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I get out of my car

Step into the night

And look up at the sky

And there’s something bright

Traveling fast

Look at it go...

Kate Bush



Abstract

This thesis deals with the problem of period estimation of irregularly sampled time

series, and specifically light curves of variable young stars. Knowing the period of

these objects can provide important information about the stars’ formation and

other characteristics. The light curves are measurements of brightness over time

conducted in multiple astronomical filters. We examine this problem from three

different points of view. First, we need to obtain an accurate period estimate. For

that purpose we introduce a weighted t-process regression model for period esti-

mation as a flexible alternative to Gaussian process regression, since it is common

for such data to exhibit a fat-tail behaviour, and we extend these models in order

to include measurements from multiple astronomical filters. Secondly, we need

to accompany our estimates with some credibility as to whether they represent

a real periodic signal. This is usually addressed through hypothesis testing. To

that end, we introduce a flexible testing scheme using saddlepoint approximation,

that can be applied on a range of periodic models including Gaussian process re-

gression. These tests are also extended for data contaminated with red noise, a

type of correlated noise that usually appears in such data. Finally, we explore

the asymptotic properties of simple harmonic models with additional red noise

and show that this estimates are consistent and asymptotically normal. We test

our results through extensive simulation studies which are reported along with an

application on some real light curves from the Hunting Outbursting Young Stars

citizen science project.
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Chapter 1

Introduction and background

In this thesis we explore and propose methods around the topic of period esti-

mation of light curves of variable young stars. These data are a complex type of

irregularly sampled time series. The problem of estimating the underlying peri-

odicity of time series in the presence of irregularly sampled data appears in many

disciplines including Economics (see Baltagi and Wu (1999) [6]), Climatology (see

Schulz and Stattegger (1997) [55]), Biology (see Heerah et al. (2020) [31]), or

Astronomy (for example for rotation period searches of stars as in Herbst et al.

(2007) [32]; Bouvier et al. (2014) [13]). In the following Chapters we discuss

methods for obtaining appropriate period estimators, we see how we can associate

these estimates with some credibility on their validity through a hypothesis testing

setting and we examine the statistical properties of some of these methods.

The study of this problem is important both for the fields of Astronomy and Statis-

tics. Current and future large astronomical surveys potentially generate millions

of such light curves, see for example details for the LSST project in Malz et al.

(2019) [48]. Thus, there is a need of accurate, automated, and fast methodologies

to determine periods reliably. Depending on the type of star being able to esti-

mate the period of light curves can provide important information about the star

itself (rotation period), its formation, its internal structure and the environment

it is in (e.g. structures in accretion disks around young stars). More details on

the importance of the study of light curves can be found in Feigelson et al. (2021)

4
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Figure 1.1: Object V1598Cyg

[22]. From the statistical point of view the problem of irregularly sampled time

series is under explored. Both for the time and frequency domain analysis of series

like these there have been proposed basic methods, but they have not been fully

studied for real life problems. This means that there is a lot of room for new

statistical methods and theory to be developed, see for example Erdogan et al.

(2005) [21].

The data that we work with here represents the brightness of stars, which are

usually quoted in magnitudes y. These are determined from the physical flux

measurements f as y = −2.5 log (f/f0), where f0 is the flux zero point and it is

a constant. For more details on astronomical light curves see Allam et al. (2018)

[3]. Thus, numerically large magnitude values indicate fainter brightness and vice

versa. The times for the data points in the light curves are usually registered as

a Julian date. This is a count of days since noon January 1st, 4713 BC. A typical

example of a light curve can be seen in Figure 1.1.
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In statistics we are used to studying regularly sampled times series, in other words

the data observation occurs in a specific pattern e.g. hourly, daily etc. The

sampling of the light curves we study here on the other hand occurs at irregular

time points. This happens because the data collection which is carried out by

ground telescopes can be affected by many factors such as weather, visibility or

the telescopes’ schedule. For example we have more observations during summer

and fewer in the winter and of course we do not have observations during day

time. The factors that affect the frequency of the sampling, thus, are independent

of the response variable.

Another interesting feature of the data is that it is accompanied by some addi-

tional information about the credibility of the measurement. Specifically, each

data point has an associated individual measurement accuracy (see the grey bars

centred at the observation points in Figure 1.1), small values of which reflect small

measurement uncertainty. These uncertainties represent one sigma errors and are

determined during the data processing and calibration of the astronomical im-

ages (see Allam et al. (2018) [3]). Here these quantities are treated as known

weights. Finally, each star is measured in different astronomical filters. There are

6 potential such filters, namely the Visual (V), Red (R), Infrared (I), Blue (B),

Hydrogen-alpha (HA) and Ultraviolet (U). In astronomy these are referred to as

passbands and they correspond to different wavelength intervals. In practice we

do not have measurements of each star in all six filters, the most common ones are

the visual, red and infrared. See for example Figure 1.2 (Top) where object 5686

from Froebrich et al. (2021) [24] is measured all available filters and Figure 1.2

(Bottom) with object 5715 from Froebrich et al. (2021) [24] in Infrared and Red

filters. This means that the number of available filters varies for each object. Note

that the time observations are also different for each filter since they are usually

measured independently.

Throughout this thesis we use data from the Hunting Outbursting Young Stars

(HOYS) citizen science project (Froebrich et al. (2018) [23]). These data con-

tain measurements collected by amateur and professional astronomers, as well as

universities, and combined in order to create long term light curves. The HOYS
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Figure 1.2: (Top) Object 5686 from Froebrich et al. (2021) [24] measured in
6 astronomical filters, with known period at 1.67 days. (Bottom) Object 5715

measured in the red and infrared filter, with a known period at 1.39 days.
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Figure 1.3: The Pelican nebula where many of the objects we study here are
located.

database contains measurements of objects from various star forming regions, but

here we investigate objects located in the Pelican nebula, see Figure 1.3. Periodic

light curves of young stars can be used to measure rotation periods of the stars,

as well as to track the evolution of properties of surface features on them. This

dataset contains a big range of different light curves. There are some objects like

V1598Cyg in Figure 1.1 that are obviously periodic. Others, on the other hand,

do not exhibit eminent periodic patterns. See for example object 5686 in Figure

1.2 (Top) where no obvious periodic pattern seems to exist. This object, however,

has a period at 1.67 days and this pattern becomes apparent if we look at it folded

in period 1.67 days (Figure 2.4 (Right)), we formally discuss folded data at the

end of Chapter 2. There are also objects which are variable but not periodic and

finally light curves that do not vary at all to name a few.

The problem of period estimation of astronomical light curves is well studied for

data that is it reasonable to assume a sinusoidal shape for (Vanderplas (2018) [66]),

as we will see in Chapter 2. This assumption however is not always sufficient to

describe our data and thus flexible non parametric methods are needed. Fitting a

non-parametric model to complex time series like these is a challenging problem.

First, obtaining a period estimate is numerically a non trivial task, due to the

nature of the periodic functions we need to optimize, as they exhibit thousands of
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local maxima or minima. The strategy used to deal with this is through evaluating

these functions an a grid of periods, or in other words, via fine discretization of

the period parameter space (see Section 3.8.2). This is thus a computationally

demanding problem even for one light curve and the problem becomes more chal-

lenging when thousands of such light curves need to be analysed. In general, the

more complex a model is, the larger the computation time and that is the case for

all non-parametric approaches discussed here. A way to overcome this difficulty

is by implementing our computations in parallel, a process available from most

standard programs like R, which reduces significantly the required time to per-

form calculations. Moreover, these data as described before can exhibit complex

features such as the existence of additional measurement accuracies, or multiple

filter measurements. These attributes turn the non-parametric modelling of these

curves into a difficult task. Our contributions towards this end include the use

of a weighted t-process regression in order to model periodic light curves with

outliers and additional measurement accuracies. We show how we can model light

curves with correlated residuals through a Gaussian process regression setting and

finally we extend the Gaussian and t-process models to include measurements from

multiple filters.

Another important part of the period estimation problem is adding some credibility

to the period estimates we obtained and being able to decide whether our estimate

represents true periodic signal in our data or it is just the product of random

oscillations. This is usually done through some hypothesis testing schemes. When

it comes to non-parametric methodologies there does not exist a test for that

purpose and current inference methods are based on time consuming Monte Carlo

techniques (e.g. Do et al. (2009) [18]). Here, we introduce a general Hypothesis

test setting for non-parametric models and specifically Gaussian process regression,

providing thus a solution to the problem of period detection for these flexible

models. Furthermore, we show how these tests can be adjusted in the presence

of correlated noise (red noise), obtaining more accurate results while drastically

reducing the number of periods which could be falsely identified as valid. With
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this approach we manage to perform calculations in 2% of the time needed when

using simulations instead.

Finally, these data are a type of irregularly sampled time series as explained earlier.

For example for many of the period estimates we examine in this thesis there do not

exist results about their statistical properties, such as their bias or convergence rate

to the true parameter. Because of the irregular nature of the time points, usually

stochastic models are assumed for the time observations, thus, standard maximum

likelihood estimator (mle) results for the asymptotic properties no longer hold.

Some results exist for the case of a simple sinusoidal model with white noise

(Reimann (1994) [53]). Here we extend these results for sinusoidal data with

correlated residuals and show that the parameter estimate under this setting is

consistent and asymptotically normal. This result is stated in Chapter 5, see

Theorem 5.1.

Below see the outline of this thesis. In Chapter 2 we discuss related work and

methods around the problem of period estimation of light curves. The problem of

period detection is discussed in Chapter 3 along with our proposed tests under non-

parametric settings. Specifically, our contributions to that end can be summarized

by the following three points.

� Introduction of a saddlepoint approximation test for non-parametric models,

providing a computationally faster alternative to simulation based methods.

� Introduction of a leave-one-out cross-validation error test for Gaussian pro-

cess regression.

� Extension of the above tests for data with correlated residuals (red noise).

In Chapter 4 we address the problem of period estimation under the Gaussian

process regression setting. Our contribution to this subject is three-fold as seen in

the next points.

� Introduction of a weighted t-process regression period estimation model as

a flexible alternative to Gaussian process regression for data with fat tails.
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� Extension of the Gaussian and weighted t-process regression models to in-

corporate measurements from multiple filters.

� Use of the saddlepoint approximation tests as Kernel selection tools for quasi

periodic data.

The asymptotic properties of period estimates for sinusoidal models where the

time observations follow a uniform distribution model are discussed in Chapter 5,

where following Reimann (1994) [53] we show that:

� The frequency estimate of a sinusoidal model with red noise is consistent

and asymptotically normal. The same result is derived for data with AR(1)

noise instead.

� Reimann’s result holds for sinusoidal models that include the intercept term.

� The same asymptotic properties hold when we take the measurement accu-

racies into account.

Finally, in Chapter 6 we show our conclusions and discuss some future work paths.



Chapter 2

Period estimation

As we saw in the previous Chapter the focus of this thesis is analysing and esti-

mating the period of light curves, which are a specific type of time series. When

dealing with time series there are two common types of modelling strategies, the

time domain and the frequency domain analysis (Chatfield (2003) [15]). In this

particular problem the latter approach is more appropriate since we are interested

in exploring and analysing the cyclic behaviour of the series or more generally the

possible repeating patterns that may be present. A useful and commonly used

tool for period estimation is the periodogram (Schuster (1898) [56]), which is a

measure distinguishing excessive periods relative to the rest. We should mention

that throughout this thesis we focus on the case where only one true underlying

period exists in the data, although some of the methods discussed could be or have

been applied for the study multiple periodicities.

In the following Sections we will discuss the classic periodogram definition and its

extensions that will help us account for the irregularities in our data. Specifically,

In Section 2.1 we discuss period estimation methods for the simple case of regularly

sampled data. A discussion as to why these classical approaches are not ideal for

the irregular data we study here is given in Section 2.2 along with the methods

designed particularly for irregularly sampled data, both based on linear and non-

parametric models. Finally, an extensive discussion on estimating the period based

on time versus the phase is provided in Section 2.3.

12
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2.1 Regularly sampled time series

The problem of period estimation of time series is well studied in the literature, for

the case of data arriving at equal intervals e.g. hourly, daily etc. In this Section

we will discuss the classic approach for spectral analysis. First, let y denote the

vector of n signal observations such that each entry yj is the data arriving at times

tj, j = 1, ..., n. We assume that the data are generated as

yj = g(tj; p) + ϵj (2.1)

where g is the assumed true function with period p while ϵj ∼ N(0, σ2) are the

measurement errors. For this Section we will assume that our time points are

observed regularly, e.g. tj = j. If we take the measurement accuracies, which we

will denote as sj, into account, (2.1) via averaging argument changes to

yj/sj = g(tj; p)/sj + ϵ∗j, ϵ∗j ∼ N(0, s2j) (2.2)

taking the form of a weighted regression model.

The simplest way to describe the cyclic behaviour of our data is to assume a single

cosine wave for the form of g as seen below.

yj = A cos(2πωtj + ϕ) + ϵj (2.3)

where A is the amplitude, ϕ is the phase and ω is the frequency (it holds that

ω = 1/p). Using the trigonometric identity,

A cos(2πωt+ ϕ) = A cos(ϕ) cos(2πωt)− A sin(ϕ) sin(2πωt)

model (2.3) can equivalently be written as,

yj = β1 cos(2πωtj) + β2 sin(2πωtj) + ϵj (2.4)
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with

β1 = A cos(ϕ), β2 = −A sin(ϕ)

Because of the good mathematical properties that sinusoids and cosines have,

this model has been used extensively in the literature, see for example Hannan

(1973) [30] or Walker (1971) [71]. Given a period (or frequency) we can obtain the

estimates for parameters β1 and β2 by minimizing the residual sum of squares,

S =
n∑

i=1

(yi − β1 cos(2πω)− β2 sin(2πω))
2

By calculating the first derivative of S with respect to β1 and β2 we obtain the

desired estimates. These estimators can be written approximately as (Bloomfield

(2004) [12]):

β1(ω) =
2

n

n∑
j=1

yj cos(2πωtj), β2(ω) =
2

n

n∑
j=1

yj sin(2πωtj) (2.5)

Looking carefully at equations (2.5), we notice that they are the components of

the discrete Fourier Transform, which is given by:

d(u) =
1

n

n∑
j=1

g(tj;ω)e
−2πiutj (2.6)

where, exp(i2ωtj) = cos(2ωtj) + i sin(2ωtj), if g is replaced with out observations

yj. For a general discussion of this subject see Terras (1985) [62] and for the

analytic derivation of these equations see Bloomfield (2004) [12]. For the general

case of equally spaced time observations the most popular method for estimating

periodicities is based on (2.6) and it is the classical periodogram introduced by

Schuster (1898) [56] and defined below for the observed data yj.

P (ω) = |d(ω)|2 (2.7)

The periodogram is a function that obtains its maximum for the correct peri-

od/frequency for noise-free data, we infer ω as ω̂ = argmaxP (ω). Basically P (ω)

is a measure of how much each period helps in explaining the variance of the data.
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Figure 2.1: An example of monthly sunspots time series and periodogram.
The data are available as sunspot.month requiring stats in R. In the first plot we
see how the actual time series looks, on the second we see the periodogram versus
the frequencies. Here, the highest peak is the most significant frequency/period.

In order to interpret the periodogram visually we could plot its values for a series

of trial periods and we would expect to see a distinct peak for the period explain-

ing best the data. For example in the bottom part of Figure 2.1 we have plotted

the periodogram of the classic sunspot dataset “sunspot.month” from Astronomy,

available in R, which is a characteristic example of this type of data, and has been

used multiple times for the illustration of periodogram methods.
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2.2 Irregularly sampled time series

The problem of frequency estimation of equally spaced data as described in Section

2.1 is well studied (Schuster (1898) [56], Chatfield (2003) [15], Priestley (1981)

[52]). These methods, however, fail when our observations do not arrive at regular

intervals, as is the case for the data studied here. This happens because the discrete

Fourier Transform of unequally spaced data has an inherited “noisy” behaviour

by definition, as we explain below. An illustrative discussion regarding this can be

found in Vanderplas (2018) [66], where the author shows how an irregular sampling

can lead to a noisy Fourier Transform and thus to noisy estimations of the Spectral

density.

In order to understand this better, we step back to the Discrete Fourier Transform

(2.6) which is an approximation of the Continuous Fourier Transform,

F(u) =

∫ ∞

−∞
g(t;ω)e−i2πutdt (2.8)

which is zero for every value of u except for | ω |. This describes an infinite signal

and our time variable is assumed to be continuous. In real life however we only

observe a finite part of the signal and our time observations are discrete.

We can move from the unrealistic continuous signal to the observed one using a

spectral Window function. Our observing window behaviour can be captured by

a finite Dirac Comb function, which we will denote as δ(u) and its representation

as a Fourier Series,

δ(u) =
1

n

n∑
j=1

e−i2πutj (2.9)

The discrete Fourier Transform thus can be obtained as a point-wise product of the

spectral window function and the continuous Fourier transform (Reimann (1994)

[53]):

d(u) = F(u) · δ(u) =
∫ ∞

−∞
F(u− v)δ(v)dv (2.10)

If our observations are equally spaced δ(ω) is 1 at frequencies 1,2,.. etc. See for

example Figure 2.2 (Top) where |δ(ω)| (Mod of δ(ω)) is plotted for 315 equally
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spaced data. The phenomenon of high peaks at integer frequencies is called alias-

ing (see more details in Reimann (1994) [53]). When time points are irregular δ(ω)

has the noisy behaviour seen in Figure 2.2 (Bottom). The peaks at integer frequen-

cies are getting smaller and smaller as the frequency grows, and the intermediate

frequencies are no longer zero. Thus, looking at (2.10), d(ω) by default will adopt

a similar behaviour. In the next Sections we describe popular approaches designed

to deal with similar data.

2.2.1 Linear regression periodograms

Many methods have been developed in the literature to obtain accurate period

estimates of irregularly sampled data like the light curves we study here. The

most popular approach dealing with this problem is that based on the Lomb-

Scargle (LS) periodogram (Scargle (1982) [54]) which is a generalized form of the

classical periodogram (2.7) but is not affected by irregular time spacing. It can

be shown that this method produces identical results to that obtained by fitting

a single sinusoidal wave (2.4) using the ordinary least squares (OLS) regression

while assessing the fit at each period using the squared error, (Lomb (1976) [45];

Vanderplas (2018) [66]). The model fitted is basically the same as that of (2.11)

below but without the intercept term. The latter method based on fitting a linear

model gained more attention because of its connection with the Fourier transform,

but most importantly because of its potential natural extensions, for example the

introduction of the intercept term as seen below, (see also Cumming et al. (1999)

[17] or Vanderplas and Ivezic (2015) [67]).

yj = β0 + β1 sin(2πtj/p) + β2 cos(2πtj/p) + ϵj (2.11)

In simple words the idea behind the OLS approach is the following: First, we

select a series of trial periods. Secondary, given a trial period p estimate the

parameters of the model (e.g. β0, β1, β2) by minimizing the sum of squared errors
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Figure 2.2: (Top) The Mod of Dirac Comb defined in (2.9) for 315 equally
spaced time points. (Bottom) The Mod of Dirac Comb but this time using 315
real time points from light curve 6149 measured at the visual filter (Froebrich

et al. (2021) [24]).
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and calculate a corresponding goodness of fit measure as

Per(p) =

∑n
i=1(yi − ȳ)2 −

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ŷi)2

(2.12)

Finally, repeat this procedure for all trial periods. The function Per(p), which

in this case is the F-statistic, is our periodogram function, showing the relative

importance of the periods. In this case large values indicate valid periods and

thus our estimate will be p̂ = argmaxPer(p). In order to understand this behaviour

clearly see Figure 2.3 which displays a periodogram obtained with the least squared

errors method for a real light curve with period at 0.8246 days, as seen in Froebrich

et al. (2020) [25]. As we can see the periodogram has its highest peak at the correct

period. For an explanation about the other two lower peaks see Froebrich et al.

(2020) [25]. The analytical steps of this approach can be found in Thieler et al.

(2013) [63].

These models are clearly very special cases of (2.1), while there exist many other

approaches based on various forms for the periodic function g. In fact the biggest

advantage of viewing the periodogram from the linear regression point of view

is the flexibility it offers. For example we could use a whole range of different

goodness of fit measures and, depending on the choice, our estimate p̂ would

be either the maximizer or minimizer of our periodogram function. In the next

Sections we discuss such possible extensions.

2.2.2 Methods based on Robust Regression

In the previous Section we saw how we can obtain our period estimates by using

OLS regression. There are many methods developed that explore alternative ways

of parameter estimation falling under the umbrella of Robust Regression. The

simplest example is the use of the absolute deviations error:

n∑
i=1

|yi − ŷi|
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Figure 2.3: (Left) An example of a light curve as measurement of the bright-
ness over time along with the measurement accuracies (error bars). This is
object V1598Cyg measured in the visual filter. (Right) An example of a pe-
riodogram, for the light curve shown in the left panel, with F-statistic, based
on fitting the sinusoidal model (2.11). High peaks indicate important periods.

This object has a period of 0.8246 days.

instead of the sum of squared errors as used in OLS. There are many more regres-

sion methods available, some examples for our particular problem include that of

Katkovnik et al. (1998) [38], where the coefficients of a sinusoidal wave are esti-

mated using Huber’s M-regression, or Liang et al. (2009) [44], where the absolute

deviations (L1 norm) regression is used to construct a periodogram in order to es-

timate the period of gene expression data, showing that these approaches perform

better than the L2 norm based methods when the data have outliers.

A detailed discussion to that end can be found in Thieler et al. (2013) [63] where

the authors study, under the same framework, periodograms obtained by com-

binations of models (such as splines or sinusoidal basis) and different types of

regression. In a comprehensive simulation study they compare the performance of

the methods for light curves both with and without the presence of red noise and

show, for example, that robust regression methods are more reliable for data with

outliers. This is also supported by some of our results of a period search survey

on real light curves (Froebrich et al. (2021) [24]) which showed that for those data

the best performing method was that based on the L1 norm. The performance of

the methods is usually assessed on their ability to identify the true period, while

keeping small the number of falsely identified ones. These concepts are referred to
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Figure 2.4: (Left) Object 6149 from Froebrich et al. (2021) [24] measured on
the visual filter, folded in period 2.1763 days. (Right) Object 5686 from the

same survey measured in the Blue filter and folded in 1.176 days period.

in Astronomy as completeness and contamination.

2.2.3 Non parametric periodograms

The methods described so far are based on assuming a sinusoidal shape for our

data. Although sinusoidal like light curves appear often, see for example Figure 2.4

(Left), there are cases that the data deviate from this behaviour, e.g. Figure 2.4

(Right). There have been methods developed assuming different periodic shapes.

See for example Stellingwer et al. (1978) [61] where the authors use step functions

to describe the data, or Palmer (2009) [50] for a Fourier series fitting.

These are still however specific cases of a range of possible periodic shapes and

their correct choice requires a good prior understanding of the data. Thus, in

many cases the sinusoidal or any other specific shape is a very strong assumption

while other more flexible non parametric methods are preferred. In Figure 2.5

we see the typical sinusoidal shape compared to various periodic curves. In the

next Sections of this Chapter we will describe non-parametric periodograms that

address exactly this problem.
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Figure 2.5: (Left)Typical example of a sinusoidal shaped curve. (Right) Ex-
ample of non-sinusoidal periodic curves.

