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Abstract
The Hierarchical Windy Postman Problem (HWPP) is an arc routing problem in which an order relation is imposed on the

arcs/edges of the graph, and one has to pass through each edge at least once while adhering to the hierarchical priority

relations. The tour starts from and ends at a specific node and the aim is to minimize the length of the tour. We consider a

variant of the HWPP in which (i) the precedence order of the edge hierarchies is linear and edges within each hierarchy are

connected and (ii) the cost of serving each edge decreases with the number of times it is traversed, and we refer to it as

HWPP with variable service costs. An integer non-heuristic linear mathematical formulation is proposed, and a solution

approach is designed. Our solution heuristic adapts the layer algorithm of Dror et al. (Networks 17:283–294, 1987) but

employs an integer mathematical formulation as a sub-procedure instead of the blossom algorithm to find the least cost path

between the nodes of the graph. This choice is based on the fact that the blossom algorithm requires a symmetric cost

structure while we deal here with the general case of asymmetric cost structure, which makes our problem a windy variant

of the postman problem. It should be noted that our problem is not asymmetric in the sense that there are no opposite arcs

with different costs but there are edges which have different costs depending on the traversal direction. In order to compare

the performance of our heuristic algorithm with respect to the performance of the mathematical model that is solved by the

commercial solver Gurobi, 84 test instances are generated having varying sizes and densities and with different number of

hierarchies. These test instances are solved by both methods and the generated results show that the proposed heuristic

method is much faster and generates better quality solutions.

Keywords Routing � Hierarchical windy postman problem � Variable service cost � Windy layer algorithm

1 Introduction and literature review

Arc Routing Problems (ARPs) are a broad class of prob-

lems in the graph theory that arises in delivering many

kinds of services. The recent surveys of Lahyani et al.

(2015), Mourão and Pinto (2017) and Corberán et al.

(2021) enumerate several applications of ARP including

street cleaning, salt spreading, snow cleaning, road

maintenance and drone inspection. If capacity limitations

are imposed on the arcs, the problem is called as capaci-

tated ARP (see Golden and Wong, (1981) for the first

introduction of capacitated ARP or see Mandal et al.

(2015) for a more generalized version of capacitated ARP).

If services of the arcs have to follow certain periodic pat-

terns, the problem is called as periodic ARP (see for

instance Monroy et al. (2013) and Triki (2017)). Mathe-

matically, ARP can be defined on a connected graph G ¼
ðN;EÞ having n nodes and m arcs/edges and where N is the

node set and E represents the arc/edge set. An edge set can

be said to exist if traversal is possible in both directions,

otherwise, if transition is only possible in the intended

direction, then there is an arc set at hand. The graph can be

either directed or undirected and to every arc/edge is

associated a cost that can represent, for example, its length

or traversal time. The focus of ARPs is on servicing the
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arcs/edges of the graph, rather than serving its nodes. A

particular case of ARP, known as the Chinese Postman

Problem (CPP), consists in identifying a least cost closed

tour that starts from a depot, traverses each arc/edge of the

graph at least once before coming back to the same depot.

The CPP is usually defined over an undirected graph and

all its edges need to be serviced. Some of the above-

mentioned applications may be characterized by the fact

that the edges do not have the same importance of being

serviced but are rather categorized according to their class

of priority (called hierarchies). We deal here with the

Hierarchical Windy Postman Problem (HWPP) that has the

same features of the HCPP (Hierarchical Chinese Postman

Problem) with the only exception that the service costs do

not have to be symmetric (see Keskin and Triki 2022).

The HCPP is defined in Afanasev et al. (2021) as the

problem of finding the shortest traversal of all edges of a

graph, respecting the precedence constraints given by a

partial order on classes of edges. The authors also identify

three special variants of the problem: (i) the case in which

the precedence order of the edge hierarchies is linear,

denoted as HCPP(l) (ii) the case involving connected edges

within each hierarchy, denoted as HCPP(c) and (iii) when

both (i) and (ii) restrictions hold, and was denoted as

HCPP(c,l). In the sequel we will refer to third variant of the

problem, i.e., HCPP(c,l) where a linear precedence order is

imposed and each edge hierarchy induces a connected

subgraph, unless differently specified. Likewise, we will

often refer to the HCPP terminology in the problem defi-

nition and the literature review sections since most of the

features that ground on HCPP apply to the HWPP as well.

It is to be noted that especially the second restriction

related to the connectivity of the edges within each hier-

archy does not to seem too restrictive from the practical

viewpoint. Indeed, in the urban snowplow problem, for

example, interconnected main roads have primary priority

to be plowed which will form the first hierarchy. Similarly,

second hierarchy consists of second priority roads that are

usually connected and so on. Thus, our assumption that

each hierarchy is connected is fully compatible with real-

life applications.

Formally, if we denote by jHj the number of pre-defined

hierarchies and by E1;E2; . . .;EjHj the subsets of edges

belonging to each hierarchy, then all edges belonging to Eg

must be serviced before any one belonging to Eh (with

Eg
T
Eh ¼ £) if g has a higher hierarchy than h, i.e., if

h; g 2 f1; . . .; jHjg and g\h. However, there are contra-

dicting views among the scholars on the feasibility of

traversing any edge (with or without servicing it) having a

lower hierarchy before completing the service of any other

edge belonging to a higher hierarchy category. This fact

will define, indeed, three different variants of the HCPP:

• The first allows any edge from class Eh to be traversed

(without service) even before completing the service of

the edges belonging to a higher priority class Eg, i.e.,

when g\h. This variant of the problem, that can be

applied for example to the case of street cleaning and

inspection, meter reading, waste collection, and restora-

tion of the roads after disasters, has been proposed by

Alfa and Liu (1988), Eiselt et al. (1995), Colombi et al.

(2017a), Colombi et al. (2017b), Shao et al. (2020),

Oruc and Kara (2018) and Akbari et al. (2021) and is,

sometimes, called HCPP with weak precedence

relation.

• The second variant of the HCPP adopts a more

restrictive interpretation of the precedence relation

(strong relation) and does not allow any edge from

class Eh to (not even) be traversed before completing

the service of all edges of class Eg having a higher

priority. This interpretation of the hierarchy has been

adopted by Dror et al. (1987), Ghiani and Improta

(2000) and more recently by Çodur and Yılmaz (2020)

and can be suitable, for example, for the snow removal

application since it would be difficult traversing a road

that still needs to be cleaned.

• Yet, a different interpretation of the precedence relation

has been introduced by Quirion-Blais et al. (2017) and

that arose in a case-study related to the multi-vehicle

road snow plowing and de-icer spreading. It consists in

allowing the vehicles to start plowing any category of

streets but those having higher priority should be

completed before all the others.

In this paper, we will adopt the second and more

restrictive type of precedence relation, but our mathemat-

ical model as well as our heuristic method can be easily

adapted to suit the weak hierarchy requirement. We will

consider that the cost of serving each edge will decrease

with the number of times it is traversed (see Corberán et al.

(2014) and Keskin and Yılmaz (2019)). This variant of the

problem, that we call the Variable HWPP (V-HWPP),

belongs to a wider family of variable service cost routing

problems. In the sequel, we will first review the most rel-

evant works that dealt with the different variants of the

HCPP and the approaches adopted for their solution, and

then we will analyze the different ways of assuming vari-

able service cost and identify the specific version we

selected for our study.

1.1 Related works on the HCPP

The HCPP has been defined over three decades ago in the

seminal paper of Dror et al. (1987). The authors dealt with

a CPP in which the edges of the underlying network are

roads characterized by a hierarchical precedence relation.

M. E. Keskin et al.
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Even though their HCPP defined on an undirected graph is

NP-hard, they succeeded to solve for the special class

HCPP(c,l) in O(kn5), where n is the cardinality of the nodes

set and k is the number of hierarchies in the network. Later

on, several studies have focused on reducing the com-

plexity of Dror et al. (1987)’s algorithm by trying to

improve its features.

