Disease (CAD) and Hypertension (HT) data in the Wellcome Trust

Case Control Consortium (WTCCC), identifying potential risk haplotypes for each pre-specified

chromosomal region.

The rest of the paper is organized as follows. The proposed methodology is introduced in

Section 2. The simulation studies and real data applications are presented in Sections 3 and 4.

Discussions and conclusion are made in Section 5. The details on the haplotype reconstruction

software PHASE and the EM algorithm can be found in the Appendices.

2 Methodology

Consider a case-control sample with N0 controls and N1 cases, typed at m SNP markers in a

candidate region, yielding unphased genotype set G. Suppose that G contains distinct genotypes

Gj , 1 ≤ j ≤ J∗ with counts N0j , N1j in controls and cases respectively. To tackle the issue of

extremely rare genotypes, we first collapsed these genotypes by defining the set

Gc =

{

Gj |N0j = 0 or N1j = 0 or
N0j +N1j

N0 +N1
≤ 0.001, j = 1, ..., J∗

}

,

where we say that Gj is extremely rare if its prospective frequency is less than 0.1%. A pilot

simulation indicates that the collapsing of extremely rare genotypes can improve the accuracy of

genotype co-classification (the data are not shown here). By the term “extremely rare genotype”,

we imitate the similar concept in the literature (e.g., Panoutsopoulou et al., 2013), where an allele

is called rare if its frequency is less than 1%. With a slight abuse of notation, we still denote

these non-extreme genotypes as G1, ..., GJ−1 with accounts N0j , N1j , 1 ≤ j ≤ J − 1, and the set

Gc by GJ with the collapsed account N0J and N1J in controls and cases respectively. We write
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N = {(N0j , N1j) : 1 ≤ j ≤ J} and rewrite G = {G1, ..., GJ}. Let H2 denote all haplotype pairs

reconstructed from G by using the software PHASE (Stephens et al., 2001). A brief introduction

to PHASE can be found in the Appendix I.

2.1 Two-stage procedure

We introduce the following two-stage approach for finding risk haplotypes. In Stage 1, genotypes are

clustered and risk genotypes are derived, whereas in Stage 2 the odds ratio thresholding is employed

to infer risk-haplotypes. As the reconstructed haplotypes may contain errors, to reduce the effect

of hapolotying errors on clustering, we co-classify genotypes instead of the inferred haplotypes in

Stage 1. The details are given below.

Stage 1 (Genotype clustering): We assume that haplotypes can be annotated by two cate-

gories: risk and non-risk, where non-risk category include both neutral and protective risk haplo-

types. As each genotype consists of a haplotype pair, the observed genotypes can be clustered into

three categories according to the numbers of risk haplotypes which they have. In light of the above

fact, given genotype counts (N0j , N1j) : 1 ≤ j ≤ J, we consider the following three-component

binomial mixture model:

f((N0j , N1j)
T |θ) = π0f((N0j , N1j)

T |q0) + π1f((N0j , N1j)
T |q1) + π2f((N0j , N1j)

T |q2),

where θ = (q0, q1, q2, π0, π1, π2)
T with 0 ≤ qν ≤ 1, 0 ≤ πν ≤ 1, ν = 0, 1, 2, π0 + π1 + π2 = 1, and

f((N0j , N1j)
T |qν) =

(

Nj

N1j

)

q
N1j
ν (1− qν)

N0j , ν = 0, 1, 2

with Nj = N0j +N1j . Note that q0, q1 and q2 are the unknown disease penetrances for genotypes

which contain 0, 1, and 2 risk haplotypes respectively.

The (incomplete) likelihood of θ given data N can be calculated by

L(θ|N) =
J
∏

j=1

f((N0j , N1j)
T |θ).

We take the maximum likelihood estimator (MLE) θ̂ to estimate the unknown parameter θ. We

employe the so-called expectation-maximization (EM) algorithm (McLachlan and Basford, 1988)

to calculate θ̂. To this end, we introduce the following complete log-likelihood

l(θ|N, I) =
J
∑

j=1

2
∑

ν=0

Iνj log
[

πν f((N0j , N1j)
T |qν)

]

,
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where I = {(I0j , I1j , I2j)T : 1 ≤ j ≤ J}and (I0j , I1j , I2j)
T are unknown group membership indicators

defined by

Iνj =







1, if Gj in the group ν

0, otherwise
ν = 0, 1, 2.

The further details on the EM algorithm can be found in the Appendix II.

Let the prospective frequencies of Gj in the controls and cases be estimated by

p̂0j =
N0j

N0j +N1j
, p̂1j =

N1j

N0j +N1j

respectively. Note that under the null hypothesis that the j-th genotype is not risk to the disease,

then X = (N0j+N1j)p̂1j approximately follows a binomial distribution f((N0j , N1j)
T |q̂0) which can

be further approximated by the Normal distribution with mean q̂0 and variance q̂0(1− q̂0)/(N0j +

N1j). In light of this fact, we can determine the risk status of genotype Gj by checking whether

the value of the following Z-test statistic is larger than the critical value µj , i.e.,

(p̂1j − q̂0)/
√

q̂0(1− q̂0)/(N0j +N1j) > µj .

Therefore, the risk-genotype group (which consists of genotypes with at least one risk haplotype)

can be estimated by

Gr = {Gj : p̂1j > wj , j = 1, ..., J},

where

wj = q̂0 + µj

√

q̂0(1− q̂0)/(N0j +N1j)

and µj is determined by

P (X ≥ (N0j +N1j)wj) < ε, (2.1)

with ε being a pre-specified constant. In the simulation studies later, around 100 different genotypes

will be involved in each dataset. Using the Bonferroni correction, we set ε = 0.05/100 so that the

total probability of type I errors involved in the thresholding is less than 0.05. Similarly, in the real

data analysis section below, we will use the Bonferroni correction to set a different value of ε.

Stage 2 (haplotype thresholding): We introduce the following approach for identifying risk

haplotypes, where only genotypes identified as in risk groups in Stage 1 are subject to further

analysis. Let H2
a be all haplotype pairs corresponding to Gr, which are derived from H2 directly

by taking advantage that Gr is a subset of G. Let Ha = (h1, ..., hK)T be all the distinct haplotypes
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in H2
a with accounts n0k and n1k, k = 1, ...,K in controls and cases respectively. For each k, we

define

n0k̄ =
∑

t 6=k

n0t, n1k̄ =
∑

t 6=k

n1t.