Spline regression

The first method we describe is based on fitting splines. For example, Akerlof et al.

(1994) [1] fit cubic b-splines using least squares regression in order to estimate the

periods of various stars. Another example is the use of periodic splines as seen in

Oh et al. (2004) [49], where the authors use cubic splines with a periodic restriction

to fit the model by performing robust regression (i.e. Huber’s regression) and

finally the fit is assessed based on a cross validation approximation. Although this

is not typically considered as a non-parametric method we add it here because it

makes fewer assumptions about the shape of the data compared to a sinusoidal

wave for example.

A simple way to view splines is as fitting piece-wise polynomials to our data, taking

into account constraints for the continuity etc. It could be seen as a combination

of fitting polynomials and a step function that splits the data (t here) into separate

regions, thus allowing the capture of more complex shapes. The points at which

the piecewise polynomials meet are called knots (K). This is a more general model

with fewer assumptions on the shape of the data.

A simple cubic spline model with K = 2 knots at ξk has the form:

yj =
K+4∑
q=1

βqhq(tj) + ϵj (2.13)
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Where,

hk(t) = tk−1, k = 1, . . . , 4

h4+k(t) = (t− ξk)
3
+, k = 1, . . . , K

Or simply for ξ1 and ξ2:

yj = β1 + β2tj + β3t
2
j + β4t

3
j + β5(tj − ξ1)

3
+ + β6(tj − ξ2)

3
+ + ϵj

Where (t− ξk)+ = t− ξk if t > ξk and zero otherwise. For our problem the t’s can

be either assumed to represent our time observation or the phased time points,

which we formally discuss in Section 2.3, depending on the data and the method

used. The simplest way to introduce periodicity is by replacing time with phase.

We applied this method for our data, and for that example it performed well but

was inferior to methods based on sinusoidal models, the results analytically can

be found in Froebrich et al. (2021) [24].

Kernel smoothing regression

A different period estimation approach with fewer assumptions regarding the shape

of the data is based on using kernel smoothing regression as studied in great

depth in Hall et al. (2000) [27], where the estimates for ĝ are obtained using the

Nadaraya-Watson estimator (defined below) for a given period and assuming some

kernel function. The parameters for g and for a range of candidate periods p are

estimated in separate steps, and they propose as p̂ the period which corresponds

to the minimal sum of squared errors. One could think of the corresponding peri-

odogram function here comprising of values of sums of squared errors for various

p.

Analytically, Kernel regression is a non parametric modelling approach where we

estimate the fitted values allocating weights to our observations according to a

kernel K((tj − tk)/h), where h is a constant determining how smooth our estimate

of g will be. There is a wide range of kernel choices, the most common one is the
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normal density (also called Squared exponential kernel). The idea is that when it

comes to estimating g(tj) the estimation is based on values close to tj since the

further away we are from it the smaller the value of the kernel becomes.

A commonly used kernel regression estimator is the Nadaraya-Watson and the

fitted values are calculated according to:

ĝ(tj) =

∑
k yjK(tj − tk)∑
k K(tj − tk)

(2.14)

Notice that the fitted values are a linear combination of our observed values. As

we mentioned before the most commonly used kernel is the Normal density. In our

problem however it would make more sense to use a periodic kernel instead that

we formally define and discuss in the following Section. If a non periodic kernel

is used, then we can estimate the period using the phased data as discussed in

Section 2.3.

Gaussian process regression

The last non parametric approach we will discuss in this Chapter is based on

Gaussian process regression as seen in Wang et al. (2012) [72]. A prior over

functions g is assumed to follow a Multivariate Normal distribution g ∼ N(0,K),

where K is an n× n covariance matrix in our case, with entries calculated as

Kjk = K(tj; tk) = A exp

(
−2 sin2(

π

p
(tj − tk))/h

2

)
j, k = 1, 2, · · · , n (2.15)

and A denoting the amplitude, p the period and h a smoothing parameter. This

particular choice of covariance function given by (2.15) is made in order to in-

troduce periodicity in the model. For each candidate period p the corresponding

posterior distribution of the fitted function g at the time points tj is Multivariate

Normal, with mean and covariance:

E(g) = Wy Cov(g) = K−WK (2.16)
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whereW = K[K+σ2I]−1 and with σ2 denoting the variance of the errors (Williams

and Rasmussen (2006) [73], Wang et al. (2012) [72]). It is worth mentioning that

the method of splines regression is a special case of GPR when a specific covariance

function is selected instead of (2.15) as shown in Kimeldorf and Wahba (1970)

[40], see also Williams and Rasmussen (2006) [73] for an analytic discussion to

that end. The parameters are estimated from the marginal likelihood (2.17) for

a given period p and similar to pseudo-likelihood methodology the optimal p is

chosen to be the maximizer of the resulting marginal likelihood:

logP (y|A, h, σ2) = −1

2
y⊤(K+ σ2I)−1y− 1

2
log |K+ σ2I| − n

2
log 2π (2.17)

We discuss this in more detail in Section 3.5. The authors in Wang et al. (2012)

[72] claim that their method outperforms the LS periodogram for data that deviate

from the sinusoidal assumption, in terms of estimating the correct period. They

also emphasize that a formal statistical test is needed to determine whether the

estimated/proposed period can be considered valid. We address this in Chapter 3

where we propose such a testing method.

Note that if individual measurement accuracies sj are to be taken into account, a

simple update is needed for using a weighted Gaussian process regression model

(See for example Shenf et al. (2017) [59]) with, W = K[K+Q−2σ2
nI]

−1 where Q

is a diagonal matrix with the weights qj = 1/sj in its diagonal as,

Q =


q1 0 0 . . . 0

0 q2 0
... 0

...
. . .

0 0 . . . qn

 (2.18)

Under this setting we can assume that our observations are generated by the

following Normal distribution:

y ∼ N(0,K+Q−2σ2
nI) (2.19)
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We can then estimate our parameters by maximizing the marginal likelihood as

discussed before which is in this case will be of the form:

logP (y|A, h, σ2) = −1

2
y⊤(K+Q−2σ2I)−1y− 1

2
log |K+Q−2σ2I|−n

2
log 2π (2.20)

Note that the setting of the Gaussian process regression method as described above

and the derivation of the corresponding results (e.g Eq. (2.16)) are based on Bayes’

theorem and developed from a Bayesian perspective. The posterior over functions

g and thus the marginal likelihood (3.12), however, are available in a closed form.

It is common then, in that case, to perform inference for the parameters of interest

through the frequentists point of view by maximizing the marginal log-likelihood

or minimizing the leave-one-out cross-validation error (more details in Section

2.2.3), instead of assigning hyper-priors and performing Markov chain Monte Carlo

(MCMC) simulations. In order to ease computations, we adopt the former strategy

throughout this thesis.

2.3 A discussion on folded time series

The methods we discussed in this Chapter involved fitting a statistical model in

order to estimate p. In the linear regression method for example we fit model

(2.11) and with t, as we already stated, we denote the actual time points that

our observations occurred. It is common however to use the phased time points

instead, which can be obtained by implementing the following transformation for

a time point ti and for a chosen period pj

fij =
ti
pj

− ⌊ ti
pj
⌋ ∈ [0, 1), i = 1, ..., n j = 1, . . . , J (2.21)

or,

fij = ti − pj⌊
ti
pj
⌋ ∈ [0, pj), i = 1, ..., n j = 1, ..., J (2.22)

Where with ⌊a⌋ we denote the first integer smaller than or equal to a and with J

we denote the number of periods in our period search grid. In fact, in all methods
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Figure 2.6: Understanding phase on a simple sine wave with period = 1.

described above we could use either t or f . Note that there is no practical difference

between the two equations, since Eq. (2.22) is obtained by multiplying Eq.(2.21)

by pj.

These phased data points are essentially percentages of the data’s cycle, and it

can be thought of as folding our curve into its period p. To understand better how

it works see Figure 2.6. This image shows a sine wave with period p = 1. The

vertical lines show the start of each cycle (which is of length 1). The small vertical

red lines show the points at which half (50%) of the cycle has been completed,

and the blue lines show 25% of the cycle. These are our phased points. For

example using equation (2.21) we can calculate the phase of time point ti = 0.5,

as fi =
0.5
1
− ⌊0.5

1
⌋ = 0.5 or for tk = 1.5 where fk =

1.5
1
− ⌊1.5

1
⌋ = 0.5. So both data

points ti, tk correspond to the 50% of the cycle.

This view of the data can be useful in many cases since for example, it can make



28

Figure 2.7: A simulated light curve folded to different trial periods. We notice
that in the first plot the periodic behaviour of the curve is not clear. Once we
fold into the correct period the periodic shape becomes apparent. Folding the
data to the wrong period results to no pattern. Folding into multiples of the
periodicity can also make the periodic shape apparent, making it sometimes

difficult to recognize the correct period (see bottom right).

more dense our sample size. Furthermore it is an easy way to bring in the period-

icity term in models that do not naturally contain it. The idea is that if we fold

the data into the correct period, our phased light curves will “reveal” its periodic

shape as in Figure 2.4. If we fold into the wrong period however no pattern should

emerge and the data should look like noise. There can be of course intermediate

cases, for more details see Figure 2.7.

While using the folded data can be useful in some cases, it can also bring in
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Figure 2.8: (Left)A sinusoidal light curve with increasing period. (Right) The
light curve folded into period 1 and period 20.

Figure 2.9: (Left)A sinusoidal light curve with period 1 and amplitude change.
(Right) The light curve folded into period 1.

additional noise in some others and therefore reduce the accuracy of our results.

This might be the case if the data are not strictly periodic, for example the period

could change over time. In this case by folding our data we miss this information.

See Figure 2.8 (Left) where we simulate a light curve with period p that gradually

gets larger. Folding this curve in period p for example results into the noisy image

seen in Figure 2.8 (Right). Another example is when the period stays the same

but our data’s shape changes over time. Folding again into the correct period will

result into a non informative picture as seen in Figure 2.9 and Figure 2.10. In

cases like these using the actual time observations t can be proven more beneficial.

In Chapter 4 we explore some possible ways of estimating the period in such cases.
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Figure 2.10: (Left)A sinusoidal light curve with period 1 and shape change.
(Right) The light curve folded into period 1.

2.4 Multiple testing

In Section 2.2.1 we saw how we can obtain a periodogram based on a goodness of fit

measure which we evaluate for different periods p. As discussed earlier, a common

measure of that form is the well-known F-statistic (2.12). These periodograms

always have a maximum peak regardless of the existence or not of signal in the

data. We need, thus, to be able to decide if a periodogram peak represents a true

periodic signal or it is the product of purely noisy data.

A standard approach to answer that question is based on statistical hypothesis

testing. The basic idea is to quantify how likely it is to observe a particular

periodogram value at period p if the data consists of only noise. This can be

achieved by testing the null hypothesis of purely noise data, against the alternative

that a periodic signal exist at period p. In order to perform inference we need to

know the distribution of the statistic used under the null hypothesis. In the case of

the standard F-statistic (2.12) for example, we know that under the null hypothesis

it follows an F distribution, see for more details Section 3.3. This hypothesis testing

approach has been also used in the Astronomy literature for this exact problem,

see for example Schwarzenberg (1998) [57] where the author derives the theoretical

distribution of periodograms, based on this type of goodness of fit statistics, or

Thieler et al. (2013) [63] where the authors introduce an empirical test based



31

on the Beta distribution. These methods are discussed analytically in Chapter 3

along with our proposed tests under non-parametric regression settings.

At this point it is important to note that in order to decide which periods are valid

or not, we conduct the tests mentioned above multiple times (e.g the number of

trial periods tested). This is something we should keep in mind when deciding

the significance level α that is the probability of false rejection, or in other words,

the probability to identify a period as true when it is not. If for example we fix

a = 0.05 then that means that the chance to falsely detect a trial period as true

is only 5%. But, if we repeat this test 50 times (because this is the number of

trial periods we test for example) then the probability of getting at least one false

rejection is 92.3%. This probability is also known as the family wise error, which

for the case of J independent tests is calculated as:

1− (1− α)J

There are many methods for correcting the significance level for multiple com-

parisons, the most well known is probably the Bonferroni correction where the

corrected significance level is now calculated as α
′
= α/J , this approach has been

criticized as being over conservative and many other corrections have been pro-

posed for example in Sidak (1967) [60] or Good (1958) [26]. The above mentioned

methods depend on J the number of tests but in many cases this can be proven

problematic, especially when the tests are not independent from each other. This

is the case for the period estimation problem too when we try to discretize the

frequency spectrum. An analytic discussion regarding this problem can be found

in Algeri et al. (2016) [2]. Here we will not pursue this any further and instead

we will adopt the approach described in Theiler et al. (2013) [63] where we look

at the local maxima or minima of the periodogram. We will also assume that the

significance level α is corrected for multiple comparisons.
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2.5 Summary

In this Chapter we discussed different methods proposed in the literature for esti-

mating the period of irregularly sampled times series. First, we saw how methods

developed for equally-spaced data, such as the classic periodogram which is based

on the Fourier Transform, fail under irregularly sampled data schemes. The most

popular method designed for this purpose is the Lomb-Scargle periodogram which

is connected to the Fourier transform but does not get affected by the sampling.

In fact, it is shown that it returns identical results to fitting a simple sinusoidal

model with least squares regression and using a chi-squared type goodness of fit.

This connection to least squares regression led to the development of a series of

empirical periodograms based on different choices of model, regression, goodness

of fit statistic etc.

Specifically, the choice of model reflects our assumptions about the shape of the

periodic signal, some of the methods developed assumed a sinusoidal, triangular

or splines model for instance. The motivation behind the use of different regres-

sion methods, such as absolute deviations regression, or Huber’s regression, was

to obtain robust results under the presence of outliers or data with fat tails. More

flexible methods that make fewer assumptions about the data have also been pro-

posed, like the use of kernel smoothing regression or Gaussian process regression

(GPR). We mostly focus on the latter model here and provide more details about

GPR model and their extensions in Chapter 4. Finally, we briefly mentioned dif-

ferent choices of goodness of fit measures (e.g. F-statistic, Cross-validation, R2

etc.) which are connected to hypothesis testing methods for deciding if an esti-

mated period represents a true signal or not. This subject is covered analytically

in Chapter 3 along with our suggested tests under non-parametric model settings.

We should note at this point that there is no obvious choice as to which method

is better. Different approaches perform differently depending on each situation.

For example, if outliers are present in the data, robust regression methods re-

turn more reliable results compared to least squares but they are compositionality

more expensive and have less convenient mathematical properties. Non parametric



33

methods are more flexible, but are again computationally demanding and provide

less accurate results than using a linear model if, for some reason, the shape of

the data is known. Finally, the choice of goodness of fit depends heavily on the

choices of regression and model. In Chapter 6 we discuss how to choose between

the different methods depending on the data available each time.



Chapter 3

Hypothesis Testing for period

detection

3.1 Motivation

In the previous Chapter we discussed some popular approaches for period estima-

tion by obtaining a periodogram. Extreme periodogram peaks are an indication

of potential periods, we need however a quantifiable measure as to what is con-

sidered extreme. In other words, every periodogram will always have a maximum

(or minimum) peak even if the data is just noise. See for example Figure 3.1,

where we generated three light curves consisting of just noise and produced their

periodograms as described in Section 2.2.1. The first light curve was generated

with white noise and we see a clear peak at 7.2 days. For the next two light

curves we used red noise (a correlated type of noise that we will discuss formally

in Section 3.5), for these cases, it is also important to notice the maximum value

that the periodogram reaches, which is calculated to be 0.3. This relatively high

peak becomes even more interesting if we have a look at the last periodogram of

a light curve generated with signal this time and a known period at 1.9 days. We

see that the value of the highest peak of the periodogram in this case is equal to

0.06, much smaller than some of the cases with no signal.

34
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Figure 3.1: (Top Left) Periodogram of a light curve consisting of only white
noise (N(0, 1)). (Top Right) The periodogram of a light curve consisting of only
red noise (ρ = 0.5) (Bottom Left).The periodogram of another light curve with
no signal and just red noise (ρ = 0.9) (Bottom Right)The periodogram of a light
curve generated with a sinusoidal signal and period at 1.9 days. The sampling

for all the examples is borrowed from a randomly chosen real light curve.

Thus, it is important to be able to distinguish between real periodic signals and

noise fluctuations and the problem is not trivial. The focus of this Chapter is

determining whether a periodogram peak represents a valid period or not and in

the next Sections we will see how we can answer this question using hypothesis

testing.

3.2 The general framework

The common approaches to this problem are based on running hypothesis tests

on a sequence of trial periods and relating them to some periodogram entries. In

particular, each periodogram entry could be the value of a chosen goodness of fit

test statistic in our case, and we use the corresponding p-value to construct the

hypothesis testing whether the given statistics are generated from just noise or

period bearing data. In other words, the peaks in the corresponding periodogram
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point to those candidate periods p which are the most likely to generate the data

and their corresponding magnitude of the p-values of the goodness of fit statistics

indicate their associated credibility. The idea of sequential hypothesis testing for

each candidate period p is summarized as follows:

H0 : M0 model, no signal in the data

vs (3.1)

H1 : M1 model with signal of period p

This strategy is adopted by the astronomy literature as in Schwarzenberg-Czerny

(1998) [57], where the distribution under the assumption of model M0 is derived

for empirical periodograms like LS. In many papers the sequential hypothesis

testing is based on simulating data according to H0 as seen in Do et al. (2009)

[18], or Halpern et al. (2003) [28] and then comparing their empirical distribution

to the observed values of the periodogram peaks.

Note that these tests belong to the general family of pseudo-likelihood ratio tests

(using the residual sum of squares) that are based on the relative performance

of both models M0 and M1. This approach is in fact similar to that applied to

the standard model selection in linear regression for nested models. Similar use

is seen in time series analysis as shown in Berenblut and Webb (1973) [9] where

the authors compare a simple linear model to that with additional AR(1) errors

and the resulting statistic is related to that of Durbin and Watson (1950) [19].

More specifically, they show that in this context the one sided hypothesis testing

is approximately uniformly most powerful (UMP), see also Paoella (2018) [51] for

an analytic discussion to that end. In non-parametric regression as seen in Azzalini

and Bowman (1993) [5] a similar test is used for testing the linearity assumption

in the data versus non linear models M1 produced by kernel smoothing regression

or spline function families.

Note that similar to the standard F-tests used in the linear regression, the associ-

ated test statistics for the above mentioned tests are in fact constructed as ratios
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of residual sums of squares which correspond to quadratic forms of zero mean nor-

mal components. The added difficulty of including our models of interest is that

for each candidate p, the terms in the numerator and denominator of those ratios

are not necessarily independent. Hence, the standard F-test statistics can not

be generally applied. A typical example is that in time series for nested ARMA

models where standard results for the F-test no longer apply. This dependence is

not fully addressed in the context of this particular problem. Typically simulation

based approaches are implemented to overcome such difficulties.

In our context, we will perform hypothesis testing as in (4.10) such that the cor-

responding model for M0 would be just a constant, namely no periodic behaviour

in the data i.e. the light curve is just noise and function g from (2.1) is the mean.

This is equivalent to the model (2.11) reduced to the intercept term β0. On the

other hand, if there was a periodic signal, the test will suggest as appropriate the

alternative fitted models M1 that will contain the periodic terms as in (2.11) (or

a more general form as in non-parametric regression). As a result, the stronger

the evidence of departure from M0 towards M1 for some period p, the stronger

the claim that this period is present in the signal.

Note that a natural goodness of fit measure among various regression models is

based on comparing the residual sums of squares RSS0 and RSS1 for the null and

alternative models as:

F =
(RSS0 −RSS1)

RSS1

=
y⊤M0y− y⊤M1y

y⊤M1y
(3.2)

with matrices M0 and M1 depending on the models of interest. Note that any

linear smoother could be used for the alternative model as long as periodicity can

be introduced. In order to perform hypothesis testing, we need to evaluate the

distribution of F , namely P (F ≤ f) under the null hypothesis. In Azzalini and

Bowman (1993) [5] we see that if M0 = I − 11⊤/n is some centring matrix with

1 denoting the column vector of ones, then

P (F > f) = P (ϵ̂⊤(I− (1 + f)M1)ϵ̂ > 0) (3.3)
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where I is the n× n identity matrix and ϵ̂ = M0y. If we replace f in (3.3) with a

specific observed value of our statistic, e.g tobs, the probability P (F > tobs) is the

p-value for our generalised F-test.

3.3 Some remarks on linear regression

In the case of ordinary linear regression (2.11) a periodic structure is assumed

and the statistic (3.2), if appropriately scaled, coincides with the ordinary F-

statistics. The rescaling constant c = n−m1

m1−m0
depends on the respective numbers of

parametersm0 andm1 for modelsM0 andM1. Namely, under the null hypothesis

assumption of white noise, the statistics

F · c ∼ F (m1 −m0, n−m1) (3.4)

with the numerator and denominator terms of (3.2) being independent random

variables following chi-square distributions with m1 −m0 and n −m1 degrees of

freedom. Here, M0 = I−11T/n is a fixed centring matrix, M1 = I−X(XTX)−1XT

with X being the design matrix of our model depending on observation time

points. Note that from the standard calculations of the projection matrix P =

X(X⊤X)−1X⊤ in regression we can easily see that M1 = (I−P)⊤(I−P) = I−P

and in particular the vector 1 is in the null space of M1. This implies that y⊤M1y

is invariant of the intercept in the model M0 and therefore the statistic (3.2) is not

affected if the data points y are centralised, namely replaced by residual vector

ϵ̂ = M0y. Note that under this setting, the eigenvalues of M1 can be either zero

or one and that is why (3.4) holds. The corresponding p-values are immediately

available from standard packages like R.

It is worth mentioning that the popular R2 statistic is a linear combination of

the standard F statistic and thus can be written in a similar form as a ratio of

quadratic forms as seen below,

R2 =
RSS0 −RSS1

RSS0

=
F · (m1 −m0)

F · (m1 −m0) + (n−m1)
=

yTM0y− yTM1y

yTM0y
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It is known that if X ∼ F (d1, d2) then
d1X/d2

1+d1X/d2
∼ Beta(d1

2
, d2

2
). So R2 under the

null hypothesis follows a Beta(m1−m0

2
, n−m1

2
) (Jonson and Kotz (1970) [37]).

3.4 Non OLS regression

In situations where more general alternatives are explored for M1, the structure of

M1 does not lead to the standard F-distribution for the statistic (3.2) and hence

it is not straightforward to obtain its p-values. Naive Monte Carlo methods are

adopted for these cases, and have been extensively used in the relevant literature

such as Do et al. (2009) [18], Halpern et al. (2003) [28], Ivezic et al. (2019) [35]

where for each trial period say p, many noise curves are simulated and the corre-

sponding p-value is estimated based on the corresponding empirical distribution of

the F-statistic (or something equivalent). In fact, we can show that for these cases

there is no need to run simulations as the p-values are easily evaluated using the

saddlepoint approximation to the distribution of F , which is formally introduced

in Section 3.6. A computationally efficient alternative is important given the large

amount of data available. Our method improves drastically the calculation time

when non parametric models are used, for Gaussian process regression for exam-

ple, by performing the calculations in 2% of the time needed for doing the same

analysis using Monte Carlo. For more details on time comparisons see Table 4 in

Section 3.8.1.

