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Abstract

This review discusses and analyses three main contributions championed by Professor Mladenovic.
These include variable neighbourhood search (VNS), variable formulation space (VFS), and finally, the less-
is-more approach (LIMA). These three methodologies share two important ingredients, namely, simplicity
and change. Given that Professor Mladenović is widely known for VNS, we will focus mainly on this
methodology and its developments as well as a sampling of successful applications. This is followed by a
shorter discussion covering VFS and LIMA. We introduce several remarks throughout the text to highlight
certain aspects while also suggesting challenging research areas to examine.
Keywords: Metaheuristic; Variable neighborhood search; Less-Is-More; Variable Formulation Space

1. Introduction

Optimization problems arise in many real-life settings such as technology, the economy, science, in-
dustry, the environment, telecommunications, energy, transportation, et cetera. In addition, these problems
arise in both private and public sectors, and may interest a few individuals or even huge enterprises. Al-
though quite different in content from area to area, once written in mathematical terms they become very
similar. More precisely, once written as mathematical models (or programs), they all have one or more
objective functions to optimize, a solution space that identifies the decision variables that apply, and a set
of constraints that limit the feasible choices allowed to the decision-maker to some subset of the solution
space. Often, there is a huge number of possible solutions, and the question to answer is how to find an
optimal one, or alternatively, just a “good” one. Usually, the given problem will have only one or just a
few optimal solutions mysteriously buried somewhere within the feasible set, and surrounded by a large
number of locally optimal solutions (also referred to as traps). The most tractable models have a special
structure that guarantees any local optimum is also a global one. This is true, for example, with linear pro-
grams that often arise in practice. However, many practical problems do not have this special structure, and
consequently, exact (or optimal) solutions cannot be found in reasonable time, even with the most powerful
computers. More precisely, the mathematical models cannot be solved in polynomial time, i.e., they are NP
hard.
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Thus, many classes of important problems can be solved exactly today only by performing a total enu-
meration, implicit or otherwise, of the feasible set. However, this becomes an impossible task in general,
except for very small instances. As a result, and by necessity, another research direction has gained rel-
evance, namely, the development of non-optimal techniques that provide approximate solutions, with or
without estimates of how far they are from the optimal objective value. These so-called heuristic methods
have become the most useful techniques of the day for tackling hard real-life optimization problems.

It is also worth stressing that though optimality cannot be always guaranteed, useful performance mea-
sures are usually adopted. These may include worst-case analysis, empirical testing, benchmarking and/or
comparison against lower or upper bounds if these happen to be found. In brief, heuristics, which originated
in ancient Greece, and which are based on the ‘find and discover’ principle, can be considered a combina-
tion of several attributes, namely, mathematical logic, computing, insight into the problem, and the design
of selection rules with simplicity and ease of understanding in mind. For more information on heuristic
search in general see Salhi (2017), while an overview on heuristics can be found in Salhi and Thompson
(2022b).

In essence, these approximate methods execute a search strategy within the solution space aimed at
finding a solution of good quality while following some rules that are usually problem independent. This
feature allows the heuristics to be applicable to a large number of optimization problems arising in com-
pletely different areas. Another desirable feature of heuristics is their simplicity. The best heuristics are
often the easiest to understand and to adapt to specific problems.

In this paper, we review some heuristic frameworks that follow the paradigms of “change” and “sim-
plicity”. The idea of “change” is not something new in the scientific literature, and even dates back to the
age of Heraclitus of Ephesus, who proposed the idea that the only constant in life is the notion of change.
The idea of change was also an inspiration to Professor Nenad Mladenović, who continuously sought ways
to develop and improve the science and art of heuristic design. Among the many contributions he has made
with collaborators over the years in the field of optimization, he will be best remembered for introducing
and developing a general framework for heuristic design known as Variable Neighborhood Search (VNS).
As the VNS methodology progressed and its list of accomplishments grew, the tendency among researchers
in the field moved towards more complex and less user-friendly algorithms, for example, hybrid heuristics
with multiple stages and numerous parameters to set. To urge the return to simplicity, Professor Nenad
Mladenović with his collaborators proposed a less-is-more methodology (LIMA) to simplify as much as
possible the design of heuristics that will be competitive with state-of-the-art methods, and ultimately, even
improve on the quality of solutions.

As a tribute to Nenad, our dear colleague and friend, and in recognition of his outstanding contributions
to the optimization literature, we attempt to review in this paper the progression of Variable Neighborhood
Search from its initial introduction in 1995 to the present day. The aim is to provide a general overview or
taste, and not an exhaustive list of papers published during this time on VNS-related topics. In addition, we
believe that the current status of VNS, and related ideas pioneered by Nenad such as Variable Formulation
Search and the less-is-more concept, are just “the tip of the iceberg”, and many possibilities remain under the
surface for future research. There is no doubt that Nenad would like to see energetic efforts in this direction.
These yet undiscovered advances will confirm again that everything is subject to “change”. In line with this,
we will provide some critical discussion and suggestions for future research in the form of “Remarks” at
the end of each section reserved for some methodology or selected sub-sections as appropriate.

The paper is organized as follows. The next section covers basic VNS including preliminaries and
necessary ingredients, followed by section 3 on important modifications to the basic procedure. Section 4
presents more recent advances in VNS including its adaptation to nonlinear programming and hybridisation.

2



This is followed by Section 5 that discusses related VNS philosophies, VFS and LIMA. Section 6 provides
some concluding remarks.

2. Basic variable neighborhood search (BVNS)

2.1. A little history:

Professor Nenad Mladenović is best known in the Operations Research (OR) field as the founder of the
Variable Neighborhood Search (VNS) metaheuristic. He first introduced the idea at the Optimization Days
1995 conference held at the University of Montreal. The title of his presentation was Variable Neighbor-
hood Algorithm – A New Meta-Heuristic for Combinatorial Optimization. This talk was prefaced in the
conference proceedings by a short abstract that probably went unnoticed by most of the participants. The
key sentence in the abstract goes as follows: “Escaping from the local optima trap is done by changing
the neighbourhood (metric) in a systematic way.” At that time, the conventional approach used when an
improvement algorithm converged to a local optimum was to re-start the search from a new point randomly
selected from the feasible set. In fact, random multi-start improvement algorithms (or local searches) are
still popular today. Thus, the principal contribution of VNS may be viewed as the new approach it offers for
evading the local optimum trap. That is, a series of random starting solutions is now replaced by a system-
atic selection of random points from pre-defined neighborhood structures centered at the current incumbent
(or best found) solution. In this way, several attributes of the current anchor point can be retained, instead of
starting anew from a completely random point. The fact that the VNS concept was slow to gain momentum
perhaps was due to the simplicity of the concept. Even so, should not “simple to understand” be one of the
main attractions of a good heuristic?

The VNS methodology was first formalized in a general framework in Mladenović and Hansen (1997).
The first application had appeared a year earlier (Brimberg and Mladenovic (1996)). An improved shaking
(or perturbation) procedure was tested on the same problem class in Brimberg et al. (2000). The computa-
tional results in this paper were outstanding! Several new best-known solutions were found on benchmark
instances, and the improvements were quite significant. This type of performance became routine as the
number of publications using VNS began to grow.