Note that Ha may contain non-risk haplotypes when Ga carries genotypes of a risk haplotype

paired with a non-risk haplotype. For example, in the so-called dominant inheritance mode, risk

haplotypes are often paired with non-risk haplotypes in producing genotypes. Therefore, to find risk

haplotypes, we need to further threshold Ha. It is well-known that the prospective frequency-based

penetrance estimators with case-control data can be biased. However, the odds ratio estimator

based on the prospective frequencies is asymptotically unbiased (Prentice and Pyke, 1979). So, we

use the odds ratio to judge whether a haplotype is risk or not. Here, non-risk haplotypes are defined

as haplotypes which are neutral or protective to the disease. The technical details are described as

follows.

We first calculate the odds ratio between hk and Ha − {hk} by

ORk =
(n1k + 0.5)(n0k̄ + 0.5)

(n0k + 0.5)(n1k̄ + 0.5)
,

where adding 0.5 to the OR for the continuity correction was suggested by Agresti (1999). By

simulations, Agresti (1999) showed that in finite sample settings, the above estimator performed

much better than the estimator without continuity correction. Note that under the null hypothesis

in which the underlying odds ratio is one, the distribution of the estimated odds-ratio ORk is

asymptotically Normal distributed as

log(ORk) ∼ N(0, φ(n0k, n1k, n0k̄, n1k̄)
2), (2.2)

where

φ(n0k, n1k, n0k̄, n1k̄) =
√

1/(n0k + 0.5) + 1/(n1k + 0.5) + 1/(n0k̄ + 0.5) + 1/(n1k̄ + 0.5). (2.3)

See Agresti (1999). Then, based on the above asymptotic distribution, we calculate the risk hap-

lotype set Hr by

Hr = {hk ∈ Ha : ORk ≥ exp(c1φ(n0k, n1k, n0k̄, n1k̄))} , (2.4)

where c1 is a pre-specified critical value.
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2.2 Multiple testing method

To compare the proposed method to the multiple testing procedure of Zhu et al. (2010), we briefly

describe their procedure as follows. In their procedure, a subsample A containing N
(a)
0 and N

(a)
1

individuals are randomly chosen from the controls and cases respectively. These individuals are used

in the screening stage and the remaining forms a validation subsample B to be used in the validation

stage. Suppose that there are K different haplotypes inferred from A by using the PHASE. Let

(r
(a)
0k , r

(a)
1k ), 1 ≤ k ≤ K be their retrospective frequencies in controls and cases respectively.

Screening stage: We perform a respective frequencies-based screening by calculating an esti-

mated risk haplotype set as follows:

S(a) = {hk : z
(a)
k > c0, 1 ≤ k ≤ K},

where c0 is a pre-specified constant (c0 = 1 in our later simulations) and

z
(a)
k =

r
(a)
1k − r

(a)
0k

√

r
(a)
0k (1− r

(a)
0k )/(2N

(a)
1 )

.

Validation stage: The S(a) is refined by performing Fisher’s exact test based on subsample

B for each haplotype in S(a). This gives a final risk haplotype set denoted by S(b).

3 Simulation studies

In this section, via simulations we will examine the performance of the proposed methods in terms

of the estimated L1 bias and the average of sensitivity and specificity under various scenarios.

Here, we suppose that the disease-penetrance of a genotype depends only on the number of risk

haplotypes contained in that genotype. As each genotype consists of two haplotypes, we have three

types of penetrance:

f0 = P (disease|Hr̄Hr̄), f1 = P (disease|HrHr̄), f2 = P (disease|HrHr),

where Hr and Hr̄ stand for risk and non-risk haplotypes respectively. Denote the relative risk

measures by λ1 = f1/f0 and λ = f2/f0. Let θ̂ be the estimator of θ, and Hr and Hr̄ the estimated

true risk and non-risk haplotype sets respectively. Let Tr and Tr̄ be the true risk and non-risk

haplotype sets. Then, by the L1 bias we mean the L1 distance between θ̂ and θ. By the sensitivity

and specificity of Hr and Hr̄, we mean the positive discovery rate and the negative discovery rate:

sen =
|Hr ∩Tr|

|Tr|
and spe =

|Hr̄ ∩Tr̄|
|Tr̄|

.
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We take the average AVSS = (sen + spe)/2 to assess the performance of a haplotype classification

procedure.

3.1 Performance of the proposed data partition-based initialization

To compare the proposed data partition-based initialization (Method 2) to the random initializa-

tion (Method 1) in the Appendix I, we generated 30 genotype datasets on 10 single nucleotide

polymorphisms (SNPs), each dataset, containing N0 controls and N1 cases, was obtained by the

following two steps: In the step 1, we used the software MS (Hudson, 2002) to simulate 2(N0+N1)

haplotypes with a mutation rate of 2. We randomly chose mr of these haplotypes and labeled them

as risk haplotypes. To save the space, we considered only N0+N1 = 5000 and mr = 10. The results

for other values of N0 + N1 and mr were similar. In the step 2, the disease states of the above

genotypes were simulated from the multiplicative inheritance model with q0 = 0.1 and λ = 3. Note

that the number of genotypes depends on the mutation rate and was varying across 30 datasets.

The comparison was based on the log-likelihood, the run time, estimated bias and classification

error rate (CER). The estimated bias can be calculated by sum all the absolute values of the

differences between θ̂ and the true θ. Note that genotypes in each dataset could be divided into

three (true) groups, say Gν , ν = 0, 1, 2 as we knew the number of risk haplotypes which each

genotype contained in the simulation. We pretended that we did not know which haploypes were

risk (therefore, we did not know the group memberships of these genotypes). We then inferred

their memberships by fitting a three-component binomial mixture model to each of 30 datasets. By

using the estimated posterior probabilities, τνj , ν = 0, 1, 2, of group memberships derived from the

EM algorithm, we assigned the j-th genotype to the group Ĝν , ν = 0, 1, 2 if τνj = maxt τtj . Here,

we labeled three estimated groups according to the ordered penetrances q̂0 ≤ q̂1 ≤ q̂2. This is a

computationally simple approach to solving the so-called label switching problem in finite mixture

models (Richardson and Green, 1997). Our experience indicates it is effective for estimating our

binomial mixture model. More advanced but time-consuming approach can be found in Stephens

(2000). The accuracy of three estimated groups was evaluated by the CER defined as

CER =
∑

ν

(

1− |Gν ∩ Ĝν |
|Gν |

)

,

where we counted the total number of misclassified genotypes divided by the total number of the

genotypes. The results were summarized in Figure 1 in terms of the box-whisker plots of the

estimated biases, the CERs, likelihood values, and time-costs over 30 datasets for Methods 1 and
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2 respectively. The result shows that Method 2 substantially outperformed Method 1. Therefore,

we decided to initialize the EM algorithm by use of Method 2 in the remaining simulations as well

as the real data analysis below.