3.4.1 Generalized F-test for non-parametric periodograms

In this Section we consider more complicated models M1 to describe our alterna-

tive hypothesis and see how the F-statistic (3.2) can be used for non-parametric

settings such as kernel or Gaussian process regression (and in general for any lin-

ear smoother). The statistic (3.2) has been used in Azzalini and Bowman (1993)

[5] as a linearity test, where a comparison was conducted between a linear and a

non-parametric model.
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By following the same idea, we compare a constant (as the null model) with a

non-parametric model for a given period. Under this setting, while the centring

matrix M0 = I − 11⊤/n remains the same, M1 = (I − W)⊤(I − W) is not a

projection matrix, since W is a n× n matrix depending on the observation times

and additional model parameters as seen for example in (2.16) and (2.15).

The appropriate period detection test of the optimal periodogram entries requires

the evaluation of the distribution of F under the null hypothesis, which due to

M1 can no longer be assumed to follow a standard F distribution. We should note

again that this test is also depending on the alternative model through M1. The

probability of interest P (F > tobs), is given by (3.3) and thus the problem reduces

to that of evaluating these values for the distribution of such Quadratic form of

some normally distributed terms.

3.4.2 CVF-test for Gaussian process regression

In the previous Section we discussed how the generalised F-test can be used to

create the corresponding periodogram for detecting valid periods whenM1 is some

non-parametric model and the resulting matrix M1 is not a projection matrix any

more. Here we will look more specifically at the explicit expressions for M1 when

the non-parametric model used is the Gaussian process regression (GPR) and the

natural goodness of fit measure based on cross-validation score is used.

As seen in Section (2.2.3), in order to estimate the parameters for the GPR model

(including the period), we can either maximize the marginal likelihood or minimize

the cross-validation error. We can build a statistic/periodogram based on the

leave-one-out cross-validation error

CV E =
n∑

j=1

(yj − g−j(tj))
2 (3.5)

where g−j is function g estimated excluding the jth data point. We can use this

measure for comparing the predictive ability of the GPR model at period p with
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that of the mean M0. As seen in Williams and Rasmussen (2006) [73], each term

in (3.5) can be simplified to

yj − g−j(tj) =
[(K+ σ2

nI)
−1y]j

[(K+ σ2
nI)

−1]jj
(3.6)

and in the vectorized form these entries are shown to be y⊤(K+ σ2
nI)

−1B2 where

B2 is a diagonal matrix,

B2 =


1/d1 0 . . . 0

0 1/d2
...

...
. . .

0 . . . 1/dn

 (3.7)

such that dj is the jth diagonal element of the inverse of the matrix K + σ2
nI,

namely, dj = diag((K+ σ2
n)

−1)j. Therefore, by denoting as B = (K+ σ2
nI)

−1B2 ,

we can write CV E as a quadratic form in y as

CV E =
n∑

j=1

((
[(K+ σ2

nI)
−1]j

dj

)
· yj
)2

= y⊤BB⊤y (3.8)

In the same spirit as (3.2), a similar goodness of fit statistic, which we will refer

to as cross validation F (CV F ), based on the cross validation errors for the null

model and that for a particular choice of g using GPR is given below as:

CV F =
CV E0 − CV E1

CV E1

=

∑n
j=1(yj − ȳ−j)

2 −
∑n

i=j(yj − g−j(tj))
2∑n

j=1(yj − g−j(tj))2
(3.9)

where ȳ−j denotes the jth leave-one-out mean. It can be easily shown that the

CVF-statistic can be written in the form of (3.2) where M1 = BB⊤ and M0 =

MM⊤, is a matrix used for the leave one out mean terms:

M =


1 − 1

n−1
. . . − 1

n−1

− 1
n−1

1
...

...
. . .

− 1
n−1

. . . 1

 (3.10)
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The problem of evaluating the distribution of the CV F -statistic reduces again to

that of estimating a simple Normal Quadratic form, and Saddlepoint approxima-

tion can be implemented in order to obtain fast and accurate results.

3.5 Departure from white noise

For all the methods described so far we assumed white noise residuals. In many

problems however the residuals might not be i.i.d. and additional structures should

be assumed in order to capture their behaviour. In astronomy for example it is

common for light curves to be contaminated with red noise as seen in Vaughan

(2003) [69], where additive systematic errors are assumed to be generated by a

power-law spectrum, see also Timmer and Konig (1995) [65] on a method on

generating such data. An example of different types of noises can be found in

Figure 3.2. Specific interest is shown in period detection under the presence of red

noise. The assumed correlation structure of red noise coincides with that of an

AR(1) process if the observations are collected at equally spaced time observations,

see e.g. Von Storch and Zwiers (2001) [70]. In these cases of AR(1) errors, (not of

our primary interest here), Benlloch et al. (2001) [8] identified valid periodogram

peaks against red background noise using Monte Carlo methods. Later some exact

tests were developed, see for example Vaughan (2005) [68]. In the case of unequally

spaced time series however most of the corresponding methods used are based on

Monte Carlo approaches in order to identify the valid periods in the presence of a

red background noise, for example Zhou and Sornette (2002) [74].

3.5.1 The generalised F-test for red noise

In this Section we consider the situation when a particular correlated noise (red

noise) structure is assumed for the residual terms ϵ. Let us assume for example

that the correlation structure between any pair of residuals observed at a single

time unit apart is Corr(ϵj, ϵj−1) = ρ for any j and some ρ ∈ (−1, 1). This in turn
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Figure 3.2: Examples of different types of noise.

implies that Corr(ϵj, ϵj−2) = ρ2 and in general for any pair of residuals observed

at time units tj and tk, Corr(ϵtj , ϵtk) = ρ|tj−tk|. The red noise terms are distributed

as:

ϵ ∼ N(0, σ2Cρ) where Cρ =



1 ρ|t1−t2| ρ|t1−t3| . . . ρ|t1−tn|

1 ρ|t1−t2| ... ρ|t2−tn|

...
. . .

. . . 1


(3.11)

Note that the matrix Cρ takes into account the irregularly sampled nature of the

data, such that the correlation between the observations depends on their time

distance, the further away two points are, the less the correlation assumed for

the corresponding residuals. If ρ = 0, Cρ = I then the model reduces to that

of the white noise. In order to calculate (3.2) for various p, we need to estimate

the model parameters of M1. This, for the case of Gaussian process regression, is
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achieved by maximizing the marginal likelihood or alternatively by minimizing the

leave-one-out cross-validation error. Under the presence of red noise, the marginal

likelihood for GPR is:

logP (y|A, h, σ2, ρ) = −1

2
y⊤(K+ σ2Cρ)

−1y− 1

2
log |K+ σ2Cρ| −

n

2
log 2π (3.12)

For constructing (3.2) for the non-parametric models we take M0 = C
1/2
ρ (I −

11⊤/n)C
1/2
ρ and M1 = C

1/2
ρ (I − W)⊤(I − W)C

1/2
ρ . Note that the matrix M1

can be similarly adjusted accordingly for linear models too. In the case of equally

spaced data Cρ reduces to the standard AR(1) correlation structure. In a similar

manner as in Section 3.4.1 and Section 3.4.2, the p-value P (F > tobs) can be

calculated as seen in (3.3). The same principles can be applied in order to adjust

the CVF-statistic for the correlated noise assumption. See also Section 3.8.2 for

a comparison between red noise and white noise Gaussian process regression for

simulated light curves with additive red noise.

3.6 P-value evaluation for generalised F-test

In this Section we will refer to more technical details regarding the implementation

of the above mentioned tests. Note that the corresponding statistics whose p-

values need to be generated, are of the general form

F =
ϵ̂⊤Aϵ̂

ϵ̂⊤Bϵ̂

where A and B are some symmetric matrices of the same dimension n depending

on the model and ϵ̂ represent i.i.d normal error components. For example, in

the case of the generalized F-statistic (3.2), A = I − M1 and B = M1. The

corresponding p-values for some observed value of statistics tobs is therefore

P (
ϵ̂⊤Aϵ̂

ϵ̂⊤Bϵ̂
> tobs) = P (ϵ̂⊤(A− tobsB)ϵ̂ > 0)
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Clearly, A− tobsB is symmetric but not necessarily positive definite, and as shown

in Kuonen (1999) [43]

P (ϵ̂⊤(A− tobsB)ϵ̂ > 0) = P (X =
l∑

i=1

λiχ
2
1 > 0)

Where, λi are the l ≤ n non-zero eigenvalues, not necessarily positive of (A−tobsB)

and χ2
1 stands for independent χ

2 random variables with 1 degree of freedom. Note

that the matrices A and B, when standard linear regression is used, have only two

possible eigenvalues: either 0 or 1. This leads to the ratio of two independent

chi-square components with n−m1 and m1 −m0 degrees of freedom respectively

which reduces to the standard F distribution (see Butler (2007) [14], p. 378). As

the distribution of X is not generally known in closed form, see Johnson et al.

(1995) [36], we need to evaluate these probabilities numerically. There are many

methods in the literature for approximating such probabilities, for example numer-

ical integration Imhof (1961) [34] or using the method of matching moments. The

moment generating function of the corresponding convolution X is known how-

ever and rather than performing the corresponding numerical Laplace inversion,

a practically convenient method that we adopt here is that based on saddlepoint

approximation as it is numerically efficient for the accuracy that we need to oper-

ate. Moreover, saddlepoint approximation has been successfully implemented in

many time series applications e.g. Paolella (2018) [51] and more recently in non

Euclidean statistics data like shapes and directions e.g. Kume et al. (2013) [41] or

Kume et al. (2005) [42]. We adopt the methodology that is suggested in Kuonen

(1999) [43] as our hypothesis testing methodology is also similar in nature.

3.6.1 Saddlepoint approximation

Saddlepoint approximation is an approximation method for evaluating a density

or a cumulative distribution function given the analytical expression of its moment

generating function or the cumulant generating function K and its derivatives K′

and K′′, see Butler (2007) [14] for more details. In fact, our focus here is on the
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CDFs, namely F (x) = P (X > x), or P (F > f) specifically for the F -statistic

case. Two popular approximations are available for these survival probabilities, as

suggested in Lugannani and Rice (1980) [46] and Barndorff-Nielsen (1990) [7]. In

particular, the approximation of Barndorff-Nielsen (1990) [7] for F̂ (x) is derived

as

F̂ (x) = 1− Φ{w +
1

w
log(

u

w
)} (3.13)

where Φ is the standard normal distribution, and w and u are given by:

w = sgn(ŝ)[2(ŝ−K(ŝ))]1/2, u = ŝ(K′′(ŝ))1/2

The saddlepoint solution is ŝ such that

K′(ŝ) = x (3.14)

In Johnson and Kotz (1995) [36] the authors provide details about normal quadratic

forms along with their cumulant function. In our case, we consider the quadratic

forms of zero mean normal variables. It can be shown that for some independent

random variables, Zi ∼ N(0, 1), the corresponding cumulant generating function

of the quadratic form
∑

λiZ
2
i is

K(s) = −1

2

∑
log(1− 2sλi) (3.15)

and

K′(s) =
∑ λi

1− 2sλi

and K′′(s) =
∑ 2λ2

i

(1− 2sλi)

As can be seen from the expression for K′, at s = 1/2λi this function is unbounded

and therefore the solution of ŝ should be carefully chosen. In particular, we have

found that the best strategy here is to look for the solution which is the nearest

to 0. This implies that the solution of the saddlepoint equation (3.14) can be

also negative. See Figure 3.3 as an example of the general behaviour of K′. Some

examples regarding the accuracy of saddlepoint approximation for our particular

problem can be found in Section 3.8.1.
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Figure 3.3: (Left) An example of the K′ function, we see that its behaviour
can be quite problematic making the choice of a suitable range to search for
the solution important. (Right) For the same example only the range from
the biggest negative to the smallest positive. The blue dashed line shows the

solution of the Saddlepoint equation which in this case is 0.2763643.

3.7 Power analysis

In this Section we will examine the performance of the proposed tests. In general

we are interested in minimizing type I and II errors. Type I error is the probability

to falsely identify a period as correct when no periodicity exists, or in other words

P (reject H0|H0 true). It is usually predetermined in our case, and it is the level

of significance α. Type II error is the probability to not identify a correct period ,

or P (Do not reject H0|H1 true) = β and 1−β is the power of the test, that is the

probability to identify a period as valid when the period is correct, and it is usually

denoted as γ. The higher the value of the power the better the performance of the

test.

3.7.1 Example 1: Weighted linear regression

We will estimate γ using simulated light curves with known periodicity at 2.4

days. We mentioned in Section 3.2 that in many cases the distribution of the F-

statistic (3.2) no longer follows a standard F distribution. One of these situations

is when weighted regression is used. As a first example here we will compare the

power for the generalized F-test to that of the standard F-test and to the approach
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described in Thieler et al. (2013) [63] when weighted linear regression is used. For

this example α will be set to 1 − 0.998. We will simulate 1000 sinusoidal light

curves with known period consisting of 200 data points for different signal to noise

ratios (SNR), SNR = var(y)/var(ϵ), starting from SNR = 0.1. The model used

to generate the data is given by (2.2) with g described by (2.11). These light

curves will be generated using the package RobPer (Thieler et al. (2016) [64]).

The results are shown in Figure 3.4 (Left) for the significance level α = 1− 0.998,

note that this level is chosen as the multiple tests correction for α = 0.05 and

30 repetitions according to Sidak (1967) [60]. We notice that the generalised F-

test outperforms the other two while closely followed by the standard F-test. Of

course the larger the SNR, the larger the power, meaning that the probability of

correct inference, which depends on the estimated p-values, gets larger as the SNR

increases.

In order to be able to include the testing approach introduced in Thieler et al.

(2013) [63], which we denote here as “RThieler”, for each generated light curve

we calculated the relevant periodgram for 196 trial periods ranging from 0.5 to 20

and used the RobPer package to calculate the relevant critical value. To obtain

a clearer view on the test’s performance we further calculate the average number

of periods identified as correct, for different signal to noise ratios. In this example

we are searching for periods from 0.5 to 10 days with 1 decimal accuracy. Note

that the simulated light curves were generated with only one actual period, and

thus extra periods detected are false positives. The results can be seen in Figure

3.4 (Right), in this plot the number of periods detected should be 1 and thus

deviations from that are an indication of poor performance. We also estimated

the probability of not rejecting the null hypothesis when it is true based on 1000

iterations of simulating purely noise data. For the chosen significance level this

probability was 0 for all three models. We can see that the generalized F-test

clearly outperforms the other two, with the standard F-test overestimating the

number of correct periods and the RThieler test underestimating it. Overall, from

this example we can conclude that using the generalized F-test when weighted
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Figure 3.4: (Left) Comparison of the power between the F-test with Saddle-
point approximation (Fsaddle), standard F-test (Ftest) and Theiler’s approach
(RThieler), for different signal to noise ratios. (Right) Comparison between the
average number of periods identified as correct for the three tests mentioned.
For each value of SNR 1000 curves with 200 data points were generated. The

significance level was set to α = 1− 0.998.

regression is used can improve the quality of our results compared to the other

two methods.

3.7.2 Example 2: Gaussian process regression

In Section 3.4.1 and Section 3.4.2 we discussed that the generalized F and CVF-

tests can be readily used for more complex models such as Gaussian process re-

gression. In this Section we simulate artificial light curves from a GPR model,

fit a Gaussian process regression and perform our tests in order to estimate their

power. For this example we borrow the sampling of a randomly selected real light

curve (object 3314 I from Froebrich et al. (2021) [24]). We generate our periodic

signal from a Gaussian prior using a periodic kernel as in (2.15) with period at

5.2 days, parameters h and A are set equal to 1. A typical example of the shape

of our simulated data can be seen in Figure 3.5 (Left). We generate light curves

for different signal to noise ratios, ranging from 0.01 to 8. The noise is generated

from a zero-mean Normal distribution. We estimate the power for each different

value of SNR based on 1000 repetitions. In Figure 3.5 (Right) we see the power of

the generalized F-test at a 1− α =99% significance level. We notice that the test
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performs very well with its power being estimated larger than 0.7 for even SNRs

as small as 0.5. For a SNR larger or equal to 1 the power is constantly estimated

close to 1.

To our knowledge there does not exist another test under the GPR setting to pose

as a comparison. We include in our plot the estimated power of the standard

F-test using a sinusoidal model, for the same simulated data, as a reference, ac-

knowledging that the comparison of these tests is not fair. The generalized F-test

performs a lot better than the standard F-test in this example as expected. We

performed the same analysis for the CVF-test too and obtained very similar results

to those obtained from the generalized F-test. In Table 3.1 we can see a compari-

son of the power of generalized F and CVF-tests for the same simulated data and

SNR fixed to 0.65. The power is calculated for different significance levels. Both

tests perform very well with their power estimated to be larger than 0.84 for a

significance level of 1 − α = 99.5% for example. Of course the larger the 1 − α

significance level the smaller the estimated power. We should note that the signif-

icance levels were chosen as multiple testing corrections according to Sidak (1967)

[60] and correspond to different numbers of tests (e.g. 1, 10, 100, 1000) that could

be conducted. We notice that the tests behave similarly with the CVF-test having

a slightly larger power in this particular example. Finally we also calculated the

probability of not rejecting the null hypothesis when the null hypothesis is true by

simulating purely noise data. In all cases the probability was larger than or equal

to 0.98 for our proposed tests and the same holds for when a linear model and the

standard F-test is applied.

Example 2

Here we show another example similar to the previous one, but this time we simu-

late data from a GPR model that are close to a sinusoidal shape. For this example

we borrow again the sampling of the same real light curve (object 3314 I from

Froebrich et al. (2021) [24]) and follow exactly the same procedure as described

before to generate a periodic signal at 5.2 days. A typical example of the shape
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Figure 3.5: (Left) A phased light curve generated from the GPR model with
period 5.2 days with SNR=6. This is a typical example of the shape of the light
curves generated. (Right) The estimated power of the GPR generalized F-test
of light curves generated for different SNR (red line). the green line shows the
power when the same analysis is perform using Monte Carlo and the dashed

line shows the power of the standard F-test for a sinusoidal based fitting.

Table 3.1: This table shows the estimated power(γ̂) and the estimated prob-
ability of not rejecting the null hypothesis when it is correct (1 − α̂) of the
generalized F and CVF-tests for different significance levels. The alternative
hypothesis here is a signal generated form the GPR model with period at 5.2

days.

γ̂ 1− α̂
1-sig. level F GPR CVF GPR F GPR CVF GPR

0.951/1 = 0.95 0.968 0.970 0.899 0.895
0.951/10 = 0.9948838 0.842 0.848 0.980 0.979
0.951/100 = 0.9994872 0.616 0.612 0.997 0.995
0.951/1000 = 0.9999487 0.352 0.354 1.000 0.999

of this simulated data can be seen in Figure 3.6 (Left). Similarly as before we

estimate the power and the results can be seen in Figure 3.6 (Right). We see that

the test performs very well with its power being estimated larger than 0.7 for even

SNRs as small as 0.5.

We include again the estimated power of the standard F-test and a sinusoidal

model. The tests in this example seem to perform similarly in terms of power with

the generalized F-test being slightly better. In Table 3.2 we can see a comparison

of the power of generalized F and CVF-tests similar to the previous example.

Again both tests perform well with their estimated power being larger than 0.92

for a significance level of 1 − α = 99.5% for example. We notice again that the
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Table 3.2: This table shows the estimated power (γ̂) of the generalized F and
CVF-tests for different significance levels.

sig. level F GPR CVF GPR

0.951/1 = 0.95 0.987 0.987
0.951/10 = 0.9948838 0.922 0.924
0.951/100 = 0.9994872 0.714 0.715
0.951/1000 = 0.9999487 0.439 0.446

tests behave similarly with the CVF-test having a slightly larger power in this

example too.

Figure 3.6: (Left) A phased light curve generated from the GPR model with
period 5.2 days with SNR=6. This is a typical example of the shape of the light
curves generated. (Right) The estimated power of the GPR generalized F-test
of light curves generated for different SNR (red line). The dashed line shows

the power of the standard F-test for a sinusoidal based fitting.

3.8 Further Numerical examples

3.8.1 Exploring the Saddlepoint approximation accuracy

In this subsection we will see some numerical examples in order to understand

further the behaviour of Saddlepoint approximation for the statistics proposed in

this paper. We will start by approximating the cumulative distribution function

(CDF) of the generalized F-statistic under the null hypothesis when the alterna-

tive is a periodic Gaussian process model. For this simulation the same kernel

parameters as those in Section 3.7.2 are used.
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Table 3.3: Time in seconds for 50 repetitions of the different methods.

Saddlepoint Imhof Monte Carlo Exact
GPR 16.30 17.56 774.90 –
OLS 0.79 1.24 4.10 0.02

Figure 3.7: (Left) An example of the ECDF and the saddlepoint approxi-
mation of the corresponding generalized F-statistic based on the RSS of White
Noise and GPR models. The green line that agrees with the saddlepoint ap-
proximation is the approximation based on the numerical integration method.

(Right) The same comparison of methods for the CVF-statistic of GPR.

In order to examine the performance of Saddlepoint approximation, we simulate

10000 values of the generalized F-statistic under the null hypothesis assumption

and calculate its empirical cumulative distribution function (ECDF), which we

compare with the CDF obtained by using Saddlepoint, see Figure 3.7 (Left). Sad-

dlepoint approximation gives results that are very close to the empirical CDF of

the statistic. In addition, we plot the CDF approximated using numerical inte-

gration according to Imhof (1961) [34] getting almost the same results with the

other approaches. The only difference is that Saddlepoint approximation is faster,

see more details at Table 3.3 for a time comparison between the methods. Note

that whenever we report ECDF values below we mean the empirical CDF of 10000

replications. Similar results have been produced for the saddlepoint approximation

of the CVF-statistic. In Figure 3.7 (Right) we see that the saddlepoint approx-

imation of CV F under the null hypothesis when GPR is used as the alternative

also works well.

The hypothesis testing proposed can be also used to model correlated background
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Figure 3.8: (Left) A comparison of the CDF of the F-statistic under the null
hypothesis of correlated noise for a light curve of 200 observations. The black
line shows the empirical CDF, the green line corresponds to Saddlepoint ap-
proximation and the red line is the asymptotic chi-square distribution. (Right)
A comparison of the CDF of F-statistic under the null hypothesis of correlated
noise for a light curve of 200 observations. Note that when the sample size is
very small the asymptotic result no longer holds but the saddlepoint method

approximated the CDF quite accurately.

noise and in many cases can perform better than standard asymptotic tests. In this

example we will compare the approximations of the CDF of the F-statistic under

the presence of AR(1) type noise and when the alternative is fitting a sinusoidal

model. Under this scenario the standard F-statistic can no longer be assumed

to follow an F (m1 − m0, n − m1) distribution, but there is an asymptotic result

(Hamilton (2020) [29]) based on chi-square distribution with m1 − m0 degrees

of freedom. In Figure 3.8 we compare the approximations of the CDF of the

F-statistic for two different scenarios based on the sample size. For a relatively

big sample size of 200 data points both the Saddlepoint approximation and the

asymptotic result are close to the empirical CDF. When the sample size gets

small however, as in Figure 3.8 (Right) with 20 data points, the asymptotic result

based on chi square no longer works well. The Saddlepoint on the other hand still

approximates the distribution quite accurately.
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Figure 3.9: (Left) Simulated light curve from GPR prior with period at 5.1
days. The sampling is borrowed from a real light curve and this shape is used
throughout the example of Table 1. (Right)he same simulated light curve folded

into period of 5.1 days.

