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Counting arcs on hyperbolic surfaces

Nick Bell

Abstract We give the asymptotic growth of the number of arcs of bounded length between

boundary components on hyperbolic surfaces with boundary. Specifically, if S has genus g,

n boundary components and p punctures, then the number of orthogeodesic arcs in each

pure mapping class group orbit of length at most L is asymptotic to L6g−6+2(n+p) times a

constant. We prove an analogous result for arcs between cusps, where we define the length

of such an arc to be the length of the sub-arc obtained by removing certain cuspidal regions

from the surface.

1 Introduction

Let S be an orientable surface of negative Euler characteristic of genus g with n boundary components

and p punctures, where we assume (g, n+ p) 6= (0, 3). Let Mod(S) be the mapping class group and let

PMod(S) be the pure mapping class group: the finite-index subgroup of Mod(S) consisting of exactly

those elements which fix each boundary component and each puncture of S. See [8] for a thorough

treatment of mapping class groups. Here we will say that two multicurves, by which we mean formal

sums of finitely many weighted curves, are of the same type if they share a PMod(S)-orbit.

A celebrated theorem of Mirzakhani ([14],[15]) gives the asymptotic growth of the number of (ho-

motopy classes of) multicurves of the same type of bounded hyperbolic length. Letting Y be a complete

hyperbolic metric on the interior So and γ0 be a multi-curve on S, Mirzakhani showed that

lim
L→∞

|{γ of type γ0 | `Y (γ) ≤ L}|
L6g−6+2(n+p)

= c(γ0)m(Y ), (1)

where c(γ0) is a constant depending on the type γ0 and m(Y ) is a constant depending on Y . We

refer the reader to [14], [15] and [7] for details of the constants. Here, `Y (γ) denotes the Y -length of

the geodesic representative of γ. Mirzakhani first proved the above result for simple multicurves in

[14], and then again for general multicurves in [15]; also see [6] and [7] for an alternative proof of this

theorem. In fact, Mirzakhani’s theorem holds if we redefine the type of a multicurve to correspond to

the orbit of any finite-index subgroup of Mod(S).

In this paper, we shall show that Mirzakhani’s theorem holds when we replace multicurves with

multi-arcs. The question of adapting Mirzakhani’s original proof for simple curves to arcs was first

raised by Wolpert, in the case of so-called lariats (simple arcs from a cusp to itself). Here, we take a

different approach, and consider both simple arcs and general arcs. We first prove the following.
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Theorem 1. Let X be a complete, finite-area, hyperbolic metric on S with non-empty geodesic bound-

ary. Let α0 be a compact multi-arc on S. Then there exist positive constants c(α0) and m(X) such

that

lim
L→∞

|{α of type α0 | `X(α) ≤ L}|
L6g−6+2(n+p)

= c(α0)m(X).

Here, a compact arc is a geodesic segment whose endpoints lie on the boundary of S, and a compact

multi-arc is a formal sum of finitely many weighted compact arcs. The length of a compact arc is the

length of its orthogeodesic representative, which is the unique geodesic compact arc in its homotopy

class which meets the boundary orthogonally, and the length of a compact multi-arc is the weighted

sum of the lengths of its components.

We also consider infinite arcs, that is, arcs whose endpoints are at punctures of S. As implied by

the name, infinite arcs have infinite length as they descend infinitely far down the cusps. Hence we

must define a suitable notion of the length of infinite arcs to allow us to derive an analogue of Theorem

1. A natural way to do this is to cut off the cusps (of area t) and consider the length `t(α) of the

segment of the arc which remains (we refer to Section 4 for the precise definition). There are other

natural choices of length to assign to infinite arcs, such as the truncated length (see [17]). As we will

explain in Section 4, Theorem 2 also holds for the truncated length.

We prove the following result.

Theorem 2. Let X be a complete, finite-area, hyperbolic metric on S with (possibly empty) geodesic

boundary. Let α0 be an infinite arc on S. Then for any positive t ≤ 1, we have

lim
L→∞

|{α of type α0 | `tX(α) ≤ L}|
L6g−6+2(n+p)

= c(α0)m(X)

where c(α0) and m(X) are as in Theorem 1. In particular, the limit does not depend on t.

Remark. Theorem 2 also holds for infinite multi-arcs, following the same argument presented in this

paper. Moreover, our arguments can be easily modified to apply to rays, by which we mean arcs with

one endpoint on the boundary and one at a puncture, or any collection of infinite arcs, compact arcs

and rays.

As mentioned above, instead of modifying Mirzakhani’s original proof, here we take a different,

much simpler approach. The main idea is to associate a multicurve γα to each multi-arc α in a

way which respects length, up to a well-behaved error, and then use Mirzakhani’s theorem to deduce

Theorems 1 and 2. In fact, c(α0) will be shown in each case to be closely related to c(γα0): we will

get that c(α0) = k(α0)26g−6+2(n+p)c(γα0) where k(α0) is a combinatorial constant depending on α0,

c(γα0) is as in (1), and γα0 is the curve associated to α0 as defined in Sections 3.1 and 4.