2.2. Some preliminaries

The general form of optimization problem that we are looking at may be given as follows:

min{f(x)|x ∈ X ⊂ S}, (1)

where S,X, x and f denote, respectively, the solution space, the feasible set, a feasible solution, and a real-
valued objective function. Depending on the set S, we distinguish the combinatorial optimization problem
where set S is finite but extremely large, and the continuous optimization problem (S = Rn). Expressed as
a mathematical program, X would be defined by a set of main constraints, and S by variable type constraints
(e.g., non-negativity and integer constraints). Let N(x) denote a neighborhood structure centered at a given
solution x ∈ X . This neighborhood would be constructed using some distance function δ, resulting in the
following definition:

N(x) = {y ∈ X|δ(x, y) ≤ ∆}, (2)

where ∆ is a positive number (integer for combinatorial optimization problems). For example, when fea-
sible solutions are arrays containing n attribute values, we could specify δ(x, y) = |x \ y| and ∆ ∈
{1, . . . , n}. A solution x∗ ∈ X is a local minimum relative to neighborhood N(x∗) for problem (1) if
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f(x∗) ≤ f(x),∀x ∈ N(x∗), while x∗ ∈ X is an optimal solution (global minimum) for problem (1) if
f(x∗) ≤ f(x), ∀x ∈ X .

Usually it is relatively easy to find a local minimum, but it becomes nearly to impossible to find a global
one. Furthermore, there are inevitably a huge number of local minima induced by the objective function and
the constraints, which act as traps, so that finding a “good” local minimum is also a daunting task. Clearly,
the ability to escape local optima traps on the way to “better” solutions is an important ingredient of any
selected heuristic. Based on a wealth of experimental results over the past two decades, we can say that the
VNS framework is very good in this regard, and this would explain why VNS-based heuristics are often
able to reach new best-known solutions that are significantly better than the state-of-the art.

Remark 1. Empirical evidence available (Kirkpatrick and Toulouse (1985)) suggests that most local min-
ima are relatively close to each other. In view of this, the systematic approach of exploring neighborhoods
starting from the closest, and moving progressively further away, may give VNS a statistical edge over
other metaheuristic-based methods. This would be an important but complex area for future empirical and
theoretical studies.

2.3. VNS ingredients

The following three steps are repeated in sequence in each iteration of a VNS-based heuristic until a
stopping condition, such as a limit on execution time, is reached:

(1) Shaking procedure

(2) Improvement procedure

(3) Neighborhood change

An initial feasible solution is required to start the process, and this starting point is typically selected at
random from the feasible set. An improvement algorithm is then used to find a local minimum associated
with the local search being employed. At this point, the VNS iterations begin, each consisting of the
three steps in sequence given above. We outline these steps next with respect to the basic VNS (BVNS)
framework.

Shaking procedure:
Let N = {N1, . . . ,Nkmax} be a set of operators such that each operator Nk, 1 ≤ k ≤ kmax, maps a

given feasible solution x to a predefined neighborhood structure,

Nk(x) = {y ∈ X|δ(x, y) ≤ ∆k}, k = 1, . . . , kmax. (3)

Note that the order of operators in set N also defines the order of examining the various neighborhood
structures of a given solution x as specified in (3). Furthermore, the neighborhoods are purposely arranged
in increasing distance from the incumbent solution x; that is,

∆1 < ∆2 < · · · < ∆kmax . (4)

As an example, suppose we are considering the p-median problem on a network, and solution x contains
the p (a parameter) nodes selected at which to locate new facilities. There are C(n, p) possible solutions
in feasible set X , where n is the number of nodes on the network. The objective is to find a solution that
minimizes a weighted sum of distances from the n nodes to their closest facilities. This problem is NP-hard
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(Kariv and Hakimi (1979)). The neighborhood N1(x) contains all solutions y obtained by replacing one
node in x with a node not in x({1, 2, . . . , n} \ x). Similarly, Nk(x) contains all solutions y obtained by
replacing k nodes in x with k nodes not in x. The parameter kmax is normally set to a maximum value that
makes sense. In the p-median example, we would set kmax = p, thus eliminating one of the parameters.
The neighborhood Nkmax(x) would essentially be equivalent to selection of a completely random point in
multi-start local search (MLS); i.e., setting N = {Nkmax} would replace the VNS heuristic with a random
MLS heuristic.

Also note that in the original implementations of VNS, b (a parameter ≥ 1) points would be selected
from neighborhood Nk(x), but b is now normally set to 1, thereby simplifying the VNS heuristic further.
The only remaining parameter to specify in a basic VNS would be the stopping criterion for the heuristic,
which is normally set to a time limit, tmax. The simple shaking procedure consists in selecting a random
solution from the kth neighborhood structure, Nk(x) (see Algorithm 1).

Algorithm 1: Shaking procedure

Function Shake(x, k,N);
choose x′ ∈ Nk(x) at random;
return x′.

Remark 2. Further empirical studies on the finite time performance of VNS would be interesting. Here
we would investigate the relative frequency of success (i.e., finding an improved solution that becomes the
new incumbent) as a function of the shake neighborhoodNk(x). We know that a rapid improvement occurs
initially, that is, there are several jumps to improved solutions, but the rate of improvement slows down and
eventually stalls. These improvements likely occur from closer neighborhoods Nk(x). Some ideas come to
mind to improve the finite time performance of VNS:

• Use of a sliding shake step where the range of parameter k shifts, e.g., Phase 1: k = 1, . . . , k1; Phase
2:k = k1 + 1, . . . , k2, and so on. This could be referred to as sliding VNS.

• Setting the parameter b = 1 may improve the user-friendliness of the procedure, but we may also be
missing a useful ingredient here. Another version of sliding VNS would introduce parameter values
bk for each neighborhood Nk(x). Parameter bk could be set to larger values for neighborhoods that
are statistically observed to be more successful, and shifting values of the bk’s might also be employed
based on statistical evidence.

• Random selection of neighborhood Nk(x) based on empirically derived distributions has been sug-
gested in the literature (Dražić et al. (2008)), but limited results are available.

Remark 3. There are several works proposing smart shaking instead of a completely random jump. For
example, some authors consider adaptive shaking procedures (Abdelkhalek et al., 2015; Karakostas et al.,
2020; Stenger et al., 2013); Pacheco et al. (2018) introduce memory in the shaking procedure; Jomaa et al.
(2021) consider a learning effect process based on a probabilistic model to enhance the shaking; Thevenin
and Zufferey (2019) introduce the notion of move attractiveness and use a trail system from where VNS
learns which attributes are often present together in good solutions in order to generate a new solution. This
type of learning is also successfully used in other techniques as a way to solve large problems by focussing
on the promising variables only (also known as reduction techniques (Guastaroba and Speranza, 2012;
Luis et al., 2011; Rosing and ReVelle, 1997; Wilbaut et al., 2009)). Recently, Cao et al. (2022) proposed an
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interesting memory based restart, which upon reaching the kmax limit, constructs a new solution based on
the search history. Adaptive or ‘smart’ shaking should remain a research area of continuing interest.

