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Abstract: In the last decade, it has been increasingly recog
nized that efforts to address project delays without understand
ing the relationships among risk factors (RFs) could be futile. In 
light of the limitations of previous research that has addressed 
this issue, this study seeks to contribute to the literature by 
developing a novel weighted fuzzy social network analysis 
(SNA)-based approach, which accounts for the likelihood of 
occurrence and the impact of RFs on one another. To validate 
its practicality, the approach is applied to a demonstrative study 
in which the causes of delays in real-world electrical installation 
projects were modeled and analyzed. In addition to providing 
a holistic view of relationships among RFs, the proposed 
approach enables engineering managers to identify the root 
causes of delays and their corresponding critical propagation 
paths. Compared to other approaches in the literature, the 
value of the approach lies in its simplicity and utility for 
supporting engineering managers in developing effective risk- 
mitigation plans to minimize the severity of project delays.

Keywords: modeling, network, project delays, risk factors

EMJ Focus Areas: Decision making & risk management, pro
gram & project management

Introduction

O ver the past several decades, organizations have 
increased their use of projects to deliver and structure 
operational objectives (Chipulu et al., 2019). However, 

despite the mature use and advances made in project manage
ment, a delay is still considered typical for all types of projects, 
regardless of their context (Sekar et al., 2018; Senesi et al.,  
2015). For instance, Kumar and Thakkar (2017) reported that 
a public R&D project in India, which was initially planned for 
seven years, took 12 years to complete. Calvo et al. (2019) 
indicated that between 2011 and 2016, 42% of public projects 
in the United States were behind schedule. In Tanzania, 82% of 
power construction projects that a major electric supply com
pany carried out had an average delay of six months (Kikwasi,  
2012). According to Pall et al. (2020), approximately 80% of 
foreign-aided development projects related to power transmis
sion were delayed in Bangladesh.

Apart from its negative impact on project delivery, a delay 
can cause several significant consequences (Pehlivan & Özte
mir, 2018; Sambasivan & Soon, 2007). For instance, Haseeb 
et al. (2011) pointed out that a delay means a loss of income 

and the unavailability of facilities for an owner. For 
a contractor, a delay means a financial loss due to extra 
expenses for materials and equipment, labor costs, and loss of 
time. Kikwasi (2012) identified that project delays cause dis
putes, waste of resources, overruns in cost and time, and 
negative social impacts. Owolabi James et al. (2014) studied 
the causes and effects of delays on project delivery time. They 
found that delays may result in increases in expenditure, which 
could lead to an increase in the final costs of a project and the 
wastage and underutilization of manpower and resources.

Understanding the causes of delay can assist in the devel
opment of proactive risk management strategies to minimize 
negative consequences. A considerable amount of research has 
therefore been conducted to investigate the causes of delays in 
different types of projects, including electrical installation pro
jects (e.g., Hamdan et al., 2019), research and development 
projects (e.g., Alnemer et al., 2020; Grant et al., 2006; Tohumcu 
& Karasakal, 2010), and software development projects (e.g., 
Akrofi, 2017; Ma et al., 2000). However, greater emphasis has 
been placed on construction projects, as the literature reviews 
of Sanni-Anibire et al. (2020) and Zidane and Andersen (2018) 
demonstrate.

Until the early 2000s, the common objective of most stu
dies investigating the causes of project delays was to identify the 
major general risk factors (RFs) causing delays in a particular 
country through opinion surveys of contractors, clients, and/or 
consultants. Statistical tools were then used to rank the con
tributing factors and identify the most important ones. The 
underlying assumption of most previous studies on ranking 
RFs is that each RF is directly related to project delays, and 
the RFs are independent. In other words, the relationships 
between project delays and RFs can be modeled by a “hub- 
and-spoke” model, ignoring the fact that relationships exist 
among the various RFs. However, in reality, project delays are 
not the result of independent events. They often occur as 
a result of a domino effect, where events are triggered as result 
of one or more other events (Bashir et al., 2020).

However, in the late 2000s, several studies recognized that 
an understanding of the relationships among RFs was crucial 
for the development of effective mitigation plans (Fang & 
Marle, 2012). Considering the limitations of these studies (see 
the following section), this article presents a novel weighted 
fuzzy network theory–based analysis approach for modeling 
and analyzing the vagueness and uncertainty of relationships 
among RFs. In addition to assessing the strengths of the 
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relationships among RFs in terms of both likelihood of occur
rence and impact, the approach enables engineering managers 
to identify the root causes of project delays and their corre
sponding critical propagation paths, which would enable them 
to develop and evaluate mitigation plans.