In Section 2, we will introduce the necessary tools to formulate our proof, and deal with a tech-

nicality regarding the application of Mirzakhani’s theorem in our setting. We shall discuss the link

between compact arcs and curves in Section 3.1, before proving Theorem 1 in Section 3.2. Then in

Section 4, we will demonstrate how to apply the same method to infinite arcs and subsequently prove

Theorem 2.
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Remark. The study of orthogeodesics on hyperbolic surfaces has a rich history. For example, if

one counts all orthogeodesics of length at most L, Basmajian’s Identity [1] gives an upper bound

exponential in L for this number, and the actual asymptotic growth was shown to be exponential by

Parkonnen and Paulin in [16] (see [10] for a generalisation). These results can be viewed as analogues

to Huber’s [11] and Margulis’ [12] Prime Geodesic theorem, showing asymptotic exponential growth

of the number of closed geodesics on the surface. Our results are instead analogues of Mirzakhani’s

theorem, counting arcs in each (pure) mapping class group orbit and giving polynomial asymptotic

growth.

Acknowledgements. The author would like to thank Viveka Erlandsson for suggesting the topic,

and for advising them throughout. Additionally, the author would like to thank Hugo Parlier and Juan

Souto for their invaluable help and feedback, Lars Louder for providing Example 1, and the referee

for their helpful and constructive comments. Finally, the author would like to thank their family and

friends for their constant support.

2 Background

As above, let S be an orientable surface of negative Euler characteristic of genus g with n boundary

components and p punctures, with (g, n + p) 6= (0, 3). By ∂S we shall mean the boundary of S,

consisting of the n boundary components. The p punctures correspond to ends of S, and we denote

the collection of punctures as C. When convenient, we may consider the punctures as marked points on

(the closure of) S. Let X be a complete, finite-area, hyperbolic metric on S such that ∂S is geodesic.

We will consider S to be endowed with such a metric throughout the following. Finally, we define the

mapping class group of S to be the group of homeomorphisms of the interior of S up to homotopy,

that is,

Mod(S) := Mod(So) = Homeo+(So)/Homeo+0 (So),

where So = S \ ∂S is the interior of S, Homeo+(So) is the space of orientation-preserving homeo-

morphisms of So and Homeo+0 (So) is the subgroup of homeomorphisms properly homotopic to the

identity.

By a curve we mean (the homotopy class of) an immersion of the circle γ : S1 → S, and we identify

curves which differ by an orientation. We assume curves to be essential, meaning not homotopic to a

point or a puncture, and non-peripheral, meaning not homotopic to a boundary component. By abuse

of notation, we will use γ to refer to both a curve and its homotopy class. If a curve can be realised

by an embedding, we call it simple.

A compact arc is an immersion of the closed interval α : [0, 1] → S such that α(0), α(1) ∈ ∂S and

α
(
(0, 1)

)
⊂ So. We consider compact arcs up to homotopy relative to ∂S, where we allow the endpoints

to move along ∂S, and we assume that they are not homotopic into the boundary. Similarly, we define

an infinite arc to be an immersion of the open interval α : (0, 1) → S such that the endpoints are in

C, by which we mean that when we consider the punctures as marked points, the limit of α in each

direction is a marked point. We consider infinite arcs up to homotopy relative to C, and we assume

that they are not homotopic into C. We identify arcs which differ by an orientation, and again by

abuse of notation, we refer to both an arc and its homotopy class by α. If an (infinite or compact) arc
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can be realised as an embedding, then we call it simple. We stress that throughout, we allow arcs to

have self-intersections; we do not only count simple arcs.

A multicurve or a multi-arc is a finite formal sum of weighted curves or (infinite or compact) arcs

respectively. Explicitly, if ω is a multicurve (resp. multi-arc), then

ω =

m∑
i=1

aiωi

for some ai ∈ R+ and m ∈ Z+, where each ωi is a curve (resp. arc). We will refer to the ωi as the

components of ω.

Each homotopy class of curves has a unique geodesic representative, and each homotopy class of

compact arcs has a unique geodesic representative which meets the boundary orthogonally, which we

refer to as an orthogeodesic. We define the length of (a homotopy class of) a curve or compact arc to

be the length of its geodesic or orthogeodesic representative, which we denote by `X(·). The length of

a multicurve or compact multi-arc is defined to be the weighted sum of the lengths of its components:

for ω =
∑m
i=1 a

iωi, we have `X(ω) =
∑m
i=1 a

i`X(ωi). We will discuss how to assign appropriate finite

lengths to infinite arcs in Section 4.

The pure mapping class group PMod(S) acts naturally on curves and arcs in S. If ϕ is a mapping

class and ω is either a geodesic curve, an orthogeodesic compact arc or a geodesic infinite arc, then we

define ϕ · ω to be the (ortho-)geodesic representative of f(ω), where f is any representative of ϕ. Let

ω0 be a curve or arc, then for any curve or arc ω, we say that ω is of type ω0 if they share an orbit in

the pure mapping class group, that is, there exists some ϕ ∈ PMod(S) such that ϕ · ω0 = ω.

The action of PMod(S) on multicurves and multi-arcs is defined analogously to the above: if

ω =
∑m
i=1 a

iωi is a multicurve or multi-arc, then

ϕ · ω =

m∑
i=1

ai(ϕ · ωi).

We say that a multicurve or multi-arc ω is of type ω0 if ω and ω0 share a PMod(S)-orbit. As a result,

we have that if ω =
∑m
i=1 a

iωi and ω0 =
∑n
j=1 a

j
0ω

j
0 are of the same type then m = n and, up to

relabelling, for all i ∈ {1, . . . ,m}, ai = ai0 and ωi is of type ωi0.

