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ABSTRACT

British bird observatories data are examined from a statistical 
viewpoint. Consideration is given to the forming of indices of 
migration volume which can be used to monitor fluctuations in 
breeding population levels.

The collection of daily counts of grounded migrants is discussed 
and simple graphical techniques are used to explore migratory 
behaviour of some common nocturnal migrants. The timing of 
migration is found to be related to population size as measured 
by the Common Bird Census.

Statistical models are fitted to sequences of daily counts of 
grounded migrants but migration indices developed from these 
models are shown to offer no significant improvements over those 
based on the timing of migration.

Linear discriminant analysis is shown to be a useful method of 
linking weather data with observatories data, and statistical 
models are developed for daily counts which utilise weather 
information.
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CHAPTER 1

INTRODUCTION

1.1 Main objectives

This thesis examines data from British Bird Observatories using 

statistical methods. The work continues and deepens the link 

between ornithology and statistics in two ways. Firstly, there 

is the application of statistical methodology - for example, 

model building and hypothesis testing - to the field of migration 

research, and secondly, the opening up of a complex biological 

area to applied statistics.

The benefits for both disciplines include the verification of 

common-knowledge features of ornithology by objective methods, 

the extension of existing knowledge of migration for the British 

Isles, and the demonstration of how biological mechanisms can be 

translated into statistical models, thereby enabling certain 

hypotheses to be tested.

A more specific objective is to assess the possibility of 

constructing an annual index of migration for species of birds 

that are common summer visitors to Britain, and of then using the 

index for population monitoring. If such an index can be 

constructed then it may be used to complement existing indices of 

population levels and also to provide a means of monitoring 

population levels of species not at present covered by a regular 

census.
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One method of validating migration indices is by using results 

from other population censuses such as the Common Bird Census 

(CBC), which is run by the British Trust for Ornithology (BTO).

The manner in which this census is conducted is also examined 

from a statistical viewpoint in this thesis.

In order to provide a full understanding of observatories data, 

some time is spent on examining how bird observatories are run from 

day to day, and the usefulness of present recording methods is 

discussed.

1.2 Previous studies of observatories data

In the past, small subsets of observatories data have been studied, 

and the details are reviewed more thoroughly in chapter 3. It is 

sufficient at this stage to note that the points of interest have 

usually been the timing and length of migration seasons and the 

migratory routes used. This thesis provides the first analysis of 

observatories data on a much larger scale, due in part to the 

cheap and efficient computing facilities now available.

Much has been written in the past on the influence of weather on 

bird migration, and chapters 4 and 5 follow in this vein. The use 

of multiple regression in this field is not new, but most of the 

previous regression studies were carried out on data other than 

British data. Furthermore, little attention has been paid in the 

past to the validity of using regression analysis in this context, 

and this point is investigated in chapter 4.
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Chapter 5 provides the first extensive study of the use of 

discriminant analysis in this field, and enables a direct 

comparison between regression and discriminant analysis to be 

made in the context of migration research.

This thesis represents the first major attempt at monitoring 

population levels by using British migration data, although the 

idea is not new - two small-scale studies of individual species 

were made where a crude index was based on annual totals of daily 

counts of migrants at particular observatories. A certain amount 

of success was achieved in these studies, but the main 

inspiration behind the present thesis came from overseas work, 

in particular from Canada and Sweden, which is discussed later.

The work of this thesis differs from previous analyses of 

observatories data in that attention is focused on daily counts 

of grounded migrants rather than daily totals of birds trapped 

and ringed. Section 2.2 describes how both data sets have 

disadvantages and advantages as regards statistical analysis.

1.3 The scope of the thesis

Throughout this thesis, emphasis is placed on the daily counts 

of grounded migrants at coastal observatories. The extensive 

data on the ringing and trapping of birds has been the main 

source of knowledge of migration for many decades, and most 

ornithological journals contain papers using these data.

One reason for concentrating on daily counts of birds observed 

rather than caught is the size of the samples involved. As will

3



be seen, even the daily counts data set imposes severe limitations 

for thorough analysis for many species, simply because of the 

small numbers involved. Ringing totals and daily counts are not 

independant data sets however, since the latter are based to a 

certain extent on the former, as is shown in chapters 2 and 3.

Over the period of this research a considerable amount of time 

was spent in extracting data from the BTO archives at their 

headquarters in Tring, Hertfordshire. The data, which have 

accumulated over several decades, are stored on record sheets 

(three per month) and therefore much work was needed to obtain 

data for a number of years from several observatories, and for 

several species. Although data from several observatories were 

obtained, the work of this thesis concentrates on data from two 

observatories (Dungeness and Portland). These observatories 

are known by ornithologists to record birds visiting Britain and 

not birds of passage heading for or coming from places such as 

Scandinavia. The presence of continental birds in the data 

would clearly affect conclusions concerning population levels of 

British breeding birds.

Data from other observatories are, however, studied in early 

sections of the thesis but one should remember that the counts 

of migrants may be inflated at certain and unknown times due 

to the presence of non-British-breeding birds.

Dungeness and Portland observatories are also ideal for the 

purpose of this thesis since weather data are available from 

adjacent meteorological stations. It was possible to obtain
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from the Meteorological Office Archives data for the period 

1968-70 (Portland; spring and autumn) and spring weather data 

for the period 1961-72 (Dungeness). Autumn weather data for 

Dungeness were obtained for 1967-70. Analyses which feature 

the use of weather data are therefore restricted to these time 

periods.

Daily counts of grounded migrants are available for the entire 

period 1961-72, and therefore analyses which do not use weather 

data have been carried out on the full data set. Because of the 

need for comparisons with CBC data, counts prior to 1961 were 

not considered due to the absence of CBC data before 1962 (counts 

for 1961 are studied since the autumn counts may be related to 

the CBC index of 1962).

At the request of the BTO, the species of birds studied in this 

thesis are common summer visitors. For most of these species,

CBC data are available for comparison. For species without CBC 

data,analysis is also restricted to post-1961 due to difficulties 

in obtaining early records. Only species that migrate during the 

night are studied since diurnal migrants present more complex 

recording problems - see later. Similarly, only passerines

i.e. small land birds, are studied since the recording of seabirds, 

for example, is heavily dependent on visibility and manpower - 

see chapter 2.

Thus we are concerned with species such as Warblers, Chats and 

Flycatchers rather than Swallows, Martins and Wagtails for example. 

Particular species such as the Redstart, Sedge Warbler, Whitethroat
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and Willow Warbler are studied in detail throughout the thesis 

since they are common migrants at a number of observatories 

during both spring and autumn migration seasons. Some 

consideration is given to other less common species, for example, 

Blackcap and Flycatchers (Pied and Spotted). Latin names appear 

at the end of the thesis.

In the future, more extensive studies may be easier to carry out, 

as the BTO is currently expanding its computer storage of data.

It is hoped that this thesis will help to suggest which data sets 

are more urgently needed on computer filestore.

The data (daily counts of grounded migrants and weather data from 

Dungeness and Portland) that are used in this thesis are held at 

the BTO headquarters at Tring, Hertfordshire. Individuals who 

are interested in analysing these data should contact the Ringing 

and Migration Section, Beech Grove, Tring.

1.4 Collaboration with ornithologists

Much of the background knowledge required for analysing 

observatories data was obtained from discussions with staff of 

the BTO and wardens of observatories. Many visits to observatories 

were made, from which a clear understanding of the mechanics of 

migration was obtained. This is a good example of how 

statisticians can benefit by participating in the collection of 

the data, and discussing problems with those who work in the field 

from day to day.
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1.5 Plan of the thesis

In chapter 2 the work of bird observatories is outlined, with 

particular aspects of the data collection methodology being 

examined in detail in chapter 3. Chapter 2 also puts the work 

of this thesis into context by reviewing other studies of 

observatories data, including studies made at overseas observatories. 

The Common Bird Census (CBC) is considered, since throughout the 

thesis comparisons are made between annual migration indices and 

CBC indices, for appropriate species.

Chapter 3 is divided into two parts, the first being a detailed 

study of how observatories data are collected and the implications 

that these methods have on subsequent analyses. Many diagrams of 

samples of daily counts are presented so that the reader may 

appreciate the variety of interesting features that these data 

exhibit.

The second part of chapter 3 concerns weather data which originate 

from lighthouses close to Dungeness and Portland observatories.

In later chapters the weather data are linked with migration data, 

and here we simply explore the structure of the weather observations. 

The work of this section enables us to choose subsets of weather 

variables from the total number of variables available, while also 

being aware of properties such as correlation between variables 

and auto-correlation of observations taken over time.

In chapter 4 we ask the question: can we explain the numbers of 

birds recorded each day in terms of population level and local 

weather conditions? If we can isolate these two factors then we
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may be able to construct a migration index that measures 

fluctuations in population level. Much of this chapter points 

to the fact that regression is not very useful in this context, but 

some time is spent in examining the work of Hussell (1981), who 

has attempted a regression approach to the formulation of indices, 

with reference to Canadian east coast migration.

Linear discriminant analysis is presented as an alternative to 

multiple regression analysis in chapter 5. Discriminant analysis 

is seen to be a useful tool for the study of relationships between 

migration counts and local weather conditions since it offers 

straightforward interpretations of results, and it is based on 

assumptions that appear to be upheld by the data. The way in 

which the results of chapter 5 may be used in constructing 

migration indices which are adjusted for weather is outlined.

Chapters 6 and 7 consider the modelling of sequences of daily 

counts, the latter chapter involving weather data and results from 

chapter 5. Simple models are proposed and the difficult problem 

of testing their goodness of fit is considered.

Chapter 8 sets out some recommendations arising from the thesis 

for ornithologists and statisticians who may wish to continue 

research in this area. The recommendations cover the collection 

and storage of data and the statistical analysis of the data.
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CHAPTER 2

BACKGROUND TO OBSERVATORIES DATA 

2.1 The observatories

Fig. 1 shows the observatories which were operating in Britain 

in 1985. The map shows a widespread distribution. They are 

all situated on coastal headlands or on islands near to the 

coast. Headlands tend to 'funnel' migrating birds in the autumn 

as they head south, i.e. a flight direction nearest to the 

desired direction is taken when a sea-crossing is the only 

alternative. In spring, headlands form the first sight of land 

for birds approaching Britain, and again produce concentrations 

of resting migrants. Observatories are mostly situated in remote 

areas where human disturbance is minimised. Islands offer the 

same advantages for both ornithologists and birds, but with even 

less human disturbance.

The aims of the observatories are primarily the study of migration 

and the numbers of birds involved. The data that accrue at each 

site provide an opportunity for studying many aspects of migration, 

including the influence of weather, the occurrence of rarities, 

migratory routes involved and the biology of migration, i.e. 

weights of birds and the behaviour of birds that are about to 

complete or commence a long journey.

Each observatory has an area of land around, or adjacent to the 

main buildings which is termed the 'recording area'. Dungeness, 

for example, has a large shingle area with scrub patches and 

Portland has arable land with hedgerows and scrub patches.

9



Fig. 1 Accredited Bird Observatories in Britain

and Ireland, 1985

( from Durman, 1976 )
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Other examples are Sandwich Bay with golf courses, sand dunes, 

arable land and hedgerows, Gibraltar Point with scrub and 

wetland areas, while Fair Isle has little scrub, being a barren 

island.

The observatory buildings include accommodation for the warden 

and visitors, and the ringing laboratories. Most observatories 

have vantage points overlooking the sea from which sea-bird 

movements can be studied using fixed-point telescopes.

All observatories have at least one regular ringing site. These 

are usually adjacent to scrub patches or within scrub areas where 

paths are cut in order to set up trapping equipment. At least 

one Heligoland trap is usually found. These are large funnels of 

netting into which birds are driven by ringers, until the birds 

reach a collecting box at the neck of the funnel.

The recording area must obviously be kept the same size from year 

to year in order for censuses to he of use. Continuity of habitat 

is equally important. Dungeness suffered a major alteration with 

the building of two nuclear power stations nearby. Building 

commenced in 1960 and is still in progress today. Ornithologists 

are confident that the time period of interest in this thesis 

falls within a sustained period of building, and therefore any 

influence on observatory records will apply equally in each year 

studied.

The day to day running of observatories is carried out by an 

appointed warden together with visitors. For visitors, who are

11



almost entirely amateur bird enthusiasts, observatories provide 

an inexpensive holiday where ornithological knowledge and 

expertise can be improved. In particular, observatories enable 

bird ringers to gain experience with species not found in their 

own locality.

The British observatories are financed by donations from the 

public and local beneficiaries. These funds pay the warden and 

provide equipment such as rings and nets. Annual reports are 

also published using this money.

Each observatory is financed independantly but their activities 

are guided by the BTO ringing and migration section. Each year 

the Bird Observatories Council meets in order to discuss the 

organisation of observatories. The Council consists of wardens, 

benefactors and research ornithologists.

The Isle of May observatory was founded in 1933, but most were 

formed in the 1950’s. In most years the observatories are manned 

throughout the spring and autumn migration seasons, if not 

throughout the year. Details of individual observatories can be 

found in Durman (1976).

2.2 The types of data collected

The daily census data available from observatories consist of 

counts of grounded migrants (mostly nocturnal migrants counted 

during the day after flight), visible migration counts (mostly 

diurnal migrants) and sea-bird counts. All three censuses are 

carried out by the warden and visitors. They are carried out
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each day the observatory is manned, but the sea-bird census 

depends on there being interested visitors present who are able 

to identify birds at long range. All three censuses aim to 

include only migrant birds, and the experience and discretion of 

the warden helps to eliminate counts of local resident birds 

from counts of migrants.

Ringing data form the other major source of records from 

observatories. Not surprisingly, the number of birds caught each 

day depends to some extent on the manpower available. Visitors 

need not be qualified ringers. If many ringers are available 

extra ringing sites may be set up on the recording area thus 

increasing the capture rate. If the capture rate becomes too 

high for the available manpower then steps may be taken to catch 

fewer birds and thus reduce the time that each bird spends in 

captivity.

Most captures are made by mist-nets which are walls of very fine 

netting with horizontal pockets into which birds fall and become 

entangled. They are usually set in scrub patches along 

deliberately cut paths. Wet weather and wind result in the nets 

becoming visible to birds, and also cause harm to trapped birds. 

Mist-netting is therefore only possible in certain weather 

conditions.

Heligoland traps were described in the introduction, and are less 

dependent on manpower. Two people could cope adequately with 

driving birds through most traps.
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Daily ringing totals clearly represent a much smaller sample of 

birds than counts of observed birds, but more information is 

available on ringed birds. If birds are trapped more than once 

in a given day, they will be identifiable by their ring number 

and therefore will only feature once in the daily total. The 

number of retraps gives an idea as to whether birds are staying 

in the area or quickly moving on. The weight of a bird may 

indicate whether or not a long journey has recently been 

undertaken, and the wing-length may give an idea as to the 

geographical origin of the bird.

Perhaps the most rewarding aspect of trapping birds is the 

retrieval of rings placed on the bird elsewhere. In some cases 

it is possible to learn about the migration of species by the 

recovery of rings, e.g. the route taken, the timing of the 

journey and the speed of flight. It is worth noting that 

identification of trapped birds is likely to be very precise.

All ringers are either highly trained or are supervised by 

people who are.

2.3 Linking migration data with breeding bird censuses : the CBC 

We now move temporarily away from migration data and review a 

census of birds breeding rather than migrating. The CBC takes 

place on a number of sample plots throughout the U.K. This is of 

interest in the context of comparing annual variation in breeding 

numbers with migration counts. If the latter data show similar 

trends to the former, then populations of birds which are not 

covered by the CBC may be monitored.
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The CBC was started in 1962 by the Populations Section of the 

BTO, on behalf of the Nature Conservancy Council (NCC). The NCC 

was particularly interested in population changes on farmland, 

but in 1964 the BTO started a similar census of woodlands. The 

aim of both censuses is to monitor population levels of common 

breeding birds, by estimating the number of territory holding 

males at a number of farmland and woodland sites. The censuses 

are, therefore, restricted to species that are territorial in 

behaviour, and that are conspicuous enough by sight or sound to 

be identified and counted reliably.

The censuses are carried out by volunteers who regularly visit 

particular sites throughout the breeding season. Maps are 

constructed of sightings of birds or instances of singing birds 

which are not seen. The maps are examined by BTO staff who 

arrive at an estimate of the number of territories present. An 

objective method of making this estimate using cluster analysis 

was proposed by North (1977, 1979).

For the census to be of any use, a number of assumptions must be 

made. One must assume that the effectiveness of observers is 

constant from visit to visit, and from year to year. Mapping 

techniques must be consistent and if sites are dropped from the 

census, replacement sites should be of similar size and habitat. 

One must also assume that for a given species, the sites used 

are a representative sample of sites over the whole of Britain. 

The possibility of regional differences obscuring the national 

picture is investigated below.
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In order to assess year to year changes, only sites censused in 

consecutive years are used. Annual indices are calculated using 

percentage changes from year to year. Indices are scaled so that 

the 1966 index is equal to 100.

The BTO calculate confidence intervals for year to year percentage 

changes using a method described by Bailey (1965). Upton and 

Lampitt (1981) point out that this method is incorrect and offer 

an alternative. The modelling of CBC data has also featured in 

Upton and Lampitt (1981), Mountford (1982) and North (1983).

The CBC indices for woodlands and farmlands are published annually 

in Bird Study or BTO News, together with percentage changes from 

year to year and confidence intervals. The number of sites used 

for each index is also given.

In order to use the CBC index for a given species as a national 

index, the sites used for the CBC must be a fair representation 

of all the sites used by that species throughout Britain. If 

this is not the case, then only regional indices will be of 

interest. In the past, only two authors have considered regional 

CBC indices. Bailey (1967) and Taylor (1965) both used 

contingency tables to examine differences among four geographical 

groups of sites over a number of years. Their results for 

various species suggested consistency among the regional groups, 

hut the use of the chi-squared statistic is not appropriate here 

since the year categories are not independent. The serial 

correlation inherent in the data will tend to deflate the chi- 

squared statistic and perhaps fail to suggest inconsistency where
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it exists.

In a recent paper which argues in favour of using regional CBC 

indices, Fuller, Marchant and Morgan (1985) cite examples of 

species whose populations are known to have declined on a local 

basis and for whom regional indices would be more appropriate 

than a national index. Although Fuller et al (1985) do not go 

on to present regional indices, they present a detailed study 

of CBC sites using a land classification technique together with 

agricultural statistics. They conclude that the nature of CBC 

sites has changed very little over the years, but that the 

national indices are dominated by what happens on lowland 

farmland habitats in the south and south-east of England.

The problem of how to detect regional differences for a particular 

species is now examined, using farmland data for the Sedge 

Warbler. This species is an example of a summer migrant that 

occurs in large numbers at several observatories each year, 

allowing comparisons to be made between migration and breeding 

censuses. In order to examine the CBC index for geographical 

consistency, we divide the census plots into three arbitrary and 

broad regions and calculate population indices for each region. 

Fig. 2.3.1 shows an example of such a breakdown where the regions 

roughly represent southern Britain (67 sites), Wales and Northern 

England (17 sites) and Scotland (12 sites). Most sites are in 

region 1. This is due to two reasons. Firstly, CBC plots are 

usually near to centres of high human population, and secondly, 

the Sedge Warbler is a lowland dwelling bird. Table 2.3.1 shows 

the population indices for each region, with the number of
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Table

Year
1962

1963
1964

1965
1966

1967
1968

1969
1970

1971

1972

1973

1974

2.3.1 Regional and National CBC indices for the Sedge 

Warbler. ( The number of territories used for 

calculating the index is given in brackets )

National Index_____ Region 1_____ Region 2_____ Region 3
60.4 ( 42) 60.5 ( 39) 120.0 ( 2) 32.0 ( 1)
59.0 ( 69) 57.4 ( 59) 120.0 ( 7) 64.0 ( 3)
80.3 (111) 78.8 ( 95) 120.0 ( 8) 106.7 ( 8)

78.3 (130) 80.3 (108) 75.0 ( 75) 66.7 ( 10)
100.0 (170) 100.0 (100) 100.0 ( 10) 100.0 ( 15)
68.8 (116) 68.6 ( 85) 100.0 ( 21) 66.7 ( 10)
118.0 (269) 110.9 (191) 181.0 ( 46) 93.3 ( 32)

66.9 (105) 63.9 ( 71) 86.5 ( 23) 60.2 ( 11)

84.3 (150) 74.3 ( 48) 150.3 ( 36) 65.7 ( 12)
68.0 (108) 61.5 ( 77) 112.7 ( 26) 82. 1 ( 5)
55.4 ( 79) 58.2 ( 61) 56.4 ( 12) 32.8 ( 6)

39.3 ( 36) 39.8 ( 24) 56.4 ( 12) 13.1 ( 0)
42.6 ( 39) 41 .5 ( 25) 65.8 ( 14) 13.1 ( 0)
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territories involved, for the first thirteen years of the census.

The indices shown in Table 2.3.1 are calculated in the standard 

way, relating the percentage increase or decrease in the number 

of territories in consecutive years to a base value of 100 in 

1966. The indices are plotted in Fig. 2.3.2. One can see that 

the three arbitrary regions show the same general pattern of 

variation as the national index.

The degree of consistency between the regions may be roughly 

assessed by the correlation matrix given below:

Region 1 Region 2 Region 3

Region 2 0.65
Region 3 0.82 0.62
National
Index

0.99 0.72 0.54

All the above correlation coefficients (based on 13 observations) 

are significant at the 5% level. The high number of sites found 

in region 1 is reflected in the correlation coefficient of 0.99 

with the national index. This supports the view of Fuller et al 

(1985) that the national index is dominated by lowland Britain.

One problem with calculating regional indices is that of the 

small number of sites available in areas other than lowland 

Britain. For example, even the national index for the Sedge 

Warbler over the years 1962-74 was calculated on no more than 

40 sites. In some years the number of sites censused was as low 

as 11, limiting the number of regional breakdowns available.
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Fig. 2.3.2 3-Regicn breakdown for Sedge W a r b l e r  CBC index.
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Since the total numbers of territories each year are used to 

calculate the indices, the size of individual sites is ignored. 

Just as regions with a large number of sites dominate the final 

index, so too do sites that hold large numbers of territories.

The BTO try to encourage observers to census sites of similar 

size each year, if not the same sites, but a glance at the full 

data set for the Sedge Warbler shows some sites containing only 

one territory for a number of years, while another may average 

approximately twenty territories. The variation on this latter 

site will influence the final index more than the consistency of 

the former site. One could, of course, overcome this problem by 

using an estimate of density, rather than an estimate of the total 

number of territories at each site.

A simple means of examining data for each inter-year comparison 

is to produce a scatter plot, as shown in Fig. 2.3.3, where the 

pair of years 1971 and 1972 are considered. There appears to be 

a cluster of six sites which contain approximately three times as 

many territories, on average, than the remaining 28 sites.
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Fig. 2.3.3 Scatter plot of territory counts for 34 sites censused 
in both 1971 and 1972. (Sedge Warbler)

(numbers on plot indicate multiple points)

Fig. 2.3.4 Sedge Warbler sites censused in both 1971 and 1972.
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The six 'large' sites are shown on the map of Fig. 2.3.4. No 

obvious geographical region is represented by these sites, and 

the Populations Section of the BTO are not aware of any likely 

factor linking the six sites. All six sites are near to, or 

include water margins but the type of farmland associated with 

the sites varies. Clearly, many more investigations of this kind 

could be carried out.

Computerisation of all the CBC data for all species would enable 

a critical examination of the current method of producing
«»

national indices based on territory counts to be made quite easily. 

Possible starting points for such an investigation are found in 

this section, i.e. the influence of subsamples of sites on the 

national index, and the influence of individual sites with large 

numbers of territories.

Regional indices would offer further possibilities of linking 

migration data to CBC data - e.g. migrants to particular areas 

of Britain may pass through particular observatories.

For the purpose of this thesis however, we have to use the 

available national indices while bearing in mind that these will 

be dominated by population dynamics of the southern part of 

Britain.
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2.4 Canadian Migration Indices

The main objective of this thesis is to examine population 

monitoring using migration data. This problem was tackled by 

the Canadian Wildlife Service (Hussell and Risley, 1978) using 

data from Long Point Bird Observatory, Ontario. Daily counts 

of grounded migrants were used which were taken on a more formal 

basis than those taken at British Observatories, i.e. regular 

censuses were made each day in the same areas of the observatory 

recording area.

The indices that were calculated were compared with results from 

Breeding Bird Surveys (BBS) of North America, and also Christmas 

Bird Counts - see Hussell and Risley (1978).

Five indices were considered, for each species studied:

(i) MIS

MIS is the total number of birds observed in a particular 

year divided by the mean number of birds observed each 

year over a number of years. The denominator is calculated 

after smoothing the data within each year by taking a 7-day 

moving average. Allowances are made for missing values 

by weighting and iteration methods (Hussell and Risley, 

1978).

(ii) MIL

MIL is calculated as MIS, but the transformation log 

(y-£ + 1) is used where y^ is the count for day i. This 

is used as an attempt to make the distribution of observed
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counts symmetrical.

(iii) MIL2

MIL2 is an index based on data from 2 sites at Long Point, 

calculated as MIL.

(iv) MI-SW and (v) MI-LW

These are weather-corrected indices and are discussed in 

chapter 4 where a detailed study of weather and observatories 

data is presented.

The species considered by Hussell and Risley are not found in 

Europe and with such a marked geographical difference between 

British observatories and Long Point the relevance of the 

Canadian results is limited. However, a brief report of the 

Canadian results is presented below.

For most species, the spring MIL and MI-LW indices showed high 

correlation with BBS indices. Autumn indices of any type showed 

low correlation with Christmas Bird Count indices but the latter 

showed high correlations with the previous spring migration 

indices.

Examples of the indices MIS and MIL are presented below using 

British observatories data. Table 2.4.1 summarises the 

correlations between MIS and MIL indices for a sample of British 

observatories data. CBC farmland indices are used - woodland 

indices are unavailable for some species and in some years.
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Table 2.4.1 C orrelation c o e f f i c i e n t s  of Canadian mig r a t i o n  
indices vs. CBC indices, 
n = number of years.

Spring AutumnObserv a t o r y
and Species_________ MIS (n) MIL (n)_____ MIS in)_____ MIL in)
Du n e e n e s s

Blackcap -.33 12 .01 12 „ *.69 12 *
.73 12

Sedge Warbler -.23 12 -.22 12 .35 12 .37 12
Spotted
Flycatcher

.06 12 .20 12 -.16 12 -.24 12

Whitethroat .81* 12 .78 12 ##
.97 12 **

-.97 12
Willow Warbler .04 12 -.04 12 -.13 12 -.05 12

Portland

Sedge Warbler .19 12 .04 12 .02 12 .29 12
Spotted
Flycatcher

-.05 7 .05 7 .44 7 -.01 7

SDurn

Sedge Warbler .73 7 .68 7 .70 7 .69 7
Ba rdsev

Sedge Warbler -.22 7 -.38 7 -.08 7 .30 7

v* % %S ignificant at the 5% level, S i g n i f i c a n t  at the 1 % level
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Table 2.4.1 clearly shows that for only two species (Blackcap 

and Whitethroat) do the Canadian indices reflect the population 

trend as recorded by the CBC. The Whitethroat correlation is 

not surprising since the population suffered a severe decline 

after 1968 (Winstanley, Spencer and Williamson, 1974) and the 

correlation coefficient is dominated by this feature. We would 

expect such large fluctuations to be picked up even by crude 

indices of the type used here.

Table 2.4.1 also shows a correlation between autumn Blackcap 

migration at Dungeness and the CBC index. Blackcap indices showed 

a steady increase over the period 1961-72. Ornithologists are 

not able to offer an explanation as to why spring data fail to 

show similarly high correlations.

Looking at sample correlation coefficients between sequences of 

indices gives an idea as to how long-term trends in the indices 

correspond. The overall picture from the above work is that, with 

two exceptions, migration indices are unrelated to CBC indices. 

However, the sequences are short - a maximum length of 11 years - 

and when more data are available it may be possible to detect 

relationships between migration and CBC indices.

The Canadian workers appeared to have based the success or failure 

of their migration indices solely on correlation coefficients. 

Alternative techniques of comparing indices are investigated below.

In order to examine year-to-year changes in both migration and 

CBC indices, one can convert each sequence into a sequence of
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binary observations where each observation represents either an 

increase or a decrease from the previous year. The two binary 

sequences can be summarised in a 2 x 2 table:

CBC
decrease

CBC
increase

total

migration
index
decrease

a b a + b

migration
index
increase

c d c + d

total a + c b + d N

A test statistic which measures the association between the two 

indices is calculated by the standard formula

y2 _ ______ (ad - be)2N______
(a+b) (c+d) (a+c) (b+d)

If we assume that each binary sequence is an independent trials 

process, then under the null hypothesis of no association X2 has 

asymptotically a chi-square distribution on one degree of freedom. 

The assumption that successive observations within each sequence 

are independent is not valid in this context since the second of 

any pair of years is used again as the first year of the next 

pair. In this situation X2 will be inflated and the chi-square 

approximation will lead to the null hypothesis being rejected 

more often than expected. For data of the type considered here, 

Tavare and Altham (1983) give a deflation factor for X2 which 

leads to a statistic with an asymptotic chi-square distribution 

with one degree of freedom. The assumptions which one needs to 

make concerning the nature of the dependence between successive
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observations and the calculation of the deflation factor are 

given in Tavare and Altham's paper. For the data of this

section, there is no need to deflate X2 since all comparisons of 

indices gave a very low X2, suggesting no association between 

indices.

The above finding should not be viewed negatively however since 

the sequences of binary observations are a maximum of 10 

observations in length. If one sequence has approximately equal 

numbers of both outcomes of the binary process then, to show a 

'significant' association the other sequence needs to show 

identical outcomes for all but one case. This, of course, is 

before the application of Altham's deflation factor, which would 

reduce the possibility of observing association further. While 

this technique of comparing indices is not very useful with the 

short sequences considered here, it does offer ornithologists a 

new approach to relating one index with another, in addition to 

the traditional correlation coefficient.

Table 2.4.2 presents the X2 statistics (no deflation factor applied) 

for the data used in this section.

With short sequences of observations that are considered in 

this section, distributional assumptions on which the significance 

of the product-moment correlation coefficient are based are 

difficult to check. One way round this problem is to use a non- 

parametric test such as Spearman's rank correlation coefficient.

For each index the observations are ranked and any two indices
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may be compared by the rank correlation coefficient for which 

exact P-values are available. For the data of this section the 

incidence of significant correlation coefficients is exactly as 

in Table 2.4.1 apart from the fact that no coefficients reached 

significance at the 1% level.
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Table 2.4.2 X2 Statistics for measuring association betwe
CBC indices and migration indices.

Observatory 
and Species_____

Spring

MIS MIL

Autumn

MTS MTI.
Dungeness

Blackcap .02 .42 .42 .02
Sedge Warbler .01 .18 1 .41 3.27
Spotted
Flycatcher

.18 .02 .18 .00

Whitethroat oo
• .18 .01 .02

Willow Warbler .97 .00 .97 .97
Portland

Sedge Warbler .42 .00 .01 .18
Spotted
Flycatcher

.70 1.70 .05 .05

SDurn

Sedge Warbler .31 .31 .31 .31
Bardsev

Sedge Warbler 1.70 .06 .31 .05
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We have seen that Canadian-type migration indices calculated 

from individual observatories are, in most cases, uncorrelated 

with CBC indices. Sedge Warbler counts are available from four 

observatories in all, and an investigation was carried out in 

order to see whether or not more success could be achieved by 

combining indices from Dungeness, Portland, Bardsey and Spurn.

The CBC index for the Sedge Warbler was regressed on the MIS and 

MIL indices (spring and autumn) for the four observatories, but 

no further success was achieved. It was not possible to find 

any linear relationship between migration indices and CBC indices.

It was thought possible that the CBC index might be related to 

the migration index of the preceding autumn as well as the 

preceding spring, thereby introducing a measure of winter mortality 

into the index, but again no relationship was found.

The indices which are studied in this section are displayed in 

Figs. 2.4.1 - 2.4.4. In each plot, the dashed line represents 

the CBC farmland index and the solid line represents the migration 

index.

Multiple regression analysis was used as a means of combining 

different indices for other species in order to see whether a 

relationship with the CBC index could be found. Spring and 

autumn indices were included in the regressions and, for the 

Spotted Flycatcher, indices from Dungeness and

Portland. Where sufficient degrees of freedom were available, 

indices of the previous autumn were also included. For each 

species, the combined migration index was calculated by including
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ig. 2.4.1 Canadian migration indices Spotted Flycatcher, Dungeness
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Fig. 2 . iJ. Canadian migration indices (MIL, autumn) and CBC indices.
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all possible indices in order to achieve the optimum correlation 

with the CBC index. The combined indices for the 

Spotted Flycatcher and Willow Warbler showed no significant 

improvement in correlation with CBC indices over the individual 

indices. A similar picture emerged from the regressions using 

Whitethroat and Blackcap data. Significant correlations were 

found, but no significant improvement was achieved over 

individual indices.

One interesting point to emerge from the regression is that 

there appears to be no advantage in comparing CBC indices with 

migration indices of the previous autumn. In the following 

chapters of the thesis however, this comparison will again be 

made in case this result is specific to the indices studied in 

this section.

In this section strong evidence has been found to suggest that 

Canadian-type migration indices are not suitable for use with 

British data for population monitoring. Further chapters of 

this thesis examine alternative ways in which population 

monitoring may be achieved by using observatories data.

2.5 A summary of other attempts at population monitoring using 

migration data

The first mention of this topic in British literature was by 

Williamson (1963) . He classified different types of migratory 

movement and suggested that one such movement - 'irruption 

movement' is caused by a population size reaching a critical 

level. No investigation of this theory using data appears to
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have been made however.

Sharrock (1969) studied annual totals of Grey Wagtails from 

several observatories and proposed a crude migration index based 

on weighted totals of daily counts. The weighting gave 

observatories which record large numbers of Grey Wagtails more 

influence than others. Sharrock found that the index reflected 

population fluctuations detected by the Nest Record Scheme (NRS) 

of the BTO. For the work of this thesis the yardstick by which 

migration indices are assessed is the CBC index, but results from 

the NRS may provide an alternative way forward for future research 

into this topic. Sharrock's results are certainly encouraging 

since Grey Wagtail counts will be more influenced by variations 

in manning levels at observatories than counts of nocturnal 

migrants - Grey Wagtail counts are made as the birds fly over the 

observatory giving loud and distinctive calls.

Langslow (1978) examined graphically the numbers of Blackcaps 

migrating through ten British observatories over the period 

1970-76. He found that Blackcaps were becoming more common at 

observatories, particularly during autumn. In section 2.4 of 

this thesis it was noticed that both the crude Canadian-type 

index and the CBC index showed a similar trend for the period 

1961-72. Apart from the Whitethroat, this was the only species 

to show a correlation between migration data and CBC indices but 

other species did not show any well-defined population trends 

such as the Blackcaps, which seem to have continued beyond the 

period of study of section 2.4.
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Cowley (1979) describes how annual totals of visible migration 

counts of Sand Martins show similar fluctuations from year to 

year as estimates of colony sizes at several British colonies.

This is another encouraging example of migration data showing 

similar features to data from other sources, particularly as 

the Sand Martin is a diurnal migrant. The point made above that 

more success is expected with nocturnal migrants is also made by 

Cowley.