[Put Figure 1 here.]

3.2 Performance of the proposed two-stage method

Note that the proposed two-stage method is based on the prospective likelihood model although

real data were obtained from retrospective studies. By the simulations below, we addressed whether

the proposed method could outperform the multiple-testing procedure of Zhu et al. (2010) in both

prospective (i.e., cohort) and retrospective (i.e., case-control) studies.

Setting 1 (cohort design): We generated 30 datasets, each with N1 case-genotypes and N0

control-genotypes. They were obtained by the following steps. In the first two steps, we adopted

the same approach for generating N0 + N1 genotypes which contained mr risk haplotypes as we

did before. In the third step, we simulated the disease status of each genotype by sampling from a

Bernoulli distribution. The Bernoulli distribution took q0, or λ1q0, or λq0 as a success probability

according to whether the genotype contained zero, one or two risk haplotypes, where the relative risk

measure λ1 is specified as follows. For the recessive inheritance mode, λ1 = 1. For the multiplicative

inheritance mode, λ1 =
√
λ. For the dominant inheritance mode, λ1 = λ. We coded the inheritance

modes by IM = 1, 2, 3 respectively for the multiplicative, the dominant, and the recessive. Note

that the values of (N0, N1) may vary across different datasets. We considered various combinations

of (N0 + N1,mr, IM, q0, λ), where N0 + N1 = 3000, 5000, mr = 5, 10, 20, IM = 1, 2, 3, q0 = 0.1,

λ = 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4, and 3.8 respectively.

For each scenario, we applied both the proposed method and the multiple testing method to 30

datasets and calculated their AVSS values respectively. For each of the three inheritance modes,

we plotted the means of these AVSS values over 30 datasets against λ. The results displayed in

Figure 2 show that on the cohort data, the proposed two stage method performed substantially

better than the multiple testing method in all the scenarios defined above. The improvement was

achieved by using model-based genotype clustering. This is not surprising, because Yeung et al.

(2001) has already showed that the model-based clustering is often superior over non-model based

clustering.

[Put Figure 2 here.]

Setting 2 (case-control design): We generated 30 datasets, each of which were simulated
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by the following two steps. In Step 1, to generate N1 case-genotypes, we first drew 2N1 haplotypes

by using the software MS with mutation rate of 2, of which mr haplotypes were labeled as risk

haplotypes. We then randomly paired these haplotypes to form N1 case-genotypes. Let Gj , 1 ≤ j ≤
J be all the different genotypes contained in the N1 cases and r1j , 1 ≤ j ≤ J be the retrospective

frequencies. These case-genotypes formed three groups according to the number of risk haplotypes

which each genotype contained: Each genotype in Groups 0, 1 and 2 contained two non-risk

haplotypes, only one risk-haplotype, and two risk haplotypes respectively. In Step 2, we generated

N0 control-genotypes, which also had genotypes Gj , 1 ≤ j ≤ J but with population retrospective

frequencies q0j , 1 ≤ j ≤ J . We first let q0j , 1 ≤ j ≤ J depend on the pre-specified constant d by

q0j =



















r1j(1− d/r1g2), Gj belongs to Group 2

r1j(1− 0.5d/r1g1), Gj belongs to Group 1

r1j(1 + 1.5d/r1g0), Gj belongs to Group 0

where r1gk =
∑

Gj∈ Groupk
r1j for k = 0, 1, 2,, and d is a parameter to reflect the effects of risk

haplotypes on genotype frequencies. We simulated N0 control-genotype counts from the multi-

nomial model MN(N0, (q01, ..., q0J)
T ) and calculated the corresponding retrospective frequencies

r0j , 1 ≤ j ≤ J . We considered the cases where d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35

respectively.

For each dataset, the cumulative frequencies of Groups 0, 1, and 2 in controls are rg0 + 1.5d,

rg1 − 0.5d, and rg2 − d respectively, whereas the corresponding frequencies in cases are rg0 , rg1 and

rg2 respectively. It can be proved that the odds ratios of Groups 1 and 2 to Group 0 are increasing

in the value of d.

We applied the proposed two-stage method and the multiple testing method to these case-

control data. The mean curves of the AVSS values with one standard error up and down were

plotted against the d values in Figure 3. The results again demonstrate that the proposed two-

stage method can be more powerful than the multiple testing method in detecting risk haplotypes.

However, the AVSS gain was decreasing in the number of risk haplotypes, mr, as well as the

underlying odds ratios in Groups 1 and 2. In particular, the AVSS gain can be negative when there

were many risk-haplotypes presented in the data. This is due to the effect of unbalanced case and

control sample sizes in the finite sample size setting, because our model in Stage 1 is a prospective

model.

[Put Figure 3 here.]
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4 Real data analysis

We applied the proposed two-stage procedure to the GWAS genotype datasets on coronary artery

disease (CAD) and hypertension (HT) obtained by Affymetrix 500K SNP chips in the WTCCC

study (WTCCC, 2007). The data were downloaded from the European Genotype Archive (EGA)

with formal data access permission of the WTCCC Data Access Committee. Each dataset contained

2000 unrelated cases as well as 3000 unrelated controls. The controls came from two sources: 1500

from the 1958 British Birth Cohort (58C) and 1500 from the three National UK Blood Services

(NBS). There were about 500600 SNPs across the human genome, which are genotyped. We first

pre-processed the data by excluding the SNPs which meet one of the following criteria: (1) the

p-value of Fisher test for Hardy-Weinberg equilibrium is less than 10−8 in controls; (2) the p-value

of the chi-square test between 58C and NBS is less than 10−8; (3) the minor allele frequency is

less than 1%; (4) the calling score is less than 95%. After the exclusion, around 4897746 SNPs

remained for the analysis. To reduce the dimension of the genotypes, we segmented the genome

into regions of 8 SNPs according to their positions on the chromosomes, obtaining 61218 regions

and the corresponding genotype datasets Gk, k = 1, 2, ..., 61218. Note that the long region will

dilute the effects of risk SNPs and can result in many rare genotypes, whereas the short region

will miss interactions between SNPs. The region length of 8 was chosen to achieve a compromise

between the above aspects by using a pilot study. Also note that as we excluded the SNPs with

bad callings, the numbers of cases and controls are varying across the different regions.