Review of Literature
As mentioned above, until the late 2000s, the focus of almost all 
studies was on identifying and ranking the primary RFs causing 
project delays without considering the relationships among RFs. 
Since the late 2000s, increasing recognition has been given to 
the importance of modeling and analyzing the relationships 
among RFs causing delays or other RFs affecting a project’s 
performance, as a prerequisite step in the development of 
effective mitigation plans. Accordingly, several studies have 
been proposed in the literature. These studies modeled the 
relationships using structural equation modeling (SEM), design 
structure matrix (DSM), interpretive structural modeling (ISM) 
with cross-impact matrix multiplication applied to classification 
(MICMAC) analysis, or network-based approaches.

Utilizing Structural Equation Modeling
The work by Yang and Ou (2008) was perhaps one of the earliest 
studies considering the relationships among RFs affecting project 
delays by utilizing SEM. Yang and Ou (2008), developed a model 
consisting of 37 RFs causing project delays grouped under six 
categories; the authors used data collected via a questionnaire 
from 253 clients and practitioners in the Taiwanese construction 
industry. Eybpoosh et al. (2011) and Liu et al. (2016) also used the 
SEM technique. In the former study, the technique was used to 
model the relationships among RFs based on data collected from 
104 professionals from Chinese international contractors. In the 
latter study, the SEM technique was used to model the relation
ships among RFs affecting schedule, quality, and cost based on 
data collected from 104 professionals from Chinese international 
contracting firms.

Modeling with DSM
Fang and Marle (2012) developed a framework for modeling 
and analyzing project RFs. This framework includes assessing 
the strengths of RF relationships using an AHP-based method, 
using a DSM (referred to as a risk structure matrix) to create 
a network, and analyzing the propagation behavior in the net
work using simulation to prioritize the RFs. The proposed 
framework was applied to staging a musical show in France. 
Fang et al. (2012) proposed an approach to addressing RF 
relationships, which (like the study by Fang and Marle (2012) 
involved using a RF structure matrix to represent the relation
ships among the RFs. However, the approach used a scale (from 
0 to 10) instead of AHP for assessing both the impact and 
likelihood occurrence for each RF. Then based on their con
sequences values, the RFs are ranked in terms of their critical
ities. The same scale was used to conduct a topological analysis 
of the project RF network to assess the strengths of the RF 
relationships, which were then used as inputs for a number of 
selected metrics.

Modeling with an ISM-MICMAC Analysis
Alzebdeh et al. (2015) and Arantes and Ferreira (2021) used 
ISM with the classical version of MICMAC analysis for model
ing and analyzing RFs. Alzebdeh et al. (2015) applied this 

combination to RFs that caused cost overruns in construction 
projects in Oman, whereas Arantes and Ferreira (2021) applied 
it to RFs that caused delays in construction projects in Portugal. 
Alnemer et al. (2020) and Tavakolan and Etemadinia (2017) 
used ISM with a fuzzy version of a MICMAC analysis to 
account for the strengths of the relationships among RFs. Alne
mer et al. (2020) focused on modeling and analyzing RFs that 
caused delays in public R&D projects in the United Arab 
Emirates, whereas Tavakolan and Etemadinia (2017) used 
a similar approach for modeling and analyzing RFs that caused 
cost overruns in construction projects in Iran.

Modeling with Network-Based Approaches
Kumar and Thakkar (2017) used an analytic network process based 
on a quantitative approach for measuring RF interdependence, to 
prioritize RFs that affected schedule and cost overruns for a public 
R&D project in India. A systems dynamics approach was subse
quently implemented to build two models (technological and eco
nomic) representing the dependencies among the RFs. Zarei et al. 
(2018) adopted a semantic network analysis approach to visualize 
and thus understand the relationships among the causes of delays. 
This approach was demonstrated using a case study that involved 
analyzing the causes of delay for three Iranian petrochemical con
struction projects. Chen et al. (2020) developed an approach in 
which construction schedule RFs were first identified from the 
perspective of dialectical systems at the industry level. Global 
experts further verified these RFs, and a questionnaire survey was 
conducted based on the Chinese infrastructure industry. The key 
challenges and solutions were then identified using a network the
ory-based analysis at the project level for a real infrastructure case. 
Bashir et al. (2020) proposed the use of social network analysis 
(SNA) with a fuzzy MICMAC analysis for modeling RFs that 
caused project delays. This approach was illustrated via 
a demonstrative study that involved modeling and analyzing RFs 
that caused delays in construction projects carried out by an orga
nization in the United Arab Emirates. Ganbat et al. (2020) aimed to 
identify critical RFs in international engineering procurement con
struction projects of Chinese contractors using SNA metrics.