Hussell and Risley (1978) give a number of references of work on 

this topic from various parts of the world. They found that most 

studies used seasonal totals or mean daily counts as migration 

indices, or mean daily ringing totals.

Mueller and Berger (1967) and Mueller, Berger and Allez (1977) 

looked at movements of Goshawks in relation to their population 

size in the US, and other hawks were studied by Hackman and 

Henny (1971) in Maryland.

Busse (1973) studied several species that were ringed on the 

Polish Baltic coast and compared the numbers with estimates of 

breeding numbers.

Very little attention seems to have been paid to statistical 

aspects of migration data and associated weather conditions.

The indices mentioned in the above references can therefore only 

hope to show long-term changes in population size.
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Swedish ornithologists have recently begun work in this area, 

see e.g. Hjort and Lindholm (1978). Svensson (1978) concludes 

that monitoring population levels by migration sampling offers 

no advantages over breeding bird surveys of birds that can be 

censused by other means.

From the above summary it is clear that the population monitoring 

area is wide open. We now examine briefly other uses of 

observatories data in order to establish what other information 

has been gained from these data in the past.

2.6 Radar studies of migration and weather

Many studies have been made of particular species and the weather 

conditions associated with their occurrence at observatories and 

other sites in Britain. This section summarises these studies.

A detailed description of how radar data are used in studying 

migration is given in Eastwood (1967).

Lack (1960a) reviewed over a hundred papers on this subject, paying 

particular attention to the types of weather found to be 

influencing different species movements.

In the late 1950's, methods of studying migration and weather 

changed dramatically with the availability of radar equipment.

This new technology enabled flocks of birds to be traced over 

considerable distances and in most types of weather. Although 

individual species cannot be identified by radar, birds previously 

invisible to observatories could now be studied. It is sometimes
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possible to infer from ground records which species are being 

recorded by radar. Only rough guesses can be made however.

An important feature of radar studies is that one is able to 

assess the extent to which observatories data reflect the 

volume of migration as a whole. Riddiford (1985) looked at 

Willow Warbler records at Dungeness in relation to radar records 

(Parslow, 1962, 1969) and found that large numbers of grounded 

birds occurred when overhead migration was at its greatest.

By studying only large counts of grounded birds, Riddiford throws 

no light on the problem of large numbers of migrants passing over 

the top of observatories when weather conditions permit. This 

problem is returned to later.

In Britain, two major studies of migration have been made using 

both radar data and observatories data. Parslow (1962, 1969) 

studied passerine movements over the English Channel and Lack 

(1959, 1960b, 1963a,b,c) made an extensive study of many types 

of migration across the North Sea. Other studies using radar 

data include those of Evans (1966b) and Wilcock (1965) using data 

from NE England and eastern Scotland respectively.

Radar has also been used abroad, e.g. North America (Nisbet and 

Drury, 1967) and Sweden (Alerstam, 1973).

The only statistical analyses that have been performed in the 

study of radar data and weather are the multiple regression 

analyses of Lack (1960b) and Nisbet and Drury (1968). In both 

of these analyses a measure of migration, taken from radar data,
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forms the response variable and weather variables form the 

explanatory variables. In calculating regression equations, 

little attention is paid to the implications of using a set of 

explanatory variables which are likely to be correlated with 

one another, as well as successive observatories being auto- 

correlated. Such situations can lead to multicollinearity, a 

problem that is considered in more detail in chapter 4.

Since the publication of Lack's review in 1960, many smaller 

studies have been undertaken. This section has only reported 

the major studies involving observatories data.

2.7 Other studies of British observatories data

Many subsets of observatories data have been analysed by 

ornithologists. Most of these studies have been of individual 

species at particular observatories and published in observatory 

annual reports. Those appearing in ornithological journals are 

summarised below.

The forerunner of a series of papers on the movements of birds 

through observatories was that by Davis (1967) who used daily 

counts of grounded migrants from seven observatories in order to 

assess the length and pattern of migration seasons for five 

Warblers of the genus Sylvia. One of the observatories studied 

was Skokholmwhich was the subject of a similar study by Lack and 

Lack (1966) who used daily ringing totals. Sylvia Warblers 

were also studied using data from Cape Clear (Sharrock, 1968).
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Hope-Jones (1975) examined Redstart data from eight observatories. 

By incorporating ring recovery details into his analysis he was 

able to postulate the migratory routes of both British Birds 

and continental passage birds. Durman (1976) took a similar 

approach in a study of Ring Ouzel migration. Durman also studied 

Ring Ouzel data from Fair Isle observatory and was able to 

identify different passage times for male and female birds.

Hope-Jones et al (1977) studied Pied Flycatcher migration using 

data from seven observatories.

Langslow (1979) analysed ringing data on Blackcaps and found 

evidence that birds passing through east coast observatories in 

autumn are of continental origin, suggesting that south coast 

observatories are likely to offer more reliable information on 

British birds. In the opinion of ornithologists this feature of 

east coast observatories generalises to most migrant species.

The species mentioned above are common migrants at most 

observatories. Scarcer birds have also been studied, e.g. Black 

Redstart (Langslow, 1977) and Red-Breasted Flycatcher (Radford, 

1968), the latter being purely a passage bird.

Insley and Boswell (1978) combined daily ringing totals from 

Sandwich Bay and Dungeness observatories with similar data from 

eight other south coast ringing sites. They attempted a cross­

correlation analysis in order to compare arrival times of Reed 

and Sedge Warblers among the ten sites. Missing data, however, 

prevented their drawing of any conclusions from significance tests.
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One has to be careful when performing cross-correlation analyses 

on data of this type since long-term trend in the series of 

observations may cause the correlation coefficients to be inflated.

Very few studies have been made of birds seen migrating over 

observatory recording areas. Most observatories make some effort 

to record such birds though and species which receive most 

attention include hirundines and wagtails. This is probably due 

to the ease of identifying these species by both sight and call.

The ability to identify diurnal migrants depends on the height 

of flight. Radar studies have revealed that with following winds, 

birds tend to fly above the visible range, thus not being 

recorded.

Evans (1966a) proposed a model which enabled estimates to be made 

of the numbers of birds 'coasting' during the day, along the NE 

coast of England. No indication of how successful his complex 

deterministic model was given, however. A brief summary of other 

studies of visible migration data is given by Snow (1953).

Alerstam (1978) investigates similar data from Sweden.

In Britain, Spurn Head observatory is the best suited to the study 

of diurnal migration since it is situated at the southern tip of 

a narrow peninsula which concentrates birds moving south. Even 

at Spurn however, the collection of such data requires a constant 

watch to be kept. At other observatories a watch needs to be kept 

over a broad area for the data to be of any use and clearly the 

level of manpower is a critical factor.
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CHAPTER 3

DESCRIPTION OF OBSERVATORIES DATA AND ASSOCIATED WEATHER DATA 

3.1 Introduction

This chapter represents the first detailed account of daily counts 

of grounded migrants. An examination of how counts are made, 

from a statistical viewpoint, is presented and inherent defects 

and biases found in the data are set out. These features of the 

data are dealt with in later chapters where statistical models 

for daily counts are proposed.

The first half of the chapter considers features of the migration 

data that may influence the development of indices which monitor 

fluctuations in population level. Such features include the daily 

census methodology, the timing of migration, waves of migration, 

the influence of manning levels at observatories and the occurrence 

of occasional very large counts. It will be seen that individual 

features lead to interesting discoveries from the data. The 

presentation of the use of simple statistical methods in this 

chapter helps ornithologists to see how they can best extract 

information from observatories data.

Weather data from Dungeness and Portland observatories are also 

described, the aim being to assess which data may usefully be 

analysed together with migration counts in later chapters.

46



3.2 Daily counts of grounded migrants

3.2.1 General overview

We concentrate on common nocturnal passerine migrants 

which are insectivorous birds wintering in or to the south 

of the Mediterranean Basin. In spring the birds move north 

to where daylight hours are longer, enabling extended 

feeding time, which is needed as adults rear young birds.

As autumn approaches in northern europe the days shorten 

and temperatures fall, causing birds to return south. 

Biological aspects of migration can be found in many books, 

e.g. Griffin (1974). Extensive research has been performed 

on navigation - see, for example, Matthews (1968).

Since observatories are situated on the coast, the recorded 

migrants are nearly all on passage in both spring and 

autumn. Although it is generally impossible to witness the 

actual arrival of birds at observatories without radar 

equipment, it is occasionally possible to observe dawn 

arrivals off the sea in spring. Most arrivals take place 

overnight, as shown by Parslow's (1969) radar studies on 

the south coast. In spring, one can track a broad front 

of migrants on a radar screen as they cross the Channel, 

often reproducing the outline of the French coast for two 

to three hours. This movement is obviously influenced by 

weather conditions over the Channel, and these are discussed 

in detail in Parslow's paper. Generally, if weather 

conditions are unfavourable when they approach the coast 

of Britain, i.e. wet, windy and cloudy, then birds are 

likely to land at the first opportunity at sites which
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inevitably include observatories. If calm, clear and dry 

conditions prevail, then the birds will usually continue 

into Britain, flying over observatories. Here we see a 

fundamental problem in the interpretation of observatories 

data - if one records few or no migrants at observatories, 

then this is not always indicative of the volume of 

migration taking place. Also, when large numbers (in terms 

of observatory counts) are recorded, one does not know the 

extent to which the counts reflect the volume of migration 

taking place. For example, a large count of Willow Warblers 

at Dungeness in spring may be of the order of 1000, but one 

does not know whether this is a very small proportion of 

the total number of Willow Warblers passing overhead, or 

whether nearly all Willow Warblers in the vicinity of 

Dungeness have been forced to land. Another problem is 

that in spring, birds may stop at observatories for only 

a short time before continuing their journey into inland 

Britain, and may therefore leave without being recorded.

There is a strong urgency for birds to arrive at breeding 

grounds as soon as possible in order to establish territories 

and find mates. In later chapters statistical methods are 

used to examine whether or not this 'urgency' is stronger 

in spring than in autumn.

In autumn the picture is again complicated since birds 

accumulate throughout the day on the coast, and leave at 

dusk if weather conditions permit. Birds from inland 

Britain may start their journey at dusk, and if possible, 

fly over observatories towards France and beyond. A
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further complication is that birds requiring large food 

supplies on arrival at the coast may travel along the coast 

in search of suitable feeding grounds. This behaviour is 

generally called 'coasting'.

For birds that are present at dawn at observatories, the 

day begins with frantic feeding. This activity enables 

the birds to be observed more easily than later in the 

morning, when activity declines as birds retire to under­

growth in order to preen.

3.2.2 The observatory day

Visitors to observatories and observatory wardens usually 

make the first exploration of the recording area at dawn 

when peak counts are generally made. Bad light can make 

identification difficult, but the warden and other experts 

present are able confidently to identify birds by the 

smallest of calls or briefest of glimpses. The observers 

do not always stay together, and thus some birds may be 

recorded more than once. The observers make detailed lists 

of birds seen on all trips around the recording area, but 

no regular pattern of censusing is adhered to.

Clearly, the data from observers constitute a complex and 

irregular mass of species abundance estimates and a 'data- 

smoothing' conference is held each evening when the warden 

studies the records and finally enters a figure for each 

species in the migration log. The daily ringing totals are 

also taken into consideration.
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The day-to-day continuity of the census depends heavily 

on the warden. His knowledge of the area, of birds, and 

of migration is intended to overcome the haphazard conduct 

of the census and variability among the observers who 

range from beginners to highly skilled ornithologists and 

ringers.

One hopes that wardens remain at observatories for as long 

as possible since new wardens will take time to become 

familiar with the mechanics of migration at different 

localities. In practice one finds that wardens move around 

from observatory to observatory every few years, but on the 

other hand each observatory generally has a group of 

regular, local ornithologists who would assist in smoothing 

the transition between wardens.

After the migration log has been completed each evening, 

written descriptions of the day's events, including weather, 

are made. Summary sheets are sent monthly to the BTO 

headquarters.

The daily procedure described above takes place throughout 

the migration seasons and, in some cases, throughout the 

entire year.

3.2.3 Examples of daily counts

Much can be learned about daily counts of grounded migrants 

by examining plots of the data. A useful type of plot is 

a bar-chart where time features on the horizontal axis and
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the vertical axis represents the size of the count. The 

time axis is discrete since daily counts are considered.

By placing several such diagrams in close proximity one 

can also examine variations in pattern over a number of 

years. In order to present all diagrams for a particular 

species on the same scale, the occasional very high counts 

need to be truncated. These are indicated on the diagrams.

The following examples are a sample of the available data, 

selected on the basis of certain interesting features 

which are described below.

(i)____ Sedge Warbler - Dungeness, 1961-70 (Fig. 3.2.3.1)

The spring data generally show a build up to a peak, 

followed by an abrupt end to the passage. This pattern is 

seen in varying lengths of the season. 1961 shows a long 

season (approximately 7 weeks) while 1965 shows a short 

season (approximately 3 weeks). One can see conspicuous 

gaps in the spring data of 1961, 1966 and 1968 - probably 

due to weather conditions enabling migrants to proceed 

without landing at observatories. These gaps could, of 

course, be due to the absence of birds migrating and 

without further information from, e.g. radar studies, one 

cannot be more specific. In a later chapter we pick up 

this point and attempt to relate counts of grounded migrants 

with local weather conditions.

There is some evidence to suggest that the number of Sedge 

Warblers migrating through Dungeness each year is falling,
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particularly as far as the spring data are concerned.

Since this feature is not so pronounced in the autumn counts, 

it may be that the migratory route is changing, rather than 

the population level. An examination of data from other 

observatories has suggested that this is the case.

There is the occasional extremely high count in both spring 

and autumn series, for example, see 1968. This is a 

feature seen on many other plots and is discussed further 

in later chapters.

(ii) Willow Warbler - Portland, 1968-72 (Fig. 3.2.3.2)

The spring Willow Warbler counts from Portland appear to 

be increasing in size over this five year period. A 

noticeable feature is that the spring counts are only a 

small proportion of the annual total. This may be explained 

by the inclusion of young birds in the autumn counts, and 

also by the effects of winter mortality. Alternatively, 

this feature may be due to Willow Warblers using a different 

migratory route in the autumn. The autumn counts suggest 

the existence of waves of migration - see the 1969 diagram 

for a clear example. This feature is seen in data for other 

species and is studied in more detail in section 3.2.5.

A noticeable feature of the 1972 spring counts is the 

apparent truncation of counts at a value of 50. This is 

due to rounding on the part of observers. As one would 

expect with data of this type, the larger the observation, 

the more coarsely it is likely to be rounded. This feature 

is seen on other diagrams - see below.
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(iii) Sedge Warbler - Portland, 1965-72 (Fig. 3.2.3.3)

Fewer Sedge Warblers are recorded at Portland than at 

Dungeness but from the counts alone one cannot say whether 

this is due to fewer birds migrating through Portland or 

whether it is due to fewer birds being forced to land.

In some years, the bulk of the spring records are from a 

single day. This means that the majority of the migration 

seasons consist of very low counts - mostly fewer than ten 

birds per day.

(iv) Sedge Warbler - Spurn Point, 1961-67 (Fig. 3.2.3.4) 

The pattern of migration for the Sedge Warbler at Spurn is 

quite different from other observatories in that the two 

seasons are barely discernible. Ornithologists believe 

that this is due to local breeding birds in the area being 

recorded as well as migrant birds. Also, ornithologists 

believe that continental migrants may be included in the 

counts as they travel to and from Scandinavia. This has 

the effect of lengthening the migration seasons.

(v) __Whitethroat - Dungeness, 1961-70 (Fig. 3.2.3.5)

These diagrams show that Whitethroats occur in large numbers 

in both seasons at Dungeness, compared with the Sedge 

Warbler, for example. The most striking feature however is 

the sudden drop in numbers after 1968. This population 

decrease is well known among ornithologists and is discussed 

in Winstanley, Spencer and Williamson (1974). They found 

that the cause of the decline appeared to be connected with
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climatic conditions in the birds' wintering areas. This 

introduces another fundamental problem of the interpretation 

of observatories data - the numbers of migrants that are 

recorded at observatories may be dependent, to an unknown 

extent, on circumstances elsewhere, for example, the 

wintering grounds. However, this does suggest that, if 

only in the crudest fashion, observatories data may be able 

to be used to monitor population levels.

(vi) Sedge Warbler - Sandwich Bay, 1961-65 (Fig. 3.2.3.6)

A variety of patterns is seen in these five diagrams which 

range from a small, steady trickle of birds in 1962, to 

much larger numbers, rather like Dungeness counts, in 1963.

The variation in counts from year to year is thought to be 

due to continental migrants being drifted over the south­

east corner of Kent from their more usual route over 

Scandinavia and the low countries. This drift is caused 

by strong prevailing easterlies. It is interesting to 

note that ornithologists regard Sandwich Bay observatory 

as an 'east coast' observatory rather than a 'south coast' 

observatory, although it is only approximately 30 miles 

east of Dungeness.

(vii) Willow Warbler - Sandwich Bay, 1961-65 (Fig. 3.2.3.7) 

The two striking features of these diagrams are that spring 

migration is negligible compared with autumn migration, and 

that the numbers of Willow Warblers recorded each year is 

gradually increasing. It is likely that these are
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continental birds returning south and being drifted over 

to Sandwich Bay (see (vi) above).

(viii) Sedge Warbler - Bardsey Is. 1961-67 (Fig. 3.2.3.8)

For this data set, autumn migration is negligible compared 

with spring migration. The spring migration season is a 

short one with most birds being recorded on two or three 

days.

3.2.4 Timing of migration seasons

In this section the timing of migration is examined in 

order to see whether it is related to population levels of 

breeding birds.

One method of examining the timing of migration seasons is 

to plot the migration data for each year on separate 

diagrams and superimpose on each plot a curve which represents 

the 'average' season. A suitable curve to use is that used 

by Hussell and Risley (1978) who examined data on Canadian 

migrants. The curve is constructed by calculating the mean 

count for each day using data from a number of years. The 

means are then smoothed by calculating a moving average, 

using a suitable number of days. For the examples of this 

section the number of years used is the maximum possible 

given the available data. The number of days to use for 

calculating the smoothed curve depends on the degree of 

smoothing required. Examples of using 3, 7 and 11 days 

are presented.
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The smoothed series of daily means, hereafter referred to 

as a long-term moving average, forms a standard against 

which each individual year can be compared. It is possible 

to compare each year with the standard as regards both 

timing and volume.

The examples presented in this section are counts of Sedge 

Warblers at Dungeness and Portland. This species was 

chosen since in most years, large numbers of Sedge Warblers 

are recorded. The first example shows the Dungeness counts 

for the spring of 1966 (Fig. 3.2.4.1). The long-term 

moving average is based on 12 years. The three diagrams 

show progressively smoother curves using 3, 7 and 11 days 

for the moving average.

The curve using 3 days reflects features specific to 1966, 

i.e. the absence of birds between days 43 and 46, and the 

high counts of the following 4 days. The second and third 

diagrams show that such features are smoothed out by using 

more days in the moving average. The last curve represents 

the average pattern of migration over this 12 year period, 

which is a single smooth peak.

Statements that may be made concerning the migration of the 

spring of 1966 are (i) the central part of the season 

consisted of fewer birds than usual, (ii) an unusual 

absence of birds occurred during the last week of May,

(iii) the migration finished more abruptly, and earlier 

than usual, and (iv) two periods of 3 or 4 days each,
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towards the end of the season, saw higher than average 

numbers of birds recorded.

The diagram for the spring Sedge Warbler data at Dungeness, 

1963 (Fig. 3.2.4.2), shows higher than average counts for 

nearly all of the season, but the migration appears to 

cease rather abruptly on the 18th of May.

The diagram showing the 1965 spring counts (Fig. 3.2.4.3) 

reveals that the migration for this particular year was 

much more condensed than usual. High numbers of birds were 

recorded during a two-week period which coincides with the 

usual peak period. The migration appeared to start later 

and finish earlier than usual.

We have considered a very small subset of the available 

diagrams, but even so, many interesting features have come 

to light. After using this simple technique, ornithologists 

would then be able to investigate the reasons behind each 

departure from the long-term moving average, and possibly 

interpret the data in terms of weather and population 

dynamics, for example, or at least they could postulate 

plausible explanations for what is observed.

In order to investigate whether or not population levels 

are related to the timing of migration seasons, we need a 

summary statistic that quantifies 'timing', i.e. a single 

date. The simplest statistics that we may use include the 

mid-season day (half-way between the first and last count),
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the 'mean' day (calculated by treating each observation 

as a frequency pertaining to the day in question, numbered 

from some origin), and the median day (the day before which 

and after which half the birds are recorded).

The mean day has been used by other authors in the past, 

although only for species comparisons over a number of 

years, i.e. a long term mean day, see Lack and Lack (1966), 

Davis (1967) and Sharrock (1968). The Lack's paper studied 

migrants passing through Skokholm observatory (no longer 

operating), using daily ringing totals, and the papers by 

Davis and Sharrock studied daily counts of Sylvia Warblers 

at several British observatories. No investigation of 

trends was undertaken however.

Tables 3.2.4.1, 2 and 3 show the dates of the first and 

last counts of four common migrants at Dungeness, and the 

Sedge Warbler at Portland. (Sedge Warbler data only are 

shown for Portland owing to the limited number of years of 

data available). Also shown are the median dates and mid­

season dates. The latter are midway between the first and 

last dates. The mean dates are very close to the median 

dates and the latter are used hereafter since they are 

easier to calculate.

The first and last record dates vary from year to year 

more than the median or mid-season dates, which is to be 

expected since they will be more sensitive to random 

variation which is absorbed, to a certain extent, in the
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Table 3.2.4.1 Spring m i g r a t i o n  dates : 1961-72 : D u n g e n e s s
Dates are numbered from 1st April.

Willow Warbler Sedge Warbler

mid- mid-
first season last med ian f i r s t season last med ian

Year record date record date record date record date
1961 31 45 59 35 5 30 55 36

62 8 33 59 33 22 42 61 42
63 10 42 75 29 16 32 49 40
64 5 35 64 34 17 29 41 36
65 4 32 61 37 20 31 43 38
66 1 31 61 23 16 37 58 42
67 2 30 58 34 8 36 64 38
68 2 29 56 32 16 32 49 39
69 10 35 60 35 17 37 58 47
70 5 31 57 31 18 32 45 37
71 7 40 74 38 22 40 58 43
72 2 37 73 18 15 44 73 39

mean
date 7 35 63 32 16 35 55 40

s . d . 8 5 7 6 5 5 9 3

Whitethro at Redstart

1961 5 32 58 42 5 27 50 29
62 21 41 61 37 12 28 43 26
63 15 35 55 39 10 37 65 29
64 17 37 56 36 9 36 64 31
65 23 35 46 39 4 22 40 32
66 7 35 62 38 5 34 62 21
67 17 40 64 37 4 28 52 35
68 15 35 54 40 12 30 47 23
69 20 37 54 49 25 40 54 43
70 16 42 67 33 16 43 71 18
71 15 45 75 49 13 34 55 25
72 30 47 64 59 14 40 66 37

mean
date 17 38 60 42 1 1 33 56 29
s . d . 7 5 8 7 6 6 10 7
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Table 3.2.4.2 Autumn m i g ration dates : 1961-72 : Du n g e n e s s
D ates are numbered from 1st July.

Willow Warbler Sedge Warbler

mid- mid-
first season last median first season last median

Year record date record date record date record date

1961 32 66 100 51 32 59 86 49
62 27 64 101 57 5 52 98 48
63 33 63 93 51 32 66 99 57
64 20 56 92 43 20 65 110 53
65 27 61 94 48 24 60 96 59
66 23 58 93 53 15 58 101 50
67 16 60 104 48 14 62 110 41
68 17 69 121 48 32 68 104 55
69 32 73 1 14 53 32 69 105 65
70 16 60 103 30 9 49 89 46
71 7 40 74 38 22 40 58 43
72 24 59 94 47 21 50 79 53

mean
date 24 63 102 48 22 60 98 53
s. d . 6 5 10 7 10 7 10 6

Whitethroat Redstart

1961 32 68 103 58 33 66 99 69
62 1 1 54 96 68 46 77 107 86
63 32 67 101 63 29 64 98 75
64 13 61 108 52 29 67 104 68
65 24 66 1 08 56 14 75 108 71
66 15 59 102 60 48 81 1 14 80
67 16 58 99 63 34 70 105 75
68 32 75 117 57 23 72 47 77
69 37 74 11 1 66 32 73 113 75
70 22 64 105 57 37 70 102 78
71 17 65 112 55 39 67 95 67
72 10 53 96 56 45 81 116 80

mean
date 22 64 105 59 36 72 107 75
s . d . 10 7 7 5 8 6 8 6
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Table 3.2.4.3 Spring and Autumn mig r a t i o n  dates : 1961-72
Sedge Warbler, Portland .

Spring dates are numbered from 1st April 
Autumn dates are numbered from 1st July.

Spring Autumn

mid- mid-
first season last median first season last median

Year record date record date record date record date

1961 33 47 61 46 38 72 105 65
62 17 41 64 45 39 62 84 61
63 19 36 53 29 36 63 90 74
64 17 36 54 32 33 62 90 60
65 24 43 62 32 29 64 98 65
66 13 38 63 32 24 61 97 64
67 17 48 78 39 22 59 95 59
68 16 34 52 39 32 65 98 55
69 19 40 60 50 25 57 88 62
70 13 35 56 29 33 71 109 53
71 14 41 68 36 38 74 110 51
72 14 42 70 45 27 64 100 65

mean
date 18 40 62 38 31 65 97 61

s. d . 6 5 8 7 6 5 8 6
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median and mid-season dates. Also, the extreme dates will 

be more sensitive to weather conditions.

The dates are plotted in Fig. 3.2.4.3 (Dungeness) and 

Fig. 3.2.4.4 (Portland). In all diagrams, one can clearly 

see that the first and last record dates vary more than the 

median or mid-season dates. There appear to be no noticeable 

long term changes in timing for these species, apart from 

the Whitethroat which shows a suggestion of spring migration 

becoming later towards the end of the 12 year period. The 

variation in timing from year to year also appears to 

increase after 1968, and this is undoubtedly due to the 

sudden drop in population level experienced by this species 

over the 1968-69 winter.
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74



date Fig. ?.2.4.? ( continued )
(from 1st July;

75



E.1& . 3.2.4,3__ ( continued )
date

(from 1st July")



F i g , h,2,ntn_ K i £ r a ¿ ¿ a n - d a ¿ £ ¿ üo.r.t l a r,,si



A number of questions concerning the timing of migration of the 

four species considered can be answered by examining correlation 

coefficients between different dates within species, between 

certain dates across species, between spring dates and autumn 

dates and, for the Sedge Warbler, between Dungeness dates and 

Portland dates. A summary of the results is set out below.

1) The Dungeness data show no similarities between species 

of the timing of the beginning or ending of spring 

seasons. In other words, if one species is observed 

particularly early or late then it does not follow that 

other species will show similar behaviour.

2) The spring mid-season dates for Sedge Warblers,

Whitethroats and Redstarts are positively correlated with 

one another (significant at 5% level). The mid-season 

dates for Willow Warblers are not correlated with other 

species. The median dates show a similar pattern of 

correlation, hut no significant levels are reached.

3) The only significant correlations between species for 

autumn dates are between Willow Warblers and Whitethroats. 

For these species, mid-season dates and last dates are 

positively correlated.

4) For the four species considered, there are no significant 

correlations between spring mid-season dates and autumn 

dates. Also, there are no significant correlations between 

the last spring date and first autumn date.
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5) For the Sedge Warbler, there is no significant correlation

between Dungeness and Portland observatories for any of 

the four dates considered.

Two interesting points arise from the above work. There appears 

to be no connection between the spring migratory behaviour of 

different species but in the autumn there is some evidence to 

suggest that three out of the four species considered migrate 

at around the same time. This is what we might have expected 

since in spring, birds will have travelled a much greater distance 

over a wider area before arriving at observatories but in autumn 

all the species considered will have travelled from within the 

comparatively small area of the British Isles, and will all be 

subject to the weather within this area.

The second point is that any effects of particularly early or taW, 

‘j^nnc^migrations do not influence the timing of autumn migration. 

Later in this section we shall see how linear functions of spring 

and autumn dates are related to population levels of these four 

common migrants.

This work illustrates another aspect of observatories data which 

ornithologists could explore using data over many more species 

and longer time periods. Indeed, one may find more interesting 

correlations if more years are used for the species considered in 

this section. Alternative dates may also be worth considering.

For example, one may use outer-quartiles or outer-deciles of the 

data which may be less sensitive to weather conditions than 

extreme dates.
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We now consider how we might use summary statistics on the timing 

of migration for population monitoring. In order to see which 

dates, if any, are related to the CBC index, we can regress the 

CBC index on a number of dates for both spring and autumn 

migration seasons.

This analysis has been carried out for three species (Sedge W., 

and Willow W. and Whitethroat) at Dungeness, and for the Sedge 

Warbler at Portland. No CBC indices exist for the Redstart.

In each case, the median days were found to be of no use. It 

was possible, however, to fit regression models using first and 

last dates of spring and autumn seasons.

The Willow Warbler data (Dungeness) gave a model of the form:

CBC = 23.20 - 3.02 (first spring date)

+ 1.28 (last autumn date)

The R2 value for this regression is 49.8%, giving a correlation 

coefficient between CBC index and predicted value (migration 

index) of 0.71, which is significant at the 5% level. Last spring 

dates or early autumn dates were not found to provide a 

significant improvement in the regression model (their inclusion 

gave an R2 of 51%). This model suggests that for this species, 

a high population level is indicated by a long time span between 

entry to and departure from Britain. The migration index is 

plotted with the CBC index in Fig. 3.2.4.5, and the indices are 

given in Table 3.2.4.4. Note that the migration indices have 

been scaled so that the 1966 index is 100.
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Table 3.2.4.4 Migration indices based on dates

DUNGENESS

Year Willow Warbler Sedge Warbler Whitethroat
Migration CBC Migration CBC Migration CBC

Index Index Index Index Index Index
1962 88 53 97 60 63 85
63 71 63 111 59 67 80
64 86 72 121 80 88 84
65 91 87 118 78 81 84
66 100 100 100 100 100 100
67 112 96 93 66 59 86
68 135 115 111 113 70 110
69 100 114 100 63 45 30
70 101 120 115 79 43 31
71 109 96 100 65 29 33
72 98 99 83 54 25 26

PORTLAND

Year Sedge Warbler
Migration

Index
CBC
Index

1962 61 60
63 92 59
64 95 80
65 94 78
66 100 100
67 74 66
68 107 113
69 96 63
70 107 79
71 77 65
72 84 54
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It is not possible to find a regression model that fits the data 

as well for the Sedge Warbler as for the Willow Warbler. For 

the Sedge Warbler, the optimum model is one which contains just 

one explanatory variable, the last record date for spring:

CBC = 120 - .84 (last spring date)

This gives an R2 of 20.6%, giving a correlation coefficient 

between CBC and migration indices of 0.45 (not significant at 

the 5% level). Although not significant, this correlation 

coefficient does suggest that low population levels are associated 

with late spring migration. The indices are plotted in 

Fig. 3.2.4.5 and tabulated in Table 3.2.4.4.

The regression model for the Whitethroat contains three explanatory 

variables:

CBC = 380 - 3.76 (1st spring date) - 3.45 (last spring date)

- 1.83 (1st autumn date)

This model gives an R2 of 71.8%, giving a correlation of 0.85 

between the CBC and migration index. The model suggests that 

for this species, low population levels are associated with late 

spring seasons and a late start to the autumn season. The indices 

are tabulated in Table 3.2.4.4 and plotted in Fig. 3.2.4.5.

One also needs three explanatory variables for predicting the 

Sedge Warbler CBC index from Portland data. The best model is:

CBC = 148 - 1.56 (last spring date) - 1.44 (1st autumn date)

+ 0.70 (last autumn date)

This model suggests that low Sedge Warbler population levels are 

associated with late spring migration and a late, short autumn 

migration season. The model gives an R2 value of 43.2%, giving
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a correlation of the migration index with the CBC index of 0.66 

(significant at 2g% level).

In order to see whether a better model for Sedge Warbler CBC 

indices can be formed by combining Dungeness and Portland data, 

a further regression analysis was carried out using 1st and last 

record dates from both sites. An R2 of 55% is obtained by 

including all variables, but no suitable model was found by 

performing a stepwise analysis, other than that found for Portland 

data alone. Even by including all variables in the regression, 

the correlation coefficient between migration indices and CBC 

was not significantly higher than that for Portland data alone.

Although relationships between CBC indices and indices based on 

dates have been found, the precision of the migration indices 

is poor. For example, the standard error of a Sedge Warbler 

(Dungeness) migration index of 75 (before dividing by the 1966 

index) is approximately 40. This represents an average index - 

the standard error will be lower for lower indices and higher 

for higher indices. Confidence intervals will obviously be 

very wide.

This unfortunate feature of these migration indices is most likely 

due to the small sample on which the regression is based. For 

3 of the 4 species studied there is strong evidence to suggest 

a linear relationship between dates and the CBC index, and when 

more data are available one would be able to calculate migration 

indices with increased precision.
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In the above work, attempts were made to find models which lead 

to significant correlations between CBC indices and migration 

indices. Where such a model was found, attempts to simplify the 

model were made. In terms of automating this procedure for 

regular population monitoring by ornithologists, it would not 

be a problem to use the full model in order to achieve as great 

an accuracy level as possible.

It is very encouraging to find that such a simple approach leads 

to being able to predict CBC indices. As will be seen later in 

this thesis, more complex approaches are less successful.
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3.2.5 Fitting curves to sequences of autumn counts

Many sequences of autumn daily counts show what might be 

termed waves of migration. In other words, some migration 

seasons consist of a number of short bursts of activity 

rather than one continuous flow of movement. This feature 

is not found with all species, nor at all observatories.

In those cases where waves appear to occur, it is worth 

thinking how we might investigate them more closely. In 

this section we suggest simple methods of describing a 

migration season that appears to consist of a sequence of 

waves. Ideally one would like to investigate the 

ornithological background to waves, but this would 

inevitably entail a detailed study of ringing data, and 

this is beyond the scope of this thesis.

We shall take a deterministic approach and simply fit a 

series of curves to each sequence of daily counts. An 

examination of a large number of daily counts sequences 

suggests that waves of migrants only occur in the autumn, 

and therefore we restrict our attention to this season.

Although this feature of autumn counts is of interest in 

its own right, we shall aim our analysis at the 

estimation of the numbers of birds involved in the waves 

in order to investigate whether or not a migration index 

may be constructed from autumn counts.
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Fig. 3.2.5.1 shows examples of waves of Whitethroats 

passing through Portland in the autumns of (a) 1970 and 

(b) 1971. Not all diagrams of daily counts show such a 

clear picture as these, however.

There are several possible explanations for waves of 

migrants. They may simply be due to weather conditions 

which release large numbers of birds from some area, 

which then take a few days to pass through an observatory. 

Ornithologists have suggested that this is probably the 

case for east coast waves - see Fig. 3.2.5.1(c) for an 

example.

Other possible explanations are different geographical 

populations of birds migrating at different times (this 

may also be connected with weather) or, different age 

and sex categories of birds - it is a general opinion of 

ornithologists that adults leave Britain in the autumn 

before juvenile birds. There seems to be no strong 

evidence available to support or contradict any of these 

explanations, but a detailed study of ringing data from 

observatories may throw some light onto this subject.