Note that {Gk : k = 1, ..., 61218} contained 1983537 genotypes in total for the CAD data

and 2097111 genotypes in total for the HT data respectively. The proposed procedure includes

two stages. In Stage 1, we obtained the estimated risk genotypes, while in Stage 2, we further

inferred haplotype pairs from the estimated risk genotypes. In Stage 1, we first fitted a three-

component binomial mixture model to each Gk and then thresholded the genotypes based on the

smallest penetrance in the three components. The thresholding would involve 1983537 tests for the

CAD data and 2097111 tests for the HT data. So in equation (2.1), we set ε = 0.05/1983537 =

2.52 × 10−8 for the CAD data and ε = 0.05/2097111 = 2.38 × 10−8 for the HT data. In Stage 2,

we employed the PHASE to infer the haplotypes from the risk genotypes derived from the previous

stage. This gave rise to 201528 potential risk haplotypes out of 1448586 in CAD data and 213578

potential risk haplotypes out of 1463838 in HT data. We further conducted the OR thresholding

for these haplotypes. There would involve 201528 tests in the CAD case and 213578 tests in the
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HT case. By using the Bonferroni adjustment, we set the corresponding individual test level at

0.05/201528 = 2.48 × 10−7 and 0.05/213578 = 2.34 × 10−7 for the CAD and the HT respectively.

These individual test levels were then used to determine the tuning constant c1 in equation (2.4).

This yielded c1 ≈ 5. After performing the proposed two-stage method on the datasets, we obtained

the estimated risk and non-risk haplotype sets, Ĥr and Ĥr̄), for the CAD and the HT respectively.

Finally, we carried out a genomic control on the above results by taking advantage of the

fact that there were two sub-populations in controls. The genomic control can eliminate these

false haplotypes generated by the PHASE and population substructures from the selected list of

risk haplotypes. In the genomic control, we run the chi-square tests on the association of two

control sub-populations with each estimated risk haplotype. We eliminated these estimated risk

haplotypes with p-values for the above chi-square tests less than < 30%. Here, 30% was chosen

by the simulations, aiming to filter out false risk haplotypes. The details are omitted but can be

obtained from the authors.

The genomic control gave the final risk-haplotype set as displayed in Tables 1, 2, 3, and 4 below.

In the tables, each haplotype has been assigned to a physically closest gene on the basis of the infor-

mation provided the GWAS catalog and the genetic information from the British 1958 Birth cohort.

See Welter et al. (2014) and the web page at http://www2.le.ac.uk/projects/birthcohort/1958bc.

In the CAD case, we did rediscover the CAD risk genes TNIK in chromosome 3, CDKN2B in

chromosome 9, BTG1 in chromosome 12, and A2BP1 in chromosome 16, which were found by

the previous study (Welter et al., 2014). Among these genes, Zhu et al. (2010) identified only

CDKN2B. In the HT case, we also identified a number of variants which were potentially associ-

ated with hypertension. Compared to the multiple testing approach of Zhu et al. (2010), where 7

CAD-associated genes and 2 HT-associated genes were declared, our approach was much powerful

by finding more than 80 CAD-associated haplotypes and 11 HT-associated haplotypes. However,

we were not able to confirm other existing discoveries in the literature (Welter et al., 2014). A

possible reason is that we set a very stringent level for the odds ratio thresholding based on the

Bonferroni adjustment for multiple testing. It is well-known that the Bonferroni adjustment is very

conservative.

[Put Tables 1, 2, 3 and 4 here.]
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5 Discussion and conclusion

We are currently at an era of extraordinary growth in the data describing human genetic variation

and its correlation with complex traits. The recent development of bio-technologies allows an

international consortium of geneticists to revolutionize genetic research through large scale genome

wide association studies (GWAS). Although these studies have identified hundreds of loci at very

stringent levels of statistical significance across many different human traits, these loci are only

able to explain a small fraction of the population risk. To address the issue, new models and new

hypotheses have been proposed, which pose challenges to conventional statistics underlying much

of our genetic analysis. For example, GWAS analyses are most commonly performed by testing

the association of individual variants with the disease, ignoring the potential interactions between

the variants. It is believed that the region or gene-based analysis is more powerful in capturing

the collective activity of sets of variants by testing the association of the group instead of each

component individually with the disease.

In this paper, we have adopted the region-based strategy that segments the genome into 61218

regions with around 8 SNPs each. For each region, a list of distinct genotypes with their frequencies

in cases and controls have been worked out. The problem facing us is of the sparse distribution

of these genotypes. To circumvent it, people often first infer haplotypes from the genotypes and

then cluster the haplotypes into a number of groups. The association analysis is conducted on

the basis of the inferred groups, for example, by using multiple Z-tests (Zhu et al., 2010). There

is a drawback of the above approach: The in-silico reconstruction of haplotypes can generate a

proportion of false haplotypes which may hamper the finding of rare but true haplotypes. We

have proposed an alternative two-stage approach to the association analysis with GWAS data. Our

major contribution is to develop a method for co-classifying genotypes in terms of their penetrances

to the disease. In Stage 1, we cluster the genotypes through a finite mixture model, followed by

estimating the risk genotypes. In Stage 2, we infer the risk haplotypes from the estimated risk

genotypes by using the software PHASE and the odds ratio thresholding. We have proposed a

novel data-partition-based initialization for the associated EM algorithm.

We have examined the performance of the proposed procedure by simulations and applications

to the CAD and HT data generated from the WTCCC. Compared to the standard multiple Z-

testing method, the proposed procedure has been shown to be more powerful in terms of sensitivity

and specificity for detecting the true risk haplotypes. In the real data analysis, we have rediscovered
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some existing risk gene and haplotypes and identifying many more risk haplotypes than did the

multiple Z-test based approach. This is not surprising as the simulations have already demonstrated

that the model-based clustering can perform better than the multiple Z-test. The Bonferroni

adjustment for multiple testing has been applied when multiple tests or thresholding are involved.

We note that the results may be further improved if we use advanced multiple testing adjustment

methods in Stage 2, although this may not be possible for Stage 1 as the computation is too

time-consuming to run on a PC. For example, in Stage 2, we can apply Hochberg’s procedure to

adjusting and thresholding the individual p-values in two steps as follows (Hochberg, 1988).