Ghiani and Improta (2000) developed an exact approach

for the HCPP(c,l) having complexity O(k3n3) by con-

structing an alternative auxiliary graph. In this same

direction, Korteweg and Volgenant (2006) reduced the

complexity of Dror et al. (1987)’s algorithm to O(kn4) but

rather than focusing on building a different auxiliary graph,

they employed post-optimality techniques to improve the

matching in the resulting auxiliary graph. Given the com-

plexities of both the above exact approaches, the selection

of the most appropriate algorithm depends on the charac-

teristics of the instance to be solved, i.e., the value assumed

by the number of nodes n compared to that of number of

hierarchies k (Korteweg 2002).

Similar to Ghiani and Improta (2000), Cabral et al.

(2004) developed an exact solution approach but for the

HCPP(l) that was based on the idea of transforming the

HCPP into a Rural Postman Problem (RPP) and solving it

by a branch-and-cut technique (see also Ghiani et al.

2005, 2008).

The attention of the researchers in solving the HCPP has

been directed even toward developing heuristic approa-

ches. The first heuristic method, proposed by Alfa and Liu

(1988), was defined for a directed network with weak

precedence relation and without any connectivity restric-

tions on the arcs belonging to the same hierarchy. Their

method consists in connecting and balancing the nodes that

are endpoints of arcs belonging to the same hierarchy and

then producing a single CPP tour based on the hierarchy-

wise tours. Later on, Alfa and Liu’s method was outper-

formed by another heuristic suggested by Damodaran et al.

(2008) which was based on a more efficient way of com-

bining the unconnected subnetworks. Damodaran et al.

(2008) focused on proposing good quality lower bounds for

the HCPP with the aim of defining an efficient heuristic

method. Colombi et al. (2017a) employed a math-heuristic

to solve the HCPP starting from the exact solution of a

Mixed RPP defined on an auxiliary graph for each hierar-

chy, whereas Colombi et al. (2017b) performed a polyhe-

dral analysis of a hierarchical mixed rural postman problem

and developed a branch-and-cut algorithm for its exact

solution. For the sake of completeness, it is worth noting

that meta-heuristic approaches, namely a genetic algorithm

and a hybrid simulated annealing, have also been employed

by Çodur and Yılmaz (2020).

The last family of approaches defined to solve the HCPP

is based on solving the minimum spanning tree problem.

Sayata and Desai (2015) implemented an efficient heuristic

based on the use of Kruskal’s algorithm to reduce the

number of edges in the underlying auxiliary graph. More

recently, Colombi et al. (2017a) tackled the HCPP with

mixed graph and employed a minimum spanning tree

problem to identify an initial feasible solution and then

embedded it within a tabu search procedure in order to

improve and diversify the generated solutions.

1.2 Variable service cost in HWPPs

As mentioned above, one of the novel aspects of our work

is related to considering a particular variant of the HWPP

in which a variable service cost scheme is implemented,

i.e., the V-HWPP. Most of the scientific literature in the

context of routing optimization has focused on variable

service cost expressed in terms of time varying models.

Interested readers may refer to the excellent review of

Gendreau et al. (2015), in which the authors highlighted the

scarcity of contributions related to the time varying ARPs,

compared to their node routing counterpart. Few works

appeared after Gendreau et al.’s review to deal with the

time-dependent ARP in general (such as Sun et al. (2015)

and Vidal et al. (2021)) and one is specifically dealing with

the time-dependent HCPP (Çodur and Yılmaz 2020).

However, our contribution here is not related to the vari-

able service cost from the traversal time viewpoint, but

rather to the service cost that decreases with the number of

server passages. To the best of our knowledge there are

only two papers that have adopted this particular variable

cost scheme in the context of the windy CPP. The first is

due to Dussault et al. (2013) who solved a snow plowing

problem in which the cost of traversing a street varies

based on its order within the plowing tour. Specifically, the

authors considered that the cost of serving the roads

decreases after the first pass by the plowing vehicle. The

second paper, by Keskin and Yılmaz (2019), generalizes

variable service cost scheme by assuming that each server

pass will contribute to reducing further the roads’ service

cost. This assumption seems to be very realistic and intu-

itive in a wide range of applications in which the multi-

passing through roads and/or the learning process by the

server contribute to decreasing the deadhead cost. For

instance, the postman is expected to learn the roads better

as the number of passes increases in the post-delivery

application. Similarly, if each pass on the edges represents

the shoveling of the accumulated snow on a specific edge,

then the cost of the shoveling should not increase by the

number of the passes on that edge as the snow becomes less

and less at each pass of the snowplow vehicle. Our study

will, thus, adopt the variable cost scheme of Keskin and

Yılmaz (2019) and will implement it for the first time in the

framework of the HWPP. On the other hand, it is a

Solving the hierarchical windy postman problem with variable service costs using a math-heuristic…
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common practice to differentiate the service cost of the

arcs from deadheading cost of the arcs as it is done for

instance in Perrier et al. (2008). Similarly, Aráoz et al.

(2013) associate prizes to arcs rather than costs and also

differentiate between service and deadheading prizes,

namely they take deadheading prize as zero.

1.3 Problem definition and our contributions

This study will specifically focus on solving the V-HWPP,

a particular variant of the HWPP in which is defined over

an asymmetric network whose service cost decreases with

the number of edge passes. Moreover, we restrict our

attention here to the variant of the problem characterized

by a linear precedence order of hierarchies and by a con-

nected subgraph within each hierarchy.

From the above analyses it results evident that the above

V-HWPP has never been addressed in the scientific liter-

ature. The objective of this study is to fill in this gap and to

provide the practitioners and academic researchers with a

new methodology that can contribute to solving the several

real-life applications that arise in this specific ARP context.

The paper is organized as follows. Section 2 will for-

mally introduce the problem and will propose an original

formulation for the V-HWPP. Then an ad hoc math-

heuristic approach based on the concept of layer algorithm

and computational experiments are discussed in Sects. 3

and 4, respectively. Finally, some concluding remarks and

future research suggestions are provided in Sect. 5.

2 Optimization model

In this section, we first describe the sets, parameters, and

variables that are used in the formulation. Later, the

mathematical formulation of the V-HWPP is provided.

2.1 Sets, parameters and variables

We assume that the set of nodes and the set of edges

connecting the nodes are, respectively, denoted by N and

E. Indices i and j are used to represent nodes of N and an

edge connecting nodes i and j is denoted by edge ði; jÞ. H
represents the set of hierarchies and index h is used to

specify a hierarchy. The set of edges that belongs to hier-

archy h is denoted as Eh. T stands for the set of steps while

indices t and m are used to refer to specific steps while jTj
represents the maximum number of steps. By the way, a

step is used as a measurement tool to track the transition of

the vehicle from one node to another. In other words, at

each step, the vehicle passes from one node to another. For

instance, if a route of a vehicle consists of nodes 1, 5, 3, 2,

5, 1, then we say that the vehicle is at the starting node 1 at

the beginning of step 1 and it goes from node 1 to node 5 at

step 1, it is at node 5 at the beginning of step 2 and it goes

from node 5 to node 3 at step 2, then it is at node 3 at the

beginning of step 3 and it goes from node 3 to node 2 at

step 3, etc. Note that, the duration of the steps may change

from step to another and from a vehicle to another as the

distances between the node-pairs do not have to be iden-

tical. Finally, K is the set of number of passes and the index

k is used to point out the members of K.

The service cost parameters used in the formulation

depend on the above-described sets and indices. cijk
denotes the k th service cost of edge ði; jÞ if the service is

through the direction from i to j. Note that we assume an

undirected graph implying that edges can be traversed

through either direction. However, if an edge is served

(independently from the service direction), the cost of the

service reduces for both directions which also makes sense

for real-life applications. For instance, if a road is served

for a snowplow operation then the cost of the next service

reduces for both directions. In addition, we assume that

cijk1 � cijk2 if k1\k2. That is, service costs do not become

costlier as the number of the passes increases. Note that for

each edge ði; jÞ we also define cjik in the same manner to

define the service cost for the direction from j to i. Finally,

parameter jEhj represents the number of edges belonging to

set Eh.