Other studies considered uncertainty using a Bayesian 
belief network (BBN) to model the relationships among RFs, 
such as Qazi and Dikmen (2019) and Qazi et al. (2020). For 
instance, Qazi et al. (2020) modeled the relationships among 
RFs with a BBN to develop a prioritization scheme to support 
a decision maker. Their tool ranked RFs and opportunities in 
accordance with their loss-averse/gain-seeking behaviors.

Research Gap and Study Justification
One limitation of applying SEM (Eybpoosh et al., 2011; Liu 
et al., 2016; Yang & Ou, 2008) is that two main conditions must 
be met: sample size and distributional assumptions. The sample 
size must be sufficiently large. According to the heuristics 
proposed by Jackson (2003), the ratio of the number of cases 
to the number of parameters should be 20:1. The other condi
tion is that the maximum likelihood method, typically utilized 
for estimating parameters and computing model fit, requires 
normally distributed continuous variables. Alternatively, 
a distribution-free method known as weighted least squares 
can be utilized, but the sample size must be exceptionally 
large (Kline, 2016). Unfortunately, neither of these two condi
tions can be easily met in the context of the problem described 
in this article. Moreover, none of the studies by Fang and Marle 
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(2012), Fang et al. (2012), Kumar and Thakkar (2017), Yang 
and Ou (2008), and Zarei et al. (2018) utilized metrics that 
numerically characterized the attributes of each RF compared 
with the others. In contrast, Alzebdeh et al. (2015), Bashir et al. 
(2020), and Fang et al. (2012) and utilized a number of metrics. 
Finally, all the previously mentioned studies excluding Alnemer 
et al. (2020), Bashir et al. (2020), and Tavakolan and Etemadi
nia (2017), used binary relations (0 or 1) or weightings to 
measure the strengths of the relationships among the RFs. 
However, such relationships are often vague and cannot be 
precisely assessed. Alnemer et al. (2020), Bashir et al. (2020), 
and Tavakolan and Etemadinia (2017) overcame this limitation 
by utilizing fuzzy set theory. However, none of these studies 
accounts for both the likelihood of occurrence and the impact 
of RFs on one another. In Alnemer et al. (2020) and Bashir, the 
relationships among the RFs were measured in terms of their 
level on impact on one another, whereas Tavakolan and Ete
madinia (2017) measured the relationships among the RFs in 
terms of likelihood of occurrence. Moreover, a common limita
tion of these studies is that the use of ISM requires removing 
transitivity, which means that not all the RF propagation paths 
can be shown in the graphical models produced to visualize the 
relationships among the RFs.

Finally, in addition to the complexity that might limit their 
practicality, the use of the BBN-based methods presented in Qazi 
and Dikmen (2019) and Qazi et al. (2020) might be more mean
ingful and valuable if experts identify prior probabilities and then 
use empirical data to update the models. However, such require
ments might not be attainable in practice (Chen & Pollino, 2012).

Noting the limitations mentioned above, this study con
tributes to the literature by proposing a weighted fuzzy SNA 
approach for modeling and analyzing the vagueness and uncer
tainty of relationships among RFs, assessing both the likelihood 
and impact of occurrence. In addition to providing a holistic 
view of the nature of relationships among RFs, the proposed 
approach enables engineering managers to identify the root 
causes of delays and their corresponding critical propagation 
paths. The practicality of the approach is shown through an 
illustrative study involving modeling and analyzing RFs that 
cause delays in real-world electrical installation projects.

Social Network Analysis
Social network analysis (SNA) grew from movements in 
sociology in the 1930s, which employed statistical and com
putational methods, including some aspects of graph theory, 
to study the relationships between social entities, referred to 
as actors (Moreno, 1960). However, in the past three decades, 
SNA has been increasingly applied to various other fields, 
where its applications have been extended to modeling rela
tionships among non-human objects. In addition to its appli
cation to project risk management as indicated earlier, there 
have been several applications of SNA in engineering man
agement research. Examples of recent studies include those of 
Al Zaabi and Bashir (2018), Mok et al. (2017), and Pryke 
et al. (2018), and while early SNA applications considered 
either binary or weighted associations among actors, the use 
of fuzzy SNA approaches to cater to imprecise and vague 
relationships between actors in some applications is growing 
in popularity. Recent examples of studies that have adopted 
this fuzzy approach are Al Zaabi and Bashir et al. (2020), 
Bashir et al. (2022), and Chu et al. (2016).