_I
The function f(x) = 1 e 2

cry/ 2tt
uni-modal curve (normal curve) where f(x) tends to zero 

as x tends to ± °°. The curve is characterised by two 

parameters : y (a locational parameter) and a (a 

parameter which governs the shape of the peak). Although 

the use of this function imposes the restriction of

x- v
provides a
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Fig. 3.2.5.1(a) Autumn W h i t e t h r o a t  counts - Portland 1970

Fig. 3.2.5.1(b) Autumn Whitethroat counts - Portland 1971

Fig. 3.2.5.1(c) Autumn Pied Flycatcher counts - Spurn 1967
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symmetry, it would seem to be a useful function to use in 

this situation.

It is straightforward to fit the curve, or a series of 

curves, to a sequence of daily counts. One can simply 

choose the values of y and <r , for each curve, that 

minimise the sum of the squares of the deviations. Further 

parameters need to be introduced however, in order to 

scale each curve to suit the patterns of counts. The 

function f(x) covers an area of unity, so the function 

af(x), say, will cover an area of a units.

The two examples that we consider are both for the Sedge 

Warbler. This species appears to occur in waves more 

often than others, and also occurs in substantial numbers 

in most years. At Portland, there seems to be evidence 

from looking at diagrams of daily counts that three waves 

occur each autumn. At Dungeness, it appears that only 

two waves occur. If we attempt to fit more curves than 

there are waves, then this is no problem since redundant 

curves will simply serve the purpose of adjusting the 

shape of other curves.

Fig. 3.2.5.2 shows sets of 3 curves fitted to Portland 

Sedge Warbler counts. Before fitting the curves, the 

counts were grouped using 3-day groups. This was done in 

order to smooth the data to a certain extent, i.e. reducing 

the influence of one or two extremely large counts. In 

some years, one can clearly see that only two curves are
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are necessary, e.g. 1963 and 1964. In 1969 only one curve 

appears to be needed. Fig. 3.2.5.3 shows the combined 

curves, and in most cases the fit to the data appears to 

be good.

Fig. 3.2.5.4 shows pairs of curves fitted to Dungeness 

Sedge Warbler counts, and Fig. 3.2.5.5 shows the 

corresponding combined curves. In some cases the fit of 

the curves appears rather poor, and the diagram for 1967 

suggests that there is some difficulty in obtaining the 

optimum values of the parameters since the second curve 

is consistently lower than the actual counts (one would 

expect the curve to be lower in some places and higher in 

others). The reason for this may be due to the iterative 

minimisation process finding a local minimum, and not the 

global minimum. The lesson to be learnt here is that one 

must examine each sequence of counts carefully rather than 

apply an automatic procedure which deals with many 

sequences at once. Where possible one should try using 

different starting values to avoid finding local minima 

but sometimes, as in the case of the 1967 data, convergence 

on a better fitting set of curves cannot be achieved.

Tables 3.2.5.1 and 3.2.5.2 present parameter estimates of 

the waves of migration. Each column of the tables is 

divided into two or three sections, where each section 

refers to one wave of migrants. The estimated numbers 

of birds in each wave are simply the areas under each 

curve. The estimated dates are given as the number of
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Table 3.2.5.1 3 curves fitted to Sedge Warbler counts from
Portland. The dates are measured in days from 
1st July, and the standard deviations are 
measured in days

No. of birds Estimated date Standard deviation
Year 1 2 3 1 2 3 1 2 3
1961 1 61 22 45 63 71 4 4 7
62 23 22 23 45 61 73 4 3 4
63 1 35 30 36 73 76 5 6 4
64 46 32 54 43 57 65 9 10 5
65 31 58 99 41 62 76 5 4 4
66 120 44 39 57 73 88 8 9 5
67 25 128 75 40 58 76 5 4 4
68 102 99 7 41 73 80 5 6 5
69 110 50 93 62 65 70 3 4 34
70 151 102 46 39 57 74 5 4 10
71 103 29 20 51 65 76 4 4 4
72 39 196 48 46 66 79 11 4 4

Tahle 3.2.5.2 2 curves fitted to Sedge Warbler counts from
Dungeness

Estimated Standard
No. of birds date deviation

Year 1 2 1 2 1 2

1961 135 100 40 55 6 4
62 1 43 0 48 722 19
63 321 591 40 66 6 13
64 1936 936 3 55 142 14
65 97 299 38 66 5 13
66 302 355 41 52 33 9
67 202 137 20 61 6 15
68 348 272 37 69 6 9
69 92 167 43 72 4 4
70 239 311 37 61 6 11
71 137 100 52 76 6 13
72 36 35 50 74 4 4
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days after the first of July. The standard deviations 

measure the amount of spread about the mean date, and 

are given in days. Most of the standard deviations are 

of the order of 4 or 5 days, but occasionally an extremely 

large value is found, suggesting that one of the expected 

waves was missing.

We have seen (Chapter 2) that the daily mean number of 

migrants recorded in each of a series of years reflect 

only the most noticeable fluctuations in population size. 

We are now in a position to decompose these counts into 

'waves', and examine whether or not particular waves or 

combinations of waves are more useful as indices.

The sums of the areas under the two or three fitted curves 

are close to the raw totals of counts - any discrepancy 

is simply due to the lack of perfect fit of the curves .

The sample correlation coefficients between the areas of 

the 3 waves and the relevant CBC indices are, for Portland; 

.50, -.09 and .26, while for Dungeness they are .24 and .27. 

Combinations (pairs) of the waves were examined for the 

Portland data, but no significant correlation coefficients 

were found.

Adding together the numbers of birds estimated to be 

contained within each wave, in each year, offers no 

improvement of correlation with CBC indices over the raw
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Table 3.2.5.3 Autumn totals of Sedge Warblers at Dungeness 
and Portland

Portland

tear Raw Total Sum of 3 wave areas
1961 70 84
62 55 68
63 110 66
64 130 132
65 262 188
66 205 203
67 301 228
68 236 208
69 226 253
70 412 299
71 169 152
72 422 283

Dungeness

Year Raw Total Sum of 2 wave areas
1961 278 235
62 376 44
63 874 912
64 1158 2872
65 403 396
66 673 657
67 612 339
68 640 620
69 351 259
70 490 550
71 261 237
72 75 71
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totals of daily counts. In fact, for Dungeness data, 

the correlation coefficient was found to be .26, compared 

with .36 for the raw totals. For Portland, the respective 

coefficients are .16 and .02, neither of which are close 

to being significant.

It would appear that this rather rough and ready method 

of estimating the sizes of waves of migrants is not, at 

least for the Sedge Warbler, able to lead to migration 

indices that are correlated with CBC indices. This method 

of studying waves of migration may, however, enable 

ornithologists to study migration patterns in more detail 

than has hitherto been possible. It allows ornithologists 

to be objective about the timing, duration and frequency 

of waves which, together with a study of ringing data from 

observatories, would provide another interesting area of 

research. Ringing data may show certain waves to consist 

of adult or juvenile birds, male or female birds, or, if 

a long time period were studied, information on geographical 

origins of birds may be gained.
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3.2.6 Weekend bias

Weekend bias is the term given by ornithologists to the 

inflation of recording effort at weekends. Whether or 

not weekend bias is actually apparent in observatories 

data is not generally known, but one thing that is known 

for certain is that more people visit observatories on 

Saturdays and Sundays than on weekdays. These extra 

visitors are most likely only to be day visitors though, 

and are unlikely to contribute to the evening meetings at 

which the day's records are examined. Wardens of 

observatories are generally of the opinion that records 

of commoner migrants are unaffected by these extra visitors, 

although if a rare bird is known to be present at an 

observatory then the increased disturbance caused by 

people looking for it may deflate the daily counts of 

common migrants.

Although we are concentrating our attention on common 

migrants it is worth noting that records of rare birds 

are likely to be influenced by weekend bias. The increased 

covsiage of the recording area may yield sightings of rare 

birds that would otherwise have been missed. Sharrock 

(1966) has demonstrated weekend bias of rare bird data by 

counting the numbers of records made on each day of the 

week for the period 1958-65. He obtained his data from 

'Reports of rare birds' published in British Birds. He 

found that 45% of records were on weekends which clearly 

suggests that weekend bias exists for these birds. He 

also demonstrated that, for island observatories, records
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of rare birds are notably fewer on days on which visitors 

arrive or leave by boat - Sharrock (1970).

Daily ringing totals of both common and rare birds will 

inevitably show effects of weekend bias since ringing is 

heavily dependent on the effort involved.

In this section daily counts of common migrants are 

examined in order to see whether the widely held opinions 

of observatory workers are supported by the data. The 

simplest approach is to select a number of years to study, 

and examine the average numbers of birds recorded on each 

of the seven days of the week during migration. Obviously 

a Sunday in the height of the migration season will, on 

average, show a higher count than a Sunday at the 

beginning or end of a season and so in order to reduce the 

effects of within season time dependency we divide each 

season into arbitrary sections based on calendar months.

A spring season thus comprises April, May and June, and 

an autumn season comprises July, August, September and 

October.

Table 3.2.6.1 shows the mean counts of four species 

recorded at Dungeness for the period 1961-72, for weekends 

and weekdays. One should, of course, include public 

holidays as weekend days, but in order to simplify the 

calculations, this point has been overlooked. Even 

without performing significance tests on the calculated 

means, it is clear that these data show no evidence of
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more birds or fewer birds being recorded at weekends. In 

order to carry out t-tests between means the degrees of 

freedom need to be estimated since the variances are

unequal. Under the null hypothesis of no weekend-bias, the 

statistic t = (x}-x2)/s is approximately distributed with 

a t-distribution on v degrees of freedom, where 

v = [(Si/n!)2 + (S2/n2)2 ] 2

piA!!)1* + (S2/n2
L n l~ l  n2~l J

Table 3.2.6.1 Weekend and weekday mean counts of grounded migrants
: 1961-72, Dungeness

SPRING

SEDGE WARBLER WILLOW WARBLER WHITETHR0AT REDSTART

Apr May Jun Apr May Jun Apr May Jun Apr May Jun

no. of weekend
days 104 106 102 104 106 102 104 106 102 104 106 102

mean count 2.02 7.50 .06 8.82 11.92 .04 4.17 16.87 .09 2.36 1.70 .03
s.d. of counts 4.00 9.88 .59 22.6 22.1 .20 12.3 34.9 .57 5.93 5.09 .22

no. of weekdays 256 266 258 256 266 258 256 266 258 256 266 258
mean count 1.32 7.91 .04 9.04 9.28 .03 3.68 16.56 .12 1.49 1.18 .03
s.d. of count 3.55 13.10 .45 36.1 19.9 .26 15.1 31.4 .85 4.04 2.97 .26

t-statistic for
testing weekend

bias 1.55 -.33 .31 -.07 .83 .39 1.53 .08 -.39 1.37 .99 0
d.f. (approx) 131 167 120 194 133 157 157 133 175 119 117 147

* significant at 5% level, ** at 1% level
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103

AUTUMN

Jul Aug Sept Oct Jul Aug Sept Oct Jul Aug Sept Oct Jul Aug Sept Oct

no. of weekend days 107 106 103 107 107 106 103 107 107 106 103 107 107 106 103 107
mean count 1.9 11.4 7.4 .3 1.5 37.2 9.3 .1 1.9 17.1 11.8 .8 .02 1.41 6.7 1.1
s.d. of counts 4.6 16.2 11.8 .93 5.8 38.6 12.2 .4 4.2 20.1 13.2 2.7 .14 3.56 7.3 2.3

no. of weekdays 265 266 257 265 265 266 257 265 265 266 257 265 265 266 257 265
mean count 1.5 9.1 5.1 .1 1.4 28.7 8.7 .1 1.2 15.3 12.7 .5 .03 1.02 4.7 .67
s.d. of counts 4.3 10.2 6.7 .4 4.8 33.7 23.4 .3 3.7 16.3 23.1 1.4 .17 2.36 6.7 1.7

t-statistic for
testing weekend bias .77 1.36 1.86 2.15* .16 1.99 .32 0 1.5 .82 -.46 1.09 -.58 1.04 2.4* 2.16*
d.f. (approx) 137 118 113 112 130 131 227 126 134 128 207 115 159 120 131 125

^significant at 5% level ** at 1% level

Table 3.2.6.1 (continued)



The observed t-statistics are given in Table 3.2.6.1.

Only three out of 28 data sets exhibit weekend bias, and 

therefore no conclusive evidence is available that, in 

general, daily counts are affected by weekend bias.

Before leaving this topic, we shall briefly examine data 

from other observatories.

Table 3.2.6.2 refers to the Sedge Warbler autumn records 

over a seven year period: 1961-67. Again we see no 

evidence of weekend bias. We have only examined one species 

at four observatories, but there is no reason to suspect 

that the results would be different for other species, and 

over different time periods.

We therefore accept our initial suspicion that daily counts 

of grounded common migrants are not affected by the extra 

visitor numbers at weekends.

Table 3.2.6.2 Weekend and weekday mean counts of Sedge Warblers :
1961-67 Autumn only *

BARDSEY PORTLAND SPURN

Jul Aug Sept Oct Jul Aug Sept Oct Jul Oct Sep Oct
no. of weekend

days 64 60 61 63 64 60 61 63 64 60 61 63
mean count .13 3.67 .33 .02 .03 2.68 2.54 .06 1.66 1.47 .59 .05
s.d. of counts .58 10.4 .87 .13 .18 4.88 3.22 .35 1.70 1.46 .94 .22

no. of weekdays 153 157 149 154 153 157 149 154 153 157 149 154
mean count .47 1.22 .50 .01 .03 2.49 2.68 .10 1.37 1.47 .49 0
s.d. of counts 1.97 2.89 1.51 .08 .27 4.76 4.58 .46 1.76 1.52 .93 0

t-statistic for
testing weekend
bias -1.94 1.8 -1.02 .56 0 .26 -.25 -.69 1.13 0 .70 1.8
d.f. (approx) 213 60 123 70 115 76 103 100 88 78 80 62

* significant at 5% level, ** at 1% level
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3.2.7 Large falls of birds

Many visitors are attracted to observatories by the 

possibility of seeing a large 'fall' of migrants, i.e. a 

large number of grounded birds which often includesrarities.

Ornithologists believe that the ideal conditions for a 

fall are when weather has prevented migration for several 

days leading to a build up of birds at some origin. When 

weather conditions allow birds to proceed and if local 

weather at observatories changes for the worse then large 

numbers of migrants may be forced to land.

Another type of fall is that of an 'overshoot'. This 

feature is particular to south coast observatories and 

occurs when weather conditions are ideal for migration 

for several days, encouraging spring migrants to fly 

further north than is usual. Species which are rare to 

Britain are often recorded, e.g. Hoopoe and Bee-eater.

It is difficult to define objectively a large fall of 

migrants. In certain migration seasons one may observe 

one large fall among a season of low counts in which case 

it is clear which observation is a fall. In other 

seasons the picture is less clear. In order to examine 

the occurrence of falls at Dungeness and Portland 

observatories, we define falls as in Table 3.2.7.1. These 

arbitrary definitions were arrived at by visually 

examining plots of daily counts and choosing a threshold 

value for each species/observatory combination which
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separates the main flow of migrants from the small number of 

particularly large counts.

Table 3.2.7.2 shows when the falls occurred during the period 

1961-72. Dungeness clearly shows more falls than Portland, and 

both observatories show more falls in autumn than in spring.

A close examination of the dates on which falls occur suggests 

that it is not always the case that species occur together. Of 

the 69 falls at Dungeness, 44 were 'single species' falls. 

Although data are only presented here for 4 species, further 

species were examined - Spotted and Pied Flycatcher and Blackcap. 

No further coincidences of falls were found. At Portland, 25 of 

the 27 falls were single species falls.

Although observatory daily census records suggest that different 

species migrate together, it is clear that this is not a general 

rule. This feature of different behaviour between species is 

found in other contexts throughout this thesis, for example the 

influence of weather on observatories data.

Table 3.2.7.1 Definition and frequency of large falls

Dungeness

Redstart 
Sedge Warbler 
Whitethroat 
Willow Warbler

Portland

Redstart 
Sedge Warbler 
Whitethroat 
Willow Warbler

No. of birds No. of falls 1961-72

* 50 2
* 50 14
* 100 18
* 100 35 *

* 5 0  1
* 5 0  4
* 5 0  2
* 50 20
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Table 3.2.7.2 Falls of migrants at Dungeness and Portland

DUNGENESS

SPRING AUTUMN

Year RS SW WT WW RS SW WT WW Total

1961 0
62 2 2 2 3 9
63 1 2 3 2 2 2 4 16
64 2 2 3 1 3 11
65 1 2 1 4
66 2 1 1 4
67 1 1 2 4
68 1 1 1 1 4 8
69 1 1
70 1 2 1 4 8
71 1 1
72 2 1 3

Total 2 6 10 12 0 8 8 23 69

PORTLAND

1961 0
62 o
63 0
64 1 l
65 0
66 0
67 1 1
68 1 1 1 3 6
69 1 6 7
70 1 3 4
71 2 2
72 5 1 6

Total 2 2 5 1 2  15 27

RS : Redstart
SW : Sedge Warbler
WT : Whitethroat
WW : Willow Warbler
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Table 3.2.7.2 allows one to compare Dungeness with Portland 

observatory as regards falls. There is clearly little similarity 

between the two observatories over the four species considered 

over the years 1961-72. A study of the dates of falls reveals 

only one coincidence: in the autumn of 1968 both observatories 

experienced a fall of Willow Warblers on the same day. As well 

as same-day coincidences, near-coincidences were examined. One 

Sedge Warbler fall at Portland was followed by a fall at Dungeness 

the next day and two Willow Warbler falls at Portland were 

followed by falls at Dungeness, also the next day. All three 

coincidences or near-coincidences were of autumn falls, suggesting 

a build up of birds along the south coast at around the same time. 

However, with coincidences representing such a small proportion 

of the total number of falls it is difficult to draw firm 

conclusions regarding occurrence of falls at Portland and Dungeness. 

This lack of similarity between data from Dungeness and Portland 

highlights the different geographical positions of the two sites, 

and is found in many of the analyses of later chapters of this 

thesis.

Data from other observatories were examined for coincidences of 

falls within species. The only suggestion of a link between two 

observatories was that on six days over the twelve year period 

large falls (2 of Whitethroats and 4 of Sedge Warblers) at 

Dungeness were followed by large falls at Bardsey (of the same 

species) either one or two days later. When one considers that 

six observatories, four species and twelve years of data were 

examined, it is clear that the timing and species involved in 

large falls differ between observatories. This has important
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implications for the study of large falls. It would appear that 

one must examine individual observatories, rather than grouping 

data from a number of sites, and it also suggests that species 

must be examined individually.

If one attempts to fit a statistical model to daily counts data, 

large falls will inevitably show up as 'outliers', i.e. 

observations with residuals which are large compared with the 

main body of residuals. This is a common problem when modelling 

observed data and the action that one takes depends on the nature 

of the analysis. For example, one might be interested in how 

closely the model fits the main body of the data and not worry 

too much about isolated departures from the model. Another 

example is where one may be interested in observations which are 

influential in the fitting of the model, i.e. how dependent are 

the parameter estimates on certain data? This point is returned 

to in chapters 6 and 7.
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3.2.8 Missing data

On some days it may be impossible for a daily census to 

be carried out at an observatory. This may be due to 

extreme weather conditions, or, more likely, because 

nobody is able to devote the necessary time. This is most 

unlikely during the height of the migration seasons since 

many visitors will be present to assist the warden.

This thesis concentrates on data from Dungeness and 

Portland which include very few missing observations, and 

where one occurs, a zero count has been inserted. This 

was done since the missing observations occurred at the 

extreme ends of the seasons, when the counts were very low. 

Since the counts are the result of complicated interactions 

between weather conditions and biological behaviour it is 

difficult to impute an estimate of the count. The small 

number of missing counts (approximately 0.01%) found in 

the data from these two observatories should mean that any 

statistical analyses performed on the data are not 

influenced to a great extent by these missing data.

One other source of missing observations is the tendency 

for some wardens to insert 'ticks' in the migration log 

instead of numerical estimates. These are usually intended 

to signify that a particular species is present but not 

counted. There is little that one can do here except treat 

the observation as missing. It hardly seems appropriate 

to insert a zero count for these observations, but one 

would expect that if the species had occurred in large
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numbers, then an estimate would have been made. Again, 

very few of the data sets from Dungeness or Portland 

include ticks.
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3.3 Weather data from Dungeness and Portland Bill

3.3.1 Introduction

The aim of this section is to describe and explore weather 

data from meteorological stations adjacent to the 

observatories of Portland Bill and Dungeness, in order to 

prepare the way for an analysis of how weather affects 

the occurrence of migrants at observatories. Simple 

statistical procedures are used, including principal 

components analysis and the fitting of univariate time 

series models to individual weather variables. The former 

technique is used as a means of reducing the dimensionality 

of the available data by considering relationships among 

the variables, and the latter technique throws light on 

the time dependent structure of the data. This is the 

first instance of such techniques being applied to a study 

of this nature and hopefully this work will demonstrate 

to ornithologists that techniques other than multiple 

regression are applicable in this area.

An alternative approach to adopt here is to consider the 

set of weather variables (each measured at equally spaced 

points in time) as a multiple time series, and attempt to 

fit multivariate moving average and/or autoregressive 

models. Although these data do, in fact, represent a 

multiple time series, it is difficult to see that this 

approach would offer anything over and above a combined 

principal component and univariate time series analysis.

As will be seen from the principal component analysis,
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there is no evidence of changes over time of relationships 

between weather variables, and so there appears to be no 

objection to looking at the variables one-by-one. If, on 

the other hand, our task was one of predicting future 

weather conditions from an historical set of observations, 

then we might well improve the accuracy of our forecasts 

by modelling the series jointly. Also, principal component 

analysis often enables sensible interpretations of groups 

of variables, and fitting univariate time series models is, 

with the current availability of software, more straight­

forward than fitting multivariate models.

Since data from Portland and Dungeness are studied, the 

migration of interest is cross-channel migration. The only 

major study of cross-channel passerine migration has been 

that of Parslow (1962, 1969), who used radar to measure 

migration densities, and compared them with weather 

information extracted from Daily Weather Reports. Parslow's 

first paper concerns arrivals of night migrants at Portland 

and Hengistbury Head (Hampshire). Among his findings 

concerning the influence of weather on migration is the 

suggestion that wind direction in the upper air determines 

the tracks of the migrants. He gives an example where a 

wind from the NE deflected spring migrants onto a westerly 

heading. This means that under such conditions, British 

immigrants are unlikely to be recorded at the Kent 

observatories (Dungeness and Sandwich Bay) since they will 

have been deflected to the west.
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Parslow estimated the geostrophic wind directions by 

studying isobars on weather maps, and he makes the point 

that local wind directions are likely to be quite different. 

Owing to the large time period considered here, we work 

only with local wind directions which are readily available 

and may thus expect different results from Parslow.

As regards falls of migrants at Portland and Hengistbury 

Head, Parslow found that large falls were not necessarily 

indicative of a large migration across the channel. On 

overcast nights with light winds and rain, the radar picture 

showed a relatively small migration across the channel, 

but on the following mornings large numbers of grounded 

migrants were reported. Strong, opposed winds gave little 

migration and no falls, suggesting that birds were prevented 

from leaving France. Calm anticyclonic conditions gave 

rise to dense migration, but produced only small falls, 

suggesting that migrants flew over the observatories into 

Britain.

Differences between the timing of falls at the two sites 

were frequently noted, but then the situation of the two 

observatories is different. As one might expect, such 

differences occur between Dungeness and Portland. Dungeness 

is situated at the tip of a low lying peninsula, in a 

relatively narrow stretch of the English Channel. Portland 

Bill is effectively an island off the Dorset coast at a 

wide section of the channel.
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Parslow (1969) extended his study using data from Dungeness 

and Hengistbury Head, and confirmed his original findings. 

He also noted that the temperature appeared to be 

correlated with heavy immigration in spring, but this may 

just be due to the onset of the migration season coinciding 

with the general increase in temperature as spring gives 

way to summer.

Parslow's studies are further discussed by Riddiford and 

Augur (1980) and Riddiford (1985).

3.3.2 The data available

Three hourly observations on a number of weather variables 

are available from Dungeness from 1957 to 1972 inclusive, 

and from Portland from 1968 to 1972 inclusive. The data 

were obtained from the Meteorological Office Archives, on 

computer-readable magnetic tapes. For both sites, the 

observations were made at lighthouses situated on the 

observatory recording areas.

Eleven variables are available at each observation time: 

wind direction (degrees from north) 

wind speed (knots)

total and low cloud amounts (oktas)

visibility (distances to known landmarks in metres)

air and wet bulb temperatures (°C x 10-1)

dew point (°C x 10-1)

vapour pressure (millibars x 10-i)

humidity (measured as a percentage)
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atmospheric pressure (millibars)

The wind direction variable needs careful consideration, 

since it is recorded as an angle in degrees measured from 

north. The problem is simply that, for example, 350° and 

10° both represent the same degree of deviation from north, 

while having very different numerical values. It seems 

reasonable at this stage to introduce knowledge of the 

direction of flight over the channel of birds occurring 

at south coast observatories. Parslow (1969) found, by 

using radar, that the direction of immigration into Britain 

in spring was, under calm conditions, NW or NNW. A 

transformation of the form sin (a - 45°) where a is the 

recorded angle gives a new variable that has a maximum 

value (+1) when the wind is SE, and a minimum (-1) when 

the wind is NW. Crosswinds give a value of zero. The 

effect of this transformation is to give a quantitative 

variable measuring the approximate favourability of wind 

direction to spring migration, and unfavourability for 

autumn migration.

One notable absentee from the list of weather variables 

is that of rainfall. It is not possible to

calculate the amount of rainfall in such short intervals 

as three hours, but since we have variables such as cloud 

cover, humidity and vapour pressure, we can assume that we 

have information on rainfall, however indirect this 

information is.
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An important point to note here is that birds recorded at 

observatories were, prior to their arrival, influenced by 

weather elsewhere. However, the weather at observatories 

does, we expect, influence these arrivals and in any case 

these local weather records are all we have to work with 

at present. Future research in this area would no doubt 

benefit from the collection of weather data from, for 

example, France.

Before commencing statistical analyses of the data, we 

illustrate two of the variables by time series plots of 

daily means. Fig. 3.3.1 shows the air temperature over 

the months of March to June, 1968, at both Dungeness and 

Portland. The similarity of the two sites as regards 

temperature is clearly seen. The curves for autumn 

(July - October) show two interesting features. There 

appears to be a slight increase in temperature over the 

first 50 or 60 days, followed by a continual decline as 

winter approaches. This pattern has important consequences 

when attempting to detrend the series, since the trend is 

clearly non-linear. A second feature of these autumn data 

is that the temperature experienced at Portland, often 

occurs at Dungeness a couple of days later, suggesting a 

westward moving weather pattern in autumn. This feature 

is interesting in the context of daily counts of migrants, 

since it may provide an explanation of the differences 

between these sites as regards migration data.
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E-ig.._ 3.3.1 Air t emperature data

Spring 1968 - Air Temperature

Autumn 1968 - Air Temperature



Fig. 3.3.2 shows the total cloud amount for both observatories 

over the spring of 1968. Large day to day variation is 

seen and differences between the observatories are noticeable, 

particularly in early July, and one can again see that a 

time lag of a few days occurs in the data.

A comparison of daily counts of grounded migrants from 

Dungeness and Portland showed no evidence of a 'lag' of the 

form seen in the weather data.

A more detailed study of the structure of the data as a 

whole is now considered.

3.3.3 A principal component study of weather data

In this section we carry out a principal component analysis 

of a set of weather variables. We are interested here in 

relationships between variables. In the following section 

we examine the autocorrelation structure of the data. It 

should be remembered that we have, in effect, a multivariate 

time series. Usually, one performs a principal component 

analysis on a set of independent observations on some 

multivariate random variable. The successive observations 

on weather variables are not independent as they are 

measured sequentially at, for example, daily or three-hourly 

intervals. It is not clear from the literature whether 

principal components analysis is appropriate for data of 

this type, but as this section demonstrates, one obtains 

quite sensible results.
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Fie. 9.9.2 Total cloud cover data

Spring 1968 - Total Coud
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The motivation for the analyses reported in this section 

is largely one of exploration of a data set which will be 

used in further chapters. We would do well to study 

which weather variables or groups of variables fluctuate 

most from day to day, as opposed to variables which are 

nearly constant over the time period involved. By carrying 

out the analysis of weather data from Portland and 

Dungeness separately, we may gain insight into the types 

of weather which occur at each site, and the nature of any 

differences that may be found.

For the first analyses reported below, we examine four 

different months (March to June inclusive) separately.

This is in order to check for consistency over a migration 

season. One might find that if variations in the structure 

of the weather data occur over time, then the influence of 

weather on migration data may also vary over time. The 

analyses of this section will not, of course, fully answer 

this question, but they should provide some insight into 

the problem. Spring data only are studied at first, but 

analyses of autumn data gave very similar results, some of 

which are reported later in this section.

Principal components analyses were carried out on data from 

Portland and Dungeness separately, in order to check for 

site differences. No differences were found, however.

Further motivation for principal components analysis is 

given by the fact that this technique often enables data

121



reduction, i.e. unimportant variables may be discovered 

and subsequently discarded from future analyses.

As a preliminary analysis, three-hourly observations on all 

eleven weather variables are studied, for both sites.

The eleven variables are:

wind direction (transformed from an angle, as 

described in section 3.3.2) 

wind speed (knots) 

total cloud amount (oktas) 

total amount of low cloud (oktas) 

visibility (metres) 

air temperature (0.1°C) 

wet-bulb temperature (0.1°C) 

dew-point (0.1°C) 

vapour pressure (lOmb) 

humidity (%) 

pressure (mb)

The cloud variables and visibility are measured on a 

discrete scale.

The analyses were performed using GENSTAT, and any 

observation containing a missing value is automatically 

deleted. Over the 976 observations for the spring of 1968 

- March to June, (the year chosen for this preliminary 

analysis), dew point was not recorded on 37 occasions at 

Portland, and 57 at Dungeness. The temperature was not 

recorded on one occasion at Portland, and 17 occasions at 

Dungeness.
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The first step in a principal component analysis is 

usually the examination of the correlation matrix. With 

eleven variables one is looking at 55 coefficients and 

this can prove a difficult exercise, particularly as one 

expects approximately 2 or 3 coefficients to appear 

significant at the 5% level, even when no correlation 

exists.

8 correlation matrices were examined (2 observatories x 4 

months : March, April, May and June), and the 28 pairs of 

matrices were tested for differences by the likelihood 

ratio test. The test statistic is given by

x2 = nlog^ |sj - niloge |s_i( - n2loge |s_2l 

where s_p and s_2 are the correlation matrices being tested, 

np and n2 are the sizes of the samples from which s_p and s2 

were calculated, and

s_= (npsp+ n2£2)/(n1 + n2)

Under the null hypothesis of no difference, x2 follows a 

chi-square distribution with |p(p+l) degrees of freedom. 

None of the 28 test statistics was found to be significant 

at the 5% level. This consistency over time is a feature 

which is seen again when we consider the principal 

components.

Significant correlations (5% level) were found for the 

following pairs of variables (all positive correlations): 

total and low cloud amount 

wet bulb and air temperature 

dew point and air temperature
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vapour pressure and air temperature 

dew point and wet bulb temperature 

vapour pressure and wet bulb temperature 

vapour pressure and dew point

The meteorological explanations behind these correlations 

will not be entered into here, but some of the pairs of 

variables shown above, would be expected to show high 

correlations, e.g. wet bulb and air temperature.

This examination shows that little information would be 

lost if, say 2 or 3 variables out of air temperature, wet 

bulb temperature, vapour pressure and dew point were 

discarded from the data set.

Several methods exist for discarding variables using 

principal components knowledge, and descriptions can be 

found in Jolliffe (1972a,b). The most convenient methods 

are those where the number of variables to be retained is 

decided beforehand. One simply examines the last principal 

component, and discards the variable with the largest (in 

magnitude) coefficient. The next to last component is then 

examined, and this procedure continues until the required 

number of variables have been discarded. Although we have 

no fixed number of variables to discard in these analyses, 

this method does suggest that four variables can be discarded 

without too much loss of information, since in all 8 analyses 

the first four variables that would be discarded are very 

nearly the same four for each data set.
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Table 3.3.1 illustrates this feature, where the order of 

deletion reads from left to right. This table also shows 

that there appears to be little variation in the structure 

of the weather data from month to month.

Table 3.3.1 Variables discarded (see below for key)

Portland March WB VP DP LC WS VII April WB DP VP TC V WDII May WB VP DP LC P WSII June WB VP DP LC V P
Dungeness March WB VP DP LC WS WDII April WB VP DP TC P WDII May WB VP DP TC V PII June WB VP DP LC V P

WB = wet bulb temperature
VP = vapour pressure
DP = dew point
LC = low cloud
TC = total cloud
WS = wind speed
P = pressure
V = visibility
WD = wind direction

Although the fifth and sixth variables show no pattern of 

consistency over the eight analyses, the first four are 

very nearly the same.

One of the eight correlation matrices is given in Fig. 3.3.3. 

We see that wet bulb temperature is highly correlated with 

air temperature, dew point and vapour pressure, and the 

principal components analysis appears to be telling us that 

just one of these four variables is sufficient for practical 

purposes, this being air-temperature. Further, the fourth 

column of Table 3.3.1 clearly shows that only one of the two 

cloud variables needs to be retained. Note that the
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correlation between these variables is very high: 0.76 

for the given example.

Fig. 3.3.3 An example correlation matrix for weather variables
(Portland, March 1968)

wind dir. 1.00
wind speed .02 1.00
total cloud .17 .15 1.00
low cloud .01 .25 .76 1.00
visibility -.27 .12 -.32 -.23 1.00
air temp. .25 .18 .13 -.13 .01 1.00
wet bulb temp .24 .20 .17 -.09 -. 06 .96 1.00
dewpoint .24 .20 .21 -.02 -.14 .81 .94 1.00
vapour press. .24 .20 CNO1i—l CN • -.16 .81 .94 .99 1.00
humidity .01 .07 .14 .14 -.24 -.07 .21 .51 .52
pressure -.15 -.60 -.24 -.31 .02 O1Or00010001

The number of variables that can be discarded without 

appreciable loss of information can also be determined by 

examining the eigen values of the correlation matrix.

When expressed as a percentage of the trace of the matrix, 

each eigen value gives the amount of total variation 

accounted for by its corresponding eigen vector, or 

principal component. If we find that the last eigen value 

is small in comparison with the penultimate one, then this 

suggests that the data could be reduced by one more 

dimension.

One aspect of principal component analysis is that of 

examining the data by means of plotting principal component 

scores for various pairs of components. These two- 

dimensional plots can often reveal such features as multi­

modal distributions, i.e. when clusters of points are found, 

or outliers, i.e., when points lie far away from the main
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group. In all 8 analyses performed, plots of the first two

components were examined, but no such features were found. 

Since we are looking at the data in only two dimensions, 

there may well be distortion introduced which can make 

observations appear close together, but which are in effect 

far apart. The construction of a minimum spanning tree 

can lead to a closer examination of how closely related 

observations are, but for such large numbers of observations 

they can be difficult to interpret. A part of the tree 

for the Portland data of March 1968 is shown in Fig. 3.3.4. 

