
Jungjit, Suwimol and Kapinchev, Konstantin (2014) Postgraduate Conference
2014: Technical report 1-14. In: School of Computing Mini Conference,
School of Computing - Canterbury Campus.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/49002/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/49002/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Postgraduate Conference 2014

Technical report 1-14

 Edited by:
 Suwimol Jungjit
 Konstantin Kapinchev

School of Computing Canterbury
University of Kent 30 May 2014

Preface

It is our pleasure to introduce you to the Postgraduate Conference 2014, organised at the

School of Computing, where students demonstrate their latest research and contribution

to the scientific community. This annual event became a tradition at the School of

Computing, and this year is no exception. The conference presents the excellence of the

research in computer science conducted by the school's postgraduate students. It covers a

wide range of areas, including parallel GPU computing, data mining, artificial

intelligence, cloud computing, bioinformatics, and others.

We would like to express our gratitude to the authors for participating in this conference.

We hope your research will be successful and rewarding.

We also would like to thank the review panel and the academic and administrative staff

for their assistance in organising the conference. This event will not be possible without

their help and support.

Kindest regards,

Suwimol Jungjit

Konstantin Kapinchev

Editors

Table of Contents

Conference programme 3

Papers and extended abstracts:

A Method for Graph Drawing Utilising Patterns, Robert Baker and Peter
Rodgers

7

Cellular-Automaton-Entropy-Based Project Scheduling in Cloud Computing,
Huankai Chen

12

Seeing Is Not Always Believing - The relationship between performance and
subjective visibility in an attentional blink task, Luise Gootjes-Dreesbach and
Howard Bowman

14

Parallel Implementation of Digital Signal Processing Algorithms in Optical
Coherence Tomography, Konstantin Kapinchev and Fred Barnes

16

Genetic algorithms in the study of the genetic code adaptability problem,
Lariza Laura de Oliveira, Renato Tinós and Alex A. Freitas

18

A machine for higher-order term rewriting, Connor Lane Smith 20

Gene Ontology Hierarchy-Based Feature Selection, Cen Wan and Alex A.
Freitas

23

Dynamic Time Warping as a method for measuring Latency Differences of
ERP Components, Alexia Zoumpoulaki, Abdulmajeed Alsufyani, Marco Filetti,
Michael Brammer and Howard Bowman

24

1

2

Conference Programme

Time: Event:

10:30 – 12:30 Poster session (room sw101)

 Cellular-Automaton-Entropy-Based Project Scheduling in Cloud

Computing, Huankai Chen

Seeing Is Not Always Believing -The relationship between performance
and subjective visibility in an attentional blink task, Luise Gootjes-
Dreesbach and Howard Bowman

Parallel Implementation of Digital Signal Processing Algorithms in
Optical Coherence Tomography, Konstantin Kapinchev and Fred Barnes

Dynamic Time Warping as a Method for Measuring Latency Differences
of ERP Components, Alexia Zoumpoulaki, Abdulmajeed Alsufyani, Marco
Filetti, Michael Brammer and Howard Bowman

 Presentations (room sw101)

13:30 – 13:50 A Method for Graph Drawing Utilising Patterns, Robert Baker and Peter

Rodgers

13:50 – 14:10 Genetic Algorithms in the Study of the Genetic Code Adaptability

Problem, Lariza Laura de Oliveira, Renato Tinós and Alex A. Freitas

14:10 – 14:30 Gene Ontology Hierarchy-Based Feature Selection, Cen Wan and Alex A.

Freitas

14:30 – 14:50 A Machine for Higher-Order Term Rewriting, Connor Lane Smith

14:50 – 15:00 Brief talks from poster session

15:00 – 15:10 Closing the conference

3

4

Papers and Extended Abstracts

5

6

A Method for Graph Drawing Utilising Patterns

Robert Baker
University of Kent
Canterbury, Kent
United Kingdom

rb440@kent.ac.uk

Peter Rodgers
University of Kent
Canterbury, Kent
United Kingdom

P.J.Rodgers@kent.ac.uk

ABSTRACT
This paper describes work in progress of a new method for
drawing straight line graphs. By identifying certain pre-
defined patterns with a graph and drawing these in a con-
sistent manner, it is hoped that a useful and aesthetically
pleasing layout can be achieved. The paper will detail the
patterns identified and the various combinations of connec-
tions between patterns. The algorithms for drawing each
connection are then detailed. As this is a work in progress,
there has been no evaluation, although future work will be
identified.

1. INTRODUCTION
There are a number of existing drawing methods for node-

linked graphs, such as force-directed methods [6], simulated
annealing [5], and constraint-based layout [2]. This paper,
however, proposes a new method that utilizes subgraph iso-
morphism. The proposed solution is that certain subgraphs
(or patterns) are identified within a graph and these patterns
are drawn in a consistent manner. There are challenges re-
garding the drawing order and integrating the concept of
an ”ideal layout” with the previously drawn set of patterns.
The basic process is as follows:

1. Patterns are identified
2. Connections between each pattern are determined
3. These patterns are placed in an order for drawing
4. Each pattern is drawn

By drawing patterns in a consistent manner, it is hoped that
the result will be clearer, more compact and easier to un-
derstand. Patterns have also been used for layout in editing
tools [10], however this a different concept to that we pro-
pose here because the patterns encapsulate constraints and
attribute evaluation rules, rather than the simple layout def-
initions that we use the terminology “pattern” for.

2. RELATED WORK
There has been much research in both graph drawing and

subgraph isomorphism. In this chapter, related work in both
fields is discussed.

2.1 Graph Drawing Techniques
Graph drawing is a well researched area of information

visualization. Techniques include force-directed methods,
simulated annealing, and those based on hill climbing tech-
niques. It is important to study other research of graph
drawing techniques so that the proposed method can be
compared.

2.1.1 Force-directed methods
Most graph drawing techniques are based on force-directed

methods. This method was developed by Eades[6], and
represents nodes as charged particles which have a repul-
sive force against all other nodes. Edges are represented
as springs charged with attractive forces between the nodes
they connect, and both these forces relate to the distance
between the respective nodes. These forces move their re-
spective nodes and when they reach rest, or a certain number
of iterations have been completed, a final layout is created.
Graphs drawn using this technique often have aesthetically
pleasing layouts, but there can be some issues such as oc-
clusion and local optima.

Fruchterman and Reingold [7] introduced improvements
by using linear calculations of the forces, as well as limiting
the repulsive forces to act only on nodes nearby rather than
the entire graph.

Other variations have been created, including those that:
create the concept of an ideal distance between non-connected
nodes [8], orientate egdes [13], introduce edge repulsion [9],
cluster nodes into smaller graphs [15], or combine force-
directed methods with other drawing techniques, such as
Euler diagrams [1].

2.1.2 Search Based Technique
Although force-directed methods sometimes produce aes-

thetically pleasing graph layouts, they only model aesthetics
indirectly. Another possible drawing technique is a search
based method, such as simulated annealing or a hill climber.

In simulated annealing, the graph initially moves large
distances which are then ”cooled” slowly to only allow more
minimal movements. This helps the system to avoid local
optima and, when given enough time, to find the global op-
timal solution. Davidson and Harel [5] used this method
to draw graphs and their results compared favourably with
manually drawn graphs. However, simulated annealing is
computationally slower than a force-directed method.

One disadvantage of simulated annealing is that nodes
may move to a worse position. Therefore, a method that
prevents this, called hill climbing, was developed. Stott and
Rodgers [12] developed a hill climbing multi-criteria opti-
mization technique to automatically generate metro map
layouts.

2.2 Subgraph Isomorphism
Further research has also been conducted on subgraph iso-

morphism. Such research includes detecting subgraphs, and
drawing large graphs which are based on previously defined

7

or drawn subgraphs.
Ullmann [14] developed a method that creates adjacency

matrices for the graph and subgraphs. It uses these matrices
to detect isomorphism. This algorithm is very computation-
ally expensive to use for the detection of subgraphs within
a larger graph because it runs in cubic time.

Bonnici et al [3] developed a subgraph isomorphism algo-
rithm utilising a search based strategy, specifically to iden-
tify subgraphs in biochemical data. As with other methods,
the authors use a tree based search approach to detect iso-
morphism. If there is a statistically significant increase in
the number of subgraphs in a particular dataset compared
to random graphs, then this set is of interest to the user.

Subgraph isomorphism can be used for such tasks as iden-
tifying molecular structures [11], interpreting semantic dia-
grams [4], amongst others.