3.8.2 Red noise vs White noise GPR model

In Section 3.5 we saw how our test statistics F and CV F can be adjusted when

our data are contaminated with red noise. Adjusting the models and tests to the

correct noise assumption can improve drastically our results. More specifically,

assuming a white noise model when the residuals are correlated can lead to periods

failing to be identified and also to an increased number of falsely detected periods.

As an example we will generate 100 light curves for 3 different correlated noise

scenarios (ρ = 0.1, 0.5, 0.9) with variance 1. The curves will be generated from a

Gaussian process prior with a periodic kernel with period at 5.1 days, A = 1 and

h = 1. The mean behaviour of the curves will be fixed for all curves in all scenarios

and it will be a realisation from the Gaussian process prior. We will borrow the

sampling times from a real light curve (object 6785 I from Froebrich et al. (2021)

[24]). A typical example of the simulated data used here can be seen in Figure

3.9. Note that the performance of the methods is not affected by the magnitude’s

scale.

For these simulated light curves we will fit a Gaussian process regression model

with a correlation structure Cρ for AR(1) errors (e.g. (3.11) but for equally spaced

time). For this example, we estimate the parameters by minimizing the equivalent

squared leave-one-out cross-validation error (3.5). We will search for potential
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Table 3.4: A comparison between the red and white noise Gaussian process
regression models fitted to red noise data. The columns labelled “correct peak”
show the percentage of the periodograms that had the maximum peak at correct
period p = 5.1. The columns labelled “false periods” show the average number

of periods falsely identified as valid.

GPR red noise GPR white noise
ρ correct peak false periods correct peak false periods
0.1 90% 1.34 33% 3.56
0.5 79% 0.88 25% 3.62
0.9 84% 1.20 44% 2.90

periods between 1 and 10 days with 1 decimal accuracy. Note that this particular

period search grid is chosen for computational convenience and it is selected in

order to contain the exact true period. For real applications it is preferable to

use the two-stage grid search method as seen in Wang et al. (2012) [72] and

Reimann (1994) [53], where some N periods are initially chosen corresponding to

the top N periodogram peaks based on a rough period grid, and then a finer period

search grid is applied around each of the N chosen periods from the previous step,

see also Section 2.5. The results obtained by the red noise model will also be

compared to those from the standard GPR model. We notice that for all three

scenarios the red noise GPR model most of the time has the maximum peak of

the F-statistic periodogram at the correct period, on the other hand, the white

noise model (standard GPR) most of the time fails to do so. These results are

summarized in Table 3.4 under the columns labelled as “correct peak”.

Furthermore, we apply the generalized F-test as described in Section (3.5) to all

simulated curves for a significance level 1− α set to 0.951/91 = 0.9994365. This is

the correction for multiple tests as seen in Sidak (1967) [60], 91 is the number of

tests conducted which is the number of trial periods in our case. Almost always

the correct period (at 5.1 days) was identified as significant (more than 99% of the

time). When the wrong model (white noise) was used however, we had an increased

number of false period discoveries compared to that of using the red noise GPR

model. Specifically, after performing our period detection test, in many cases other

periods, except for the true one, appeared to be falsely significant. These results
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are summarized in Table 3.4 under the columns labelled as “false periods”, where

we show the average number of periods falsely appearing to be significant, for each

simulation scenario.

3.9 General implementation notes

For the examples in this Section we used a very rough period grid of one decimal

accuracy. This grid is chosen for computational simplicity and it also shows us how

methods perform under relatively crude search schemes. In general it is advised

to follow the two stage period search method seen in Reimann (1994) [53] and

described in Section 3.8.2.

Another thing to note is that we selected our period grid homogeneously in the

range between 0.5 and 30 days. For this application we had prior knowledge

as to where the potential periods were, since they were studied in Froebrich et

al. (2021) [24], and so this approach is sensible as the results also showed. In

general applications however, when no prior information is available, it is preferable

to select periods in-homogeneously, by building a grid based on the equivalent

frequency range instead and ensure that short periods will not be missed.

3.10 Application to real light curves

In this Section we apply the methodology from the previous Sections to real light

curves. They are obtained as part of the Hunting Outbursting Young Stars Citizen

Science Project [23]. This project combines observational data from professional,

university and amateur observatories to construct long-term light curves of young

stars. By its very nature the project hence creates in-homogeneously sampled

light curves. The example objects investigated here are all situated in the Pelican

Nebula, a vast star forming region in Cygnus.
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Figure 3.10: (Left) Light curve number 6149. Each colour represents a differ-
ent filter. Black is for Infrared, red for Red filter, blue for Blue filter and green
for Visual. The error bars represent the measurement accuracies. (Right) Light

curve number 6149 folded in period 2.1763 days for different filters.

3.10.1 Example 1

We first investigate object number 6149 from Froebrich (2021) [24]. This object

belongs to the population of young stars in the Pelican Nebula and shows a clear

periodic behaviour in the four filters Blue (B), Visual (V), Red (R), and Infrared

(I). The period of the variations has been determined as 2.1763 d, from the median

of the periods in the individual filters (Froebrich et al. (2021) [24]). See Figure

3.10 where the light curve is plotted for the different filters against time and folded

in period 2.1763 days.

We first analyse the light curve independently for each filter, by fitting a weighted

Gaussian process model using the periodic kernel and assuming independent resid-

uals. In principle, light curves measured in different filters for the same star should

exhibit the same periodic behaviour, so if a method identifies the same period for

all filters it is a good sign that the correct period is detected.

The periodogram is obtained using F and CVF statistics, see Figure 3.11 (Left).

For this example we search for periods between 0.5 and 30 days with a very rough

grid of 1 decimal accuracy. We then apply sequentially the generalized F and CVF-

tests and identify in most cases the period at 2.2 days as the most important real

period. This is the period that corresponds to the maximum F-statistic value and a
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Figure 3.11: (Left) The weighted GPR F periodogram for light curve 6149
measured in the visual filter. With the red circle we mark the period identified
as important according to the generalized F-test. (Right) The weighted least
squares sine periodogram for the same light curve. The lines represent the
critical values (same for all trial periods) according to the Standard F-test and
the “RTheiler” approach, peaks above the lines are considered as important

periods.

significant p-value. We notice however, that for some filters the tests identify more

than one period as valid and in some cases as in filter R the tests fail to identify

any periods. We will further run the same analysis but this time assuming some

correlation structure for the residuals as described in Section 3.5. We see that

with these adjustments the generalized F and CVF-tests return as valid only one

period at 2.2 days. It is worth noticing that for filter R the tests identify also the

period at 2.2 days.

Next, for comparison, we analyse the light curve independently for each filter

again, by fitting a sinusoidal wave using weighted least squares regression (this is

the model described in Section 3.7.1). We obtain the periodogram based on the R2

statistic seen in Figure 3.11 (Right). We then proceed by performing the standard

F-test and Beta distribution based test as seen in Thieler et al. (2013) [63]. The

results for all methods and filters are summarized in Table 3.5. We can see that all

methods in most cases identify the most important period as 2.2. The standard

F-test seems to be overestimating the number of valid periods. All methods seem

to find as valid other periods than 2.2, with some exceptions for the GPR based

tests.
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Table 3.5: The period identified as most important from the various tests, for
different filters. The numbers in the parenthesis denote the number of other
periods identified as important from the tests. The dash represents the case

that a test did not identify any period as valid.

Filter F GPR CVF GPR F GPR red CVF GPR red F sine Thieler sine
B 2.2 (2 extra) 2.2 (2 extra) 2.2 (0 extra) 2.2 (0 extra) 2.2 (2 extra) -
R - - 2.2 (0 extra) 2.2 (0 extra) 2.2 (3 extra) 2.2 (1 extra)
I 2.2 (1 extra) 2.2 (1 extra) 2.2 (1 extra) 2.2 (1 extra) 2.2 (1 extra) 2.2 (1 extra)
V 2.2 (0 extra) 2.2 (0 extra) 4.3 (1 extra) 4.3 (1 extra) 2.2 (3 extra) 2.2 (1 extra)

Figure 3.12: (Left) Light curve number 3314. Black is for Infrared filter and
red for Red filter. The error bars represent the measurement accuracies. (Right)
Light curve number 3314 folded in period 13.8783 days for different filters.

3.10.2 Example 2

As a second example, we analyse object number 3314, measured in filter I and R

with a studied period at 13.8783 days, as seen in Froebrich (2021) [24]. See Figure

3.12 (Left) where the light curve is plotted for both filters and Figure 3.12 (Right)

where the light curve is folded in a 13.8783 day period.

Table 3.6: The period identified as most important from the tests in Example
2, for different R and I. In this case no other period was identified as important

from the tests (0 extra periods).

Filter F GPR CVF GPR F sine Thieler sine
R 13.9 (0 extra) 13.9 (0 extra) 13.9 (0 extra) 13.9 (0 extra)
I 13.9 (0 extra) 13.9 (0 extra) 13.9 (0 extra) 13.9 (0 extra)

Similarly to example 1 we apply all previous methods to both filters. The results

are summarized in Table 3. We see that for this particular example all methods

behaved in the same way. They all identified only one important period at 13.9
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days. In this example the red noise model was applied too returning the same

results and was excluded from the table for simplicity.

3.11 Summary

This Chapter dealt with the topic of period detection through hypothesis testing.

This approach is fairly standard when linear models and least squares regression

is used, as the distribution of common statistics such as F is known under the

null hypothesis of no periodic signal in the data. This problem gets more difficult

when more complex modelling schemes are implemented and the distribution of

the statistic used is not known. Usually this problem is addressed through compu-

tationally expensive simulations. The generalized F-statistic, however, introduced

in this Chapter is readily used for a series of models including weighted regression,

non iid noise settings such as AR(1) errors and non-parametric linear smoothers,

and is a faster and accurate alternative to Monte Carlo methods. Furthermore,

a test specifically designed for Gaussian process regression is introduced based on

the leave-one out cross-validation error, which could be also applied under red

noise settings.

Our simulations show that both tests perform better than the alternatives for the

weighted linear regression model when the sample size is relatively large. Further-

more, we see how both tests exhibit a large power under the Gaussian process

regression setting for data with signal to noise ration larger than 0.6. Examining

the behaviour of the tests under the presence of red noise showed that taking this

aspect of correlated errors into account, when present, can significantly reduce the

number of falsely detected periods. Finally, our tests were applied to two real light

curves and returned similar results to existing approaches.



Chapter 4

Extensions to Gaussian process

regression period estimation

methodology

4.1 Motivation

In Chapters 2 and 3 we discussed extensively the use of Gaussian process regression

(GPR) as a tool for period estimation. Although GPR is a very flexible model

that requires minimal assumptions, there are still attributes in the light curves

that may not be adequately captured. For example, as discussed in Section 2.2.2

and as suggested by some of the results in the period search study in Froebrich

et al. (2021) [24], it is common for our data to be contaminated with outliers, or

that the errors exhibit fatter tails than those assumed by a Normal distribution.

This behaviour could be attributed to many factors such as observational errors

or sudden changes in the star’s brightness unrelated to its overall underlying pe-

riodic signal. There have been several methods developed in the literature that

adapt the concept of robust regression to the problem of period estimation, see

for example Oh et al. (2004) [49], where the authors obtain their period estimates

through a Huber’s regression setting or Thieler et al. (2013) [63] where a combined

62
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methodology for different types of robust regression is provided. To our knowledge

however there has not been an equivalent method under the GPR setting.

Moreover as discussed in Chapter 1 light curves are usually measured in multiple

astronomical filters. There exist some methods in the literature for multiple filters

along the line of ordinary least squares but again no work has been done in order

to incorporate multiple filter measurements for Gaussian process models. Another

example is that of quasi periodic light curves. Data like these have periods or

shapes that change over time, see for example Figure 2.9 and 2.10 which display

such examples of simulated light curves. In order to effectively capture these effects

and get accurate period estimations there is a need for these GPR models to be

extended. This is the purpose of this Chapter and its outline is as follows.

In Section 4.2 we extend the flexibility of the GPR models by considering t-process

regression models instead in order to amend for possible outliers. Moreover, we

show the extension of this method in order to take measurement accuracies into

account in a form of a weighted t-process regression. The multiple filter extension

of these models is discussed in Section 4.3. The problem of quasi periodic data

is discussed in Section 4.4 where we build different spherical kernels capable of

capturing such behaviours. In Section 4.5 we adapt the hypothesis testing ideas

from Chapter 3 for these models and finally in Section 4.6 we apply these models

to two real light curves.

4.2 t-process regression period estimation

The aim of this Section is to provide tools for period estimation under the GPR

setting when the available data contain outliers. For that purpose we show here

how we can model our light curves using the t-process as a more robust approach

against data with fat tails. In Shah et al. (2014) [58] we see how the t-process can

be used as an alternative to the Gaussian process. According to the authors the

t-process works as well as the Gaussian process, only it is more flexible. There are

many non-parametric approaches for estimating the period of unequally spaced
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Figure 4.1: (Left) A sample from the distribution over priors from a t process
with a periodic kernel. (Right) Samples from the distribution over posteriors.
With the blue colour we denote samples from the t-process, with the red we
denote samples from the Gaussian process. We notice the wider range that the

former cover compared to the latter.

data as we saw in the previous Chapters. The most relevant work can be found

in Wang et al. (2012) [72] where the authors estimate the periods of light curves

using Gaussian process regression. Here we discuss the use of t-process regression

instead for this particular period estimation problem.

In order to get a first idea of the difference between Gaussian and t-process we

can look at Figure 4.1 (Right), where we can see samples from the posterior over

functions g. With blue colour we denote samples from the t-process and with red

samples from the Gaussian process. We notice how much wider the range of the

functions is in the first case. This is something we would expect because of the

fat tail behaviour of the t-distribution. In Figure 4.1 (Left) we see samples from

a t-process with the periodic kernel (2.15). An equivalent plot for the Gaussian

process can be seen in Section 2.2.3 Figure 2.5 for example.

4.2.1 Definition of the t-process

In Shah et al. (2014) [58] we see how we can derive the student t-process from

a Gaussian process by placing an inverse Wishart process prior to the covariance
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function K. We can write for a process with mean zero:

y|σI ∼ GP (0, (ν − 2)σI)

σI ∼ IWP (ν,K)

where with ν > 2 we denote the degrees of freedom. The inverse Wishart distri-

bution is a conjugate prior for the covariance matrix of a Gaussian distribution.

So σ can be marginalized and thus we can assume that our observations follow a

Multivariate t distribution, y ∼ MTV (0, ν,K) with the pdf,

P (y) =
Γ(ν+n

2
)

((ν − 2)π)n/2
|K|−1/2

(
1 +

yTK−1y

ν − 2

)− ν+n
2

Note that the multivariate t distribution is consistent under marginalization, mean-

ing that conditioning on a subset of components of an n dimensional t will result

in a t distribution. This property is useful in performing t-process regression and

deriving the distribution of our fitted values or predicted values.

In most real life examples our observations will be contaminated with some noise

with variance σ2. For a given data set with n observations and a matrix X with

the independent variables, we can assume our observations y follow a multivariate

t and we can write,

y ∼ MV T (0, ν,K+ σ2I)

Now if we want to predict the behaviour of g for some n1 predictive values X∗

we can find the predictive distribution for the predicted values g∗, which is still

a multivariate t because it is consistent under marginalization. The conditional

distribution of our predictive values is

g∗|X,y,X∗ ∼ MV T (ḡ∗, ν + n1, cov(g
∗))

ḡ∗ = K(X∗,X)[K(X,X) + σ2I]−1y

cov(g∗) = [K(X∗,X∗)−K(X∗,X)(K(X,X) + σ2I)−1K(X,X∗)]B
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B =
ν − 2 + yT (K+ σ2I)−1y

ν + n1 − 2

It is straightforward to obtain the distribution of the fitted values as well. We just

need to replaceX∗ withX and of course n1 is n which is the number of observations

in our data set. For more details on t-process regression see Chen et al. (2020)

[16]. Note that the mean is of the same form as that of the Gaussian process

regression fitted distribution. The actual values however will be different since we

obtain the parameter estimates by maximizing different marginal likelihoods. The

marginal log likelihood has the closed form seen below:

logP (y|ν,K) = −1

2
log
(
|K+ σ2I|

)
− ν + n

2
log(1 +

yT (K+ σ2I)−1y

2
) + S (4.1)

S = −n

2
log((ν − 2)π) + log(

Γ(ν+n
2
)

Γ(ν/2)
)

4.2.2 Period estimation

In the previous Section we saw that we can obtain estimations for our parameters

by maximizing the marginal likelihood. Here our primary interest is on the pa-

rameter p, the period. Similar to the GPR setting we can introduce periodicity in

our model through the choice of the Kernel which can be, for example, the com-

mon periodic kernel (2.15). Maximizing the marginal likelihood of the t-process

with respect to p is a non trivial task as also seen for the other models, because it

exhibits numerous local maxima. In Figure 4.2 (Left) we see an example of how

the marginal likelihood (4.3) looks for different values of p.

For this reason we obtain our period estimate by following the two grid procedure

described in Section 3.8.2. Given a trial period of the grid, we estimate the rest

of the parameters which in our case include the kernel parameters A and h, the

variance σ2 and the degrees of freedom ν. For a given period the likelihood is a

smooth function of parameters A, h and σ, see for example Figure 4.2 (Right). In

this case p̂ = argmax logP (y|ν,K), but we can also build a t-process regression

periodogram using the generalized F statistic introduced in Section 3.2 by following
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Figure 4.2: (Left) Example of the t process marginal likelihood with only the
period varying. Notice the numerous local maxima. (Right) Example of the
t process marginal likelihood with the parameters for the degrees of freedom
and smoothness varying. Given the period the form of the likelihood becomes

smoother.

exactly the same steps seen there, the only difference is that matrix M1 will be

calculated using the parameters obtained from the t-process likelihood.

4.2.3 Taking the measurement accuracies into account

It is very common in data like light curves to have also measurement errors si =

1/wi for each observation. If this type of information is reliable, it can improve

significantly our results. If that is the case we should like to be able to take them

into account in the setting of t-process regression too. This can be done with

the use of a weighted t-process regression. Under the general weighted regression

setting our basic model from (2.1) can be written as wiyi = g(ti)wi + ϵi where

with wi we denote the weights. This can be further written as yi = g(ti) + ϵi/wi.

The error component is usually assumed to be a white noise and in most settings

follows a Gaussian distribution of the form ϵi ∼ N(0, σnI). In our case however

the errors follow a t distribution as seen below.
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We can start by defining the simplest case for a matrix Q containing the weights

as seen in (2.18). We observe that since ϵ ∼ MV T (0, ν, σnI), then Q−1ϵ ∼

MV T (0, ν,Q−2σ2I). Given this observation we can assume the following model

for our observed values y,

y ∼ MV T (0, ν,K+Q−2σ2I)

Under this setting the predictive distribution (and similarly the fitted distribution)

is of the following form

g∗|X,y,X∗ ∼ MV T (ḡ∗, ν + n1, cov(g
∗)) (4.2)

ḡ∗ = K(X∗,X)[K(X,X) +Q−2σ2I]−1y

cov(g∗) = [K(X∗,X∗)−K(X∗,X)(K(X,X) +Q−2σ2I)−1K(X,X∗)]B

B =
ν − 2 + yT (K+Q−2σ2I)−1y

ν + n1 − 2

Similarly as in the t-process case we can obtain our periodogram only this time

we maximize the marginal likelihood of the weighted t-process, as seen below, in

order to obtain the estimates of the parameters and consequently the periodogram

entries.

logP (y|ν,K) = −1

2
log(|K+Q−2σ2I|)− ν + n

2
log(1 +

yT (K+Q−2σ2I)−1y

2
) + S

(4.3)

S = −n

2
log((ν − 2)π) + log

(
Γ(ν+n

2
)

Γ(ν/2)

)
The period is estimated in exactly the same way as described in Section 4.2.2.

4.3 Multiple filter extension

In Chapter 1 we saw that each star can be measured in multiple astronomical filters

or bands, as they are sometimes referred to, see for example Figure 1.2 (Top) where

object 5686 from Froebrich et al. (2021) [24] is measured in six different filters. In
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general, as we discussed in previous Sections, a star should have the same period

in all filters it has been measured in. Thus, it makes sense to try to model the

magnitude in all filters together instead of modelling them independently as seen

in this thesis so far. Little work has been done in the literature towards that

end. One example can be found in Vanderplas and Ivezic (2015) [67], where the

authors introduce a generalized version of the Lomb-Scargle periodogram extended

to incorporate measurements in multiple filters. This method lies within the OLS

framework, where a harmonic model as the one seen in (2.11) is assumed with

additional dummy variables corresponding to each filter. To our knowledge, no

work has been done in order to extend the Gaussian process model for multiple

filters. In the next Sections we show a multiple-filter extension of the GPR model

and a more generalized version of that based on weighted t-process regression.

4.3.1 Multiband GPR model

Here we show how the GPR model (2.16) can be extended to include multiple

filters measurements. We will follow the same idea of using dummy variables for

each filter as seen in Vanderplas and Ivezic (2015) [67]. Specifically we augment

our dataset with as many dummy variables as the available filters. We denote

these new variables as dm, m = 1, 2, ...,M where M is the number of available

filters. By definition dmj
= 1 if our jth observation was measured in the mth filter

and 0 otherwise. We can thus represent our dependent variables by a matrix X of

N ×M + 1 dimensionality:

X =


t1 d11 . . . dM1

t2 d12 . . . dM2

...
...

...

tN d1N . . . dMN

 (4.4)

where N is the number of all observations combined from all filters.

We can write our multiple-filter GPR model along the same lines as in Section

2.2.3, and we will refer to this model as the multiband GPR model. In this case
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the estimated values of g, which is of length N now, will be assumed to follow a

multivariate Normal distribution,

ĝ ∼ N(Wy,K−WK) (4.5)

Here K is an N ×N covariance matrix whose entries are obtained as

Kjk = A exp

(
−2 sin2(

π

p
|X[j,] −X[k,]|)/h2

)
j, k = 1, 2, . . . , N (4.6)

with X[j,] we denote the jth row of the standardized matrix X. The mean and

variance of 4.5 are given by equations 2.16 in Section 2.2.3. Note that in this case

y will also be of length N as it will include the magnitudes observed in all filters.

We can estimate the multiband GPR model’s parameters including the period

p, which is of primal interest, by maximizing the marginal likelihood (3.12) or

by minimizing the leave-one-out cross validation error (3.5) following the dou-

ble grid procedure described in Section 3.8.2. Furthermore, we can also build a

multiband GPR periodogram using the generalized F or CVF statistics given by

equations (3.2) and (3.9) respectively which allow us to perform the hypothesis

testing scheme we described in the previous Chapter. For more details on the

Hypothesis test under this setting see Section 3.4.1.