Step 1: We calculate the p-value for each haplotype hk ∈ Ha. Note that under the null hypothesis

in which the underlying odds ratio is one, the distribution of the estimated odds-ratio ORk is

asymptotically Normal distributed as stated in the equation (2.2). Then, the p-value can be

approximated by

pk = 1− Φ
(

log(OR
(0)
k /φ(n0k, n1k, n0k̄, n1k̄))

)

,

where Φ(·) is the standard normal distribution function and φ(n0k, n1k, n0k̄, n1k̄) is defined in the

equation (2.3).

Step 2: We calculate the adjusted p-values by ordering the p-values as p(1) ≤ p(2) ≤ · · · ≤ p(ma),

where ma is the size of Ha. The adjusted p-values are then defined by

p̃(j) = min
j≤k≤ma

min(map(k)/k, 1).

We assign the corresponding haplotype to the risk group if p̃(j) ≤ 0.05.

We have applied the above modified procedure to both simulated and real data, obtaining

improved simulation results displayed in Figures 4∼5 as well as the additional risk-haplotypes

identified from the real data analysis in Table 5.

[Put Figure 4 here.]

[Put Figure 5 here.]

[Put Table 5 here.]

Appendix I: PHASE

PHASE is a Bayesian haplotype reconstruction method developed by Stephens et al. (2001) to

tackle the problem of statistically inferring haplotypes from unphased genotype data for a sam-

ple of unrelated individuals from a population. Based on the so-called coalescent model, it treats
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the unknown haplotypes as random quantities and combine prior information on haplotypes with

the data likelihood to calculate the posterior distribution of the unobserved haplotypes (or hap-

lotype frequencies) given the observed genotype data. The haplotypes themselves can then be

reconstructed from this posterior distribution: for example, by choosing the most likely haplotype

reconstruction for each individual.

Appendix II: EM algorithm

The EM algorithm consists of two steps.

E-Step: Given the current estimator θ(t) and the data, the conditional expectation of the com-

plete log-likelihood can be calculated by

Q(θ, θ(t)) = E
[

l(θ|N, I)|N, θ(t)}
]

=
J
∑

j=1

2
∑

ν=0

τ
(t)
νj log

[

π(t)
ν f((N0j , N1j)

T |q(t)ν )
]

,

where the expectation is taken with respect to the distribution of I and the estimated posterior

probability of the j-th genotype being in the group ν, τ
(t)
νj admits

τ
(t)
νj = P (Iνj = 1|(N0j , N1j)

T , θ(t)) =
π
(t)
ν f((N0j , N1j)

T |q(t)ν )
∑2

ν=0 π
(t)
ν f((N0j , N1j)T |q(t)ν )

.

M-Step: We update the current estimate θ(t) by maximizing Q with respect to θ. This is

equivalent to solving the following equations

∂Q

∂πν
= 0,

∂Q

∂qν
= 0, ν = 0, 1, 2,

subject to π0 + π1 + π2 = 1. For ν = 0, 1, 2, we obtain the updated estimate θ(t+1) via

π(t+1)
ν =

J
∑

j=1

τ
(t)
νj /J, q(t+1)

ν =

∑J
j=1 τ

(t)
νj N1j

∑J
i=1 τ

(t)
νj (N0j +N1j)

.

The existing EM theory suggests that the value of the log-likelihood function at the updated

estimate is not decreasing in the sense that l(θ(t+1)|N) ≥ l(θ(t)|N). We alternatively repeat the E-

and M-steps until l(θ(t+1)|N)− l(θ(t)|N) is less than a pre-specified number η, say η = 0.0001.

Choosing initial values for the EM algorithm is an important step in finding a maximum of the

likelihood. There are various ways to do that such as random initialization and data partition. See

Karlis and Xekalaki (2003) for a review. Here, we consider the following two methods to initialize

the EM algorithm.
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Method 1 (random initialization): We randomly choose i0 initial values (say i0 = 100) of θ and

run the EM algorithm with each chosen initial value. We take the best one among these runs in

terms of maximizing the log-likelihood.

Method 2 (data partition): Note that as pointed out before, the prospective frequencies of Gj

in the controls and cases can be estimated by

p̂0j =
N0j

N0j +N1j
, p̂1j =

N1j

N0j +N1j

respectively. We first exclude the outlying frequencies in {p̂1j , p̂0j}, which have values of 0 or 1,

to obtain robust means of a partition. Then, letting c = (maxj p̂1j −minj p̂1j)/3, we partition the

frequencies into three sets as follows:

S0 = {p̂1k : p̂1k ≤ min
j

p̂1j + c},

S1 = {p̂1k : min
j

p̂1j + c ≤ p̂1k < min
j

p̂1j + 2c},

and

S2 = {p̂1k : p̂1k > min
j

p̂1j + 2c}.

Note that the prospective frequency is increasing in the number of risk haplotypes which it

carries. So, we expect that S2, S1 and S0 mainly contain the frequencies corresponding the sets of

genotypes with two risk haplotypes, with one risk haplotype, and with no risk haplotypes respec-

tively. We choose the following initial values for estimating qν and πν , ν = 0, 1:

q0ν =

∑

p1j∈Sν
p1j

|Sν |
, and π0

ν =
|Sν |
m

,

where |Sν | denotes the cardinality of Sν .
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Figure 1: Performance of two initialization methods. Methods 1 and 2 denote the random initialization and

the data partition-based methods. From the left to the right, the panels show the box-whisker plots of the

estimated biases in estimating θ, the CERs, the attained log-likelihoods, and the time-costs for Methods 1

and 2 respectively.
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Figure 2: Performances of the proposed two-stage method with Bonferroni adjustment and the multi-

ple testing method on the cohort-design data with multiplicative or dominant or recessive inheritance

modes. In these plots, the red and the blue solid curves show means of the AVSS values (i.e., the val-

ues of (specificity and sensitivity)/2)) over 30 datasets are plotted against the values of λ for the proposed

method and the multiple testing method respectively. The two red dash curves are one standard deviation

up and down from the red mean curves. Similarly, the two blue dash curves are one standard deviation

up and down for blue mean curves. The plots in the columns from the left to the right are for the cases

where there were 5, 10, and 20 risk haplotypes in the underlying haplotypes. The top two rows, the middle

two rows and the bottom two rows are the results for (N0, N1) = (2000, 1000) and (3000, 2000) under the

multiplicative, the dominant and the recessive inheritance modes respectively.
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Figure 3: Performances of the proposed two-stage method with Bonferroni adjustment and the multiple

testing method on the case-control data. The plots in the columns from the left to the right are for the

scenarios, where the underlying number of risk haplotypes mr = 5, 10, and 20. The top row stands for

the cases, where (N0, N1) = (2000, 1000), while the bottom row stands for the cases, where (N0, N1) =