3. DEFINITIONS OF PATTERNS
At present, we define four types of common subgraph that

can be identified within many graphs. These are cliques,
circles, stars & paths and are defined as follows:

3.1 Clique
Must contain at least 4 nodes and all nodes are connected

to all the others within the clique. An example of cliques of
various sizes is shown in Figure 1. In figures throughout this
work, cliques will be highlighted in pink and nodes prefixed
with a c.

cC

cB

cA

cA

cA

cA

cA

cA

cB

cB

cB

cB

cC cC

cC

Figure 1: Example of cliques of size 4, 5 and 6

3.2 Circle
Must contain at least 4 nodes and each node must connect

to exactly 2 other nodes in the pattern so that a closed path
is formed. Each node may connect to any number of other
nodes not in the pattern. An example of circles of various
sizes is shown in Figure 2. In figures throughout this work,
circles will be highlighted in blue and nodes prefixed with
a o.

oA

oCoC

oC

oC oC

oC

oB oB

oB

oB

oB

oA

oAoA

Figure 2: Example of circles of size 4, 5 and 6

3.3 Star
Must contain at least 4 nodes where one node is the central

node that connects to the other nodes. The other nodes
must only connect to the central node in this pattern, but

can connect outside of the star. An example of stars of
various sizes is shown in Figure 3. In figures throughout
this work, stars will be highlighted in red and nodes prefixed
with an s.

sAsA

sA

sB
sC

sCsC

sC

sC

sC

sC

sB

sBsB

sB sB

sA

sA

Figure 3: Example of stars of size 4, 5 and 6

3.4 Path
Must contain at least 4 nodes and the terminating nodes

may connect to any other nodes outside of the pattern.
Other nodes in the pattern must connect to only 2 other
nodes, the previous and next node in the path. Any paths
that are also circles are treated as circles only. An exam-
ple of paths of various sizes is shown in Figure 4. In figures
throughout this work, paths will be highlighted in green and
nodes prefixed with a p.

pA

pB

pA pA pA

pB pB pB pB

Figure 4: Example of paths of size 4 and 5

4. DRAWING ORDER
Once the patterns within a graph have been identified,

the method will then determine in which order these pat-
terns are drawn. One heuristic is to order the patterns so
that closely related patterns (edge sharing and node shar-
ing) are drawn first. This is because these patterns have less
flexibility in their layout and it is sensible to draw these be-
fore the graph becomes too dense and a location cannot be
found. When determining the order, several considerations
need to be made:

• The type of connection to the previous drawn patterns

– 1 Node shared

∗ The pattern and the drawn set have one node
in common

– 2 Nodes shared

∗ The pattern and the drawn set have two nodes
in common. This will often include circles
and paths connected to non-consecutive nodes
in circles. Many other instances of 2 nodes
sharing are actually identified as one shared
edge

– 1 Edge shared

∗ The pattern and the drawn set have one edge
in common. This will often include cliques
and stars that share edges with other pat-
terns.

– 2 Edge shared

8

∗ A star shares its central node with a circle, so
two edges of the circle and a number of other
edges are the “spokes” of the star.

– Edge connection

∗ The pattern and the drawn set have one edge
connecting them. This edge is in neither the
drawn set, nor the pattern

– No connection

∗ The pattern and the drawn set have no nodes
or edges in common, nor have one edge con-
necting them. This does not mean the pat-
tern is necessarily disconnected from the drawn
set - it could be connected by a series of nodes
and edges. This is not considered to be a
close connection, so this is treated as no con-
nection.

• The amount of connectivity to the previously drawn
patterns

– Number of nodes shared
– Number of edges shared

• Degree of pattern
• Type of pattern

It is also necessary to discard a number of patterns that
are identified. Because many graphs have an unfeasibly large
number of patterns or patterns which considerably overlap
others. This makes the process of drawing these patterns
incredibly difficult, and therefore only a subset of patterns
for drawing. As a result of this, patterns which share more
than 2 edges or nodes with the drawn set are disregarded.

The patterns that have been identified are drawn in the
following order:

1. Clique with 1 edge shared
2. Clique with 1 node shared
3. Star with 1 outside node shared
4. Star with 1 edge shared
5. Star with centre node shared
6. Circle with 2 edges shared
7. Circle with 2 nodes shared
8. Circle with 1 node shared
9. Path with 2 nodes shared

10. Path with 1 node shared
11. Clique with a connecting edge
12. Star with a connecting edge
13. Circle with a connecting edge
14. Path with a connecting edge
15. Clique with no connection
16. Star with no connection
17. Circle with no connection
18. Path with no connection

Once the order of drawing is established, certain cliques
are manipulated. This is necessary because it helps to im-
prove the final layout. The nodes within cliques that have a
shared edge require reordering to ensure this particular edge
is on the “outside” of the pattern. This helps avoid occlusion
and to minimize edge crossings.

5. DRAWING EACH PATTERN
Once the drawing order has been established, the patterns

can be drawn. The algorithm for drawing each pattern is

different for each type of connection and, in some cases, the
type of pattern. Not all connection types have yet had their
drawing algorithms implemented. This means that only a
subset will be described in detail.

Cliques, circles and stars can be drawn according to an
“ideal layout”which is the default layout of a pattern if it had
no connections. The default layout also helps to ensure con-
sistency when drawing patterns. Slight modifications may
be required to enable the ideal layout to handle connections,
but these are kept at a minimum to maximise consistency.
The layout of paths is flexible. This means that they do not
have an ideal layout to follow, as they are usually drawn
later. This enables greater scope for a closer relationship
between the drawing method and the available graph space.
The layout of paths has not yet been implemented.

The first pattern drawn always follows its ideal layout.
Patterns are drawn according to the techniques listed below.

5.1 Share One Edge
Circles and cliques share the same drawing algorithm when

patterns share one edge within the drawn set. Unlike circles
and cliques, stars have a unique drawing method. It is not
possible for paths to share an edge with any other pattern.

5.1.1 Circle & Clique
Circles and cliques currently share the same algorithm for

drawing. In this algorithm, the pattern is first drawn in its
ideal layout, centred on the origin of the graph. The pattern
is then scaled so all outside edges match the same length as
the shared edge. This ensures the pattern does not distort
the currently drawn set and that this pattern is drawn in a
consistent manner (i.e. a clique of sized 4 is still drawn as a
square, rather than a trapezium).

The pattern is then rotated to match the original orienta-
tion of the shared edge and moved into the correct location.
After rotation, the shared edge and node have been returned
to the correct position. However, the remaining pattern may
be inside the drawn set. This could mean the pattern is po-
sitioned in a way that creates unnecessary edge crossings or
occlusions. To overcome such issues, the pattern may be re-
flected. Reflection enables incorrectly placed nodes to move
to a more aesthetically pleasing position.

When reflection has been completed, the pattern sits in
the correct location.

oB

oB

oB

oAoB

oAoB

oA

oA

(a) Two circles

oA
oA

oA

cB

oAcB

oAcB cB

(b) Circle & clique

cB

cB

cA

cAcB

cA

cA

cAcB

(c) Two cliques

cD

cD

cD

oAcD

oAcD

oAcE

oAcE

oCcE

oCcE

oCcF

cF

cF

oCcF

oBoC
oBoC

oB
oB

(d) Multiple cliques & circles

Figure 5: Examples of the Edge Sharing algorithm for Cir-
cles & Cliques

9

5.1.2 Star
Although the ideal layout of stars is different, it follows a

similar drawing method to that used for cliques and circles.
The ideal layout usually arranges stars at an appropriate

distance from the centre. The stars are also evenly spaced
around the centre. However, the ideal layout cannot always
follow this format if other patterns cause occlusions. To
make provision for this, the drawing algorithm recognizes
invalid areas which are used to restrict the range in which
star spokes can be drawn.

Once the largest valid area has been identified, the star is
drawn in its ideal layout. This layout arranges the spokes of
the star consistently within this valid area, excepting shared
edges. The algorithm then follows the same process used for
cliques and circles (see Section 5.1.1).

0sB

1sA

2sA 3sAsB

4sA 5sB

6sAsB

7sB

(a) Two stars of size 4

0sB

1sB

2sB

3sB

4sB

5sB

6sA

7sA

8sA

9sA

10sAsB11sAsB

(b) Two stars of size 5 & 6

Figure 6: Examples of the One Edge Sharing algorithm for
Stars

5.2 Share Two Edges
The only case where patterns share two edges is between

circles and stars. This exists where a circle shares two
“spokes” of a star. A decision had to be made regarding
the order in which the star or circle should be drawn. One
possible option was to the star around the circle. However,
this would require changing the main drawing order (as stars
are drawn before circles). It was decided that it was unwise
to change the order, as this could have a large number of
implications. It was also decided that it was not sensible
to introduce an exception for this type, as that defeats the
object of having a fixed drawing order. Therefore, circles
are drawn after stars.

The method follows a similar process to the the One Edge
Sharing drawing method (see Section 5.1.1) for Circles. Firstly,
the middle node of the star is found and a virtual edge is
created between the other two shared nodes. This is used
to enable compatibility with the One Edge Shared method.
The pattern (with the exception of the middle node) is then
drawn in its ideal layout, centred on the origin of the graph.
The circle is then scaled so that the virtual edge is the same
length as it was before the circle was drawn. This ensures
that the pattern does not distort the currently drawn set.

The pattern is then rotated to match the original orien-
tation of the virtual edge and then moved into the correct
location. Once this is complete, an orientation check is com-
pleted. A measure of the edge crossings and occlusion is
taken. If there are no edge crossings or occlusion, then the
drawing is complete. If not, the pattern is reflected along
the virtual edge. Another calculation of the edge crossings
and occlusion is taken. If this is lower than the previous
calculation, then this layout is chosen. If not, the pattern is
reflected back and the method is complete.

5.3 Connected by Edge
The algorithm for drawing a pattern connected by an edge

to the drawn set utilises a search based approach. A grid

0oA

5sB

4sB

1oAsB

7oAsB

6sB

2oAsB 3oA

(a) A circle of size 4 and a star
of size 5

0oAsB 1oAsB

2sB

3sB

4oAsB

5sB

6oA

7sB

8oA

9oA

(b) A circle and star of size 6

Figure 7: Examples of the Two Edge Sharing algorithm for
Circles

of possible options is created, and for each of this options
various combinations of rotations and reflections are tested.
Numerous metrics are calculated to represent this. These
include:

• Number of edge crossings in the graph
• Length of the connecting edge
• Distance between the pattern and the currently drawn

set
• A measure of symmetry (the distance between the cen-

tres of the pattern and the drawn set)

For a combination to be considered, the separation dis-
tance must be larger than a constant value. If it is valid for
consideration, the number of edge crossings are examined
and if lower than the previous best, the current combina-
tion is considered to be the current best.