There are five sets of decision variables in our model.

hht, xijt, yijt, and aijtk are the binary variables of the model.

hht shows whether all edges of hierarchy h are served

before step t, or not. xijt (similarly xjit) indicates whether or

not edge i; jð Þ is served at step t through direction from i to

j (through direction from j to i), and yijt takes value 1 if

edge ði; jÞ is served before or exactly at step t indepen-

dently from the passage direction, and it is 0 otherwise.

Finally, aijtk is 1 if edge ði; jÞ is served exactly k times

before or at step t independently from the direction, and it

is 0 otherwise. Our model results to be an integer nonlinear

program since the objective function involves a multipli-

cation of the binary variables aijtk and xijt (aijtk and xjit). For

the sake of convenience, a summary of all the sets,

parameters and variables used along our formulation are

provided in Table 1.

2.2 Mathematical Model

Our integer nonlinear program abbreviated as V-HWPPF

(Variable HWPP Formulation) is given as:

min
X

i;jð Þ2E

X

t2T

X

k2K
cijkaijtkxijt þ cjikaijtkxjit
� �

ð1Þ

s.t.
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X

j2N
x1j1 ¼ 1 ð2Þ

X

j2N
xj1 Tj j ¼ 1 ð3Þ

X

i;jð Þ2E
xijt þ xjit
� �

¼ 1t 2 T ð4Þ

X

t2T
xijt þ xjit
� �

� 1 i; jð Þ 2 E ð5Þ

X

i;jð Þ2E
xjit �

X

i;jð Þ2E
xij tþ1ð Þ ¼ 0i 2 N; t 2 Tn Tj jf g ð6Þ

X

k2K
kaijtk ¼

Xt

m¼1

xijm þ xjim
� �

i; jð Þ 2 E; t 2 T ð7Þ

Xt

m¼1

xijm þ xjim
� �

� tyijt i; jð Þ 2 E; t 2 T ð8Þ

yijt �
Xt

m¼1

xijm þ xjim
� �

i; jð Þ 2 E; t 2 T ð9Þ

jEhjhht �
X

i; jð Þ2Eh

yijt: ð10Þ

X

i;jð Þ2E hþ1ð Þ

yijt � jE hþ1ð Þjhhth 2 Hn Hj jf g; t 2 T ð11Þ

hht; xijt; xjit; yijt; aijtk 2 0; 1f g i; jð Þ 2 E; h 2 H; t 2 T; k 2 K

ð12Þ

The objective function (1) minimizes the total service

cost. Constraint (2) and constraint (3) ensure that vehicle

leaves the first node (depot) at step 1 and goes back to the

same node at the last step, jTj. Note that jT j is an upper

limit value for the number of steps that can be considered

in any day (we selected its value as the number of edges

times twice the number of hierarchies). In order to avoid

forcing the vehicle to perform exactly jTj steps on each

day, we added a dummy arc that connects the starting node

to itself and that has a traversal cost equal to 0. Thus, if on

any day the vehicle needs to return to the starting point

with fewer steps than jTj, it can return to the starting node

at the end of step jT j by traversing the dummy arc at 0 cost

during the remaining steps. This ensures the satisfaction of

constraint (3) for that day. Constraint (4) guarantees that

the vehicle travels through a single edge at each step. By

constraint (5) we make sure that each edge is traversed at

least once independently from the direction of the passing.

Constraint (6) ensures that the vehicle leaves any node i at

step t þ 1 if it entered to it at the previous step t, and

moreover it cannot leave node i at step t þ 1 if it did not

enter it at the previous step t. Constraint (7) determines the

value of each variable aijtk that takes value 1 depending on

the number of travels through each edge before or at step t.

The constraint ensures that if aijtk is 1, then the number of

travels through the edge (independent of the direction of

the passing) is equal to k. Note that only one of the aijtk
variables existing on the left-hand side of the constraint

will be 1 in the optimal solution, although it is possible to

satisfy the constraint by setting more than one aijtk vari-

ables to 1. This is because the objective is a minimization

Table 1 Sets, indices, parameters and decision variables

Sets/indices Definition

N=i; j Set of nodes/node indices

E=ði; jÞ Set of edges/edge indices

H=h Set of hierarchies/hierarchy index

Eh Set of edges belonging to hierarchy h

T=t;m Set of steps/step indices

K=k Set of the number of passes/number of passes index

Parameters Definition

cijk Service cost of the edge ði; jÞ at the kth pass

jEhj Number of edges belonging to hth hierarchy

Variables Definition

hht Indicates whether or not all edges belonging to Eh are served until step t

xijt(xjit) Indicates whether or not edge ði; jÞ is served at step t through the direction from i to j (through the direction from j to i)

yijt Indicates whether or not edge ði; jÞ is served before or at step t in total, independently from the direction

aijtk Indicates whether or not edge ði; jÞ is served k times before or at step t independently from the direction

lijkt(ljikt) Represents the multiplication aijtkxijt (aijtkxjit)

Solving the hierarchical windy postman problem with variable service costs using a math-heuristic…
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function and the variable service costs are chosen to

decrease by each pass. For instance, suppose that the

number of total passes of an edge i; jð Þ 2 E before or step t

is 5. Hence, the right-hand side of constraint (7) written for

edge i; jð Þ and for period t will be 5. It is possible to assign,

for instance, both aijt2 and aijt3 to 1 (and all other aijtk
variables to 0) which will make the left-hand side of the

constraint as 2� aijt2 þ 3� aijt3 which is equal to 5.

Another alternative is, of course, to set only aijt5 variable to
1, making the left-hand side of the constraint as 5� aijt5
which is also equal to 5. Since the cost of the latter alter-

native in the objective function, which is cij5, is lower than

the cost of the first alternative, which is cij2 þ cij3, the

solver will naturally choose the latter alternative. Note that

if an edge, say i; jð Þ; is traversed through i to j, then the next
passage cost should be decreased not only for the passage

direction from i to j but also for the passage direction from

j to i. Hence, if an edge i; jð Þ 2 E is traversed for instance 4

times in total independent of the passage direction, its fifth

passage cost will be cij5 if the passage direction is from i to

j and cji5 if the passage direction is from j to i. Constraints

(8) and (9) define the relationship between xijt, xjit variables

and yijt variable. Namely, if the number of travels through

an edge is zero until a particular step, i.e.,
Pt

m¼1 xijm þ xjim
� �

¼ 0, then yijt ¼ 0 follows. On the con-

trary, if yijt ¼ 1, then t�
Pt

m¼1 xijm þ xjim
� �

[ 0 must hold.

Constraint (10) defines the variable hht, i.e., it guarantees
that hht variable is equated to 0 if if any edge belonging to

hierarchy h is not traversed before or during step t. Simi-

larly, constraint (11) avoids traversing edges belonging to

hierarchy hþ 1 if all the edges of hierarchy h are not tra-

versed yet. Finally, constraint (12) puts the usual binary

restrictions.

The above nonlinear model can be easily linearized by

introducing a new continuous variable lijkt (ljikt) to replace

each multiplication aijtkxijt (aijtkxjit). We also introduce

seven new sets of constraints, which are linear and force

lijtk(ljitk) to be equal to aijtkxijt (aijtkxjit). These constraints

are given in the following.

lijtk � aijtk i; jð Þ 2 E; t 2 T ; k 2 K ð13Þ

ljitk � aijtk i; jð Þ 2 E; t 2 T ; k 2 K ð14Þ

lijtk � xijt i; jð Þ 2 E; t 2 T; k 2 K ð15Þ

ljitk � xjit i; jð Þ 2 E; t 2 T; k 2 K ð16Þ

lijtk � aijtk þ xijt � 1 i; jð Þ 2 E; t 2 T; k 2 K ð17Þ

ljitk � aijtk þ xjit � 1 i; jð Þ 2 E; t 2 T; k 2 K ð18Þ

lijtk; ljitk � 0 i; jð Þ 2 E; t 2 T ; k 2 K ð19Þ

As can be understood, if aijtk and xijt (xjit) take value 1,

then lijtk is equated to 1 by means of constraints (13), (15)

and (17) (constraints (14), (16) and (18)). Similarly, if aijtk
or xijt (aijtk or xjit) is zero, lijtk (ljitk) is set to zero by means

of constraints (13), (15) and (19) (constraints (14), (16) and

(19)). This implies that the nonlinear multiplication aijtkxijt
(aijtkxjit) can be replaced by lijtk (ljitk) after adding con-

straints (13)–(19) to the model.