A major advantage of using SNA is that it enables users to 
visualize the relationships among the actors (the objects being 
investigated, such as people, organizations, factors, etc.) by 
constructing a network comprised of nodes connected by either 
directed or undirected links. In addition to visualizing the 
problem, SNA involves analyzing the network’s structure utiliz
ing a set of network-level metrics and node-level metrics.

Methodological Approach
The proposed approach involves the following major four steps: 
(1) identification of RFs causing project delays and the binary 
relationships among them, (2) the development of a fuzzy 
weighted impact matrix, (3) the construction of the network of 
RFs, and (4) conducting a quantitative analysis. These steps are 
illustrated via a real-world study that involves modeling and 
analyzing the RFs that caused delays in electrical installation 
projects conducted by a major utility company. The projects 
carried out by this company have an average delay of 40%. 
Notably, a typical electrical installation project can take between 
six and eight months and involves the following major activities:

● Designing the internal electrical system.
● Fixing all of pipes, conduits, and ducts either vertically on 

the walls or horizontally on the ground.
● Pulling all of wires and cables.
● Installing, connecting, and tightening all distribution 

boards (DBs) in readiness for the final power supply 
connection.

● Approving drawings of the electrical system design com
pleted by the service providers for the project.

● Performing inspections.
● Fixing the transformers and switchgears in the electrical 

room of the building and laying the external main cables.

Step 1: Identification of Risk Factors and Their Binary 
Relationships
The key RFs that cause project delays can be identified from the 
collective experience of project teams using different techni
ques, such as Delphi, brainstorming, or others. In this illustra
tive study, we formed an expert panel comprising five project 
managers (who were involved in past projects undertaken by 
the company). In a brainstorming session, the panel of experts 
identified the following 13 RFs:

1. Poor management of schedules by the contractor
2. Failure to fulfill building requirements
3. Changing orders by owners
4. Delays in material delivery/out-of-stock material
5. Miscommunication or lack of communication between 

project stakeholders
6. Conflict between owners and contactors
7. Lack of owner experience
8. Poor qualifications among the contractor’s technical staff
9. Delays in performing inspections

10. Delays in performing rectifications
11. Delays in getting permits/approvals from the municipal

ity/various government authorities
12. Regulatory changes based on building type, safety, and 

quality requirements
13. Delays in submitting as-built drawings
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Following this, the expert panel identifies the relationships 
between the RFs using an n x n matrix, termed a binary adjacency 
matrix (where n is the number of RFs). In this matrix, if the 
occurrence of RFi would trigger the occurrence of RFj, then the 
value of element eij (the element in row i and column j) is one; 
otherwise, the value is zero. For this illustrative study, the produced 
binary adjacency matrix produced is shown in Exhibit 1. This 
matrix represents the binary relationships among the identified 13 
RFs and the project delays (RF 14).  

Step 2: Development of a Fuzzy Weighted Impact Matrix
In this step, the off-diagonal elements with a value of one in the 
binary adjacency matrix are replaced with weights representing 
direct relationships between RFs in terms of both likelihood-of- 
occurrence and the impacts of the RFs on one another based on 
the fuzzy set theory by Zadeh (1976) in order to account for 
uncertainty and vagueness. A fuzzy set is commonly used to 
permit a gradual assessment of the membership of elements in 
a set. Membership functions can have different shapes, but 
triangular membership functions are utilized most often (Ped
rycz, 1994). A triangular function is defined by a lower limit k, 
an upper limit m, and a value l, where k < l < m. Points k, l, 
and m represent the x coordinates of the three vertices of 
a membership function “μ~A xð Þ” in a fuzzy set A, as defined by 
Equation (1).

μ~A xð Þ ¼

0 x < k
x� k
l� k k � x � l

m� x
m� l l � x � m
0 x > m

2

6
6
4

3

7
7
5 (1) 