Since X is complete and finite-area, each puncture corresponds to a cusp. Recall that a cusp is an

end which has a neighbourhood Ht isometric to{
z ∈ H2

∣∣∣Im(z) >
1

t

}
/〈z 7→ z + 1〉

for some t > 0, where we have identified the hyperbolic plane H2 with the Poincaré upper half-plane.

Such a region has volume t, and we refer to Ht as a cuspidal region (of volume t). The ends of any

infinite arc escape down cusps, and the unique geodesic representative of its homotopy class eventually

intersects the horocyclic foliation of the corresponding cusps orthogonally.

Let t > 0. For each p ∈ C, let Hp
t denote the cuspidal region at p of area t. Denote the union of

these regions over all p by Ht = ∪p∈CHp
t . It is well-known that for any t < 2, the cuspidal regions Hp

t

are embedded and pairwise disjoint, as can be seen as a result of the Collar Lemma (see for example
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Theorem 4.4.6 of [4]).

For each boundary curve δ in ∂S, and for any c > 0, define the annulus Aδc to be the set of points

at a distance less than c from δ. That is,

Aδc = {x ∈ S | dX(x, δ) < c}.

Denote by Ac = ∪δAδc the union of these annuli over all δ in ∂S. It again follows from the Collar

Lemma, applied to the boundary curves, that there exists c′ > 0 depending on X such that the annuli

Aδc′ are embedded and pairwise disjoint. We can choose c′ such that for all t < 2, Ht ∩Ac′ = ∅, and

in particular, S \ (Ht ∪Ac′) is homeomorphic to So.

For any p and t < 2, and for any complete geodesic γ intersecting ∂Hp
t transversely, γ ∩Hp

t takes

one of two forms. Either it never leaves the cuspidal region and so intersects every horocycle in Hp
t

orthogonally, or it winds around the cusp before leaving the region, and hence, when long enough,

creates self-intersections. In the latter case, we call the segment returning. In fact, the deeper into

Hp
t a returning segment goes the more times it must self-intersect, and there is a direct relationship

between the length of a returning segment and its self-intersection number which we record below for

future reference. We refer to [2] and [3] for more details about the behaviour of returning segments

and for the proof of the below lemma: in particular, Proposition 3.4 of [3] gives a much more precise

description of the relationship between how far an arc goes into a cusp and its self-intersection number.

Letting ι(·, ·) denote the (geometric) intersection number between curves or arcs (which is realised by

their (ortho-)geodesic representatives), we have the following.

Lemma 3. Let p be a puncture, and let d > 0. Suppose β is a geodesic segment in Hp
1 with both

endpoints on ∂Hp
1 such that ι(β, β) ≤ d. Then there exists some positive B = B(d) such that

`X(β) ≤ B.

It follows from Lemma 3 that any geodesic curve γ with at most d self-intersections never enters

He−B(d) .

We can make a similar observation regarding boundary components on S. Whenever a complete

geodesic enters a small annulus around a boundary curve δ, it spirals towards δ, and unless it is

asymptotic to δ it eventually leaves the annulus, creating self-intersections if long enough. It follows

that if γ is a geodesic curve with at most d self-intersections, there exists some c < c′ depending

on d (and X) such that γ never enters Ac. Putting this together with the above gives us that γ is

contained in the compact subsurface S \ (He−B(d) ∪Ac) ⊂ So. Note that as before, S \ (He−B(d) ∪Ac)

is homeomorphic to So. Furthermore, since Mod(S) preserves the self-intersection number of curves

and arcs, the above is true for any curve of type γ. We summarise this well-known fact below for

reference; for a more precise description see Proposition 3.4 of [3].

Lemma 4. Let γ0 be a curve. Then there exists a compact subsurface K ⊂ So with Ko homeomorphic

to So such that for any γ of type γ0, the geodesic representative of γ is contained in K.

Since multicurves have finitely many components, this lemma holds for multicurves by taking the

union of the compact subsurfaces given for (the support of) each component.
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Let d be some non-negative integer, and let α be an infinite arc such that ι(α, α) = d. Then

similarly to the above, α ∩He−B(d) consists of exactly 2 components, which are simple geodesic rays.

Equivalently, α ∩ (S \He−B(d)) has exactly one component. We state this here for reference.

Lemma 5. Let α be an infinite arc. Then there exists some positive tα < 1, depending only on ι(α, α),

such that α ∩ (S \Htα) has exactly one component.

We also need the fact that if a geodesic goes far enough into a cusp then it must intersect itself

inside H2. To see this, suppose β is a returning geodesic segment in H2 that enters Hp
t for some t ≤ 1

and some p ∈ C. Consider the cuspidal region Hp
2 and identify it with{

z ∈ H2
∣∣∣ Im(z) >

1

2

}
/〈z 7→ z + 1〉.

A fundamental domain for the action of z 7→ z + 1 is the region in H2 bounded by x = 0 and x = 1.

Note that any geodesic in H2 neither of whose endpoints are at ∞ which intersects the line y = 1
t also

intersects its translate under the map z 7→ z + 1, and this intersection occurs above the line y = 1
2 .

Hence β intersects itself inside the embedded cuspidal region Hp
2 . Moreover, any segment entering a

cusp in H1 must intersect itself in a slightly larger cusp; for example, a cusp in H2. We record this

here for reference, and refer to [13] and Proposition 3.2 of [3] for more details.