Improvement step:
An improving search typically involves an examination of alternate solutions that are “near” to the

current solution; i.e., the improving search uses local information obtained from a single neighborhood of
surrounding solutions. This is precisely what the improvement step does in BVNS. Let Nloc(x

′) denote the
single neighborhood used in this step. Typically, in BVNS, we would conveniently set

Nloc(x
′) = N1(x

′), (5)

the first (or closest) neighborhood used in the shaking step, but this does not have to be the case. Alterna-
tively, one could select

Nloc(x
′) = N1(x

′) ∪N2(x
′), (6)

for a more intensified search at the current solution (but requiring much more computing time), or a different
neighborhood all together than the ones from the shaking step. Returning to the p-median example and using
(5), the local search becomes the well-known and popular vertex swap algorithm of Teitz and Bart (1968).
The local search typically uses either a best improvement strategy, which examines Nloc(x

′) completely
and replaces x′ with the best solution found in Nloc(x

′) provided it is better than x′, or a first improvement
strategy, which replaces x′ with the first solution found in Nloc(x

′) that is better than x′. The local search
ends when no solution better than the updated current solution x′ can be found in Nloc(x

′).

Remark 4. The first improvement strategy is often chosen in local search because it is faster than best
improvement, and often leads to better local optima from random starting solutions. However, empirical
results (Hansen and Mladenović (2006)) suggest that the reverse may be true when the starting solution
used in the local search is of good quality. This suggests that a switch from first improvement to best
could improve the performance of VNS when further improvement of the incumbent solution slows down
drastically, implying that the quality of starting solutions from the shaking operation may also be relatively
high.

Neighborhood change step:
An iteration of VNS starts with the shake operation, which moves the incumbent solution x to a per-

turbed solution x′ ∈ Nk(x). Then the improvement or local search step moves x′ to a local minimum x′′;
that is,

f(x′′) ≤ min{f(y) : y ∈ Nloc(x
′′)}. (7)

At this point, the neighborhood change step takes over to decide how the search will continue in the
next iteration of VNS. The routine commonly used is known as the sequential neighborhood change step.
If f(x′′) < f(x) (the new solution is better than the incumbent), then x ← x′′ (the new solution becomes
the incumbent), and k ← 1 (the shake parameter is reset to 1); otherwise (f(x′′) ≥ f(x)), k ← k + 1
(the shake operation uses the next neighborhood in the sequence defined by N = {N1, ...,Nkmax}). Other
forms of the neighborhood change step have been attempted in the literature. These include cyclic, pipe,
random and skewed forms. Additional details may be found in the extensive survey paper by Hansen et al.
(2017). However, the sequential procedure remains the most often used form by far.

Remark 5. The different neighborhood change routines obviously lead to different descent paths. Empirical
studies may provide interesting insights on this matter. For example, would a random selection of the routine
to use in each iteration lead to better results?
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Joining the steps to create BVNS:
We can now join the steps outlined above to obtain the basic form of the VNS algorithm (see Algorithm

2).

Algorithm 2: Basic Variable Neighborhood Search.
Function VNS(x, kmax, N , N )
repeat

k ← 1;
while k ≤ kmax do

x′ ← Shake(x, k,N );
x′′ ← Local Search(x′, N );
Neighborhood change sequential(x, x′′, k);

until stopping condition is fulfilled;
return x.

Remark 6. The superiority of VNS over multi-start local search (MLS) has been demonstrated several
times in the literature. Brimberg et al. (2010) , explain the reason behind this phenomenon by assuming that
local optima are relatively close to each other, or we could say, the majority of local optima are contained
in a small subset of X . As a result, the probability that a small shake to a point relatively close to the
incumbent solution will lead to a better local optimum is orders of magnitude higher than the probability
associated with the large shake in MLS. This assumption is at the very core of VNS, and top priority should
be given to prove its validity. Understanding why VNS always outperforms MLS is also fundamental to
achieving a deeper understanding of the topology (or landscape) of the objective function over the feasible
set X . In other words, VNS can serve as a useful exploratory tool for studying the structure of the problem
under investigation. Keeping track in computational experiments of the distances between consecutive local
optima, and the shake neighborhoods leading to better solutions, would be useful in this regard.

Remark 7. Here is another thought. The conventional approach used to verify if one algorithm is better
than another is to test the two algorithms under similar conditions (e.g. same starting solutions and limit
on execution time) on a series of benchmark instances. One of the algorithms would be declared the winner
if the evidence (based on objective function values) was overwhelming in its favor. The proposal thrown out
to the reader would be to replace this procedure by a standardized test where a new algorithm is compared
to the same “base” algorithm (a standard MLS, for example) as all other competing algorithms. This would
simplify test procedures and also eliminate possible ambiguities in the testing procedures.

3. Modifications of Basic Variable Neighborhood Search

The variants below are obtained directly from BVNS by modifying (or omitting) one of the three steps
of BVNS. Fixed neighborhood search essentially omits the neighborhood change step while Skewed vari-
able neighborhood search modifies it by adding a new criterion for accepting changes to the incumbent
solution. Reduced variable neighborhood search omits the improvement step (local search), while Variable
neighborhood decomposition and General variable neighborhood searches modify it.

3.1. Fixed Neighborhood Search (FNS)
A simple modification of BVNS yields fixed neighborhood search (FNS), also known as iterated local

search (Johnson and McGeoch (1997)). The switchover to FNS is accomplished by restricting the shake

7



operation in algorithm 2 to the single neighborhood,

N (x) = Ns(x), (8)

where the same s ∈ {1, . . . , kmax} is used in each iteration. Thus, FNS is in between MLS, where a
new starting point is selected at random from X (an extreme shake), and VNS where several (kmax) shake
neighborhoods are in use. Moreover, N (x) should be moderately close to the incumbent solution so that
the perturbed solution x′ always retains many of the incumbent’s favorable attributes.

Remark 8. The selection of the shake neighborhood N (x) affects the level of diversity of FNS. As an
example, consider the p-median problem. Setting the shake neighborhood N (x) = N1(x) (single vertex
swap), and then using the same neighborhood for local search in the improvement step, would result in
a probabilistic form of 2-swap local search. Setting N (x) = N2(x), and using 1-swap again for local
search, gives a probabilistic 3-swap neighborhood search. Using N (x) = Nkmax(x) converts the FNS to
something near or equivalent to MLS and maximum diversity. It would certainly be interesting to compare
the performance of FNS for different levels of shaking. This may also provide insights into the underlying
problem structure. For example, if best results are obtained by applying a small shake, we might conclude
that the objective function has a globally convex shape with ’noise’ superimposed on it. A larger shake,
meanwhile, might indicate that there are several ’nice’ valleys that are relatively far apart. Skewed VNS,
our next topic, is designed to handle this case. For further reading, also see Hansen and Mladenovic
(2003).