Each integer represents one observation (1 - 248) and the 

real numbers separating each observation give the 

distances (Mahalanobis distance) in eleven dimensional 

space between neighbouring observations. (Note that the 

Mahalanobis distance is just one of a number of possible 

distance measures that may be used here.) From this 

example, one can see that observations that are close 

together in time, are often close together in space, a 

feature that we return to later in this chapter.

A second analysis is now described, where the weather data 

are transformed to daily means from 3 hourly observations. 

Since we have daily observations of birds, it seems 

sensible to investigate the weather data on a daily basis, 

and in doing so we can combine data for, for example, the 

four months of spring and end up with 122 observations.
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■Fig, 3.3.^— A., section of the Minimum Spanning tree,

Portland. March (1968). 

( see text for details )
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The correlation matrices for Dungeness and Portland were 

found to be very similar, and the likelihood ratio test 

gave no evidence of a difference between the two sites.

There is again a suggestion that at least four variables 

could be discarded without appreciable loss of information.

Table3.3.2 shows the eigen vectors for the Dungeness data, 

together with the % variance accounted for by each one, 

to one decimal place.

The eigen vectors for the Portland data were found to be 

very similar to those for Dungeness.

Frequently one finds that the first few principal components 

can be interpreted practically, see for example, Jolicoeur 

and Mosimann (1960). We now make a brief attempt to 

interpret the components found in the above example.

The first component (see Table 3.3.2) accounts for 39.4% of 

total variation. Whether or not this proportion represents 

a significant effect or whether such a figure could have 

arisen purely by chance is difficult to assess. Krzanowski 

(1979) gives percentage points for the ratio of the largest 

eigen-value to the trace of the correlation matrix, but 

only for the cases of three or four variables. From his 

tables there is evidence to suggest that for 11 variables, 

39.4% would represent a significant effect when a large 

number of observations is used (here, we have 122). The
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Table 1.3.2 Principal compo n e n t s  for Duneeness, 1968 data

Weather variable number ( see key below )
P.C. 1 2 3 4 5 6 7 8 9 10 1 1

1 -.16 .00 -.10 - .03 .16 -.44 - .46 -.47 -.47 -.27 .06
2 -.17 .24 .54 .56 -.16 -.19 - .12 -.04 -.04 .37 - .32

3 -.15 ■-.63 .12 .09 -.59 -.06 - .05 -.04 -.03 .09 .44
4 .74 ■-.15 -.13 - .17 -.30 -.18 - .14 -.09 -.12 .24 - .40

5 .61 . 1 1 .29 .35 .23 .02 - .00 -.05 -.03 -.17 .57
6 -.03 .70 -.29 - . 11 -.50 icooi .05 -.02 .00 .17 .36

7 -.05 --.12 -.11 - . 1 6 .45 -.20 - .08 .04 .02 .78 .29
8 -.00 .12 .70 - .70 -.04 -.01 - .02 -.02 -.05 -.03 .06

9 -.01 .02 - .01 .03 -.01 .47 .31 -.05 -.80 .19 .00
10 -.00 .00 -.00 .01 .00 -.31 - .17

VO
CO• -.33 -.14 .02

11 -.00 -- .00 .00 - .00 -.00 -.61 .78 -.10 -.06 -.07 - .00

P.C. % variance 
accounted for

( key for above table ) 
Weather variable

1 39.4 1. Wind direction
2 23.8 2. Wind speed
3 12.5 3. Total cloud amount
4 9.2 4. Low cloud amount
5 5.4 5. Visibility
6 5.2 6. Air temperature
7 3.4 7. Wet-bulb temp.
8 1 .0 8. Dew-point
9 0.1 9. Vapour pressure
10 0.0 10. Humidity
1 1 0.0 1 1 . Pressure
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eigen vector for the first principal component (see Table 

3.3.2) is essentially an average of air and wet bulb 

temperatures, dew point and vapour pressure. In 

meteorological terms, this component could be a measure 

of atmospheric stability.

The second component is an average of the two cloud measures, 

suggesting again that just one variable could be retained. 

Both humidity and pressure feature in this component, which 

are relevant to the formation of cloud.

The third component is an average of wind speed and 

visibility contrasted with pressure. The fourth component 

is a measure of wind direction against pressure. Already 

we see that interpretation is difficult.

The first four components comprise almost 85% of the total 

variation in the data.

The last few components often reveal those features of the 

data which are approximately constant over the whole data 

set, i.e., in this case, over four months of spring. In 

our example, the last component represents the difference 

between the two temperature measures, while the next to 

last component highlights the consistency of dew point 

over time.

We have seen from more than one viewpoint that at least 

four variables may be deleted from the data set, and this
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we now do. We then make a further attempt at interpreting 

the resultant components.

Fig. 3.3.5 shows the correlation matrix for the seven 

remaining variables for the spring data at Dungeness.

Again, the correlation matrices for the autumn data, as 

well as the data from Portland, were very similar, and 

no significant differences were found among the 4 matrices.

Fig. 3.3.5 Correlation matrix for Dungeness, 1968 Spring

Wind direction 1.00
Wind speed .05 1.00
Low cloud .09 .27 1.00
Visibility .15 .23 -.22 1.00
Air temp. -.07 -.05 -.18 -.15 1.00
Humidity .00 .16 .44 -.46 .23 1.00
Pressure .01 -.35 -.28 -.01 .04 -.38

The eigen vectors of the correlation matrices are shown 

in Table 3.3.3. As for the dimensionality of the reduced 

data sets, we see that the first four variables that would 

be discarded by using the procedure outlined earlier are 

as follows:

Dungeness (spring):humidity , cloud, pressure , wind dir
IT (autumn): " ,

II
5

if
>

Il II

Portland (spring): " ,
IT

9 wind speed, temperature
IT (autumn)¡visibility, II

9 pressure ,
it

The consistency is by no means as striking as that seen in 

Table 3.3.1, and furthermore, if we were to reduce the 

dimensionality by discarding 3 or 4 more variables, then we 

would lose approximately 30% of the variation in the data.
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Table 3.3.3 E i g e n-vectors for reduced data sets. 1968.

Dunaeness. Spring

Principal component
Variable 1 2 3 4 5 6 7

Wind dir. .01 .29 .38 .84 .16 - .17 .09
Wind speĉ  ci .31 .49 -.37 - .01 -.51 - .50 .06
Low cloud .51 .13 .40 - .07 -.38 .58 .28
Visibility -.30 .59 -.29 .08 .01 .55 -.41
Air temp. .52 - .42 -.62 .49 -.19 .28 .27
Humidity .58 -.25 -.02 .15 .06 - .02 -.76
Pressure -.45 -.26 __.30 .12 -.73 - .05 -.30

Dunseness. Autumn

Principal component
Variable 1 2 3 4 5 6 7

Wind dir. -.12 -.35 -.26 .87 -.20 .07 -.03
Wind S p«? 4 - .26 .59 .06 .12 -.56 - .49 -.08
Low cloud .41 .30 -.46 - . 1 1 -.42 .57 -.17
Visibility -.61 .08 -.18 - .13 -.09 .36 . 6 6
Air temp. .03 .19 .80 .26 -.10 .49 -.00
Humidity .61 .14 .03 .19 .02 - .23 .72
Pressure .09 -.61 .22 - .31 -.67 - ,08 . 1 1

Portland. Soring

Principal component
Variable 1 2 3 4 5 6 7

Wind dir. -.03 .00 -.89 - .38 .02 .23 .07
Wind speed -.34 -.52 -.07 - .09 -.51 - .51 .28
Low cloud -.55 - .06 .25 - .20 -.34 .65 -.23
Visibility .27 -.51 -.08 .53 -.04 .50 .37
Air temp. -.11 .50 -.29 . 6 1 -.51 - .07 -.14
Humidity -.54 .32 .04 . 1 1 .35 .03 .69
Pressure .45 .34 .21 - -.49__ .13 .48

Portland . Autumn

Principal component
Variable 1 2 3 4 5 6 7

Wind dir. .09 .14 -.82 .51 . 10 - .02 .14
W i n Q S pap-4 -.24 -.52 .09 .47 -.54 - .33 -.18
Low cloud -.56 .16 -.17 - .05 -.29 .67 -.32
Visibility .16 -.61 -.31 - .29 .35 .07 -.55
Air temp. .41 .21 .37 .57 .16 .28 -.47
Humidity -.49 .38 .01 .02 .35 - .55 -.43
Pressure .43 .35 -.22 -,J2_ -.59 -^23_ -,37
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Deciding how many variables to retain for future use is 

clearly very subjective. We have reached a stage, however, 

where no obvious decisions can be made, and since it is 

preferable to include too much information than too little 

in future analyses, no further steps to discard data are 

taken.

Interpreting the principal components is again difficult.

From Table 3.3.3 we see that the first component is essentially 

a component featuring cloud cover and humidity. This may 

be indicative of rainfall, or at least whether the weather 

is overcast or clear.

The second component involves wind speed, and in three cases 

out of four, visibility. This component appears to be 

measuring weather on a synoptic scale, rather than just 

local conditions, since wind speed and visibility are 

important variables for identifying atmospheric conditions 

such as anticyclones and low pressure systems.

The third component shows, for the first time, a difference 

between the two sites. For Dungeness, the component involves 

temperature and cloud cover, while for Portland the component 

is dominated in both cases by wind direction.

Clearly there is much scope for further study of weather 

data in this manner, and no doubt meteorologists would be 

able to interpret the components in more detail than has 

been attempted here.
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We have so far been concerned with analysing relationships 

between the variables, but we now turn to the analysis of 

the autocorrelation structure of the data. We have, in 

effect, a multivariate time-series. One usually, however, 

performs principal components analysis on a set of 

independent observations on a multivariate random variable.

Our successive observations are obviously not independent 

as they are measured in a fixed order at daily intervals.

It is not clear from the literature whether principal 

components analysis is appropriate for this type of data, 

and this topic is considered further in section 3.3.5.

Firstly though, we examine each variable in turn for its 

autocorrelation properties.

3.3.4 Time series models and weather variables

By performing a time-series analysis of the weather 

variables, we hope to gain insight into the time dependency 

of variables which may later be linked with series of bird 

counts. Another objective of this study is to explore the 

effect of autocorrelation of individual variables on the 

principal components analysis described in the previous 

section.

The data used in this section are again the daily means of 

seven variables. Since we have so far seen little evidence 

of differences in weather data between Dungeness and 

Portland, and between spring and autumn, we restrict this 

analysis to one data set, that of the spring data for Dungeness.
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We use only the daily means of the weather variables for 

two reasons. Firstly, diurnal variation within each 

variable will increase the complexity of the models 

required, and secondly we eventually want to compare 

results with those obtained from modelling sequences of 

bird counts which are also recorded on a daily basis.

There is a vast amount of literature available on the 

subject of fitting ARIMA type models to observed data.

Box and Jenkins (1968, 1970) give an iterative procedure, 

but this depends upon a correct interpretation of sample 

autocorrelation and partial-autocorrelation functions, 

and involves a certain amount of subjectivity. Chatfield 

and Prothero (1973a) discuss the shortcomings of the 

Box-Jenkins procedure, and their paper together with 

subsequent replies by Box and Jenkins (1973) and Chatfield 

and Prothero (1973b) provide an extensive account of the 

problem of finding the optimum model for a given data set.

Ozaki (1977) gives a clear account of a relatively new 

approach to deciding on an optimal model, i.e. the MAICE 

procedure. This procedure was developed by Akaike (1972, 

1973), and as RkcuPC shows, gives similar results to the 

Box-Jenkins procedure. The advantage of this method is 

that it is objective, the criterion for choosing a 

particular model being based on Akaike's Information 

Criterion (AIC). Several models are fitted to the data, 

and the model giving the minimum value of AIC is chosen 

to be the optimum. The AIC takes into account the
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likelihood as well as the number of parameters in the 

model. One generally needs to estimate parameters more 

frequently than with Box-Jenkin's procedure, but with 

improved computing facilities, this is becoming less of 

a problem.

Very often one finds that models involving only one or 

two parameters are adequate to explain the data. For each 

variable studied here, we try five models for each level 

of differencing of the data. The models are denoted 

"(p,d,q)", where p represents the order of the 

autoregressive part of the model, d represents the level 

of differencing and q the order of the moving average part 

of the model. These models are described in most text books 

on time series analysis, see for example, Box and Jenkins 

(1970). In most practical situations one generally finds 

that d rarely needs to be greater than 1, and so for each 

variable we shall only look at 10 2 parameter models:

(1,0 ,0), (0 ,0 ,1), (1,0 ,1), (2,0 ,0), (0 ,0 ,2)

(1,1,0), (0 ,1,1), (1,1,1), (2,1,0), (0 ,1,2)

These models are usually represented algebraically by the 

equation: d>p(B)VXt = 4>q(B)at, where

B = backward difference operator 

V = forward difference operator 

Xt = observation

at = random component (independently distributed Normal r.v's) 

and d>p and are polynomials of order p and q respectively.
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Six of the seven variables were able to be explained by a 

model of this type, but atmospheric pressure requires the 

more complex Box-Jenkins seasonal model.

Even when using the MAICE procedure, it is wise to inspect 

the results for each model and if, say, two models give 

close values of the AIC, then one can opt for the model 

with fewer parameters in the interests of simplicity. 

Furthermore, for each model, we perform the 'portmanteau' 

test of the residual autocorrelation function in order to 

assess whether or not the 'best' model does give a good 

fit to the data. The statistic calculated here is n^r,;2 

where rf is the 1 autocorrelation coefficient of the 

residuals, k is the number of lags used (usually about 20) 

and n is the number of observations. This statistic 

follows a chi-squared distribution with k-p-q degrees of 

freedom under the null hypothesis of random residuals.

We now consider each of the several variables in turn.

1. Wind direction

We begin each analysis by inspecting the sample 

autocorrelation coefficients, in the form of a 

correlogram. Fig. 3.3.6 shows the correlogram for 

the wind direction data, and an unusual pattern is 

seen where the a.c.f. attains a low value (only just 

significant at 5% level) at lag 2, but then increases 

again at lags 3 and 4 before eventually dying out.
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It is not clear from Fig. 3.3.6 whether trend or cyclic 

variation is present or not, and so we investigate all 

10 models. Table 3.3.4 lists the AIC values with the 

portmanteau test statistics.

Table 3.3.4-

Model AIC n 2 r2 dF

1,1,0 -202.7 43.9 23
2,1,0 -218.5 25.0 22
0,1,1 -223.4 29.8 23
0,1,2 -229.4 22.6 22
1,1,1 -227.6 24.8 22
1,0,0 -232.5 23.9 24
2,0,0 -230.5 24.0 23
0,0,1 -229.3 30.5 24
0,0,2 -229.0 26.5 23
1,0,1 -230.7 27.5 23

The model giving the lowest AIC value is (1,0,0) and 

the residual a.c.f. test is non-significant at the 5% 

level. We conclude that a first order auto­

regressive model is suitable for these data, where the 

residuals are given by Zt = Xt - *12 Xt_^ - *12. The 

correlogram for the residuals is shown in Fig. 3.3.7, 

and the portmanteau test suggests, no evidence is seen 

to suggest that the residuals are other than white noise.

2. Wind speed

The correlogram for wind speed shows high coefficients 

at lags 1 and 2, but at higher lags all coefficients 

are very close to zero. Again, all 10 models were 

tried, and again the lowest AIC value was achieved by 

model (1,0,0). The test statistic for the residual
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a.c.f. was 9.59 on 23 degrees of freedom, suggesting a 

good fit. The residuals are given by 

Zt = Xt - 0.61 Xt_1 - 4.77.

3. Low cloud

Fig. 3.3.8 shows the correlogram for the observations, 

and one can see a suggestion of cyclic variation, with 

a period of about 10 days. One must be careful in 

interpreting such diagrams though, since even by pure 

chance, one would expect approximately one in twenty 

coefficients to appear significant at the 5% level 

even when no such pattern existed.

Table 3.3.5 shows the AIC values, and the portmanteau 

test statistics for the 10 models. Model (0,0,2) gives 

both the minimum AIC and the minimum residual test 

statistic, although the statistic is just significant 

at the 5% level (not at the 2|% level).

If we were to fit a more complicated model, i.e. one 

with seasonal components, a better fit may be obtained, 

although more parameters would be involved. The 

residuals from this second order moving average model 

are given by Zt — Xt - 0.31 Zt_^ -0.3 Zt _2 - 3.75. 4

4. Visibility

The correlogram of the data looks much like that for 

wind speed, i.e. dying out very quickly. However the 

optimum model appears to be a first order mixed model,
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Fig. 3,3.8 Correloeram for low cloud data
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i.e. (1,1,1). The residual test statistic is non­

significant, and the residuals are given by 

Zt = Xt - 1.56 Xt_1 + -56 Xt_2 + -99 Zt_1<

Table 3.3.S Low cloud data

Model AIC n l r a dF

(1,1,0) 214.4 39.0 23
(2,1,0) 215.6 42.1 22
(0,1,1) 201.3 43.3 23
(0,1,2) 199.7 34.6 22
(1,1,1) 198.5 38.4 22
(1,0,0) 198.1 47.8 23
(2,0,0) 197.4 37.3 22
(0,0,1) 203.4 57.1 23
(0,0,2) 196.6 34.7 22
(1,0,1) 198.2 41.4 22

5. Air temperature

The correlogram of the data (Fig. 3.3.9) shows a 

typical data set that is dominated by trend, just as 

we might expect for such a variable. Even at lag 20 

the autocorrelation coefficient is highly significant. 

Fig. 3.3.10 shows the correlogram for the differenced 

data set, and clearly the trend has been removed. Of 

the five models fitted to the data, the second order 

autoregressive model gave the lowest AIC value and also 

the lowest residual test statistic. The residuals are 

given by Zfc = Xfc - *87 Xt_1 + -14 Xt_2 - *27 Xt_3 .

6. Humidity

Fig. 3.3.11(a) and (b) show the correlograms for the 

raw data and differenced data. The cyclic variation 

appears to be removed by differencing, and of the five

143



la
g 

(d
ay

s)
 

la
S 

(d
ay

s)

E i f U .. 3 1 3.1 0— Cprrel o R r a m  for air t emperature - d ifferenced data

sample auto-correlation coefficient

- Î 0 + 1

0 1---
1 *- +
2 * -- +
3 + —  *
4 *-- +
5 *-+
6 +--
7 *— +
3 * +
9 + — *

3 0 *- +
11 *-+
12 + ~*
13 *T
3.4 * +
15 + -*
16 *-- +
3.7 *- +
3 8 -f---
3 9 *
20 + *

a

Eig. ^.^.11 Humidity correloerams 

(a) Raw data

sample auto-correlation coefficient
0 + 3.

0
1

3
4trvJ
6
7
3
Q

10 
11 
12 
3 3
14
15

13
19
20

*-

* —  
£ “ 
>'

+---

+------
+~ $
+ #
>!<

* +

+ *
+ -*
+ -S:

* 1
*- +

*-- +
------+
------.(

»r

— i 
*-+

•*

144



la
g 

(d
ay
s)

(b) Differenced data

sample auto-correlation coefficient
- 1

0 4
<

0

1 '»• < ------+
♦

*  +

3 «
<

A * --------+

n:*
J

♦
4 ■1

6 4
t

7
fi

♦
Î
4

* - ■  +
•is

O

?
♦
4

ft-

jV

10 «
< + - - *

j 1 ■4
4 + - *

12 4
< * +

13 4 $

14 4
♦ + - *

15 ♦
& - +

16 4
4 * +

1 7
*
< i?: ~  +

18 4
< *

1? 4
4 * - -  +

20 4
t *

145



models fitted to the data, the mixed model (1 ,1 ,1 )

was found to be the best in terms of fit. The residuals

are given by Zt = 1.61 Xt_^ + *61 Xt _2 + *98 Zt_^.

7. Atmospheric pressure

Fig. 3.3.12 shows the correlogram for the pressure data, 

and clearly one can see that cyclic variation is present. 

Unlike the case of humidity, differencing the data doesn't 

remove this variation as Fig. 3.3.13 shows. Denoting 

Xt - Xt_i by VXt, we next examine the effect of taking 

the transformation VV24 Xt, since the period of the 

cycle appears to be 14 days. As Fig. 3.3.14 shows, the 

series Wt = still shows evidence of a cycle of

period 14 days. In light of this we shall fit a 

seasonal model to the data. The model will be of the 

form:

0p (B) 4>p (B11+) Wt = 0q(B) 0Q(Bllt)at

Where the a^ are the residuals, and the polynomials

are the standard form for Box-Jenkins models. It is

straightforward to fit models of this type using the

Minitab statistical package (Ryan, et al 1981), and 16 models

were examined (p,q = 0 or 1, P,Q = 0 or 1). The model

corresponding to the minimum AIC value was found to be

a seasonal ARIMA (1,1) model, with p = q = 0 ,  P = Q = 1.

The parameters were estimated to be <i> = - *99 and

0 = - *81. This model can thus be written:

(1 -  <t>Bll+) wfc = ( 1 - 0  Bm) at

or 1*99W - *99W .. = l-81a„ - *81a ,t t-lH t t-l1* »
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The above model appears to give a good fit to the data 

since the chi-square statistic for the residual auto­

correlation coefficients is not significant at the 5% 

level (the statistic is 24.88, on 18 degrees of freedom). 

Fig. 3.3.15 shows how the expected values of the time 

series correspond with the observations. There is 

clearly a close correspondence between the two series, 

save for a small lag between the series, which is to 

he expected due to the autoregressive component of the 

model.

We have seen how simple time series models of the Box- 

Jenkins type can be fitted to series of daily means of 

various weather variables. For all but one variable, 

the next observation can be predicted by reference to
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Fig. 1^3,14 Correlogram for Pressure ( v X+. )
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the observation or residual (or both) of up to three 

days before. For pressure, one needs to refer further 

into the past, in order to account for the seasonal 

variation.

Since it is so straightforward to calculate the 

residuals, we can readily investigate the effect on 

the principal components analysis of section 3.3.3, of 

time dependency. By definition, the residuals calculated 

in this section represent random fluctuations of the 

weather variables about some mean value. It is likely 

that such fluctuations represent the conditions that 

influence birds and their occurrence at observatories, 

and thus a further examination of the data in this 

manner may prove useful.

3.3.5 Principal component analysis of detrended weather data

When calculating a sample correlation coefficient between 

two series of observations, serial correlation within the 

series can have the effect of inflating the correlation 

coefficient. Long term trend in the series, such as that 

observed in the air temperature data, itself causes serial 

correlation, and may thus distort the correlation matrix 

of the seven weather variables studied in previous sections.

In order to examine the effect of autocorrelation on the 

correlation structure of a set of weather variables, we 

can fit time series models and examine the residuals. In 

this section we perform a principal components analysis on
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the residuals obtained from fitting the models described 

in the previous section. Clearly, physical interpretation 

of these series of observations is difficult, although 

broadly speaking, each residual is simply the observed 

value with some adjustment for recent observations.

Fig. 3.3.16 gives the correlation matrix for the seven sets

of residuals, and by testing this against the correlation 

matrix of the data (Fig. 3.3.5), one finds that the two

matrices are not significantly different.

Fig. 3.3.16 Correlation matrix of residuals

Wind direction 
Wind speed 
Low cloud 
Visibility 
Air temp. 
Humidity 
Pressure

1.00
.07 1.00 
.14 .37 1.00
.15 .03 -.22 1.00

-.07 -.08 -.20 -.07 1.00
-.01 .15 .39 -.45 .28 1.00
.07 -.20 -.20 .19 -.06 -.14 1.00

This suggests that the observed correlations between the

variables can be treated as though they are free of effects 

of autocorrelation. We would expect that the principal 

components evaluated from the residuals would be similar

to those from the data, since the components are simply the 

eigen-values of the correlation matrices. The 'residual' 

components are shown in pable 3.3.5, together with the 

percentage variation accounted for by each component.

By comparing these components with those of Table 3.3.3, we 

can see that the eigen vectors are mostly unchanged.

Before leaving this topic, we examine the minimum spanning 

tree for the set of residuals. Fig. 3.3.17 shows a section
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Table 3.3.5 Principal components of residuals

Weather variable
Principal Component

Wind d i r e c t i o n - . 0 3  - .62

OOo .68 .34 .14 .07

Wind speed - . 3 3  - .24 .58 - .21 - .43 .38 .35

Low C l oud - . 5 4  - .26 .09 - .02 - .14 •- . 76 - . 2 0
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OOini
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of the tree, and unlike the tree shown in Fig. 3.3.4, we 

see that the observations that are adjacent to one another 

are not necessarily close together in time. This feature 

emphasises the random nature of the residuals, and suggests 

once more that the simple time series models described in 

the previous section are suitable for representing weather 

variables. Furthermore, it seems that, from the principal 

components themselves, there is little difference in 

character between the original data components and those 

from the residuals, suggesting that correlation structures 

are similar. This is important when we come to consider 

multiple regression models and linear discriminant analyses 

that are reported in later chapters. It appears that we 

may go ahead and perform such analyses using the weather 

data in their original form, and not worry too much about 

autocorrelation.
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CHAPTER 4

RELATING MIGRATION DATA TO WEATHER (I) REGRESSION

4.1 Introduction

In this chapter the use of multiple regression as a means of 

including weather information in the construction of migration 

indices is considered. Hussell (1981) adopted this approach 

where the set of explanatory variables included a number of 

weather variables and a set of dummy variables which related to 

year effects. His study is reviewed in section 4.5.

Regression studies of this sort have been undertaken in the past, 

but all of these have used radar data rather than counts of 

grounded migrants, and most of these studies were undertaken 

outside Great Britain.

The work of this chapter represents the first attempt to examine 

the connection between weather and British observatories data in 

an objective manner.

There is little doubt among ornithologists that the occurrence of 

migrants at observatories is related to weather conditions. 

Ornithologists are familiar with the basic rules, for example, 

wet and cloudy nights generally produce large numbers of grounded 

migrants on the following day, whereas clear calm nights enable 

the migrants to pass overhead.

The weather data used in this chapter consist of daily means of seven 

variables - see section 3.3. We also consider the same variables,
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lagged by one day, giving a total of fourteen variables. The 

use of lagged variables is sensible for two reasons. First, the 

weather that determines whether or not a bird will land at an 

observatory may be the weather experienced prior to arrival.

This point is illustrated by the following examples of situations 

which may occur:

(i) In spring, bad weather over France may prevent birds from 

setting off, thus leading to an absence of birds at 

British south coast observatories irrespective of the 

weather conditions when the birds would have arrived.

(ii) If birds set off from France in spring, and fly sufficiently 

high, they may fly over any bad weather when they arrive

at the south coast of Britain.

(iii) In autumn, bad weather over Britain may prevent birds from 

leaving their breeding grounds until conditions improve.

The occurrence of birds at observatories will therefore

be related to weather at the time of departure as well as 

the time of arrival at the south coast.

In the situations described above, we would ideally like weather 

data from sites other than observatories as well as at observatories 

themselves. To meet this requirement we make the assumption that, 

to a greater or lesser extent, the weather data obtained from 

observatories are indicative of the general synoptic situation.

For variables such as temperature and pressure, this will be the 

case. For variables such as wind direction and cloud cover, local 

variations are bound to occur, particularly as both Dungeness and 

Portland observatories are situated on peninsulas which are distinct 

from the surrounding coastline.
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The second justification for using lagged variables is that we 

allow for changes in recorded values, i.e. a value for pressure 

may not be important but a drop in pressure from one day to the 

next may be.

A closely related and widely published area of research is that 

of radar studies and these have been briefly described in section 

2.6. Radar studies involve very different problems from those 

that face observatory workers. At observatories, birds are 

recorded on the ground whereas radar records birds in flight.

The influential weather variables, if any, will clearly be 

different. Further, it is difficult to distinguish between species 

by using radar echoes which means that inferences can only be made 

on groups of species.

Although there is little scope for comparing radar results with 

the results presented in this chapter, it is worth noting that 

the most popular statistical technique has been multiple regression 

analysis. Examples include Lack (1960, 1963a, b), Nisbet and 

Drury (1968), Able (1973), Alerstam et al (1973) and Richardson 

(1974).

The main aims of this chapter are to determine which weather 

variables, if any, are related to counts of grounded migrants 

and to assess the validity of regression models in this context.

4.2 Preparation of the data

4.2.1 Introduction

The data used for the regression analyses of this chapter
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consist of bird counts, used as the response variable, and 

weather data, used as explanatory variables. The weather 

variables which are used were selected on the basis of 

information found in chapter 3.

The time period covered by this study and the observatories 

considered were determined by the availability of weather 

data: at Dungeness from 1961 to 1972 and 1967 to 1970 for 

spring and autumn respectively, and from 1968 to 1970 at 

Portland for both spring and autumn.

4.2.2 The bird data

The response variable for the regression analyses is the 

number of grounded migrants of a particular species seen 

on the recording area in one day.

We restrict our attention to four species: Redstart,

Sedge Warbler, Whitethroat and Willow Warbler. These were 

selected since they are among the commonest of migrants 

occurring at both Dungeness and Portland.

In most of the regression studies that have previously 

appeared in the literature, the response variable has been 

transformed, usually by a logarithmic transformation. This 

is done as an attempt to make the distribution of counts 

less skewed.

Authors took account of seasonal variation in counts by 

including 'date' variables in the explanatory variable set
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which enables polynomials to be fitted to the counts.

In this chapter we take a different, more straightforward 

approach which involves removing the trend from the counts 

over each season and then using detrended counts as the 

response variable. Although not entirely objective, this 

does overcome the problem of deciding what degree of 

polynomial to use - we are still left with the problem of 

how to detrend the counts. One advantage of this approach 

is that we are more likely to obtain a set of responses that 

are normally distributed since a high proportion of a 

typical season's counts are very low, due mainly to the two 

'ends' of the season. Further, the distribution of raw 

counts is truncated at the lower end of the scale.

By detrending the counts we hope to meet the assumptions 

required for a multiple regression analysis. It is doubtful 

whether such assumptions are met in the published examples 

of work in this area, a point also made by Richardson (1974) 

and often one finds little or no evidence of the assumptions 

having been checked.

4.2.3 Removing trend from daily counts

As many of the examples of chapter 3 have shown, the number 

of birds recorded each day varies according to the time of 

season. Since we are looking for the influence of weather 

on a day-to-day basis, we must first remove the underlying 

trend from the data. There are two approaches that we 

could take here:
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(i) We could fit a time-series model, for example a 

Box-Jenkins model, to each series of counts and 

base the regression analysis on the residuals. A 

drawback to this method is that we often have 

rather short series, sometimes only fifteen days.

(ii) A simple approach related to (i) is to use the 

deviations of the observed counts from a moving 

average. This approach is easily applied and with 

a suitably chosen moving average, the pattern of 

each individual season should be removed. Although 

an element of subjectivity is introduced here, in 

section 3.2.4 we found that a seven-day moving 

average produced a curve that broadly summarises 

the pattern of migration and we shall use such a 

moving average here.

A useful feature of (ii) is that all series of counts can 

be treated in the same manner. In other words, a series 

that initially shows no trend may be 'detrended' without 

distorting this fact - we will still pick up day-to-day 

variations in migration.

This method is also independent of the timing of the migration 

season as a whole, which may vary from year to year - 

according to climatic factors in the birds' wintering areas 

for example. Fig. 4.2.1 shows an example of the detrending 

process. The original counts and the moving average curve 

are shown in Fig. 4.2.1(a) and the deviations from this 

curve are shown in Fig. 4.2.1(b) - note the difference in
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Fig. 4.2.1 Example of detrending a series of daily counts 
Portland ( 1970 ) Whitethroat counts

(a) Daily counts and Moving Average

(b) Detrended data
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vertical scale. It is deviations such as these which

we use in the regression analyses. Even with the 

detrending method described above, some element of seasonality 

is still present in the deviations, however we have been 

able to highlight day-to-day changes from the seasonal norm 

of counts in both positive and negative directions.

4.2.4 The weather data

We use seven weather variables as the basic set of 

explanatory variables. These are described in detail in 

section 3.3, but are summarised again below.

1. Wind direction.

2. Wind speed

3. Low cloud

4. Visibility

5. Air temperature

6. Humidity

7. Atmospheric pressure

Our observations on the above variables are daily means, 

which are derived from 3-hourly records.

These variables were selected from a larger set on the 

basis of their correlation structure (see section 3.3). 

The seven variables tend to exhibit low correlations 

between one another which is a desirable property when 

performing multiple regression. If two or more variables 

are highly correlated, numerical problems may arise when
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the covariance matrix is inverted.

Also, if we use a set of independent variables, we minimise 

the amount of work involved, i.e. we do not use two 

variables that are highly correlated where one will do 

satisfactorily.

4.3 The regression procedure

4.3.1 Methodology

In the following sections of this chapter we report the 

results of various attempts at fitting linear regression 

models to the data. We briefly describe here the approach 

taken which has led to the later results.

The preparation of the data for analysis has been described 

in section 4.2. Initially we consider the model containing 

the set of fourteen variables. If a suitable fit is 

obtained then variable selection will be of interest.

If the full model shows a poor fit then the results are 

likely to yield information as to why this is so. For 

example, an examination of residuals may point to a 

transformation being necessary. One may also wish to try 

including interactions of the explanatory variables or 

power transformations, for example; an explanatory variable 

may need to be raised to some power before contributing 

significantly to the regression.
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If one arrives at a model which appears to fit the data, 

one must check the assumptions on which the model is based.

In the case of linear regression we need to check for 

normality of the residuals and responses, stability of the 

variance and also for the presence of outliers.

The above points are returned to in the following sections 

where the results are presented. First, however, we briefly 

outline the computer package used.

4.3.2 The computer package used

The BMDP library of programs (Dixon, 1981) was used to 

obtain the results of this chapter and also the next 

chapter where discriminant analysis is studied. Several 

factors led to this choice, not least the local advantages : 

one can very easily run BMDP programs on line at the 

University of Kent and where such runs take a large amount 

of central-processor time, the work can be done in the 

'batch' system. The package is not interactive, but the 

EMAS operating system at Kent enables alterations to BMDP 

commands files to be made with the minimum of work. Further, 

unlike the package MINITAB, large data sets can be analysed 

by BMDP.

As regards the facilities within the regression programs,

BMDP produces a comprehensive array of statistics, tests 

and plots from a very limited and simple set of commands.

Some of these statistics are referred to in the following 

sections.
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The full regression models were fitted using the program 

P9R, which also considers, if required, all possible 

subsets of the explanatory variables. For variable 

selection, the program P1R is available with a number of 

possible stepwise strategies.

4.4 Results for British observatories' data

4.4.1 Regression on all weather variables

Throughout this section we consider sixteen data sets - 

four species recorded at two observatories and over two 

seasons (spring and autumn).

Goodness of fit is assessed by using the quantity R2 which 

can be viewed either as the proportion of the total 

variation accounted for by the model fitted, or the square 

of multiple correlation coefficient of the explanatory 

variables with the response variable.

The ratio of the regression mean square to the error mean 

square is also useful since a significant value indicates 

that the data suggest a linear relationship. However, in 

our situation, where we have a large number of observations 

for each analysis, we may well find a significant ratio 

associated with a low value of R2. This is not a 

contradiction, but merely suggests that some other, more 

complicated, model is necessary to explain the data.

Table 4.4.1.1 shows the values of R2 and F (ratio of 

regression to error mean square) for the sixteen data sets,
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using the full set of 14 weather variables. Recall that 

the response variable is the deviation of daily count from 

a moving average.