(3000, 2000). In these plots, the red and the blue solid curves show mean curves of the AVSS values over

30 datasets as functions of d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 for the proposed method and the

multiple testing method respectively. The dash curves are one standard error up or down from the mean

curves.
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Figure 4: Performances of the proposed two-stage method with Hochberg’s multiple testing adjustment

and the multiple testing method on the cohort-design data with multiplicative or dominant or recessive

inheritance modes. In these plots, the red and the blue solid curves show means of the AVSS values (i.e., the

values of (specificity and sensitivity)/2)) over 30 datasets are plotted against the values of λ for the proposed

method and the multiple testing method respectively. The two red dash curves are one standard deviation

up and down from the red mean curves. Similarly, the two blue dash curves are one standard deviation

up and down for blue mean curves. The plots in the columns from the left to the right are for the cases

where there were 5, 10, and 20 risk haplotypes in the underlying haplotypes. The top two rows, the middle

two rows and the bottom two rows are the results for (N0, N1) = (2000, 1000) and (3000, 2000) under the

multiplicative, the dominant and the recessive inheritance modes respectively.
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Figure 5: Performances of the proposed two-stage method with Hochberg’s multiple testing adjustment

and the multiple testing method on the case-control data. The plots in the columns from the left to the

right are for the scenarios, where the underlying number of risk haplotypes mr = 5, 10, and 20. The top

row stands for the cases, where (N0, N1) = (2000, 1000), while the bottom row stands for the cases, where

(N0, N1) = (3000, 2000). In these plots, the red and the blue solid curves show mean curves of the AVSS

values over 30 datasets as functions of d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 for the proposed

method and the multiple testing method respectively. The dash curves are one standard error up or down

from the mean curves.
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Table 1: The predicted risk haplotypes for CAD by use of the WTCCC data. In the table, the

p-values were derived from the chi-squared test of the frequencies of Hi against the collapsed

frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR p-Value Gene

1 17921479− 17955334 rs11203219− rs638425 AATGCCGC 0.04602 0.01388 3.05038 4.1× 10−12 ACTL8

1 75974016− 76018681 rs3806162− rs5745391 TCTATCAA 0.05105 0.01954 3.18049 1.2× 10−12 MSH4

2 49934439− 50000082 rs6736617− rs17039375 CCAAAGGT 0.02347 0.00757 3.08898 6.6× 10−10 NRXN1

2 81387425− 81525659 rs4401229− rs2862499 TTGCTCCA 0.0451 0.02468 2.54951 1.8× 10−12 LOC442021

2 222486954− 222527591 rs16863087− rs2392937 CCAAACGG 0.04059 0.02497 2.09348 4.3× 10−08 LOC402120

2 230201571− 230228527 rs6755403− rs13391903 AGTTTGCC 0.1132 0.04164 2.78377 2.3× 10−08 DNER

2 239420300− 239491966 rs4545955− rs13008279 TTCCAGGA 0.05558 0.02584 2.17494 1.3× 10−12 FLJ43879

2 241821720− 241873661 rs4675991− rs935262 CGGGGTTT 0.03735 0.01659 2.32538 1.4× 10−10 PPP1R7

3 4927181− 5001898 rs17041733− rs11925620 CCTCCTCC 0.04287 0.01795 2.16999 1.2× 10−07 BHLHB2

3 14422977− 14471151 rs4684216− rs9834629 GATGATGC 0.01815 0.00509 3.63785 1.7× 10−09 SLC6A6

3 60586653− 60641652 rs7432576− rs1716739 CTATAAGC 0.15989 0.11374 1.55681 9.4× 10−12 FHIT

3 63365648− 63390235 rs17068494− rs1403700 TCCTTCGG 0.08979 0.04741 2.04072 7.1× 10−09 SYNPR

3 67509601− 67525645 rs9867659− rs17046411 ACGATGTT 0.05192 0.03019 1.95683 5.1× 10−09 SUCLG2

3 103285842− 103325614 rs7623627− rs9844712 GTCCCTAT 0.02744 0.00999 3.15138 1.6× 10−09 NFKBIZ

3 106353367− 106411138 rs16850901− rs9846852 TATCGAGA 0.02931 0.0065 4.87306 7.5× 10−18 ALCAM

3 144925558− 144993828 rs4330252− rs12233446 TGGGATAC 0.02976 0.00733 5.71824 1.8× 10−16 SLC9A9

3 145364476− 145471873 rs9854202− rs3925560 AACGGACT 0.37409 0.29638 2.25725 5.5× 10−34 C3orf58

3 172422863− 172457251 rs954749− rs16856054 TTCTTACT 0.12948 0.08707 1.50219 2.2× 10−08 TNIK

3 192463499− 192526004 rs7644510− rs293871 GACGCGTA 0.04375 0.01075 3.69505 1.3× 10−18 UTS2D

3 197256495− 197339533 rs6583286− rs9834962 TAGACTTA 0.0498 0.02364 2.27577 2.7× 10−10 TFRC

4 3636361− 3700212 rs10025237− rs16844722 GGGGAGGG 0.22491 0.15492 1.65607 1.9× 10−07 FLJ35424

5 120487082− 120547238 rs11956204− rs17514347 ATTGGGAG 0.02739 0.00735 3.8359 1.5× 10−13 LOC728682

5 166764561− 166801933 rs6863935− rs7724862 CTATGTGT 0.09145 0.05448 1.69398 8.7× 10−09 ODZ2

7 4779368− 4930112 rs2942566− rs4320451 CGGGTCAT 0.10433 0.06243 1.66428 5.5× 10−10 RBAK

7 10052046− 10079446 rs10225194− rs11768931 GGTTCGCT 0.04951 0.0245 2.64149 9.4× 10−15 LOC340268

7 34178282− 34260002 rs17169771− rs16878925 AGGTTGCG 0.05229 0.02631 2.71386 3.3× 10−13 AAA1

7 42931717− 42940671 rs2024125− rs2330742 AGTGTAGA 0.09745 0.0513 1.90132 2.0× 10−10 HECW1

7 153564509− 153621369 rs869490− rs6953905 TCGTATCG 0.0667 0.03524 1.93779 6.6× 10−11 LOC653748

8 5482876− 5498858 rs2189889− rs4875607 CGGACCGA 0.07873 0.0533 1.64615 2.4× 10−08 LOC648237