3.2. Skewed variable neighborhood search (SVNS)

SVNS was first introduced by Hansen et al. (2000). Up until then the neighborhood change step allowed
a move to a new incumbent solution if, and only if, it was better than the current incumbent solution. Broadly
speaking, in SVNS, a move to an inferior solution will also be permitted if this solution is only “slightly”
inferior to the current incumbent solution and “sufficiently far” from it. The logic behind such moves is that
they tend to diversify the search to promising regions that are far away from the “valley” where the search
is currently locked. In order to perform SVNS, we only need to replace the current sequential neighborhood
change step in Algorithm 2 (for BVNS) to a skewed neighborhood change step. In this new subroutine, a
trial local minimum x′′ is evaluated taking into account not only its objective value, but also the distance
between it and the current incumbent solution x. The evaluation function used in the skewed neighborhood
change step may be stated as:

g(x′′, x) = f(x′′)− f(x)− αδ(x′′, x), (9)

where α represents a (small) positive parameter, and δ(x′′, x) gives the distance between solutions x′′ and
x, as defined previously. The skewed neighborhood change step allows x′′ to become the new incumbent
solution if g(x′′, x) < 0. (Note that setting α = 0 returns the neighborhood change step to its standard form.)
See algorithm 3 for details.

Remark 9. With SVNS, two parameters can be used to control the level of diversification. One is kmax,
the number of neighborhoods available for the shake step. Selection of a large kmax increases the diversity
by allowing randomly targeted searches in neighborhoods that are far from the incumbent solution. On the
other hand, the skewed neighborhood change step with parameter α allows the search to move the “anchor
point” to a new incumbent solution located in a different region of X that may provide a “richer” area to
mine for local minima. A natural research question would relate to how these the two parameters (kmax, α)
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Algorithm 3: Skewed neighborhood change step
Procedure Skewed Neighborhood change (x, x′′, k, α)
if f(x)− f(x′′) < αδ(x′′, x) then

x← x′′;
k ← 1;

else
k ← k + 1.

interact with each other to obtain best results. To illustrate, we could try smaller values (up to a point) of
kmax coupled with larger values of α. This would allow more jumps to inferior solutions that could lead
eventually to a very deep valley and high quality final solution. An issue of concern might be an increased
likelihood of cycling back to previous incumbent solutions. Another issue to contemplate with SVNS is the
timing of skewed moves. Premature movement could result in a missed opportunity to explore the region
more thoroughly around a current incumbent solution.

3.3. Reduced variable neighborhood search (RVNS)

This is a speedy version of VNS where the improvement step is deleted. Thus, the neighborhood change
step follows immediately after the shake step. Otherwise, RVNS is the same as BVNS. Note that the Monte
Carlo method is a special case of RVNS, obtained by setting kmax = 1 and N1(x) = X . Because there is
no improvement step, the RVNS may get stuck at a good incumbent solution x for some time. However, the
iterations are so fast that many more points in varying regions of X are examined, and the net result is that
RVNS tends to work surprisingly well (see e.g., (Cheimanoff et al., 2021; Hansen et al., 2001)).

Remark 10. A post-RVNS procedure that performs local search on a large number of “good” solutions
obtained during the RVNS, and that are dispersed through the feasible set X , might be worth considering.

3.4. Variable neighborhood decomposition search (VNDS)

VNDS was first proposed by Hansen et al. (2001). Recall that in BVNS, the shaking operation obtains
a random point in the kth neighborhood of the incumbent solution. The VNDS does the same thing, except
that now the local search works on the subproblem containing only the k attributes that have been changed,
while keeping fixed the remaining ones. The size of the subproblem changes systematically from smaller
to larger in each iteration in accordance with the shake neighborhood parameter (k) in use. A local search
is typically used to solve the subproblem in the improvement step. However, a second level of VNS may
be applied instead, yielding a new two-level VNS approach. The steps of VNDS are given in Algorithm 4.
Note that y corresponds to the initial point in the subproblem identified by the k attributes that are allowed
to change. The attributes in the set x′ \ y identify the attributes that do not change. The improvement step
is then applied in the reduced solution space. The solution y′ returned by the improvement step is joined to
x′ \ y to create solution (x′ \ y) ∪ y′ of the original problem.

Remark 11. A current issue of importance deals not only with problem complexity but also the handling
of large sets of data. Several optimization problems tend to be very complex because they are composed
of many NP-hard sub-problems or because of the huge amount of available data. We believe that a viable
approach for solving these problems would be to apply a decomposition approach such as VNDS. VNDS
has been already successfully applied to several problems (see e.g., (Brimberg et al., 2006; Džamić et al.,
2019; Lazić et al., 2010; Lazic et al., 2016; Lejeune, 2006; Plotnikov et al., 2019; Rupolo et al., 2021;
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Algorithm 4: Variable Neighborhood Decomposition Search
Function VNDS(x, kmax, N )
repeat

k ← 1;
repeat

x′ ← Shake(x, k,N );
y ← x′ \ x;
y′ ← Improvement procedure(y);
x′′ = (x′ \ y) ∪ y′;
Neighborhood change sequential(x, x′′, k);

until k = kmax;
until stopping condition is fulfilled;
return x.

Seeanner et al., 2013; Urošević et al., 2004)), but has been somehow forgotten while (Adaptive) Large
Neighboorhood Search (LNS) seems to have gained much more attention. We believe the research track
should also consider VNDS more deeply, as both approaches have many similar principles, some already
present in VNDS since its introduction in 2001 (Hansen et al. (2001)).

Remark 12. Note that the output solution x may not be a local optimum in the original solution space.
Therefore, a final local search applied to x in the original solution space is advisable.

3.5. General variable neighborhood search (GVNS)

Unlike BVNS, which applies a simple local search in a single neighborhood during the improvement
step, GVNS intensifies this search by combining two or more neighborhoods. The motivation stems from the
observation that a local minimum relative to one neighborhood structure is not necessarily a local minimum
for another one, while a global minimum is a local minimum with respect to all neighborhood structures.
Thus, a local search using several neighborhoods is more likely to find a global minimum than if it used
only one of them. This intensified local search is referred to as Variable neighborhood descent (VND). The
most common form of VND comprises a sequential search of the neighborhoods, and is referred to as Basic
VND (BVND). Let N = {N1, N2, . . . , Nℓmax} denote the set of selected neighborhoods arranged in the
order they will be examined, and where lmax is a parameter similar to kmax. Typically, the neighborhoods
are placed in order of increasing size. Each time a better solution is found, it becomes the new incumbent,
and the search resumes from there with N1. If no improvement is found in Nℓ, the search moves to the
next neighborhood Nℓ+1. If no improvement is found in each of the neighborhoods sequentially from N1

to Nℓmax , a local minimum for all ℓmax neighborhoods is found, and this iteration of VND ends. This
version of VND is fast as the search tends to occur more often in the smaller neighborhoods at the start of
the sequence. The neighborhoods in N may also be nested, leading to a more intensive search from x, but
also consuming much more CPU time. For further details on variants of VND, see (Hansen et al. (2017)).

3.6. Nested variable neighborhood search (NVNS)

The general idea behind NVNS is to apply a VNS procedure on all the points of a predefined neigh-
borhood structure, instead of the normal application to one point - the incumbent solution (Brimberg et al.,
2017; Todosijević et al., 2016a). To achieve efficient performance, it is crucial that the VNS applied at each
point of the predefined neighborhood be very fast. Hence, it is desirable to assign a relatively small CPU
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time limit to each such application. The VNS procedure, in effect, replaces a “local search” within the main
loop. If the main loop also uses VNS, the procedure is referred to as a two-level VNS (Mladenović et al.
(2014)).