Lemma 6. Let 0 < t ≤ 1. If β is a geodesic segment in H2 with both endpoints on ∂H2, and

β ∩Ht 6= ∅, then ι(β, β) ≥ 1.

In particular, any simple geodesic not asymptotic to a puncture cannot enter H1.

We now comment very briefly on measured laminations; briefly, because although central to

Mirzakhani’s work, they somewhat surprisingly play no role here except in order to state a constant

below. A measured lamination is a closed subset of S foliated by simple geodesics together with a

transverse measure, and we denote the space of (compactly supported) measured laminations on So

asML(S): for background we refer the reader to [20], [21] and [9]. As the support of any λ ∈ML(S)

is a disjoint union of simple geodesics, it follows from Lemma 6 that the support of λ is contained

in So \H1. In fact, there exists a compact subsurface K ⊂ So \H1 which contains the support of

ML(S).

As mentioned in the introduction, the central idea in this paper is to find a nice way to associate

curves to arcs so that we can use Mirzakhani’s curve-counting theorem to count arcs. However,

Mirzakhani’s theorem is stated for complete finite-area hyperbolic metrics on the interior So, and we

will need to use the result for our metric X on S which has geodesic boundary. This issue is resolved

by instead using a generalisation of Mirzakhani’s theorem to complete Riemannian metrics. We state

this in full generality below, but note that metrics with variable negative curvature are sufficient for

our purposes.
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Theorem 7 ([5], Corollary 1.3). Let Y be a complete Riemannian metric on So = S \ ∂S. Then for

any multicurve γ0,

lim
L→∞

|{γ of type γ0 | `Y (γ) ≤ L}|
L6g−6+2(n+p)

= c(γ0)m(Y )

where c(γ0) is as in (1), m(Y ) is a constant depending on Y , and `Y (γ) is the length of a shortest

curve homotopic to γ.

Remark. We refer the reader to Mirzakhani’s original result [15] and Erlandsson and Souto’s book

[7] for details on the constants appearing in Theorem 7. The constant m(Y ) can be expressed in terms

of the Thurston measure mThu on ML(S) as m(Y ) = mThu({`Y (·) ≤ 1}). Following the notation of

[7], c(γ0) can be written as

c(γ0) =
cPMod(S)(γ0)

bg,n+p
,

and both cPMod(S)(γ0) and bg,n+p can also be expressed in terms of Thurston measures. The original

constants, due to Mirzakhani, were expressed in a different fashion, using integrals over moduli space

with respect to the Weil-Petersson metric. See the end of Chapter 8 in [7] for a discussion on the

relationship between these constants and those appearing in [7].

To see that Theorem 7 implies that we can count curves in our setting, let γ0 be a multicurve

on S and let K = K(γ0) be the compact subsurface of So given by Lemma 4. By the discussion

after Lemma 6, we may assume that K is such that ML(S) ⊂ K. Take any complete Riemannian

metric Y on So which agrees with X on K. Since the geodesic representative of every multicurve γ

of type γ0 is contained in K and ML(S) sits inside K, we have that `Y (γ) = `X(γ) for all γ of type

γ0 and `Y (λ) = `X(λ) for all λ ∈ ML(S). From the latter equality, we get that m(X) = m(Y ) by

the description of these constants in the remark following Theorem 7. We record this consequence for

reference.

Corollary 8. Let X be a complete, finite-area, hyperbolic metric on S such that ∂S is geodesic. Then

for any multicurve γ0,

lim
L→∞

|{γ of type γ0 | `X(γ) ≤ L}|
L6g−6+2(n+p)

= c(γ0)m(X)

where c(γ0) and m(X) are as in (1).

3 Compact arcs

3.1 Relating compact arcs and curves

In this section, we will discuss how to associate multicurves to compact multi-arcs in a way that respects

length, up to some well-behaved error. We will achieve this using the nice geometric properties of pairs

of pants.

First, we will discuss how to associate a single curve to a single compact arc. Fix an orientation

on S, which induces an orientation on the boundary components. Let α be some compact arc in S,

oriented from α(0) to α(1). The endpoints α(0) and α(1) each lie on a boundary component, which

we denote by δα0 and δα1 respectively: note that these are not necessarily distinct. Pick basepoints p0

7
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and p1 on δα0 and δα1 respectively, and consider these boundary components as loops based at their

respective basepoints. Apply a homotopy to α so that α(0) = p0 and α(1) = p1. Then we define the

curve associated to α to be the geodesic curve γα (freely) homotopic to the concatenated path

α−1 · δα1 · α · δα0

which starts and ends at p0. In particular, in the case that α is simple and δα0 6= δα1 , γα is homotopic

to the boundary of a small neighbourhood of the union of α, δα0 and δα1 . See Figure 1. Recall that we

identify arcs and curves that differ by an orientation, and note that the arc α′ which differs from α

only in orientation gives rise to exactly the same curve as α, even in orientation.

Figure 1: Examples of compact arcs (in red) and their associated curves (in blue).

Now, let P be a topological surface with g = 0, n = 3 and p = 0 known as a pair of pants, and

fix an orientation on P . The boundary components of P are referred to as cuffs, and for each pair of

cuffs the unique homotopy class of simple compact arcs between them is called a seam. We label the

cuffs by δP0 , δ
P
1 and δP2 and the seam between δP0 and δP1 by αP .
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For any arc α on S with endpoints on δα0 and δα1 , there exists an orientation-preserving immersion

ια : P → S such that

ια(δP0 ) = δα0 ,

ια(δP1 ) = δα1 ,

ια(αP ) = α.