As shown in Exhibit 2, the first task in this step is to 
develop linguistic likelihood and impact matrices. The linguis
tic likelihood matrices were constructed as follows: Each 
member of the panel of experts is asked to develop 
a linguistic likelihood matrix by replacing each element (eij) 
of one in the binary adjacency matrix by his/her subjective 
opinion of the likelihood that the occurrence of RFi would 

trigger the occurrence of RFj using linguistic variables 
described in Exhibit 3. The produced “N” linguistic likelihood 
matrices (where N is the number of experts involved) are then 
transformed into a single matrix, known as a fuzzy direct 
likelihood matrix. Similarly, the linguistic impact matrices 
are constructed as follows: Each member of the experts is 
asked to develop a matrix by replacing each entry eij of one 
in the binary adjacency matrix by his/her subjective opinion of 
the impact level of RFi on the occurrence of RFj (should RFi 
materialize) using the linguistic variables given in Exhibit 4. 
The produced N linguistic impact matrices are then trans
formed into a single matrix known as a fuzzy direct impact 

Exhibit 1. Binary adjacency matrix

RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 RF11 RF12 RF13 RF14

RF1 0 0 0 1 0 1 0 0 1 1 0 0 1 0

RF2 0 0 0 0 0 1 0 0 0 0 0 0 0 0

RF3 0 0 0 0 0 0 0 0 0 0 0 0 1 0

RF4 0 0 0 0 0 0 0 0 1 0 0 0 0 0

RF5 0 0 1 0 0 1 0 0 0 0 0 0 0 0

RF6 0 0 0 1 0 0 0 0 0 0 0 0 1 0

RF7 0 0 1 0 0 1 0 0 0 0 0 0 0 0

RF8 0 1 0 0 1 0 0 0 1 1 0 0 0 0

RF9 0 0 0 0 0 0 0 0 0 1 1 0 0 0

RF10 0 0 0 0 0 0 0 0 0 0 1 0 0 0

RF11 0 0 0 0 0 0 0 0 0 0 0 0 0 1

RF12 0 0 0 0 0 0 0 0 0 1 0 0 0 0

RF13 0 0 0 1 0 0 0 0 0 0 0 1 0 0

RF14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Exhibit 2. Development of a Fuzzy Weighted Impact Matrix

Fuzzy Weighted Impact Matrix

N Linguistic Impact
Matrices  

N Triangular Impact
Fuzzy Matrices

Single Triangular Impact
Fuzzy Matrix 

Fuzzy Direct Likelihood 
Matrix

Fuzzy Direct Impact
Matrix

N Linguistic Likelihood 
Matrices  

N Triangular Likelihood
Fuzzy Matrices

Single Triangular 
Likelihood Fuzzy Matrix 
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matrix. Multiplying the corresponding elements of the single 
fuzzy direct likelihood and fuzzy direct impact matrices pro
duces a matrix known as a fuzzy weighted impact matrix. 

The procedure of converting linguistic (likelihood or 
impact matrices) into the corresponding single fuzzy direct 
(likelihood or impact) matrix is undertaken as follows:

a. The elements of each of the N linguistic matrices are 
replaced with the corresponding triangular fuzzy number 
to obtain N triangular fuzzy matrices. It should be noted 
that the linguistic variables and their respective triangular 
fuzzy numbers can be defined in different ways (Hamdan 
& Cheaitou, 2017). However, those presented in Exhibit 3 
and 4 are commonly used in relevant applications (e.g., 

Albastaki et al., 2021; Alnemer et al., 2020; Bashir et al.,  
2022; Bashir et al., 2020; Chen, 2000; Deng & Chan, 2011). 
In addition, those triangular numbers correspond to 
equally spaced crisp values (non-fuzzy values).

b. The N triangular fuzzy matrices are aggregated into 
a single matrix utilizing the average score method. No 
other statistics such as standard deviation or mode are 
required since the procedure does not require 
a comparison between different data sets. Moreover, the 
judgments on the relationships among the RFs are not 
expected to be widely scattered since they need to be 
provided by a small number of experts with comparable 
experience.

c. Each of the aggregated triangular fuzzy numbers in the 
single matrix is defuzzified to obtain the best non-fuzzy 
performance (BNP) values, as defined by Equation (2) —

BNPij ¼
½ðm � kÞ þ ðl � kÞ�

3
þ k (2) 

—where ij indicates the crisp possible rating of the strength of 
relationship between RFi and RFj

Based on the inputs provided by the five experts, Exhibit 5 
shows the produced fuzzy weighted impact matrix for the 
demonstrative study.  

Step 3: Construction of the Network of RFs
Visualizing the relationships among the RFs by constructing 
a simple graph consisting of nodes and links is an important 
step in the approach. This graph is useful because in multi
dimensional information-processing tasks, graphical feedback 
produces faster and more complete learning than numerical 
feedback (Hoffman et al., 1981). According to several studies 
(e.g., DeSanctis, 1984; Dickson et al., 1986), graphical displays 
improve the performance of decision makers in tasks such as 
identifying trends or detecting patterns of relationships among 
variables.