Table 4.4.1.1 Regression on 14 variables

n

SPRING 
R2 F PF n

AUTUMN 
R2 F PF

Sedge W (D) 462 .05 1.74 .05 325 .05 1.26 .24
Willow W (D) 613 .05 2.41 .00 345 .06 1.39 .15
Whitethroat (D) 526 .05 1.87 .03 329 . 06 1.55 .09
Redstart (D) 498 .07 2.59 .00 343 .05 1.23 .25
Sedge W (P ) 123 .13 1.12 .35 171 .10 1.24 .25
Willow W (P ) 131 .07 .63 .83 169 .12 1.50 .12
Whitethroat (P ) 132 .11 1.08 .38 197 .10 1.45 .13
Redstart (P ) 126 .10 .89 .58 222 .05 .82 .65

n = no. of observations D = Dungeness
Pp = significance of F P = Portland

We see from Table 4.4.1.1 that, apart from the Dungeness 

spring data, there is no evidence that a linear function 

of weather variables is able to explain the response 

variable. The Dungeness spring data are based on very high 

numbers of observations and so one might expect a significant 

F-ratio. In all 16 cases, the value of R2 is extremely low 

which suggests that very little of the total variation is 

being accounted for by the linear model.

Clearly there is little point in looking for subsets of 

variables with practical interpretations at this stage. 

Instead, we consider alternative models.

An examination of the coefficients of skewness and kurtosis
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of the 14 explanatory variables and the response variable 

gives strong evidence to suggest that the response 

variable requires transformation, while the other variables 

appear to be distributed normally. This is the case in 

all 16 analyses, and the noticeable feature is that the 

response variable has a highly skew distribution (to the 

right), and also tails which are much longer than the 

normal distribution. This is despite our attempt to 

overcome non-normality of the counts by detrending them.

A brief examination of the residuals also supports the 

case for a transformation. The frequency distribution of 

the residuals exhibits long tails in every case, and 

normal probability plots of the residuals suggest that 

apart from the extreme values, the residuals are more or 

less normally distributed.

Unfortunately it is doubtful that transforming the response 

variable alone will have such a marked effect on the 

regression that R2 rises to an acceptable level. We might 

also try, at this stage, interactions of weather variables 

and weather variables raised to the powers of 2 and 3 and 

so on. This is rather difficult with 14 explanatory 

variables since there are 91 two-variable interactions alone. 

We shall thus consider only interactions of two variables 

with zero lag, i.e. 2 l pairs. Further, we shall only 

consider the weather variables raised to the powers of 2 

and 3, and again with lag zero. Thus we now have a set of 

49 explanatory variables.
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The transformation is chosen by the Box-Cox method (Box 

and Cox, 1964). This approach involves fitting the 

regression model using a range of transformations of the 

form:

ya) = (yA - 1) / A X ^  0

log y X =  0

and choosing A such that the likelihood of the data is 

maximised. For a given A, this maximum likelihood is 

given by:

Lmax(A) = -n log Smin + (A-l)
n

^ ! o g  yi ,

where Smin is the minimised sum of squares. One can plot 

values of Lmax(A) against A and choose A such that Lmax 

is a maximum. Fig. 4.4.1.1 shows an example of such a plot 

and the appropriate value of A to use is approximately 0.5. 

This value may not be the optimum value, but there is 

clearly little change in Lmax over a range of values of A 

between 0 and 1.

As a guide to how useful the Box-Cox transformation is in 

this context, Table 4.4.1.2 gives the coefficients of 

skewness and kurtosis for the response variable in all 

sixteen cases, both before and after transformation.

The estimated standard errors of these sample coefficients
l i

are given by (6/n)2 and (24/n)2 for skewness and kurtosis 

respectively. All the coefficients listed in Table 4.4.1.2 

are greater than three standard deviations from the mean 

(zero), and thus this variable appears to be highly skew
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Fig. 4.4.1.1 Choosing a transformation : an example using Sedge 

Warbler data from Dungeness ( autumn counts ).

Lmax(X)
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Table 4.4.1.2 Coefficients of skewness (kQ and kurtosis (k2) for 
the response variable. Coefficients in parentheses
are for the untransformed data

SPRING AUTUMN
Data set n kl k2 n ki k2

Sedge W. (D) 462 1.2 (2.7) 7.2 (.19.5) 325 1.1 (2.4) 5.5 (13.4)
Willow W. (D) 613 3.2 (7.2) 22.7 (92.9) 345 2.0 (3.1) 8.9 (18.3)
Whitethroat (D) 526 2.9 (4.2) 14.4 (35.1) 329 3.7 (6.8) 30.8 (72.3)
Redstart (D) 498 2.1 (4.2) 18.9 (35.4) 343 1.1 (3.0) 15.4 (20.5)
Sedge W. (P) 123 3.0 (7.5) 30.0 (71.5) 171 1.4 (3.9) 9.4 (21.3)
Willow W. (P) 131 3.5 (5.0) 21.1 (33.0) 169 2.1 (3.4) 9.3 (21.7)
Whitethroat (P) 132 9.4 (8.6) 96.2 (90.5) 197 4.2 (6.6) 33.7 (69.0)
Redstart (P) 126 2.2 (3.4) 14.0 (21.7) 722 0.5 (1.4) 6.5 (8.5)

and kurtose, even after transformation.

It seems that transforming the response variable is not 

sufficient to produce a set of normally distributed 

responses, and so one of the assumptions of the analysis 

is not met. There is little that one can do in this event 

apart from proceeding with a cautionary analysis or 

choosing some alternative method of relating migration 

counts with weather data. We shall take the former course 

of action first of all, and study a different approach to 

the problem in the following chapter. The next stage in 

the regression analysis is to consider the model which 

includes interactions of weather variables and weather 

variables raised to the powers 2 and 3. If it is not 

possible to improve upon the results shown in Table 4.4.1.1, 

then we must accept that linear regression analysis is not 

a suitable tool for dealing with the problem at hand.
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Table 4.4.2.1 Regression on polynomials of weather variables 
and two-variable interactions. Figures in 
parenthesis are for regression on basic set of 
14 variables

SPRING AUTUMN
R2 F P f R2 F ?F

Sedge W. (D) .06 (.05) 1 . 2 2 .23 .07 (.05) 1.31 .18
Willow W. (D) .06 (.05) 2.82 .00 .08 (.06) 1.50 .08
Whitethroat CD) .05 (.05) 1.27 .20 .08 (.06) 1.59 .07
Redstart CD) .08 (.07) 1.79 .01 .07 (.05) 1.32 .17

Sedge W. (P) .13 (.13) 0 . 6 8 .83 .14 (.10) 1.36 .16
Willow W. CP) .10 (.07) 0.57 .93 .12 (.12) 1.16 .30
Whitethroat (P) .11 (.11) 0.54 .95 .14 (.10) 1.55 .08
Redstart (P) .17 (.10) 1 . 0 1 .46 .10 (.05) 1.46 .12
Pp = significance level of Fr e q*

The results for the regression analyses are shown in 

Table 4.4.2.1 and apart from a very small increase in R2 

for most analyses, the picture remains one of total 

inadequacy of the regression model in this context.

Although other authors have, in the past, presented results 

from successful regression analyses of bird data and 

weather data, it is clear that it is not possible to do the 

same using British observatories' daily counts. This does 

not necessarily imply that weather has no effect on daily 

counts at observatories or even that the two types of data 

cannot be related by some simple model. In the next chapter 

we see how linear discriminant analysis can usefully be 

employed in this context.
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4.5 A review of Hussell's method

4.5.1 Description of the method

Hussell (1981) describes an attempt at formulating migration 

indices from counts of migrants at Long Point Bird 

Observatory, Ontario. He used data from a period of 18 

years from which he constructed annual indices and attempted 

to validate them by comparisons with indices from Breeding 

Bird Surveys. An earlier report by Hussell and Risley (1976), 

described briefly in section 2.4, suggested that the counts 

of migrants alone were not sufficient to reproduce 

population trends as reflected by breeding surveys. They 

found that, by incorporating weather information into the 

analysis, more encouraging results were obtainable.

Hussell (1981) describes in detail how this was done, and 

an outline of the method is given here. We are primarily 

concerned with the methodology rather than the ornithological 

details such as which species are studied for example, but 

these are to be found in Hussell's paper.

Hussell's method involves regressing the bird counts onto 

a number of explanatory variables which include dummy 

variables for year effects. It is the coefficients of 

these dummy variables that are used to form annual migration 

indices.

The response variable is based on the daily count of 

grounded migrants for a given species. Each count is 

increased by 1, and then transformed by a logarithmic 

transformation. Hussell chose this transformation for the
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following reasons:

(i) The distributions of counts from Long Point are 

skewed to the right and that the variances increase 

with the means. This is typical of data of this 

type, and is clearly seen in the British data.

It is doubtful, however, that a simple logarithmic 

transformation is able to produce a set of normally 

distributed counts - certainly, for the British data 

at least, it was not able to do so. Unfortunately, 

no mention of the usefulness of this transformation, 

in this particular situation, is reported by Hussell.

(ii) Hussell assumes that the year effects are multiplicative 

in nature, as regards the migration counts. In other 

words, he is assuming that if the population doubles 

from one year to the next, then each daily count in

the second year will, on average, be twice that in 

the first year. An implicit assumption that is made 

here is that the overall pattern of migration remains 

the same from year to year. We have already seen 

that this is not the case for British data.

If, however, year effects were in fact multiplicative, 

then a logarithmic transformation would convert these 

effects to additive ones.

Without re-analysing the Canadian data it is difficult to 

assess the usefulness of this transformation, but in the
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next section we shall see how it applies to the British 

data.

The year effects are included in the model by means of 

dummy variables which take the values 1 or 0. For a given 

observation or a given row of the design matrix, the value 

of the dummy variable corresponding to the year in which 

the observation was made is unity, and all other dummy 

variables have the value zero. We see below how these 

variables are used to construct migration indices.

The within-season variation of migration is built into the 

model by means of a set of variables based on the date. The 

days of each season are numbered sequentially to form the 

basic date variable, Vj say. Also included are variables 

such as Vi2, Vp3,....etc. Variables up to and including 

the tenth power of V]_ were used by Hussell, so that an 

extremely complex polynomial is being fitted to each 

season's counts.

Hussell used five weather variables : temperature, cloud 

cover, visibility, wind direction and wind speed. The size 

of the problem with which Hussell dealt was clearly very 

large. Since he used bird counts from two areas of Long 

Point, and therefore considered site-weather interactions 

and site-date interactions, his set of explanatory variables 

numbered 61. The sample sizes for the six species that he 

considered ranged from 828 to 971.
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Hussell estimated the parameters of the model by using 

the BMDP2R program which performs a stepwise regression 

procedure. The year variables were forced into the 

regression throughout.

Broadly speaking, Hussell found that the model gave a 

suitable fit to the data for the six species that he considered. 

Values of R2 ranged from 0.27 to 0.63, but with so many 

variables it is difficult to interpret the final regression 

equations.

Examination of residual plots showed that the distribution 

of residuals became increasingly distorted at predicted 

values of less than 1.5. The observed, triangular pattern 

of residuals when plotted against predicted values suggests 

that the assumption of constant variance over the residuals 

is not met. Often one finds that a further transformation 

is able to stabilize this variance. Residual plots of this 

type often show diagonal hands of points (see Hussell,

1981, Fig. 1), which are attributable to the discrete nature 

of the bird counts.

A problem with linear regression in this type of situation 

is that sometimes the predicted values are negative. This 

is obviously meaningless in terms of the nature of the 

data, i.e. non-negative counts, but often happens with 

birds that occur only in small numbers. In order to over­

come this problem, Hussell repeated the regression analyses 

after removing observations with negative predicted values.
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This, as Hussell admits, does not completely overcome the 

problem as the revised regression equations may still give 

rise to negative predicted values, although the situation 

is somewhat improved.

So far in this chapter, we have seen that, for British 

observatories' data at least, linear regression analysis 

is not suitable for relating weather and migration data.

From the evidence presented in Hussell (1981), it is not 

convincing that regression performs any better on the Long 

Point data, particularly as regards the validity of the 

assumptions made in performing regression. It is difficult 

to say more about Hussell's work here, since only a 

limited amount of information is provided in his paper.

Hussell's method of constructing migration indices is examined 

in the next section.

4.5.2 Migration Indices

Hussell (1981) used as his migration indices, the mean 

numbers of birds seen per day in each year. In terms of 

the regression model that he fitted, the mean count in year
A

j, Yj say, is given by,

Y ■ -= A • + 2 tm dB + Z bw Ww
J J m  w

where Aj is the coefficient for the dummy variable relating 

to year j, the second term of the equation is the sum of 

the means of all date variables multiplied by their respective 

regression coefficients, and the final term is the sum of 

weather variable means multiplied by their regression
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coefficients. The means for the last two terms of the

equation are taken over all days in all years.

In order to present the indices in terms of bird numbers, 

the inverse of the transformation of the response variable 

is used, producing the index Mj for year j
A
Y •

Mj = e J -  1

In order to avoid overparameterisation of the model, one 

year needs to be designated the reference year, and its 

dummy variable omitted. If all dummy variables were included, 

then the least squares estimates would be unobtainable 

since a singular matrix would need to be inverted. For 

testing the difference between any year's index and the index 

of the reference year, the F-to-remove value of the dummy 

variable for the year in question is compared with Fl,n-v-l 

where n is the number of observations and v the number of 

explanatory variables. For other comparisons of indices, 

different reference years need to be used.

4.5.3 Results using British data

The models considered in this section are extensions of 

those considered in section 4.4.1. Thus our basic set of 

14 weather variables (7 at lags 0 and 1) are included, but 

now we introduce date variables and year variables, as 

described in section 4.5.1. Also, the response variable 

consists of log-transformed counts, rather than deviations 

from a moving average. The effect of including year 

variables, and of accounting for seasonal variation in
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migration by means of polynomials can be measured by 

comparing the observed values of R2 with those of 

Table 4.4.1.1, which, for convenience, are shown in 

Table 4.5.3.1 in parentheses.

Table 4.5.3.1 Regression on 14 weather variables with 
date and year variables included.
The response variable is log (observed 
count + 1)

SPRING AUTUMN
R2 R2

Sedge W. (D) .34 (.05) .38 (.05)
Willow W. (D) .28 (.05) .56 (.06)
Whitethroat CD) .36 (.05) .67 (.06)
Redstart CD) .23 (.07) .41 (.05)

Sedge W. CP) .28 (.13) .46 (.10)
Willow W. (P ) .30 (.07) .59 (.1 2 )
Whitethroat (P ) .52 (.11) .63 (.10)
Redstart (P ) .27 (.10) .50 (.05)

Table 4.5.3.1 shows, in all cases, that R2 is substantially 

increased by including date and year variables, but, if we 

examine which variables contribute significantly to the 

regressions, then we again find that there is little or no 

sign of a connection between the response variable and 

weather variables. The high values of R2 are largely due 

to the date and year variables, and so fitting models of 

this type is again unable to establish a linear relationship 

between migration counts and weather variables.

Table 4.5.3.2 lists the variables that gave significant t- 

statistics (5% level).
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Table 4.5.3.2 Significant variables for extended regression models

SPRING AUTUMN
Sedge W. (D) VEL,Y4,Y8,Y10,Y11 VEL,Y2,Y3
Willow W. (D) VEL,CL,TEM,D1-D3,Yl-Yll DIR,VEL,HUM,D1-D3,Y1,Y3
Whitethroat (D) CL,TEM,PR,D1,D2,Y5-Y11 DIR,VEL,D1,D2,Y1-Y3
Redstart (D) CL,HUM,PR,D1-D3,Y5 VEL,TEM,D1-D3,Y1

Sedge W. (P) TEM,Y1 VEL,VIS',TEM',D3,Y1,Y2
Willow W. CP) Y2 VEL,VEL',VIS',D1-D3,
Whitethroat (P) VEL,TEM,TEM',D1-D3,Y1,Y2 VEL,VIS,D1-D3,Y1,Y2
Redstart (P) D1-D3,Y1 8 weather var's,Dl-D3,Yl

DIR wind direction VEL wind velocity
CL cloud cover VIS visibility
TEM temperature HUM humidity
PR pressure D1 date
D2 date (squared) D3 date (cubed)
Yi ith year variable

A lagged variable is indicated by a single prime.

Table 4.5.3.2 may only be used as a rough guide as to 

which variables contribute significantly to the regression 

models since, if one deleted those variables that are not 

significant, then the situation as regards the other 

variables may change. It seems to be fairly clear, 

however, that the apparent 'good fit' of the models is 

obtained by including the date variables and, to a certain 

extent, the year variables. If one constructed migration 

indices from these results, then they would merely reflect 

the degree to which each season of counts can be represented 

by a cubic polynomial of the date, rather than migration 

volume. It would appear that, although Hussell (1981) 

reported a certain amount of success using these models, 

we need some alternative method of constructing migration 

indices in order to monitor population levels.
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4.6 Conclusions

This chapter has presented strong evidence to suggest that multiple 

linear regression analysis has little to offer in the study of the 

effects of weather on bird migration, as recorded at British 

observatories. One might attempt to fit more complex models 

using many more variables but it has already been shown that the 

use of polynomials of weather variables and a range of 

transformations failed to suggest suitable models. Also, the 

practical interpretation of more complex models would be very 

difficult.

The results of this chapter do not necessarily open to question 

the results of other author's work in this area since, in most 

cases, the analyses were based on radar data or data obtained 

from very different geographical situations. However, one might 

question the extent to which the assumptions of the analyses are 

met. One would assume that the absence of a discussion on the 

statistical assumptions and their validity in most of the 

published studies was due to either the unfamiliarity of authors 

with multiple regression analysis or possibly the lack of space 

in the particular journals concerned.

The results of this chapter can, however, be viewed positively.

As a consequence of the work reported here, ornithologists may 

think again before following the example of past authors and 

using multiple regression analysis in a situation that demands 

alternative statistical methods.
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This chapter has also illustrated a simple method of allowing 

for time dependency within migration seasons, which may be of 

use when examining daily counts by methods other than regression.

We remain with the subject of weather and migration for the next 

chapter where the usefulness of linear discriminant analysis is 

investigated.
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CHAPTER 5

RELATING MIGRATION DATA TO WEATHER (II)DISCRIMINANT ANALYSIS

5.1 Introduction

The previous chapter explored the possibility of relating 

migration counts to weather data by using multiple regression 

analysis. Strong evidence was found to suggest that daily 

counts from British observatories are not able to be explained 

by a linear combination of weather variables.

In this chapter we use linear discriminant analysis in an attempt 

to find linear functions of weather variables that best 

discriminate between high and low counts of migrants. If it is 

possible to discriminate successfully between categories of 

migration counts in this way then we have a means of weighting 

annual totals of migrants according to weather conditions. This 

can he explained in the following manner: if the raw total of 

migrants for a given season is used as an index then the index 

is, to a certain extent, dependent on weather conditions as well 

as the number of birds migrating. For example, if the season in 

question experienced an unusually large number of nights of fine 

weather then the index will be unduly low wheims a season with 

many cloudy and rainy nights may inflate the index. An adjustment 

to the raw total may be made by comparing each season with an 

'average' season, in terms of numbers of days on which migrants 

were or were not expected to be recorded. This idea is illustrated 

at the end of this chapter by adjusting migration indices of 

Hussell and Risley which were calculated in chapter 2.
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The basic problem of discriminant analysis is to assign an 

observation, in this case a multivariate weather observation for 

a particular day, of unknown origin, to one of a number of distinct 

groups on the basis of the value of the observation. A simple 

measure of the success of the analysis is provided by the 

proportion of observations that are assigned to the correct group 

- we assume that the data consist of correctly assigned observations 

which can be re-assigned using results from the analysis.

Assignments are made using discriminant functions, the derivation 

of which can be found in Morrison (1976) and Lachenbruch (1975).

Note that discriminant analysis has been used successfully with 

weather data in the past, though in a different context - see 

Glahn (1965).

The data that we use in this chapter are the same as those used 

for the regression analyses of chapter 4. Thus we consider all 

combinations of four species (Sedge Warbler, Willow Warbler, 

Whitethroat and Redstart), two observatories (Dungeness and 

Portland) and two seasons (spring and autumn).

The results of this chapter were obtained from the statistical 

package BMDP, using program P7M. This program allows one to 

perform discriminant analyses using all variables, or subsets of 

variables selected by one of a number of criteria. Recent reviews 

of variable selection methods in linear discriminant analysis are 

found in McKay and Campbell (1982) and Kempson (1983), but there 

appears to be no recommended 'best' procedure. Where stepwise 

analysis was performed in this chapter, the BMDP routine based on
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F-tests was employed, Dixon (1981) .

5.2 Subdividing migration counts into groups

The object of the analysis is to divide the counts of migrants 

into two groups representing high and low counts and then to 

attempt to discriminate between the groups using the weather data. 

Only two groups are considered in the interests of simplicity. 

Recall that each count has been corrected for seasonal effects.

A elayf.fu-c<À'icA"\ function is derived for each group which enables 

us to calculate, for each day’s observation, the probability of 

that observation belonging to each of the two groups. Each 

observation may then be allocated to the group corresponding to 

the highest probability. If the analysis has been successful, 

then we will find that low counts are allocated to the group 

representing low counts, and high counts are allocated to the 

group representing high counts. If the analysis has not been 

successful, then many counts will have been wrongly classified.

We would like to divide the counts into groups of approximately 

the same size since the allocation of observations is carried out 

partly on the basis of prior probabilities which, in the absence 

of a suitable alternative are usually taken to be the relative 

group sizes. If we had one group much larger than the other, 

this group may receive an unduly large number of allocations.

Many criteria may be used for defining the groups, but one method 

which helps ensure that the two groups contain only extreme 

deviations is to define extreme as meaning greater than one
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standard deviation from the mean. This is purely an ad hoc method, 

but it does produce 'low' and 'high' groups of approximately equal 

size. From now on, groups 'low' and 'high' are defined in this 

way.

Fig. 5.2 shows two examples of histograms of the two extreme 

groups, together with the group sizes. These data are the 

amalgamation of three years' counts in each case. In all future 

analyses, the counts are pooled over a number of years, the precise 

time periods having been listed in section 3.2.

5.3 Preliminary tests

We first consider the underlying assumptions of linear discriminant 

analysis, namely multivariate normality of the discriminating 

variables and equal covariance matrices of the two groups of 

observations. The former assumption is needed for the significance 

tests of section 5.3.2 and both are needed for the stepwise 

procedures of the following section.

5.3.1 Multivariate normality

In order to test the equality of two covariance matrices we 

assume multivariate normality among the discriminating 

variables. Mardia (1974) reports that testing covariance 

matrices is seriously affected by multivariate kurtosis, but 

not multivariate skewness. Also, Mardia (1974) states that 

tests of sample mean vectors such as Hotelling's T2 are 

sensitive to skewness rather than kurtosis. In the light of 

these remarks, the form of multivariate normality testing 

adopted here is based on the coefficients of skewness and
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kurtosis. There are other forms of testing such as those 

based on the univariate Shapiro-Wilk test (see Royston, 

1983), but in the absence of a suitable algorithm, this 

method involves a formidable amount of computing. A recent 

review of other forms of testing is given in Mardia (1981). 

See also Gnanadesikan (1977) and Cox and Small (1978) for 

reviews.

The coefficient of skewness for a set of data consisting of 

n observations on p variables is estimated by

n

where rij = (x| - x) '_S' (xj - x) owid voVvave-

is the vector of data for the it̂1 observation, and x is the

vector of means of the discriminating variables, irij ,

therefore, is the Mahalanobis angle between the vectors

(xi - x) and (xj - x) where Ŝ is the sample covariance

matrix. Mardia (1974) shows that, asymptotically, nbl,p
6

has a chi-square distribution with p(p+l) (p+2)/6 degrees 

of freedom if the data come from a multivariate normal 

population.

Table 5.3.1.1 shows the test statistics for the 16 species/ 

observatory/season combinations.
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Table 5.3.1.1 Test statistics for assessing multivariate 
normality of the discriminating variables.
In each case, p = 14. K represents the 
standardised statistic for b2 ,p.
i.e. K ^ N (0,1) under the hypothesis of normality

SPRING AUTUMN

Species nb1 ,p/6 K nbl,p/6 K

Sedge W. (D) 742.7 ** 0.50 632.4 * -1.55
Willow W. CD) 571.1 -2.55 ** 587.9 -2.74 **
Whitethroat (D) 556.4 -2.43 ** 762.7 ** 0.50
Redstart (D) 623.4 * -0.61 550.7 -2.79 **

Sedge W. (P) 369.9 -4.88 ** 432.4 -4.08 **
Willow W. (P) 393.1 -4.61 ** 422.8 -4.27 **
Whitethroat (P) 403.5 -4.47 ** 454.2 -3.75 **
Redstart (P) 389.9 -4.67 ** 596.2 -1.84 **

* significant at 5% level, ** significant at 1% level
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In the majority of cases, the coefficient of skewness is 

non-significant, suggesting that T2 tests on the mean 

vectors associated with these data are feasible - these 

tests form the basis of two-group discriminant analysis.

On the other hand in all but 5 cases, the coefficient of 

kurtosis is highly significant. This means that tests of 

equality of covariance matrices will be approximate tests, 

and little importance should be attached to the significance 

levels obtained. Unlike the univariate case, it is difficult 

to overcome the non-normality by choosing a suitable 

transformation of the data since there are numerous 

combinations of variables that may need to be transformed. 

There is little that one can do other than proceed with 

caution under the assumption of normality.

5.3.2 Equality of covariance matrices

The test statistic for comparing two covariance matrices 

is given by the formula

X2 = nloge|sj - njlog|Sj| - n2log|£2| 

where S_j, S_2 and _S are the sample covariance matrices for 

the two groups and the pooled estimate of the covariance 

matrix respectively. (Sj refers to the low count group and 

_S2 to the high count group). This test is a likelihood 

ratio test and under the null hypothesis X2 is asymptotically 

distributed as a chi-square variate with |p(p+l) degrees 

of freedom, where p is the number of variables. We do not 

use lagged variables here since in several cases there are 

insufficient data to estimate both S]̂ and S2. Even with 

seven variables, in two cases one group was too small to
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allow estimation of the covariance matrix.

Table 5.3.2.1 shows the observed test statistics for each 

case. The critical value of the chi-square distribution 

at the 1% level of significance with 5(p+1 ) = 28 degrees 

of freedom is 48.3. Three of the fourteen observed 

statistics exceed this value, while none of the other 

statistics is significant at the 5% level.

Table 5.3.2.1 Testing the equality of within group
covariance matrices (X2) **

SPRING AUTUMN

Sedge W. (D) 25.8 35.6
Willow W. (D) 36.5 28.6
Whitethroat CD) 28.8 54.6 **
Redstart CD) 27.9 31.8

Sedge W. CP) - 69.1 **
Willow W. (P) 36.5 34.4
Whitethroat CP) - 51.2 **
Redstart (P) 40.5 31.5

** significant at 1% level (5% level critical value = 41.3)

There is little that one can do about the three significant 

cases since the implication of the results is that one 

should use quadratic discriminant analysis which is known 

to be unsuitable on small data sets (Lachenbruch and 

Goldstein, 1979). We should, however, treat further results 

pertaining to these data sets with a certain amount of 

caution.
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5.4 Results

There is little point in trying to discriminate between two groups 

of observations if the group means are approximately equal. Before 

examining results from discriminant analyses it is as well to 

check the separation of group means. The appropriate measure to 

use is the Mahalanobis squared distance between the two groups of 

observations which is given by

D2 = (xq - x 2 )/ £ " 1 (xi - x2)

The significance of D2 can he tested by calculating the F-ratio 

_ n!n2 (n2 + n2 - p - l)
*  -----------------------------------------------  D2(ni+n2) (n!+n2 - 2)p

where n^ and n2 are the group sizes, and p the number of discriminating 

variables. Under the null hypothesis (D2 = 0), F has an F-distribution 

with p and n}+n2 - p - 1 degrees of freedom.

We first examine the separation of group means using the full set 

of seven variables, and we introduce lagged variables later on.

Table 5.4.1 shows the values of D2 and the associated P-values for 

the set of 16 data sets, i.e. all combinations of species, observatory 

and season.
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Table 5.4.1 Mahalanobis distances between group means 
using 7 weather variables

SPRING AUTUMN
D2 P D2 P

Sedge W. (D) + 0.35 0.223 1.30 0.0 02 **
Willow W. (D) 2.09 0.000 ** 1.63 0.001 **
Whitethroat (D) 0.70 0.036 * 1.63 0.000 **
Redstart (D) 0.56 0.131 0.51 0.389

Sedge W. (P) + 3.11 0.494 4.40 0.077
Willow W. (P) 5.89 0.138 1.93 0.294
Whitethroat (P) 2.23 0.571 3.89 0.004 ■k*
Redstart (P) 3.28 0.237 1.34 0.149

+ (D) = Dungeness, (P) = Portland 

* significant at 5% level, ** 1% level

It appears that discriminant analysis is likely to be more successful 

for autumn data than spring, particularly on Dungeness data.

Table 5.4.2 shows the classification success rates evaluated using 

the jackknife method. This method entails classifying each 

observation using discriminant functions derived from the data set 

with that particular observation omitted. This estimate of the 

success rate is known to be less biased than certain other estimates; 

see Lachenbruch and Mickey (1968).

Table 5.4.2 Success rates for discriminant analyses
using seven variables - all variables included

SPRING AUTUMN

Sedge W. (D) 56.0% 67.9%
Willow W. CD) 73.6% 66.7%
Whitethroat (D) 59.8% 72.7%
Redstart CD) 62.2% 52.3%

Sedge W. (P) 50.0% 59.1%
Willow W. (P) 61.1% 59.3%
Whitethroat (P) 57.9% 74.3 %
Redstart (P) 55.0% 57.1%
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The success rates shown in Table 5.4.2 show that only in three cases 

is the success rate greater than 70%. These cases correspond to 

data sets with a significant D2 - see Table 5.4.1. Success rates 

of the order of 75% or above are generally considered to be high, 

but in one case, the Sedge Warbler data from Portland (spring) a 

success rate of 50% was obtained. This means that the allocation 

of observations would be just as successful if we used a random 

procedure.

We now move to a stepwise analysis where the aim is to include 

only the important discriminatory variables. We also introduce 

lagged variables (each of the variables is repeated, with a lag 

of one day) in order to try to achieve more successful 

discrimination for all the data sets. In the interests of 

simplicity we use the BMDP stepwise procedure where variables are 

entered or deleted from the analysis on the basis of F-tests.

One can set the critical values for the tests and thus control 

the number of variables that are permitted in the analysis: see 

Dixon (1981, page 553). One can set the critical F-value so that 

a conventional significance level is used, e.g. 5%, but this 

entails using a different value for each data set since the sample 

sizes vary from data set to data set. In the light of this an 

ad hoc approach was adopted viz. the choice of an F-value that 

allows a 'small' number of variables in the analysis, while also 

considering the results with other F-values to see whether a 

marked increase in the success rate was obtainable or not.

'Small' in this context usually meant 4 or 5 variables out of 14, 

although the minimum and maximum numbers used turned out to be 

1 and 7 respectively. Table 5.4.3 shows the success rates for the
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stepwise analyses starting from 14 variables. The figures in 

parentheses are the success rates obtained in the initial analyses.

Table 5.4,3 Success rates for stepwise analyses

SPRING AUTUMN

Sedge W. (D) 62.1% (56.0) 69.0% (67.9)
Willow W. CD) 75.8 % (73.6) 76.9% (66.7)
Whitethroat (D) 68.0% (59.8) 73.7% (72.7)
Redstart CD) 65.6% (62.2) 61.5% (52.3)

Sedge W. (P) 81.2% (50.0) 90.9% (59.1)
Willow W. (P) 88.9 % (61.1) 70.4% (59.3)
Whitethroat (P) 68.4% (57.9) 71.4% (74.3)
Redstart (P) 90.0% (55.0) 76.2 % (57.1)

In 15 of the 16 cases either the reduction in the number of 

variables or the inclusion of lagged variables has led to an 

improved success rate, and in some cases a considerable 

improvement: see, for example, the Redstart at Portland in both

spring and autumn. Table 5.4.4 shows the corresponding values 

of D2, together with an indication of the significance of each 

value.

Table 5.4.4 Mahalanobis distances between group means : 
stepwise analyses with lagged variables

SPRING AUTUMN

Sedge W. (D) 0.29 * 1.18 **
Willow W. (D) 1.99 ** 3.04 **
Whitethroat (D) 1.03 ** 1.47 **
Redstart (D) 0.27 * 0.34 *

Sedge W. (P) 10.25 * 11.27 **
Willow W. (P) 5.30 ** 1.75 *
Whitethroat (P) 6.38 * 2.81 **
Redstart (P) 11.25 * 1.60 *

* significant at 5% level, ** at 1% level
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Table 5.4.4 shows that we are able to form linear functions of 

the variables that discriminate between groups. The separation 

of the group means is significant at least at the 5% level in every 

case.

One method of investigating which variables are important in the 

discrimination is to form, for each data set, a single linear 

combination that best discriminates between groups. This linear 

combination is referred to as a canonical variate, and since we 

are discriminating between only 2 groups, only one such canonical 

variate exists in each case. The variate is such that the between 

group variability in canonical scores is maximised, while the 

variability of within group scores is minimised. In effect, we reduce 

the dimensionality of the data to one.

Table 5.4.5 shows the coefficients of the weather variables that 

form the canonical variates. We can see from this table which 

variables are important discriminators and, of those that are 

important, we can see how each variable is weighted. For example, 

the coefficients for the variate for the Sedge Warbler (spring) 

data from Portland include the following components:

.92 (wind direction, no lag) + .42 (wind direction, lag 1) and 

.85 (wind speed, no lag) - .76 (wind speed, lag 1). The wind 

direction component appears to be an average taken over two days 

with extra weighting on the first day, while the wind speed 

component appears to represent a sudden increase in mean wind 

speed over the two-day period. This feature is repeated in 

several cases, as Table 5.4.5 shows, and emphasises the usefulness 

of including lagged variables. One could, of course, include
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variables with a lag of, say, two days, enabling local maxima 

and minima to be detected - for example a rise in pressure after 

several days of decreasing pressure may indicate the passing of 

a low pressure system which may coincide with a wave of migrants. 

This, unfortunately, would raise the number of variables under 

consideration to an unmanageable level and has not been attempted 

here.
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Table 5.4.5 Canonical variate coefficients. For each case, left 
and right hand columns represent variables lagged by 
0 and 1 day respectively

SPRING

Variable Sedge W. (D) Willow W. (D) Whitethroat (D) Redstart (D)

Wind direction
Wind speed
Low cloud
Visibility
Temperature
Humidity
Pressure

.14
-.70

.64
-1.07

-.83

.42

.63

-.85
-.50

-1 . 0 0

Variable Sedge W. (P) Willow W. CP) Whitethroat (P) Redstart (P)

Wind direction .92 .42
Wind speed .85 -.76 1.56 1.34 -.83 1.33
Low cloud -1.07 -1 . 6 6
Visibility -1.95 1.34 - . 6 8
Temperature
Humidity
Pressure

-.84 1.29 - . 6 8

1.42
1.17

AUTUMN

Variable Sedge W. (D) Willow W. (D) Whitethroat (D) Redstart (D)

Wind direction -.56 .44 -.42
Wind speed 
Low cloud

.95 .76 1 . 0 0

Visibility - . 6 8 .56 -.42
Temperature
Humidity

.41 .48
-.32

Pressure -.85 -.54

Variable Sedge W. (P) Willow W. (P) Whitethroat (P) Redstart (P)

Wind direction -1.38 -. 64 -.65
Wind speed 1.58 .68 .87 .75 .62
Low cloud .65 .54
Visibility .93
Temperature
Humidity
Pressure

1.54 -.55 1.05
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It is difficult to pick out any interesting patterns from Table 5.4.5, 

save for the fact that there is such a wide variety of weather 

variables included. There appears to be great variability between 

species, and there seems to be no noticeable similarities or 

differences between observatories or seasons. Also, several cases 

involve no lagged variables at all, while one case, the Whitethroat 

(spring) at Dungeness consists entirely of lagged variables. The 

suggestion that lagged variables may be more important for some 

species than others suggests that we may be observing different 

types of migration. For example, some species may migrate with a 

series of short journeys, while others may, when possible, migrate 

with a single long journey. This is merely conjecture, but an 

examination of ring recoveries may be a useful follow up here since 

one may gain some insight into each species' migratory behaviour.