8 17486464− 17509327 rs2705093− rs2588121 CCTGCGAG 0.05925 0.02338 2.67404 1.6× 10−15 PDGFRL

8 38345434− 38449100 rs16887343− rs12677355 ACGTACCT 0.09472 0.05661 1.82381 7.0× 10−13 WHSC1L1

8 104190450− 104202402 rs2515173− rs3019159 GGCCATCT 0.14195 0.08768 1.62006 1.5× 10−08 BAALC
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Table 2: The continuation of Table 1.
Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR p-Value Gene

9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.52609 1.0× 10−07 CDKN2B

9 74180343− 74241329 rs10114124− rs17081046 GTATTTAT 0.21608 0.13046 1.61055 1.2× 10−07 RORB

9 114777214− 114805868 rs1322060− rs10121268 GAGCCTAA 0.09498 0.06007 1.56664 2.3× 10−08 TNFSF8

9 119506057− 119537035 rs2191675− rs10984648 GTTGGCTA 0.08762 0.03361 2.41642 3.0× 10−16 CDK5RAP2

10 11879196− 11924252 rs6602535− rs11257355 TCTGCCGG 0.1694 0.12811 1.41273 6.4× 10−08 C10orf47

10 64409674− 64442476 rs1509952− rs2842286 TTTCTTAC 0.02299 0.0073 4.03039 1.6× 10−09 NRBF2

11 8165969− 8200374 rs4758310− rs11041816 ATAATGGG 0.36298 0.3164 1.3306 1.1× 10−08 LOC644497

11 21323965− 21363331 rs17233214− rs1945444 GGTAACAT 0.08147 0.04232 1.98043 8.6× 10−12 NELL1

11 69213458− 69295251 rs1192923− rs3168175 TCGTGGCA 0.10225 0.05587 1.98038 8.9× 10−14 FGF4

TTGTGGCA 0.05213 0.02803 2.01202 5.6× 10−09

11 83230307− 83256927 rs1878266− rs1878264 TATATTCA 0.03571 0.01807 2.11905 2.5× 10−07 CCDC90B

12 90721177− 90758721 rs10745571− rs17193868 GGGCTATA 0.0351 0.00949 3.88035 1.7× 10−16 BTG1

12 114038450− 114074493 rs1828384− rs35346 TGTACCCT 0.03245 0.01341 2.52817 2.3× 10−07 TBX3

12 127146384− 127182360 rs10847535− rs10773498 TTGTCGCG 0.10562 0.07049 1.50842 1.3× 10−07 TMEM132C

12 129086441− 129129809 rs713149− rs1027557 AAAGCGGT 0.18839 0.11206 1.74867 4.4× 10−14 FLJ31485

13 26845975− 26875430 rs11616513− rs17085553 TACGCACA 0.04431 0.02025 2.30656 7.1× 10−10 MTIF3

13 31414174− 31438047 rs17076954− rs169410 CCTCCCGT 0.30306 0.29469 2.6188 6.9× 10−08 LOC196549

13 48154476− 48209065 rs7330127− rs9562843 ACGATAGA 0.02762 0.0048 5.63922 2.7× 10−10 RCBTB2

14 25140850− 25159405 rs8020556− rs1951062 AGTACATA 0.24934 0.2259 1.41488 3.5× 10−08 LOC401767

AGTAAACT 0.09084 0.02999 3.87615 1.0× 10−41

GCTACATA 0.04608 0.01682 3.50368 3.4× 10−22

14 32591680− 32606647 rs12883961− rs10140504 CATGGGAG 0.03736 0.01879 2.21665 1.1× 10−08 NPAS3

14 65343491− 65401760 rs3924222− rs12896836 TATAACTC 0.0462 0.01904 2.55404 5.2× 10−14 FUT8

15 20592297− 20610835 rs4778334− rs1991922 TAGCCCAT 0.04494 0.01488 2.75061 1.1× 10−12 NIPA1

15 20624103− 21246055 rs7166056− rs8024346 GTGACGTG 0.08093 0.04109 2.10848 2.4× 10−13 NIPA1

15 21610088− 21670901 rs824163− rs7181211 TTTTCAAC 0.22034 0.15435 1.43864 4.9× 10−09 MAGEL2

15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 1.99235 2.7× 10−11 GPR176

15 64637416− 64669062 rs1030986− rs4776800 CACGTCGT 0.04575 0.01594 2.65924 2.2× 10−09 LCTL

15 79193543− 79223619 rs1317059− rs6495541 CTCGGACC 0.02813 0.00459 6.34974 2.2× 10−15 C15orf26

15 90365510− 90400043 rs12906289− rs992838 ACGTAAGG 0.07777 0.02342 3.50153 1.1× 10−26 SLCO3A1

15 91435452− 91473401 rs4778099− rs17526830 GATCCCTA 0.07536 0.04084 1.94917 1.7× 10−09 RGMA
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Table 3: The continuation of Table 2.
16 6155489− 6181184 rs11642397− rs1946127 TTGGGTTG 0.02433 0.00883 2.92587 1.7× 10−07 A2BP1

16 46937666− 47050362 rs11076564− rs8054696 AACGGGCC 0.18717 0.15302 1.62027 1.1× 10−07 LONP2

TGAAGGCT 0.04224 0.02781 2.01195 2.3× 10−07

16 51239337− 51264345 rs3112587− rs4386133 CCTATGAG 0.07702 0.0442 1.68656 7.3× 10−08 LOC643714

16 55207138− 55253047 rs8055724− rs12447986 TTCTCCTC 0.03044 0.01113 2.65805 9.0× 10−09 MT1L

17 73602775− 73670122 rs16970811− rs9909570 CCCACTAG 0.02022 0.00446 4.82821 3.1× 10−13 TNRC6C

17 74629176− 74682195 rs2612793− rs8072667 CGAGGTTG 0.06276 0.03471 1.95026 6.7× 10−09 FLJ21865

18 8212591− 8279839 rs10468776− rs11876033 GGGACAAG 0.02689 0.00982 2.86846 1.7× 10−10 PTPRM

18 8772147− 8782163 rs12606001− rs8084401 TCAGTGAC 0.09539 0.03649 2.66938 1.3× 10−17 KIAA0802

18 60647495− 60688045 rs1595904− rs17678507 CAGCGTGC 0.08119 0.04205 2.1482 6.5× 10−16 C18orf20

19 50064169− 50153836 rs17561351− rs204907 AGGCAGAA 0.05937 0.02583 2.35486 5.1× 10−14 PVRL2