Note that if there is only one hierarchy and if the cost

parameters are taken as constant then the V-HWPP reduces

to the WPP which is known to be an NP-Complete prob-

lem. Hence, V-HWPP is also a difficult problem and the

solution time for formulation (1)–(19) will increase expo-

nentially with the size of the instances which is charac-

terized by the number of nodes, edges and hierarchies. For

this reason, we will propose in the next section a heuristic

method that is able to tackle even large-scale instances.

3 Windy layer algorithm heuristic

In our heuristic approach, we adapt the layer algorithm of

Dror et al. (1987), that solves the HCPP with linear

precedence relationships and edges connected within each

hierarchy to our variant of the problem. Note that the exact

solution methods of Ghiani and Improta (2000) and Kor-

teweg and Volgenant (2006) are more efficient in terms of

computation time, but their methods also depend on the

layer algorithm as well. The layer algorithm employs the

famous blossom method of Edmonds (1965) as a sub-

procedure to find the path that goes through all the edges of

the current hierarchy without passing through any edge

from the lower hierarchies. In the sequel, we will call, for

convenience, this path as the least cost path. However, the

blossom algorithm requires the edge traversal costs to be

symmetric and as our problem is a windy postman problem

the edge traversal costs possess an asymmetric nature.

Hence, we construct here mathematical models and run

them as sub-procedures in order to find the least cost paths,

passing through each edge belonging to the current hier-

archy, between any two nodes within the layer algorithm.

We will refer to this heuristic as the Windy Layer Algo-

rithm (WLA). The details of such least cost path mathe-

matical models are presented in the following after

explaining the WLA in the context of the V-HWPP.

Let Gh ¼ ðNh;EhÞ be the subgraph induced by the set of

edges of hierarchy h. Here, Nh represents the incident

nodes of Eh. Define Fq as the subgraph induced by the first

q sets of edges, i.e., Fq ¼
Sq

h¼1 G
h. We assume that sub-

graphs Fq are connected for all q ¼ 1; . . .; jHj. Moreover,

we define node i 2 Nh as an entry node of Gh if it is also

incident to an edge of Fh�1. The set of entry nodes of Gh is

called as Yh. Mathematically, Yh ¼
Sh�1

q¼1 N
q

� �T
Nh.
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Finally, we define Y1 ¼ fi1g and Y jHjþ1 ¼ fi1g where i1 is

the depot which is the initial and the final node. Now, we

construct a new graph G
0 ¼ ðN 0

;E
0 Þ with the node set

defined as N
0 ¼

S Hj jþ1
h¼1 Yh. Note that if a node exists in

more than one of the sets Yh; h ¼ 1; . . .; Hj j þ 1, it will be

treated as a different node each time. Hence, the nodes will

exist exactly the number of times they exist in the sets

Yh; h ¼ 1; . . .; Hj j þ 1. On the other hand, the edge set is

defined as

E
0 ¼ i; jð Þ : i 2 Yh; j 2 Yhþ1forh ¼ 1; . . .; Hj j þ 1

� �
.

Namely, we define an edge for each pair that belongs to

successive Yh sets. The graph G
0
is depicted in Fig. 1.

Note that if edge i; jð Þ 2 E
0
then i 2 Yh and j 2 Nhþ1 for

some h ¼ 1; . . .; Hj j and going from i to j in G
0
means that

each edge belonging to Eh is traversed starting from node i

and ending at node j by following the least cost path (edge

lengths are taken as service costs) without violating the

hierarchy restrictions. Therefore, the cost of each edge in

E
0
, i.e., cost of edge i; jð Þ, is determined by finding the path

having the least cost between node i and node j while

traveling through every edge of Eh without passing through

any edge from lower hierarchies. As mentioned earlier,

instead of employing the blossom algorithm, we make use

of mathematical programs in order to find the least cost

paths between the nodes. Let Pði; j; hÞ denotes the problem
of finding the least cost path between node i and node j that

travels through every edge of Eh without passing through

any edge from lower hierarchies. Now suppose that u and v

represent the nodes for which u; vð Þ 2 E and biuv (bivu)
indicates the number of times edge u; vð Þ is traversed

through direction from u to v (from v to u) along the least

cost path from the starting point until node i without vio-

lating the hierarchy restrictions. Note that Pði; j; hÞ is an

open WPP and any edge may be traversed more than twice

in the optimal solution. Nevertheless, we restrict the

number of traversals to two in order to obtain a very fast

solution of Pði; j; hÞ since this problem will be solved very

often throughout the algorithm (i.e., at every step corre-

sponding to different values of i, j and h). We are aware

that it is possible, for some instances, that a vehicle may

need to pass some edges more than twice in the optimal

solution. However, we observed through preliminary

empirical experiments that the rate of such occurrence is

very low and restricting the number of passes to two will

not harm the optimality for most of the instances while

contributing in significatively reducing the overall solution

time. Moreover, we drop index t from xijt variables in the

problem. Consequently, we define xuv (xvu) as a continuous

variable that indicates the number of times edge u; vð Þ is

traversed through the direction from u to v (from v to u).

We also define two new sets of variables yuv and zuv (yvu
and zvu) that, respectively, indicate if u; vð Þ is traversed

once or twice through the direction from u to v (from v to

u) in each solution of Pði; j; hÞ. The formulation of problem

Pði; j; hÞ with these new set of variables, for each i, j and h,

is given below.

min
X

u;vð Þ2E
cuv biuvþ1ð Þyuv þ cvu bivuþ1ð Þyvu þ ðcuv biuvþ1ð Þ

þ cuv biuvþ2ð ÞÞzuv þ ðcvu bivuþ1ð Þ þ cvu bivuþ2ð ÞÞzvu
ð20Þ

s.t.

xuv þ xvu � 1 u; vð Þ 2 Eh ð21Þ
X

u;vð Þ2E
xuv �

X

u;vð Þ2E
xvu ¼ 0u 2 N : u 6¼ i; j ð22Þ

X

i;vð Þ2E
xiv �

X

i;vð Þ2E
xvi ¼ 1 ð23Þ

X

j;vð Þ2E
xjv �

X

j;vð Þ2E
xvj ¼ �1 ð24Þ

Fig. 1 The graph G
0
(from Dror

et al. (1987))
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xuv ¼ yuv þ 2zuv u; vð Þ 2 E ð25Þ
xvu ¼ yvu þ 2zvu u; vð Þ 2 E ð26Þ

xuv ¼ 0 u; vð Þ 2 Eh0 ; h0 ¼ hþ 1; . . .; Hj j ð27Þ

xvu ¼ 0 u; vð Þ 2 Eh0 ; h0 ¼ hþ 1; . . .; Hj j ð28Þ
xuv � 2 u; vð Þ 2 E ð29Þ
xvu � 2 u; vð Þ 2 E ð30Þ
xuv; xvu � 0 u; vð Þ 2 E ð31Þ
yuv; yvu; zuv; zvu 2 0; 1f g u; vð Þ 2 E ð32Þ

We minimize the total traversal cost in (20). Note that

an edge belonging to higher hierarchies (i.e., an edge from

Eh
0
h

0 ¼ 1; 2; . . .; h� 1), may have been passed several

times before we start to traverse the edges of Eh: As the

traversal costs of the edges vary with the number of passes

through edges, we keep track of the number of passes for

each edge and for each direction.