As an example we simulate a light curve measured in three filters from the GPR

model with the same periodicity p = 5.2 across filters, but assuming a different

shape for each filter. We borrow the sampling (i.e. the observation times) of a

real light curved measured in the Infrared, Red and Visual filter (object 7159 from

Froebrich et al. (2021) [24]). This simulated light curve can be seen in Figure

4.3 (Top left), note that for illustration purposes we used here a signal to noise

ratio equal to 2. The multiband GPR periodogram based on the generalized F

statistic can be seen in Figure 4.3 (Top right). For comparison reasons we also

show the equivalent GPR periodogram for each filter individually (see Figure 4.3

(Bottom line)). Note that in this example we obtained the same results from the
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Figure 4.3: (Top left) Simulated light curve from a GPR model for three
filters. (Top right) The multiband GPR periodogram for this simulated light

curve. (Bottom line) The GPR periodogram for each filter individually.

multi-filter method as those for individual filters which is expected since we had

the same amount of data for each filter and the SNR was quite high.

4.3.2 Multiband weighted tPR model

In Section 4.2.2 we discussed how the period of fat-tailed data could be modelled by

moving from the Gaussian Process to the t-Process regression model. Furthermore,

an extension of the GPR model for data from multiple filters was provided in

Section 4.3.1. Here these two approaches are combined and we show a more

generalized version of the Multiband GPR model (4.5). The new model we discuss

here is the multiple filter extension of the weighted t process regression (4.2) we

saw in Section 4.2.3, and we will refer to it as the Multiband weighted tPR model.

We follow the same idea as seen in the previous Section for the multiband GPR

model and augment our dataset byM dummy variables. In this case the estimated
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ĝ values will be given by the following multivariate t distribution,

ĝ ∼ MV T (Wy, ν +N, (K−WK)B) (4.7)

where,

W = K[K+Q−2σ2I]−1, B =
ν − 2 + yT (K+Q−2σ2I)−1y

ν +N − 2

K is calculated as seen in the previous Section as (4.6) and Q is given by (2.18).

Note that both these two matrices are of N × N dimension in this case. We can

estimate the parameters by maximizing the marginal likelihood (4.3) as seen in

Section 4.2.3.

Again we can use the generalized F statistic to build a multiband weighted tPR

periodogram as discussed in the previous Section, we can see an example of it in

Figure 4.4 (Top right). This periodogram was calculated for a simulated light curve

with period at 5.2 days measured in the Red and Infrared filter. The simulated

data can be seen in Figure 4.4 (Top left), in order to generate them we borrowed

the sampling from object 3314 form Froebrich et al. (2021) [24], the signal was

generated from a weighted t-process and the weights were assumed to follow a

Gamma distribution, Γ(3, 10). For comparison reasons we also calculated the

weighted tPR periodograms for each filter individually, see Figure 4.4 (Bottom

line). In this example we notice that although the multiband tPR periodogram

has its maximum peak at the correct period, it also has some relatively high peaks

for other periods too that are not correct. The individual periodograms however

do not exhibit the same behaviour. This is an example where modelling all the

filters together acts like adding extra noise to the data. This problem could be

avoided however if instead of the kernel (4.6), we used the summation of two

separate kernels, one for the time points and one for the filter dummy variables.

By doing so we enforce the penalization of data coming from different filters. This

extension is not explored further here however and it is left as part of future work.
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Figure 4.4: (Top left) A simulated light curve from the weighted tPR model
for two filters. The error bars correspond to the measurement accuracies. (Top
right) The weighted tPR periodogram for this light curve. (Bottom) Individual

weighted tPR periodograms for each filter.

4.4 Periodic and quasi periodic kernels

We are aiming to estimate the periods of light curves. So far we have worked solely

with the periodic kernel (2.15) which first appeared in Mackay (1998) [47]. When

using this kernel we make specific assumptions regarding the expected behaviour

of the curve that we are investigating. Apart from smoothness we also assume

that our curve is strictly periodic, meaning that the same shape is repeated at

period p. This assumption however might not be always realistic. There are many

examples of data exhibiting quasi periodic behaviours; maybe the shape changes

every period, or the period changes with time, ect. We would like to be able to

take that into account when estimating the periods of light curves. In this Section

we see examples of kernels that can incorporate quasi periodic attributes like these.
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4.4.1 The periodic kernel

In this Section we will examine closely the periodic kernel of (2.15). Specifically we

show how we can obtain this particular kernel. In Mackay (1998) [47] and Williams

(2006) [39] we see how the periodic kernel is obtained by projecting our data points

to a circle using the stationary squared exponential kernel. This procedure just

described is referred to in the literature as Warping or Embedding. It is usually

used to introduce non-stationarity by introducing an arbitrary non linear mapping

(or warping) u(x) of the input x (that is the time t inside the kernel function in

our case) and then use a stationary covariance function in u-space, x and u need

not have the same dimensionality.

In general, given any kernel K(uj, uk), we can introduce an arbitrary non-linear

mapping x → u(x) and define a new kernel

D(xj, xk) = K(u(xj),u(xk)), j, k = 1, ..., n

To begin with given the SE kernel

K(xj, xk) = exp(−1

2

|xj − xk|2

h2
) (4.8)

where | · |2 denotes the L2 norm, and by introducing the mapping to the circle

u(x) = (cos(x), sin(x)) we obtain the desired kernel (2.15). We define cos(x)

here as a vector with elements given by cos(xj) (similarly for sine). As we see in

this case the one-dimensional x is mapped to a higher dimensional space (2D).

See Figure 4.5 for more details regarding the mapping and the behaviour of the

resulting covariance function. We notice that points integer times a period apart

will return the same kernel value.

Calculations

In order to obtain the periodic kernel we use the SE kernel and project the x inputs

to the circle. We start with the SE kernel given by (4.8). Using the projection
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Figure 4.5: (Left) Projecting x to u = (cos(x), sin(x)) resulting in a circle.
(Right) The periodic kernel for different values of x and period π.

u = (cos(x), sin(x)) we write the SE as

D(xj, xk) = exp

(
−1

2

|u(xj)− u(xk)|2

h2

)

Taking the norm we get,

|u(xj)− u(xk)|2 = (cos(xj)− cos(xk))
2 + (sin(xj)− sin(xk))

2

= 1 + 1− 2(cos(xj) cos(xk) + sin(xj) sin(xk)) =

= 2− 2 cos(xj − xk)

Taking into account that cos(2θ) = 1− 2 sin2 θ, θ =
xj−xk

2

|u(xj)− u(xk)|2 = 4 sin2(
xj − xk

2
)

Replacing this into equation (4.8) this results in the desired form of the periodic

kernel

D(xj, xk) = exp

(
−1

2

4 sin2((xj − xk)/2)

h2

)
Note that for simplicity in the above calculations we assumed the period to be

equal to 2π. The kernel in its general form can be seen below:

D(xj, xk) = exp

(
−2 sin2((π/p)(xj − xk))

h2

)
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4.4.2 The cylinder kernel

As described at the beginning of this Chapter, sometimes the data can deviate from

the strict periodic pattern captured by the periodic kernel (2.15). In this Section

we describe a kernel that models periodic data whose shape changes with time.

We can obtain many kernels with periodic behaviour and different characteristics

by following the procedure described above but projecting to different spaces. In

this Section we will study the resulting kernel when we warp our data around the

cylinder as seen in Figure 4.6. The idea is similar as before, we use the SE kernel

as seen at (4.8) and project our input to the cylinder u = (cos(x), sin(x),x) and

this results in the following kernel.

K(xj, xk) = exp

(
−2 sin2((π/p)(xj − xk))

h2

)
· exp

(
−1

2

|xj − xk|2

h2

)
(4.9)

Notice that this is exactly the same kernel we would obtain if we multiply the SE

with the periodic one (since multiplication of two kernels results in a kernel, see

details in Williams and Rasmussen (2006) [73]). The calculations can be found at

the end of this Section. In Duvenaud et al. (2013) [20] the authors refer to this

particular kernel as “local periodic” in the sense that we still fit periodic functions

but we allow their shape to change. This can be quite useful in real life applications

where our data is not perfect and although the main periodic behaviour remains

the same the actual shape of the curve can change.

From the geometric point of view, in the previous example where we projected

to the circle, for every period a circle is completed, meaning that points passing

through the same phase will return identical values no matter how many periods

apart they are. When warping around the cylinder, on the other hand, we allow

points periods apart to have different values. So when it comes to samples drawn

from a prior using this kernel the periodic behaviour will be stable meaning that

peaks and dips will appear with period p but the shape of the functions will exhibit

different behaviour with time. For more details see Figure 4.7.
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Figure 4.6: (Left) Projecting x to u(x) = (cos(x), sin(x),x) resulting in a
cylinder. (Right) The periodic kernel for different values of x and period π.

Figure 4.7: (Left) Samples from the GP prior with the cylinder kernel. (Right)
Samples from the GP prior with the SE+PER kernel.

This should not be confused with the kernel obtained by adding the SE and the

periodic one. The difference between this and the SE+PER, is that the latter can

be viewed as the noisy version of the periodic one allowing for departures from

the strictly periodic kernel, resulting in a more flexible fitting. The shape of the

curve under this setting does not change over time, we just allow small deviations

from it. A discussion regarding the use of this kernel for the problem of period

estimation in light curves can be found in Angus et al. (2018) [4], the authors

refer to it as the “quasi periodic” kernel.
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Calculations

In order to obtain the cylinder kernel we use the SE kernel and project the x

inputs to the cylinder. We start with the SE as seen in 4.8, and use the projection

u(x) = (cos(x), sin(x),x). Taking the norm,

|u(xj)− u(xk)|2 = (cos(xj)− cos(xk))
2 + (sin(xj)− sin(xk))

2 + (xj − xk)
2 =

= 2− 2 cos(xj − xk) + (xj − xk)
2 = 4 sin2(

xj − xk

2
) + (xj − xk)

2

Replacing this into the SE we get,

D(xj, xk) = exp

(
−1

2
(
4 sin2(

xj−xk

2
)

h2
+

|xj − xk|2

h2
)

)

And for the general periodic case we can write,

D(xj, xk) = exp

(
−2 sin2((π/p)(xj − xk))

h2

)
· exp

(
−1

2

|xj − xk|2

h2

)

4.4.3 The spiral kernel

Following the same idea and adapting a different warping we will show how a kernel

that allows the period to change over time can be obtained. For that purpose we

will wrap our inputs around the spiral as seen in Figure 4.8 (Left). As previously

we will use as base the SE kernel and use the projection u(x) = (cos(x)x, sin(x)x)

in order to obtain the following kernel

K(xj, xk) = exp

(
−2xjxk sin

2((π/p)(xj − xk))

h2

)
· exp

(
−1

2

|xj − xk|2

h2

)

We notice that the resulting kernel is very similar to the cylinder one except for

the periodic part being multiplied by the term xjxk. The calculations can be seen

at the end of this Section. The xjxk term changes according to the actual location

in time scale of the two points so data integer multiples of phases apart will not

have the same correlation (as opposed to the periodic kernel for example). In
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Figure 4.8: (Left) Projecting x to u(x) = (cos(x)x, sin(x)x) resulting in a
spiral. (Right) Samples from the GP prior with the Spiral kernel.

Figure 4.9: (Left) Spiral kernel from point of view 1. (Right) Spiral kernel
from point of view 2.

Figure 4.8 (Right) we see examples of priors drawn from the spiral kernel. This

kernel allows both the period and the shape to change with time. This results in a

quite complicated shape which might not be ideal for period estimation but might

be useful for modelling other types of data. We won’t pursue the exploration of

applications of this kernel further in this thesis and we will leave it as part of a

future work.

Calculations

In order to obtain the spiral kernel we use the SE kernel and project the x inputs

to the spiral. We start with the SE as seen in 4.8, and use the projection u(x) =
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(cos(x)x, sin(x)x). Taking the norm we get,

|u(xj)− u(xk)|2 = (cos(xj)xj − cos(xk)xk)
2 + (sin(xj)xj − sin(xk)xk)

2 =

= x2
j(cos

2(xj)+sin2(xj))+x2
k(cos

2(xk)+sin2(xk))−2xjxk(cos(xj) cos(xk)+sin(xj) sin(xk)) =

(xj−xk)
2+2xjxk(1−(cos(xj) cos(xk)+sin(xj) sin(xk))) = (xj−xk)

2+4xjxk sin
2(
xj − xk

2
)

Replacing this into the SE we get,

D(xj, xk) = exp

(
−1

2
(
4xjxk sin

2(
xj−xk

2
)

h2
+

(xj − xk)
2

h2
)

)

Which for the general periodic case has the form,

D(xj, xk) = exp

(
−2xjxk sin

2((π/p)(xj − xk))

h2

)
· exp

(
−1

2

|xj − xk|2

h2

)

4.5 Applications of generalized F and CVF-tests

In Chapter 3 we discussed the importance of having a reliable statistical testing

order to decide if the period estimated is true or if there is no periodic signal in

the data. Furthermore, we introduced the generalized F-test (3.2) and CVF-test

(3.9) in order to address the problem of period detection when Gaussian process

regression is used to model the data. In this Section we show how these tests can

be used in exactly the same way for period detection when t-process regression is

used, and also a different application of these tests as tools for appropriate kernel

selection.

4.5.1 Period detection

In Section 3.4.1 we saw how the generalized F-test can be used under the GPR

setting. The matrix M1 represented the alternative hypothesis, that of a periodic

signal from a Gaussian process, and depends on W (2.16). This holds exactly
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in the same way when tPR is used instead, as the mean for the two models is

given by the same equation (2.16). Numerically however, the matrix W will be

different for the two models, since the parameters were estimated by maximizing

a different likelihood. Here we perform the same hypothesis testing analysis for

the tPR model as described in the previous Chapter. Note however that in order

for the methodology to be applied in Chapter 3 the generalized F statistic was

assumed to be a Normal Quadratic form under the null hypothesis. In order to

make use of the same test here, we make the same assumption for the errors under

the null hypothesis although in reality they follow a student t distribution. We

acknowledge that this can lead to less accurate results especially for small degrees

of freedom ν and we will investigate the true distribution of the generalized F-

statistic under the student t setting as part of a future work. With that in mind

we report this hypothesis testing analysis as described in the previous Chapter, and

see that we obtain reasonable results even for the hardest case of data generated

with ν = 3 degrees of freedom. Note that as ν → ∞ the t-process is equivalent to

the Gaussian process and this is the reason we refer to the case of three degrees

of freedom as being the ”hardest” scenario for this example.

In order to assess the tests’ performance under the t-process setting we conduct

an extensive power analysis and draw comparisons between the GPR and tPR

models. To begin with, we simulate artificial light curves as seen in Section 3.7.2

with a known period at 5.2 days and their shape generated by a t-process with

3 degrees of freedom and the periodic kernel (2.15). We estimate the power for

a series of different signal to noise ratios based on 100 light curves for each SNR

value.

The results are reported in Figure 4.10 (Left). For each set of light curves we fit

both a tPR (red line) and a GPR (blue line) model, and the power is calculated at a

1-0.999 significance level. The generalized F-test seems to perform well under both

settings with the tPR model seeming to perform slightly better for SNR < 0.3. In

Figure 4.10 (Right) we perform exactly the same analysis only the simulated data

are generated from a GPR model this time. We notice the same behaviour with

the models being almost identical in this case.
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Table 4.1: Percentage of times the Gaussian process or t process marginal
likelihood had their highest peak at the correct period. The columns show the

model used and the rows the type of simulated data.

Fit
Data Gaussian process t process
Gaussian 91% 91%
t 73% 81%

Having such similar performance is to be expected since the GPR model is a special

case of the tPR and the errors under the null hypothesis were assumed to be normal

in both cases, that is why they were almost identical for the Gaussian process data.

The fact that the generalized F-test performed very well for both settings does not

mean that there is no practical use for the tPR model. The tPR model is more

flexible and it can provide us in some cases with more accurate results compared

to GPR, for example. As shown in Table 4.1 we notice exactly that. For this

example we simulate 100 light curves from a t-process with 3 degrees of freedom

and 100 light curves from a Gaussian process. We fit to the two data sets both

a GPR and a tPR model and we obtain the parameter estimates by maximizing

the corresponding marginal likelihood. In principle the likelihood should obtain

its maximum value for a period close to the true one. In this example we use

a very crude period grid that contains the true value, while the rest of the grid

periods are quite away from the correct one, forcing the likelihood to obtain its

maximum value for the period at 5.2 days. In this table we show the percentage

of light curves whose corresponding likelihoods had their maximum value at the

correct period. We notice that when the data come from a Gaussian process we

have the same amount of periods correctly identified for both models. When the

data come from a t-process however we see that the number of correctly identified

periods is higher when the tPR model is used instead of the GPR.

4.5.2 Period detection under the multiband setting

As discussed in Section 4.3 we can use the generalized F and CVF statistics in

order to build a periodogram. In a similar manner as described in the previous
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Figure 4.10: (Left) The estimated power of the generalized F-test for sim-
ulated light curves generated by a t-process with 3 degrees of freedom. The
red line shows the power when fitting a t-process, while the blue line shows the
power when fitting a Gaussian process. (Right) The same analysis, only the

simulated data are produced by a Gaussian process.

Section we can perform hypothesis tests to decide whether our periodogram peaks

represent a valid period or not under this multiple filter setting. The generalized

F statistic (3.2) is readily used exactly as seen in Section 3.4.1. Under this setting

the matrix M1 representing the multiband GPR model will be calculated as M1 =

(I−W)⊤(I−W) with W being an N ×N matrix and calculated as described in

Section 2.2.3. For the null hypothesis we need a model that assumes a different

mean for each filter. This model will be represented by the matrix M0 = I −

X0(X0
⊤X0)

−1X0
⊤, where X0 is an N ×M + 1 matrix:

X0 =


1 d11 . . . dM1

1 d12 . . . dM2

...
...

...

1 d1N . . . dMN


After calculating the matrices M0 and M1 we can perform our hypothesis test in

exactly the same way as described in Chapter 3.

Here we assess the performance of the generalized F-test under the multiband

GPR setting through a detailed power analysis. We simulate artificial light curves

measured in three filters for different signal to noise ratios and we borrow the
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sampling from the real light curves 7159, measured in the Visual, Red and Infrared

filters from Froebrich et al. (2021) [24]. For each filter we generate our signal from

a GP with common period at 5.2 days. Each filter is assumed to have a different

shape. We estimate the power of the test by generating 100 light curves for each

SNR and we fit to each data set the multiband GPR model. The results can be

seen in Figure 4.11 (Left), the power of the multiband GPR test is denoted by

the blue line. For comparison reasons we include in this plot the power of fitting

a GPR model individually for each filter (red, green and black lines). Note that

in this Figure the starting value of SNR is 0.1. We notice that the power of the

multiband GPR model is higher than the power obtained individually for each

filter for SNRs smaller than 0.6. After that the performance of the tests is the

same and consistently equal to 1.

To complete our analysis we estimate also the probability of the opposite cor-

rect inference, meaning the probability of not rejecting H0 when H0 is correct.

We calculate first this probability by generating purely noise data and fitting the

multiband GPR model to them for different variances and testing against different

periods, in all cases it was estimated to be larger than 0.98. Note that this prob-

ability is different if there is a periodic signal in our data but we test against the

wrong period. In this case the estimated 1−α probability is high for periods away

from the correct one or integer multiples of it. These results are summarized in

Figure 4.11 (Right) where we see the estimated 1−α probability for the multiband

GPR model (blue line) and the equivalent probabilities for each individual filter.

In this case we notice that the results for the multiband GPR model are close to

the other lines and perhaps in most cases we get values somewhere in the middle.

Thus, from this power analysis we see that the multiband GPR model works well

and it can potentially generate better results from those obtained individually for

each filter. Note that this analysis is conducted for a significance level α = 1−0.99.



85

Figure 4.11: (Left) The estimated power of the multiband GPR generalized F-
test (blue line) for different signal to noise ratios. The red line corresponds to the
power of the red filter individually using a GPRmodel. Similarly the black line is
for the infrared and the green for the visual. (Right) The estimated probability

of the opposite correct inference when testing against different periods.

4.5.3 Kernel selection

In Section 4.4 we saw that by assuming different periodic kernels we can model

different attributes that our data potentially exhibit. It would be useful thus to

be able to decide which kernel is more suitable to describe our light curves. In

this Section we show how the generalized F and CVF-tests can be used in order

to choose between kernels. The general idea here is that we want to compare two

different periodic models. In other words,

H0 : M0 model with strict periodic signal at p

vs (4.10)

H1 : M1 model with quasi periodic signal at p

Under this setting the generalized F statistic is given by (3.2). The matrix M0

which represents the null hypothesis can be derived here from the GPR model with

the periodic kernel (2.15) and it would be calculated as (I−W0)
⊤(I−W0), where

W0 is given by (2.16). For the alternative hypothesis we will have a similar matrix

but it will dependent on a different kernel, the cylinder one (4.9) for example. We
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can write M1 = (I−W1)
⊤(I−W1), where W1 is the same as W from (2.16) but

for a different kernel. The rest of the hypothesis testing procedure is exactly the

same as described in Chapter 3.

We examine the performance of the generalized F-test as a kernel selection tool by

performing the following simulation study. First we generate light curves from a

GPR model and the periodic kernel (2.15) for different signal to noise ratios. We

estimate the power of the F-test against the GPR model with the cylinder (4.9)

and quasi periodic kernel. For each SNR we simulate 100 light curves, the period

in all cases is fixed and equal to 5.2. The results are summarized in Figure 4.12

(Left). We notice that the power is larger than 0.8 in both cases for SNR > 0.75

which means that the test indeed allows us to select the correct kernel. Moreover,

we notice that the power when testing against the cylinder kernel is slightly higher

than when testing against the quasi periodic kernel.

Finally, as a second example we generate data from the GPR model but with

the cylinder kernel. We perform the same analysis as described in the previous

paragraph but we test against the periodic and the quasi periodic kernel in this

case. The results can be found in Figure 4.12 (Right). In this case the power for

both kernels is slightly lower than that seen in the Left panel of the figure. The

estimated power is still high however and larger than 0.8 for SNRs larger than 1.

Again we can see that the test allows us to select the correct kernel in most cases.

Note that for these examples we borrowed the sampling from the real light curve

7159 measured in the Infrared filter from Froebrich et al. (2021) [24] and the tests

were performed for a significance level equal to 0.01.

4.6 Application to real light curves

In this Section we apply the models described in Chapter 4 to two real light curves.

For comparison reasons we select the same light curves as the ones used in Chapter

3 and analysed in Section 3.10.
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Figure 4.12: (Left) The estimated power of the generalized F-test as a kernel
selection tool for light curves generated from a periodic kernel. The black line
shows the power when we fit the cylinder kernel and the green is for the quasi
periodic kernel. (Right) The same analysis, only the simulated data are gen-
erated from the cylinder kernel. The blue line corresponds to the power when

fitting the periodic kernel.

4.6.1 Example 1

We begin with light curve 6149 from Froebrich et al. (2021) [24] with a studied

period at 2.1763 days. More details on this dataset can be found in Section 3.10

along with its plot, see Figure 3.10. Here we calculate the weighted t-process

periodogram based on the F-statistic individually for each filter and for three

different kernels, namely the Periodic, cylinder and quasi periodic. We choose

again the same rough grid as in the previous Chapter searching for periods between

0.5 to 30 days and 1 decimal accuracy. Moreover, we perform the equivalent

hypothesis testing for all trial periods and a significance level given by α = 1 −

0.951/q, where q = 296 is the number of trial periods. The results are summarized

in Table 4.2. We notice that in almost all cases we found as the most dominant

period that at 2.2 days, so the choice of kernel did not affect the results in that

sense with the exception of the cylinder kernel which indicated as correct the period

at 2.6 days for the Blue filter. Moreover we see that in most cases we obtain

less extra detected periods compared to the methods described in the previous

Chapter. Finally, the multiband GPR model with no weights and the multiband
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Table 4.2: The period identified as most important for light curve 6149. In
the parenthesis we see the number of extra periods identified as valid. The dash

symbolizes no periods identified.