Note that the images of the two cuffs and the seam under this map determine the image of the third

cuff up to homotopy, since this is exactly the (free) homotopy class of α−1 · δα1 · α · δα0 . That is,

γα = ια(δP2 ) (2)

(up to homotopy). Let ι′α be another immersion which satisfies the above. Then since they agree on

δP0 , δP1 and αP , we have that the images ια(δP2 ) and ι′α(δP2 ) of the third cuff are homotopic and such

a homotopy extends to a homotopy from ια(P ) to ι′α(P ). Thus any two such immersions of P are

homotopic.

In the case that α =
∑m
i=1 a

iαi is a compact multi-arc, we define the multicurve associated to α to

be the weighted sum of the the curves associated to its components. That is,

γα =

m∑
i=1

aiγαi =

m∑
i=1

aiιαi(δ
P
2 ). (3)

In the remainder of the section, we will first prove several statements for single compact arcs before

demonstrating how these also hold for compact multi-arcs.

Let A(S) and C(S) denote the sets of compact arcs and curves on S respectively. We define the

association map I : A(S)→ C(S) by

I(α) = γα.

First, we show that I distorts the length of arcs in a controlled way (see also Section 6 of [3] for various

expressions relating the lengths of α and γα).

Lemma 9. Let X be a complete, finite-area, hyperbolic metric on S such that ∂S is geodesic. There

exists a constant C(X) > 0 such that for any α ∈ A(S),

|`X(I(α))− 2`X(α)| ≤ C(X),

where I(α) = γα is the curve associated to α.

Proof. This will follow from basic hyperbolic geometry. Let α ∈ A(S).

Choosing the lengths of 2 cuffs and the seam between them on a pair of pants fixes the length of

the third cuff; that is, the lengths of δα0 , δα1 and α determine the length of γα. More precisely,

cosh
`X(γα)

2
= sinh

`X(δα0 )

2
sinh

`X(δα1 )

2
cosh `X(α)− cosh

`X(δα0 )

2
cosh

`X(δα1 )

2
(4)

(see Theorem 2.4.1 of [4]). Let ∂S = {δ1, . . . , δn}, then for some i, j, δα0 = δi and δα1 = δj . To simplify
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notation, we will write

Ai,j = sinh
`X(δi)

2
sinh

`X(δj)

2
,

Bi,j = cosh
`X(δi)

2
cosh

`X(δj)

2
.

Then equation (4) gives the length of γα as

`X(γα) = 2 cosh−1(Ai,j cosh `X(α)−Bi,j),

and we want to show that this length is close to 2`X(α). To this end, we define the error function

Ei,j : [mi,j ,∞)→ R by

Ei,j(`) = 2 cosh−1(Ai,j cosh `−Bi,j)− 2`,

where mi,j is a lower bound on the lengths of arcs between δi and δj which can be taken as

mi,j := cosh−1
(
Bi,j+1
Ai,j

)
. This function is continuous, and the limit

lim
`→∞

Ei,j(`) = 2 ln(Ai,j)

exists. Hence |Ei,j(`)| is bounded for all ` ∈ [mi,j ,∞), thus there exists C(i, j) > 0 such that for

any arc α between δi and δj , we have |`X(γα) − 2`X(α)| ≤ C(i, j). Therefore as S has finitely many

boundary components, there exists C(X) > 0 such that for any α ∈ A(S),

|`X(γα)− 2`X(α)| ≤ C(X).

This association map I is not one-to-one: for example, suppose S is a four-holed sphere with

boundary components δ1, δ2, δ3, δ4. Let α be a simple arc connecting δ1 and δ2, and β a simple arc

connecting δ3 and δ4. Then γα and γβ are the same (homotopy class of) curve, up to orientation.

There are also less trivial examples, such as where α and β are arcs between the same boundary

components, as the following example illustrates.

Example 1. Let P be the pair of pants from above. Fix a base point ? ∈ P and choose generators A

and B for π1(P, ?) ' F2 such that the loops A and B are freely homotopic (as oriented curves) to δP0

and δP1 respectively. Note that the third boundary component δP2 corresponds to the conjugacy class

of B−1A−1. Let S = S0,3,0 be another oriented pair of pants and let a, b be generators of π1(S, ∗) (for

some basepoint ∗ ∈ S) such that a and b are freely homotopic to two of the boundary components of

S, say δS0 and δS1 respectively.

Now consider the homomorphism h1 : π1(P, ?)→ π1(S, ∗) defined by

A 7→ a and B 7→ b−1aba−1b.

As h1(A) and h1(B) are conjugate to a and b, h1(A) and h1(B) are (freely) homotopic to δS0 and δS1 ,

preserving orientation. Thus h1 induces an immersion ι1 : P → S.

10
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Figure 2: The arcs corresponding to the homomorphisms h1 (left) and h2 (right), drawn from two
perspectives for clarity.

Similarly, the homomorphism h2 : π1(P, ?)→ π1(S, ∗) defined by

A 7→ ab−1aba−1 and B 7→ b

also induces an immersion ι2 : P → S.