However, the values may be equal. When this happens,
the length of the connecting edge is compared. If this length
is less than the previous best length, this combination is
ranked as the best. This process is repeated a further two
times with the search space being a factor of ten smaller each
time. This means that the spacing between each combina-
tion and the overall search space is ten times smaller. Once
this process is complete, the pattern is drawn in the best lo-
cation and combination of rotation and reflection. However,
this algorithm is not yet fully implemented and is likely to
be modified.

oA

oA

oAoA

oB

oB

oB

oB

(a) Two circles

cA

cA

cAcA

cB

cB

cB

cB

(b) Two cliques

cB

cB

cB

oA

oA

oA

oA

cB

(c) Circle & Clique
cC

oA

oA

cC

cD

cD

cC

oA

oA

cC

oB

oBoB

cD

cD

oB

(d) Mixture of patterns

Figure 8: Example of the Edge Connected algorithm

5.4 Currently Unimplemented Connections
There are currently unimplemented drawing methods for

the following types of connection:

• Patterns sharing 1 node

10

• Patterns sharing 2 nodes
• Patterns connected by a node
• Patterns with no connections

Nodes that do not belong to a pattern must be sensibly
located. This has not yet been implemented.

6. CONCLUSION
This work proposes a new method of graph drawing. The

method identifies patterns within a graph and draws these
in a consistent manner. There are a number of stages to this
procedure: identification of patterns, creating an order for
drawing, and drawing each pattern in turn. This method
has a number of real world applications and graph drawing
is a heavily researched area (see Section 2).

It is hoped that this method will allow undirected straight-
edge graphs to be drawn in an aesthetically pleasing and
useful layout. Although not all algorithms for drawing con-
nections have been implemented, the results from those that
have are positive. They appear to show the proposed method
has promise and can produce aesthetically pleasing layouts.

However, there is much work still to be completed. Firstly,
the remaining drawing methods need to be implemented
and tested. Several of these methods may have different
algorithms for each of the patterns. Once this is complete,
it will be necessary to test the system thoroughly and for
modifications to be implemented for corner cases.

In order to determine the system’s effectiveness, various
graphs will need to be drawn from various datasets. Such
datasets may include social network data, relational data, or
character analysis in a novel (where characters that appear
within a certain number of words of another are said to be
related). It will be necessary to find, extract and process
this data for use within the system.

Once various datasets have been obtained, it will then be
necessary to evaluate the system. The system can be com-
pared to previous work using a number of metrics, such as
edge crossings, total area and time taken (both in a quanti-
tative value and time complexity). It will also be necessary
to compare the system to other methods by empirical study,
to compare the quality of the drawn graph.

There is also scope for future research from this work. Fur-
ther enhancements would involve identifying different orders
and creating different patterns. It is also possible that fur-
ther research could be spent investigating and developing a
system where a user can define both a pattern and how this
pattern should be drawn. This addition is not trivial and
would require considerable extra work.

7. ACKNOWLEDGMENTS
The author acknowledges the useful discussions from Kai

Xu and Rik Waller, both from Middlesex University.

8. REFERENCES
[1] R. Baker, P. Rodgers, S. Thompson, and H. Li.

Multi-level Visualization of Concurrent and
Distributed Computation in Erlang. In The 19th
International Conference on Distributed Multimedia
Systems (DMS 2013), 2013.

[2] K.-F. Böhringer and F. N. Paulisch. Using Constraints
To Achieve Stability In Automatic Layout. In CHI ’90
Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, number April, pages
43–51, 1990.

[3] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and
A. Ferro. A subgraph isomorphism algorithm and its
application to biochemical data. BMC bioinformatics,
14 Suppl 7(Suppl 7):S13, Apr. 2013.

[4] H. Bunke. Attributed Programmed Graph Grammars
and Their Application to Schematic Diagram
Interpretation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (6):574–582, 1982.

[5] R. Davidson and D. Harel. Drawing graphs nicely
using simulated annealing. ACM Transactions on
Graphics, 15(4):301–331, Oct. 1996.

[6] P. Eades. A Heuristic for Graph Drawing. Congressus
Numerantium, 42:149–160, 1984.

[7] T. M. J. Fruchterman and E. M. Reingold. Graph
Drawing by Force-directed Placement. Software:
Practice and experience, 21(11):1129–1164, 1991.

[8] T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs. Information processing
letters, 31(April):7–15, 1989.

[9] C. Lin and H. Yen. A new force-directed graph

drawing method based on edgeâĂŞedge repulsion.
Journal of Visual Languages & Computing, 2012.

[10] S. Maier and M. Minas. A Pattern-Based Layout
Algorithm for Diagram Editors. In Electronic
Communications of the EASST Proceedings of the
Workshop on the Layout of (Software) Engineering
Diagrams (LED 2007), volume 7, 2007.

[11] D. H. Rouvray and A. T. Balaban. Chemical
applications of graph theory. Applications of Graph
Theory, 177:155–156, 1979.

[12] J. Stott and P. Rodgers. Metro map layout using
multicriteria optimization. In Eighth International
Conference on Information Visualisation, 2004.,
volume 17, pages 355–362, Jan. 2004.

[13] K. Sugiyama and K. Misue. Graph drawing by the
magnetic spring model. Journal of Visual Languages
and Computing, 6(3):217–231, 1995.

[14] J. R. Ullmann. An Algorithm for Subgraph
Isomorphism. Journal of the ACM, 23(1):31–42, 1976.

[15] C. Walshaw. A Multilevel Algorithm for
Force-Directed Graph Drawing. In Graph Drawing,
pages 1–22, 2000.

11

Cellular-Automaton-Entropy-Based

Project Scheduling in Cloud Computing

Huankai Chen

Future Computing Group

University of Kent

Canterbury, UK

Email: hc269@kent.ac.uk

Abstract— Commercial cloud offerings, such as Amazon’s

EC2, let users rent computing resources on demand, charging

based on reserved time intervals. While this gives great flexibility

to elastic project scheduling, the complexity of resource

management arises when cloud consumers claim an excellent

service level agreement (SLA) for multiple quality-of-service

(QoS), such as deadline, cost budget and reliability. Such QoS

constrains will limit a cloud system’s ability to execute and

deliver a project as originally planned. The entropy, as a measure

of the degree of disorder in a system, is an indicator of a system’s

tendency to progress out of order and into a chaotic condition,

and it can thus serve to measure a cloud system’s reliability for

project scheduling. In this paper, cellular automaton is used for

modeling the complex multiple QoS constrained project

scheduling system. Additionally, a method is presented to

analysis the reliability of allocated cloud resources by measuring

the average resource entropy (ARE). Furthermore, cellular

automaton entropy based cloud resource allocation (CAE-CRA)

methodology for scheduling multiple QoS constrained project is

proposed to help in cloud scheduling strategies evaluation and

comparison. At last, the proposed methodology is implemented

under Matlab environment and verified with four basic cloud

scheduling strategies, First Come First Served Algorithm

(FCFS), Round Robin Algorithm (RR), Min-Min Algorithm and

Max-Min Algorithm. The experimental results show that the

proposed methodology can provide correctly evaluation and

comparison of different cloud scheduling strategies and lead to

achieve cost-efficient and reliable resource allocation solutions

for scheduling projects on the cloud environment.

Keywords— Resource Allocation; QoS Constrains; Scheduling;

Cloud Computing; Cellular Automaton; Entropy; Cost-efficiency;

Reliability; Complexity; Order; Chaos;.

I. APPLICATION OF CA ENTROPY FOR THE RELIABILITY

EVALUATION ON CLOUD SCHEDULING SYSTEMS

The theory of cellular automata was initiated by John Von
Neumann in his seminal work Theory of Self-Reproducing
Automata [9]. It can produce complex phenomenon by simple
cell and simple rules, which has the ability to model and
simulate the complex system. Since the nineteen eighties, as
the evolution of computer technology and the progress of
science, cellular automaton theory gets in-depth researched and
is widely applied in economic, transportation, physical,
chemical, artificial life and other complex systems [1] [2] [3].

A cellular automaton consists of a regular grid of cells,
each in one of a finite number of states, such as Black and

White. The grid can be in any finite number of dimensions. For
each cell, a set of cells called its neighbour (usually including
the cell itself) is defined relative to the specified cell. An initial
state (time t=0) is selected by assigning a state for each cell. A
new generation is created according to some fixed rules that
determine the new state of each cell in terms of the current
state of the cell and the states of the cells in its neighbour.

In this work, we model the cloud scheduling system’s
behaviour as a cellular automaton (CA), specifically as a one-
dimension CA network, and then calculate the CA entropy to
measure the reliability degree of such complex system under
different scheduling rules and resource allocation strategies. In
this way, the collection of cells that composes the CA consists
of a number of cloud resources that are rented for running the
project (Each cell of CA corresponding to a cloud resource).
The CA rules in our work are described as selected scheduling
algorithms as follows:

 First Come, First Served (FCFS)

 Round Robin (RR)

 Min-Min

 Max-Min

Each resource gets two performance states: Low
Productivity () and High Productivity (), which are
correspondingly showed as Black and White in a CA grid map.
The state of a resource is determined by its performance ratio
under specify scheduling rules. The performance ratio of a
resource (RPR) is calculated as follow:



 ()
 

If the RPR of a resource is over 50%, then it is in High
Productivity state, otherwise it is in Low Productivity state.