Filter F tPR per F tPR cyl F tPR quasi mult GPR mult tPR
B 2.2 (2 extra) 2.6 (1 extra) 2.2 (2 extra) 10.9 (1 extra) 2.2 (6 extra)
R – – –
I 2.2 (1 extra) 2.2 (0 extra) 2.2 (1 extra)
V 2.2 (0 extra) 2.2 (0 extra) 2.2 (1 extra)

weighted tPR model are calculated for all filters. These results are found under

the columns “mult GPR” and “mult tPR” respectively in Table 4.2. We see that

for this dataset the multiband periodograms do not perform very well. In the

case of the multiband GPR with no weights we fail completely to identify the

correct period. Note however that this is the only method where we did not use

the measurement accuracies (in order to use the model exactly as introduced in

Section 4.3.1) which is part of the reason this method did not perform as well

as the rest. In the case of the multiband weighted tPR we have a lot more false

positives compared to the other methods, but the correct period is identified as

the most important.

Table 4.3: This table shows the period identified as most important for the
3314 light curve. In the parenthesis we see the number of further periods iden-

tified as correct.

Filter F tPR F tPR cyl F tPR quas mult GPR mult tPR
R 13.9 (0 extra) 12.5 (0 extra) 13.9 (0 extra) 13.8 (2 extra) 13.9 (1 extra)
I 13.9 (0 extra) 16.2 (0 extra) 13.9 (0 extra)

4.6.2 Example 2

Here we examine our second real light curve, object 3314 from Froebrich et al.

(2021) [24] with period at 13.8783 days. More details and a plot of the curve can

be found in Section 3.10. We perform exactly the same analysis as described in

the previous Section and the results can be found in Table 4.3.
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We notice that the weighted t-process method with the periodic and quasi periodic

kernel identified as valid only one period at 13.9 days similarly to the results

from the previous Chapter. When the cylinder kernel is used however we identify

different periods for each filter. Because of its large deviation from the period at

13.8783 days in this example we see that using the cylinder kernel might not be

an appropriate choice. In situations, however, where no prior information about

the dataset is available, we should apply the hypothesis test described in Section

4.5.3 in order to decide which kernel choice seems to describe the data better. The

mutiband GPR and weighted tPR periodograms are also calculated and in this

example return similar results to the other methods.

4.7 Summary

The Gaussian process regression model has been used in the literature for estimat-

ing the period of light curves making fewer assumptions about the data compared

to linear regression models. In this Chapter we described an extension to the

GPR method based on the t-process regression, which provided more robust re-

sults (compared to GPR) in the case of fat-tailed data. We saw how the generalised

test introduced in Chapter 3 can be approximately used under the t-process set-

ting too. Our simulations showed that the estimated power of the test is larger

that 0.8 for signal to noise ratios over 0.6 even for a t-process with 3 degrees of

freedom. When applied to the two light curves studied in this thesis we obtained

identical results to GPR.

An extension to modelling simultaneously observations from multiple filters in also

considered both for the Gaussian and t processes regression models. After a small

modification the generalized F-test can be also used under this mutiband setting.

According to our simulation the test performs satisfactorily with a larger power

compared to performing the analysis separately for each test. When applied to the

real data however this method overall performed less well compared to the other

approaches and possible solutions relating to kernel adjusting were discussed.
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Finally, we studied the case of non strictly periodic data and we saw that we can

model different periodic patterns by choosing different kernels. The generalised

F-test was used under this setting as a kernel selection tool. Our simulation results

show that this test successfully selects the correct kernel for signal to noise ratios

larger than 0.9. When applied to the real data the quasi periodic kernel returned

almost the same results with the periodic. The cylinder kernel however seemed to

perform better for the first light curve (by identifying less false positive periods)

but returned quite different results for the second one.



Chapter 5

On the asymptotic properties of

frequency estimates

5.1 Introduction

In the previous Chapters we discussed how to estimate the frequency parameter

ω through different model assumptions and optimization techniques, and ways

to decide if our estimate represents a true periodic signal. In this Chapter we

will explore the asymptotic properties of some frequency estimates considered in

this thesis and explore at a more technical level some approaches for modelling

unequally-spaced time series. As we saw in Chapter 2 the most common approach

in frequency estimation (and light curve modelling) is by assuming a sinusoidal

shape for the underlying signal and so the focus of this Chapter will mostly revolve

around this model and its extensions.

We consider initially the simplest sinusoidal model as seen in Section 2.2.1 and

represented by (2.11). For this model the time observations arrive at regular inter-

vals. This model has been studied in the literature extensively, and the asymptotic

properties have been provided. In Walker (1971) [71] for example the authors show

that the estimate obtained by approximating the classical periodogram with least

squares is asymptotically normal and converges to the true parameter at an n2/3

91
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rate. Note that the convergence rate shows us how fast the difference ω̂ − ω goes

to zero as the sample size increases. Furthermore, its asymptotic variance for

normally distributed errors is given by:

24σ2

a2 + b2
(5.1)

where, a and b are the coefficients of the simple sinusoidal model (2.4) first intro-

duced in Chapter 2. A key thing to note about this result is that it assumes equally

spaced observations. The data considered here however are unequally-spaced, and

as explained in Section 2.2, this can affect our estimates. For this reason there is

a need to develop models that can capture this behaviour. The first step towards

that end is to assume an appropriate model for the time sampling. Here we will

mostly discuss the jittered sampling model introduced in Beutler (1970) [10] and

given by tj = j + δj, where δj is a random variable following a known h(·) distri-

bution with zero mean. This model assumes that the time observations come at

equal intervals, jittered with additional small disturbances δj. Alternative models

include the cumulative sum of some positive continuous variables or an ordered

uniform sample on [0, s], these are models M1 and M2 introduced in Hall et al.

(2000) [27].

For the problem of frequency estimation, the model given by

yj = a cos(ωtj) + b sin(ωtj) + ϵj, ϵj ∼ g(0, σ2) (5.2)

tj = j + δj j = 1, . . . , n

has been considered in Reimann (1994) [53] and it was studied in great depth.

For this model the distribution g(·) of the residuals is considered known. In that

work, the author first studies the periodogram estimate of frequency which is the

maximizer of (2.7), and shows that periodogram estimates α, β, ω are obtained by

minimizing the following modified residual sum of squares:

Un(a, b, ω) =
n∑

j=1

y2j − 2
n∑

j=1

yj{a cos(ωtj) + b sin(ωtj)}+
1

2
n(a2 + b2)
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Furthermore, they prove that the periodogram estimate is asymptotically equiv-

alent to the least squares one, for ω bounded away from 0 and π, and equally-

spaced data, by showing that the difference between Un and RSS is uniformly

O(1). Moreover, the author shows that under certain regularity conditions the

asymptotic variance of the periodogram frequency estimate for unequally-spaced

data is larger than that for equally-spaced ones since it is affected by the sampling

as seen below:

n3/2ω̂ → N(ω,
24σ2

a2 + b2
+ 6[1− |ϕ(2ω)|2]) (5.3)

where ϕ is the characteristic function of h defined as:

ϕ(x) = E[eixδ]

and thus the variance depends on the time point sampling distribution. The

maximum likelihood estimate on the other hand does not get affected by the time

distribution and the asymptotic variance is the same as that of equally spaced data,

given by (5.1). Note that in model 5.2 there are two types of errors introduced. The

first type is denoted by ϵj and it is the classical residual error, which we will refer

to as “observational errors” throughout this thesis. The second type is denoted

by δj and it corresponds to the deviations from the equally-spaced sampling, in

order to avoid confusion we will refer to that as “measurement errors”.

In the following Sections we consider extensions of the jittered sinusoidal model

(5.2). In Section 5.2 we extend this model assuming residuals with red noise and

show the relevant asymptotic results. Moreover, we discuss additional technical

details of our results in Section 5.3 and consider additional useful extensions to

model (5.2). We assess our results through an extensive simulation study in Section

5.4.In Section 5.5 we demonstrate a simple application of the generalized F-test

for linear models with correlated residuals. Finally, we apply our models to two

real light curves in Section 5.6.
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5.2 Frequency estimation of light curves with

red noise

As discussed in previous Chapters, it is common in Astronomy (and other fields)

for the data to be contaminated with red noise. In Section 3.8.2 we saw an example

of how failing to account for the red noise can lead to false inference. In this Section

we extend the jittered sinusoidal model (5.2) to include correlated residuals and

we explore the asymptotic properties of the corresponding frequency MLE.

In Section 3.5 we mentioned that red noise is the equivalent of fitting an AR(1)

model to the errors when the data are sampled regularly. Since our observations

are irregularly sampled, assuming a correlation structure for our errors that takes

into account this irregularity in sampling might be a more realistic approach. With

this in mind we consider the following model,

yj = α cos(ωtj) + β sin(ωtj) + ϵtj , j = 1, . . . , n (5.4)

ϵtj = ρ|tj−tj−1|ϵtj−1
+ ũj, ũj ∼ g(0, σ21− ρ2|tj−tj−1|

1− ρ2
)

tj = j + δj, δj ∼ h(·)

where ρ corresponds to the correlation between two data points and it takes values

in the interval (−1, 1). In this model the error dependence is seen as a decreasing

function of time difference, and we will refer to it as the red noise jittered sinusoidal

model. We can view the second line of the above model as an AR(1) process where

not all entries have been observed. In order to understand this better, assume a

hypothetical series of observational errors ϵj consisting of J > n entries containing

the values observed at equal spaces spanning from our first to our last actual

observation. These hypothetical errors can be written as an AR(1) process as seen

below.

ϵj = ρϵj−1 + uj, uj ∼ g(0, σ2)
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and for k > 0, the observational errors, as seen in Paolella (2018) [51], can be

written as:

ϵj =
∞∑
i=0

ρiuj−i = uj + ρuj−1 + ...+ ρkuj−k + ...

which we can further write as,

= uj + ...+ ρk−1uj−k−1 + ρk
∞∑
i=0

ρiuj−k−i =
k−1∑
i=0

ρiuj−i + ρk
∞∑
i=0

ρiuj−k−i

If we denote ũj =
∑k−1

i=0 ρ
iuj−i then we can write

ϵj = ρkϵj−k + ũj

which gives us the relation between two errors k times apart. This for our problem

translates as the distance between two consecutively observed time points, e.g. k =

|tj−tj−1|. Thus, we can write the relation between two consecutive observed errors

as ϵtj−1
= ρ|tj−tj−1|ϵtj−1

+ ũj as seen in (5.4). If we further, denote qj =
1−ρ2|tj−tj−1|

1−ρ2

then, uj = q
−1/2
j ũj ∼ N(0, σ2). The pdf of our data will be of the following form:

fj(xj, θ) = g(q
−1/2
j ũj)h(tj − j) = (5.5)

g(q
−1/2
j {yj−α cos(ωtj)−β sin(ωtj)−ρ|tj−tj−1|(yj−1−α cos(ωtj−1)−β sin(ωtj−1))})h(tj−j)

In order to perform inference we need to estimate parameters θ = (α, β, ω), this

can be done by maximizing the log-likelihood of the model (5.4) for our data

xj = (yj, tj) which is given by

log
n∏

j=1

fj(xj, θ)

Note that because of the imposed structure on our observation times, our ob-

servations depend on each other via the ϵj correlations, and of course time is a

randomly distributed variable, we cannot apply the standard MLE asymptotic re-

sults. Under certain regularity conditions, it can be shown that the ML estimate of

the frequency parameter ω̂, for this noise setting, is consistent and asymptotically
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normal and converges to the true parameter at an O(n−2/3) rate. This is the same

convergence rate as for the iid model (5.2) as shown in Reimann (1994) [53]. The

main result is stated formally below in the form of a theorem.

Theorem 5.1. For the red noise jittered sinusoidal model (5.4) it can be shown

that under the following regularity conditions, and for a2 + b2 ̸= 0, ω ̸= κπ where

κ ∈ Z, θ̂ is consistent and asymptotically normal with mean θ = (α, β, ω) and

covariance matrix

Cov(N1/2(θ̂ − θ)) = (1− ρ2)−1k−1
p 2I−1Γ−1

where N = diag[n, n, n3] , I =
∫
g′(u)2 1

g(u)
du,

Γ =


1 0 b

2

0 1 −a
2

b
2

−a
2

a2+b2

3


and,

kp = E(
1

1− ρ2|δ1−δ2+1| ) + E(
ρ2|δ1−δ2+1|

1− ρ2|δ1−δ2+1| )− 2 cos(ω)E(
ρ|δ1−δ2+1|

1− ρ2|δ1−δ2+1| ) (5.6)

Conditions:

(1) for r > 0 :

∫
|g

′

g
(u)|2+rg(u)du < ∞ ,

∫ (
∂2

∂u2
g1/2(u)

)2

du < ∞

(2)

∀η > 0, sup|t|>η|ϕ(t)| < 1

Proof. In order to prove Theorem 5.1 we will use Theorem III 4.1 in Ibragimov

and Has’Minski (2013) [33], p.191. which states that: The maximum likelihood

estimator θ̂ of some observations xj with pdf fj(x, θ) depending on j, is asymp-

totically normal with variance Ψ−2
n when the four conditions (A)-(D) in Reimann

(1994) [53] page 42 are satisfied. Note that conditions (A)-(D) are also formally
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stated in Appendix A.1. Condition (C) is related to condition (1) from Theorem

5.1, which is a restriction where we only consider smooth likelihoods, and condi-

tions (B) and (D) are connected with condition (2) which prevents the RSS from

being as small as for the true frequency at multiples of ω.

Here Ψ2
n =

∑n
j=1 Ij(θ), is the information of the first n observations, and it must

be positive definite. We will show that these conditions are met, following closely

Reimann (1994) [53], but for the red noise setting. (Note that we only show in

detail the steps that are different to those in Reimann’s proof.)

Fisher’s information matrix Ij(θ) is given by:

Ij(θ) = E

[(
∂

∂θ
log fj(xj; θ)

)2

|θ

]
= E

( ∂
∂θ
fj(xj; θ)

fj(xj; θ)

)2

|θ

 =

∫ [
∂

∂θ
fj(xj; θ)

] [
∂

∂θ
fj(xj; θ)

]T
dxj

fj(xj; θ)
=

=

∫
C

dxj

fj(xj; θ)

In order to obtain the entries of matrix C we calculate the partial derivatives of

fj as seen below:

A =
∂

∂a
fj(xj, θ) = g′(u)(− cos(ωtj) + ρ|tj−tj−1| cos(ωtj−1))h(tj − j)

1− ρ2

1− ρ2|tj−tj−1|

B =
∂

∂b
fj(xj, θ) = g′(u)(− sin(ωtj) + ρ|tj−tj−1| sin(ωtj−1))h(tj − j)

1− ρ2

1− ρ2|tj−tj−1|

C =
∂

∂ω
fj(xj, θ) = (a sin(ωtj)tj−b cos(ωtj)tj−aρ|tj−tj−1| sin(ωtj−1)tj−1+bρ cos(ωtj−1)tj−1)×

g′(u)h(tj − j)
1− ρ2

1− ρ2|tj−tj−1|

Thus C is given by:

C = g′(u)2h(tj − j)2


A2 AB AC

∗ B2 BC

∗ ∗ C2


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Fisher’s information then can be written as

Ij(θ) =

∫
g′(u)2h2(tj−j)C̃

dxj

g(u)h(tj − j)
=

∫ ∫
g′(u)2

g(u)
C̃h(tj−j)dudt =

∫
g′(u)2

g(u)
duE[C̃] =

= IE[C̃]

Finally, the matrix Ψ2 will be of the following form:

Ψ2
n = kp(1− ρ2)

I

2


n+O(1) O(1) b

2
n2 +O(n)

∗ n+O(1) −a
2
n2 +O(n)

∗ ∗ a2+b2

3
n3 +O(n2)



= kp(1− ρ2)
I

2
N1/2

{
Γ+O(n−1)

}
N1/2

The first entry of matrix Ψ2
n is calculated as:

Ψ2
[1,1] = I(1− ρ2)

n∑
j=1

{E(
ρ2|tj−tj−1| cos2(ωtj−1)

1− ρ2|tj−tj−1|
) + E(

cos2(ωtj)

1− ρ2|tj−tj−1|
)−

−E(
2ρ|tj−tj−1| cos(ωtj) cos(ωtj−1)

1− ρ2|tj−tj−1|
)}

=
I

2
(1− ρ2)

n∑
j=1

{E(
ρ2|δ1−δ2+1|

1− ρ2|δ1−δ2+1| ) + cos(2ω(j − 1))E(
ρ2|δ1−δ2+1|

1− ρ2|δ1−δ2+1| cos(2ωδ))+

+E(
1

1− ρ2|δ1−δ2+1| ) + cos(2ωj)E(
1

1− ρ2|δ1−δ2+1| cos(2ωδ))−

−2 cos(ω)E(
ρ|δ1−δ2+1|

1− ρ2|δ1−δ2+1| )− cos(2ω(j − 1))E(
ρ|δ1−δ2+1|

1− ρ2|δ1−δ2+1| cos(δ1 + δ2))}

=
I

2
(1− ρ2)nkp +O(1)

We calculate in a similar manner the rest of the entries. For a2 + b2 ̸= 0 and

ω ̸= κπ, Ψn is positive definite, so we can write:

Ψ−2
n = k−1

p (1− ρ2)−12I−1N−1/2
{
Γ−1 +O(n−1)

}
N−1/2
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The square roots of the above matrices are of the following form:

Ψn =

√
I√
2
k1/2
p (1− ρ2)1/2N1/4{Γ1/2 +O(n−1)}N1/4

Ψ−1
n =

√
2√
I
k−1/2
p (1− ρ2)−1/2N−1/4{Γ−1/2 +O(n−1)}N−1/4

After obtaining these four matrices it can be shown by following Reimann (1994)

[53] that conditions (A)-(D) are satisfied. Thus Theorem III from Ibragimov and

Has’Minskii (2013) [33] can be applied and that concludes the proof. Conditions

(A)-(D) are formally stated in Appendix A.1.

Discussion

Note that the bounds on α, β and ω are needed in order to ensure uniformity

of convergence. At this stage it is important to note that Theorem 5.1 does not

make specific assumptions about the distributions g and h of the observational

and measurement errors respectively. Regarding the latter, the only requirement

is that h is a zero mean distribution. While this gives us some flexibility regarding

the distribution of the δj’s, it results in an asymptotic variance depending on kp

which is not in a closed form.

A common choice for the distribution h is to use Uniform. In Reimann (1994)

[53] for example, the author generates artificial light curve sampling using the

jittered model and assumed that δ ∼ U(−1/6, 1/6). This particular choice of the

parameters of the Uniform was made in order to reflect the fact that observations

are usually made at night time. We can show that if we specify the distribution

of the measurement errors δj’s to be a U(−d, d), d < 1/2, we can write kp in a

closed form as seen below.

kp = 1 +
ln(1−ρ−4d+2

1−ρ4d+2 )

8d ln(ρ)
− 2 cos(ω)

ln( (1+ρ2d+1)(1−ρ−2d+1)
(1−ρ2d+1)(1+ρ−2d+1)

)

8d ln(ρ)
(5.7)
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We obtain this result by conducting the following calculations.

E(
1

1− ρ2|δ1−δ2+1| ) =
1

4d

∫ 2d+1

−2d+1

1

1− ρ2x
dx =

1

8d ln ρ

∫ ρ4d+2

ρ−4d+2

1

u(1− u)
du =, u = ρ2x

= 1 +
ln(1−ρ−4d+2

1−ρ4d+2 )

8d ln ρ
(5.8)

E(
ρ2|δ1−δ2+1|

1− ρ2|δ1−δ2+1| ) = E(
1

1− ρ2|δ1−δ2+1| )− 1 (5.9)

E(
ρ|δ1−δ2+1|

1− ρ2|δ1−δ2+1| ) =
1

4d

∫ 2d+1

−2d+1

ρx

1− ρ2x
dx =

1

4d ln ρ

∫ 2d+1

ρ−2d+1

1

1− v2
dv =, v = ρx

=
ln( (1+ρ2d+1)(1−ρ−2d+1)

(1−ρ2d+1)(1+ρ−2d+1)
)

8d ln(ρ)
(5.10)

By combining equations (5.8), (5.9) and (5.10) we obtain the closed form for kp

as seen in (5.7).

Moreover, if we select the distribution of observational errors g to be a Normal with

zero mean and variance σ2 we can obtained a more simplified result. Specifically

for the frequency estimate, when the errors are normally distributed, we have:

n3/2ω̂ → N(n3/2ω,
24σ2

α2 + β2
(1− ρ2)−1k−1

p ) (5.11)

This is the same variance as for the jittered model in (5.2) shown in Reimann

(1994) [53] re-scaled by 1/kp(1 − ρ2), depending on the correlation parameter,

frequency and also on the sampling of the data through parameter d.

5.2.1 Sinusoidal model with AR(1) residuals

In this Section we consider a simpler version of the red noise jittered sinusoidal

model that could be useful in some applications. Specifically, we assume that

although the time points are unequally-spaced the corresponding observational

errors are not and can be sufficiently modelled by an autoregressive process at lag

1. In other words, under this setting we assume that the correlations between the
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errors are the same regardless of the time spacings. This model is given below and

we will refer to it as the AR(1) jittered sinusoidal model.

yj = α cos(ωtj) + β sin(ωtj) + ϵj, j = 1, . . . , n (5.12)

ϵj = ρϵj−1 + uj, uj ∼ g(0, σ2)

tj = j + δj, δj ∼ h(·)

It can be easily shown that this model is a special case of the red noise jittered

sinusoidal model (5.4). If we assume that the difference in sampling does not affect

the relation between the observational errors then the second line of model (5.4)

collapses to the second line of model (5.12). Under this setting we can estimate

our parameters in a similar way as seen previously by maximizing the likelihood

of our model. The pdf of our data xj in this case will be of the following form,

fj(xj, θ) = g(ϵj − ρϵj−1)h(tj − j) = (5.13)

= g(yj − α cos(ωtj)− β sin(ωtj)− ρ(yj−1 − α cos(ωtj−1)− β sin(ωtj−1)))h(tj − j)

which is clearly a special case of the jittered red noise pdf (5.5) when ρ|tj−tj−1| = ρ1.

It can be easily shown that a similar asymptotic result to Theorem 5.1 holds for

the estimated parameters under this setting. The details are formally stated in

the following corollary.