Note that (the homotopy classes of) all three boundary components of ι1(P ) and ι2(P ) agree; they

correspond to the conjugacy classes of a, b and b−1ab−1a−1ba−1. Further note that

〈a, b−1aba−1b〉 6= 〈ab−1aba−1, b〉,

and hence ι1(P ) is not homotopic to ι2(P ). In particular, the arcs ι1(αP ) and ι2(αP ) are not homotopic

whilst γι1(αP ) and γι2(αP ) determine the same curve (namely, the conjugacy class of b−1ab−1a−1ba−1).

See Figures 2 and 3.

Despite this complication, if we restrict I to a (pure) mapping class group orbit of an arc, it is

constant-to-one. This will be enough for our purposes, as I is equivariant with respect to PMod(S),

which we now demonstrate.

Lemma 10. Let ϕ ∈ PMod(S) and α ∈ A(S). Then

I(ϕ · α) = ϕ · I(α).

11



Compact arcs

Figure 3: The curve associated to the arcs from Figure 2, drawn from two perspectives for clarity.

Proof. To see this, write

γϕ·α = ιϕ·α(δP2 )

using (2). We have that ιϕ·α(P ) ⊂ S is an immersed pair of pants with boundary components δα0 and

δα1 , and the seam between them is ϕ · α. Similarly, ϕ · ια(P ) ⊂ S is an immersed pair of pants with

boundary components δα0 and δα1 and seam between them ϕ ·α, since ϕ fixes the boundary components

of S. Therefore, ιϕ·α(P ) = ϕ · ια(P ), and in particular, ιϕ·α(δP2 ) = ϕ · ια(δP2 ). Since γα = ια(δP2 ) by

(2), we have

γϕ·α = ϕ · γα

and so the lemma holds.

Let α0 be a compact arc, and let

Iα0
: PMod(S) · α0 → PMod(S) · γα0

be the restriction of I to arcs of type α0. By Lemma 10, this map is well-defined. Moreover, Iα0

is finite-to-one. To see this, take some γ ∈ PMod(S) · γα0 and consider the collection of compact

arcs αi such that γαi = γ. By Lemma 9, the maximum length of such an arc is 1
2`X(γ) + 1

2C(X),

and thus there are only finitely many. In fact, since Iα0
is PMod(S)-equivariant and PMod(S) acts

transversely on PMod(S) · γα0
, it follows that all pre-images have the same cardinality; that is, Iα0

is

constant-to-one:

Proposition 11. Let α0 be a compact arc. Then there exits k = k(α0) such that Iα0 is surjective and

k-to-1.

12
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We will need to use these results for compact multi-arcs. Let Amulti(S) and Cmulti(S) be the sets

of weighted compact multi-arcs and weighted multicurves respectively. By abuse of notation, define

the association map on multi-arcs I : Amulti(S)→ Cmulti(S) by

I(α) = I
( m∑
i=1

aiαi
)

=

m∑
i=1

aiI(αi).

As multi-arcs have finitely many components, Lemma 9 holds for multi-arcs as a direct consequence if

we allow the constant to depend on the number of components. In particular, we have:

Corollary 12. Let X be a complete, finite-area, hyperbolic metric on S such that ∂S is geodesic. For

any α ∈ Amulti(S), there exists a constant C(X) > 0 such that

|`X(I(α))− 2`X(α)| ≤ C(X),

where I(α) = γα is the multicurve associated to α.

Furthermore, as an immediate corollary to Lemma 10, I remains PMod(S)-equivariant when defined

on compact multi-arcs. Following the proof of Proposition 11, we can see that the restriction of the

association map to multi-arcs of a particular type is surjective and k-to-1, for some k depending only

on the type. We record this here for reference.

Corollary 13. Let α0 be a compact multi-arc and γα0
be as in (3). Let Iα0

: PMod(S) · α0 →
PMod(S) · γα0

be the restriction of I to multi-arcs of type α0. Then there exists k = k(α0) such that

Iα0
is surjective and k-to-1.

Remark. It would be interesting to understand the value of k. Example 1 demonstrates that I is not

one-to-one; how far from injective could it be? When restricting to a type, is the map then one-to-one?

For example, if α0 is simple, is k(α0) = 1? Future work could study this association more closely to

give us an idea of how it varies with the type of arc, and if it is not identically 1, derive some explicit

examples of arcs of the same type which are associated to the same curve.

3.2 Counting compact arcs

We can now prove Theorem 1.

Proof of Theorem 1. Let α0 be a compact multi-arc. Consider the set

{α of type α0 | `X(α) ≤ L}

for some L > 0. By Corollary 13, there exists k such that the association map Iα0 is k-to-1, and by

Corollary 12, the maximum length of a multicurve associated to a multi-arc in this set is 2L+ C(X).

Hence we can write

|{α of type α0 | `X(α) ≤ L}| ≤ k|{γ of type γα0 | `X(γ) ≤ 2L+ C(X)}|.

13
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Then we have

lim sup
L→∞

|{α of type α0 | `X(α) ≤ L}|
L6g−6+2(n+p)

≤ lim sup
L→∞

k|{γ of type γα0
| `X(γ) ≤ 2L+ C(X)}|

L6g−6+2(n+p)

= k · lim sup
L→∞

|{γ of type γα0
| `X(γ) ≤ 2L+ C(X)}|

(2L+ C(X))6g−6+2(n+p)

(2L+ C(X))6g−6+2(n+p)

L6g−6+2(n+p)

= k · 26g−6+2(n+p)c(γα0
)m(X)

using Corollary 8. Using a similar argument, we have

|{α of type α0 | `X(α) ≤ L}| ≥ k|{γ of type γα0
| `X(γ) ≤ 2L− C(X)}|

and therefore

lim inf
L→∞

|{α of type α0 | `X(α) ≤ L}|
L6g−6+2(n+p)

≥ k · 26g−6+2(n+p)c(γα0)m(X).