The variable that occurs in most cases in Table 5.4.5 is wind speed 

(14 out of 16 cases), whether lagged by one day or not. This is 

followed by temperature (8 cases), wind direction (7 cases) and low 

cloud cover (7 cases). The fact that these variables appear in 

approximately half of the cases might suggest that this subset of 

the seven variables may be able to discriminate between groups 

satisfactorily for all cases, although not being the optimal subset 

in each case. If this was the case, then this would greatly 

simplify any applications of this work, such as the construction 

of migration indices using totals of migration counts weighted 

according to the number of 'bird days' in each season.

197



Table 5.4.6 shows the results of attempting to discriminate between 

groups using the same set of four variables (and associated 

lagged variables) in every case. In all but one case the jackknife 

success rate has fallen with the use of common subset of variables 

and indeed, the Mahalanobis squared distance between groups is not 

significant in over half of the cases. There may possibly exist a 

subset of the 14 variables that is suitable for discrimination in 

each case, although sub-optimal, but the question is how to find it?

Table 5.4.6 Mahalanobis distances and jackknife error rates for 
analyses using a common subset of 4 variables

SPRING AUTUMN

D2 Success
rate D2 Success

rate
Sedge W. (D) 0.56 57.8% 1.38 ** 60.7%
Willow W. CD) 2.17 ** 73.6% 1.35 ** 66.7%
Whitethroat (P) 0.78 * 57.7% 1.59 ** 70.7%
Redstart (D) 0.57 57.8 % 0.57 52.3%

Sedge W. CP) 10.99 62.5% 13.5 ** 90.9%
Willow W. (P) 7.15 66.7% 3.03 55.6%
Whitethroat CP) 2 . 1 0 47.4 % 3.28 * 68.6%
Redstart CP) 5.09 65.0% 0.80 57.1%

* significant at 5% level, ** 1% level

In the above example we have taken an educated guess and found 

that the subset is not suitable for general use. Ideally one 

would examine every subset but, even for seven variables, there 

are 127 possible subsets to examine over 16 sets of data. It 

would appear that in order to achieve good discrimination in each 

case, the data samples need to be treated individually. However, 

we now briefly return to Table 5.4.6 and attempt to give simple 

interpretations to some of the variables that occur in the 

canonical variables.
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The most frequently occurring variable is wind speed (variable 2). 

From the data it is clear that high wind speeds are associated 

with low counts of migrants. This is contrary to what we may 

have expected since calm weather is usually regarded by 

ornithologists as being associated with low counts. For those 

cases where wind direction is found to be an important discriminator, 

we see that the high winds associated with low counts are in fact 

favourable winds, i.e. blowing in the direction of the birds' 

flight. It is not surprising that such conditions encourage birds 

to fly straight over the coastal observatories. An important 

variable in spring, and to a lesser extent in autumn, is low cloud 

cover. In all 5 cases featuring this variable in spring, low 

amounts of low cloud cover are associated with low counts of 

migrants. This again confirms the opinions of observatory workers 

and visitors which were hitherto based largely on practical 

experience as opposed to scientific investigation.

Taking the data sets as a whole, it is difficult to determine any 

other consistent features as regards weather variables.

There are no obvious differences between the results for spring and 

autumn apart from a suggestion that lagged variables are slightly 

more important in spring than autumn. The success rates for 

individual species are much the same for both seasons, although 

the power of discrimination differs between Portland and Dungeness 

observatories for the Sedge Warbler and Redstart. In both cases 

the success rates are considerably higher for the Portland data.

The average success rate is also higher for Portland: 80% compared 

with 69% for Dungeness. This may be due to the geographical
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differences between the two sites. The distance travelled over

sea by those spring arrivals passing through Dorset is 

considerably larger than the distance from France to Kent. If 

bad weather is met by birds heading for Dorset then by the time 

they arrive at the coast one would expect them to be more 

exhausted and disorientated than those birds taking a shorter sea 

crossing. Similarly, birds that are about to depart in the autumn 

may be more reluctant to do so from Dorset in poor weather since 

the sea crossing is that much longer. Thus, at Portland, one may 

find that records of birds are more sensitive to particular weather 

conditions than at Dungeness.

5.5 Migration indices

The discriminant functions of the previous section can be used to 

classify each migration season as either 'one where we would expect 

to record more birds than usual', or 'one where we would expect 

to record fewer birds than usual'. This is achieved by designating 

each day either a bird-day or a non-bird day.

As an example, over the years 1961-72, the average proportion of 

bird days at Dungeness each spring was 43%. In 1961, the 

proportion was 46% which suggests that one would have expected to 

have observed more birds than usual due to weather conditions.

In order to adjust migration indices for weather, one simply 

multiplies the calculated index by 43% divided by the proportion of 

bird days in each individual year. Table 5.5.1 presents the 

correlation coefficients of the indices of Hussell and Risley - 

see section 2.4 - before and after adjusting for weather.
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Table 5.5.1 Dungeness spring counts and CBC farmland 
indices - correlation coefficients

Migration Index Sedge W. Willow W. Whitethroat

MIS - unadjusted -.23 .04 .81 **

MIS - weather 
adjusted - . 1 0 - . 2 2 .70 **

MIL - unadjusted - . 2 2 -.04 .78 **

MIL - weather 
adjusted -.09 -.30 .84 **

** significant at 1 % level

Table 5.5.1 shows that there is no improvement of correlation with 

CBC indices after the migration indices have been adjusted for 

weather.

5.6 Conclusions and discussion

The work of this chapter has shown that linear discriminant 

analysis enables one to study relationships between weather and 

migration data, if only at a very simple level. The conclusions 

that one draws from this work serve to reinforce some widely held 

opinions of ornithologists.

Evidence was found to suggest that discriminant analyses are more 

successful when using autumn data rather than spring data. This 

supports the view of ornithologists that birds are more determined 

to complete their migration in the spring than in autumn, and are
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less deterred by adverse weather conditions.

Discrimination was, in general, improved by using lagged weather 

variables. This is what we may expect since it is not only 

weather at observatories that influences observatories data. By 

using lagged variables we hope to introduce information on weather 

which birds experience prior to arrival.

The success of the discriminant analyses varies from species to 

species and between the two observatories. For example, a high 

success rate was obtained for the Portland Redstart data (autumn), 

but not for Dungeness data. Ornithologists are not able to give 

explanations for these inconsistencies, but it seems likely that 

the geographical difference between the two sites is responsible.

Different weather variables were found to be important for 

different data sets, although wind (direction and/or velocity) 

appears to be an important feature for most data sets. High winds 

in the direction of the birds' flight appear to give rise to low 

counts at observatories, suggesting that birds are able to continue 

their flight.

Low amounts of cloud cover also appear to coincide with low counts 

which reinforces another widely held opinion of ornithologists 

that clear skies rarely lead to large counts of grounded migrants.

Discriminant analysis has been used in this context by Able (1973) 

and Richardson (1974), but both authors used radar data. Able 

(1973) divided his observations into eight groups according to the
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direction of flight of the migrant passerines, and obtained a 

significant canonical variate for discriminating between groups. 

He used seven weather variables selected on the basis of 

univariate F-tests, but employed no further variable selection 

techniques so it is not clear whether this subset is optimal in 

any sense or not. Although Abie's work is not comparable with 

the results of this chapter - he used autumn radar counts of 

passerine migrants - it is encouraging to see that wind direction 

was found to be an influential variable.

Richardson (1974) also used autumn radar counts, and reported 

overall success rates of less than 60%. He used three groups for 

his analysis, and so one would expect lower success rates than 

those reported in this chapter. Note that Richardson does not 

make clear whether or not his success rates are apparent or 

jackknife estimates, and so the true success rates may well be 

lower.

In chapter 7 we explore ways in which the results of this 

chapter may be put to use in fitting models to sequences of daily 

counts with the aim of constructing migration indices.
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CHAPTER 6

MODELLING SEQUENCES OF DAILY COUNTS

6.1 Introduction

In this chapter the serial dependence of daily counts is examined. 

With an understanding of the serial dependence of counts of 

migrants it is hoped that models can be formulated which lead to 

migration indices for monitoring population levels. The models 

considered in this chapter are simple Markov-type models and in 

the following chapter these models are further examined with the 

inclusion of information on weather conditions.

Not all of the material that is presented in this chapter is 

followed up in chapter 7, but as will be seen, a number of 

interesting problems and features come to light by attempting to 

fit simple models to sequences of daily counts.

6 .2 Immigration -death models

6.2.1 Introduction

The serial correlation of a sequence of observations is a 

measure of the extent to which each observation is 

dependent on the previous observation. One could, of 

course, consider alternative auto-correlation structures 

but these will clearly involve more complex models, for 

example, those of the Box—Jenkins type - see section 3.3.4.

The motivation for exploring serial correlation within 

sequences of daily counts comes from the possibility that 

some birds may not depart from observatories during the
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day or night following their arrival.

In autumn the weather conditions may prevent the birds from 

setting out on the channel crossing, or perhaps the birds 

have been unable to build up sufficient fat reserves for 

the migration and therefore need to spend more time foraging. 

In spring, the delay to departure may again be due to 

weather conditions, or possibly the physical exhaustion of 

the birds as they arrive. It is generally thought among 

ornithologists that if birds remain at observatories for 

any length of time, then they are less likely to do so in 

the spring, since it is vital for the birds to reach their 

breeding grounds as soon as possible in order to establish 

territories and find mates. Riddiford and Augur (1980) 

briefly discuss the behaviour of Willow Warblers at 

Dungeness during spring migration, and it appears from 

their analyses (based on ringing data) that nearly all 

Willow Warblers disperse during the day after their arrival. 

One objective of our study is to see whether a statistical 

analysis of daily counts (rather than ringing data) suggests 

similar behaviour.

For the purposes of this chapter, we shall treat the time 

scale as discrete, i.e. a series of days. Although in 

ornithological terms this may not be entirely appropriate.

We shall assume that in general, immigrants arrive during 

the early hours of each day, remain until at least two or 

three hours after dawn when they are recorded, and then 

depart (if appropriate) during the remainder of the day.
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The models that we consider in this section may be described 

as 'immigration - death' models, where death, in this 

context, refers to an exodus of birds from the observatory.

Our models reflect our interest in the assessment of 

migration volume, i.e. we seek to separate newly arrived 

birds from those that arrived on a previous day, for each 

daily count.

6.2.2 A Poisson-binomial model

The first model that we consider is of the form 

*n = Yn + In (6 .1 )

where ^  is the count on day n, Yn is the number of birds 

that have stayed from day n- 1  and In represents the influx 

of birds immediately prior to the start of day n. n runs 

over the length of the migration season which starts on the 

first day that a bird is observed, and finishes on the last 

day on which a bird is observed. Even without any 

distributional assumptions, we need to make assumptions 

concerning Yn and In. First, we assume that all the birds 

that are included in the Yn were recorded during the day 

n-1, and so we have Yn $ X^j.Any birds that were present 

and unobserved on day n-1 , but observed on day n will be 

classed as new arrivals and be included in Tn. Further, we 

make no specific attempt at this stage to build into the 

model the possibility of some birds remaining at the 

observatory for two days, three days, and so on, since this 

is built into the model automatically. A second assumption
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that we make is that Yn and In are independent, i.e. the 

rate of immigration is independent of the 'death' rate.

This seems a reasonable assumption to make, since only 

when birds arrive at observatories will they be in a 

position to assess whether or not they should stay or move 

on as soon as possible.

Since Yn is some proportion of Xn_p, we start by assuming 

that Yn is a binomial random variable with index (the

observed count on day n-1) and parameter p. The parameter 

p measures the probability of each bird remaining at an 

observatory from one day to the next, and 1-p is the 

probability that each bird leaves the observatory soon 

after it is recorded. Notice that we are also assuming 

that (i) the probability p is the same for all birds, and 

(ii) the probability p is independent of time. In practice 

we might expect p to vary over a migration season. For 

example, towards the end of a spring migration season, p 

might be expected to decrease as birds become more urgent 

in their desire to reach the breeding grounds.

The distribution of In will be taken as a poisson 

distribution (an obvious choice as the data are counts), 

with parameter A. This simplistic suggestion is based on 

the assumption that immigration is constant over time.

We examine this assumption in greater depth later.

Under the two distributional assumptions, the model (6.1) 

is related to the biyariate poisson distribution. If we
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consider the convolution of two poisson random variables, 

then the distribution of one variable conditional on the 

other is given by

The likelihood function, given a series of n counts, is of 

the form

The likelihood function involves two unknown parameters,

A and p, which can readily be found by an iterative method 

(explicit formulae for A and p are not obtainable).

In the following section, we present some estimates of A 

and p using samples of observatories data.

Note that this model has been used before in the study of 

ornithological data, although in another context - see 

Upton and Lampitt (1981).

min(xn,Xn—l)
(r 'old' birds recorded) X 
Pr (xn-r 'new' birds recorded)

min(xn,xn_1)
y ? r ( Y n  = r/xn_!).Pr(In = x^r)
r=o

(X_ X ^

r=o (xn_r) •

Pr ( x2 , x 3 V ^ - l )  = Pr(x2 /x1)Pr(x3/x2)....Pr(xn/xn_1)• • • •

n
= n pr(xi/xi_i)

i=2
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6.2.3 Results and seasonal comparisons

The maximum likelihood parameter estimates presented in 

this section were obtained by using the iterative Nelder- 

Mead simplex method (Nelder and Mead, 1965). The estimates 

of the asymptotic variance-covariance matrix of the 

parameters were obtained using a FORTRAN subroutine written 

by S. Watts, formerly of the University of Kent.

We shall examine data for a number of species and from various 

observatories. The combinations of species, observatories 

and seasons that are considered in this section were 

selected since they provide suitable numbers of birds over 

several weeks each season. In some cases, species are 

recorded in only one of the two migration seasons and so 

therefore no spring-autumn comparisons are possible for these 

species. There follow below 10 tables which show, for each 

species - observatory - season combination, the estimates 

of p and A, the estimated asymptotic standard errors and 

correlation coefficient, and the length of each sequence 

of counts.

In some tables, entries are missing. This is due to 

numerical problems encountered when attempting to estimate 

standard errors of the parameters. The estimation involves 

the inversion of the information matrix, which can sometimes 

be close to singular. In one case (Redstart, Spurn, 

of 1961) no birds were recorded at all.

209



Tables 6.2.1-6.2.10 Parameter estimates for Model(6.1)

Table 6.2.1 Sedge Warbler. Dungeness

SPRING AUTUMN

Year A

___e_ 1 s ( d ) s(l) c(p,l) n A

D 1 S ( D ) s(l) C ( D . I ) n

1961 .50 3.17 .04 .30 -.40 53 .52 1 .90 .05 .22 -.36 57
62 .53 4.14 .03 .37 -.35 42 .26 2.90 .04 .23 -.55 96
63 .59 3.10 .04 .34 -.30 36 .48 5.15 .03 .34 -.46 70
64 . 6 6 .69 .10 .17 -.18 27 .56 5.54 .02 .35 -.57 93
65 .27 .09 .30 .06 -.16 26 .39 2.89 .04 .25 -.49 75
66 .69 .98 .06 .20 -.47 45 .42 4.32 .03 .29 -.52 89
67 .56 2.18 .04 .23 -.31 59 .44 3.52 .03 .25 -.51 99
68 .73 .84 .07 .19 -.38 36 .48 3.87 .03 .29 -.47 75
69 .81 .28 .08 .09 -.17 44 .26 3.03 .04 .23 -.35 76
70 .25 .34 .16 .12 -.27 30 .13 5.12 .03 .30 -.48 83
71 .17 1.46 .07 .20 -.23 42 .22 2.09 .04 .17 -.41 97
22_ .16 1 .04 .06 .JA. - >28 61. .22 __>13_ .08 .11 -.34 16

Table 6 .2.2 Willow Warbler . Duneeness

1

AUTUMN 

s (d ) s(1 ) c ( p t1 ) nYear AD 1

SPRING 

_s(p) s(l) C ( D . I ) n AP

1961 .38 1.07 31 .44 4.30 .03 .30 -.42 71
62 .16 5.40 .03 .36 -.34 54 .56 6.00 .02 .36 -.45 77
63 .46 5.89 .03 .39 -.43 58 .68 6.07 .02 .38 -.40 64
64 .43 5.69 .04 .45 -.43 44 .52 7.94 .02 .42 -.48 75
65 .50 3.58 .04 .36 -.31 41 .57 4.90 .03 .33 -.42 70
66 .21 11.60 .03 .57 -.52 58 .45 6.99 .02 .37 -.47 86
67 .27 4.76 .03 .33 -.35 57 .42 4.27 .03 .26 -.38 91
68 .30 4.06 .04 .34 -.30 44 .66 5.54 .02 .29 -.45 107
69 . 11 6.40 .04 .44 - .54 53 .42 6.61 .02 .34 -.42 85
70 .27 7.46 .03 .43 -.37 55 .34 8.87 .02 .43 -.45 73
71 .00 2.87 .02 .14 -.99 70 .45 8.43 .02 .41 - .41 73
72 .28 5.61 .02 .28 t .12 . 145_ 4.27 -.03— • 29 -.37 ___1 3

s(£) 
s ( 1 ) 

c ( p , 1 ) 
n

estimate of parameter X 
standard error of parameter estimate p 
standard error of parameter estimate 1 
estimated correlation between p and 1 
length of migration season in days
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Table 6.2.3 Whitethroatr Duneeness

SPRING AUTUMN

Year A
D 1 S ( D ) s(l) c (d ?1) n A

P 1 S  ( D ) s m c (d .1 ) n
1961 .12 14.50 .02 . 62 -.49 56 .44 5.62 .03 .35 -.46 74

62 .50 5.69 .03 .43 -.36 43 .44 6.23 .03 .34 -.49 88
63 .46 6.58 .03 .46 -.35 43 .53 6.54 .03 .38 -.44 72
64 .46 4.78 .04 .40 -.37 42 .46 6.34 .02 .33 -.48 98
65 .48 4.17 .37 .04 -.06 26 .52 6.61 .02 .37 -.52 87
66 .23 8.54 .04 .55 - .63 57 .55 5.52 .02 .35 -.56 90
67 .49 3.78 .04 .33 -.37 50 .40 7.20 .03 .40 -.57 86
68 .46 8.60 .03 .56 -.42 42 .67 5.33 .02 .33 -.50 88
69 .33 .27 .16 .09 -.23 37 .48 .55 .07 .10 -.31 77
70 .35 1.37 .06 .18 -.31 54 .52 1.41 .04 .15 -.30 86
71 .05 1 .69 .05 .18 -.40 63 .41 2.48 .03 .18 -.36 108
I2_ .37 __ .74 .12 .15 -.12 .46 1.30 .05 • 15 -.41 89

Table 6 .

AYear d

2.4 Redstart. Duneeness 

SPRING

___ 1____ s(p) s (1) c(p.l) n A

P 1

AUTUMN 

s(p) s(l) c (p . 1 ) n

1961 .06 1.86 .06 .22 -.40 48 .51 .58 .07 .10 -.18 69
62 .23 1.60 .08 .25 -.32 34 .15 .23 .13 .07 -.31 64
63 .20 2.27 .04 .22 -.26 58 .46 1.72 .04 . 1 6 -.26 89
64 .03 1 .36 .07 .18 -.53 58 .25 1 .06 .05 .12 -.20 78
65 .20 4.32 .04 .38 -.35 39 .56 .67 .06 . 1 1 -.16 70
66 .22 1 .03 .07 .15 -.38 66 .33 1.35 .07 .15 -.25 69
67 .21 1.25 .07 .20 -.27 38 .63 .97 .03 . 1 1 -.18 99
68 .55 .72 .09 .17 - .41 38 .46 1 .82 .04 .16 -.41 100
69 .48 .03 .37 .03 -.05 32 .41 .70 .06 .10 -.15 84
70 .00 3.93 .00 .35 -.99 33 .22 .49 .09 .09 -.26 68
71 .15 1.25 .12 .25 -.46 29 .25 .27 . 1 1 .07 -.18 59
22_ .32 __.76 .08 -JJ_ -.30 . ,57 .59 .05 .08 -.21 108
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Table 6.2.5 R e d s t a r t f Portland
SPRING AUTUMN

Year A

P 1 S ( D ) s (1) c(d . 1) n A

P 1 S ( D ) s (1) A

c (P , 1) n
1961 .31 2.18 .05 .22 -.27 55 .22 .17 . 1 6 .06 -.27 61

62 .45 1 .21 .09 .23 -.46 37 .23 .21 .19 .06 -.19 72
63 .29 1 .41 .06 .18 -.39 38 .49 .03 .36 .02 -.02 62
64 .00 1 .79 .04 .19 -.33 57 .47 .22 . 1 1 . 0 6 -.19 63
65 .09 3.98 .05 .37 -.50 42 .33 .83 .07 .12 -.26 69
66 .40 4.57 .04 .39 -.39 43 .36 .78 .06 .10 -.38 101
67 .15 2.60 .08 .34 -.56 37 .64 .52 .05 .09 -.20 85
68 .43 1.11 .07 .20 -.27 37 .51 .76 .05 .10 -.22 92
69 .10 .43 .12 .10 -.33 50 .69 .26 .09 .06 -.12 68
70 .06 2.01 .05 .23 -.34 45 .53 .57 .06 .09 -.16 73
71 .29 1.33 .07 .17 -.46 70 .72 .23 .09 .07 -.05 54
12 ,21 2,57 .06 .29 - - . a s 42 -JLQ__ .26 _ . o , i _ .06 -.12 68

Table 6.2.6 Sedge WarblerT Portland

SPRING AUTUMN

Year A

P 1 s(p) s (1) C ( D . 1 ) n A
P 1 5(6) s(l) O p'

-N a > 1 ) n
1961 .50 .00 31 .10 .65 .08 .10 -.27 70

62 .23 .89 .08 .15 -.27 51 .15 .34 . 1 1 .09 -.20 49
63 .04 1 .69 . 06 .23 -.34 37 .58 .13 .15 .05 -.09 57
64 .02 2.06 .04 .25 -.33 40 .37 .89 .08 .14 -.29 60
65 .29 .62 .10 .14 -.27 42 .23 1.58 .05 .17 -.36 71
66 .09 1 .03 .08 . 1 6 -.46 53 .29 1.38 .05 .15 -.31 75
67 .04 1.66 .04 .17 -.25 64 .29 2.23 .04 .19 -.26 75
68 .00 2.31 .04 .25 -.99 39 .39 1 .49 .06 .17 -.36 69
69 .00 .12 .00 .05 -.99 44 .42 1.37 .05 . 1 6 -.20 65
70 .22 1 .26 .07 .18 -.26 46 .26 3.72 .03 .25 -.38 79
71 .16 .49 .10 .10 -.36 58 .29 1.10 .05 . 11 -. 26 110
12 .22 1 .56 ,05 .18 - ,26 60 .,.46 2.50 .04 .21 -.35 75
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Table 6.2.7 Redstart. Spurn
SPRING AUTUMN

Year A

P__ 1 s(p) s(l) r—!<oo n A
P 1 s(p) s(l) c (d . 1) n

1961 .41 1.18 .06 .14 -.39 8362 .29 .39 .12 .11 -.25 41 .23 . 11 .19 .04 -.14 61
63 .24 .24 .14 .08 -.21 48 .83 1 .06 .02 .13 -.17 6964 .07 .69 .09 .12 -.47 67 .17 .07 .19 .03 -.08 61
65 .21 .79 .09 .16 -.30 41 .73 1.08 .03 .13 -.17 7266 .39 .37 .09 .08 - .24 72 .77 1 .34 .02 .14 -.21 81
67 .37 .23 .15 .09 -.11 34 .70 .18 .09 .06 -.09 62

Table 6 .

AYear d

2.8 Sedge Warbler 
BARDSPY

1 S ( D ) S ( 1 )

. SPRING

A
c  ( d  . 1 )  n

AP 1
SPURN 

s ( d ) sCl) c ( p . 1) n
1961 .32 2.31 .04 .22 -.32 62 .54 .86 .07 .15 -.50 7262 .38 4.49 .03 .34 -.31 52 .84 .09 .09 .05 -.07 46

63 .43 5.48 .03 .39 -.35 50 .36 .09 .28 .05 -.06 3764 .44 2.28 .04 .21 -.29 65 .23 .47 .20 .09 -.38 7365 .13 1.00 .07 .19 -.10 31 .61 .43 .08 .09 -.19 52
66 .30 6.52 .03 .38 -.37 62 .67 '1 .04 .05 .15 -.46 80
67 .18 4.38 .04 .37 -.26 39 .70 .66 .05 .12 -.31 62
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Table 6.2.9 Pied Flycatcher. Autumn
DU N G E N E S S  SPURN

Year _ _ _ E_ 1. s(p) s(l) c(p.l) n A

P 1 s ( p ) sCl) c ( p . 1 ) n
1961 .00 .06 .36 .04 -.41 53 . 6 6 1 .51 .04 .16 -.10 6562 • 39 .96 .12 .13 -.10 63 .28 1.54 .04 .16 -.15 70

63 .04 .40 .06 .09 -.16 52 .63 2.23 .02 .18 -.26 9264 • 35 1.61 .05 .17 -.22 69 .57 .55 .07 . 11 -.19 56
65 .00 .02 .98 .02 -.28 52 .64 .67 .05 .12 -.11 5666 .40 1 .77 .05 .19 -.17 57 .73 2.28 .02 .19 -.27 8767 .50 .00 - - - 44 .55 1.58 .04 .18 -.20 6168 .36 1.90 .04 .18 -.27 73
69 .12 .19 .16 .06 - .41 66
70 .67 1.04 .04 .13 -.12 67
71 .65 .00 - - - 4372 .33 .77 .07 .12 -.25 62

Table 6.2.10 Blackcap. D u n eeness
SPRING

Y e a r
A

D 1 s (p ) s ( 1 ) i—
1

<
QO

n

1 9 6 1 . 1 9 . 5 7 . 0 9 . 1 2 - . 1 6 4 5
6 2 . 3 1 1 . 9 7 . 0 5 . 2 2 - . 2 4 4 8

6 3 . 3 6 1 . 2 0 . 0 6 . 1 9 - . 1 3 3 8
6 4 . 2 8 1 . 1 8 . 0 8 . 2 0 - . 3 2 3 7
6 5 . 2 2 . 4 4 . 1 6 . 1 3 - . 1 5 3 0
6 6 . 2 8 1 . 0 3 . 0 7 . 1 5 - . 2 9 5 7
6 7 . 2 9 . 4 8 .11 . 1 2 - . 3 3 4 7
6 8 . 1 5 . 8 6 . 11 . 1 6 - . 4 9 4 9
6 9 . 2 0 . 4 0 . 2 1 . 1 2 - . 2 3 3 2
7 0 . 0 3 1 . 5 6 . 0 5 . 1 9 - . 3 7 5 0

7 1 . 1 7 . 4 6 . 0 7 . 0 9 - . 2 2 7 2
7 2 . 1 2 1 . 8 4 . 0 6 . 2 1 - . 3 8 5 4
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A number of general points arising from Tables 6.2.1 -

6 .2 . 1 0  are listed below.

1. There is no convincing evidence that p is higher for

autumn than for spring throughout the data sets 

considered. Indeed, the Dungeness Warbler data

suggest the opposite (Table 6.2.2). There is some 

evidence to suggest that p is higher in autumn for the 

Redstart (Dungeness, Portland and Spurn), but even in 

these cases a wide range of values of p is found.

2. There is a wide range of values for A in most tables.

Note that the Dungeness Uhitethroat data show an 

encouraging feature: the population crash of the 

winter of 1968 is clearly reflected in the estimates 

of A, but it would be worrying if such a feature was 

not detected.

3. The estimated asymptotic standard errors of the

parameters are fairly consistent both within and across 

the ten tables. The standard errors for p appear to be 

of the order of 10% of the estimate, and those for A 

are slightly higher: approximately between 1 0% and 

20% of A.

4. In every case the estimated correlation coefficient

between p and A is negative, and in many cases greater
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than 0.5 in magnitude. We might expect this since the 

more birds that we put into the category of 'new 

arrivals', then the fewer that are put into the 

category of birds that have stayed at the observatory 

from previous days.

The main interest in modelling daily counts in this manner 

is the possibility of constructing migration indices using 

information obtained from the models. Therefore in section

6.2 . 6  we make further use of the results presented in this 

section.

6.2.4 Goodness of fit

In this section we show that model (6.1) provides an adequate 

description of the data, by using monte-carlo simulation.

This method of assessing the goodness of fit of the model 

was chosen since other methods are difficult to apply in 

this situation. For example, the Pearson goodness-of-fit 

test requires that observations are serially independent.

This is clearly not the case if model (6.1) is a suitable 

model, since it has first-order Markov dependence. In some 

situations, however, it is possible to use Pearson's test 

with serially correlated data. Tavare and Altham (1983) 

show that if one can estimate the matrix of transition 

probabilities then one is able to adjust the usual Pearson- 

statistic, and assess its significance. The problem with 

our data is that each individual sequence of counts is 

very short (often less than 50 observations), and therefore 

one is unable to estimate transition probabilities unless
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counts are grouped into, say, two or three groups, thus 

losing much of the day-to-day variability in the data.

Another problem with the Pearson goodness of fit statistic 

in this context is that the test statistic may be 

dominated by one or two observations and therefore give a 

significant result while the model gives a good fit for the 

rest of the data. This problem stems from the fact that if 

an observation is particularly larger than its predecessor, 

then its expected value is likely to underestimate the 

observed value. In other words, we cannot expect the 

model to be able to predict sudden large fluctuations in bird 

counts.

A subjective hut helpful method of checking the goodness of 

fit is to plot the observed and expected counts of 

migrants against time, and compare the two curves. Some 

examples are shown in Figs. 6.2.4.1 and 6.2.4.2. As one 

would expect, when p is low, the curve of expected counts 

is almost constant over time, while when p is high, greater 

variability is seen. In the latter case, one can clearly 

see a lag of one day between the two curves.

The residuals (Dungeness data) are plotted against time in 

Figs. 6.2.4.3. In some diagrams, for example 1962, 1963 

and 1967, runs of negative residuals are seen. These 

coincide with periods when few or no birds were observed, 

although the model is still giving a constant daily input. 

Large falls of birds are seen (1961 and 1965) as large
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positive residuals, and in most diagrams the variability 

of the residuals tends to increase towards the end of the 

season. This last point suggests that this very simple 

model is not sufficient to explain the counts over a 

whole migration season, and that one must either consider 

a more complex model or perhaps introduce information on 

local weather conditions - see chapter 7.

The residuals for the Portland data are shown in Fig. 6.2.A.4. 

Although there is no evidence of non-stationarity in the 

residuals, one again sees long runs of negative residuals 

where no or very few birds are seen. One again sees large 

positive residuals which coincide with falls of migrants.

The diagram for 1967 is an extreme example of these last 

two features.
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Fig. 6.2.b,1 M o d e l (6.1) expected values (dashed curve) and
o b s erved values (solid curve). D u n e e n e s s  Sedee 
W a r b l e r  data .
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Fig.._fi. 2.^.1 ( Continued )
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Fig. 6 . 2 . U . 2  Model(6.1) expected values (dashed curve) and 
ob served values (solid curve). Portland Sedge
W a r b l e r  data.
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Fig. 6.2.4.2 ( Continued )

Spring 1965

Spring 1966

Spring 1967
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We now examine the goodness of fit of model (6.1) by using 

the Pearson test, but, as we are unsure what the true 

distribution of our test statistic is under the null 

hypothesis, we use monte-carlo simulation to test its

where 0 and E are observed and expected frequencies of 

transition between specified states. For model (6.1) the 

'states’ are daily counts of the order of 0-5, 5-10 and 

> 10 birds. These groups were selected since if one uses 

more than 3 groups then matrices of transition probabilities 

soon become sparse and transition frequencies are very low. 

If one uses only 2 groups, then one is dispensing with much 

of the information in the data. The group sizes listed 

above gave, for most sequences of counts, transition 

frequencies of at least 3. For some sequences, however, 

the shortage of birds over the entire season led to 

transition frequencies of zero or unity in all but the 

category of {0-5} -> {0-5}.

The test procedure is carried out by calculating transition 

probabilities using the ML estimates of p and A, and using 

these probabilities to calculate expected transition 

frequencies. The expected frequencies are compared with 

the observed frequencies, and the statistic X2 computed. 

Simulation is used to generate a large no. of sequences of 

counts of the same length as the observed sequence, and 

using p and A. For each generated sequence, X2 is computed, 

and by establishing the position of the observed X2 in the 

distribution of simulated values of X2, one can estimate

significance. The statistic that
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the probability of obftervm̂  rvalue cct \jz«.s~t cxs VugWy as X L 

wckr “ftst v'acxXìiI. . If this probability is less than 0.05, 

say, then there is evidence that the model is not 

appropriate for that particular sequence of counts. For 

this study, 1000 simulations of each sequence of counts 

were used.

The results of the goodness of fit study are presented in 

Table 6.2.11.
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Table 6.2.11

Table entries are P-values for X2.

Year SWD(S) SWD(A) SWP(S) SWP(A) SWB(S) SWS(S)

1961 0.49 0.63 <0 . 0 1 0 . 1 0 0.61 0.41
62 < . 0 1 0.40 0.31 0.24 < . 0 1 < . 0 1
63 0.44 0.41 0.98 0.48 < . 0 1 0.04
64 0.30 0.66 0.40 0.71 0.33 0.71
65 0.70 0.71 0.49 0.60 < . 0 1 0.70
66 0.06 0.82 0 . 1 0 0 . 0 1 < . 0 1 0.60
67 0.95 0.09 0 . 1 1 0.51 0.26 0.52
68 0.18 0.71 0 .0 1 0.09 - -
69 0 .0 2 0.90 0.06 0 .0 2 - -
70 0.19 0.87 0.06 0.19 - -
71 0.30 0.05 0 . 2 1 0.71 - -
72 0.43 0.14 0.39 0.45 ~

Year WWD(S) WWD (A) WTD(S) WTD(A) PFD(A) PFS(A)

1961 0.80 0.71 0.41 0.84 <0 . 0 1 0 . 0 1
62 0.74 0.49 0.29 0.79 0.31 0.30
63 0.99 0.50 0.31 0.50 <0 . 0 1 0.41
64 0.71 0.79 0.44 0.39 0.42 0.51
65 0.60 0.40 0.31 0 .0 1 0.56 0.09
66 0.99 0.33 0.70 < . 0 1 0.81 0.17
67 0.94 0.91 0.49 0.56 0.03 0 .2 0
68 0.14 0.84 0.61 0.16 0.50 -
69 0.98 0.31 0 .6 8 0 .0 1 0 . 1 0 -
70 0.71 0.39 0 . 1 1 0.09 0.61 -
71 0.90 0.51 0.09 0 .2 0 <0 .0 1 -
72 0.82 0.18 0.33 0.71 0.17 —

Year RSD(S) RSD(A) RSP(S) RSP(A) RSS(S) RSS(A)

1961 0 . 1 2 0.48 0.51 0.05 0 . 1 0 0 . 2 1
62 0.40 0.31 0.61 0.14 0 .0 1 0 . 0 1
63 0.31 0.40 0.08 0 .0 2 0.04 0.19
64 0.32 0 . 2 1 <0 . 0 1 0.38 <0 . 0 1 0.61
65 0.75 0.30 0.07 0.14 0.09 0 . 0 1
66 0.25 0.70 0.28 0.25 0 . 0 1 0.08
67 0.30 0.04 0.37 0.39 0.28 0 . 1 2
68 0.13 0.14 0.77 0.29 - -
69 0 .0 1 0.81 0.03 0.31 - -
70 0.04 0.03 0.04 0 .0 1 - -
71 0.28 0.41 0.90 0.09 - -
72 0.23 0.32 0.85 0.14 — —
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Year BCD(S)

1961 0.31
62 0.42
63 0.38
64 0.41
65 0.51
66 0.49
67 0.71
68 0.61
69 0.04
70 <0 . 0 1
71 0.51
72 0.09

We find that for the majority of sequences of counts, the 

model appears to fit the data. Approximately 18% of the 

calculated P-values are less than 0.05.