Corollary 5.2. For the AR(1) jittered sinusoidal model described in (5.12) it can

be shown that under the regularity conditions (1)-(2) stated in Theorem 5.1, and

for the same parameter restrictions, θ̂ is consistent and asymptotically normal with

mean θ = (α, β, ω) and covariance matrix

Cov(N1/2(θ̂ − θ)) = k−12I−1Γ−1
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where k = 1 + ρ2 − 2ρ cos(ω), N = diag[n, n, n3] , I =
∫
g′(u)2 1

g(u)
du and

Γ =


1 0 b

2

0 1 −a
2

b
2

−a
2

a2+b2

3



Discussion

This result is very similar to the one for the general case only simpler since the

asymptotic variance now does not depend on the sampling. Details on the proof

can be found in Appendix A.2. Note that again we do not specify completely

the distributions h and g and we get a closed form for the variance without the

additional assumption that the measurement errors follow a Uniform distribution.

Similarly to before, if we choose g to be a normal we get the following result for

the frequency parameter which is of primal interest.

n3/2ω̂ → N(n3/2ω,
24σ2

α2 + β2
(1 + ρ2 − 2ρ cos(ω))−1) (5.14)

The asymptotic variance of the frequency estimate depends on both the frequency

and the correlation of the residuals. Note that if our errors are iid, ρ is zero and

thus the variance from (5.14) reduces to the variance for the iid model as seen in

Reimann (1994) [53].

The effect of frequency is more dramatic and values of ω close to κπ, κ ∈ Z result

to extreme variances. See for example Figure 5.1 (Left). In order to understand

better how changes in ρ and ω affect the asymptotic variance see Figure 5.1 (Right).

In this picture we show how
√
k =

√
1 + ρ2 − 2ρ cos(ω) changes when varying the

angle ω and radius ρ. For example
√
k gets larger when changing the angle from

π/4 (black colour) to 3π/4 (blue colour), and thus in this example the variance

decreases. Similarly if we change the radius from 0.5 (black colour) to 0.8 (red)

the variance again gets smaller.
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Figure 5.1: (Left) The variance of the jittered AR1 model for varying values
of ρ and ω. (Right) A visual example as to how changes in frequency and

correlation can affect our variance.

5.3 General remarks

5.3.1 About the asymptotic term O(1) in the proofs

From Theorem 5.1 we saw that ω̂ converges to the true parameter at an O(n−3/2)

rate. A key part of the equivalent proof was to show that,

n∑
j=1

(E[cos(2ωδ)] cos(2ωj)− E[sin(2ωδ)] sin(2ωj)) = O(1) (5.15)

In this Section we provide a brief explanation as to why equation (5.15) holds.

In simple words this means that the summation above is bound by a constant

regardless of how big n is. We start by examining the expectations E[cos(2ωδ)]

and E[sin(2ωδ)] that do not depend on the sample size anyway. They are both

expectations of transformations of variable δ which as we saw before is assumed

to have zero mean. Since δ is centred around zero 2ωδ will be also centred around

zero. This means that the expectation of sin(2ωδ) will be zero by symmetry, or in

other words E[sin(2ωδ)] = 0.

To understand this better we can look at Figure 5.2 (Left), that shows the unit

circle defined by cos(2ωδ) (x-axis) and sin(2ωδ) (y-axis). For this example we
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Figure 5.2: (Left) Example using the unit circle for the expectation of
sin(2ωδ). (Right) An example of the unit circle. The red dots show the values

of cos(ω) for ω = 0, π, 2π, ...

assume δ to follow a Uniform distribution, specifically δ ∼ U(−1/6, 1/6). We

generate 100 points and the frequency is taken equal to 0.5. The red dots in the

plot on top of the unit circle correspond to the data points (cos(2 · 0.5δj), sin(2 ·

0.5δj)), j = 1, ..., 100. The dashed lines show the projections of some of these

points on the y-sine axis. We can see that the data points are equally spread

around zero, that means that their mean will be zero.

Since E[sin(2ωδ)] = 0, that means we only have to focus on the first part of the

summation. E[cos(2ωδ)] is a constant that does not depend on n, so we just have

to show that
∑n

j=1 cos(2ωj) does not depend on the sample size. We use

n∑
j=1

cos(2ωj) =
sin(nω)

sin(ω)
cos(ω(n+ 1))

so that,
n∑

j=1

E[cos(2ωδ)] cos(2ωj) = E[cos(2ωδ)]
n∑

j=1

cos(2ωj)

= E[cos(2ωδ)]
sin(nω)

sin(ω)
cos(ω(n+ 1)) = c sin(nω) cos(ω(n+ 1))
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where c = E[cos(2ωδ)]/ sin(ω) is a constant and since the quantity sin(nω) cos(ω(n+

1)) is at most 1 we can write,

n∑
j=1

E[cos(2ωδ)] cos(2ωj) ≤ c or,
n∑

j=1

E[cos(2ωδ)] cos(2ωj) = O(1)

.

5.3.2 Further extensions

The main structure of the jittered sinusoidal model is quite simple and that could

be restrictive in real applications when other models are preferred. For example

as discussed in Section 2.2.1 a simple harmonic model with an additional inter-

cept term is widely used. Moreover, in astronomy is common to have additional

information regarding the accuracy of the measurements, which is usually taken

into account in the form of a weighted regression. Of course these are only but a

few examples of potential alterations for model (5.2) that one could apply. In this

Section we will show that an equivalent asymptotic result to the one discussed in

Section 5.2 holds for these two examples too.

Model with intercept

We consider the jittered sinusoidal model seen in Reimann (1994) [53] but with

an additional intercept term.

yj = c+ α cos(ωtj) + β sin(ωtj) + ϵj, j = 1, . . . , n (5.16)

tj = j + δj

The pdf for our xj data can be written similarly in the following way,

fj(xj, θ) = g(yj − c− α cos(ωtj)− β sin(ωtj))h(tj − j) (5.17)
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and we can show that exactly the same asymptotic result as seen in Reimann

(1994) [53] holds under this setting too. Here we have an extra parameter to

estimate and we can denote our new parameter vector as θ = (a, b, c, ω). The

result is summarized in the following Theorem.

Theorem 5.3. For the jittered sinusoidal model with the intercept term (5.16) it

can be shown that under the regularity conditions (1)-(2) and the same parameter

restrictions as seen in Theorem 5.1, θ̂ is consistent and asymptotically normal with

mean θ and covariance matrix

Cov(N1/2(θ̂ − θ)) = 2I−1Γ−1
c

where N = diag[n, n, n3] , I =
∫
g′(u)2 1

g(u)
du and

Γc =


2 0 0 0

0 1 0 b
2

0 0 1 −a
2

0 b
2

−a
2

a2+b2

3



The specifics of the proof can be found in Appendix A.3. Note that the matrix

Γc includes the matrix Γ as seen in Reimann (1994) [53]. Specifically for the

frequency estimate, when the errors are normally distributed, we have :

n3/2ω̂ → N(n3/2ω,
24σ2

α2 + β2
)

Which is the same variance we obtained for the frequency for the model without the

intercept term. Note, that from these calculations it is easy to see that Theorem

5.1 holds even if we include the intercept term in the red noise jittered sinusoidal

model (5.4).
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Model with weights

We can take the measurement accuracies sj into account in the form of some

known weights, which we will denote as qj = 1/sj. Under this setting the jittered

model (5.2) can be written as:

qjyj = qjα cos(ωtj) + qjβ sin(ωtj) + ϵj, j = 1, . . . , n (5.18)

tj = j + δj

Hence we have the following pdf for our xj data

fj(xj, θ) = g(qjyj − qjα cos(ωtj)− qjβ sin(ωtj))h(tj − j) (5.19)

Theorem 5.4. For the weighted jittered model described in (5.18) it can be shown

that under the same regularity conditions (1)-(2) and the same parameter restric-

tions, θ̂ is consistent and asymptotically normal with mean θ and covariance matrix

Cov(N1/2(θ̂ − θ)) = k−12I−1Γ−1

where, k =
∑n

j=1 g
2
j

The proof can be found in Appendix A.4. Again, for the frequency estimate, when

the measurement errors are normally distributed, we have:

n3/2ω̂ → N(n3/2ω,
24σ2

α2 + β2
k−1)

This is the same variance as for the jittered model (5.2) multiplied by the sum of

squared weights. Larger weights are an indication of data that we trust more and

a smaller variance, or the other way around.
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5.4 Simulations

In this Section we provide numerical evidence that the main asymptotic results

stated in (5.14) and (5.11) for the red noise models indeed hold. For that purpose

we perform an extensive simulation study for both models and report our findings

in the following Sections.

5.4.1 Light curves with AR(1) residuals

We begin with the result for the jittered sinusoidal model with AR(1) errors. We

generate light curves from model (5.12) for different combinations of the frequency

ω and the residuals’ correlation ρ. Specifically, we choose for ω the values 2.4π

and 1.1π, and for ρ the values 0.1, 0.5, 0.9. In addition to that, we allow the

sample size n to vary too and we show the results for light curves of length 50, 100

and 200 data points. For each combination of the above mentioned parameters

we generate 100 light curves. We keep parameters α, β and σ2 fixed and equal

to: α2 + β2 = 1 and σ2 = 0.04. We do this for simplicity but also for comparison

reasons, as these are the same values reported in Reimann’s (Reimann (1994) [53])

simulation study for the simple jittered sinusoidal model (5.2).

The estimation of ω as described in the previous Chapters is non trivial. For

this reason we discretize the parameter space of ω in two steps (see also Section

3.8.2). We let ω range from 0 to 50, and for the first estimation step we use a

0.001 accuracy grid. We then select the 5 frequency values for which the likelihood

obtained its 5 highest points and discretized again around these 5 frequencies using

a grid of 1
20000n

accuracy. This is the same grid used in Reimann (1994) [53] and

is selected here for comparison reasons.

Our results are summarized in Table 5.1 where we compare the theoretical variance

according to (5.14) to the estimated one from the simulations. The theoretical



109

variances are shown in bold and the first entry is obtained as:

24σ2

a2 + b2
(1 + ρ2 − 2ρ cos(ω)) =

24 · 0.04
1

(1 + 0.92 − 2 · 0.9 · cos(2.4π)) = 0.77

We notice that the estimated variances are close to the ones predicted from theory

and the values get closer as the sample size grows. Furthermore, we see that the

estimated biases are quite small in all cases and can be found under the columns

named “Bias/se”.

Finally, as an extra layer of proof we perform the following hypothesis testing for

the sample variances

H0 : τ
2 = τ 20

H1 : τ
2 ̸= τ 20

where τ 2 is the unknown true variance of our variance sample and τ 20 is the theo-

retical value being tested. Under the null hypothesis, the sample variance follows

a τ 2χ2
(99) distribution since our sample size is 100 as described previously. In the

square brackets in Table 5.1 under the columns “Theoretical var”, we report the

95% confidence intervals corresponding to the hypothesis test described above.

Note that the confidence interval reported in not affected by n (the length of the

series), it is affected by the number of simulations performed in order to calculate

the estimated variance, which here is 100 for all parameter combinations. We

notice that the estimated and asymptotic variances are close to each other for

all parameter choices, and that all values fall within the intervals, thus, equation

(5.14) and the asymptotic rate of n−3/2 are confirmed.

For comparison reasons, we perform the same analysis by simulating light curves

with AR(1) noise but instead we fit the white noise model. The results can be

found in Table 5.2. For the simple jittered sinusoidal model the theoretical variance

is equal to 0.96 for the same choice of parameters and the corresponding 95%

confidence interval is [0.71, 1.25]. We see that the estimated variances are quite

far away from 0.96 that the white noise model predicts. We notice that the effect
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Table 5.1: Variances from artificial sampling. Data with AR(1) noise

ω = 2.4π ω = 1.1π
ρ n Theoretic Var Estimated Var Bias/se Theoretic Var Estimated Var Bias/se

50 0.58 -0.15 0.14 -0.01
0.9 100 0.77 [0.57,1] 0.87 0.03 0.27 [0.20,0.35] 0.17 0.05

200 0.73 -0.16 0.23 0.07
50 1.09 0.03 0.39 0.03

0.5 100 1.02 [0.76,1.33] 0.90 0.09 0.44 [0.33,0.57] 0.41 -0.06
200 1.02 0.10 0.42 0.10
50 0.93 -0.02 0.73 -0.06

0.1 100 1.01 [0.75,1.31] 0.87 0.03 0.80 [0.59,1.04] 0.92 -0.01
200 1.15 -0.01 0.99 -0.13

is more dramatic when the residuals’ correlation is large, but the values get closer

to 0.96 as ρ gets smaller and thus the data resemble more white noise.

Finally, we perform the same analysis as in Table 5.1 but this time we borrow the

sampling of three real light curves from Froebrich et al. (2021) [24]. The light

curves selected are objects 9324 R, 2287 R, 7159 I with 65, 56, and 107 data points

respectively. We notice that for the first two light curves the simulation results are

reasonable and close to those obtained for the light curves with artificial sampling.

However, for the third light curve we get variances quite larger than expected.

This happens because the sampling of the first two light curves resembles that of

the jittered model, for the last light curve however this model is insufficient to

describe the underlying sampling. See for example Figure 5.3, where the spacings

(i.e differences between two consecutive time points) from the jittered model are

compared to those of light curve 7159 I, used in the third example. We see that

the histogram of the real light curve deviates a lot from what we would expect to

see from data generated according to the jittered model.

5.4.2 Light curves with unequally-spaced red noise

We perform again the same simulation analysis but this time in order to verify the

result from Theorem 5.1. The way simulations were performed remains exactly

the same as described in the previous Section. For the first part of the analysis

we simulate light curves with artificial sampling according to the jittered model

and frequency fixed at 2.4π. In this example we vary the residuals’ correlation ρ,
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Table 5.2: Variances from artificial sampling. Data with AR(1) noise fitted
with white noise model.

ω = 2.4π ω = 1.1π
ρ n Estimated Var Bias/se Estimated Var Bias/se

50 0.53 -0.16 0.20 0.06
0.9 100 0.49 -0.03 0.12 -0.19

200 0.38 0.23 0.21 0.09
50 0.75 -0.06 0.39 -0.03

0.5 100 0.68 0.04 0.30 -0.14
200 1.21 0.10 0.56 -0.05
50 0.92 -0.03 0.72 -0.06

0.1 100 0.87 0.03 0.68 -0.10
200 1.15 0.08 1.10 -0.14

Table 5.3: Variances with sampling from real light curves, with AR(1) noise.

ω = 2.4π ω = 1.1π
ρ lc Theoretic Var Estimated Var Bias/se Theoretic Var Estimated Var Bias/se

lc1 0.54 0.10 0.40 0.07
0.9 lc2 0.77 [0.57,1] 0.66 0.06 0.27 [0.20,0.35] 0.29 0.09

lc3 1.93 0.10 0.57 -0.09
lc1 0.88 -0.03 0.62 0.16

0.5 lc2 1.02 [0.76,1.33] 0.59 0.19 0.44 [0.33,0.57] 0.34 -0.13
lc3 2.69 -0.02 1.45 -0.13
lc1 0.80 0.06 0.81 -0.06

0.1 lc2 1.01 [0.75,1.31] 0.58 -0.14 0.80 [0.59,1.04] 0.56 0.01
lc3 1.84 -0.08 1.62 0.04

Figure 5.3: (Left) Histogram of time spacings generated from the jittered
model for d=1/6. (Right) Histogram of the spacings of the time points of light

curve 7159 I.
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Table 5.4: Variances from artificial sampling. Model with unequally spaced
red noise and ω = 2.4π.

d=1/6 d=1/3
ρ n Theoretic Var Estimated Var Bias/se Theoretic Var Estimated Var Bias/se

50 0.43 -0.13 1.17 -0.03
0.9 100 0.75 [0.56, 0.98] 0.50 -0.02 0.63 [0.47, 0.82] 1.2 0.05

200 0.63 0.09 0.99 0.13
50 0.79 -0.05 1.03 -0.11

0.5 100 1 [0.74, 1.30] 0.82 0.01 0.88 [0.65, 1.14] 0.96 0.04
200 1.11 0.05 0.97 0.10
50 0.98 -0.03 0.85 0.04

0.1 100 1.01 [0.75, 1.31] 0.92 0.02 0.99 [0.73, 1.29] 0.88 0.04
200 1.21 0.06 1 0.07

the number of data points n and we compare two values of the parameter d which

controls the level of disturbances of our time points. The results are summarized

in Table 5.4. The first half of the table shows the results for d = 1/6 which is a

standard value for this parameter as described previously, and the other half shows

the results for d = 1/3. In the latter case our sampling has larger disturbances

and thus is further away of the equally-spaced scheme compared to the sampling

generated with d = 1/6.

We notice that for ρ = 0.5 and ρ = 0.1 the estimated variances fall within the

confidence intervals in all cases. When the correlation gets larger however (0.9 in

our case) we need a larger number of data in order for the estimated variance to

fall within the confidence interval. In the case of d = 1/6 this is achieved for 200

data points when the disturbances get larger however these sample sizes are still

small, as can be seen from the top right part of the table.

Table 5.5 shows exactly the same analysis as seen in Table 5.2, only the data are

generated according to the red noise jittered sinusoidal model (5.4). Similarly as

before we see that the estimated variances for ρ > 0.5 are far away from the 0.96

which is predicted from the white noise model, and thus a model that takes this

behaviour into account is needed.

Finally in Table 5.6 we perform the same analysis as described in the first para-

graph, only we borrow the sampling from the three real light curves described in

the previous Section. Here we choose d = 1/6 as seen in Reimann (1994) [53] for

similar data, which reflects the idea that observations occur at night time.
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Table 5.5: Variances from artificial sampling. Data with red noise fitted with
white noise model.

d = 1/6 d = 1/3
ρ n Estimated Var Bias/se Estimated Var Bias/se

50 0.42 -0.13 0.92 0.08
0.9 100 0.56 -0.05 0.93 -0.08

200 0.63 0.09 0.92 0.08
50 0.79 -0.05 0.95 -0.07

0.5 100 0.81 0.01 0.87 -0.06
200 1.13 0.08 0.92 0.05
50 0.97 -0.03 1 -0.04

0.1 100 0.92 0.02 0.83 -0.06
200 1.28 0.10 0.89 0.06

Table 5.6: Variances with sampling from real light curves, with unequally-
spaced red noise.

ω = 2.4π ω = 1.1π
ρ lc Theoretic Var Estimated Var Bias/se Theoretic Var Estimated Var Bias/se

lc1 0.35 -0.03 0.37 0.10
0.9 lc2 0.75 0.36 -0.15 0.63 0.29 0.07

lc3 [0.56,0.98] 1.56 0.06 [0.47,0.82] 0.67 -0.01
lc1 0.87 -0.20 0.62 -0.09

0.5 lc2 1 0.47 0.14 0.88 0.39 0.01
lc3 [0.74,1.30] 1.9 -0.21 [0.65,1.14] 1.66 -0.07
lc1 0.71 0.01 0.62 0.11

0.1 lc2 1.01 0.61 -0.20 0.99 0.47 -0.14
lc3 [0.75,1.31] 2.74 -0.05 [0.73,1.29] 2.61 0.08

5.5 Adjusting the generalized F-test

In Chapter 3 we discussed the importance of applying a statistical test in order

to decide if our frequency (or period) estimate represents a real signal. The same

holds for the models we considered in this Chapter. Thus, in order for the method-

ology to be complete we will show how the generalized F-test seen in Section 3.2

can be applied here too when we use the jittered sinusoidal model with unequally

spaced red noise (5.4).

The format of the test will be the same as in Equation (3.2). Matrices M0 and

M1 representing the model with no signal and the periodic model are calculated

as follows:

M0 = C1/2
ρ (I− 11⊤/n)C1/2

ρ

M1 = C1/2
ρ (I−X(XTX)−1XT )C1/2

ρ



114

Where X is the design matrix of the sinusoidal model (2.11) and Cρ is shown in

(3.11). Similarly to the previous Chapters we use Saddlepoint approximation to

evaluate the p-values (3.3).

In order to assess the performance of our test under this setting, we perform

an extensive power analysis and compare the test to an alternative one, namely

RTheiler (Thieler et al. (2013) [63]). For all the examples we will discuss below,

we estimate the power by simulating 100 light curves for each scenario (e.g each

combination of SNR and d) and the significance level used is 1-0.99.

First, we estimate the power of the test for different signal to noise ratios and we

also explore how different time disturbances may affect the test’s performance. In

Figure 5.4 (Left) we see these comparisons. Different types of lines correspond to

time observations jittered by different Uniform distributions. We notice that the

generalized F-test performs well for reasonable SNRs (e.g. larger than 0.5) and

its power is constantly higher compared to the RThieler test. Furthermore, we

notice that for both tests the power is lower for time observations disturbed by a

U(−1/2, 1/2) distribution.

Finally, we explore how different levels of correlation in our residuals can affect the

test’s power, see Figure 5.4 (Right). We notice that both tests have their highest

power for ρ close to 0.5 and the power drops quickly as the dependence in the

residuals gets larger.

5.6 Application to real light curves

In this Section we will apply the methods discussed in this Chapter to two real

light curves we analysed in Chapter 3.
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Figure 5.4: (Left) The power of the generalized F-test for the unequally spaced
red noise model for different signal to noise ratios. For this example ρ = 0.5
and different types of lines correspond to different time disturbances. (Right)
In this example we see the power of the generalized F-test for different values
of ρ. The signal to noise ratio is fixed at 0.5 and the disturbances in time come

from U(−1/6, 1/6).

5.6.1 Example 1

This is light curve number 6149 from Froebrich et al. (2021) [24], with a studied

period at 2.1763 days. More details can be found in Section 3.10 and the data can

be seen plotted in Figure 3.10.

Here we compare the three main models discussed in this Chapter, namely the

sinusoidal model with iid (5.2), AR(1) (5.12) and unequally spaced red noise (5.4)

respectively. In Table 5.7 we report the estimated period for each method for the

four available filters. We notice that all methods agree to one decimal place and

are close to 2.1763. Note that these results also agree with those from Section

3.10. We also report the 95% confidence intervals for each estimate. We notice

that the intervals are similar, with those for AR(1) being slightly narrower.

After examining the autocorrelation of the residuals after fitting a white noise

model we noticed that in some cases there seemed to be some significant correla-

tions between the residuals. The estimated correlation parameter ρ̂ after fitting

the AR(1) model was between 0.16 and 0.21 in all cases, see also Figure 5.5 (Left)

which depicts the acf plot for the visual filter after fitting the white noise model.
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Table 5.7: The period identified as most important from the three different
models discussed in this Chapter assuming iid, AR(1) and unequally spaced
AR(1) residuals. In parenthesis we show the 95% confidence interval for each

estimation.

Filter White AR(1) Red
B 2.1895 (2.1781, 2.2011) 2.1891 (2.1797, 2.1986) 2.1891 (2.1773, 2.2011)
R 2.1795 (2.1789, 2.1801) 2.1799 (2.1795, 2.1803) 2.1799 (2.1793, 2.1805)
I 2.1705 (2.1685, 2.1717) 2.1698 (2.1688, 2.1706) 2.1698 (2.1685, 2.1711)
V 2.1695 (2.1685, 2.1705) 2.1698 (2.1689, 2.1707) 2.1698 (2.1688, 2.1708)

Figure 5.5: (Left) The acf plot of the residuals of object 6149 V after fitting
the white noise sinusoidal model. (Right) The same but for object 3314 I.