Hence, since the limit superior and inferior both exist and agree, we have that the limit exists and

equals the same value. In other words,

lim
L→∞

|{α of type α0 | `X(α) ≤ L}|
L6g−6+2(n+p)

= c(α0)m(X),

where c(α0) := k · 26g−6+2(n+p)c(γα0), k is as in Corollary 13, and c(γα0)and m(X) are as in (1).

4 Counting infinite arcs

The main work in this section is to prove the lemmas from Section 3.1 for infinite arcs, with modifica-

tions to account for the range of values the t-length of an infinite arc can take. The proof of Theorem

2 will then be analogous to that of Theorem 1.

First, we discuss the assignment of appropriate finite lengths to infinite arcs. For any t ∈ (0, 1],

let Ht = ∪p∈CHp
t be the union of the cuspidal regions of volume t as before, and define the t-length

`tX(α) of any arc α to be the length of αt = α ∩ (S \Ht). That is,

`tX(α) = `X(αt).

Note that in general, αt could consist of multiple connected components and in this case, `X(αt) is

the sum of the lengths of its components. Fix an infinite arc α and let tα be given by Lemma 5. Then

α ∩ (S \Htα) is connected, and moreover for any t ≤ tα, αt has exactly one component.

As mentioned in the introduction, the t-length of an arc is closely related to the truncated length as

defined by Parlier in [17]. Choose a standard collection of cuspidal regions, which we may take as H1.

For any infinite arc α, the (doubly) truncated length of α is the length of the segment of α between

the first and last times α crosses ∂H1. We denote this length by `TrX (α).

This length is also closely related to the λ-length introduced by Penner in [18] and [19]. In our

14
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setting, and choosing the appropriate cuspidal regions, we have that

λ(α) = e
1
2 `
Tr
X (α).

Note that for any α ∈ A(S), `tαX (α) and the truncated length `TrX (α) differ by a constant, and this

constant depends only on ι(α, α). This is because the tα-length of α is exactly the truncated length

plus the lengths of the two geodesic segments of α between ∂H1 and ∂Htα , which each have length

ln( 1
tα

). Thus we can write

|`tαX (α)− `TrX (α)| ≤ 2 ln
( 1

tα

)
. (5)

Recall that by Lemma 5, tα depends only on ι(α, α). Using this fact, one can show that Theorem 2

also holds when we replace `tX by `TrX .

The curve γα associated to an infinite arc α is defined analogously to the compact case. Denote by

pα0 and pα1 the cusps at each end of α, where α is oriented from pα0 to pα1 . With tα as above, define γα

to be the geodesic curve (freely) homotopic to the loop given by the concatenation

(αtα)−1 · hα1 · αtα · hα0 ,

where hα0 = ∂H
pα0
tα , h

α
1 = ∂H

pα1
tα are the horocycles at pα0 and pα1 of length tα, viewed as loops with

appropriate basepoints and orientations. Note that if we replaced tα with any t < tα, we would get the

same curve γα. Let P be a (generalised) pair of pants with one boundary component and two cusps,

labelled δ, p0 and p1 respectively. There is an orientation-preserving immersion ια : P → S which

sends p0 and p1 to pα0 and pα1 respectively, and such that (the homotopy class of) the simple infinite

arc between them is mapped to α. Then equivalently, γα is the geodesic representative of ια(δ).

Abusing notation, we define I : A∞(S) → C(S) to be the association map from infinite arcs to

curves, where A∞(S) is the set of all infinite arcs on S. That is, for any α ∈ A∞(S),

I(α) = γα.

We will now prove an analogue of Lemma 9 for infinite arcs. As t can be taken arbitrarily close

to 0, the t-length of an arc can be arbitrarily long, and so any bound on the difference between the

t-lengths of infinite arcs and the lengths of their associated curves must depend on t. Furthermore,

arcs which self-intersect arbitrarily often will go arbitrarily deep into the cusps, and therefore so will

their curves. Thus for a fixed value of t, this difference can become arbitrarily large. Hence, any such

bound must also depend on self-intersection number.

Lemma 14. Let α be an infinite arc. Then for any positive t < 1, there exists C
(
ι(α, α), t

)
> 0 such

that

|`X(I(α))− 2`X(αt)| ≤ C
(
ι(α, α), t

)
where I(α) = γα is the curve associated to α.

Proof. Let α be an infinite arc, and let tα be given by Lemma 5. We will start by proving the lemma

in the case that t ≤ tα. Then we will demonstrate that for t > tα, the difference between `tX(α) and
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Figure 4: The pre-image of an infinite arc α in the generalised pair of pants P , with the perpendiculars
which we cut along.

`tαX (α) is uniformly bounded across all arcs with the same self-intersection number, and so complete

the proof.

Suppose that t ≤ tα. Equip the generalised pair of pants P with a metric using the pullback of

X through ια. Cut P along four geodesic arcs: the pre-image of α, the perpendicular compact simple

geodesic arc from the boundary component to itself, and the two simple geodesic rays between the

boundary component and the cusps. See Figure 4. We are left with 4 isometric copies of a quadrilateral

with three right angles and one ideal vertex, which we label as in Figure 5.