The network of RFs can be easily constructed utilizing any 
available SNA software package using the fuzzy weighted 

Exhibit 4. Linguistic Variables and their Triangular Fuzzy Transfor
mation for the Impact

Linguistic variables Triangular fuzzy number(k, l, m)

Very Low (VL) (0.0, 0.1, 0.3)

Low (L) (0.1, 0.3, 0.5)

Moderate (M) (0.3, 0.5, 0.7)

High (H) (0.5, 0.7, 0.9)

Very High (VH) (0.7, 0.9, 1.0)

Exhibit 3. Linguistic Variables and their Triangular Fuzzy Transfor
mation for the Likelihood

Linguistic variables Triangular fuzzy number(k, l, m)

Very Unlikely (VU) (0.0, 0.1, 0.3)

Unlikely (U) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

Likely (L) (0.5, 0.7, 0.9)

Very Likely (VL) (0.7, 0.9, 1.0)

Exhibit 5. Fuzzy Weighted Impact Matrix

RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RF10 RF11 RF12 RF13 RF14

RF1 0 0 0 0.47 0 0.54 0 0 0.15 0.65 0 0 0.23 0

RF2 0 0 0 0 0 0.38 0 0 0 0 0 0 0 0

RF3 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0

RF4 0 0 0 0 0 0 0 0 0.12 0 0 0 0 0

RF5 0 0 0.06 0 0 0.31 0 0 0 0 0 0 0 0

RF6 0 0 0 0.38 0 0 0 0 0 0 0 0 0.04 0

RF7 0 0 0.22 0 0 0.49 0 0 0 0 0 0 0 0

RF8 0 0.34 0 0 0.27 0 0 0 0.43 0.21 0 0 0 0

RF9 0 0 0 0 0 0 0 0 0 0.32 0.23 0 0 0

RF10 0 0 0 0 0 0 0 0 0 0 0.08 0 0 0

RF11 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31

RF12 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0

RF13 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0

RF14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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impact matrix as an input. The network shown in Exhibit 6 was 
constructed using the NetMiner Software Package for this illus
trative study. This network consists of 14 nodes and 24 directed 
links, where the nodes represent the 13 RFs and the project 
delays (RF 14), and a link directed from RFi to RFj means that 
there is a likelihood that the occurrence of RFi would trigger the 
occurrence of RFj .

Step 4: Quantitative Analysis
Quantitative analysis involves using two SNA metrics, namely 
in-degree centrality and betweenness centrality (Wasserman & 
Faust, 1994), to identify the most critical RFs. It also involves 
identifying the critical propagation paths associated with the 
root causes of project delays.

During project execution, project delay is initiated by 
a combination of root causes that propagate through different 
paths in the RF network. Therefore, these paths should be consid
ered during risk assessments (Yildiz et al., 2014). The knowledge of 
likely propagation paths and their impact on project delays, mitiga
tion plan, can be directed toward avoiding the occurrence of RFs on 
critical paths, defined as those that have a high total weighted impact 
on project delays. Unlike previous studies that utilized SEM for 
identifying risk paths (Eybpoosh et al., 2011; Liu et al., 2016), this 
study defined a propagation path in a risk network as a sequence of 
linked RFs starting from a root cause node and ending with the 

project delays node. Root causes can be identified by determining 
the in-degree centrality value of each RFi by computing the sum of 
all the values of column j of the fuzzy weighted impact matrix. 
RFs with zero in-degree centrality value are the root causes. If the 
network is simple, then the possible propagation paths can be easily 
identified on the risk network. Otherwise, any existing algorithm for 
finding all paths between specific nodes can be used, such as those 
developed by Migliore et al. (1990) and Tarjan (1972). The expected 
total effect of the RFs propagating along a path on project delay, 
referred to as the total weighted impact (TWP), can then be quanti
fied using Equation (3). For each root cause, the path that has the 
maximum total weighted impact is considered critical.

TWP ¼
Xn

i

Xn

j
WIijXij (3) 

Here WIij represents the impact of RFi on RFj, which can be 
obtained from a fuzzy weighted impact matrix; Xij = 1 if RFi and 
RFj are directly linked, and 0 if not; and n is the number of RFs.