Remark 13. In the ‘fast’ VNS suggested above, the shake operation typically is assigned a small number
of neighborhood structures that are relatively close to given point x. Instead of imposing a short execution
time, it might be preferable to stop the procedure after a specified number of failures in order to ensure that
stopping the procedure prematurely does not occur.

Remark 14. It would be very interesting to test and compare a random multi-start ‘fast’ VNS as a stand-
alone procedure against standard local searches that are applied to a given problem class. Fast VNS could
also be incorporated and tested within VND procedures (see e.g., Brimberg et al. (2017)).

3.7. Combinations of variants
Some combinations of the VNS variants above have appeared in the literature. For example, in Brim-

berg et al. (2015), a Skewed general VNS (SGVNS) is proposed to solve the Maximally Diverse Grouping
Problem. This combination of increased intensification in the local search coupled with increased diversi-
fication from skewed moves to inferior solutions would seem to make good sense. Intensifying the search
in a new and promising region of the feasible set should be a good thing. It turns out to work very well in
this case where several new best-found solutions are obtained by the SGVNS (also see e.g., (Derbel et al.,
2019; Mladenović et al., 2022; Smiti et al., 2020)).

Remark 15. Other combinations of the above variants may be interesting to try. For example, we could con-
sider combining the two changes in the improvement step from VNDS and GVNS to get General variable
neighborhood decomposition search (GVNDS), or going further, add skewed moves in the neighborhood
change step to obtain Skewed general variable neighborhood decomposition search (SGVNDS). The inten-
sified search in the decomposed problem combined with skewed moves to new regions of the solution space
could well result in significant improvements over the state-of-the-art. Of course, this comes at a cost of
increased complexity of the heuristic, but adding pieces that have synergy together would be worth it.

4. Recent Advances in variable neighborhood search

This section discusses recent advances within the VNS framework, and combined with the next section,
brings us more-or-less to the present day.

4.1. Adaptive neighborhood change step
The sequential neighborhood change step, which is the most popular procedure in practice, tends to

favor the closer neighborhoods than the ones further away from the incumbent solution. This is because
every time an improved solution is obtained (or the solution meets a specified skewed acceptance criterion),
the neighborhood change step moves the incumbent solution to this new point, and the next iteration returns
to the first (and closest) shake neighborhood (N1) of the new incumbent solution. If ri denotes the total
number of shake operations in Ni until the stopping criterion is reached, then clearly, r1 ≥ r2 ≥ · · · ≥
rkmax . However, this makes little sense if, for example, N1 rarely, if ever, leads to an improved solution.
The cyclic neighborhood change step (Mjirda et al., 2017; Todosijević et al., 2017b) takes care of this
problem to some extent by always moving to the next shake neighborhood in the list, irrespective of a move
occurring, or not, to a new incumbent solution. Thus, all the shake neighborhoods are equally represented
(r1 = r2 = · · · = rkmax). Meanwhile, the pipe neighborhood change step (Mjirda et al., 2017; Todosijević
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et al., 2016b) returns to the same neighborhood each time a shake operation to that neighborhood results
in a move to an improved solution. In this way, the most effective neighborhoods tend to be used more
frequently in the shake operation. We should specify that the neighborhood change steps do not occur only
in shaking procedure, but also in VND.

The adaptive neighborhood change step uses a formal approach to decide which shake neighborhood
will be selected in the next iteration by assigning a merit number to each neighborhood. Each time Nk is
applied, its merit number increases if this iteration leads to an improved solution (or skewed move), and
decreases, if it does not. The neighborhoods are arranged in order of merit, so that the next iteration will
select the neighborhood with the highest merit. Thus, the adaptive change step operates the same as the pipe
change step as long as the current neighborhood is successful and its merit number is increasing. However,
as soon as it produces a failure, the adaptive change step selects the next neighborhood as the one with the
highest merit number (which can still be the current one). Meanwhile, the pipe change step moves to the
next neighborhood Nk+1 as in the cyclic step.

Remark 16. From our discussions so far, it is clear that the VNS framework is very flexible, in that it
allows many different options to be implemented, and hence, opens several questions: Which neighborhood
structures should be used? In which order should they be examined (i.e., which neighborhood change step to
use)? What should be the values of the kmax and ℓmax parameters? These are still open research questions
to which answers are usually found by some preliminary testing or using a dedicated software such as
IRACE (López-Ibáñez et al. (2016)). Either way, the best settings for a particular application are typically
determined beforehand in a pre-processing phase (or set to a default value), and fixed for the rest of the
execution. The adaptive neighborhood change step removes some of the rigidity in this process by allowing
the sequencing of neighborhoods in the shaking operation to change or evolve during the execution of the
heuristic. This view can be extended to incorporate more sophisticated aspects as will be seen next.

Remark 17. Another research line that is relatively recent, and that tries to provide answers dynamically to
the preceding questions from the information gathered during the execution of a heuristic, involves coupling
machine learning (ML) techniques and heuristics (Talbi (2021)). For example, to determine the VNS pa-
rameters, a machine learning (ML) technique called trained random forest regressor is used in Cheimanoff
et al. (2021), while Q-learning is used in Öztop et al. (2020). The shaking parameter kmax is adjusted in
an adaptive manner in Polacek et al. (2008), while Qiu et al. (2018) consider an adaptive adjustment of the
skewing parameter α. This research area, known as hyper-parameter optimization, has received a lot of
attention in the computer science arena.
It is also interesting that adaptive change of the order of neighborhood structures is successfully imple-
mented in (Aziz et al., 2017; Bezerra et al., 2023; Chen et al., 2020; Gu et al., 2019; Han et al., 2022;
Li and Tian, 2016; Sze et al., 2016; Todosijević et al., 2016b; Wu and Che, 2020; Yazdani et al., 2017).
Obviously, the adaptive change procedure above may also be replaced by machine learning techniques.
The most common ML technique used to learn the order of neighborhoods is Q-learning (Alicastro et al.,
2021; dos Santos et al., 2014; Meng et al., 2022). Kalatzantonakis et al. (2023) propose recently a new
reinforcement learning GVNS where five Upper Confidence Bound algorithms are used to create a reliable
strategy for adaptive neighborhood selection.

Remark 18. Although the works on smart neighborhood selection in the intensification or diversification
phase are relatively numerous, there are only two that simultaneously consider smart neighborhood selec-
tion in both these phases (Karakostas and Sifaleras, 2022; Pugliese et al., 2022). So, we believe there is
much work to be done in this direction. Also, very little, if any, work has been attempted that investigates
simultaneously smart parameter selections for kmax, ℓmax, and skewed parameter α. This should be worth
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revisiting. In addition, this may all be further enhanced by coupling VNS with smart techniques for neigh-
borhood investigation in the intensification phase that includes smart moves to avoid non-promising ones,
generating new neighborhood structures based on the previous search process, etc. (Lei, 2015; Lotfi and
Behnamian, 2022; Lucas et al., 2020).