If edge ðu; vÞ is traversed through u to v biuv times

before, its next traversal will be the (biuv?1)st time. Hence,

yuv variable (which indicates whether or not edge ðu; vÞ is
traversed from u to v once in Pði; j; hÞ, i.e., during

traversing edges of Eh without passing through any edge

from lower hierarchies starting from node i and ending

with node j) is multiplied by the corresponding cost

cuvðbiuvþ1Þ. Similarly, zuv variable (which indicates whether

or not edge ðu; vÞ is traversed from u to v twice in Pði; j; hÞ)
is multiplied by the corresponding total cost which is

ðcuvðbiuvþ1Þ þ cuvðbiuvþ2ÞÞ. In a similar manner, the objective

function coefficients related to yvu and zvu variables are,

respectively, determined as cvuðbivuþ1Þ and

ðcvuðbivuþ1Þ þ cvuðbivuþ2ÞÞ. However, we still need to adjust the

objective function value after obtaining the solution. The

point is that after passing through an edge ðu; vÞ from u to

v, the cost of passage from v to u should also be decreased

and vice versa, and this reality is not captured in the

objective function (20). Hence, after solving Pði; j; hÞ
problem, we determine the exact route of the vehicle

making use of the values of the x, y and z variables and

adjust the objective function value accordingly. Therefore,

after solving Pði; j; hÞ for each edge i; jð Þ in E
0
for each

hierarchy h, we adjust the objective function value

depending on the route of the vehicle obtained from the xuv
and xvu values. One may object here that Pði; j; hÞ should

have been constructed in such a way that the objective

function is calculated correctly. However, in order to be

able to drop the t index from x variables and in order to

construct Pði; j; hÞ without using the a variables (that has

four indices) we had to construct Pði; j; hÞ formulation as

given by (21)-(33) and adjust the objective function later.

This is a reason for which our method is not an exact

method but a heuristic. By constraint (21) we make sure

that each edge from Eh is traversed at least once inde-

pendently from the direction of the passing. Constraint (22)

maintains the flow balance for each node different from i

and j. In other words, constraint (22) guarantees that the

total number of enters to a node different than i and j is

equal to number of exits from the same node. On the other

hand, as the journey starts from node i and finishes at node

j for Pði; j; hÞ, the total number of exits minus total number

of enters should be equal to 1 and -1 for nodes i and j,

respectively. These requirements are satisfied by the help

of constraints (23) and (24), respectively. Constraint (25)

and (26) define yuv and zuv (yvu, zvu) variables and sets their

relationship with xuv (xvu) variables. Constraints (27) and

(28) avoid passing through an edge belonging to lower-

level hierarchies and constraints (29) and (30) limit the

number of passages of edges by 2 for both directions.

Finally, constraint (31) defines xuv and xvu as continuous

variables while constraint (32) defines yuv, yvu, zuv, and zvu
as binary variables. It should be noted that each xuv and xvu
can take only the integer values 0, 1 or 2, but we can define

them as a continuous variable (to improve the efficiency of

the model solution) knowing that they cannot take frac-

tional values due to constraints (25) and (26).

Note that although problem Pði; j; hÞ is an open WPP, it

does not require subtour elimination constraints. This is

because the edges of each hierarchy are connected within

themselves. On the contrary, suppose there is a path from i

to j including some (or all) edges of hierarchy h and

probably some edges from higher hierarchies and a subtour

that is disconnected from the path. If the disconnected

subtour does not include any edge from hierarchy h, then it

will not be included in the optimal solution since it is not

necessary to pass through edges included in the subtour.

Hence, any subtour that does not include any edge from

hierarchy h will be eliminated by the solver. On the other

hand, if there is at least one edge from hierarchy h in the

subtour, then there must be at least one edge from hierar-

chy h connecting the subtour with the path that makes the

subtour and the path connected which is a contradiction.

This implies that although formulation (20)–(32) does not

include subtour elimination constraints, disconnected sub-

tours are not formed in the optimal solution due to the

connected nature of the edges within the hierarchies.

By running Pði; j; hÞ for each i; jð Þ 2 E
0
such that i 2 Yh

and j 2 Nhþ1 for each h ¼ 1; . . .; Hj j, the length of every

edge of graph G
0
can be calculated, i.e., the length of each

i; jð Þ 2 E
0
such that i 2 Yh and j 2 Nhþ1 for some h ¼

1; . . .; Hj j is the optimal value of the related Pði; j; hÞ. Then,
a shortest path from i1 2 Y1 to i1 2 Y Hj jþ1 can be easily

found by Dijkstra’s label algorithm (Dijkstra 1959). We do
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not think it is necessary to give details of this very well-

known algorithm here. However, along the algorithm, it is

necessary to calculate the number of times each edge is

passed through each direction while proceeding on the

shortest path from the beginning node to each point. In

order to achieve this, if shortest path (from i1 2 Y1 to i1 2
Y Hj jþ1 in graph G

0
) pass through node i just before node j,

we define b j
uv ¼ biuv þ xuv þ xvu and b j

vu ¼ bivu þ xuv þ xvu
where xuv and xvu values come from the solution of

P i; j; hð Þ. By this updating mechanism, it is ensured that

each biuv is always equal to b
i
vu for every edge u; vð Þ and for

each i 2 N.

The layer algorithm in which problem P i; j; hð Þ is solved
by the above-mentioned mathematical model could have

been an exact solution algorithm for the V-HWPP. How-

ever, the solution of the P i; j; hð Þ problems take more and

more computational time as the size of the original network

increases. Hence, during the implementation phase, we

avoided traversing the edges more than twice (as men-

tioned before) and we forced the commercial solver Gurobi

to finalize the run as soon as it finds a feasible solution

having an objective function value that is at most 5% away

from the optimal value and returns the feasible solution it

finds. Consequently, the specific variant of the layer algo-

rithm WLA that we implement and define here results to be

a heuristic procedure.

We conclude this section by a small illustrative example

involving a network with five nodes and six edges, as

shown in Fig. 2. The numbers reported on both sides of the

edges indicate the passage costs through each direction for

that edge. We also suppose that there are two hierarchies,

for which edges (1, 2), (1, 4), (2, 5) and (4, 5) constitute

hierarchy 1, whereas (2, 3) and (2, 4) constitute hierarchy 2

edges. Moreover, we also assume that the traversal costs

are reduced by half after each pass. For example, the cost

of the second pass through edge (1, 2) from 1 to 2 is 47

(which is the half of 94, the first passage cost).

One may notice that there are two entry nodes for

hierarchy 2 which are node 2 and node 4 since these are the

nodes that are incident to the edges of hierarchy 2 and

hierarchy 1. Hence, graph G
0
that is constituted of the entry

nodes of the network will be similar to the network given in

Fig. 3.

The length of edge (1, 2) in G
0
can be calculated by

solving Pð1; 2; 1Þ and it is easy to see that the optimal path

starting from 1 an ending at 2 that passes through each edge

of hierarchy 1 is simply 1–4-5–2-1–2 with a total cost of

36 ? 30 ? 32 ? 50 ? 47 = 195. Note that the cost of

passage from 1 to 2 is taken as 47 since edge (1, 2) is

already traversed from 2 to 1. Similarly, the optimal path

starting from 1 and ending at 4 that passes through each

edge of hierarchy 1 is 1–4-5–2-1–4 with a total cost of

36 ? 30 ? 32 ? 50 ? 18 = 166. Moreover, the optimal

path starting from 2 and ending at the starting node 1 that

passes through each edge of hierarchy 2 is 2–3-2–4-1 with

a total cost 25 ? 21 ? 33 ? 22.5 = 101.5. Note that the

passage cost from node 3 to 2 is taken as 21 (half of 42, the

first passage cost) since edge (2, 3) is already traversed

from 2 to 3 and the passage cost from node 4 to 1 is taken

also as 22.5 (half of 45) since it is already traversed during

the first leg in which all the hierarchy 1 edges are passed.