19 52946204− 53026777 rs10402957− rs4427918 CATTCAGC 0.0741 0.04321 1.87681 1.7× 10−11 GLTSCR2

19 59113663− 59296006 rs7257613− rs3760698 CCGGCCGC 0.06977 0.0159 5.01246 2.7× 10−43 CACNG7

CCGGCCAC 0.12473 0.08441 1.69429 6.7× 10−13

20 5265473− 5327486 rs6085111− rs6085143 ACCAATCC 0.04815 0.02744 1.83971 1.3× 10−07 FLJ33544

20 42465269− 42498442 rs3181206− rs6017342 GGCTTCCA 0.12685 0.06245 2.08814 3.0× 10−14 HNF4A

20 44639977− 44681497 rs376438− rs847096 AAGTCTGC 0.09805 0.04784 1.90457 8.8× 10−12 SLC13A3

20 49937544− 50006641 rs6067996− rs6021570 ATTGGACA 0.03133 0.01165 2.82133 2.6× 10−11 SALL4

20 51762764− 51798874 rs4811452− rs4811457 GATGTTCA 0.05611 0.03099 1.87441 1.7× 10−08 ZNF217

20 57707915− 57741702 rs12481511− rs16984986 TGTACCAG 0.0773 0.0427 1.95199 1.2× 10−07 PHACTR3

21 2015127− 13517135 rs2847443− SNPA TACAAGAT 0.10999 0.09446 1.65501 2.4× 10−08 TPTE

22 16871076− 16895136 rs8142200− rs975826 TCGGGAGG 0.03219 0.00253 10.88401 1.8× 10−19 LOC729269

22 31354524− 31372260 rs8139704− rs5749480 CGCTAGGG 0.02584 0.00524 5.07641 3.4× 10−16 SYN3

22 35324014− 35335429 rs7410412− rs12160203 TTTCAAGG 0.17403 0.10746 1.67423 1.3× 10−10 CACNG2
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Table 4: The predicted risk haplotypes of hypertension by use of WTCCC data. In the table,

the p-values were derived from the chi-squared test of the frequencies of Hi against the collapsed

frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR p-Value Gene

1 236986859− 237020204 rs12137158− rs16840310 ATTTAGGG 0.08733 0.05437 1.69625 3.4× 10−10 GREM2

4 3700382− 3734797 rs177772− rs12641338 TACCGATT 0.12978 0.08988 1.59997 7.7× 10−12 FLJ35424

4 170032303− 170061525 rs6822949− rs17614553 GAACGGAA 0.0425 0.01579 2.86663 4.8× 10−10 PALLD

6 152700181− 152736079 rs7747166− rs7776399 CGGCTCCC 0.52639 0.49931 3.36065 2.7× 10−23 SYNE1

CGGGTCCT 0.04238 0.03768 3.58962 5.7× 10−14

11 69213458− 69295251 rs1192923− rs3168175 TTGTGGCA 0.05532 0.02803 2.12665 3.4× 10−10 FGF4

12 116500495− 116514298 rs10850852− rs1400593 CTCTCTTC 0.28748 0.26232 2.46528 5.2× 10−17 NOS1

14 21674996− 21704333 rs12050442− rs1894369 GGGGTTAC 0.03075 0.00968 3.28277 1.8× 10−11 TRA@

14 25140850− 25159405 rs8020556− rs1951062 AGTAAACT 0.08475 0.02999 2.94949 6.6× 10−27 LOC401767

14 36411583− 36421982 rs10872897− rs2564848 TACCTCCC 0.02712 0.01101 2.63669 1.4× 10−08 SLC25A21

ATCCACTT 0.02299 0.00637 3.84732 1.3× 10−11

14 36969639− 37032855 rs10132119− rs17106785 CTATGACA 0.01914 0.00402 5.57575 6.1× 10−10 MIPOL1

19 17595848− 17649789 rs10419511− rs7252308 TTGGTATG 0.04536 0.01971 2.16516 1.7× 10−10 UNC13A
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Table 5: The additional predicted risk haplotypes derived from our modified two-stage approached

for CAD and HT by use of the WTCCC data. In the table, the p-values were derived from the

chi-squared test of the frequencies of Hi against the collapsed frequencies of the estimated non-risk

haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR p-Value Gene

CAD

1 SNPA − 1786647 rs1180966− rs54908760 GCGTCGAC 0.0108 0.00089 15.54545 9.7× 10−06 C1orf175

1 SNPA − 4238771 rs10789042− rs56980458 GGTTCGTC 0.23665 0.17127 1.52975 2.7× 10−05 C1orf168

4 SNPA − 2043443 2352223− 114179750 TATCGCCC 0.01136 0.00108 10.38462 3.9× 10−06 LOC91431

4 130622122− 130672763 rs4975216− rs17014667 GCATCGGC 0.00756 0.00104 8.81729 4.5× 10−05 LOC391697

4 143705041− 143731526 rs17715707− rs9308152 AAATGGGG 0.09662 0.07696 2.30005 4.4× 10−06 INPP4B

AAACGGAA 0.0887 0.07524 2.16017 3.6× 10−05

9 16944279− 16951911 rs7021242− rs16935195 GCGACCGA 0.02571 0.01502 3.57182 2.5× 10−07 BNC2

10 119397605− 119419979 rs855994− rs12572201 AATATCTG 0.03346 0.01532 2.13367 3.7× 10−05 EMX2OS

12 116500495− 116514298 rs10850852− rs1400593 CTCTTTTC 0.51578 0.5 3.79043 1.8× 10−55 NOS1

CTCTCTTC 0.28034 0.26232 3.92754 2.4× 10−85

13 108372995− 108432811 rs4773010− rs3842945 AGAGACCC 0.27486 0.19222 1.40317 3.0× 10−05 MYO16

16 63792132− 63847234 rs1862709− rs1423798 CGGATACT 0.21037 0.19685 2.2091 2.3× 10−05 LOC283867

17 13110258− 13147203 rs17565276− rs17572446 GGGTTTGA 0.0807 0.05399 1.53479 2.8× 10−05 HS3ST3A1

19 58535811− 58602417 rs10405660− rs2061772 ACAGCTGA 0.04005 0.01282 2.67636 1.8× 10−05 ZNF765

20 45769577− 45836335 rs4407304− rs2840278 GTGTCTAC 0.01675 0.00479 3.59601 1.3× 10−06 SULF2

HT

17 6992193− 7158208 rs4558460− rs6503013 TCGCGTCG 0.14256 0.10161 1.46353 1.6× 10−05 LLGL1
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