4.2. Primal-dual variable neighborhood search
This variant of VNS is aimed at solving pure and mixed integer linear programs where the dual formu-

lation of the problem can be used to provide a tight lower bound of the optimal objective function value,
and hence, provide a good estimation of the quality of an obtained primal solution. This method was first
introduced by Hansen et al. (2007) to solve the simple plant location problem (SPLP), which was selected
because it is known to be integer friendly (ReVelle (1993)). Large-scale instances of SPLP that were out of
the range of specialized algorithms were solved to optimality by their novel approach. In the first phase of
primal-dual VNS, a VNS heuristic is used to obtain a (high-quality) primal feasible solution. This solution
is then used to deduce a dual infeasible solution. A second VNS heuristic, which is designed to work on the
dual problem, then reduces the dual infeasibility. This is followed by an exact method (a novel sliding sim-
plex approach) that solves the relaxed dual problem and thus generates an improved lower bound. Finally, a
standard branch-and-bound algorithm is launched to find an optimal solution of the original problem using
the tight upper and lower bounds obtained from the heuristic’s primal solution and the exact dual solution,
respectively.

Remark 19. Primal-dual VNS was also successfully applied to the (integer friendly) classical p-median
problem (Hansen et al. (2009)). However, it appears that interest to extend the methodology to other
classes of problems has not materialized. This situation suggests an obvious direction for further work.
Problem classes that are not as integer friendly as the SPLP and p-median, for example, the p-centre and
p-dispersion problems, and many useful variants of classical models, should also be investigated, as the
bounds generated by solving the dual may provide some useful information. Solving exactly the dual relax-
ation of a large-scale problem may be as challenging as solving the primal (LP) relaxation. In this case, it
could be advantageous to develop a good heuristic method to approximately solve the dual.

4.3. Parallelization of variable neighborhood search
Parallelization of VNS can be a useful technique for tackling large instances of an optimization problem

in reasonable time or obtaining better solutions within the same time limit. It is obvious that if tasks are
performed in parallel instead of sequentially, there can be a saving in total execution time to obtain the same
or better solution quality. In the literature, various parallelization strategies have been implemented within
VNS heuristics. These include:

• parallelizing the local search, which could be particularly useful for large neighborhoods,

• augmenting the number of solutions drawn from the current neighbourhood of the shaking operation,
and implementing local search in parallel from each one,

• updating the information about the best solution found, and

• parallelizing the search in diverse regions of the solution space.

Other more sophisticated approaches have been proposed (see e.g., (Davidović and Crainic, 2012;
Kalatzantonakis et al., 2020; Schryen, 2020)). Applications of parallel VNS include the p-median prob-
lem, the car sequencing problem, vehicle routing related problems, job shop scheduling problems, dynamic
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memory allocation problems, portfolio optimization, planning of large-scale power distribution systems,
order batching, and more (Akbay et al., 2020; Crainic et al., 2004; Garcı́a-López et al., 2002; Herrán et al.,
2020; Pirkwieser and Raidl, 2009; Polacek et al., 2008; Rupolo et al., 2021; Sánchez-Oro et al., 2015; Sevkli
and Aydin, 2007; Todosijević et al., 2017a; Wagner and Mönch, 2023; Yazdani et al., 2010; Zang et al.,
2022), as well as multi-objective optimization problems (see e.g., (Eskandarpour et al., 2013; Sánchez-Oro
et al., 2022)).

Remark 20. Skewed VNS could be an excellent candidate for applying parallelization in a new way. When
a skewed move is made, the search from the current incumbent stops in favor of the new anchor point.
With parallelization, this would not be necessary. The search could continue in both regions by adding
a computer. Furthermore, each time a new search is added, the skewed move criterion would have to be
satisfied with respect to all anchor points to ensure that the new anchor point is sufficiently far from all
others. A new stopping criterion might be attempted where the VNS heuristic ends if no new best solution
has been found and no skewed move has been made during a specified time.

Coupling parallelization techniques with existing and new VNS variants can undoubtedly remain an
exciting and challenging research avenue.

4.4. Adaptation of VNS to Nonlinear Optimisation

For this topic, we assume that f : Rn → R is a continuous function in (1) with no other assumptions
attached. In other words, f does not need to be convex or smooth.

To deal with this problem, both the shaking step as well as the local search step need to be modified
accordingly to cater for the continuous space. Here, besides the setting of tmax and kmax, the choice of
the local search solver is also required. For instance, first order methods such as steepest descent, Fletcher-
Reeves, and variable metric or direct search methods, such as Nelder-Mead, Hooke-Jeeves, and Rosenbrock,
can be used. Also in the shaking step, there are two issues that need serious consideration: (i) how the
neighborhood structures Nk that are induced from some metric such as the ℓp norm are defined, and (ii)
which probbability distribution Pk to adopt for the generation of the random solutions from Nk(x).

Neighborhood structures Nk are usually induced from the ℓ∞ norm. Radii around the incumbent are
found, taking into account the box constraints. One way is to divide each coordinate in kmax intervals from
both sides of the incumbent, forming kmax concentric hyper-cubes. Interesting implementations of VNS for
solving general unconstrained NLPs, known as Glob-VNS, are explored in (Audet et al., 2008; Mladenović
et al., 2003), whereas the case of constrained NLPs can be found in those VNS variants that do not use
metric distances to define neighborhoods but consider instead exterior penalty functions (Mladenović et al.,
2008; Toksarı and Güner, 2007) or trust region methods (Audet et al., 2008; Bierlaire et al., 2010). These
are usually incorporated into GLOB-VNS (Carrizosa et al. (2012)) to produce the so called Gaussian VNS
(Gauss-VNS).

Remark 21. The idea here is to replace the class {Nk(x)}1≤k≤kmax of neighborhoods of point x by a class
of probability distributions {Pk(x)}1≤k≤kmax . The next random point in the shaking step is generated using
the probability distribution Pk(x) instead.

Other enhancements of the above two variants are proposed in Dražić et al. (2016) while a successful
implementation to mixed-integer nonlinear programs is explored in Liberti et al. (2010).

4.5. VNS-based Hybridisation

The hybridisation of VNS with other heuristics as well as with exact methods is pursued in several
papers. In this subsection, we briefly discuss these two hybridisation-based classes.
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4.5.1. Hybridisation of VNS with heuristics
The main idea here is to have at least one of the three VNS steps (i.e., shaking to a neighbouring solu-

tion, the local search step, or the neighborhood change step) complemented with another heuristic such as
tabu search, path relinking, simulated annealing, greedy randomized adaptive search procedures (GRASP),
genetic algorithm, particle swarm optimization, among others. For example, Li et al. (2014) combine VNS
with chemical-reaction optimization and estimation of distribution (EDA) to solve the hybrid flow shop
scheduling problem. In Oliveira et al. (2015), GVNS is hybridized with GRASP to solve the targeted offers
problem in direct marketing campaigns. Belhaiza et al. (2014) propose a hybrid variable neighborhood-tabu
search heuristic for the vehicle routing problem with multiple time windows, while Xiao et al. (2014) use
a variable neighbourhood-simulated annealing algorithm to solve capacitated vehicle routing problems. In
Kocatürk et al. (2021), the uathors propose hybridization of VNS with the Greedy Randomized Adaptive
Memory Programming Search for the multi-depot heterogeneous VRP with backhauls. A hybrid VNS tabu
search is proposed in Schermer et al. (2019) for the vehicle routing problem with drones. An interesting
hybrid VNS-Lagrangean heuristic framework is proposed in Nogueira et al. (2022) for a scheduling prob-
lem. In Sun et al. (2023), a hybrid genetic algorithm with variable neighborhood search for the flexible job
shop scheduling problem is proposed. Lu et al. (2021) propose a hybrid discrete black hole algorithm and
variable neighborhood search approach to solve an integrated problem of scheduling and maintenance. For
other VNS hybridization schemes, we refer the reader to (Hansen et al., 2010; Salhi and Thompson, 2022a).