Besides, the optimal path starting from 4 and ending at the

starting node 1 that passes through each edge of hierarchy 2

is 4–2-3–2-1 with a total cost of 18 ? 25 ? 21 ? 25 = 89.

Note that passage costs from 3 to 2 and from 2 to 1 are also

taken as half of the original costs since the related edges

are passed before. Finally, the shortest path from i1 ¼ f1g
to i3 ¼ f1g in graph G

0
is simply 1–4-1 with a total cost of

166 ? 89 = 255. The optimal path corresponds to 1–4-

5–2-1–4-2–3-2–1 in the original network with a total cost

of 255.

Fig. 2 A simple illustrative example for WLA Fig. 3 Network G
0
for the illustrative example
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4 Computational experiments

In this section, the selection of the parameters of the

V-HWPPF and the generation of the test instances are

given in the first part, and then the efficiency and accuracy

of our heuristic approach are illustrated on extensive set of

test instances.

4.1 Selection of the parameters and instance
generation

Given that problem V-HWPP and its formulation are being

introduced for the first time in this study, there are no test

instances related to such problem in the existing scientific

literature. We generate, thus, a total of 84 test instances

having 10, 20, 30, 40, 50, 75, and 100 nodes each with

three different edge numbers varying from 13 to 3300 and

four different levels of hierarchies. If n is the number of

nodes, then the three different numbers of generated edges

are defined as dn�ðn�1Þ
3

e; dn�ðn�1Þ
5

e; dn�ðn�1Þ
7

e, respectively.
For example, for a 10-node test problem, we generate three

different instances having d10�9
3
e ¼ 30; d10�9

5
e ¼

18; d10�9
7
e ¼ 13 edges. We then randomly assign a number

of edges to each level of hierarchy so that they sum up to

the total edges number. For instance, if the number of

edges is 13 and the number of hierarchies is 3, then the

number of edges in hierarchies 1, 2 and 3 can take the

values of 3, 6 and 4, respectively. In order to literally create

the edges, we randomly select two nodes and form an edge

and assign its hierarchy (starting from the first hierarchy) if

the edge is connected to the previously generated edges

belonging to the same hierarchy. If the created edge is not

connected to the previously generated edges belonging to

the same hierarchy, then we delete the edge and repeat the

procedure until the number of edges belonging to the

hierarchy reaches the assigned number of edges for that

hierarchy. We then proceed to generate the edges of the

next hierarchy. For instance, if the number of edges in

hierarchy 1 is 3, then the first edge is created randomly

between two randomly selected nodes and its hierarchy is

assigned as 1. We then keep randomly generating the next

edges until we find an edge that is connected to the first

edge and assign its hierarchy as 1 too. We repeat the same

procedure for edge 3 and assign its hierarchy as 1 and then

proceed for generation of edges of hierarchy 2, and so on.

Moreover, the first edge of a given hierarchy is forced to be

connected to at least one of the higher hierarchy edges. In

this way, we ensured that hierarchies are interconnected

and that the edges within each hierarchy show the linear

relationship. The number of hierarchies are selected as two,

three, four and five, implying that we have four different

number of hierarchies.

The first passage (or service) cost of each edge ði; jÞ is
generated randomly according to the expression cij1 ¼
30þ 70� rand 0; 1ð Þ where randð0; 1Þ is a uniform ran-

dom number generated from ð0; 1Þ interval. cji1 values for

each edge ði; jÞ are also calculated in a similar manner.

Hence, the first passage costs are random values within the

interval ð30; 100Þ for all edges. The values of the other cost
parameters, i.e., cijk and cjik values for each

i; jð Þ 2 E; k[ 1, are generated using the formulas cijk ¼
cijðk�1Þ

2
þ randðcijðk�1Þ

2
Þ and cjik ¼

cjiðk�1Þ
2

þ randðcjiðk�1Þ
2

Þ where

randðmÞ denotes a real number randomly generated within

the interval ð0;mÞ. Note that the resulting cijk and cjik
values naturally have a non-increasing structure, and they

are all positive due to the employed generation mechanism.

4.2 Accuracy and efficiency of the WLA heuristic

In this section, we assess the performance of the layer

algorithm by comparing the minimum distances found by

the WLA heuristic with the distances and the minimum

possible lower bound values reported by the state-of-the-art

MILP commercial solver Gurobi (2020) on the generated

test sets. We code the WLA in Visual Studio environment

with C# language and we carry out all experiments using a

single Intel i7-8750H core. We let Gurobi run for at most

three hours for each of the test instances and the minimum

objective function values and the lower bound values found

in the allowed computation times are reported. However,

although Gurobi is able to produce feasible solutions for all

instances with 10 nodes, it cannot produce feasible solution

for any instance having more than 10 nodes. In addition,

Gurobi is not able to produce even a lower bound larger

than zero for four instances with 10 nodes and for none of

the instances having 20 nodes. On the other hand, WLA

produces feasible solutions for all the instances even for the

largest instances having 100 nodes. The objective function

values and the lower bound values found by Gurobi, and

the objective function values found by WLA are reported

in Table 3 (in the Appendix). For all the instances for

which Gurobi was not able to produce an upper bound and/

or a feasible solution, we used the notation NA (for non-

applicable) in the related cell.

The first and second columns of Table 3 specify the

number of nodes and number of edges, respectively, while

the third column reports the number of hierarchies. The

fourth and fifth columns report the lower bounds and

minimum cost values obtained by Gurobi while the sixth

column reports the minimum cost values found by WLA.

Seventh and eighth columns represent respective percent-

age differences between the minimum costs found by WLA

and Gurobi, and between the minimum cost found by WLA

and the lower bound reported by Gurobi. The percentage
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difference values are calculated as 100� cG�cWLA

cWLA

� �
and

100� cWLA�LB
cWLA

� �
where cWLA and cG represent the cost

values reported by WLA and Gurobi, respectively, while

LB stands for the lower bound value produced by Gurobi.

Finally, the nineth and tenth columns represent the com-

putation times (in seconds) needed by Gurobi and WLA to

reach the obtained solution, respectively.

One can extract from Table 3 that the mathematical

model results found by Gurobi outperforms WLA (by

2.24%, %0.68, and %0.47, respectively) only for three

instances having 10 nodes, which are, respectively, the

instances with 13 edges and five hierarchies, 18 edges and

four hierarchies, and 18 edges and five hierarchies. For the

one with 13 edges and five hierarchies, Gurobi’s result is

also the optimal solution. Both methods are able to find the

optimal solutions for two instances with 10 number of

nodes, and for another two instances both methods pro-

duced the same result that is higher than the lower bound

found by Gurobi. Finally, WLA is better than the mathe-

matical model (respectively, by 4.42, 18.18, 10.26, 18.63,

and 13.47%) for five of the instances with 10 nodes. In

summary, the objective function values of WLA and

Gurobi results for the instances with 10 nodes are similar

but slightly in favor of WLA. The percentage difference

between the average results for the instances with 10 nodes

is 5.13% in favor of WLA. More interestingly, the average

computation time used by Gurobi is 8390.97 s to reach

these results while WLA spends only 1.43 s on average.

Hence, for the smallest instances with 10 nodes, WLA is

able to produce results that are at least as successful as the

model’s results found by Gurobi but using much less

computation time. On the other hand, Gurobi is not able to

produce a feasible solution for any instance having at least

20 nodes, although it uses the entire allotted time which is

three hours. We denote in the sequel as the Gurobi

instances those instances for which Gurobi is able to pro-

duce a feasible solution. For a better general view of the

results, we report in Table 2 the average values (extracted

from Table 3) and also visualize the same objective func-

tion values for Gurobi instances in Fig. 4.

Besides, we also report the LB values found by Gurobi

in order to better assess the quality of WLA results. Nev-

ertheless, Gurobi is able to produce a lower bound larger

than zero for eight instances with 10 nodes and it is not

able to produce any lower bound larger than zero for the

instances with at least 20 nodes. This implies that Gurobi is

not able to solve even the linear relaxation of the problem

for those instances within the given three hours time limit.