Reliability is one of the basic characteristics of complex
system, which changes with system evolution. For cloud
scheduling system, as one resource of it suffered enough power
(Such power may cause by internal local activities or external
force) strikes, it will fall into low productivity state or at the
worst case it breaks down, this is called the resource collapse.
The collapse resource will influence the productivity state of
all other resources and may cause them collapse as well, which
lead the scheduling system progress out of order and into a

12

Fig. 1. Examples of Grid Pattern Generated by Cellular Automaton

disorder/chaos condition. Along with the increase in the
number of collapse resources, hierarchical expansion, will
eventually lead to the collapse of the whole scheduling system.
Thus, the scheduling system is failed to deliver the project as
original planned. We conclude that:

If a system is in order condition, is more reliable, or vice
versa. The reliability can be measured by the disorder degree,
thus Average Resource Entropy (ARE), of a system.

To evaluate the reliability of scheduling system in CA, we
decrease the computing capacity of one resource by 1% for
each time step, with a total of 100 time step, which simulates a
resource from full computing capacity till break down. The
whole scheduling system’s evolution pattern is generated and
represented by CA grids. Fig. 1 shows some examples of grid
pattern generated by CA for running a project consists of 100
random tasks by FCFS algorithm with different number of
allocated resources.

The Average Resource Entropy in CA can be calculated by:

 ∑ (
) ⁄  

Where refers to the number of resources that rented for
running the project, and refers to probability of Low
Productivity State and High Productivity State for a resource
respectively.

II. CELLULAR AUTOMATON ENTROPY BASED CLOUD

RESOURCE ALLOCATION METHODOLOGY (CAE-CRA)

In this section, a multiple QoS constrained Cloud Resource
Allocation (CAE-CRA) methodology for scheduling project on
the cloud is proposed based on the CA Entropy. The proposed
model can be used to achieve the optimal resource allocation
strategy by considering both cost-efficiency and reliability for
running project on the cloud within deadline and cost budget.
The main components and control flow of CAE-CRA model
are shown in Fig. 2.

The optimal resource allocation solution selected by CAE-
CRA model meets the following condition:

 Meeting project’s multiple QoS constrains: deadline,
cost budget and reliability threshold

 With the minimum Cost-Efficiency and Reliability
Rate (CERR)

Where the Cost-Efficiency and Reliability Rate (CERR) is
calculated by Formula:


 ∑

 () ∑

 

Where refers to the number of rented resources to run the
project, refers to the project’s completed time, refers to
the cost price of a resource and refers to the Average
Resource Entropy.

III. CONCLUSION

In summary, the proposed CAE-CRA methodology is
capable of providing useful information and quantitative
measurement for aiding the decision maker to achieve an
optimal resource allocation and project scheduling solution
while meeting the multiple QoS constrains.

REFERENCES

[1] Toffoli, Tommaso, and Norman Margolus. Cellular automata machines:

a new environment for modeling. MIT press, 1987.

[2] Wolfram, Stephen. "Universality and complexity in cellular automata."
Physica D: Nonlinear Phenomena 10.1 (1984): 1-35.

[3] Langton, Chris G. "Computation at the edge of chaos: Phase transitions
and emergent computation." Physica D: Nonlinear Phenomena 42.1
(1990): 12-37.

[4] LEON, O. "Local activity is the origin of complexity." International
journal of bifurcation and chaos 15.11 (2005): 3435-3456.

[5] Matthews, Robert AJ. "The science of Murphy's Law." SCIENTIFIC
AMERICAN-AMERICAN EDITION- 276 (1997): 88-91.

[6] Lambert, F.L.: The Second Law of Thermodynamics.
http://www.secondlaw.com, 2005.

[7] Amazon EC2, http://aws.amazon.com/ec2/, 2013.

[8] Khinchin, A. Ya. Mathematical foundations of information theory.
Dover Publications, 1957.

[9] Von Neumann, John, and Arthur W. Burks. "Theory of self-reproducing
automata." (1966).

13

Seeing Is Not Always Believing - The relationship between
performance and subjective visibility in an attentional

blink task

Luise Gootjes-Dreesbach
School of Computing

University of Kent
Canterbury, Kent, UK
elg34@kent.ac.uk

Howard Bowman
School of Computing

University of Kent
Canterbury, Kent, UK

H.Bowman@kent.ac.uk

ABSTRACT
Verbal report is among the most widely used measures of
consciousness in cognitive science. For example, it has proven
useful in exploring the question whether the transition be-
tween conscious and subconscious processing is gradual or
all-or-none [3]. These studies tend to use the Attentional
Blink (AB) paradigm [4]. The AB occurs in Rapid Serial
Visual Presentation (RSVP) when identification of two tar-
gets is required: performance on reporting the second target
declines when it appears between 100-500 ms after a fully
processed first target. While subjective experience generally
seems to reflect performance, prior data and participants‘
experience suggests that the relationship between these mea-
sures might differ with varying temporal separation of the
targets. In this study, we recorded identity and subjective
visibility for letter targets in an AB task with digit dis-
tractors. We found that metacognitive levels changed with
target separation when looking at the correlation between
performance and ratings. Additionally, we analyzed the rel-
evance of order errors for this relationship.

Keywords
Attentional Blink, Consciousness, RSVP

1. INTRODUCTION
The subjective experience of items in a RSVP stream is very
unusual, and extremely rare in everyday life. The presented
stimuli are distractor items that participants are instructed
to ignore and usually two target items (T1 and T2) that they
report at the end of each trial. The most common measure is
report accuracy dependent on the lag (temporal separation)
between the targets. During the AB (around a target sepa-
ration of 100-500 ms/Lag 3 or 4), it is much less likely that
a second target is reported, while at Lag 1, where the sec-
ond target immediately follows the first, it is more likely for
both targets to be reported (Lag 1 sparing), but often in the
wrong order (order errors). All these variables make the AB
paradigm extremely interesting for studies on psychological
concepts such as attention, consciousness and perception.
Adding subjective visibility ratings can add greatly to the
kind of inferences that can be drawn from these studies, for
example when looking at the nature of conscious percep-
tion. However, in these studies ratings tend to be collected
for only one of the targets and order error trials are usu-
ally not treated separately. This study aimed to explore the
relationship between ratings and accuracy at this level. As

many non-AB studies have shown, ratings and performance
are not necessarily highly correlated. A good example of this
is the Blindsight phenomenon [2]. Blindsight has been de-
fined as residual visual capacity in the absence of conscious
perception [5]: People with damage to their striate cortex
who are cortically blind can make judgments about the na-
ture of stimuli presented in their blind spots at an above
chance level, while they report to be merely guessing. Such
dissociation between subjective experience and performance
is indicative of unconscious knowledge in the participants
[1].
The main aim of the present study is to explore if the re-
lationship between accuracy and subjective visibility of the
T2 on trials where the T1 is correctly reported (T2 | T1) is
dependent on lag. Lag 1 is a particularly interesting case,
reflected in the occurrence of order errors as well as Lag 1
sparing. Additionally, the effect of order errors on visibility
ratings and how they might inform this relationship is of
interest.

2. METHOD

Figure 1: Letter-digit attentional blink task

We recruited 18 participants from the Jobshop website of
the University of Kent to take part in a letter-digit version
of the attentional blink task (Figure 1). The RSVP stream
consisted of two targets (T1 and T2) drawn from a set of
uppercase letters (excluding I, M, O, Q, W), while all other
elements were randomly selected single digits (excluding 0
and 1). These items were presented with a stimulus-onset
asynchrony (SOA) of 67 ms. At the end of each trial, partic-
ipants were asked about the identity and visibility of both
targets. The whole experiment consisted of 168 trials di-

14

vided into 4 blocks.

3. RESULTS

0.00

0.25

0.50

0.75

1.00

2 4 6

Lag

%
 A

c
c
u
ra

c
y

Legend:

T1

T2|T1

2

4

6

2 4 6

Lag

V
is

ib
ili

ty
 R

a
ti
n
g

Figure 2: T1 and T2 | T1 accuracy and subjective
visibility rating

The fast SOA resulted in high performance and order er-
rors at Lag 1 and 2 (Figure 2). Due to this, our hypothe-
sis predicts a disconnect between accuracy and visibility at
these lags. A Lag x Measure (7x2) ANOVA on an aggre-
gate variable of the z-scores of the T2 | T1 accuracy and
visibility of each participant showed a significant interac-
tion, p<.001. T2 | T1 visibility data was log transformed
due to skew. A 5x2 ANOVA excluding Lag 1 and Lag 2
resulted in a non-significant interaction, p=.41. Due to pos-
sible non-normality, we confirmed the pattern of results with
Friedman tests on the differences between the two measures.

0.2

0.3

0.4

0.5

0.6

2 4 6

Lag

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n

Legend:

First Target (T1)

Second Target (T2)

First Response (R1)

Second Response (R2)

Figure 3: Accuracy/rating correlation for targets
(T1 and T2) and participant’s response (R1 and R2).

To further corroborate these results, the point biserial Pear-
son correlation between visibility and accuracy was exam-
ined (Figure 3, all p <.001). The correlation between T1
and T2 rating across all trials was fairly high, r=.33, p<.001.

0

10

20

30

40

2 4 6

Lag

%
 o

f
tr

ia
ls

Legend:

T1 order error

T2 order error

Full Order Error

Figure 4: Percentage of order errors by lag.