4.5.2. Hybridisation of VNS with exact methods
VNS has also been integrated with exact methods leading to a heuristic class known as matheuristics.

Here, either at least one of the components of the heuristic, the VNS in this case, needs to incorporate an
exact type approach such as B&B, or at least one of the steps of the exact method such as B&B needs
to include components from a heuristic. An overview on heuristic hybridisation is provided in (Salhi and
Thompson (2022a)).

For completeness, we focus on the 0–1 mixed integer program (MIP) where useful implementations are
carried out and interesting results are discovered. A useful metric that is commonly used throughout these
matheuristics is the Hamming distance between two solutions x and x′ such that xj , x′j ∈ {0, 1}, j ∈ I.
This is defined as

δ(x, x′) =
∑
j∈I
|xj − x′j | =

∑
j∈I

(xj(1− x′j) + x′j(1− xj)), (10)

with the subset I containing the indices of binary variables from the entire index set of variables.
Some of these approaches are briefly provided here, but more details can be found in their respective

references.
(a) Variable Neighborhood Branching. In 2006, Hansen et al. (2006) proposed a variable neighborhood

search heuristic combined with Local Branching (LB) (Fischetti and Lodi (2003)), called Variable Neigh-
borhood Branching. This can be seen as a generalization of LB with the added advantage of performing a
more systematic neighborhood exploration.

(b) Hybrid Variable Neighborhood decomposition search heuristics. In 2010, Lazić et al. (2010) com-
bined variable neighborhood decomposition search (VNDS) with the CPLEX MIP solver. At each iteration
of the VNDS procedure, the distances δj = |xj − x̄j | between the current incumbent solution values and
the corresponding LP-relaxation solution values are computed. These distance values are used to fix some
variables in subsequent iterations. Here, at each iteration, k variables whose indices correspond to the in-
dices of k smallest δj values, are fixed to values of the current incumbent solution x and then the resulting
(reduced) problem is solved using the CPLEX MIP solver. If an improvement of the current solution is
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achieved, a Variable Neighborhood Descent branching is launched as the local search in the whole solution
space and the process is repeated. If this is not the case, more flexibility is provided by reducing the number
of fixed variables in the current subproblem. Interesting reduction schemes that restrict the search space by
adding pseudo cuts, in order to avoid multiple explorations of the same areas, is successfully exploited in
Hanafi et al. (2010b).

(c) Variable Neighborhood Pump. In 2010, Hanafi et al. (2010a) combined Variable neighborhood
branching (VNB) (Hansen et al. (2006)) and Feasibility pump heuristics (Fischetti et al. (2005)) in their
Variable Neighborhood Pump (VNP) to find an initial feasible solution. The idea is to round the optimal
solution of the LP-relaxation of the initial 0-1 MIP problem and then apply one iteration of the VNP to
obtain a near-feasible vector. A variable neighbourhood branching, adapted for 0-1 MIP feasibility (Hanafi
et al. (2010a)), is then used on this new solution to locate a feasible solution of the original problem. If this
is not found, a pseudo-cut is added to the current subproblem and the process is repeated.

(d) Diving heuristics. In 2016, Lazic et al. (2016) proposed diving heuristics to obtain a first MIP
feasible solution. Diving heuristics are based on the systematic hard variable fixing (diving) process.

Similarly to earlier work, the idea is to first round the optimal solution of the LP-relaxation, and at each
iteration of the diving procedure, compute the distances δj =| x̃j − xj | values which are then indexed so
that δ1 ≤ δ2 ≤ . . . ≤ δ|I|. The diving algorithm then solves the subproblems P (x̃, {1, . . . , k}) obtained
from the original problem P , where the first k variables are fixed to the current incumbent solution values. If
a feasible solution is found, the search terminates; otherwise, a pseudo-cut is added and the next subproblem
is examined. More details as well as potential enhancements on this algorithm can be found in Lazic et al.
(2016).

Remark 22. The investigation on variable fixation mechanisms to reduce the resulting MIP subproblems
while providing guided flexibility in such schemes can be challenging but worth exploring.

5. Two VNS-related methodologies and “where from here?”

In this section, we shall present two methodologies that are related to VNS and which are also very
close to Professor Mladenovic ’s heart. These are “variable formulation space” and “Less-is-More”.

5.1. Variable Formulation Space

Many optimization problems, e.g., min-max problems, demonstrate a flat landscape. It means that,
given a formulation of the problem, many neighbors of a solution have the same objective function value.
When this happens, it is difficult to determine which neighborhood solution is more promising to continue
the search. To address this drawback, the use of alternative formulations of the problem within VNS is
proposed and named Variable Formulation Search (VFS). This fits well, as many optimization problems
have more than one formulation. In such a case, we can also stress that, similar to the philosophy adopted by
VNS, a local optimum with respect to one formulation may not necessarily be a local optimum with respect
to another formulation. The idea then is to extend the concept of neighbourhood to cater for formulation as
well. In other words, this is achieved by combining a change of neighborhood within the VNS framework,
with the use of alternative formulations.

Two formulations are defined as equivalent if an optimal solution of one is an optimal solution of the
other, and vice versa. This notion is exploited by Mladenović et al. (2005) for the circle packing problem
where two formulations are used, namely, Cartesian and polar coordinate formulations. The idea is to
switch between the two while using the obtained solution of one formulation as an initial solution in the
other. A similar attempt was also made earlier for solving the Cutwidth Minimization Problem in Pardo
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et al. (2013). More information on the various variants, implementations and applications of VFS can be
found in (Mladenović et al., 2005; Mladenović et al., 2010; Pardo et al., 2013).

Remark 23. Investigations on how to accept solutions and on how to move between the formulations are
challenges that should be further explored. This area of investigation is in the early stages, and we believe
much more work can be accomplished here.

5.2. Less-Is-More Approach

The main idea of the Less-is-More Approach, LIMA for short, is based on using as few ingredients as
possible to provide the best possible outcome. For instance, this approach has been successfully applied
in many areas such as Genetic Networks (Bornholdt (2005)), Medicine Treatment (Kaiser (2017)), Can-
cer Immunotherapy (Shi (2020)), Neuro-sciences (Chong (2011)), Signaling (Bannard and Cyster (2012)),
Education (McCartney (2011)), Functional Materials (Bassiri-Gharb (2020)), to cite a few. Also, the title
“Less-is-more” appears in over two dozens articles in the prestigious Science journal. However, it is worth
stressing that this philosophy is seldomly used for solving optimization problems (OP).