The instances for which Gurobi is able to produce a lower

bound larger than zero is called as Gurobi lower bound

instances. We illustrate WLA results and the lower bound

values for the Gurobi lower bound instances in Fig. 5

below.

As can be seen from Fig. 5, WLA produces almost the

same LB values for the relatively small instances having 13

edges. Indeed, the average percentage difference between

WLA results and the LB values are only 4.76% for the

instances with 10 nodes and 13 edges. However, the

average difference increases to 81.12% for the instances

with 18 edges and for the remaining instances Gurobi is run

(that is the instances with 10 nodes and 30 edges and the

instances with 20 nodes) Gurobi reports zero as a lower

bound implying that the percentage difference to be 100%.

However, this does not directly indicate the deterioration of

WLA performance with the increase in the instance size

since even the lower bound values found by Gurobi worsen

as the problem sizes increases. As a matter of fact, WLA is

able to produce feasible solutions for much larger instan-

ces, reaching 100-node networks, whereas lower bounds

larger than zero cannot be found by Gurobi for instances

with 10 nodes and 30 edges and for all instances with 20

nodes. This may indicate that the capability of Gurobi in

generating lower bounds is very sensitive to the increase in

the instances size. For instance, it is possible to observe a

rapid decrease in the lower bounds provided by Gurobi

when the number of edges is increased from 13 to 18 for

the instances having 10 nodes, whereas the objective

function values of WLA possess a smooth linear-like

structure increasing nearly at a constant rate. Hence, the

Table 2 Average performance

measures of the mathematical

model (solved by Gurobi) and

the WLA

jNj Solution value Percentage Time (s)

GLB GUB WLA %GUB-WLA %GLB-WLA Gurobi WLA

10 459.35 1795.57 1675.64 5.13 61.96 8390.97 1.43

20 0.00 NA 6055.93 NA 100.00 10,800.00 5.75

30 NA NA 13,836.00 NA NA 10,800.00 33.05

40 NA NA 24,333.36 NA NA 10,800.00 125.36

50 NA NA 37,718.39 NA NA 10,800.00 280.90

75 NA NA 83,873.74 NA NA 10,800.00 1223.36

100 NA NA 148,717.12 NA NA 10,800.00 3357.03
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increase in the percent deviation between WLA results and

Gurobi’s lower bounds cannot be attributed to the bad

quality of WLA results but rather to the rapid deterioration

in the reported Gurobi lower bound values as the instances

size gets larger.

In addition, Fig. 6 reports the average computational

times employed by Gurobi and WLA. One may note that

the average time spent by WLA is so small for all instances

with 10, 20 and 30 nodes so that they are almost at

negligible level compared to the average times spent by

Gurobi (this is the reason for which there is no visible

average computation time of WLA for those instances).

Another observation is that WLA also uses negligible

amount of time (around 0.5 min) for all instances with 30

nodes on the average while it, respectively, uses around 2,

5 and 20, minutes for instances with 40, 50 and 75 nodes on

the average. Finally, the average time spent for 100-node

instances is around 56 min. On the other hand, the average

Fig. 4 Gurobi and WLA

solution values for Gurobi

Instances

Fig. 5 Efficiency of WLA for

Gurobi LB Instances
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computation time used by Gurobi, respectively, for 10-,

and at least 20-node instances are 8390.97 and 10,800.00 s.

Hence, Gurobi uses all the allotted computation time for all

the instances with at least 20 nodes. In summary, it is

possible to claim that not only WLA is more accurate than

the mathematical model solved by the commercial solver

Gurobi, in the sense that the costs of the routes generated

by WLA are much lower than Gurobi instances, but also

that WLA is more efficient in generating the routes in much

less computation times.

Finally, we observe that the running time of WLA

exceeds three hours for only one instance (with 100-node

instances and 1980 edges). For this reason, we avoided to

test our WLA on larger instances since we think that we

have achieved already significant results while solving

instances that can be met in several real-life applications.

The objective function values found by WLA for all the

instances are depicted, for convenience, in Fig. 7, where it

is clear that the objective function values increase in a

smooth manner, which is another indicator of persistent

achievement of WLA.

5 Conclusions and future research

This study dealt with the Hierarchical Windy Postman

Problem with variable cost, which has not been discussed

in the existing scientific literature. First, we propose a

mathematical model for the problem. Our results confirmed

that the exact solution procedure was not able to solve

large-scale problems. For this reason, a novel heuristic

method, inspired from the layer algorithm of Dror et al.

(1987), has been proposed to solve the problem. Several

test instances have been randomly generated in order to

analyze the performance of our heuristic approach and to

compare it with the performance of the mathematical

model solved by the commercial solver Gurobi. The

obtained results have shown that our windy layer algorithm

generates high quality solutions in a very limited amount of

computational time compared to the mathematical model

results solved by Gurobi for the smallest sized problems

with 10-nodes. For the larger sized instances, the model

solved by Gurobi fails to generate feasible solutions and

upper bound values, if available, are huge. In the case of

10-node instances, both the methods produce, on average,

very close objective function values. However, when the

average solution times are compared in the same problems

group, it can be seen that the windy layer algorithm gen-

erates solution in much smaller computation times. When

the size of the problems grows, Gurobi fails to produce any

feasible solution and not even lower bound values for

slightly larger instances whereas our heuristic method

succeeds to solve instances with up to 100 nodes, 3300

edges and five hierarchies.

This work can be expanded in different ways. First, the

class of problems characterized by hierarchy relations that

are not linear can be discussed. Another direction of

research can be analyzing the situation where service costs

are fuzzy or stochastic. A variant of the problem for which

the edges have different number of service requirements or

whose service is characterized by a periodic nature (see

Triki et al. 2017) can also be studied. Moreover, the hier-

archic rural postman variant of the problem, in which only

a subset of edges is required to be served, is an exciting

problem that should attract the attention of researchers in

future. One may also try to add some valid inequalities to

formulation (20)-(32) in order to produce a stronger for-

mulation for the open WPP aiming to have shorter com-

putation times. Similarly, employing a heuristic to solve

the open WPP would be another interesting avenue of

investigation. Finally, the variants of the problem that

involves multiple vehicles and/or multiple depots can also

be explored.
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Appendix

See Table 3.

Table 3 Performance of the mathematical model (solved by Gurobi) and the WLA

|N| |E| |H| % Time (s)