Figure 4 shows the percentage of order errors at each lag.
Wilcoxon tests were run to investigate the effect of order er-
rors on visibility. Visibility was lower for T2 than T1 when
both targets were identified in the correct order, p<.001.
When reported in the wrong order, there was no significant
difference (p=.82). Both T1 and T2 visibility was signif-
icantly lower for order errors (p <.001 for T1, p <.05 for
T2).

4. CONCLUSIONS
As expected, the relationship between subjective visibility
and performance seems to change with proximity of targets.
The prediction that the lowest correlations between accuracy
and ratings would be found at Lag 1 and 2 has been con-
firmed. This study does not suggest a specific effect of the
attentional blink on the accuracy/visibility correlation. We
found preliminary evidence that the lower correlation may
be related to order error: Additionally to the Lag 1/Lag 2
full order errors, this dataset shows late T1 half order errors
(T1 reported second and first response incorrect) that coin-
cide with lower correlation. It is possible that the high corre-
lation between T1 and T2 visibility plays an important role
in this but more research is needed to explore this relation-
ship. Currently, studies tend to conduct analyses regardless
of reported target order. We have shown that proximity of
targets and order errors may need to be taken into account
when analysing subjective visibility in AB tasks.

5. REFERENCES
[1] Z. Dienes. Subjective measures of unconscious

knowledge. Progress in brain research, 168:49–269, 2007.

[2] M. Overgaard. Visual experience and blindsight: a
methodological review. Experimental brain research,
209(4):473–479, 2011.

[3] J. E. Raymond, K. L. Shapiro, and K. M. Arnell.
Temporary suppression of visual processing in an rsvp
task: An attentional blink? Journal of Experimental
Psychology: Human Perception and Performance,
18(3):849, 1992.

[4] C. Sergent and S. Dehaene. Is consciousness a gradual
phenomenon? evidence for an all-or-none bifurcation
during the attentional blink. Psychological Science,
15(11):720–728, 2004.

[5] L. Weiskrantz. Blindsight revisited. Current opinion in
neurobiology, 6(2):215–220, 1996.

15

Parallel Implementation of Digital Signal Processing
Algorithms in Optical Coherence Tomography

Konstantin Kapinchev
School of Computing

University of Kent

Fred Barnes
School of Computing

University of Kent

ABSTRACT

Digital signal processing (DSP) is a computationally intensive

task in real-time systems. In optical coherence tomography (OCT)

systems, a standard sequential CPU implementation of the DSP

algorithms creates a performance bottleneck and prevents the

system from working in real time. A parallel implementation, on

the other hand, which utilizes the architecture of the graphics

processing unit (GPU), offers the solution to this problem. This

study investigates DSP algorithms and how they can be

parallelized in order to improve their performance and facilitate

real-time operation.

General Terms

Algorithms, Performance, Languages

Keywords

Parallel Computing, General Purpose GPU Computing, Digital

Signal Processing, Optical Coherence Tomography

1. INTRODUCTION
OCT relies on the ability of the electromagnetic radiation at the

wavelengths of infra-red and near infra-red laser light to penetrate

semitransparent materials and to reflect back visual information

from different depths below the surface of the test sample. To

generate an image from a particular depth, the OCT system must

perform a significant amount of DSP, which involves a number of

processing steps such as Fourier transforms (forward and inverse),

zero padding, window function, cross correlation, and others. If

the OCT needs to operate in real time, the processing must be

done within short time window, after the acquiring the data and

before visualizing the image [1].

The OCT system used in this research, at its current setting, takes

0.8 seconds to scan one frame and another 0.8 seconds to retract

its scanning mirrors. The OCT system operates in real-time if the

signal processing is completed within the period of 1.6 seconds. A

LabVIEW project is used as data acquisition software. It also has

the functionality to perform the necessary signal processing steps.

By using LabVIEW for both data acquisition and signal

processing, the OCT system can produce images from two

different depths with a resolution of 200x200 points (pixels).

When used in practice, two different images with resolution of

200x200 cannot give all the necessary data. In ophthalmology, for

example, while scanning objects such as optic nerves and retinas,

clinicians need much more information. The system needs to

deliver images from more depths with better resolution. In a CPU

bound LabVIEW implementation, an increase of the data will

increase the processing time linearly. As a result, the OCT system

will not be able to operate in real time. A parallel implementation

of the DSP, on the other hand, which uses the highly parallel

architecture of the GPU, can deliver higher number of images

with increased resolution within the requirements for real-time

operation.

2. PARALLEL IMPLEMENTATION OF

SIGNAL PROCESSING IN OCT SYSTEMS
The OCT system used in this research produces images from

layers below the surface of samples by applying cross-

correlation, a processing technique largely used in interferometry.

Formula (1) presents the cross-correlation theorem (FT - Fourier

Transform, IFT - Inverse Fourier Transform, A - complex

conjugate of A) [2].

(1)

During its operation, the OCT system collects a number of values

(the input signal) from each scanned point (pixel). These values

form the channeled spectra. Another signal, called mask, is

collected at an earlier stage, before scanning the tested material. It

is obtained by using highly reflective surface as a sample. This

signal corresponds to a specific depth. The OCT system can use

simultaneously several different masks that correspond to

different depths. The cross correlation is performed between these

two signals: the channeled spectra (A) collected form the sample

and the mask (B) (Formula 1) [3].

The size (number of values) of the channeled spectra and the

mask must be the same, usually 512 or 1024. To obtain the

intensity of a single point from the image the values form the

corresponding channeled spectra and the values from the mask

must be multiplied and then the absolute values of all

multiplication products must be summed (Formula 2). The

multiplication is performed in the frequency domain, so forward

and inverse Fourier transforms are applied before and after

multiplying.

(2)

The General Purpose GPU (GPGPU) computing allows the usage

of a great number of GPU cores, up to 2880 in NVIDIA TESLA

K40, for general computations. The multiplications and

summations used in cross correlation can largely benefit from this

parallel architecture and thus deliver considerable improvement in

the performance. The high number of parallel threads can absorb

an increase in the number of images with improved resolution,

without significantly increasing the processing time. This allows

the OCT system to improve its output and still operates in real

time.

    BFTAFTIFTdttxBtABA *)()( 








1023

0

*
i

ii MaskpectraChanneledSIntensity

16

3. INTEGRATION
The parallel architecture of the GPU offers better performance,

but the GPU does not share its memory with the other modules in

the OCT system. Intensive data exchange between CPU bound

modules and the GPU application must be performed. In the case

of the OCT system used in this research, the exchange is between

the LabVIEW project, which acts as a data acquisition software

and a primary user interface, and the GPU application, which

performs the DSP. These overheads are compensated by the

efficiency of the GPU and as a result they do not take significant

effect on the performance. The results from this implementation

are presented and analyzed in [4].

4. CONCLUSION
The type of signal processing performed in OCT systems can

largely benefit from the parallel acceleration delivered by the

GPU architecture. A parallel implementation of the DSP can

achieve simultaneous generation of multiple images with higher

resolutions, while still operates in real time.

5. REFERENCES
[1] Adrian Podoleanu "Optical coherence tomography", The

British Journal of Radiology, pp. 976-988, 2005.

[2] Eric Weisstein, "Cross-Correlation Theorem" from

MathWorld – a Wolfram Web Resource,

[http://mathworld.wolfram.com/Cross-

CorrelationTheorem.html]

[3] Adrian Podoleanu, Adrian Bradu, "MS interferometry for

parallel spectral domain interferometry sensing and versatile

3D optical coherence tomography", Optical Society of

America, 2013

[4] Kapinchev, Barnes, Bradu, Podoleanu "Approaches to

General Purpose GPU Acceleration of Digital Signal

Processing in Optical Coherence Tomography Systems",

IEEE International Conference on System, Man, and

Cybernetics, Manchester, 2013

17

Genetic algorithms in the study of the genetic code
adaptability problem

Lariza Laura de Oliveira
Department of Computing and

Mathematics
University of São Paulo
Ribeirão Preto, Brazil

larizalaura@gmail.com

Renato Tinós
Department of Computing and

Mathematics
University of São Paulo
Ribeirão Preto, Brazil

rtinos@ffclrp.usp.br

Alex A. Freitas
School of Computing

University of Kent
Canterbury, UK

A.A.Freitas@kent.ac.uk

ABSTRACT
The canonical genetic code is almost universal and is present
in most organisms. Many researchers believe that the ge-
netic code is a product of natural selection. This hypothesis
is supported by its robustness against mutations, when some
amino acid property is considered. The most frequently used
property is the polar requirement of the amino acids. In this
paper, we suggest that robustness considering polar require-
ment is not the only measure adapted during evolution of the
genetic code and we propose to consider other properties at
the same time. A Genetic Algorithm is used to generate hy-
pothetical codes, which are evaluated by a robustness-based
function. Our results suggest that the use of more properties
is promising.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, and Search—
Heuristic methods

; J.3 [Computer Applications]: Life and Medical Sci-
ences—Biology and genetics

General Terms
Algorithms

Keywords
Genetic Algorithms, Genetic Code

1. INTRODUCTION
The genetic code is the interface between the genetic infor-
mation encoded as DNA and RNA molecules and the pro-
teins. The cell uses the messenger RNA as a template to as-
semble the proteins in a process called translation. The RNA
sequence is read in series of three nucleotides, called codons.
Each codon determines what will be the amino acid codified
and these correspondence between codons and amino acids
is called genetic code [10, 9].