Table 6.2.11 shows that the model fits more sequences of 

counts of common migrants (e.g. Willow Warbler, Whitethroat 

and Sedge Warbler) than less common migrants such as Pied 

Flycatcher and Redstart. An examination of the parameter 

estimates p and A in conjunction with Table 6.2.11 suggests 

that when either or both of p and A are close to zero, then 

the fit is poor.

Overall, there is no strong evidence to reject model (6.1), 

although one would have hoped for more consistency over a 

range of different sequences of counts. If one is seeking 

a universal method of obtaining migration indices from 

sequences of daily counts, then one might be reluctant to 

use a method based on model (6.1 ) since there will be years 

in which the model does not fit the data, therefore leading 

to an incorrect migration index.
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In section 6.2.6 we see that migration indices based on 

model (6.1) show little or no correlation with CBC indices.

6.2.5 Alternative models

We have seen that model (6.1) is a suitable model for most 

sequences of daily counts that are considered in this 

thesis. Other models were also examined, and in this 

section we summarise the findings.

Model (6.1) assumes a constant parameter p over time. A 

model was considered which allowed p to switch between 

two values from day-to-day, the values being estimated from 

the data. This model (model (6.2) ) is such that the 

binomial parameter p follows a two-state Markov chain 

with a transition matrix which is also estimated from the 

data. Parameter estimates were obtained by the Nelder-Mead 

simplex method. In chapter 5 we found that it was possible 

to divide bird counts into two groups on the basis of their 

weather observations. With this model we divide days into 

two groups on the basis of the serial correlation structure 

of the bird counts. In the next chapter we examine this 

connection in more detail. Model (6.2) was fitted to the 

same sequences of counts as model (6.1 ), and the parameters 

were estimated with standard errors of the same order as 

for model (6.1). In most cases one of the binomial 

probabilities was estimated to be close to zero and the 

other one close to unity. This is what we may have expected 

since ornithologists are of the opinion that, depending on 

the weather, either all the birds will leave the observatory
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as soon as possible, or they will all stay. It is thought 

unlikely that some birds will choose to stay while others 

leave.

One interesting feature of the examination of model (6.2) 

parameter estimates is that the values of A for model (6.2) 

are, in most cases, higher than for model (6.1). This 

suggests that model (6.2) is attributing more birds to the 

category of 'movers' and fewer birds to the category of 

'stayers'. This is a consequence of allowing more freedom 

in the choice of value for p, i.e. a consequence of 

including extra parameters in the model.

There seems to be little more information to be gained from 

fitting model (6.2) rather than model (6.1 ), but it is 

encouraging that the behaviour of birds at observatories 

suggested by ornithologists is supported by statistical 

modelling. An extensive study of goodness of fit of model 

(6.2) was not carried out, but some examples of plots of 

observed and expected counts were compared with those for 

model (6.1 ), and there seems to be little evidence to 

suggest that either model gives a significantly better fit 

than the other.

We now consider how we might relax the assumption of model 

(6.1) that the parameter A is independent of time. This 

seems to be a sensible course of action since we would not 

expect the same number of new arrivals on each night of 

the migration season. The diagrams of daily counts presented

232



in earlier chapters show a variety of 'patterns' of 

migration, but ideally we would like a method that could 

deal with the general case rather than specific examples.

One could, for example, fit a polynomial to a series of 

A's, where

An = a + gin + g2n2 + $3n3 +....,

(where n refers to the day of the season). The parameters 

a and 3j, 32,... could be estimated from the data using 

an iterative maximum likelihood procedure, but an obvious 

problem here is how high a degree of polynomial should one 

fit? Also, fitting a large number of parameters introduces 

more problems such as low precision in the estimators (a 

consequence of trying to extract two much information from 

too few data) and the need for suitable starting values 

for the iterative estimation procedure (Nelder-Mead 

simplex method).

A possible way round these problems is to take the following 

approach. We consider the Poisson parameter A to be a 

linearly increasing function of time at the start of the 

migration season, until some time tj, when A is constant 

for the central part of the season. After some time t2, A 

is considered to be a linearly decreasing function of time 

until the end of the season, i.e. the day after the last 

bird was recorded. The values of tq and t2 can be 

estimated by trying various combinations and choosing that 

combination giving the maximum likelihood. Even by 

estimating tj and t2 in this way, the amount of computer 

time required to fit the model is very large, and so only
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a few results are available. Table 6.2.12 shows some 

results using the Dungeness Sedge Warbler data (spring).

The last two columns of the table give the total estimated 

number of new arrivals seen in each season for the basic 

model (model 6.1) and the revised model (model 6.3).

Clearly there are substantial differences. Another striking 

feature about these results is that the values of p are much 

lower under the revised model than under model (6.1 ) - 

see Table 6.2.1. This suggests that serial correlation in 

the data is not as high as suggested by the original model. 

This is a common feature of time series data where serial 

correlation is found in data sets with trend, but the 

corresponding detrended series exhibit different patterns 

of autocorrelation.

Table 6.2.12 Parameter estimates for model with varying 
A. Dungeness Sedge Warbler data (spring) 
t̂  and t2 are numbers of days from 1st April

Year n P ti t2 n A , (model 6.1 )n A

1963 36 .00 31 32 643 1 1 2
64 27 .08 2 1 24 227 19
65 26 .24 2 1 23 195 2
66 45 . 1 2 32 45 310 44
67 59 .52 33 34 205 129
68 36 .08 30 32 187 30
69 44 .07 38 43 95 12

For the Sedge Warbler data at Dungeness, the two cut off 

points tj and t2 appear to be close together, suggesting a 

triangular shape to the spring migration season - see 

Fig. 6.2.5.4. One would expect a different shape to the
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autumn migration season, which is usually much longer than 

the spring season. This feature is clearly seen in an 

example using Whitethroat Dungeness data - see Fig. 6.2.5.1.

Figs. 6.2.5.2 to 6.2.5.5 show the 1963 (spring) Dungeness 

Sedge Warbler together with fitted values from models (6.1) 

and (6.3). Also shown are the residuals. Fig. 6.2.5.2 

shows fitted values for model (6.1 ), and the one-day lag 

between fitted and actual values is clearly seen.

Fig. 6 .2.5.4 shows the actual counts and the curve 

representing the expected new arrivals. The residuals for 

model (6.3) show much the same pattern as those for model 

(6.1), but are, in general, smaller in magnitude. There is 

some evidence therefore, but no convincing evidence that 

model (6.3) gives a better fit than model (6.1). 

Unfortunately it is not practicable to carry out a more 

extensive analysis of model (6.3), and this, in itself, 

suggests that it is not worth pursuing this model here.

6.2 .6  Migration indices from model (6.1 )

The object of fitting model (6.1) to sequences of daily 

counts is to obtain indices of migration volume by 

eliminating counts of birds observed more than once. The 

number of newly arrived birds each day is estimated by A 

which is assumed constant throughout a migration season.

A simple migration index is given by nA where n is the 

number of days comprising that particular season.
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Fig. 6.2.5.1 Example of fitting Model(6.3)
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Tables 6.2.13 - 6.2.16 present the model (6.1) indices with 

the relevant CBC indices. All indices are adjusted to have 

a value of 100 in 1966. Comparisons with CBC indices for 

the Pied Flycatcher and Redstart are not possible due to 

the absence of CBC data for these species. Estimates of 

standard errors of the migration indices are also given in 

the tables. These estimates were arrived at by assuming 

that the true value of the index for 1966 is the estimate 

of that index. The standard errors are therefore only 

approximate. Although the standard errors decrease in 

size with decreasing size of index, in years when few birds 

were recorded, the coefficient of variation is over 50%. 

However, 70% of the indices given in the tables have a 

coefficient of variation of less than 15%.

Table 6.2.17 shows that for most species/observatory 

combinations considered, there is no evidence that model 

(6.1 ) migration indices reflect year-to-year changes as 

measured by the CBC. The migration indices do, however, 

show the major population crash of the Whitethroat (1968-69) 

and also the Blackcap indices appear to reflect the trend 

of the woodland CBC index.

In order to see whether or not the migration indices are 

more useful than raw totals of birds observed the relevant 

correlation coefficients are presented in Table 6.2.17.

There is no consistent pattern of improvement over raw 

totals for the Sedge Warbler, but for the Blackcap there 

is a small improvement. There is a suggestion that for the
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Table 6.2.13 Sedge Warbler CBC and model (6.1) indices

SPRING AUTUMN

Year CBC(F) Dungeness Portland Bardsey Spurn Dungeness Portland

1961 - 381 (36) 0 - 35 (3) 74 (13) 28 (3) 44 (7)
62 60 394 (35) 83 (13) 58 (4) 5 (3) 72 (6) 16 (4)
63 59 253 (28) 115 (16) 58 (5) 4 (2) 94 (6) 7 (3)
64 80 42 (10) 151 (18) 37 (3) 41 (8) 134 (8) 52 (8)
65 78 5 (4) 48 ( ID 8 (1) 27 (6) 56 (5) 108 (12)
66 100 100 - 100 - 100 - 100 - 100 - 100 -
67 66 292 (31) 195 (20) 42 (4) 49 (9) 91 (6) 162 (14)
68 113 69 (16) 165 (18) - - 75 (6) 99 ( ID
69 63 28 (9) 10 (4) - - 60 (5) 86 (10)
70 79 23 (8) 106 (15) - - 111 (6) 284 (19)
71 65 139 (19) 52 ( ID - - 53 (4) 117 (12)
72 54 144 (19) 171 (20) — — 14 (2) 181 (15)

(Estimated standard errors in parentheses)

Table 6.2.14 Whitethroat CBC and model (6.1) indices

SPRING AUTUMN

Year CBC(F) CBC(W) Dungeness Dungeness

1961 — — 167 (7) 84 (5)
62 85 - 50 (4) 1 1 0 (6)
63 80 - 58 (4) 95 (6)
64 84 92 41 (3) 125 (7)
65 84 97 22 (1 ) 116 (6)
66 100 100 100 - 100 -
67 86 91 39 (3) 125 (7)
68 1 1 0 128 74 (5) 94 (6)
69 30 45 2 (1 ) 9 (2)
70 31 49 15 (2) 24 (3)
71 33 42 22 (2) 54 (4)
72 26 35 6 (1 ) 23 (3)
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Table 6.2.15 Willow Warbler CBC and model (6,1) indices

SPRING AUTUMN

Year CBC(F) CBC(W) Dungeness Dungeness

1961 - - 8 - 51 (4)
62 53 - 43 (3) 77 (5)
63 63 - 51 (3) 65 (4)
64 72 81 37 (3) 99 (5)
65 87 84 24 (2 ) 57 (4)
66 100 100 100 - 100 -

67 96 92 40 (3) 65 (4)
68 115 103 27 (2) 99 (5)
69 114 108 50 (3) 93 (5)
70 120 100 61 (4) 108 (5)
71 96 88 30 (1 ) 102 (5)
72 99 97 74 (A) 53 (4)

Table 6.2.16 Blackcap CBC indices and model (6.1) indices

SPRING

Year CBC(F) CBC(W) Dungeness

1961 - — 44 (9)
62 24 - 161 (18)
63 44 - 77 (1 2 )
64 80 91 74 (13)
65 68 84 22 (7)
66 100 100 100 -

67 86 92 38 (1 0)
68 114 99 72 (13)
69 105 104 22 (7)
70 127 1 0 1 133 (16)
71 115 95 56 (1 0)
72 157 115 169 (19)
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Table 6.2.17 CBC vs. model (6.1) indices

a) Sedge Warbler

SPRING AUTUMN

Dungeness Portland Bardsey Spurn Dungeness Portland

CBC(F) /—N0CM•1<fr•1 .10 (.19) .30 (-.23) -89* (.74) .39 (.38) .07 (.02)

(Correlations between raw totals and CBC in parenthesis) 
* significant at 5% level

b) Whitethroat

Dungeness (SPRING) Dungeness (AUTUMN)

CBC(F) .83** (.82) .88** (.97)

CBC (W) .78** (.95) .82** (.97)

** significant at 1 % level

c) Willow Warbler

Dungeness (SPRING) Dungeness (AUTUMN)

CBC(F) .18 (.03) .56 (-.18)

CBC(W) .44 (.22) .25 (.06)

d) Blackcap

Dungeness (SPRING)

CBC(F) .14 (-.32)

CBC(W) .71* (.71)
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Whitethroat, the raw totals perform better than the model- 

based indices but both give significant correlations with 

CBC indices.

The migration indices from model (6.1) are plotted in 

Fig. 6.2.6.1 with the relevant CBC indices. An encouraging 

feature is that although the correlation coefficients for 

the Willow Warbler (spring and autumn) are not significant, 

the long-term trend of the CBC index is clearly reflected 

in the migration index.

Although individual seasonal migration indices from 

Dungeness and Portland show no correlation with the Sedge 

Warbler CBC index, an investigation into the possibility of 

forming a combined index was carried out. In order to have 

sufficient data to perform a multiple regression analysis 

of CBC index on migration indices, only indices from 

Dungeness and Portland are used - other observatories 

provide too few years with which to work. Spring and autumn 

indices were included in the regression as well as indices 

from the previous autumn. Using all variables the 

regression is not significant although the correlation 

coefficient between CBC and combined migration index is 

significant at the 5% level. This suggests that, given 

more data, a significant fit may be obtained, giving 

migration indices with a lower level of precision. In the 

above regression, six explanatory variables are used with 

only eleven observations and so it is not surprising that 

a good fit is found.
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Fig. 6.2.6.1 ( Continued )
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For the Dungeness Willow Warbler data, it was found that 

by combining spring, autumn and previous-autumn indices, 

using multiple regression, a combined index shows positive 

correlation with the CBC index. A significant fit is 

obtained and the correlation coefficient between CBC and 

combined migration index is 0.75 (significant at 5% level). 

All three indices are needed to achieve this correlation.

For the Dungeness Whitethroat data the combination of spring, 

autumn and previous autumn indices leads to a combined 

migration index which has a correlation coefficient with 

the CBC index of 0.98. The very good fit of this linear 

model suggests that by combining migration indices one can 

yery accurately reflect population fluctuations as 

measured by the CBC.

Although the proposed migration indices of this chapter 

have so far been tested on a limited amount of data, the 

results are very encouraging. It appears that once model 

(6.1 ) is fitted to sequences of counts, each species requires 

individual attention in order to combine indices from 

different observatories and seasons. In other words there 

is no general rule for combining indices in order to achieve 

a migration index which follows the behaviour of the 

relevant CBC index.
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6.3 Parslow's transformation

6.3.1 Introduction

In a study of migration on the east coast of Great Britain,

Lack (1960) used as his estimates of the numbers of newly

arrived birds at various sites, the excess (if any) of

each day's count over that of the previous day. Lack's

attempt to eliminate 'stayers' from counts obscures

arrivals of similar magnitude on successive days.

Parslow (1962) suggested using the average of the minimum

possible and maximum possible number of arrivals on each

day. The transformation is illustrated below, where Wn is

the estimated number of new arrivals included in the

count for the day n (, Xv, ) *

If Xn_x > Xn then Wn = (0 + Xn)/2 = Xn/2

If Xn_i < Xn then Wn — (Xn_Xn_]_ + Xn)/2 = Xn-Xn_p
2

In this section we examine the extent to which this 

transformation accounts for birds staying from one day 

to the next at an observatory. We show that, if model 

(6 .1 ) is appropriate for a sequence of counts, then any 

serial correlation in the data is caused by 'stayers'. 

Therefore, to check, whether or not Parslow's 

transformation eliminates 'stayers' from the counts, we 

can examine the change in the sample serial correlation 

coefficient before and after transformation.
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Recall that model (6.1) is given by Xn = Yn + In, where 

Yn ^ Bin (xn-l, p) and In POl(A), where Yn and In are 

independent, for all n = 1,..., t. The serial correlation 

coefficient p1 is given by

6.3.2 Serial correlation under model (6.1)

In order to obtain expressions for variances and covariances 

we let n tend to infinity, i.e. we assume that the series

has settled down to an equilibrium state where variances and

covariances are independent of time.

We first find V(Xn) which, since Yn and In are independent,

is given by VCX^ — y(Yn) + V(In). The second term is

straightforward: V(Xn) — A. To find the first term, we 

consider the formula

J  VG W iW Xn)

V(Yn) = E(Yn2) - {E(Yn) } 2

and derive expressions for E(Yn2) and E(Yn) using conditional 

expectations as follows:

E(Yn) - E £ E (Yn/Xn-1 ) ]

where E(Yn/Xn-l> = ^  YnPr(Yn = %/Xn-l = x^p)
Yn

r (yn 7 1} | Pr(Xn-l = %-l)
xn-l Yn

xn-l

pE(Xn_p)
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The derivation of E(Yn2) is more difficult, and the algebra 

is presented in Appendix 6.1. We find that E(Yn2) is given 

by

E(Yn2) = p2E(Xn_1 (Xn_ 1 - 1) ) + p E C X ^ )  

and that the variance of Yn is given by 

V(Yn) = p2V(Xn-i) + p(l-p)E(Xn_1),

.*. V(Xn) = p2V(Xn-i) + p(l-p)E(Xn_1) + A

This is a recurrence relation which yields (see Appendix

6.1 ), as n -*• <*> ,

V(Xn) = E(Xn) = A/(l-p)

We now require the covariance between successive observations, 

and the algebra is set out in Appendix 6.2. We obtain the 

following result:

Cov(Xn+i,Tin) = pA_ , which gives
1-p

pq = p , as n -> »■ .

An obvious estimate of pj is thus given by p , the maximum 

likelihood estimator of p.

6.3.3 The effect of Parslow's transformation

For all the daily counts sequences to which model (6.1) was 

fitted, the serial correlation coefficient was calculated 

before and after using Parslow's transformation.

As one would expect from the work of section 6.3.2, the 

sample serial correlation coefficients were close to the 

estimates of the binomial parameter p of model (6.1). Any 

discrepancy will be due to the influence of the second 

parameter, A, of model (6.1), which is not independent of
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p - see correlations of Tables 6.2.1 - 6.2.10.

For all sequences of counts, the serial correlation 

coefficient was reduced after using Parslow's transformation, 

but the reduction varied from less than 10% to over 90%.

This suggests that in some instances, the transformation 

effectively removes 'stayers' from the counts, but 

sometimes it does not. An examination of the results 

suggested no reason for this inconsistency - there was no 

evidence of a link with the goodness of fit, the value of 

p or any ornithological features such as seasonal 

differences. It appears that if one is seeking an automatic 

method of eliminating 'stayers' from sequences of counts, 

then the fitting of model (6.1 ) provides a more reliable 

method since the model has been shown to fit most sequences 

of daily counts.

6.4 Conclusions and discussion

In this chapter simple models for daily counts are proposed, with 

a view to constructing an index of migration volume.

The first model, model (6.1), was found to be straightforward to 

fit to data and an extensive simulation study showed that for most 

sequences of counts, the fit of the model was good. For some 

sequences of counts however, the model did not fit. These 

sequences were from seasons where few birds were recorded. The 

implication of this is that although migration indices may be 

available for some years, in years when the population falls to 

a low level no indices are available. However, finding that the
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model fails to fit a set of data for a particular year is useful 

in itself since the attention of ornithologists would be drawn 

and investigations of the reasons behind the lack of fit could be 

made.

A very encouraging feature of model (6.1) is that it is possible 

to combine parameter estimates from different seasons or different 

observatories and form a migration index which is correlated with 

the CBC index. A limited number of examples is presented in 

this chapter but the success of the methodology should encourage 

further research using more species and observatories over longer 

time periods. If sufficient data from several observatories 

could be obtained, then the construction of a 'national' migration 

index may obviate the need for regional CBC indices which were 

discussed in chapter 2 .

One surprising feature of the parameter estimates of model (6.1) 

is that no consistent seasonal differences are found. The serial 

correlation of the counts is of a similar magnitude in spring and 

autumn. One would have expected less serial correlation in spring 

since birds are thought to be very keen to reach their breeding 

grounds but this hypothesis is not supported by the analysis of 

this chapter.

Alternative models to model (6.1) have been studied. One model 

(model (6.2 ) ) was suggested where the assumption of constant p 

over the migration season was relaxed. Another model 

(model (6.3) ) was studied where the parameter A was allowed to vary 

over the season. Neither of these two models suggested significant
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improvements in goodness of fit or the correlation of migration 

indices with CBC indices. Further, models (6.2) and (6.3) are 

difficult to fit to data in terms of computing complexities and 

time, and would not offer a simple and automatic procedure which 

ornithologists could easily use.
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Appendix 6.1

E(Xn) and V(Xn)

(see section 6.3.2)

E(Yn2) = E |E(Yn2/Xn-l) |

where E(Yn2 /Xn_x) yn2]pr(Yn = Yn/Xn-l = xn-i)
yn

= ^  j | ̂  ynpr(yn/:xn-l)|pr(Xn-l = ^n-l)
xn-l

= £  { V l ( v r l ) p 2 + xn-lp}Pr(Xn-l = *n-l)
*n-l }

= p2 E ̂ Xn(Xn_1) | + pECX^p)

V(Yn) = p2E(X2n-l) ~ p2E(Xn_1) + PE(Xn_i) - p2E(Xn_ 1 ) 2 

= p2V(Xn-i) + p(l-p)E(Xn-l) 

and so V(Xn> = p2V(Xn_i) + p(l-p)E(Xn-l) -h X

We form from the above recurrence relation,
n_

V(Xn) = p2(n-1) V(X±) + (1-p) E  p 2n-l-2i E(Xi)
i=l

n-l ,
+ p2<1_1)

i=l
(A6.1)

Considering each term of (A6.1) individually, 
2(n-l)as n -> °°, p V C X i )  0 .

The second term of (A6.1) can be rewritten as
n-lz
i=l

?n-l-2iZ  P E(Xx) = p2n 1 Z  P 2 1 E(Xx) 
i=l
n-lz
i=l

n-l
+ p 2"-1» r  {p 

i=l 1
"2i Z  pk 

k=o
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O 1 1 2 n _ 1  1 n _ 1  T  • 12n 1 T -,/v \ /-» 1 \ , p À \ 2i ✓ 1  lvp E(X2) (1-p ) +  ̂ . \  p (1-p )

Pn (1-P)

p2n _ 1 E(Xi) (1-p11'1)

(1-p) E
i=l

(1-P)

P P2 (n-1 )

(1-p) ! (p2-d

and as n 00

n- 1  n- 1  ,_P P (P -1)
(1-P)

= 0 + À + 0
(1-p) 1-p'

^p______
(1-p) (1-p2)

Thus, as n -> 00

is Àp
(1-p2)

the second term of (A6.1)

Finally, the third term of (A6.1) 

n -> 00 , which gives

V(Xn) = A J  (1-p) .

A
1^ as

It is straightforward to obtain an expression for E(Xn) from the 

recurrence relation E(Xn) = pE(Xn_p) + A , which leads to E(Xn)

A / (1-p).
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Appendix 6.2

Cov(Xn+l, Xn) and pi

(see section 6.3.2)

Cov(Xn+l,Xn) = E(Xn+1Xn) - E(Xn+i) E(Xn)

where E(Xn+iXn) = Z  xnE(Xn+1 /Xn = xn) Pr (Xn = xn)
xn=o

CO

= Z  xn {^nP + A } Pr(Xn = xn) 
xn=o

CO

= Z  {pxn2 Pr(xn=^n) + *xnPr(Xn = V
Xn=o

As n -> ® , E(Xn+iXn)

and so Cq yCX^+^jX̂ )

= pE (Xn2) + A ECXh)

= P i V(Xn) + E(Xn) 2 } + AE(Xn)

\ X  X 2 I A2
^ P | 1-p + (1-p)2 j + 1-p

pA(l-p) + pA2 - A2(l-p) - A2 

(1-p)2 

= pA/(1-p)

Hence, ^
n co

P* (l~p) 
(1-p) ‘ A

= P •

Note: it is straightforward to extend these results;

for example, p2 ~ corr. (Xn, Xn_2) = p2 , etc.
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CHAPTER 7

WEATHER DRIVEN MODELS FOR DAILY COUNTS

7.1 Introduction

In this chapter we examine a new method of including information 

on local weather conditions into models for daily counts of 

grounded migrants.

We start by considering a simple model where weather information 

is condensed into a binary form, i.e. we consider two types of 

weather condition. This idea follows from the work of chapter 5 

where two-group discriminant analysis was studied. We later 

re-examine the Poisson-binomial models of chapter 6 with the 

introduction of weather information.

The models of this chapter are constructed with a view to the 

formulation of migration indices for population monitoring. The 

weather data are used as a means, of distinguishing between high 

and low counts while taking into account that on certain days, 

no birds would be expected and on other days, conditions are 

ideal for large numbers of migrants to be grounded. In order to 

proceed in this way, we need to be precise about the definition 

of a migration season, i.e. when does it start and finish? This 

problem is considered in section 7.2.

7.2 Defining the migration season

In the previous chapter, models were fitted to sequences of daily 

counts which spanned the entire observed migration season, i.e. 

from the first count to the last count. Initially, no account
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was taken of the fact that one often observes a slow start to the 

season as well as a gradual decline towards the end of the season. 

Later, more complex models were examined where the 'shape' of the 

migration season was considered.

In this chapter the aim is to calculate expected numbers of birds 

on certain categories of days, on the basis of weather and 

migration data. It is important, as will become clear in later 

sections, that these calculations are based on periods of time 

during which the migration is at a reasonably steady rate. One 

therefore needs to choose carefully the period of time for analysis.

In order to fix the time period for the analysis of each season's 

counts, we could follow one of two simple approaches. We could 

use a fixed number of weeks or months, starting from the same date 

each year, where the length of the period is chosen on the basis 

of, for example, the all-time earliest and latest records for a 

given species. However, if for some reason the supply of birds 

is drastically reduced in a particular year, then we may end up 

with a period for analysis that includes mostly zero counts.

This method is also susceptible to changes in the timing of 

migration in each year, although in section 3.2.4 we found no 

evidence from our brief investigation that this would, in fact, 

be a problem. An alternative and more objective method is to 

choose the period for analysis on the basis of the observed 

counts. This means that the period used for analysis will vary 

from year to year, and so may accommodate changes in climatic 

conditions for which we have no data. Within each chosen period 

we can then examine the numbers of birds recorded in relation to
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local weather conditions for which we have data available. A 

simple method of choosing the period for analysis is to count 

up the total number of birds seen over each season, and then 

study the central, say, 4/5ths of the season. Thus our chosen 

period starts on the day on which the n/lO1-̂  bird is recorded 

(n is the total number) and ends on the day on which the 9n/10th 

bird is recorded. An advantage of this method is that extremely 

early and late counts, which generally consist of only one or 

two birds are excluded. Thus we reduce the possibility of our 

analyses being influenced by extreme counts, which may be of birds 

behaving in a manner which is different from the large majority 

of birds.

We have suggested above that the outer deciles of the data 

(relative to time) could be discarded, but this is only one such 

possibility. If we discarded, for example, the outer quartiles, 

then experience has shown that the remaining period is rather 

short - perhaps of the order of two weeks or less. This is a 

consequence of extremely large counts which 'draw' in the outer 

percentiles. A survey of some data sets has suggested that by 

using the central 80% of counts in each season, then one is mainly 

dealing with sequences approximately three or four weeks long in 

the spring, and four or five weeks long in the autumn. Unless 

stated otherwise, the sequences of counts that are examined in 

this chapter have been selected in the manner described above.
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7.3 Bird-days and Non-bird days

7.3.1 Discriminant functions

In chapter 5 we saw that it was possible, in most cases, 

to distinguish between high and low counts on the basis 

of a series of weather observations. The success of the 

two-group discriminant analyses suggests that one could 

regard each daily count as originating from one of two 

sampling distributions where the appropriate distribution 

for each count is determined by local weather conditions. 

This idea for a simple model is developed further in the 

next section. In this section we investigate how the 

observed counts behave on days that are designated as 

'bird-days' or 'non-bird' days on the basis of the 

discriminant functions. The discriminant functions that 

we use here are those that led to the most successful 

discriminant analyses of chapter 5. The coefficients 

are tabled in table 5.4.5. The discriminant scores are 

straightforward to obtain by multiplying the coefficients 

by the relevant weather observations, for every day under 

consideration. The success rates for the discriminant 

analyses may not be reflected in the diagrams presented 

in this section, since we now consider only one year at 

a time, rather than the combined data for a number of years.

Each diagram that is presented in this section displays the 

observed daily counts together with an indication as to 

whether each day was designated as a bird day or a non­

bird day. (An asterisk on the time-axis indicates a bird- 

day, and corresponds to a discriminant score of less than
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zero). Of the 88 available plots, we only present a small 

sample here, chosen in order to exhibit interesting 

features.

Fig. 7.3.1.1 shows two examples where asterisks appear to 

coincide with days on which birds were actually observed, 

and sequences of non-bird days coincide with days on which 

relatively few birds were observed. These examples are 

from Dungeness (Sedge Warbler, autumn 1967 and Willow 

Warbler, spring 1966).

On the whole, most of the diagrams were of this form, and 

it is difficult to find examples where bird-days coincide 

with zero or low counts of birds throughout most of the 

migration season. Fig. 7.3.1.2 shows three examples where 

few birds are observed over a period of bird days, but 

even on these diagrams the largest counts do coincide with 

bird days, (Dungeness; Willow Warbler, spring 1970, Sedge 

Warbler, autumn 1969 and Redstart, autumn 1968).

In some cases, for example Whitethroat data, very few birds 

were recorded in some years, and so even on bird days, few 

birds were seen - see Fig. 7.3.1.3 (Portland, Whitethroat, 

spring 1968).

The overall picture that emerges from a graphical study of 

the discriminant analyses is that, by and large, one is 

able to predict periods of high counts and low counts by 

considering a small set of weather variables, and therefore
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F i & .3.1 .1__ I w .q examples where predicted bird-da vs coincide with
high counts of grounded migrants.

( asterisks on the horizontal axis indicate bird-days )

Sedge Warbler,. Duneeness 1Q67

Willow Warblert Duneeness 1Q67
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F i g . 7 . R . 1.2__ Three examples where predicted bird-davs coincide with
low counts of grounded migrants.

( asterisks on the horizontal axis indicate bird-days )

Sedge Warbler. Dungeness 1Q6Q

Redstart. Dungeness 1Q68
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-Fl£.— 7_«_3. > 3 __ An example where few birds are recorded on both predicted
bird-davs and n o n - b i r d - d a v s .

Whit e t h r o a t ,  Portland IQ 68
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the next step is to attempt to develop this idea in terms 

of statistical models.

7.3.2 A model for daily counts (model 7.1)

In this section we propose and examine a simple model for 

daily counts. Each count is considered to be an observation 

from one of two possible distributions of counts. We shall 

examine the case where both distributions are Poisson, this 

being the simplest choice when data are counts. The 

distribution pertaining to each count shall be governed 

partly by the data, and partly by weather variables. By 

using the appropriate discriminant function, we can 

calculate, for each count, a discriminant score. Depending 

on whether or not the score for a particular day is 

greater than or less than some threshold value (a parameter 

of the model), then the day is designated a bird day or a 

non-bird day.

The model may be written as follows:

I
e"*B XPx / x I Wi < WQ

e 'N ANX / x I Wi > WD

where X£ is the count on day i, is the mean count on 

non-bird days, Ag is the mean count for bird-days and WQ 

is the 'weather threshold'. W£ is the observed discriminant 

score on day i. In fitting this model, we are assuming 

that the counts are independent of time. We later consider 

how this assumption might be relaxed. Note that in 

modelling the data in this way we are assuming that on each
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night, there is in fact a supply of birds migrating that 

are able to land at observatories if the local weather 

conditions are such that the day is designated a bird 

day. This will clearly not always be the case, but the 

discriminant analyses have shown sufficiently encouraging 

results to merit an attempt at considering weather-driven 

models.

The parameter for the weather threshold, WG, is included 

in the model in order, as much as possible, to allow for 

differences in behaviour from year to year (the discriminant 

scores were evaluated using data amalgamated over a period 

of years). The estimated value of WQ is, however, expected 

to be close to zero.

Given a sequence of daily counts and the associated 

discriminant scores, it is straightforward to estimate the 

parameters Ag, and WQ by maximum likelihood. Rather

than using the Nelder-Mead simplex method, a global search 

in three dimensions was carried out in order to find the 

maximum likelihood estimates. This method, while 

relatively inefficient compared to the simplex method, 

enables contour plots to be produced with little difficulty, 

using NAG graphical facilities.

Table 7.3.2.1 and 2 show the parameter estimates, rounded 

to the nearest integer, for the combinations of species, 

observatory, season and year that were studied in previous 

chapters. Because of the way in which the estimates were
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Table 7.3.2.1 Parameter estimates (maximum likelihood)
for model (7.1)

AAN = mean no. of birds on non-bird days 
A
AB = mean no. of birds on bird days 
A
W = weather threshold value o

SPRING

a) Sedge Warbler

Dungeness Portland

IB/AN: 2.6 13.8

b) Willow Warbler

Dungeness Portland

Year AAN
A
AB A

w0
AAN AAB A

Wo
1961 9 48 - 2
62 2 1 1 1
63 17 200 - 1
64 9 44 1
65 7 25 - 1
66 1 1 35 0
67 5 75 0
68 6 13 0 i 3 - 2
69 9 35 - 2 i 1 0
70 1 19 2 2 5 0
71 3 7 - 1
72 1 1 40 0

mean: 7.5 46.0 -.3 1.3 3.0 -.7
^B/^N: 6.1 2.3
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c) Whitethroat

Dungeness Portland

mean: 8.7 28.3 .9 3.7 34.3 -1.3
AB/AN: 3.3 9.3

d) Redstart

Dungeness Portland

mean: 1.7 5.7 0.0 1.7 7.0 —1.0
AB/AN: 3.4 4.1
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mean no. of birds on non-bird days 
mean no. of birds on bird days 
weather threshold value

AUTUMN

a) Sedge Warbler

Table 7.3.2.2 Parameter estimates (maximum likelihood)
for model (7.1)

mean: 5.3 41.0 .5 3.3 35.0 1.3
W ^ N :  7.7 10.6

b) Willow Warbler

Dungeness Portland

Year A A AAN AB WD A A AAN AB WQ

1961
62
63
64
65
66
67
68
69
70
71
72

17 33 -1 
1 49 3 
17 26 1
1 35 2

14 39 0 
17 34 -1 
20 79 -1

mean: 9.0 35.8 1.3 17.0 50.7 -.7
IbA n : 4,0 3.0
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c) Whitethroat

Dungeness Portland

Year A  A  AAN AB WD A  A  AAN AB WG

1961
62
63
64
65
66
67
68
69
70
71
72

8 2 1 1 
1 31 3 
1 3  1 
1 7  2

20 29 0 
6 1 1 1 
5 13 0

mean: 2.8 15.5 1.8 10.3 17.7 0.3
A A

AB/AN: 5.5 1.7

d) Redstart

Dungeness Portland

AB/AN: 1.7 2.9
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arrived at, no estimates of standard errors or correlations 

are readily available. We shall gain some insight into 

the precision of the estimators however, when we examine 

contour plots of the likelihood surface with WQ fixed - 

see section 7.3.4.