GLB GUB WLA %GUB-WLA %GLB-WLA Gurobi WLA

10 13 2 1200.46 1200.46 1200.46 0.00 0.00 617.27 0.57

10 13 3 1267.22 1267.22 1267.22 0.00 0.00 993.90 0.97

10 13 4 934.55 1123.23 1123.23 0.00 16.80 10,800.00 0.43

10 13 5 965.99 965.99 988.08 -2.24 2.24 1880.46 1.78

10 18 2 324.27 1421.49 1361.30 4.42 76.18 10,800.00 1.06

10 18 3 282.80 1404.69 1404.69 0.00 79.87 10,800.00 1.91

10 18 4 233.23 1498.40 1508.71 -0.68 84.54 10,800.00 1.14

10 18 5 303.72 1875.31 1884.21 -0.47 83.88 10,800.00 1.52

10 30 2 0.00 2566.44 2171.61 18.18 100.00 10,800.00 1.69

10 30 3 0.00 2436.87 2210.11 10.26 100.00 10,800.00 3.27

10 30 4 0.00 2914.43 2456.74 18.63 100.00 10,800.00 1.99

10 30 5 0.00 2872.35 2531.26 13.47 100.00 10,800.00 0.85

Average 459.35 1795.57 1675.64 5.13 61.96 8390.97 1.43

20 55 2 0.00 NA 3847.57 NA 100.00 10,800.00 0.71

20 55 3 0.00 NA 4134.82 NA 100.00 10,800.00 3.10

20 55 4 0.00 NA 4374.03 NA 100.00 10,800.00 2.85

20 55 5 0.00 NA 4461.89 NA 100.00 10,800.00 3.48

20 76 2 0.00 NA 5265.01 NA 100.00 10,800.00 0.74

20 76 3 0.00 NA 5630.43 NA 100.00 10,800.00 4.12

20 76 4 0.00 NA 5666.24 NA 100.00 10,800.00 4.88

20 76 5 0.00 NA 5655.42 NA 100.00 10,800.00 8.72

20 127 2 0.00 NA 8217.50 NA 100.00 10,800.00 0.85

20 127 3 0.00 NA 8420.03 NA 100.00 10,800.00 10.65

20 127 4 0.00 NA 8740.73 NA 100.00 10,800.00 13.51

20 127 5 0.00 NA 8257.52 NA 100.00 10,800.00 15.46

Average 0.00 NA 6055.93 NA 100.00 10,800.00 5.75

30 125 2 0.00 NA 9318.09 NA 100.00 10,800.00 1.38

30 125 3 0.00 NA 8764.65 NA 100.00 10,800.00 22.13

30 125 4 0.00 NA 8870.25 NA 100.00 10,800.00 17.45

30 125 5 0.00 NA 9688.05 NA 100.00 10,800.00 32.08

30 174 2 0.00 NA 12,177.38 NA 100.00 10,800.00 2.04

30 174 3 0.00 NA 12,370.26 NA 100.00 10,800.00 40.49

30 174 4 0.00 NA 12,745.97 NA 100.00 10,800.00 53.89

30 174 5 0.00 NA 12,166.58 NA 100.00 10,800.00 36.93

30 290 2 0.00 NA 19,891.04 NA 100.00 10,800.00 2.04

30 290 3 0.00 NA 19,820.53 NA 100.00 10,800.00 42.06

30 290 4 0.00 NA 20,054.96 NA 100.00 10,800.00 53.13

30 290 5 0.00 NA 20,164.18 NA 100.00 10,800.00 92.95

Average 0.00 NA 13,836.00 NA 100.00 10,800.00 33.05

40 223 2 0.00 NA 15,348.27 NA 100.00 10,800.00 3.79

40 223 3 0.00 NA 15,872.37 NA 100.00 10,800.00 70.56

40 223 4 0.00 NA 15,927.84 NA 100.00 10,800.00 86.55
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Table 3 (continued)

|N| |E| |H| % Time (s)

GLB GUB WLA %GUB-WLA %GLB-WLA Gurobi WLA

40 223 5 0.00 NA 16,309.26 NA 100.00 10,800.00 108.92

40 312 2 0.00 NA 21,777.71 NA 100.00 10,800.00 3.45

40 312 3 0.00 NA 21,309.96 NA 100.00 10,800.00 82.40

40 312 4 0.00 NA 22,295.42 NA 100.00 10,800.00 231.07

40 312 5 0.00 NA 22,117.61 NA 100.00 10,800.00 179.69

40 520 2 0.00 NA 34,921.08 NA 100.00 10,800.00 4.63

40 520 3 0.00 NA 34,586.27 NA 100.00 10,800.00 120.29

40 520 4 0.00 NA 35,404.84 NA 100.00 10,800.00 235.16

40 520 5 0.00 NA 36,129.67 NA 100.00 10,800.00 377.77

Average 0.00 NA 24,333.36 NA 100.00 10,800.00 125.36

50 350 2 0.00 NA 24,393.10 NA 100.00 10,800.00 5.21

50 350 3 0.00 NA 24,323.42 NA 100.00 10,800.00 163.05

50 350 4 0.00 NA 24,470.32 NA 100.00 10,800.00 295.62

50 350 5 0.00 NA 24,970.93 NA 100.00 10,800.00 336.17

50 490 2 0.00 NA 33,016.66 NA 100.00 10,800.00 3.42

50 490 3 0.00 NA 33,675.34 NA 100.00 10,800.00 265.61

50 490 4 0.00 NA 34,571.91 NA 100.00 10,800.00 504.00

50 490 5 0.00 NA 34,453.29 NA 100.00 10,800.00 557.09

50 817 2 0.00 NA 54,268.64 NA 100.00 10,800.00 4.07

50 817 3 0.00 NA 54,332.64 NA 100.00 10,800.00 92.58

50 817 4 0.00 NA 54,512.96 NA 100.00 10,800.00 389.03

50 817 5 0.00 NA 55,631.52 NA 100.00 10,800.00 754.90

Average 0.00 NA 37,718.39 NA 100.00 10,800.00 280.90

75 793 2 0.00 NA 52,733.83 NA 100.00 10,800.00 13.28

75 793 3 0.00 NA 54,413.05 NA 100.00 10,800.00 340.03

75 793 4 0.00 NA 53,693.33 NA 100.00 10,800.00 1578.85

75 793 5 0.00 NA 54,735.92 NA 100.00 10,800.00 1693.74

75 1110 2 0.00 NA 73,595.63 NA 100.00 10,800.00 7.59

75 1110 3 0.00 NA 74,285.55 NA 100.00 10,800.00 553.27

75 1110 4 0.00 NA 75,621.44 NA 100.00 10,800.00 1413.76

75 1110 5 0.00 NA 77,382.22 NA 100.00 10,800.00 3429.21

75 1850 2 0.00 NA 121,516.71 NA 100.00 10,800.00 11.83

75 1850 3 0.00 NA 121,699.91 NA 100.00 10,800.00 488.24

75 1850 4 0.00 NA 122,318.01 NA 100.00 10,800.00 2638.88

75 1850 5 0.00 NA 124,489.25 NA 100.00 10,800.00 2511.66

Average 0.00 NA 83,873.74 NA 100.00 10,800.00 1223.36

100 1415 2 0.00 NA 95,060.82 NA 100.00 10,800.00 14.43

100 1415 3 0.00 NA 94,225.24 NA 100.00 10,800.00 2164.34

100 1415 4 0.00 NA 96,885.60 NA 100.00 10,800.00 2815.96

100 1415 5 0.00 NA 95,833.80 NA 100.00 10,800.00 6560.48

100 1980 2 0.00 NA 131,410.62 NA 100.00 10,800.00 18.35

100 1980 3 0.00 NA 130,959.23 NA 100.00 10,800.00 2528.63

100 1980 4 0.00 NA 132,697.10 NA 100.00 10,800.00 5124.05

100 1980 5 0.00 NA 133,184.95 NA 100.00 10,800.00 10,950.08

100 3300 2 0.00 NA 216,576.78 NA 100.00 10,800.00 29.70

100 3300 3 0.00 NA 218,418.51 NA 100.00 10,800.00 1353.25

100 3300 4 0.00 NA 218,896.23 NA 100.00 10,800.00 3886.84
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within the CRUI-CARE Agreement. None.

Data availability Enquiries about data availability should be directed

to the authors.

Declarations

Conflict of interest The authors of this research certify that there is no

any affiliation with or involvement in any organization or entity with

financial interest or non-financial interest in the subject matter or

materials discussed in this manuscript.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Afanasev VA, van Bevern R, Tsidulko OY (2021) The hierarchical

Chinese postman problem: the slightest disorder makes it hard,

yet disconnectedness is manageable. Oper Res Lett

49(2):270–277

Akbari V, Shiri D, Salman FS (2021) An online optimization

approach to post-disaster road restoration. Transp Res Part b

Methodol 150:1–25

Alfa AS, Liu DQ (1988) Postman routing problem in a hierarchical

network. Eng Optim 14(2):127–138

Aráoz J, Fernández E, Franquesa C (2013) GRASP and path relinking

for the clustered prize-collecting arc routing problem. J Heuris-

tics 19(2):343–371

Cabral EA, Gendreau M, Ghiani G, Laporte G (2004) Solving the

hierarchical chinese postman problem as a rural postman

problem. Eur J Oper Res 155(1):44–50
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