Since t ≤ tα, we have that the length of the edge qw is 1
2`X(αt), and the length of the edge uv

is 1
4`X(γα). Consider this quadrilateral in the upper-half space model for H2 and normalise it such

that the ideal vertex is at ∞ and the edges incident to it are on the lines x = 0 and x = 1. As the

length of the boundary of the cuspidal region of area t is t, the length of the segment which lives in

this quadrilateral is t
2 . Therefore it lies on the line y = 2

t .

This means that w = 2
t ie
− 1

2 `X(αt), and a computation shows that `X(γα) = 4 cosh−1( t2e
1
2 `X(αt)).

Hence, the difference `X(γα)− 2`X(αt) can be written as

4 cosh−1
( t

2
e

1
2 `X(αt)

)
− 2`X(αt).

The function Et(`) = 4 cosh−1( t2e
1
2 `) − 2` is continuous on [mt,∞), where mt := 2 ln( 2

t ) is a lower

bound on the length of αt, and lim`→∞Et(`) = 4 ln(t). It follows that there exists C1(t) > 0 such that

|`X(γα)− 2`X(αt)| ≤ C1(t). (6)

Now suppose that t > tα. Note that αt is contained in αtα , and so `tX(α) < `tαX (α). Consider

αtα \ αt, which lies in Ht \ Htα . Exactly two of the components of αtα \ αt are simple geodesic
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Figure 5: One of the quadrilaterals acquired from cutting P (left), and the same quadrilateral in the
upper-half plane model after normalising (right).

arcs from ∂Ht to ∂Htα which meet each boundary orthogonally. Hence, these two components each

have length ln( t
tα

) ≤ ln( 1
tα

). The other components, if any, are returning segments in Ht with both

endpoints on ∂Ht. Let β be some such segment of α, and let d = ι(α, α). Then we must have

ι(β, β) ≤ d. Thus, as t ≤ 1, `X(β) ≤ B(d) where B is given by Lemma 3. As B only depends on d, this

holds for any such segment. Now we need to show that there are only finitely many segments of α in

Ht \Htα . From Lemma 6, we have that the self-intersection number of each segment is at least 1, and

indeed the sum of the self-intersection numbers of these segments is at most d. Hence, α∩ (Ht \Htα)

has at most d+ 2 components and so

`tαX (α)− `tX(α) ≤ dB(d) + 2 ln
( t
tα

)
≤ dB(d) + 2 ln

( 1

tα

)
.

Note that by Lemma 5, tα depends only on d = ι(α, α). Thus there exists some C2

(
ι(α, α)

)
> 0 such

that

|`tαX (α)− `tX(α)| ≤ C2

(
ι(α, α)

)
.

Now by applying (6) to tα, we have that |`X(γα)− 2`X(αtα)| ≤ C1(tα), and thus we can write

|`X(γα)− 2`X(αt)| ≤ C1(tα) + 2C2

(
ι(α, α)

)
.

Therefore, for any t ≤ 1,

|`X(γα)− 2`X(αt)| ≤ C
(
ι(α, α), t

)
where

C
(
ι(α, α), t

)
=

C1(t) if t ≤ tα,

C1(tα) + 2C2

(
ι(α, α)

)
if t > tα.
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The fact that I for infinite arcs is PMod(S)-equivariant holds by an argument analogous to the

proof of Lemma 10. That is, for any infinite arc α and any ϕ ∈ PMod(S),

I(ϕ · α) = ϕ · I(α). (7)

For any infinite arc α0, Iα0 : PMod(S) ·α0 → PMod(S) ·γα0 is the restriction of I to PMod(S) ·α0.

Given any curve γ of type γα0 and a fixed value of t, there are only finitely many arcs α of type α0

such that `(αt) ≤ 1
2`X(γ) + 1

2C
(
ι(α0, α0), t

)
. By Lemma 14, this means that there are only finitely

many arcs α of type α0 such that γα = γ. Using this together with (7), Proposition 11 holds for Iα0

by an analogous argument.

Proposition 15. Let α0 be an infinite arc. Then there exists some k = k(α0) such that Iα0
is

surjective and k-to-1.

Armed with this, we can follow the argument from the proof of Theorem 1 to prove Theorem 2.

Proof of Theorem 2. Let α0 be an infinite arc, and fix some positive t ≤ 1. Let γα0 be the curve

associated to α0, as defined above. Using the same argument as in the proof of Theorem 1, replacing

Corollary 12 and Corollary 13 with Lemma 14 and Proposition 15, we have

lim
L→∞

|{α of type α0 | `tX(α) ≤ L}|
L6g−6+2(n+p)

= k · 26g−6+2(n+p) lim
L→∞

|{γ of type γα0
| `X(γ) ≤ L}|

L6g−6+2(n+p)

= k · 26g−6+2(n+p)c(γα0
)m(X)

= c(α0)m(X)

where c(α0) = k · 26g−6+2(n+p)c(γα0
), k is as in Proposition 15, and c(γα0

) and m(X) are as in (1).

Remark. As previously mentioned, Theorem 2 holds when we replace the t-length by the truncated

length `TrX . This can be seen by applying Theorem 2 in the case that t = tα0 , and using the bound on

the difference in the tα0 -length and the truncated length from (5).
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