Since the in-degree centrality values are zeros for the three 
RFs, 1, 7, and 8 in this illustrative study, they were identified as 
the root causes of the project delays. As shown in Exhibit 7, 24 
potential propagation paths could be triggered by these RFs. 
The paths were identified using the NetMiner software package, 

Exhibit 6. Network of RFs
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which implements a search method based on the algorithm by 
Migliore et al. (1990). The computed total weighted impact 
value for each potential propagation path is also given Exhibit 7. 
Accordingly, the paths 1 -> 6 -> 4 -> 9 -> 10 -> 11 -> 14, 7 -> 6 
-> 4 -> 9 -> 10 -> 11 -> 14, and 8 -> 2 -> 6 -> 4 -> 9 -> 10 -> 11 
-> 14 are the most critical propagation paths that are initiated 
by RFs 1, 7, and 8.  

Prioritizing the root node of each critical risk propagation 
path is one simple mitigation strategy. However, this may not 
always be an effective strategy because it ignores the fact that 
there might be some nodes that are of high importance because 
they are either part of multiple critical paths, such as RFs 4, 6, 9, 
10, and 11, or they exist outside the most critical risk propagat
ing paths but they have links with many RFs that belong to 
most critical propagation paths. We propose using betweenness 
centrality (BCi) to identify such cases. This metric measures the 
number of paths in which a node participates (Wasserman & 
Faust, 1994). It is defined as follows:

BCi ¼
X

j<k

Sjk

Tjk
(4) 

Where Sjk = the number of shortest paths connecting RFs jk 
passing through RFi , and

Tjk = the total number of shortest paths connecting RFs jk.
Exhibit 8 shows the rank of the RFs in terms of their 

betweenness centrality values for the demonstrative study. 
Risk RF 6 has the highest value; therefore, it should be con
sidered one of the most critical RFs in addition to the root 
causes 1, 7, and 8.

Exhibit 7. Propagation Paths Associated with Root Causes

Root cause Propagation Path Total weighted impact

1 1 -> 4 -> 9 -> 10 -> 11 -> 14 1.30

1 -> 4 -> 9 -> 11 -> 14 1.13

1 -> 4 -> 9 -> 10 -> 11 -> 14 1.29

1 -> 6 -> 4 -> 9 -> 10 -> 11 -> 14 1.75

1 -> 6 -> 4 -> 9 -> 11 -> 14 1.58

1 -> 6 -> 13 -> 12 -> 10 -> 11 -> 14 1.16

1 -> 9 -> 10 -> 11 -> 14 0.86

1 -> 9 -> 11 -> 14 0.69

1 -> 10 -> 11 -> 14 1.04

1 -> 13 -> 12 -> 10 -> 11 -> 14 0.81

7 7 -> 3 -> 13 -> 12 -> 10 -> 11 -> 14 0.95

7 -> 6 -> 4 -> 9 -> 10 -> 11 -> 14 1.70

7 -> 6 -> 4 -> 9 -> 11 -> 14 1.53

7 -> 6 -> 13 -> 12 -> 10 -> 11 -> 14 1.11

8 8 -> 2 -> 6 -> 4 -> 9 -> 10 -> 11 -> 14 1.93

8 -> 2 -> 6 -> 4 -> 9 -> 11 -> 14 1.76

8 -> 2 -> 6 -> 13 -> 12 -> 10 -> 11 -> 14 1.34

8 -> 5 -> 3 -> 13 -> 12 -> 10 -> 11 -> 14 1.06

8 -> 5 -> 6 -> 4 -> 9 -> 10 -> 11 -> 14 1.79

8 -> 5 -> 6 -> 4 -> 9 -> 11 -> 14 1.62

8 -> 5 -> 6 -> 13 -> 12 -> 10 -> 11 -> 14 1.20

8 -> 9 -> 10 -> 11 -> 14 1.14

8 -> 9 -> 11 -> 14 0.97

8 -> 10 -> 11 -> 14 0.60

Note: *Critical paths are in bold. 

Exhibit 8. Ranks of the RFsin Terms of Their Betweenness Cen
trality Values
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Discussion and Implications for Engineering Managers
Decision-making in complex system environments necessitates 
identifying and understanding the relationships among the ele
ments of the systems (Bendoly, 2014; Davies & Saunders, 1988; 
Größler et al., 2008; Saunders, 1992). This is also applicable to the 
development of an effective risk-mitigation plan for minimizing 
project delay severity. Therefore, engineering managers should 
consider that project delays are not a result of independent events; 
they occur as a result of a domino effect. As one or more events 
occur, they trigger other events. Accordingly, identifying and rank
ing the RFs causing project delays, analyzing their relational struc
tures, and understanding their implications are vital to managing 
these RFs more effectively (Bashir et al., 2020). Failure to do so is 
perhaps one reason for the persistent problem of project delays in 
all types of industries–despite the emergence of advances in the 
practices, tools, and techniques of project management. Taking into 
account the limitations of previous research that has addressed this 
issue, this study equips engineering managers with a weighted fuzzy 
network theory-based analysis approach for modeling and analyz
ing relationships among RFs that affect project delays in terms of 
the two components of risks: likelihood and impact. By applying 
this approach, engineering managers are more likely to obtain an 
advantage in visualizing the relationships among the RFs, thus 
understanding how the occurrence of an RF will impact other 
directly and indirectly linked RFs. Moreover, the graphical model
ing of the relationships among RFs is complemented by 
a quantitative analysis, which engineering managers can use to 
identify the root causes of delays and critical risk propagation paths.