If we consider all possible codes mapping the 64 codons into
21 amino acids, more than 1.51×1084 possible genetic codes
would be generated [12]. So, two intriguing questions are:
why only one code is used in almost all complex living or-
ganisms and why the canonical code was selected over this
large number of possible codes [13], [1], [4], [6].

Many researchers argue that the genetic code is a product
of natural selection, instead of a frozen accident [1]. This

hypothesis is supported by its robustness against mutations
when amino acids properties are considered [13]. In fact,
according to Haig and Hurst [8] a very small percentage of
random codes are better than the canonical code, when a
function of robustness considering polar requirement is used
to evaluate the codes.

In this context, Genetic Algorithms (GAs) have been used to
identify regions of the genetic code space where best codes,
according to a given evaluation function [11], can be found.
In this paper, using a GA, we investigate other amino acid
properties as hydropathy index and molecular volume and
how these properties can be incorporated to the fitness func-
tion. The results suggest that polar requirement is an im-
portant property to be taken into account, but should not
be the only one.

2. METHODS
The GA used here is implemented using C++ programming
language. The used GA encoding was the non-restrictive
presented in [11]. In this encoding, each individual of the
GA’s population is composed of 61 positions, each one re-
lated to one codon. Each position corresponds to one of 20
amino acids. In this sense, each GA’s individual encodes a
hypothetical genetic code.

The GA uses two reproduction operators: swap and muta-
tion. The first one interchanges amino acids associated to
two codons, i.e., two positions are randomly selected and
their amino acids are swapped. In the mutation operator, a
position is selected in the individual and its corresponding
amino acid is replaced by another one, selected among the 20
possible amino acids. The position and the new amino acid
are randomly selected. Tournament selection is employed to
select the individuals to be reproduced.

2.1 Robustness-based evaluation function
The standard evaluation (fitness) function commonly em-
ployed in literature is the mean square (Ms) change in an
amino acid property, which computes all possible changes to
each base of all codons of a given code [6], [8],[11], [5], [7].
The measure Ms is defined as:

Ms(C) =

∑
ij(X(i, C) −X(j, C))2∑

ij N(i, j, C)
(1)

18

where X(i, C) is the amino acid property value for the amino
acid codified by the i-th codon for the genetic code C, and
N(i, j, C) is the number of possible replacements between
codons i and j for the code C. For example, when the ro-
bustness consider the polar requirement, X(i, C) represents
the polar requirement for the amino acid codified by the i-th
codon for the genetic code C.

2.2 Comparison of the evaluation functions
In order to compare the canonical genetic code to the best
codes obtained by the GA, we use two measures:

• Percentage of Minimization Distance (pmd), as de-
scribed in [4];

The pmd is computed as follows:

pmd = 100
∆mean − ∆code

∆mean − ∆low
(2)

where ∆mean is the average fitness of genetic codes
randomly generated, ∆code is the fitness of the canon-
ical genetic code, and ∆low is the fitness of the best
code found by the GA.

Higher values of pmd means that the fitness of the best
generated code and the fitness of the canonical genetic
code are closer when compared to the average fitness
of the random codes, i.e., the pmd indicates how close
is the fitness of the canonical code to the fitness of
the best code found by the GA when compared to the
average fitness of the random codes.

• Improvement, as mentioned in [11];

The improvement, gives the percentage of the best
code improvement in relation to the canonical code
fitness, i.e.:

Improvement = 100
∆code − ∆low

∆code
(3)

Improvement decreases as the pmd increases, provid-
ing a measurement of how the best code found im-
proved the fitness.

3. RESULTS AND CONCLUSIONS
We performed experiments with multi-objective approaches,
considering not only polar requirement, but also molecular
volume and hydropathy index. The obtained results were
submitted to BMC Bioinformatics journal and are still under
review. Some previous already published results can be seen
in [3, 2]. In general, our results show that polar requirement
seems to be a important property to be taken into account,
but cannot not be the only.

4. ACKNOWLEDGMENTS
The authors would like to thank Fapesp and CNPq for the
financial support.

5. REFERENCES
[1] F. H. Crick. The origin of the genetic code. Journal of

Molecular Biology, 38(3):367–379, 1968.

[2] L. L. de Oliveira and R. Tinós. Entropy-based
evaluation function for the investigation of genetic
code adaptability. In BCB ’12: Proceedings of the

ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, pages 558–560, New York,
NY, USA, 2012. ACM.

[3] L. L. de Oliveira and R. Tinós. Using base position
errors in an entropy-based evaluation function for the
study of genetic code adaptability. In Nature Inspired
Cooperative Strategies for Optimization (NICSO
2013), pages 99–111. Springer, 2014.

[4] M. Di Giulio. The extension reached by the
minimization of the polarity distances during the
evolution of the genetic code. Journal of Molecular
evolution, 29(4):288–293, 1989.

[5] M. Di Giulio, M. Capobianco, and M. Medugno. On
the optimization of the physicochemical distances
between amino acids in the evolution of the genetic
code. Journal of Theoretical Biology, 168(1):43–51,
1994.

[6] S. J. Freeland and L. D. Hurst. The genetic code is
one in a million. Journal of Molecular Evolution,
47(3):238–248, 1998.

[7] N. Goldman. Further results on error minimization in
the genetic code. Journal of Molecular Evolution,
37(6):662–664, 1993.

[8] D. Haig and L. D. Hurst. A quantitative measure of
error minimization in the genetic code. Journal of
Molecular Evolution, 33(5):412–417, 1991.

[9] A. L. Lehninger, D. L. Nelson, and M. M. Cox.
Lehninger Principles of Biochemistry. W. H. Freeman,
4th edition, 2005.

[10] H. Lodish, A. Berk, S. L. Zipursky, C. A. Kaiser,
M. Krieger, M. P. Scott, A. Bretscher, H. Ploegh, and
P. Matsudaira. Molecular Cell Biology. W. H.
Freeman, 6th edition, 2007.

[11] J. Santos and A. Monteagudo. Study of the genetic
code adaptability by means of a genetic algorithm.
Journal of Theoretical Biology, 264(3):854–865, 2010.

[12] S. Schoenauer and P. Clote. How optimal is the
genetic code. In Computer Science and Biology,
Proceedings of the German Conference on
Bioinformatics (GCB’97), pages 65–67, 1997.

[13] C. R. Woese. On the evolution of the genetic code.
Proceedings of the National Academy of Sciences of
the United States of America, 54(6):1546–1552, 1965.

19

A machine for higher-order term rewriting

Connor Lane Smith
School of Computing

University of Kent
Canterbury, UK

cls204@kent.ac.uk

ABSTRACT
Presented is a machine for higher-order term rewriting. The
machinery has two main components: first, a reducer for the
λ-calculus, a fusion of the Krivine machine and σ-calculus;
and a rewriter which drives the former component so as to
find the most general unifier for a higher-order pattern and
perform a rewrite step. These two components then work
together to compute a given term’s strong normal form.

1. INTRODUCTION
Higher-order term rewriting [7] is a powerful generalisation
of standard first-order term rewriting in which rewrites are
performed modulo the simply-typed λ-calculus. Although
there have been a number of implementations published
for first- and second-order term rewriting systems, none for
third- and higher-order rewrite systems have appeared (yet
presumably some have been written and kept private).

Here I present a machinery for performing higher-order term
rewriting, comprising two main components. The first is a
reducing engine for the λ-calculus, based on a fusion of the
Krivine machine [3] — an abstract machine for the weak
reduction of the λ-calculus — and the σ-calculus of explicit
substitutions [1], with which we achieve strong reduction.
The second component is a relatively conventional rewrit-
ing engine, but instead of working with terms themselves,
it drives the former component and uses its output in the
process of pattern matching. Thus the rewrites of the latter
component are performed, in a sense, modulo the conver-
sions of the former.

We shall walk through the specifics of the machinery, start-
ing with the λ-calculus with De Bruijn indices, followed by
a brief description of higher-order rewriting, and then onto
each of the machine’s components. The subject of this pa-
per is a work in progress, and so some ongoing developments
and analyses are outside the scope of this paper.

2. LAMBDA CALCULUS
The λ-calculus is traditionally defined with named bound
variables, which can be renamed whilst retaining structural
equivalence. However, the correctness of naming is, I feel,
overly intricate considering its being wholly syntactic —
throughout the literature its definition has been fraught with
mistakes. I will avoid these and similar problems by using
De Bruijn indices [2] exclusively, as is done in almost all
concrete implementations of the calculus.

Intuitively, a variable’s De Bruijn index indicates the num-
ber of abstractions through which one must pass upwards
before finding its binder. For example, λx.x(λy.xy) is rep-
resented with De Bruijn indices as λ0(λ10). Note that the
first 0 represents x, the second y.

Definition 1. The set S of simple types is the closure
of a fixed set A of type atoms under the function space
constructor →.

Definition 2. We’ll use a number of list and list-like
data types. I use ε for the empty list, and · for the cons
operator (i.e. type [α] = ε | α · [α]). I may write just x for
x · ε where there is no ambiguity.

Definition 3. A basis Γ is a list of simple types, with
which we may derive a well-typed term t, written Γ ` t : τ ,
by the following rules:

σ · Γ ` 0 : σ

Γ ` n : σ =⇒ ρ · Γ ` n+1 : σ

σ · Γ ` t : τ =⇒ Γ ` λt : σ → τ

Γ ` s : σ → τ ∧ Γ ` t : σ =⇒ Γ ` st : τ

K : τ ∈ Σ =⇒ Γ ` K : τ

Definition 4. A term’s variable string is a list of booleans
(“bits”) indicating whether a particular variable occurs free
in the term. This is related to, but conceptually simpler than,
director strings [5]. Variable string form a Boolean algebra
with bitwise or for ∨, bitwise and for ∧, bitwise not for ¬,
and infinite sequences of ⊥ and > as 0 and 1, respectively.