Notice that some small level of autocorrelation seems to exist between the resid-

uals, however ρ̂ is estimated very close to zero and the autocorrelation function

exhibits a similar behaviour after the red noise model has been fitted. This might

be an indication that other dynamics, not explained by the red noise model, exist

in this data. When fitting the red noise model however ρ̂ was estimated as very

close to zero in most cases. Finally, we performed the period detection test de-

scribed in Section 5.5 and more analytically in Chapter 3, for all three models.

For the iid case the test rejected the null hypothesis (of no periodicity) indicating

a significant period at an 1- 99% level. The test however did not reject the null

hypothesis for the other two models assuming correlated residuals.
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5.6.2 Example 2

The second light curve we examine is that corresponding to star number 3314 with

a period at 13.8783 days as seen in Froebrich et al. (2021) [24]. More details on

this data set, along with its plot can be found in Section 3.10. We perform the

same analysis as described for the previous example in Section 5.6.1. Again all

models appear to be in close agreement. The results can be seen in Table 5.8.

Table 5.8: The estimated period according to the models with iid, AR(1) and
unequally spaced AR(1) residuals along with their 95% confidence intervals.

Filter White AR(1) Red
R 13.8705 (13.3767, 14.4022) 13.8701 (13.3415, 14.4423) 13.8701 (13.3759, 14.4022)
I 13.8605 (13.5023, 14.2383) 13.8701 (13.5124, 14.2471) 13.8701 (13.5073, 14.2529)

After applying the period detection test we report that the null hypothesis was

rejected for all models at the same 99% significance level. We examined the auto-

correlation of the residuals after fitting the white noise model in this case too, with

no significant autocorrelations identified, see Figure 5.5 (Right) as an example for

filter I. The correlation parameter here was < 0.00001 in all cases for both the

AR(1) and the red noise models.

5.7 Summary

The asymptotic properties of the maximum likelihood frequency estimates of si-

nusoidal models for irregularly sampled data are studied in this Chapter. A result

from Reimann (1994) [53] for iid data is extended for the case where red noise is

present. We showed that under this setting and for the noise structure known, ω̂ is

again consistent and asymptotically normal. The asymptotic variance in this case

also depends on the frequency, error correlation and sampling. The convergence

rate is the same as for the iid case. Our simulations returned consistent results to

those predicted by the proposed theorems for sample sizes of 200 data points or

more.
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Furthermore, we saw that a special case of the red noise model is the AR(1) error

structure. The same results hold under this case too but the asymptotic variance

no longer depends on the sampling. The simulation results in this case were in

agreement with the proposed theoretic values even for small sample sizes (i.e 50).

Both results are unaffected by the use of the intercept term in the sinusoidal model.

The application to real data returned results similar to the previous methods,

accompanied with a confidence interval for each estimate. For these two examples

the results were almost the same between white and red noise settings indicating

a non-correlated error structure for these examples.



Chapter 6

Conclusions and Future work

In this thesis we studied the problem of analysing the periodicity of light curves

through three different perspectives. First we discussed the problem from the

period estimation point of view, secondly we examined thoroughly adding some

credibility to those estimates and finally we explored the statistical properties of

some of them.

In particular, in Chapter 3 we provided tests for period detection under non-

parametric linear smoother settings, especially Gaussian process regression. The

generalized F-statistic is easily and readily adjustable for a range of models. For

example it works better than alternative tests when Weighted Least Squares re-

gression is used and the sample size is relatively large. It is also easy to use under

ARMA model setting providing more accurate results than asymptotic methods

for small sample sizes.

The CVF-test statistic based on leave-one-out cross validation for Gaussian pro-

cess regression behaves similarly to the F. Both statistics can be adjusted for

Weighted Gaussian process regression scenarios (when measurement accuracies

are available), and also for deviations from white background noise. Our simula-

tion results show that adjusting for red noise (when present) leads to more periods

correctly identified and smaller number of falsely identified periods. The power of

both tests when Gaussian process regression is used is quite high for reasonable
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signal to noise ratios (e.g. for data with SNR > 0.6). The proposed methods are

also applied to real light curves returning similar results to standard approaches.

In Chapter 4, we provided a flexible alternative to the GPR methodology, using

a t-process. This approach according to our simulations works as well as the

GPR method only it captures better data with outliers and fat tails. Moreover

we showed how the measurement accuracies can be taken into account under this

setting too.

In addition, we extended the GPR and tPR models for light curves with measure-

ments in multiple filters and showed how the measurement accuracies can be taken

into account again for these multiple filter approaches. Our simulations showed

that the multiband models work well and in some cases provide better inference

than by analysing the light curves individually. This is especially the case if the

light curves are not well measured in all filers. If we have perfect measurements

in all filters and the shape of the light curves is quite different between the filters

then analysing them individually might provide more accurate results.

Furthermore, we showed how the generalized F and CVF-tests can be use under

these settings too in order to build periodograms and perform the corresponding

tests. Finally, the possibility of modelling quasi periodic data was examined by

using different periodic kernels that account for different periodical assumptions

and we showed that the generalized F and CVF-tests can be used as kernel selection

tools. All these methods were applied to real data returning in most cases similar

results to the previously discussed methods.

In Chapter 5, we examined the statistical properties of the period estimates of

irregularly sampled time series. As explained earlier not a lot of work has been

done in this domain of statistics. We discussed a result from Reimann et al. (1994)

[53] for the MLE estimate of period based on the simple sinusoidal model (5.2)

and extended it for data with red noise.

Specifically, we showed that under some regularity conditions the MLE of the

frequency parameter of the red noise jittred sinusoidal model (5.4) is consistent
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and asymptotically normal and converges to the true parameter at an O(n−3/2)

rate. This result was verified through an extensive simulation study. When the

residuals’ correlation is less than 0.5 the result is verified even for small sample

sizes of length of 50 points for example. When this correlation gets closer to 1

however then a sample size of 500 or more is required. Finally we showed that a

similar result holds when we include the intercept in model (5.2) and also for their

weighted regression equivalents.

Methods Comparison

In this thesis we explored a big range of methods around the subject of finding

periodical patterns in time series. Each method has its strengths and weaknesses

and from our study no method was identified as overall better than the rest. here

we will try ti look at these methods collectively and draw comparisons between

them.

At the end of each Chapter we applied the methods discussed/proposed to two

randomly selected real light curves from Froebrich et al. (2021) [24]. For com-

parison reasons we chose the same two light curves for all Chapters applications.

Object no 6149 has a studied period at 2.1763 days as explained before. Overall

for this light curve almost all methods found as most significant the period at 2.2

days. Standard F-test had a larger amount of false positives compared to general-

ized F, CVF and Theiler’s test. The t-process regression method returned exactly

the same results as the Gaussian process one. We also applied two further peri-

odic kernels the cylinder and Quasi periodic one and they again returned similar

results. The multiple filter version of of the tPR method identified the correct pe-

riod but had many false positives. The multiband GPR method failed to identify

the correct period. Note however that for the latter method we did not include

the measurement accuracies which were taken into account in all other methods.

This is an indication that accounting for these weights can improve our results.

Finally red noise models both under the sinusoidal and GPR settings returned
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Figure 6.1: Flow chart of the methods discussed in this thesis. The starting
point is top left. With L2 we denote the sum of least squares. With L1 we
denote the sum of absolute deviations but other robust regression techniques
can be used instead. With Hall we denote the approach by Hall et al. (2000)
[27] based on kernel smoothing regression. Finally MC stands for Monte Carlo.

similar results, which is expected since the data as we discussed earlier did not

seem to have correlated residuals. As we can see from Figure 3.10 the shape of

this light curve resembles a sinusoidal wave and that’s why both non-parametric

and non methods behaved similarly.

The second object studied was light curve no 3314 with period at 13.8783 days.

In this case almost all methods returned identical results, they identified as most

important the period at 13.9 days and zero false positives. The only approach

that gave a different period was when the cylinder kernel was used. The multiple

filter approaches identified the correct period this time with the multiband tPR

having 1 and the multiple GPR 2 false positives. Similarly as before looking at

Figure 3.12 we see that the light curve resembles the shape of a sine wave.
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In order to get a clearer idea as to when it is better to use each method we built

the flow chart seen in Figure 6.1. The blue boxes represent the questions we should

answer regarding our data. For example what is their shape or their background

noise. The orange boxes show us the recommended method to use in each case.

Note that in this chart we did not include the quasi periodic and the multiple

filter measurements cases for simplicity, since the idea and thought steps to follow

are the same. Note also that at the start of the flow chart we ask the question

whether our data is sinusoidal or not because that is the most common shape for

the data we study. Generally this question should be posed as whether the shape

of the curve is known or not. When the shape is known it is advised to model the

data parametrically for more accurate and computationally faster results.

Future Work

In Chapter 3 we introduced a flexible hypothesis testing setting for identifying

valid period. These tests are flexible but there are situations where they cannot

be used (e.g Robust regression/L1 settings). Furthermore, we showed how these

tests can be used under red noise settings, but further work is needed in order to

include other potentially useful background noise models. Finally there might be

cases where the background noise is not known at all and thus other methods are

needed in order to obtain accurate results.

In Chapter 4 we extended the GPR framework in order to include measurements

from multiple filters. Although these multiband methods seem to work well they

are computationally demanding as the number of filters grow. For that reason

more work is needed for these models to be computationally efficient. Moreover

we saw how choosing different kernels can help us model light curves that are

not strictly periodic and we can choose between them by applying the generalized

F-test. This setting however is restrictive regrading the types of data we can

model and requires multiple comparisons between kernels in order to select the

best. It would be useful thus to have a more general model that incorporates all
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cases. Another thing to consider is determining the p-values of quadratic forms of t

components in order to obtain more accurate results when using the generalized F-

test under the t-process setting. Estimating the CDF of Student t Quadratic forms

is an interesting and not adequately explored problem with potential applications

to time series in general. Some relevant work to that end can be found in Bishop

et al. (1978) [11] where the authors estimate percentages of Student t Quadratic

forms using simulations or the Pearson curve fitting method.

Finally, in Chapter 5 we discussed the asymptotic properties of frequency esti-

mates obtained under sinusoidal-type models. We did not explore however the

asymptotic properties of the non-parametric estimates. To our knowledge, the

only relevant work to that end can be found in Hall et al. (2000) [27] where the

authors show that period estimates obtained through a kernel smoothing regres-

sion scheme are consistent and asymptotically normal. It would be interesting

thus to show that a similar result holds and the GPR and tPR setting too. More-

over for our results we assumed a very specific model for the time points, given

by (5.2). Other models have been proposed too (see Hall et al. (2000) [27] ) and

since as we discussed previously this model might not always be representative of

our data it would be useful to explore if the same results hold for different time

models. Finally, another thing to consider is the situation where the distribution

of the time points is not known.



Appendix A

Proofs for asymptotic theorems

A.1 Conditions (A)-(D) for Theorem 5.1

To make use of Theorem III4.1 of Ibragimov and Has’minskii (2013) [33] (p.191),

Ψ2
n must also satisfy the following four conditions. These are the same conditions

stated in Reimann (1994) [53] (p.42) or equations (4.2), (4.4), (4.8) and (4.9) found

at pages (191-194) in [33].

(A): For defined |A| = sup|λ|=1 |λTAλ|,

lim
n→∞

sup trΨ−2
n = 0, lim

n→∞
|Ψ−1

n Ψ2(n, τ)Ψ−1
n | < ∞

where τ is an estimate of θ and Ψn = Ψ(n,θ)

(B): For ρ > 0 and v ∈ ℜ3,

lim
n→∞

sup
θ∈Θ

n∑
j=1

E|[ ∂
∂θ

ln fj(xj; θ)]
TΨ−1

n v|2+ρ = 0

(C): Assume sequence λ(n) → ∞ as n → ∞.

f
1/2
j (xj,θ) is twice continuously differentiable w.r.t θ, and as n → ∞

sup
θ∈Θ

sup
|v|<λ(n),θ+Ψ−1

n v

n∑
j=1

∫
|Ψ−1

n

∂2

∂θ2
f
1/2
i (xj, θ +Ψ−1

n v)Ψ−1
n |2dxj = o(λ(n)−2)
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(D): For ζ > 0

inf
θ∈Θ

inf
|v|<λ(n),θ+Ψ−1

n v
|Ψn|−ζ

n∑
j=1

∫
[f

1/2
j (xj; θ +Ψ−1

n v)− f
1/2
j (xj; θ)]

2dxj > 0

The steps followed to prove these conditions for our model are exactly the same

as shown in [53] at pages 44-46.

A.2 Proof for Corollary 5.2

We follow exactly the same steps as seen in the proof for Theorem 5.1. Matrix C

in this case will be calculated as:

∂

∂a
fj(xj, θ) = g′(u)(− cos(ωtj) + ρ cos(ωtj−1))h(tj − j)

∂

∂b
fj(xj, θ) = g′(u)(− sin(ωtj) + ρ sin(ωtj−1))h(tj − j)

∂

∂ω
fj(xj, θ) = g′(u)(a sin(ωtj)tj−b cos(ωtj)tj−aρ sin(ωtj−1)tj−1+bρ cos(ωtj−1)tj−1)h(tj−j)

Thus C is seen bellow:

C = g′(u)2h(tj − j)2


A2 AB AC

∗ B2 BC

∗ ∗ C2


A2 = ρ2 cos2(ωtj−1) + cos2(ωtj)− 2ρ cos(ωtj) cos(ωtj−1)

AB = cos(ωtj) sin(ωtj)−ρ cos(ωtj) sin(ωtj−1)−ρ cos(ωtj−1) sin(ωtj)+ρ2 cos(ωtj−1) sin(ωtj−1)

B2 = ρ2 sin2(ωtj−1) + sin2(ωtj)− 2ρ sin(ωtj) sin(ωtj−1)

AC = −atj cos(ωtj) sin(ωtj + btj cos
2(ωtj) + aρtj−1 cos(ωtj) sin(ωtj−1)−
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−bρtj−1 cos(ωtj) cos(ωtj−1) + aρtj cos(ωtj−1) sin(ωtj)− bρtj cos(ωtj−1) cos(ωtj)−

−aρ2tj−1 cos(ωtj−1) sin(ωtj−1) + bρ2tj−1 cos
2(ωtj−1))

BC = −atj sin
2(ωtj) + btj sin(ωtj) cos(ωtj) + aρtj−1 sin(ωtj) sin(ωtj−1)−

−bρtj−1 sin(ωtj) cos(ωtj−1) + aρtj sin(ωtj) sin(ωtj−1)− bρtj sin(ωtj−1) cos(ωtj)−

−aρ2tj−1 sin
2(ωtj−1) + bρ2tj−1 sin(ωtj−1) cos(ωtj−1)

C2 = a2t2j sin
2(ωtj)− abt2j sin(ωtj) cos(ωtj)− a2ρtjtj−1 sin(ωtj) sin(ωtj−1)+

+abρtj−1 sin(ωtj) cos(ωtj−1) + b2t2j cos
2(ωtj) + abρtj−1 cos(ωtj) sin(ωtj−1)−

−b2ρtj−1 cos(ωtj) cos(ωtj−1) + a2ρ2t2j−1 sin
2(ωtj−1)−

−abρ2t2j−1 sin(ωtj−1) cos(ωtj−1) + b2ρ2t2j−1 cos
2(ωtj−1)

Finally, matrix Ψ2 will be of the following form:

Ψ2
n = k

I

2
N1/2

{
Γ+O(n−1)

}
N1/2

where k = 1 + ρ2 − 2ρ cos(ω). The first entry [1, 1] of Ψ2
n is obtained similarly by,

Ψ2
[1,1] = I

n∑
j=1

{
E(ρ2 cos2(ωtj−1)) + E(cos2(ωtj)) + E(−2ρ cos(ωtj) cos(ωtj−1))

}
=

=
I

2

n∑
j=1

{1 + cos(2ωj)E(cos(2ωδ)) + ρ2 + ρ2 cos(2ω(j − 1))E(cos(2ωδ))−

−2ρ cos(ω)E(cos(ω(δ1 − δ2)))− 2ρ cos(2ω(j − 1))E(cos(ω(δ1 + δ2)))} =

=
I

2
n(1 + ρ2 − 2ρ cos(ω)) +O(1)

The form of matrices Ψ−2
n , Ψn and Ψ−1

n can be seen below:

Ψ−2
n = k−12I−1N−1/2

{
Γ−1 +O(n−1)

}
N−1/2
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Ψn =

√
I√
2
k1/2N1/4{Γ1/2 +O(n−1)}N1/4

Ψ−1
n =

√
2√
I
k−1/2N−1/4{Γ−1/2 +O(n−1)}N−1/4

Conditions (A)-(D) are verified as seen in Reimann (1994) [53].

A.3 Proof for Theorem 5.3

We will follow the same steps described in the previous two sections, and we will

start by calculating matrix Ψ2
n which in this case will be of a 4 × 4 dimension.

Fisher’s information matrix for this case can be seen bellow:

Ij(θ) = IE


1 cos(ωtj) sin(ωtj) tj(b cos(ωtj)− a sin(ωtj))

∗ cos2(ωtj) cos(ωtj) sin(ωtj) tj cos(ωtj)b cos(ωtj)− a sin(ωtj)

∗ ∗ sin2(ωtj) tj sin(ωtj)b cos(ωtj)− a sin(ωtj)

∗ ∗ ∗ t2jb cos(ωtj)− a sin(ωtj)
2


We are ready now to calculate the entries of Ψ2

n matrix as follows:

[Ψ2
n]11 = I

n∑
j=1

E[1] = In =
n

2
I2

[Ψ2
n]12 = I

n∑
j=1

E[cos(ωtj)] = I

n∑
j=1

E[cos(ωδ) cos(ωj)− sin(ωδ) sin(ωj)] =

= I
n∑

j=1

{Reϕ(ω) cos(ωj)− Imϕ(ω) sin(ωj)} = O(1)

[Ψ2
n]14 = I

n∑
j=1

{b cos(ωj)E[δ cos(ωδ)]− b sin(ωj)E[δ sin(ωδ)]+

+jb cos(ωj)E[cos(ωδ)]−jb sin(ωj)E[sin(ωδ)]−a cos(ωj)E[δ sin(ωδ)]−a sin(ωj)E[δ cos(ωδ)]−

−ja cos(ωj)E[sin(ωδ)]− ja sin(ωj)E[cos(ωδ)]} = O(n)?
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Ψ2
n =

I

2


2n O(1) O(1) O(n)

∗ n+O(1) O(1) b
2
n2 +O(n)

∗ ∗ n+O(1) −a
2
n2 +O(n)

∗ ∗ ∗ a2+b2

3
n3 +O(n2)

 =
I

2
N1/2{Γc+O(n−1)}N1/2

In the same manner as in previous sections we can obtain the rest of the matrices.

Ψ−2
n = 2I−1N−1/2

{
Γ−1

c +O(n−1)
}
N−1/2

Ψn =

√
I√
2
N1/4{Γ1/2

c +O(n−1)}N1/4

and,

Γ1/2
c =



√
2 0 0 0

∗ 2a2+b2

2(a2+b2)
ab

2(a2+b2)
b
√
3a2+3b2

2(a2+b2)

∗ ∗ a2+2b2

2(a2+b2)
−a

√
3a2+3b2

2(a2+b2)

∗ ∗ ∗ (a2+b2)3/2√
3(a2+b2)


Ψ−1

n =

√
2√
I
N−1/4{Γ−1/2

c +O(n−1)}N−1/4

Conditions (A)-(D) hold in a similar manner.

A.4 Proof for Theorem 5.4

We will show that a similar result to the previous holds under the weighted regres-

sion setting. We will start with the calculations for Fisher’s information matrix:

∂

∂a
[g(qjyj − qjα cos(ωtj)− qjβ sin(ωtj))h(tj − j)] = −g′(ϵ)qj cos(ωtj)h(tj − j)

∂

∂b
[g(qjyj − qjα cos(ωtj)− qjβ sin(ωtj))h(tj − j)] = −g′(ϵ)qj sin(ωtj)h(tj − j)

∂

∂ω
[g(qjyj − qjα cos(ωtj)− qjβ sin(ωtj))h(tj − j)] = g′(ϵ)(aqj sin(ωtj)tj−bqj cos(ωtj)tj)h(tj−j)
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If we square the vector above for our three parameters we will obtain matrix C

described below:

C =


g′(ϵ)2q2j cos

2(ωtj)h
2(tj − j) g′(ϵ)2q2jh

2(tj − j) cos(ωtj) sin(ωtj) g′(ϵ)2q2jh
2(tj − j)tj cos(ωtj)c(tj)

∗ g′(ϵ)2q2j sin
2(ωtj)h

2(tj − j) g′(ϵ)2q2jh
2(tj − j)tj sin(ωtj)c(tj)

∗ ∗ g′(ϵ)2q2jh
2(tj − j)t2jc

2(tj)

 (A.1)

where c(tj) = b cos(ωtj)− a sin(ωtj).

Hence Fisher’s information can be calculated following the next steps.

Ij(θ) =

∫
C

dxj

fj(xj; θ)

Since all elements in matrix C are multiplied with g′(ϵ)2q2jh
2(tj − j) we can take

these values out, and obtain matrix C̃ depending on tj and we can write,

Ij(θ) =

∫
g′(ϵ)2q2jh

2(tj−j)C̃
dxj

g(ϵ)h(tj − j)
= q2j

∫
g′(ϵ)2

g(ϵ)
C̃h(tj−j)dxj = q2j

∫
g′(ϵ)2

g(ϵ)
E[C̃] =

= q2j IE


cos2(ωtj) cos(ωtj) sin(ωtj) tj cos(ωtj)b cos(ωtj)− a sin(ωtj)

∗ sin2(ωtj) tj sin(ωtj)b cos(ωtj)− a sin(ωtj)

∗ ∗ t2jb cos(ωtj)− a sin(ωtj)
2


In a similar manner as described in the previous section we can calculate matrix

Ψ2
n which will be of the following form.

Ψ2
n =

n∑
j=1

q2j
I

2


n+O(1) O(1) b

2
n2 +O(n)

∗ n+O(1) −a
2
n2 +O(n)

∗ ∗ a2+b2

3
n3 +O(n2)

 = k
I

2
N1/2

{
Γ+O(n−1)

}
N1/2

where k =
∑n

j=1 q
2
j Similarly as before, Ψn is positive definite, so we can write:

Ψ−2
n = k−12I−1N−1/2

{
Γ−1 +O(n−1)

}
N−1/2
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where,

Γ−1 =


a2+4b2

a2+b2
−3ab
a2+b2

−6b
a2+b2

∗ 4a2+b2

a2+b2
6b

a2+b2

∗ ∗ 12
a2+b2


Finally,matrices Ψn and Ψ−1

n are similar to the case with no weights and can be

seen below:

Ψn =

√
1/8Ikn

a2 + b2


2a2 + b2 +O(n−1) ab+O(n−1) b

√
3a2 + 3b2 +O(n−1)

∗ a2 + 2b2 +O(n−1) −a
√
3a2 + 3b2 +O(n−1)

∗ ∗ 2n
31/2

(a2 + b2)3/2 +O(1)



Ψ−1
n =

√
2/(Ikn)

a2 + b2


a2 + 2b2 +O(n−1) −ab+O(n−1) −3bn−1 +O(n−2)

∗ 2a2 + b2 +O(n−1) 3an−1 +O(n−2)

∗ ∗ n−1
√

(3a2 + 3b2)+O(n−2)


It is straightforward to show that conditions (A)-(D) hold in a similar manner.
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