Developing risk response strategies to cope with the iden
tified critical RFs was beyond the scope of this study. However, 
the best mitigation strategy is to implement mitigation controls 
for the root causes that initiate critical risk propagation paths as 
well as those that have the highest betweenness centrality 
values. In the demonstrative study, three risks (1, 7, and 8) 
initiated 24 risk propagation paths for this demonstrative study.

Identifying risk propagation paths is very useful for predict
ing the sequence of RFs that will be triggered if an initiator RF 
occurs. For instance, as shown in Exhibit 7, if the owner of 
a project has a lack of experience (RF7), then four propagation 
paths could be triggered: 7 -> 3 -> 13 -> 12 -> 10 -> 11 -> 14, 7 -> 6 
-> 4 -> 9 -> 10 -> 11 -> 14, 7 -> 6 -> 4 -> 9 -> 11 -> 14, and 7 -> 6 -> 
13 -> 12 -> 10 -> 11 -> 14. One practical approach for developing 
a mitigation plan is to focus on RFs on the most critical path, 
which can be determined using the simple formula defined by 
Equation (3). Other RFs that should be prioritized are those with 
high values of betweenness centrality. Although these RFs may not 
initiate cascading risks or may not belong to a critical path, they 
contribute to multiple risk paths and therefore play an important 
role in the risk delay. For instance, in the demonstrative study, the 
conflict between owners and contractors (RF6) has the highest 
betweenness centrality when compared with the other RFs. This 
means that the occurrence of many RFs could lead to a conflict 
between the owners and contractors (RF6), and the occurrence of 
RF6 will lead to many other risks.

Conclusions
The major premise of this study is that, although several recent 
studies on facilitating the identification and ranking of RFs have 
taken into account the relationships among the RFs, very few 
studies have included the notions of imprecision and vague
ness, and the modeling of the relationships among RFs in terms 

of both the likelihoods of concurrence and the impact. The 
novel weighted fuzzy SNA-based approach has been proposed 
in this article fills this knowledge gap, and its efficacy has been 
demonstrated through a real-world study. This approach uses 
subjective information about RF interrelationships gathered 
from a team of experts to enable the visualization of direct 
and higher-order dependencies among RFs. A quantitative ana
lysis complemented this visualization, involving two SNA ana
lysis metrics: measuring in-degree centrality and betweenness 
centrality. These metrics helped identify root causes and asso
ciated risk propagation paths that can lead to project delays. 
Accordingly, the outcome of this analysis helps engineering 
managers in developing effective mitigation strategies.

The proposed approach has several strengths, including the 
ability to use SNA to visualize all the relationships among the 
RFs, consideration of the uncertainty and fuzziness of measur
ing the relationships among the RFs in terms of the likelihood, 
occurrence and impact, and identification of the risk propaga
tion paths. Furthermore, two of the main steps of this approach 
(network construction and quantitative analysis) can be easily 
performed using existing social network software packages, 
which makes the proposed approach easily transferable in 
practice. It is worth noting that one or more of these strengths 
can be found in existing approaches, but none of these 
approaches combines all of these characteristics.

Despite its strengths, the proposed approach has limita
tions that need to be addressed in future research. First, only 
two SNA analysis metrics were used to identify the most 
important nodes and thus prioritize the RFs. Second, experts 
are required to execute a large number of pair comparisons, 
and this may pose a challenge in implementation. Third, the 
approach does not model the dynamic and time-related beha
vior of the RFs. Finally, the efficacy of the approach was 
demonstrated using one real-world study to model RFs that 
cause delays in electrical installation projects carried out by 
a single company. Nonetheless, the results of this demonstra
tion could encourage practitioners and researchers to further 
test the practicality of the approach in more real-world studies 
in different contexts.
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