φ = φ · ⊥
VS(0) = >

VS(n) = ⊥ · φ =⇒ VS(n+1) = φ

VS(t) = α · φ =⇒ VS(λt) = φ

VS(s) = φ ∧VS(t) = ψ =⇒ VS(st) = φ ∨ ψ
VS(K) = ε

The set FV(t) of free variables in t is the set whose charac-
teristic function is {n 7→ VS(t)n}.

Definition 5. A substitution θ is a mapping from vari-
ables to terms of the same type, which may be lifted to a
homomorphism over terms, written θ̂(t).

20

Definition 6. β-reduction is a relation (λs)t →β θ̂(s)
where θ = {0 7→ t, n+1 7→ n}. η-reduction is a relation

λ(t0)→η θ̂(t) where 0 6∈ FV(t) and θ = {n+1 7→ n}.

γ-reduction is a union relation→γ =→β∪→η, closed under
contexts and substitutions:

t→ t′ =⇒ λt→ λt′

t→ t′ =⇒ st→ st′

s→ s′ =⇒ st→ s′t

t→ t′ =⇒ θ̂(t)→ θ̂(t′)

A reduction is said to be weak if it cannot occur under an
abstraction, strong otherwise.

3. HIGHER-ORDER REWRITING
We deal here with Nipkow’s Higher-order Rewrite Systems
(HRSs) [7], or, strictly speaking, higher-order pattern rewrite
systems, to which they are most commonly restricted. The
intuition here is that rewrite steps are performed modulo
the simply-typed λ-calculus.

Definition 7. A higher-order pattern [6] is a β-normal
term in which a free variable f may only occur in the form
ft1 . . . tk, where each ti is η-equivalent to a distinct bound
variable.

Definition 8. A Higher-order Rewrite System H is a set
of rewrite rules (l, r) where l is a term and r a pattern of the
same atomic type, and FV(l) ⊇ FV(r). Each rule R induces

a rewrite relation t →R t′ where θ̂(l) ↔∗γ t and t′ ↔∗γ θ̂(r).
H then induces the union →H =

⋃
R∈H→R.

Definition 9. A rule is left-linear if each variable on
the left-hand side occur only once. Two rules with left-hand
sides l1 and l2 overlap if a subterm of l2, t, is such that t is
not a free variable and σ̂(l1)↔∗γ θ̂(t). An HRS is orthogonal
if all its rules are left-linear and none overlap.

For the remainder of this paper we will assume that all HRSs
dealt with are orthogonal.

4. K-SIGMA MACHINE
The Krivine machine, or K-machine [3], is an abstract ma-
chine for the weak reduction of λ-terms, defined by a small
set of transition rules, below.

〈st, σ, stack〉 → 〈s, σ, t[σ] · stack〉 (1)

〈λs, σ, t[ρ] · stack〉 → 〈s, t[ρ] · σ, stack〉 (2)

〈0, t[ρ] · σ, stack〉 → 〈t, ρ, stack〉 (3)

〈n+1, t[ρ] · σ, stack〉 → 〈n, σ, stack〉 (4)

For strong reduction we need more sophisticated machin-
ery for substitution. With this in mind we look to the
λσ-calculus [1], a ‘substitution calculus’ that renders the
higher-order λ-calculus into a first-order term rewriting sys-
tem. The σ-calculus can be seen as a kind of data structure

for substitutions.

id = {n 7→ n}
↑ = {n 7→ n+1}

t · σ = {0 7→ t, n+1 7→ σ(n)}
ρ ;σ = σ ◦ ρ

σ-substitutions then form a homomorphism over terms:

(λs)t = s[t · id]

n[σ] = σ(n)

(st)[σ] = (s[σ])(t[σ])

(λt)[σ] = λ(t[0 · (σ ; ↑)])

Inspired by the λσ-calculus, I have extended the K-machine
to the Kσ-machine, which generalises environment stack of
the K-machine’s to a σ-substitution, thus unlocking strong
reduction.

〈λt, σ, id〉 → 〈t, 0[id] · (σ ; ↑), ε〉 (5)

〈n, ↑, stack〉 → 〈n+1, id, stack〉 (6)

〈n, (π ; ρ) ;σ, stack〉 → 〈n, π ; (ρ ;σ), stack〉 (7)

〈0, (t[π] · ρ) ;σ, stack〉 → 〈t, π ;σ, stack〉 (8)

〈n+1, (t[π] · ρ) ;σ, stack〉 → 〈n, ρ ;σ, stack〉 (9)

〈n, id ;σ, stack〉 → 〈n, σ, stack〉 (10)

〈n, ↑ ;σ, stack〉 → 〈n+1, σ, stack〉 (11)

If we allow ourselves to step a little further from the original
K-machine, we can see that the Kσ-machine comprises two
essential steps, traversal and lookup. Lookup occurs only
when a variable is encountered, walking through a substi-
tution so as to find the correct substitute term, or else the
correctly adjusted De Bruijn index. In OCaml:

type subst = Comp of subst * subst

| Cons of (int,thunk) either * subst

| Id

| Shift

and thunk = term * subst

let lookup : int -> subst -> (int,thunk) either =

fun i r ->

match r with

| Comp(p,q) ->

match lookup i p with

| Left(j) -> lookup j q

| Right((t,p)) -> Right((t, Comp(p,r)))

| Cons(x,_) when i = 0 -> x

| Cons(_,p) -> lookup (i-1) p

| Id -> Left(i)

| Shift -> Left(i+1)

5. REWRITE MACHINE
The rewrite machine uses the λ-calculus machine to reduce
a closure s[ρ] (initially s[id]) by driving a machine 〈s, ρ, ε〉—
whilst counting the number of times the machine enters state
(5), which we will call k — until it terminates. Upon termi-
nation the machine’s state will be 〈t0, σ0, t1[σ1] · · · tn[σn]〉,
where t0 is a either constant or a variable with an empty

21

stack. It will have then computed the spine normal form of
s: λ . . . λt0[σ0]t1[σ1] . . . tn[σn], with k abstractions.

The complete normal form can thus be found spine by spine,
so any higher-order unification algorithm for the λσ-calculus
will correctly match rewrite rules; one such unification al-
gorithm is that of Dowek, et al. [4]. However, we need only
deal with a particular subclass of the problem, namely or-
thogonal higher-order pattern matching, for we can devise a
far more efficient algorithm, in which we separately (1) per-
form a free variable check, and then (2) construct a most
general unifier, using what we know about the structure of
orthogonal higher-order patterns to outpace a more general
higher-order unification algorithm.

5.1 Free variable checks
We label each term with its variable string, so that we
needn’t traverse the term in order to determine whether it
matches a free variable on the left-hand side of a rule. For
this we close variable strings under σ-substitutions:

VS(t[σ]) = VS(t)[σ]

φ[id] = φ

φ[↑] = ⊥ · φ
(> · φ)[t · σ] = φ[σ] ∨VS(t)

(⊥ · φ)[t · σ] = φ[σ]

φ[ρ ;σ] = φ[ρ][σ]

It is worth noting that, with this approach to matching,
parallel–outermost reduction is not necessarily normalising
for orthogonal pattern rewrite systems: these labels denote
only whether a variable is free in the term, not whether it is
needed free. This means that a rule F (λ1)→ G may not at
first match a term F (λ(λG)0), as although F (λ1)[G · id]↔∗γ
F (λ(λG)0), the variable bound by the outermost abstraction
is still free in its unreduced subterm. This has no effect on
the correctness of the system, however: normal forms are
preserved.

5.2 Most general unifier
For simplicity, we will require (w.l.o.g.) that, as we traverse
the term, the De Bruijn index of each free variable encoun-
tered be one less than the previous, and their arguments’
indices (all being variables) be increasing. We begin with
the substitution [id], and then for each free variable prepend
a new substitute so as to build the unifier.

When matching a free variable instance fu1 . . . uk with a
term t, we first perform a variable check: let ψ =

∨k
i VS(ui);

if ψ∧VS(t) 6= ψ then matching fails. We then enumerate the
tops (>) of ψ such that the first is replaced with 0, the second
with 1, and so on. Bottoms (⊥) are left as is, representing
the null-term; since the variable cannot occur, it will never
be a substitute, and so any term will do. We then build the
term λ . . . λt[σ], where there are n abstractions and σ is the
substitution built as described. This value is then prepended
to the unifier.

Example 1. A rule R = (A(λλλλλB(513)), C(λ10D)),
having the variable string VS(1, 3) = ⊥·>·⊥·>·⊥, induces
the following rewrite relation:

A(λλλλλBt)→R C(λ10D)[λλt[⊥ · 0 · ⊥ · 1 · ⊥ · id] · id]

This rewriting proceeds in a leftmost–outermost fashion un-
til a strong normal form is found, or else fails to termi-
nate (if, for example, the HRS is not strongly normalising).
Note that although a pattern’s most general unifier is unique
with respect to equality, there may exist isomorphic substitu-
tions — or different rewrite mechanisms altogether — better
suited to this approach to reduction. This is to be investi-
gated further.