It is also worth mentioning that in heuristic search design in general, LIMA fits well, as a heuristic
usually is defined by several characteristics, namely, its speed, accuracy, simplicity, flexibility (i.e., ease of
adaptation), effectiveness and robustness, ease to produce, etc. For example, general papers or chapters on
heuristics highlight this issue, e.g. see Salhi (2017), while desirable meta-heuristic properties can be found
in Hansen et al. (2019). However, there is no formal approach to consider these attributes. Hence, Professor
Mladenović, with his students and colleagues, has attempted to formally provide a mathematical framework
of one of the attributes, namely, simplicity, to be added alongside the two commonly used ones, speed (CPU
time) and accuracy (solution quality). The resulting “Less-is-More Approach” (LIMA) provides a road map
connecting Optimization to Artificial Intelligence and Machine Learning.

The usual way to compare different methods to solve an OP is to assess the relative solution quality (or
algorithm effectiveness) expressed in terms of a percentage deviation (known also as accuracy) and algo-
rithm efficiency measured by CPU time (also referred to as speed). The LIMA approach adds a comparison
of the simplicity of each method to the mix.

Remark 24. LIMA reinforces the principle that including many ideas in the search does not necessarily lead
to better computational results. This claim is often observed in heuristics as there is a lack of correlation
between complexity and effectiveness. On the contrary, less can often even yield more.

An interesting dominance relation that measures an algorithm’s simplicity is contained in the following
two definitions described in Mladenović et al. (2022):
1- The cardinality of the set of ingredients U used to solve optimization problem P (given in (1)) on data
set D by method A is called the LIMA number of A.
2- We say that algorithm B is LIMA-dominant over algorithm A in solving problem P on data set D, if and
only if,

(a) accuracy or quality: the objective function fB ≤ fA;
(b) speed: the running time tB ≤ tA;
(c) simplicity: the cardinalities of the ingredient sets (LIMA numbers) satisfy |UB| ≤ |UA|;
(d) At least one of conditions (a), (b), (c) is satisfied strictly.
Note that the LIMA-dominance relation could be too strong if applied to each run and each test instance.

One way forward is to introduce the concept of weak or average LIMA-dominance, i.e., after many runs on
the same problem, we verify that average values satisfy fB ≤ fA and tB ≤ tA.
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Remark 25. The problem can be considered as a challenging three-objective optimization problem defined
by (a), (b) and (c).

There are several ways of tackling a multi-objective problem including weighted multi objective, goal
programming and lexicographic, among others. If one wants to stress attribute (c), namely the simplicity,
the aim would be to solve the following problem:

min
U ′⊆U

{|U ′| |f (k)
B ≤ f

(k)
∗ , t

(k)
B ≤ t

(k)
∗ ; k = 1, 2, . . .M}, (11)

where index k identifies instance T (k) ∈ T ; T = {T (1), T (2), . . . , T (M)} is a bank of benchmark instances;
f∗ = (f

(1)
∗ , f

(2)
∗ , . . . , f

(M)
∗ ) is a vector of objective function values obtained by state-of-the-art algorithm A;

fB = (f
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B , . . . , f

(M)
B ) is a vector of objective function values obtained by algorithm B using only the
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(M)
∗ ), tB = (t
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(M)
B ) are, respectively, the running

times of algorithm A and B,
The objective in (11) is to find subset U ′ with the minimum number of ingredients (i.e., the smallest

LIMA number) that satisfies the stated conditions. If |U ′| < |U∗| (the number of ingredients used in A), then
algorithm B dominates algorithm A in the LIMA sense. As noted above the ’total’ dominance implied in
(11) may be replaced by a less stringed requirement such as ’average’ dominance or dominance by statistical
hypothesis testing. For further details, including some successful applications of LIMA, see Mladenović
et al. (2022).

5.3. Where from here?

Since the inception of VNS in 1995, we have seen a tremendous rise in the number of different heuristics
that have been developed within the VNS framework and the number of successful applications of these
heuristics. As pointed out in Hansen and Mladenovic (2003), there are eight desirable properties of a
metaheuristic (simplicity, precision, coherence, efficiency, effectiveness, robustness, user-friendliness and
innovation), and VNS possesses to a large degree all of them. Therefore, we are very optimistic that this
growth will continue for many years to come. One area of further developments will certainly be in the
design of new VNS-based heuristics and hybrid heuristics, which combine VNS with other ingredients.
This will be driven in some part by new classes of problems where VNS can play a useful role. For
example, a promising research direction not yet mentioned would involve the application of VNS for solving
optimization problems under uncertainty. Problem data may be subject to uncertainty or the model under
investigation may contain important stochastic elements, but this aspect is in many cases relatively less
explored. Hence, we believe that one way forward to account for uncertainty is to couple VNS with other
techniques from robust/stochastic optimization. Some works in this direction do exist, but there are very
few compared to their counterpart, the deterministic case. Some successful applications in this area may be
found in e.g., (Antoniadis et al., 2022; Gruler et al., 2018, 2020, 2017; Kizys et al., 2022; Panadero et al.,
2020; Tayebi Araghi et al., 2021).

Heuristics are designed to solve optimization problems, but they may have other uses too. For example,
VNS has been applied successfully to enhance graph theory by following a so-called Artificial Intelligence
approach. An aim would be to automate such an approach (Hansen and Mladenovic (2003)). Such non-
conventional use refers to the last desirable property of a metaheuristic mentioned above, namely, that one
of innovation. In this respect, we predict that VNS will play an important role in new applications that
do not necessarily involve searching for optimal solutions of mathematical models. As suggested in other
parts of this paper, one such possible direction would be to apply VNS as an exploratory tool to study the
structure of mathematical models. A better theoretical or empirical understanding of the structure of these
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models will in turn lead to improved designs of algorithms to solve them. We believe this will be a fruitful
area for future research.

6. Conclusions

In this review paper, honoring the life achievement of Professor Mladenović, we mainly concentrate on
important developments in variable neighbourhood search (VNS), its origin, various adaptations and novel
advances. The various successes achieved by VNS are also noted through references to a wide range of
real applications where superior results were obtained. Though the main focus is on VNS, we also briefly
describe two related areas pioneered by Professor Mladenović that were also close to his heart, namely,
variable formulation space (VFS) and less-is-more approach (LIMA).

Throughout the text, we also highlighted several remarks needing further reflections. We hope that these
remarks will convince readers that, for VNS and related methodologies, new and exciting applications and
avenues of research most definitely lie ahead.
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Hansen, P., Brimberg, J., Urošević, D., and Mladenović, N. (2009). Solving large p-median clustering problems by primal–dual

20



variable neighborhood search. Data Mining and Knowledge Discovery, 19:351–375.
Hansen, P., Jaumard, B., Mladenovic, N., and Parreira, A. (2000). Variable neighborhood search for weighted maximum satisfia-

bility problem. Les Cahiers du GERAD, 62.
Hansen, P. and Mladenovic, N. (2003). A tutorial on variable neighborhood search. Les Cahiers du GERAD, 711:2440.
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Todosijević, R., Hanafi, S., Urošević, D., Jarboui, B., and Gendron, B. (2017a). A general variable neighborhood search for the

swap-body vehicle routing problem. Computers & Operations Research, 78:468–479.
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Todosijević, R., Mladenović, M., Hanafi, S., Mladenović, N., and Crévits, I. (2016b). Adaptive general variable neighborhood

search heuristics for solving the unit commitment problem. International Journal of Electrical Power & Energy Systems,
78:873–883.
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