A  A
For every data set studied, we find that A g  A^, as we

a awould expect. Data sets that give A g  = are those where 

discrimination (see chapter 5) was poor, or that no bird- 

days or no non-bird-days occurred.

One can examine the tables of estimates and compare spring 

and autumn, Dungeness and Portland, different species etc., 

but one finds no noticeable differences in the ratio of
ft ftA g  to A^, nor m  their absolute values.

Having obtained a set of parameter estimates, which appear 

to be of the correct order of magnitude and relative 

magnitudes, we need to examine how well the model is fitting 

the data, and this is considered in the next section.

7.3.3 Goodness of fit

In order to see how well the model is fitting the data, we 

examine the magnitude of the residual variation, and also 

compare observed values with expected values.

As an indication of how one might proceed and investigate 

goodness of fit, we shall present two examples. These 

examples were chosen because plots of expected and observed

272



counts appeared to suggest that the fit was good. One of 

the examples includes a large ’fall' of migrants.

Fig. 7.3.3.1(a) shows a bar chart of the counts for the 

Whitethroat data from Portland (autumn 1970). Each count 

is labelled as a bird-day or a non-bird day (x and □ 

respectively). Also shown are the expected counts on each 

day, under model (7.1), (* = bird day and 0 = non-bird day).

In this example one can see that bird days tend to coincide 

with days on which large numbers of birds are observed.

The estimates of A^ and Ag were, for this data set, 5 and 

13 respectively. There is some evidence of clustering 

among the residuals (Fig. 7.3.3.1(b))- i.e. the small 

residuals tend to be grouped together as do the larger 

residuals, but this is due to the serial correlation of 

the daily weather observations, and their combined effects 

in the discriminant functions. There is no evidence of 

particularly large residuals (ignoring sign), although 

this particular set of counts do not exhibit any large 

'falls' of migrants.

A rough guide as to how well the model fits the data is 

given by the proportion of the variation within the data 

that is explained by the model. For the above example,

74% of the total variation is due to the model (7.1). It 

is not possible to carry out an F-test of the ratio of the 

mean squares for the model and for the error term since 

neither the residuals nor the data are normally distributed.
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Hhitethroat data. Portland f Autumn 1Q70.

Fig.  7 . 3 . 3 , 1(a) -Observed..and expected counts under HnripU7. ii ,

k e y

X C O U N T  O N B I R D  D A Y

X E X A C T E D  C O U N T  O N B I R D  D A Y
D C O U N T  ON N O N - B I R D  D A Y

O E X P E C T E D  C O U N T  O N N O N - B I R D  D A T

Fig. 7.3.3.1(b) Residuals

J 50

0 - . x
Xv°

- X X
4-, X 50

Day, from 1st July

- 5 0 -

K E Y
X R E S I D U A L  0 N B I R D  D A T
o R E S I D U A L  0 N N O N - B I R D  D A Y
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We can, however, obtain a rough guide to the significance 

of the residual variation by performing a chi-square 

goodness of fit test. (Note that the % of variation 

accounted for is a useful means of comparing alternative 

models - see section 7.3.5).

The X2 - statistic for the above example is 133.1 (28 degrees 

of freedom) which is highly significant, suggesting that 

the model is not fitting the data.

Fig. 7.3.3.2 shows a second example of observed and expected 

counts (Willow Warbler, Dungeness, spring 1967). These 

counts include one large 'fall' of birds, and consequently 

one residual is noticeably large.

The proportion of total variation accounted for by the 

model is, for this example, 51%. One would expect that 

this low figure is due mostly to the one particularly high 

count. This count corresponds to a residual of 125, and 

if the sum of squares of the data is reduced by 1252, then 

the proportion of variation accounted for becomes 84%.

This is only a rough guide, since the residual would not 

be exactly zero, even for a more suitable model.

The X2 - goodness of fit statistic for this example is

352.2 (12 d.f.), or 149.9 without the large 'fall'. Either 

way, the model appears to be unsuitable for these data.

We now briefly examine the precision of the parameter
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Wi^Jow Warbler data. Dungeness. Spring 1 967 .

£ »— 7.3.3.2(a)_ Observed and expected counts under Model(7.1),

200 -1
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Day, from 1st April

K E Y
X C O U N T  O N B I R D  D A Y
X E X P E C T E D  C O U N T  ON B I R D  D A Y
a C O U N T  O N N O N - B I R D  D A Y

o E X P E C T E D  C O U N T  O N N O N - B I R D  D A Y

Fig. 7.3.3.2(b) Residuals
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276



estimates and then move on to consider alternative models.

7.3.4 Precision of parameter estimates

The parameter estimation procedure was carried out as 

follows. A series of values of WQ was examined and for 

each WQ the estimates of the parameters A|sg and Ag were 

obtained on the basis of maximum likelihood. The optimum
A A Aset of estimates Ajsg, Ag and W0 thus correspond to the 

overall maximum of the likelihood (or log likelihood).

AIn most cases WQ turned out to be close to zero, although 

the maximum value of the likelihood did not alter 

substantially for different values of WQ. We shall examine 

the effect on the likelihood value when the parameters Aĵj 

and Ag are varied. We can do this by plotting contours of 

the log-likelihood surface (log-likelihood is used in order 

to avoid using extremely small numbers).

Fig. 7.3.4.1 shows two examples of such contour plots.

The Sedge Warbler example suggests that Ag is estimated 

more precisely than A^ since each contour covers a larger 

range of values for A^ than for Ag. The same feature is 

seen with the Whitethroat data, although to a 

lesser extent. Indeed, this feature was found on most 

contour plots for this model.

In practical terms this means that on bird days (days with, 

for example, bad weather), we are likely to get a more 

accurate picture of migration volume than on non-bird days
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Fig .
( Contours are numbered 1-30 in increasing order of height )

N

? . 3 . 4 . 1-- C o n t our Plots of Lo g - 1 i k e l i h o o d  surface for M o d e l (7.1)

(a) Sedge Warbler 

Dungeness 

Spring, 1961

Wc= 0

>*>
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when we have little idea as to whether birds are migrating 

overhead or not.

Fig. 7.3.4.2(a) shows an example where the value of Ajsj has 

no effect on the likelihood of the data at all, this being 

an indication that in this particular year there were no 

non-bird days according to the local weather conditions.

Fig. 7.3.4. 2(b) is another example of where the precision of
A AAg is much greater than for Afsj. The highest contour on this 

map spans 45 units for Apq, and 10 units for Ag.

The information gained from looking at the contour plots 

is useful for when we come to form migration indices. For 

migration seasons which consist of more bird days than non­

bird days, the migration index will be less precisely 

estimated than an index calculated from a migration season 

which consists of more non-bird days than bird days.

7.3.5 Model (7.1) with serial dependency : model (7.2)

The work of chapter 6 (fitting Poisson-binomial models to 

sequences of daily counts) suggested that each daily count 

of grounded migrants is, in general, partially dependent 

on the count of the previous day.

We now incorporate this feature into model (7.1), and compare 

the fit of the new model - model (7.2) - with that of 

model (7.1).

Denoting the count on day n by Xjj, model (7.2) can bx. vor -Mc-y*
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E i-R , 7.3.4.2-- Contour plots of Log-likelihood surfar.p for Modelf7 n
( Contours are numbered 1-30 in increasing order of height )

(a) Sedge Warbler 

Portland 

Spring, 1968

A
we = 0

>>5
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In if Wn > w0

In if Wn < w0

(xn--l>p) 9 In ^

*n = Yn

where Yn ^ BIN (xn_i,p), In ^ p0I (Afyj), In ^ p0I >

Wn is the discriminant score for day n and WD is the 

threshold value, again a parameter of the model. We now 

have four parameters to estimate (Ag, A^ p and WD), and 

so we use the Nelder-Mead simplex method. The parameter 

estimates are given in Tables 7.3.5.1 and 7.3.5.2. The 

tables are set out in the same style as those tables 

containing the estimates for model (7.1) in order that 

comparisons may be made with ease.

One feature of the tables is that, in most cases, the 

estimates are quite different between the two models.

These differences are, of course, attributable to the 

inclusion of the extra parameter p. Note that in some 

cases however, including average estimates (over all years 

considered), the results are much the same.

There is no consistent difference between the two models 

as regards the ratio of average estimates of Ag and Afsj.

In some cases model (7.1) gives a higher ratio, and in 

other cases model (7.2) gives a higher ratio.

Only three out of 88 estimates of p, the binomial parameter 

of model (7.2), are less than 0.5. This is very much in 

keeping with the results of chapter 6, where we fitted the 

simple Poisson-binomial model to the data.
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Table 7.3.5.1 Parameter estimates for model (7.2)
A A= binomial parameter, AN, AB: mean counts for non-bird days

Aand bird days respectively, WG = weather threshold value.

SPRING

a) Sedge Warbler

mean: .26 4.2 10.4 -1 .17 1.0 3.7 -3
IB/AN 2.5 3.7

b) Willow Warbler
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SPRING

c) Whitethroat

DUNGENESS PORTLAND

d) Redstart

AB/AN 4.3 7.1
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Table 7.3.5.2 Parameter estimates for model (7.2)

A A Ap = binomial parameter, AN, AB = mean counts for non-bird
days and bird days respectively.
AWQ = weather threshold value.

AUTUMN

a) Sedge Warbler

DUNGENESS PORTLAND

Year A

P
AAN AAB A

W0
A
P

AAN AAB
A
w

1967 .31 5 8 -3
68 .28 7 1 1 0 .17 2 7 0
69 .17 5 16 -3 .52 1 4 1
70 . 0 1 6 13 0 .09 4 15 1

mean: .19 5.8 1 2 . 0 .26 2 . 0 8.7 .7
A  A

AB/AN: 2.1 4.3

b) Willow Warbler

A  _A

AB/AN: 3.3 2.1
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c) Whitethroat

DUNGENESS PORTLAND

Year A
P

A
AN AAB

A

Wo
A
P

AAN
A
AB

A
w

1967 .26 7 14 1
68 .19 19 23 3 .28 6 17 2
69 .14 8 24 2 .19 8 1 1 - 2
70 .43 0 5 1 .23 4 13 0

mean: .26 8.5 11.3 2 .23 6.0 13.7 0
A  A

AB/AN: 1.3 2.3

d) Redstart

AB/AN: 2.6 3.9
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The standard errors of the estimates were estimated to be
A  A  A

of the order of 0.05 for p, and 0-1 for and Ag. The 

estimator for WQ was estimated in most cases, to have an 

extremely large standard error, of the order of 10 0 0.

This unusual feature suggests that the likelihood is 

maximised for a large range of values of W0, and is due to 

some seasons consisting entirely of either bird-days or 

non bird-days.

The examples that were used to illustrate the goodness of 

fit of model (7.1) are now used for model (7.2).

Fig. 7.3.5.1 (c.f. Fig. 7.3.3.1) shows the observed and 

expected counts of Whitethroats (Portland, autumn, 1970).

The expected counts are no longer constant within bird 

days or non-bird days, and the fit appears to be better 

than for model (7.1). The residuals, however, appear to 

be of a similar magnitude, and the proportion of total 

variation accounted for by the model is also almost 

identical: 73% compared with 74% for model (7.1). The

goodness of fit statistic is 102.1 (133.1 for model (7.1) ), 

which is again highly significant.

The second example (Willow Warbler data, Dungeness, spring, 

1967) is shown in Fig. 7.3.5.2 (c.f. Fig. 7.3.3.2). The 

plot of the residuals shows that the fit is generally 

better than for model (7.1), but the residual corresponding 

to the extremely high count is larger, leading to a 

proportion of variation accounted for of 39%, compared with 

51% for model (7.1). Note that by adjusting fot the large
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residual, the proportion of variation accounted for becomes 

98%, compared with 84% for model (7.1).

The goodness of fit statistic for this example is 124.8, 

or 12.7 without the large 'fall'. It appears that for most 

of the data set, this model fits the data well 

( X 2 (.05) = 19.7) ).

Although the study of goodness of fit of models (7.1) and 

(7.2) is based on only two examples, it should be 

remembered that these examples were selected since a visual 

examination suggested that for these examples the fit was 

better than for other data sets. There is no conclusive 

evidence so far, that models of the type suggested in this 

chapter are suitable for daily counts, and we now examine 

one further model.

7.3.6 A generalisation of model (7.2) : model (7.3)

The model that is proposed in this section is a generalisation 

of model (7.2) in that the poisson input component of the 

model is a continuous function of the discriminant score, 

rather than a switching process between two distinct 

poisson variates. Thus we no longer compress information 

contained in the sequence {Wn} into a binary process. An 

immediately appealing feature of this model (model (7.3) ), 

is that the number of parameters is reduced by one.

In order to keep the model as simple as possible, we 

consider linear functions of the {Wn). The model is written:
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*n = Yn + An ’
where Yn 'u BIN (xn_q, p) and 'u POI (a + 3Wn). The 

sequence {Wn} is, of course, a realisation of some 

stochastic process determined by the discriminant analyses. 

However, we shall treat {Wn} as a fixed sequence of 

observations measured without error - rather like an 

explanatory variable in regression analysis. The three 

parameters that we wish to estimate are p, a and 3, and 

estimates are readily obtained by using the Nelder-Mead 

simplex method, as are estimates of assymptotic standard 

errors and correlations.

Tables 7.3.6.1 and 7.3.6 .2 show the estimates of the 

parameters. The assymptotic standard errors of these 

estimators were estimated to he of the order of less than
A  A  A

0 . 1 for p, and approximately equal to 1 .0  for a and (3.

In many cases 3 turns out to be zero, or close to zero, 

suggesting that the Poisson input to each days count is 

independent of weather (as measured by {Wn} ), and that a 

model of the form of model (6 .1 ) is appropriate, i.e. 

a •= A, using model (6.1) notation. This is not to say, 

of course, that weather is not relevant when modelling a 

sequence of daily counts, but it is perhaps an indication 

that model (7.3) is not a suitable form of model in this 

case. The proportions of total variation accounted for by 

model (7.3) for the two example data sets studied in 

previous sections are 55% and 16% for the Whitethroat and 

Willow Warbler examples respectively. If one ignores the 

single large residual for the Willow Warbler data, the
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Table 7.3.6.1 Parameter estimates for model (7.3)

= binomial parameter,
parameters for linear function of 

g / weather threshold value.

SPRING

a) Sedge Warbler

DUNGENESS PORTLAND

b) Willow Warbler
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SPRING

c) Whitethroat

DUNGENESS PORTLAND

d) Redstart
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Table 7.3.6.2 Parameter estimates for model (7.3)

AUTUMN

a) Sedge Warbler

DUNGENESS PORTLAND

b) Willow Warbler
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AUTUMN

c) Whitethroat

DUNGENESS PORTLAND

d) Redstart
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figure rises to 96%.

If one compares these proportions with those obtained 

using models (7.1) and (7.2), then it appears that model 

(7 .3) gives a poorer fit, and that one can do better with 

a model with a 'switching' process for the Poisson 

component. In practical terms, this result is one which 

we would have expected. On a given day, each bird has to 

arrive at a decision - whether to land at an observatory 

or not, or whether to migrate from some other locality or 

not. There are only two options open to each bird.

Further, there is no reason to suppose that, say, half 

the migrating birds choose to land, and the other half 

choose not to land. It is encouraging to see that the 

data back up this commonsense reasoning.

A further reason why we would have expected this model to 

fit less well than the other models is that it contains 

one less parameter.

Figs. 7.3.6.1 and 2 show the observed and expected counts 

for the two examples, together with residuals. If one 

compares these with the diagrams for model (7.2), then we 

see evidence that model (7.3) offers a poorer fit, 

particularly for non-bird days where most counts are over­

estimated. The goodness of fit statistics for the two 

examples are 117.9 and 456.2 respectively (the latter 

statistic becomes 44.5 after adjusting for the large 'fall').
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In summary, there is evidence to suggest that, out of the 

three models considered, model (7.2) gives the best fit to 

the data, but even this model (switching process with 

serial correlation component) fails to fit the data well.

In spite of the above conclusion, we shall briefly examine 

migration indices obtained from the models of this chapter, 

in the next section. We only consider the switching-process 

models, since model (7.3) showed no indication of fitting 

the data.

7.4 Migration indices

It is straightforward to obtain indices that estimate annual 

migration volume from the parameter estimates for models (7.1) and 

(7.2). In view of the way in which the models have been 

constructed, these indices may be thought of as 'weather corrected' 

indices. This section examines the correlation between migration 

indices and CBC indices.

7.4.1 An index derived from model (7.1)
A

In fitting this model we assumed that, on average, Ag birds 

are recorded on each day that is designated a bird-day,
A

and Ajsg birds are recorded on each day that is designated 

a non bird-day. An obvious choice of index is, for each
A _ A

season, to multiply Ag by the number of bird days, Â j by 

the number of non bird-days, add the two figures together 

and rescale the indices according to the B.T.O's 

convention (index for 1966 is equal to 100).
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Table 7.4.1 shows the indices for (a) Sedge Warbler, (b) 

Willow Warbler and Cc) Whitethroat. The data are from 

Dungeness, and are spring counts. These examples are 

those that allow comparisons with CBC indices over a 

suitable number of years. The corresponding CBC (farmland) 

indices are also shown in the tables, together with the 

relevant sample correlation coefficients. The story is 

much the same as in previous chapters: the large 

fluctuations in the population size of the Whitethroat is 

reflected in the indices, but otherwise there is little 

evidence of any correlation between the migration indices 

and the CBC indices. The indices are plotted in Fig. 7.4.1, 

which illustrate the lack of correlation for the Sedge 

Warbler and Willow Warbler data, and the positive correlation 

for the Whitethroat data - with the exception of 1962-63, 

where the migration indices were particularly high. This 

last feature has been found with other migration indices - 

see section 2.4.

An examination was also made of year-to-year changes in the 

indices, and no evidence was found to suggest a relationship 

between the CBC index and migration index for all three 

species. The Spearman rank correlation coefficient also 

suggests that for the Sedge Warbler and Willow Warbler 

data, no relationship between CBC and migration indices 

exists. The rank correlation between the two indices for 

the Whitethroat was, however, significant at the 5% level.

The lack of weather data from more observatories and for

299



Table 7.4.1 Migration indices from model (7.1)
(Dungeness spring data)

a) Sedge Warbler b) Willow Warbler

Year Index CBC

1961 129 -

62 314 60
63 91 59
64 86 80
65 33 78
66 100 100
67 125 66
68 36 113
69 20 63
70 35 79
71 35 65
72 18 54

Correlation -.20

Index CBC

73 -

31 53
179 63
37 72
42 87

100 100
54 96
35 115

100 114
43 120
23 96
76 99

-.17

c) Whitethroat

Year Index CBC

1961 68
62 343 85
63 188 80
64 108 84
65 24 84
66 100 100
67 102 86
68 80 1 10
69 19 30
70 26 31
71 15 33
72 19 26

Correlation .50 (not significant at 5% level)
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autumn migration seasons prevents the formation of a 

combined migration index for each species which proved 

successful in chapter 6. It is therefore not possible 

to conclude that weather data are or are not needed for 

the formation of migration indices. If one considers 

individual indices rather than combined indices, there 

seems to be no evidence in favour of using weather data, 

but it must be remembered that only spring data have been 

studied in detail, and only data from one observatory.

7.4.2 An index of migration derived from model (7.2)

An index based on parameter estimates of model (7.2) can 

be derived in a similar manner to the index derived from
A amodel (7.1). In this case, Ag and A^ are calculated while 

correcting for serial correlation, or in other words, the 

possibility of the same birds being recorded on successive 

days. Table 7.4.2 presents the indices together with CBC 

indices. Again, only the index for the Whitethroat 

appears to be significantly correlated with the CBC index.

The indices are plotted in Fig. 7.4.1 with the model (7.1) 

indices and CBC indices. The two migration indices are 

highly correlated (significant at 1 % level), and the only 

major difference between them appears to be that the model 

(7.2) index is less variable during the early part of the 

time period studied for the Willow Warbler and Whitethroat 

data.

An examination of the year-to-year changes of the indices
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Table 7.4.2 Migration indices from model (7.2)
(Dungeness spring data)

a) Sedge Warbler b) Willow Warbler

Year Index CBC

1961 90 —

62 335 60
63 208 59
64 127 80
65 40 78
66 100 100
67 11 0 66
68 103 113
69 53 63
70 50 79
71 187 65
72 65 54

Correlation -.30

Index CBC

54 -

58 53
19 63
29 72
25 87

100 100
54 96
34 115
73 114
30 120
25 96
22 99

.15

c) Whitethroat

Year Index CBC

1961 68 —

62 89 85
63 94 80
64 40 84
65 15 84
66 100 100
67 68 86
68 43 1 10
69 20 30
70 24 31
71 34 33
72 18 26

Correlation .60 (not significant at 5.5% level)
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and rank correlation between indices gave the same results 

as in section 7.4.1.

7.5 Concluding remarks

In this chapter we have considered models that are driven by a 

concomitant sequence of discriminant scores. Each score is a 

function of a number of weather variables. Although we have 

assumed that this sequence of scores is fixed, in reality it is 

a realization of a stochastic process and therefore subject to 

error. The implication of this is that we are unfortunately 

compounding error in the construction of models based on the 

sequence of scores {Wnl. It is therefore not surprising that 

the models fail to show a good fit to the data.

There is no doubt that there is more that could be done here.

For example, one may consider model (7.3) with a non-linear 

function of the discriminant scores, or one may investigate 

alternative distributions to the Poisson distribution. It is 

beyond the scope of this thesis to exhaust the possibilities for 

research of this kind, but here is an avenue that future research 

workers may like to follow.

The potential for obtaining useful migration indices from modelling 

work of this nature is not good. In order to justify going to the 

lengths of carrying out discriminant analyses and complex model 

fitting work, ornithologists would need to be sure that the 

resulting indices were reliable. This, as far as the work of this 

chapter has shown, is not the case.
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CHAPTER 8

RECOMMENDATIONS FOR FURTHER RESEARCH

8.1 Introduction

British bird observatories data have been used in this thesis for 

studying many aspects of migration and population dynamics. The 

diversity of topics covered is one reason why many questions which 

have arisen remain unanswered. Further progress in this field 

requires, in the case of forming migration indices for example, 

data of the type used in this thesis hut over a longer time period. 

Other areas, for example the study of waves of migrants, require 

data of a different type for further research, i.e. ringing data. 

Ringing data are becoming more readily available as the BTO 

increase the computer storage of such data and therefore it should 

be easier in the future to use ringing data in conjunction with other 

types of data.

This chapter sets out recommendations for further research in the 

many areas of migration research that are discussed in preceding 

chapters. The recommendations cover the collection of data at 

observatories, the storage of data by the BTO, and the statistical 

analysis of the data.

This chapter and the thesis concludes with a summary of the main 

findings from the preceding chapters.
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8.2 The collection of data at observatories

The collection of daily counts of grounded nocturnal migrants at 

British observatories is at present carried out in a haphazard 

fashion. The effect of this is that coverage of the observatory 

recording area may differ from day to day but, on the other 

hand, one usually finds that at least some observers are on the 

recording area throughout most of the morning.

An improvement that could be made in the collection of daily 

counts is to organise the available manpower each day and to 

conduct a census which is designed to provide optimum coverage 

over as much of each morning as is possible. The extent of the 

census will still vary from day to day but it should be possible 

to quantify this variability and to use this information in 

analyses of the daily counts. An organised daily census is 

carried at each day at Long Point Observatory, Canada, but no 

account of the level of manpower appears to have been made in 

analyses of the data (Russell and Risley, 1975) .

An organised daily census will not overcome the problem of birds 

being recorded by more than one observer and the usefulness of 

the census will still rely to some extent on the experience of 

the full-time warden who examines records each day. It is very 

important, therefore, that continuity of wardening from year to 

year should be sought as much as possible. When a new warden 

takes over at an observatory it would be advantageous if a 

transition period occurred where both out-going and in-coming 

wardens were working together. This would enable local knowledge 

of wardens to be passed on to successors.
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An activity at observatories which could be improved upon is 

the collection of weather data in such a form that the data 

could be easily passed on to research workers. Most observatories 

include weather information in their daily logs, but much of 

this data is in the form of subjective description. Computer 

code forms would be of more use to statisticians who wish to 

work in this area, and the completion of such forms each day, 

along with forms for bird counts, would not greatly add to the 

wardens workload. In Chapter 3 a number of basic weather variables 

are discussed and the number of weather observations that would 

be required each day would be as few as seven. Coded weather 

summaries could then be forwarded to the BTO along with the counts 

of grounded migrants. One difficulty in examining the link 

between weather and observatories data in this thesis was the 

limited availability of coded weather data from different sites 

over a long period of time. The Meteorological Office provided 

the weather data used in this thesis, but future researchers 

would benefit from easily available data from observatories, or 

the BTO.

8.3 The storage of data from observatories

This thesis represents the first wide-ranging examination of 

British observatories data and therefore much time was spent 

obtaining data and entering data into a computer. If the 

suggestions of the previous section are followed up, then much 

of the preparatory work could be considerably reduced for future 

individuals who wish to work with bird and weather data from 

observatories. Ideally, the BTO would be able to assign staff 

to the job of entering monthly data sheets from observatories
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into a computer so that future workers have immediate access to 

any subsets of the data. Upon request, subsets of data could 

be sent to individuals either as hardcopy or perhaps floppy 

diskettes or cartridge tapes. It seems likely that the easier 

it is to obtain observatories data, the more interest will be 

shown by both ornithological researchers and statisticians.

The above recommendation would involve the BTO in further pressures 

on their staff workloads, particularly if historical data were 

also to be entered on a computer, but this thesis has shown that 

many interesting features can be studied by using observatories 

data. In the light of this thesis it is likely that interest in 

this area of ornithological research will develop further, but 

only if data are readily available.

Since the commencement of this thesis, the BTO have entered onto 

their computer the data from the CBC. Future researchers will 

therefore be able to investigate the relevance of comparing data 

from observatories with CBC results with greater ease than has 

hitherto been possible. With the computerisation of other BTO 

data, for example, the Nest Record Scheme, it is logical that 

observatories data be treated in a similar manner.

8.4 Recommendations for further data analysis

In chapter 3 it was shown that linear relationships between CBC 

indices and variables representing the timing of migrants 

passing through observatories could be formed which give good 

descriptions of the data. Data on four different species were 

examined but no common relationship could be established.
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The data, however, spanned only a period of eleven years and if 

further data for these, and other species could be obtained 

over a longer time period, then it is possible that a common, 

underlying relationship will be found. If this is the case, 

then it would be possible to use this relationship with migration 

data for species which are not covered by the CBC, thereby 

providing a means of monitoring their population fluctuations.

In view of problems with using data from east coast observatories, 

i.e. the presence of non-British breeding birds in the data, it 

is recommended that attention be continued to be focused on Dungeness 

and Portland. Where possible, data from west coast observatories 

should also be obtained and used if the species under study are 

regular migrants at these sites. One is restricted, however, as 

to how many observatories can be included in an analysis of this 

type since the number of variables that one wishes to include in 

the multiple regression analysis of CBC index on migration season 

dates increases by four for each observatory included. CBC indices 

are only available from 1962, giving twenty-four years of data to 

the present date. One needs to balance the advantage of having 

migration data from a wide area with the disadvantage of having 

few data from which to derive a migration index. This is an 

important point for future researchers to investigate when more 

data are available.

In chapter 6 evidence was found to suggest that migration indices 

derived from spring and autumn seasons from Dungeness and 

Portland could be combined to form a migration index which monitors 

population levels. Using these migration indices which involve
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spring, autumn and previous autumn statistics, each observatory 

contributes three variables to the regression of the CBC index.

With the availability of data for the full twenty-four year 

period of the CBC, it would be possible to assess which and how 

many observatories need to be included in the formation of a 

combined migration index and to compare the reliability of the 

index with that based on the timing of migration. If only two 

or three observatories were found to be important for a 

particular species, then it may be possible to improve upon each 

individual approach by combining the index based on timing with 

that based on volume of migration.

The discussion of migration indices for population monitoring 

in this thesis has been concerned with the populations of birds 

of all ages. Observatories data may be useful for the study of 

populations of immature birds by using information on the waves 

of autumn migrants which some species show. In chapter 3 some 

methods for studying waves were given, but one would need many 

years of ringing data from observatories to be able to establish 

whether a particular wave consists of newly fledged birds or not, 

each year. Similarly, many years of ringing data would need to 

be examined in order to establish the extent to which observatories 

on the east coast of Britain record non-British birds which may 

be giving rise to one or more waves of migrants.

The statistical methods used in this thesis are those that offer, 

or attempt to offer, simple ornithological explanations to the 

data. There is clearly scope for further ideas to be tested 

here, for example, the models of chapters 6 and 7 are based on
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simple distributional assumptions which provide a suitable 

starting point for the research. One could try alternative 

distributional assumptions in model (6.1),for example instead of 

a Poisson input to the model a distribution such as the negative- 

binomial distribution may be able to accommodate the occasional 

large falls of counts which occur.

In this thesis large counts have mostly been overlooked because 

their occurrence is rare, but when more data are available it is 

recommended that attention be paid to these data in order to 

establish whether or not allowance needs to be made in the 

construction of migration indices.

The study of relationships between weather data and observatories 

data is another area which deserves further attention when more 

data become available. The work of chapter 5, where discriminant 

analysis was used, failed to find a common relationship among 

four species but this situation may change if one is able to use 

data over a longer time period. Ideally one would like weather 

data from other localities as well as observatories. For example, 

it would be worth attempting to obtain information on weather 

from France in the spring and from interior Britain in the autumn. 

The precise nature and origins of such data would be difficult to 

determine but a study of synoptic charts may lead to a summary 

variable which broadly measures the favourability of weather for 

migration which could then be included in, for example, 

discriminant analyses. One objective of such research would be 

to improve upon the discrimination of chapter 5, and to avoid 

having to discard much of the data in the initial analyses.
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If improvements of this sort were achieved, then a review of 

the modelling of chapter 7 may lead to more success with 

population monitoring.

8.5 Conclusions

Few attempts have been made in the past to analyse observatories 

data. Those that have been made have mostly been concerned with 

the timing of migration, length of season and migratory routes. 

These analyses have used ringing data rather than daily counts 

of grounded migrants - both data sets have their advantages and 

disadvantages as regards statistical analysis, and these are 

discussed in chapters 2 and 3.

A useful and informative way of studying daily counts of grounded 

migrants is to form bar-charts. These show that patterns of 

migration vary from year to year, as do the lengths of migration 

seasons. Some seasons begin and end abruptly while others build 

up and decline gradually. Other features revealed by bar-charts 

are occasional large falls of migrants and autumn waves of 

migration. The Sedge Warbler is a good example of a species which 

migrates in waves in most autumns. Patterns of migration are also 

seen to vary from observatory to observatory, even for the same 

species.

It is possible to identify specific deviations in migration from 

the norm by superimposing on bar-charts a curve which represents 

an average migration pattern. This simple graphical technique 

enables one to compare individual migrations both as regards 

volume and timing.
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The calculation of summary statistics on the timing of migration 

enables one to examine objectively any long-term trend in the 

migration of particular species. The Blackcap is an example 

where there is some evidence to suggest that autumn migration 

is becoming later each year.

There is evidence to suggest that it is possible to monitor 

changes in population level of migrant species by forming indices 

based on timing statistics from observatories. As mentioned in 

section 8.4, more work needs to be done in this area before firm 

conclusions can be drawn.

It has long been thought that weather data need to be included 

in any study of observatories daily counts. No evidence to 

confirm this has been found in this thesis, but on the other hand 

some simple statistical procedures have been shown to provide 

links between the two data sets and the results of migration 

indices formed from such links have proved sufficiently 

encouraging to motivate further investigation on this subject. 

Linear discriminant analysis appears to be a useful technique 

to use in the study of weather and observatories counts. For 

British data at least, multiple regression analysis is not 

appropriate for linking weather and migration since the assumptions 

that one needs to make are not met by the data. It is not possible, 

however, to assess the reliability of multiple regression analysis 

in other author's work due to the lack of information given.

One feature arising from the discriminant analyses is that no 

common subset of weather variables could be found to give good
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discrimination for all species considered. Some widely held 

opinions are supported by the discriminant analysis results 

however. For example low counts are associated with high, 

following winds and low amounts of cloud cover.

The modelling of sequences of daily counts with Poisson-binomial 

models suggests that the data do not show evidence of more 

hurried migration in spring than in autumn. It appears to be 

possible to fit simple statistical models to the data, although 

in years where few birds are recorded, the models do not fit 

satisfactorily.

No significant improvements in the fit of models or the success 

of migration indices derived from the models was found when 

weather information was introduced. Due to the limited time 

period used for this modelling work, firm conclusions cannot be 

drawn, and further work with more data is needed.

At present there appears to be no general rule for forming 

migration indices for different species, but as more data become 

available this situation may change. It is this possibility 

that should motivate further research on this subject since 

without a general rule for all species it is not possible to 

monitor population levels of species not covered by the CBC.

If this could be achieved then this would be a major step forward 

for ornithologists and those concerned with protecting habitats 

for British birds.
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The construction of migration indices is not seen to be 

significantly improved by the inclusion of weather data, although 

this approach should not be dismissed as only a preliminary 

examination has been possible so far due to the lack of readily 

available data. If a more extensive study along the lines of 

chapters 5 and 7 can be carried out then the relationship between 

weather and observatories may become clearer and the migration 

indices of this thesis may possibly be improved upon.
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Scientific names of birds mentioned in the text. 
( Species are arranged in Wetmore order. )

Goshawk Accipiter gentilis

Bee-eater Merops apiaster

Hoopoe Upupa epops

Sand Martin Riparia riparia

Swallow Hirundo rustica

Grey Wagtail Motacilla cinerea

Sedge Warbler Acrocephalus schoenobaenus

Reed Warbler Acrocephalus scirpaceus

Blackcap Sylvia atricapilla

Whitethroat Sylvia communis

Willow Warbler Phylloscopus trochilis

Pied Flycatcher Ficedula hypoleuca

Red-breasted Flycatcher Ficedula parva

Spotted Flycatcher Muscipapa striata

Black Redstart Phoenicurus ochruros

Redstart Phoenicurus phoenicurus

Ring Ouzel Turdus torquatus
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