6. CONCLUSION
This approach to rewriting is very different to those ma-
chines dealing with lower-order rewriting, and should, by
taking advantage of the higher-order nature of the rewrite
system, open up a number of new possibilities for sharing
that cannot be utilised without the higher-order machinery
inherent to HRSs.

Here we have only dealt with terms in their simplest form,
which is when they are modelled as immutable trees. Where
this approach to evaluation really shines, however, is when
the machine works on term graphs, à la Wadsworth [8].
Viewing the HRSs as being embedded in a term graph rewrit-
ing system is more faithful to the underlying representation
of the terms in memory, and is where the Kσ-machine dis-
tinguishes itself from the other environment machines as far
as higher-order rewriting is concerned.

7. REFERENCES
[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and

Jean-Jacques Lévy. Explicit substitutions. In 17th ACM
SIGPLAN–SIGACT Symp. Principles of Programming
Languages, pages 31–46, 1989.

[2] Nicolaas G. de Bruijn. Lambda calculus notation with
nameless dummies, a tool for automatic formula
manipulation, with application to the Church–Rosser
theorem. In Indagationes Mathematicae, volume 75,
pages 381–392, 1972.

[3] Pierre Crégut. An abstract machine for lambda-terms
normalization. In ACM Conf. LISP and Functional
Programming, pages 333–340, 1990.

[4] Gilles Dowek, Thérèse Hardin, and Claude Kirchner.
Higher-order unification via explicit substitutions.
Information and Computation, 157(1):183–235, 2000.

[5] Maribel Fernández, Ian Mackie, and François-Régis
Sinot. Lambda-calculus with director strings. Applicable
Algebra in Engineering, Communication and
Computing, 15(6):393–437, 2005.

[6] Dale Miller. A logic programming language with
lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[7] Tobias Nipkow. Higher-order critical pairs. In 6th IEEE
Symp. Logic in Computer Science, pages 342–349, 1991.

[8] Christopher P. Wadsworth. Semantics and Pragmatics
of the Lambda Calculus. PhD thesis, University of
Oxford, 1971.

22

Gene Ontology Hierarchy-Based Feature Selection

Cen Wan
School of Computing

University of Kent
Canterbury, United Kingdom

cw439@kent.ac.uk

Alex A. Freitas
School of Computing

University of Kent
Canterbury, United Kingdom
A.A.Freitas@kent.ac.uk

ABSTRACT
We address the classification task of data mining, where the
model organism C. elegans’ genes are classified into “pro-
longevity” or “anti-longevity” genes. We adopted hierarchi-
cally organised Gene Ontology (GO) terms as features, and
proposed one feature selection algorithm to alleviate the re-
dundancy between GO’s hierarchy. The computational re-
sults show that the proposed algorithm can significantly im-
prove the predictive performance of the Näıve Bayes classi-
fier.

General Terms
Algorithms

Keywords
Classification, Feature Selection, Hierarchy, Gene Ontology

1. INTRODUCTION
This is an extended abstract of our recent work described in
[3]. We address the classification task of data mining, where
the model organism C. elegans’ genes are classified into“pro-
longevity” or “anti-longevity” genes. We created a dataset
integrating data from Human Ageing Genomic Resources [1]
and Gene Ontology (GO) [2] database. There is a type of
“is a” relationship among GO terms, which are used as fea-
tures in our dataset. That means one GO term might have
one or more parent GO terms. Due to this hierarchical rela-
tionship, there is redundancy between GO terms (features).
Hence, we proposed a feature selection algorithm that is able
to effectively alleviate the redundancy between features, as
a pre-processing step for classifying the C. elegans’ genes
into “pro-” or “anti-longevity”.

2. PROPOSED METHOD
The proposed feature selection algorithm firstly evaluates
the relevance of each feature based on its predictive power,
then deletes features based on the hierarchical relationship
among features. In more detail, when classifying a new in-
stance, if the value of one GO term equals to“1”(i.e. the GO
term is present in that instance), then we delete its ancestor
GO terms whose relevance values are equal or lower than
that GO term’s relevance, since those ancestors are redun-
dant. If the value of one GO term equals to “0” (i.e. the GO
term is absent in that instance), then we delete its descen-
dant GO terms whose relevance values are equal or lower
than that GO term’s relevance, since those descendants are
redundant.

3. COMPUTATIONAL RESULTS
The classification algorithm used in this work is Näıve Bayes,
which is known to be sensitive to redundant features. In
our experiments, Näıve Bayes using only the features (GO
terms) selected by our feature selection algorithm obtained
an average accuracy rate of 68.1%, sensitivity of 57.5%, and
specificity of 72.6%. As a baseline, Näıve Bayes using all
original features (i.e. without feature selection) obtained av-
erage accuracy of 62.5%, sensitivity of 51.9%, and specificity
of 69.2%. Hence, the proposed feature selection algorithm
significantly optimizes the predictive performance of Näıve
Bayes.

4. CONCLUSION
In conclusion, information on the hierarchical structure of
GO terms (features) was valuable for alleviating feature re-
dundancy and so improving the predictive performance of
Näıve Bayes, in our dataset of longevity-related C. elegans’
genes.

5. REFERENCES
[1] J. P. de Magalhaes, A. Budovsky, G. Lehmann,

J. Costa, Y. Li, V. Fraifeld, and G. M. Church. The
human ageing genomic resources: online databases and
tools for biogerontologists. Aging Cell, 8(1):65–72,
Feburary 2009.

[2] The Gene Ontology Consortium. Gene ontology: tool
for the unification of biology. Nature Genetics,
25(1):25–29, May 2000.

[3] C. Wan and A. A. Freitas. Prediction of the
pro-longevity or anti-longevity effect of Caenorhabditis
Elegans genes based on bayesian classification methods.
In IEEE International Conference on Bioinformatics
and Biomedicine Proceedings, pages 373–380. IEEE,
December 2013.

23

ERP latency contrasts using Dynamic Time Warping

algorithm

Alexia Zoumpoulaki
University of Kent

az61@kent.ac.uk

Abdulmajeed Alsufyani
University of Kent

asa41@kent.ac.uk

Howard Bowman
University of Kent

H.Bowman@kent.ac.uk

Keywords

ERP, latency contrasts

Poster Presentation

Latency contrasts are central to Event Related Potential
(ERP) research. For example, they are used to determine
the order and length of cognitive processes or to evaluate
how experimental conditions influence processing time. The
most popular methods employed by researchers are peak
latency, fractional peak and fractional area. However there
are di�culties with these methods, which often include acute
sensitivity to noise and window placements [2]. In addition,
they require parameter settings that are often di�cult to
justify. In order to address these issues, we propose Dy-
namic Time Warping (DTW), an algorithm used for mea-
suring similarity between two sequences, and more precisely
the use of the warping path and its relationship to the main
diagonal as a measure of latency di↵erence. We tested the
performance of DTW by comparing it to 25% - 50% frac-
tional area, peak and 50% fractional peak. In addition to the
default DTW we also tested the type IIa step pattern, which
constraints the resulting warping path [3]. Data were ob-
tained from a deception detection experiment [4] and ERPs
were generated from two channels for one condition. Then
the second condition was created in two ways: firstly by o↵-
setting the first condition by 100 time points (0.05 ms), and
secondly by o↵setting the first condition by an amount sam-
pled from a normal distribution with a mean of 100 time
points, while also varying the amplitude. In this way, we
simulated latency jitter and amplitude variability between
conditions as found in real ERP experiments. Each method
was applied to windows placed accordingly to relevant ex-
periments. This was done for each one of the channels (P3a
at Fz and P3b at Pz). Then noise was added at the power
spectrum of human EEG [1], and the performance of each
method was evaluated through permutation tests (100 p-
values) for di↵erent Signal-to-Noise Ratios (SNR). In order
to test the methods independently of response bias, we per-
formed ROC (Receiver Operating Characteristic) analysis,

where the false positive rate was obtained by generating the
second condition without any latency di↵erence. We also
compared DTW’s sensitivity to window placement against
25% and 50% fractional area, by selecting a fixed time point
as the start of the bounding window and then sequentially
adjusting the end of the window and calculating the pro-
portion of windows, for which each of the methods failed to
determine the correct latency di↵erence.

Our analysis shows that the basic DTW performs at the
same level as the fractional area method, which outperforms
peak and fractional peak. The typeIIa DTW performs bet-
ter than all the other methods for most SNRs. Although
there is a slight inflation of false positives for high SNRs,
the ROC analysis shows that it does not substantially af-
fect DTW’s performance. At the same time, DTW shows
significantly less sensitivity to window placement than frac-
tional area. These results indicate that DTW is a promising
technique for determining latency di↵erences, being more ro-
bust to noise and window placement, without being subject
to the same number of assumptions or parameterisation as
the other methods evaluated.

1. REFERENCES

[1] Generation of simulated eeg data.
http://www.cs.bris.ac.uk/ rafal/phasereset. Accessed:
2014-05-05.

[2] K. Andrea, J. Miller, P. Jolicceur, and B. Brisson.
Measurement of erp latency di↵erences: A comparison
of single?participant and jackknife?based scoring
methods. Psychophysiology, 45(2):250–274, 2008.

[3] M. Cory. A comparative study of several dynamic time

warping algorithms for speech recognition. PhD thesis,
Massachusetts Institute of Technology, 1980.

[4] B. Howard, M. Filetti, D. Janssen, L. Su, A. Alsufyani,
and B. Wyble. Subliminal salience search illustrated:
Eeg identity and deception detection on the fringe of
awareness. PloS one, 8(1), 2013.

24

